WO2019075616A1 - 一种电机控制方法及电机系统 - Google Patents

一种电机控制方法及电机系统 Download PDF

Info

Publication number
WO2019075616A1
WO2019075616A1 PCT/CN2017/106381 CN2017106381W WO2019075616A1 WO 2019075616 A1 WO2019075616 A1 WO 2019075616A1 CN 2017106381 W CN2017106381 W CN 2017106381W WO 2019075616 A1 WO2019075616 A1 WO 2019075616A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
magnetic
magnetic field
controller
field parameter
Prior art date
Application number
PCT/CN2017/106381
Other languages
English (en)
French (fr)
Inventor
刘佰祥
陈艳华
周述宇
Original Assignee
深圳和而泰智能控制股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳和而泰智能控制股份有限公司 filed Critical 深圳和而泰智能控制股份有限公司
Priority to PCT/CN2017/106381 priority Critical patent/WO2019075616A1/zh
Priority to CN201780008982.0A priority patent/CN108702119A/zh
Publication of WO2019075616A1 publication Critical patent/WO2019075616A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/24Controlling the direction, e.g. clockwise or counterclockwise

Definitions

  • the present application relates to the field of electric devices, and in particular to a motor control method and a motor system.
  • the motor that powers the motor system includes a brush motor and a brushless motor. Since the brushless motor does not use a mechanical brush device, the brush motor has high efficiency, low noise, long life, no spark, and relatively low. Advantages such as cost have been widely adopted in motor systems, especially in extremely demanding environments, where brush motors have been replaced by brushless motors.
  • the brushless motor is driven by a large current and operates in a more harsh environment. When working, large currents bring more electrical components to the motor system. The large electromagnetic interference and the power switch of the power device and the motor system bring more heat, and the harsh working environment requires the motor system to have higher and higher requirements for the shock and impact resistance of the used switch.
  • the switching speed control device of the prior motor system generally adopts a mechanical contact mode between the elastic piece and the carbon film resistor, the power switch adopts a mechanical contact type, and an external power diode is used at the pin of the power connection line for the power supply.
  • a freewheeling circuit is provided to the motor.
  • the high-power brushless motor tool has a large current. Since the power switch Ka is a point-contact type, there is a contact resistance when it is turned on. When a large current flows, a large amount of heat is generated, and the long-term operation causes the contact to burn, the switch The plastic melts, the solder joints of the wires are melted, and the switching contacts are cost-effective with the ability to withstand large currents.
  • the motor M1 is an inductive load. When the motor is stopped, it needs to be provided with a freewheeling circuit.
  • the existing motor system switch uses a power diode D1 welded at the switch Ka to provide a freewheeling circuit to the brushless motor when the Ka is disconnected. .
  • the larger the power diode power the larger the volume, and the space in which the motor system switch can accommodate the freewheeling diode is very limited, making it impossible to install and solder a high-power diode in the switch.
  • the brushless motor high-current freewheeling circuit power diode heat is serious, long-term work is easy to cause It is thermally broken down and burned.
  • high-power diodes greatly increase the cost of the product.
  • the speed control device of the existing brushless motor also adopts the mechanical contact mode between the elastic piece and the carbon film resistor, and changes the output resistance value by changing the relative contact position between the elastic piece and the carbon film resistor, thereby realizing the speed regulation function of the motor system.
  • the friction between the shrapnel and the carbon film resistor will cause friction loss as the number of times of use increases, and the use time is long, causing wear and plastic deformation, which may cause poor contact between the shrapnel and the carbon film resistor, affecting the switch.
  • the existing motor system has a non-human factor startup phenomenon in use, and when the non-human factor is activated, not only the wear and damage of the motor system itself, but also potential personal safety hazards exist.
  • the application provides a motor control method and a motor system.
  • the motor system cancels the switch of physical contact, and the controller completes the start-stop operation and the speed-regulating operation of the motor according to the operation of the magnetic member by the user, and can also be the motor at the same time.
  • Energy release provides an efficient freewheeling loop.
  • the present application provides the following technical solutions.
  • an embodiment of the present application provides a motor control method, including the following steps:
  • Determining the magnetic field parameter when the magnetic field parameter is greater than the starting threshold, starting the motor, in the magnetic field When the number is less than the starting threshold, the power supply to the motor is stopped;
  • the magnetic parameter change of the magnetic component of the magnetic detecting device is continuously obtained, and the motor is adjusted according to the magnetic field parameter change.
  • the magnetic field parameter is an induced voltage value or an induced current value
  • the starting threshold of the motor is a corresponding voltage threshold or current threshold
  • an embodiment of the present application further provides a motor system including a motor, a controller, a magnetic detecting device connected to the controller, and a magnetic component of the non-contact control motor, wherein the motor is connected to the power supply through a controller,
  • the controller includes a receiving module, a judging module, and a speed regulating module.
  • the magnetic detecting device When the magnetic member is changed in position relative to the magnetic detecting device, the magnetic detecting device is configured to induce a magnetic field of the magnetic member to generate a magnetic field parameter, and the receiving module is configured to receive the magnetic field parameter;
  • the determining module is provided with a starting threshold of the motor corresponding to the magnetic field parameter; the determining module is configured to start the motor when the magnetic field parameter is greater than the starting threshold, and stop supplying power to the motor when the magnetic field parameter is less than the starting threshold;
  • the speed regulating module is configured to adjust the speed of the motor according to the change of the magnetic field parameter.
  • the magnetic field parameter is an induced voltage value or an induced current value
  • the starting threshold of the motor is a corresponding voltage threshold or current threshold
  • a power drive control module is further included, and the power drive module is coupled to the controller and the motor for providing drive power to the motor according to a control signal of the controller.
  • the magnetic component is disposed within a detectable range of the magnetic detecting device, and the speed regulating module of the controller is provided with associated data of the induced voltage value and the motor rotational speed.
  • the magnetic detecting device When the magnetic component is adjacent to the magnetic detecting device, the magnetic detecting device outputs The induced voltage value is increased, and the speed of the speed regulating module for controlling the motor is increased; when the magnetic member is away from the magnetic detecting device, the induced voltage value output by the magnetic detecting device is decreased, and the speed regulating module is The speed used to control the motor is reduced.
  • the controller integrates the power drive control module.
  • the controller also includes a motor forward and reverse switch for changing the direction of rotation of the motor.
  • the magnetic member is disposed on a push rod operated by a user, and the push rod is provided with a touch recognition device for identifying whether it is an artificial operation, and the touch recognition device is connected and data-connected with the controller.
  • the touch recognition device includes a capacitor connected to the controller and a capacitive touch pad disposed on the push rod.
  • the magnetic detecting device is a linear Hall magnetic sensor.
  • the utility model has the beneficial effects of the control method and the motor system provided by the embodiment of the present application.
  • the motor system separates the switch from the controller, and the motor is directly connected to the power supply through the controller, and the controller is operated according to the user's operation on the magnetic component. Complete the start and stop operation and speed control of the motor, and at the same time provide an efficient freewheeling circuit for the motor energy release.
  • the motor system switch adopts the scheme of software power supply switch and speed regulating device, and the switch and the speed regulating device are separated, the switch of the power source is not in the physical switch but is judged and controlled by the controller, and the large current loop does not pass through the physical switch.
  • the motor of the motor system is directly connected to the power supply.
  • the brushless motor is started and stopped, and the magnetic signal of the speed regulating device is used, which is collected by the controller, and the start valve of the motor start is set in the controller.
  • the controller drives the power to drive the control module to make the motor run.
  • the controller drives the power drive control module to stop the motor.
  • the motor system switching scheme of the technical solution of the present application has a simple structure, the non-contact control mode makes the life of the motor prolonged, the switching cost of the motor system is low, safe and reliable, and realizes intelligence.
  • FIG. 1 is a schematic diagram of a switch and a speed control structure of a conventional motor system
  • FIG. 2 is a circuit diagram of an embodiment of a motor system provided by an embodiment of the present application.
  • FIG. 3 is a block diagram of a controller in a motor system according to an embodiment of the present application.
  • FIG. 4 is a circuit diagram of another embodiment of a motor system according to an embodiment of the present application.
  • FIG. 5 is a flowchart of a motor control method provided by an embodiment of the present application.
  • the embodiment of the present application relates to a motor system and the application of the motor Motor control method on the system.
  • the motor involved in the motor system of the present application may be a brush motor or a brushless motor.
  • the motors in the following embodiments all employ a brushless motor.
  • the motor system includes a motor 10, a controller 20, a magnetic detecting device connected to the controller 20, and a magnetic member A1 of the non-contact control motor 10.
  • the motor 10 is connected to the power supply 40 via the controller 20.
  • the controller 20 further includes a receiving module 22 , a determining module 24 , and a speed adjusting module 26 .
  • the magnetic detecting device When the magnetic member A1 is changed in position relative to the magnetic detecting device S1 by a user operation, the magnetic detecting device induces a magnetic field generating magnetic field parameter of the magnetic member A1.
  • the receiving module 22 is configured to receive the magnetic field parameter.
  • the decision module 24 of the controller 20 is provided with a start threshold for the motor corresponding to the magnetic field parameters.
  • the determining module 24 is configured to control the starting of the motor 10 when the magnetic field parameter is greater than the starting threshold.
  • the determining module 24 is configured to control to stop supplying power to the motor 20;
  • the magnetic detecting device S1 continues to sense the change of the magnetic field parameter of the magnetic member A1, and the speed regulating module 26 of the controller 20 adjusts the motor 10 according to the magnetic field parameter change.
  • the motor system also includes a power drive control module 30.
  • the power drive control module 30 is used to control the rotational power of the motor 10.
  • the power drive control module 30 is also coupled to the controller 20 for receiving a control signal for the power output request determined by the controller 20 based on changes in the magnetic field parameters.
  • the power drive The control module 30 is connected to the power supply 40 and the controller 20, and the power drive control module 30 realizes the start and stop and the speed regulation of the motor 10 under the control of the controller 20.
  • the controller 20 of the motor is connected to the magnetic detecting device S1, the capacitor C1, and the motor forward/reverse switch K1.
  • the magnetic member A1 and the magnetic detecting device S1 constitute a motor starting and stopping device and also a motor speed adjusting device.
  • the motor forward/reverse switch K1 of the connection controller 20 is used to change the direction of rotation of the motor.
  • the magnetic member A1 is disposed on a push rod 60 that is operated by a user.
  • a touch recognition device is provided on the pusher 60 for identifying whether it is an artificial operation and preventing accidental activation of the motor, the touch recognition device being in connection with the controller 20 and in data communication.
  • the touch recognition device includes a capacitor C1 and a capacitive touch pad B1.
  • the capacitor C1 is connected to the controller 20, and the capacitive touch pad B1 is disposed at the end of the push rod 60.
  • the magnetic member A1 may be a magnetic steel or a magnetic material such as a permanent magnet.
  • the magnetic detecting device S1 may be a linear Hall magnetic sensor or other magnetoelectric effect sensor such as a magnetoresistance effect sensor or the like.
  • the magnetic field parameter generated by the magnetic detecting device S1 is determined according to different sensors used, such as a linear Hall magnetic sensor whose magnetic field parameter is an induced voltage value, or a magnetoresistance effect sensor, which is a sense of the magnetic field parameter. Current value.
  • the following description takes the magnetic detecting device S1 as an example of a linear Hall magnetic sensor, and illustrates the induced voltage based on the magnetic field parameter.
  • the determining module 24 of the controller 20 is provided with a starting threshold for the motor corresponding to the magnetic field parameter. Wherein, when the user operates the magnetic member A1 to change position with respect to the magnetic detecting device S1, the magnetic detecting device S1 induces a magnetic field of the magnetic member A1 to generate a magnetic field parameter; the determining module 24 of the controller 20 has a magnetic field parameter greater than the starting At the threshold, the motor 10 is started, and when the magnetic field parameter is less than the starting threshold, the determining module 24 of the controller 20 stops supplying power to the motor 10.
  • the magnetic detecting device S1 When the magnetic field parameter is greater than the starting threshold, the magnetic detecting device S1 continues to acquire the magnetic field parameter of the magnetic component A1, and the speed regulating module 26 of the controller 20 adjusts the motor 10 according to the magnetic field parameter feedback fed back by the magnetic detecting device S1. .
  • the starting threshold of the motor 10 is a voltage threshold corresponding to the magnetic field parameter.
  • the speed control module 26 of the controller 20 stores the associated voltage value or associated data of the induced current value and the motor speed.
  • the associated data of the motor speed corresponds to the output power of the corresponding output to the motor.
  • the control The controller 20 is also coupled to a power drive control module 30 that regulates the power output by the power supply 40 to the motor 10 based on the associated data determined by the controller 20.
  • the magnetic member A1 is disposed within the detectable range of the magnetic detecting device S1.
  • the magnetic detecting device S1 is magnetically induced.
  • the magnetic field of the component A1 generates a magnetic field parameter, such as an induced voltage; the closer the magnetic component A1 is, the larger the induced voltage value output by the magnetic detecting device S1 is, and the associated data of the motor rotational speed determined by the governing module 26 of the controller 20 is also
  • the larger the speed of the corresponding motor 10 the smaller the magnetic field parameter output by the magnetic detecting device S1 is, that is, the induced voltage value is decreased.
  • the touch recognition device includes a capacitor C1 and a capacitive touch pad B1.
  • the capacitor C1 is connected to the controller 20, and the capacitive touch pad B1 is disposed at the end of the push rod 60.
  • the capacitive touch plate B1 is also contacted, and the capacitive touch plate B1 and the user's palm form a coupling capacitor due to the electric field of the human body, generating an induced current, so the capacitor C1 is output.
  • the current signal, the controller 20 receives the current signal is considered to push the push rod 60 to open the motor or speed; the controller 20 does not receive the current signal but the magnetic detecting device S1 returns the magnetic field parameter is a non-human error In operation, the controller 20 no longer controls motor operation based on magnetic field parameters.
  • the controller 120 integrates a power drive control module.
  • the motor system of the second embodiment is also connected to the motor 100 and the power supply 140 via the controller 120.
  • the motor system includes a magnetic detecting device coupled to the controller 120 and a magnetic member A1 for the contactless control motor 100 that is operated by a user.
  • the controller 120 is integrated with a power drive control module for controlling the rotational power output to the motor 100, and the start and stop and speed regulation of the motor are separately performed by the controller 120.
  • the controller 120 also includes a receiving module, a judging module, and a speed regulating module.
  • the motor controller 120 of the second embodiment has the same arrangement and structure as the first embodiment.
  • the motor controller 120 is connected to the magnetic detecting device S1, the capacitor C1, and the motor forward/reverse switch K1.
  • the magnetic member A1 and the magnetic detecting device S1 constitute a motor starting and stopping device and also a motor speed adjusting device.
  • the motor forward/reverse switch K1 of the connection controller 120 is used to change the direction of rotation of the motor.
  • the magnetic member A1 is disposed on a push rod 160 that is operated by a user.
  • a touch recognition device is provided on the push rod 160 for identifying whether it is an artificial operation and preventing the motor from being accidentally started.
  • the touch recognition device includes a capacitor C1 and a capacitive touch pad B1.
  • the capacitor C1 is connected to the controller 120, and the capacitive touch pad B1 is disposed at the end of the push rod 160.
  • the embodiment of the present application separates the power supply switch of the motor system switch from the speed control device, and cancels the power supply switch of the motor system switch and the added power diode with respect to the prior art.
  • the control device 50 has a non-contact linear Hall magnetic detection speed control device inside, and the control device 50 further includes a touch recognition device and a switch device for rotating the motor forward and reverse.
  • the motor system of the present application uses a combination of a control device and a controller to control the start and stop and speed regulation of the motor.
  • the handling device (50, 150) includes a push rod (60, 160) for user manipulation, the user's operation of the push rod is inductively recognized by a touch recognition device, the magnetic member A1 being disposed on the push rod (60, 160) One end.
  • the position of the magnetic member A1 on the pusher (60, 160) is designed to be within the range detectable by the magnetic detecting device S1, such as a linear Hall magnetic sensor.
  • the magnetic detecting device S1 such as a linear Hall magnetic sensor.
  • the magnetic member A1 on the push rod (60, 160) gradually approaches the Hall sensor, and the linear Hall magnetic sensor outputs as the magnetic induction intensity changes due to the change of the magnetic induction intensity.
  • the change of magnetic induction intensity changes uniformly with the distance between the magnetic component A1 and the Hall sensor, and the voltage signal output by the Hall device also follows a uniform change, which is almost linear.
  • the linear voltage is input to the controller (20, 120), and the controller (20, 120) sets the speed at which the motor (10, 100) operates according to the collected voltage magnetic field parameters, starting and stopping.
  • the starting threshold of the motor is set in the determining module of the controller (20, 120).
  • the controller (20, 120) drives the power.
  • the control module is driven to operate the motor (10, 100). After the motor (10, 100) is started, as the data value of the voltage signal output by the controller (20, 120) to the Hall sensor increases, the speed control module controls according to the data value of the output voltage signal is increased.
  • the speed of the motor is increased; otherwise, the speed of the motor is reduced; when the controller (20, 120) collects the data value of the voltage magnetic field parameter output by the Hall sensor is smaller than the starting threshold of the motor, the controller (20) , 120) Turn off the power drive control module to stop the motor.
  • the capacitance C1 of the touch recognition device feeds back the current signal generated by the user's hand pusher (60, 160) to the insulated capacitive touch pad B1 to the controller (20, 120).
  • the capacitive touch plate B1 is also contacted, and the user and the touch surface form a coupling capacitance, and the induced current is generated by the human body, and the capacitance C1 detects the generated induced current and transmits Obtained by the controller (20, 120), so that the controller (20, 120) can determine whether the operation on the push rod (60, 160) is an artificial operation, that is, whether it is artificially started to operate the motor system or vice versa; When other objects press the push rod (60, 160), no induced current is generated. The capacitance value of the capacitor C1 does not change, and the controller (20, 120) judges that the operation is invalid start.
  • the motor system includes a power drive control module 30 that is coupled to the motor 10 and that controls the rotational power output to the motor.
  • the power drive control module 30 is also coupled to the controller 20 for receiving changes in accordance with magnetic field parameters. And the determined power output requirements.
  • the power drive control module 30 is connected to the power supply 40 and the controller 20, and the power drive control module 30 realizes the start and stop and speed adjustment of the motor 10 under the control of the controller 20.
  • the controller 20 is connected to the magnetic detecting device S1, the capacitor C1, and the motor forward/reverse switch K1.
  • the magnetic member A1 and the magnetic detecting device S1 constitute a motor starting and stopping device and also a motor speed adjusting device.
  • the motor forward/reverse switch K1 of the connection controller 20 is used to change the direction of rotation of the motor.
  • the magnetic member A1 is disposed on a push rod 60 that is operated by a user.
  • a touch recognition device is provided on the push rod 60 for identifying whether it is an artificial operation and preventing the motor from being accidentally started.
  • the touch recognition device includes a capacitor C1 and a capacitive touch pad B1.
  • the capacitor C1 is connected to the controller 20, and the capacitive touch pad B1 is disposed at the end of the push rod 60.
  • the magnetic member A1 may be a magnetic steel or a magnetic material such as a permanent magnet.
  • the magnetic detecting device S1 may be a linear Hall magnetic sensor or other magnetoelectric effect sensor such as a magnetoresistance effect sensor or the like.
  • an embodiment of the present application further relates to a motor control method, which is illustrated from a process of a controller.
  • the motor control method includes the following steps:
  • Step 102 a positional change occurs of the magnetic member relative to the magnetic detecting device, and the user operates the magnetic member A1 to change a position with respect to the magnetic detecting device S1, and acquires a magnetic field parameter generated by the magnetic detecting device to induce a magnetic field of the magnetic member;
  • the detecting device induces a magnetic field of the magnetic member to generate a magnetic field parameter,
  • the magnetic detecting device S1 induces a magnetic field of the magnetic member A1 to generate a magnetic field parameter;
  • Step 104 Determine the magnetic field parameter
  • Step 106 The controller (20, 120) starts the motor when the magnetic field parameter is greater than the starting threshold;
  • Step 108 When the magnetic field parameter is less than the starting threshold, the controller (20, 120) stops supplying power to the motor;
  • the speed regulating module starts to work, and performs the following steps;
  • Step 110 The speed control module of the controller (20, 120) continues to acquire the change of the magnetic field parameter of the magnetic detecting device inducing the magnetic member;
  • Step 112 The controller (20, 120) adjusts the motor (10, 100) according to the change of the magnetic field parameter.
  • the magnetic field parameter generated by the magnetic detecting device S1 is determined according to different sensors used, for example, a linear Hall magnetic sensor whose magnetic field parameter is an induced voltage value; or a magnetoresistance effect sensor, the magnetic field parameter To induce a current value.
  • the controller can integrate the power drive control module.
  • the controller (20, 120) is connected to the magnetic detecting device S1, the capacitor C1, and the motor forward/reverse switch K1.
  • the magnetic member A1 and the magnetic detecting device S1 constitute a motor starting and stopping device and also a motor speed adjusting device.
  • the motor forward/reverse switch K1 of the connection controller (20, 120) is used to change the direction of rotation of the motor.
  • the magnetic member A1 is disposed on a push rod (60, 160) operated by a user.
  • a touch recognition device is provided on the push rod (60, 160) for identifying whether it is an artificial operation and preventing the motor from being accidentally started.
  • the touch recognition device includes a capacitor C1 and a capacitive touch pad B1.
  • the capacitor C1 is connected to a controller (20, 120), and the capacitive touch pad B1 is disposed at an end of the push rod (60, 160).
  • the motor system switch adopts a scheme of a software power supply switch and a non-contact speed governor, and The switch and the speed regulating device are separated, the switch of the power source is not in the physical switch but is judged and controlled by the controller, and the large current loop does not pass through the physical switch, and the motor of the motor system is directly connected to the power supply, in the embodiment,
  • the start and stop of the brushless motor is completed by the magnetic signal of the speed regulating device, and is collected by the controller.
  • the starting threshold of the motor starting is set, and when the value of the magnetic signal output by the speed regulating device is greater than or equal to The starting threshold of the motor starting, the controller drives the power driving control module to output the corresponding rotating power to make the motor run.
  • the controller causes the power drive control module to no longer output power, so that the motor stops running.
  • the speed regulating device fixes the linear Hall magnetic sensor inside the motor system by Hall magnetic detection between the magnetic member A1 and the sensor, and the magnetic member A1 is mounted on a push rod (60, 160) operated by a user, which The push rod (60, 160) is disposed in the detectable range of the magnetic detecting device and the Hall sensor.
  • the linear Hall magnetic sensor outputs a magnetic field parameter, such as a voltage signal or a current signal, according to the change of the magnetic induction intensity, and the controller according to the magnetic field parameter to the motor Speed regulation.
  • the motor system push rod (60, 160) is also equipped with a touch recognition device.
  • the manual operation contact capacitive touch plate B1 is recognized, and when the palm of the hand operates the push rod (60, 160) to adjust the speed.
  • the finger contacts the capacitive touch pad B1 to generate an induced current, and the current signal is transmitted to the controller, so that the controller can recognize whether it is an artificial motor operation according to the current signal. Therefore, the motor control method and the motor system switch of the embodiment are realized by a hardware structure combined with software, which is intelligent, safe, and reliable, and the physical power switch does not need to carry a freewheeling large current.
  • the motor control method and the motor system of the embodiment adopt the non-contact magnetic detection mode to realize the motor speed regulation, start and stop functions; the touch recognition device is integrated on the push rod, and the human body recognition function is realized at the same time; the motor system does not need to be set inside. Power supply switch and external power diode, but can provide efficient freewheeling circuit for energy release of brushless motor, safe, reliable and low cost.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种电机控制方法,包括以下步骤:磁性件相对于磁性检测装置发生位置变化时,获取磁性检测装置感应磁性件磁场生成的磁场参数;判断该磁场参数,在磁场参数大于启动阈值时,启动电机,在磁场参数小于该启动阈值时,停止对电机供电;其中,在磁场参数大于该启动阈值启动电机时,继续获取该磁性检测装置感应磁性件的磁场参数变化,根据该磁场参数变化对该电机进行调速。

Description

一种电机控制方法及电机系统 技术领域
本申请涉及电动设备领域,具体涉及一种电机控制方法及电机系统。
背景技术
随着生活中越来越多的智能家电和电机系统的普及,更能适应不同控制环境的电机系统应用场合越来越多。现有的电机系统一般设置常规的机械式开关。
为电机系统提供动力的电机包括有刷电机和无刷电机,由于无刷电机不使用机械的电刷装置,相对有刷电机,其具有高效率、低噪音、长寿命、无电火花,相对低成本等优势,已经在电机系统上被广泛采用,尤其在极其苛刻作业的环境中,有刷电机已被无刷电机所取代。
为了满足工业生产需求,在特定的应用场合,人们对电机系统的功率要求高,无刷电机大电流驱动和工作于更加恶劣的环境,工作时,大电流给电机系统上其他电气部件带来更大的电磁干扰和给功率器件及电机系统电源开关带来更大的发热量,其恶劣工作环境要求电机系统对使用的开关抗震、抗冲击要求相应也越来越高。
请参考图1,现有电机系统的开关调速装置一般采用弹片与碳膜电阻的机械性接触方式,电源开关采用机械触点式,并且在电源连接线的引脚处外接功率二极管用于电源切断时,给电机提供续流回路。大功率无刷电机工具电流大,由于电源开关Ka为点触型,在接通时,存在接触电阻,当大电流流过时,会造成大量的热量产生,长时间工作会导致触点烧毁,开关的塑胶融化,导线的焊接点焊锡融化等现象,同时开关触点,会随着承受大电流的大小能力而成本提高。并且,电机M1是感性负载,电机停止时,需要给它提供续流回路,现有电机系统开关采用在开关Ka处焊接一个功率二极管D1,当Ka断开后,给无刷电机提供续流回路。但是,功率二极管功率越大体积越大,而电机系统开关可容纳续流二极管的空间非常有限,使得大功率的二极管无法在开关中安装和焊接。同时,无刷电机大电流续流回路功率二极管发热严重,长时间工作很容易导致 被热击穿和烧毁,另外,大功率二极管也大大提高了产品的成本。
现有无刷电机的调速装置也是采用弹片与碳膜电阻的机械性接触方式,通过改变弹片与碳膜电阻的相对接触位置来改变其输出阻值,从而实现电机系统的调速功能。该弹片及碳膜电阻之间的摩擦会随着使用次数的增多而产生摩擦损耗、使用时间长了,会产生磨损以及塑性变形等,这将会导致弹片与碳膜电阻的接触不良,影响开关的寿命;同时,当电机系统使用在高振动工作环境下,由于弹片是依靠自身的弹力与碳膜电阻机械性地接触,所以工具本身的震动会带动开关里的弹片一起震动,当震动力大于弹片自身弹力时,弹片会由原先与碳膜电阻始终保持接触的状态变为非接触状态,这样会使得电机系统工作在不稳定状态。并且,调速装置安装在开关内部,当大电流从开关内部通过时,会在开关内部产生很大的电磁干扰,干扰信号很容易串扰到调速装置中,干扰信号叠加到输出调速电压信号上,使其产生畸变,情况严重时,导致电机系统无法正常工作。
另外,现有的电机系统在使用中存在非人为因素启动的现象,发生非人为因素启动时,不仅对电机系统本身部件产生磨损和破坏,同时也存在潜在的人身安全隐患。
因此,现有技术的电机系统还有待于改进。
申请内容
本申请提供一种电机控制方法及电机系统,该电机系统取消了物理接触的开关,由控制器根据用户对磁性件的操作来完成对电机的启停操作和调速操作,并同时能为电机能量释放提供高效续流回路。
为解决上述技术问题,本申请提供以下技术方案。
第一方面,本申请实施例提供了一种电机控制方法,包括以下步骤:
磁性件相对于磁性检测装置发生位置变化时,获取磁性检测装置感应磁性件磁场生成的磁场参数;
判断该磁场参数,在磁场参数大于该启动阈值时,启动该电机,在磁场参 数小于该启动阈值时,停止对电机供电;
其中,在磁场参数大于该启动阈值启动电机后,继续获取该磁性检测装置感应磁性件的磁场参数变化,根据该磁场参数变化对该电机进行调速。
具体实施时,该磁场参数为感生电压值或者感生电流值,该电机的启动阈值为对应的电压阈值或者电流阈值。
第二方面,本申请实施例还提供了一种电机系统,包括电机、控制器、连接该控制器的磁性检测装置以及非接触式控制电机的磁性件,该电机通过控制器连接供电电源,该控制器包括接收模块、判断模块以及调速模块,
该磁性件相对于该磁性检测装置发生位置变化时,该磁性检测装置用于感应磁性件的磁场生成磁场参数,该接收模块用于接收该磁场参数;
该判断模块设置有对应于磁场参数的电机的启动阈值;该判断模块用于在磁场参数大于该启动阈值时,启动该电机,在磁场参数小于该启动阈值时,停止对电机供电;
在磁场参数大于该启动阈值时,该调速模块用于根据磁场参数变化对该电机进行调速。
在实施例中,该磁场参数为感生电压值或者感生电流值,该电机的启动阈值为对应的电压阈值或者电流阈值。
优选的,还包括功率驱动控制模块,所述功率驱动模块与所述控制器和所述电机连接,用于根据所述控制器的控制信号为所述电机提供驱动功率。
该磁性件设置在该磁性检测装置的可检测范围内,该控制器的调速模块设置有感生电压值与电机转速的关联数据,该磁性件靠近该磁性检测装置时,该磁性检测装置输出的感生电压值增大,该调速模块用于控制该电机的速度随之提高;该磁性件远离该磁性检测装置时,该磁性检测装置输出的感生电压值减小,该调速模块用于控制该电机的速度随之降低。
在另一实施例中,该控制器集成所述功率驱动控制模块。
该控制器还包括用于改变电机转动方向的电机正反转开关。
该磁性件设置在由用户操控的推杆上,该推杆上设置触摸识别装置用于识别是否是人为操作,该触摸识别装置与该控制器连接和数据通信。
该触摸识别装置包括连接控制器的电容以及设置在该推杆上的电容触摸极板。
优选的,该磁性检测装置为线性霍尔磁性传感器。
本申请的有益效果在于,本申请实施例提供的控制方法及电机系统,该电机系统将开关分离至控制器,电机通过控制器直接与供电电源连接,由控制器根据用户对磁性件的操作来完成对电机的启停操作和调速操作,并同时能为电机能量释放提供高效续流回路。该电机系统开关采用软件供电电源开关和调速装置的方案,并且开关和调速装置分离,电源的开关不在该物理开关中而是由控制器判断和控制,并且大电流回路也不经过物理开关,该电机系统的电机直接与供电电源连接,在实施例中,无刷电机的启与停,采用调速装置的磁性信号,由控制器采集,在此控制器中设定电机启动的启动阀值,当磁性信号的数值大于或达到电机启动的启动阀值,由控制器驱动功率驱动控制模块,使电机运转。当磁性信号的数值小于电机启动的启动阀值时,控制器驱动功率驱动控制模块使电机停止运转。
因此,本申请技术方案的电机系统开关方案结构简洁,非接触式控制方式使得电机使用寿命延长,电机系统的开关成本低且安全可靠,并实现了智能化。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是现有电机系统的开关和调速结构示意图;
图2是本申请实施例提供的电机系统的一种实施例电路图;
图3是本申请实施例提供的电机系统中控制器的模块图;
图4是本申请实施例提供的电机系统的另一种实施例电路图;以及
图5是本申请实施例提供的电机控制方法的流程图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
为了实现电机系统的非接触式控制方式使得电机使用寿命延长,提供简洁开关结构方案,以使开关成本低且安全可靠和实现智能化,本申请实施例涉及一种电机系统以及该应用在该电机系统上的电机控制方法。
本申请电机系统涉及的电机可为有刷电机或者无刷电机。以下实施例中的电机均采用无刷电机。
请参考图2,所示为本申请电机系统的实施例,该电机系统包括电机10、控制器20、连接该控制器20的磁性检测装置以及非接触式控制电机10的磁性件A1。该电机10通过控制器20连接供电电源40。
请进一步参考图3,为了实现对电机的启动和调速,该控制器20还包括接收模块22、判断模块24以及调速模块26。
在该磁性件A1由用户操作相对于该磁性检测装置S1发生位置变化时,该磁性检测装置感应磁性件A1的磁场生成磁场参数该接收模块22用于接收该磁场参数。该控制器20的判断模块24设有对应于磁场参数的电机的启动阈值。该控制器20在磁场参数大于该启动阈值时,该判断模块24用于控制启动该电机10,在磁场参数小于该启动阈值时,该判断模块24用于控制停止对电机20供电;其中,在磁场参数大于该启动阈值启动电机时,该磁性检测装置S1继续感应磁性件A1的磁场参数变化,该控制器20的调速模块26根据该磁场参数变化对该电机10进行调速。
该电机系统还包括功率驱动控制模块30。该功率驱动控制模块30用于控制电机10的转动功率。该功率驱动控制模块30还连接至该控制器20,用于接收该控制器20根据磁场参数变化而确定的功率输出要求的控制信号。该功率驱动 控制模块30和供电电源40以及控制器20连接,该功率驱动控制模块30在该控制器20的控制下实现对电机10的启停和调速。
该电机的控制器20连接该磁性检测装置S1、电容C1、以及电机正反转开关K1。该磁性件A1和磁性检测装置S1组成电机启停装置同时也是电机调速装置。该连接控制器20的电机正反转开关K1用于改变电机转动方向。
该磁性件A1设置在由用户操控的推杆60上。该推杆60上设置触摸识别装置用于识别是否是人为操作以及防止电机意外启动,该触摸识别装置与控制器20连接和数据通信。
该触摸识别装置包括电容C1以及电容触摸极板B1。该触摸识别装置中,该电容C1连接控制器20,该电容触摸极板B1设置在该推杆60上的末端。
本申请实施例中,该磁性件A1可以为磁钢,也可以为永磁磁铁等磁性的材料。该磁性检测装置S1可为线性霍尔磁性传感器或者其它磁电效应传感器,比如磁电阻效应传感器等等。
本申请中,该磁性检测装置S1生成的磁场参数根据采用的不同传感器而定,比如采用线性霍尔磁性传感器,其磁场参数为感生电压值;或者采用磁电阻效应传感器,该磁场参数为感生电流值。
以下描述以磁性检测装置S1采用线性霍尔磁性传感器为例,基于磁场参数为感生电压加以阐述。
该控制器20的判断模块24设置有该电机对应于磁场参数的启动阈值。其中,在用户操作该磁性件A1相对于该磁性检测装置S1发生位置变化时,该磁性检测装置S1感应磁性件A1的磁场生成磁场参数;该控制器20的判断模块24在磁场参数大于该启动阈值时,启动该电机10,在磁场参数小于该启动阈值时,该控制器20的判断模块24停止对电机10供电。在磁场参数大于该启动阈值时,该磁性检测装置S1继续获取磁性件A1的磁场参数,该控制器20的调速模块26根据该磁性检测装置S1反馈的磁场参数变化对该电机10进行调速。该电机10的启动阈值为对应磁场参数的电压阈值。
该控制器20的调速模块26中保存该感生电压值或者感生电流值与电机转速的关联数据。该电机转速的关联数据对应相应输出至电机的输出功率。该控 制器20还连接功率驱动控制模块30,该功率驱动控制模块30根据该控制器20确定的关联数据调控该供电电源40输出至电机10的功率。
在磁性件A1以及磁性检测装置S1的具体实施中,该磁性件A1设置在该磁性检测装置S1的可检测范围内,该磁性件A1靠近该磁性检测装置S1时,该磁性检测装置S1感应磁性件A1的磁场生成磁场参数,比如感生电压;越靠近该磁性件A1,该磁性检测装置S1输出的感生电压值越大,该控制器20调速模块26确定的电机转速的关联数据也越大,对应的该电机10的速度随之提高;该磁性件A1远离该磁性检测装置S1时,该磁性检测装置S1输出的磁场参数越小,亦即该感生电压值减小,该控制器20调速模块26确定的电机转速的关联数据也越小,对应的电机10的速度随之降低。
该触摸识别装置包括电容C1以及电容触摸极板B1。该电容C1连接控制器20,该电容触摸极板B1设置在该推杆60上的末端。当用户手握推杆60人为操作时,该电容触摸极板B1也被接触,该电容触摸极板B1与用户手掌之间由于人体电场,形成耦合电容,产生感应电流,因此该电容C1会输出的电流信号,该控制器20收到电流信号则认为是推动推杆60开启电机或者调速;该控制器20未收到电流信号但是磁性检测装置S1传回磁场参数时则属于出现非人为误操作,该控制器20不再根据磁场参数控制电机运行。
请参考图4,所示为本申请电机系统的另一实施例,在该实施例中,该控制器120集成了功率驱动控制模块。
该第二实施例的电机系统也通过控制器120连接电机100和供电电源140。该电机系统包括连接该控制器120的磁性检测装置以及由用户操控的用于非接触式控制电机100的磁性件A1。该控制器120集成有用于控制输出至电机100的转动功率的功率驱动控制模块,由该控制器120单独完成对电机的启停和调速。同样的,为了实现对电机的启动和调速,该控制器120也包括接收模块、判断模块以及调速模块。
该第二实施例的电机控制器120设置和结构与第一实施例相同。该电机控制器120连接该磁性检测装置S1、电容C1、以及电机正反转开关K1。该磁性件A1和磁性检测装置S1组成电机启停装置同时也是电机调速装置。该连接控制器120的电机正反转开关K1用于改变电机转动方向。
该磁性件A1设置在由用户操控的推杆160上。该推杆160上设置触摸识别装置用于识别是否是人为操作以及防止电机意外启动。
该触摸识别装置包括电容C1以及电容触摸极板B1。该触摸识别装置中,该电容C1连接控制器120,该电容触摸极板B1设置在该推杆160上的末端。
本申请实施例将电机系统开关的供电电源开关和调速装置分离,相对于现有技术取消了电机系统开关的供电电源开关和外加的功率二极管。并且操控装置50内部具有非接触式的线性霍尔磁性检测的调速装置,该操控装置50还包括触摸识别装置和电机正反转动运行的开关装置。本申请电机系统采用将操控装置与控制器相结合的方式来控制电机的启停和调速。
该操控装置(50、150)包括用于用户操控的推杆(60,160),用户对该推杆的操作由触摸识别装置感应识别,该磁性件A1设置在推杆(60,160)的一端。
本实施例中的电机系统开关工作原理及应用方法具体如下:
该推杆(60,160)上的磁性件A1位置设计为在磁性检测装置S1,比如线性霍尔磁性传感器,能检测的范围之内。当用户用力推动推杆(60,160)时,推杆(60,160)上的磁性件A1逐渐与霍尔传感器接近,由于磁感应强度发生变化,线性霍尔磁性传感器随着磁感应强度变化而输出不同电压信号,磁感应强度变化是随着磁性件A1与霍尔传感器距离接近而均匀变化,随之霍尔器件输出的电压信号也跟随均匀变化,几乎接近线性。所以,该线性的电压输入到控制器(20,120),控制器(20,120)根据采集到的电压磁场参数设定电机(10,100)运行的速度,启动和停止。控制器(20,120)的判断模块中设定了电机的启动阀值,当霍尔传感器输出的电压磁场参数的数据值大于电机的启动阀值时,控制器(20,120)就驱动功率驱动控制模块,让电机(10,100)运转起来。在电机(10,100)启动之后,随着控制器(20,120)采集到霍尔传感器输出的电压信号的数据值增大,调速模块根据该输出的电压信号的数据值增大来控制电机的速度随之提高;反之,电机的速度随之被降低;当控制器(20,120)采集到霍尔传感器输出的电压磁场参数的数据值小于电机的启动阀值时,控制器(20,120)就关断功率驱动控制模块,让电机停止运转。
同时,该触摸识别装置的电容C1将用户手握推杆(60,160)因接触绝缘电容触摸极板B1产生的电流信号也反馈给控制器(20,120)。当用户用手按下推杆(60,160)时,该电容触摸极板B1也被接触,用户和触摸表面形成耦合电容,利用人体的产生感应电流,该电容C1检测产生的感应电流并发送至控制器(20,120)获取,从而控制器(20,120)可以判断推杆(60,160)上的操作是否是人为操作,亦即判断是人为启动电机系统还是误操作;反之,当其他物体按下推杆(60,160)时,不会产生感应电流该电容C1的电容值没有变化,控制器(20,120)据此判断该操作为无效启动。
在一种实施方式中,该电机系统包括连接电机10并用于控制输出至电机的转动功率的功率驱动控制模块30,该功率驱动控制模块30还连接至该控制器20用于接收根据磁场参数变化而确定的功率输出要求。该功率驱动控制模块30和供电电源40以及控制器20连接,该功率驱动控制模块30在该控制器20的控制下实现对电机10的启停和调速。
该控制器20连接该磁性检测装置S1、电容C1、以及电机正反转开关K1。该磁性件A1和磁性检测装置S1组成电机启停装置同时也是电机调速装置。该连接控制器20的电机正反转开关K1用于改变电机转动方向。
该磁性件A1设置在由用户操控的推杆60上。该推杆60上设置触摸识别装置用于识别是否是人为操作以及防止电机意外启动。
该触摸识别装置包括电容C1以及电容触摸极板B1。该触摸识别装置中,该电容C1连接控制器20,该电容触摸极板B1设置在该推杆60上的末端。
本申请实施例中,该磁性件A1可以为磁钢,也可以为永磁磁铁等磁性的材料。该磁性检测装置S1可为线性霍尔磁性传感器或者其它磁电效应传感器,比如磁电阻效应传感器等等。
请参考图5,本申请实施例还涉及一种电机控制方法,该电机控制方法是从控制器的处理过程来加以阐述的。该电机控制方法包括以下步骤:
步骤102:磁性件相对于该磁性检测装置发生位置变化,用户操作该磁性件A1相对于该磁性检测装置S1发生位置变化,获取磁性检测装置感应磁性件磁场生成的磁场参数;具体如下,该磁性检测装置感应磁性件的磁场生成磁场参数, 该磁性检测装置S1感应磁性件A1的磁场生成磁场参数;
步骤104:判断该磁场参数;
步骤106:在磁场参数大于该启动阈值时,该控制器(20,120)启动该电机;
步骤108:在磁场参数小于该启动阈值时,该控制器(20,120)停止对电机供电;
该磁性件继续相对于该磁性检测装置发生位置变化时,调速模块开始工作,进行以下步骤;
步骤110:控制器(20,120)的调速模块继续获取该磁性检测装置感应磁性件的磁场参数变化;
步骤112:该控制器(20,120)根据该磁场参数变化对该电机(10,100)进行调速。
其中,本申请中,该磁性检测装置S1生成的磁场参数根据采用的不同传感器而定,比如采用线性霍尔磁性传感器,其磁场参数为感生电压值;或者采用磁电阻效应传感器,该磁场参数为感生电流值。
或者,该控制器可以集成该功率驱动控制模块。
同样的,该控制器(20,120)连接该磁性检测装置S1、电容C1、以及电机正反转开关K1。该磁性件A1和磁性检测装置S1组成电机启停装置同时也是电机调速装置。该连接控制器(20,120)的电机正反转开关K1用于改变电机转动方向。
该磁性件A1设置在由用户操控的推杆(60,160)上。该推杆(60,160)上设置触摸识别装置用于识别是否是人为操作以及防止电机意外启动。
该触摸识别装置包括电容C1以及电容触摸极板B1。该触摸识别装置中,该电容C1连接控制器(20,120),该电容触摸极板B1设置在该推杆(60,160)上的末端。
该电机系统开关采用软件供电电源开关和非接触式调速装置的方案,并且 开关和调速装置分离,电源的开关不在该物理开关中而是由控制器判断和控制,并且大电流回路也不经过物理开关,该电机系统的电机直接与供电电源连接,在实施例中,无刷电机的启与停,通过调速装置的磁性信号完成,由控制器采集,在此控制器的中设定电机启动的启动阀值,当调速装置输出的磁性信号的数值大于或达到电机启动的启动阀值,由控制器驱动功率驱动控制模块输出对应的转动功率,使电机运转。当调速装置输出感应磁性信号的数值小于电机启动的启动阀值时,控制器使功率驱动控制模块不再输出功率,使电机停止运转。
调速装置利用磁性件A1和传感器之间的霍尔磁性检测,将线性霍尔磁性传感器固定在电机系统内部,该磁性件A1安装在由用户操作移动的推杆(60,160)上,该推杆(60,160)设置在该磁性检测装置,霍尔传感器,的可检测范围内,当用户用力推动推杆(60,160)时,推杆(60,160)0上的磁性件A1相对于传感器远离或者接近,随之传感器相应的磁感应强度随之发生变化,线性霍尔磁性传感器随着磁感应强度变化而输出磁场参数,比如电压信号或者电流信号,控制器根据该磁场参数对电机的调速。同时,该电机系统推杆(60,160)还装设触摸识别装置,本实施例中为识别手动操作的接触电容触摸极板B1,当人的手掌操作推杆(60,160)调速时,手指接触该电容触摸极板B1,产生感应电流,该电流信号传递给控制器,使控制器能根据电流信号识别是否是人为电机操作。因此,本实施例的电机控制方法和电机系统开关由硬件结构结合软件实现,智能,安全,可靠,无物理电源开关无需承载续流大电流。
本实施例的电机控制方法和电机系统采用非接触式的磁性检测方式实现电机调速,启动和停止功能;将触摸识别装置集成于推杆上,同时实现人体识别功能;该电机系统内部无需设置电源供电开关和外接功率二极管,但能给无刷电机能量释放提供高效续流回路,安全,可靠,成本低廉。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限 制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种电机控制方法,其特征在于,包括以下步骤:
    磁性件相对于磁性检测装置发生位置变化时,获取磁性检测装置感应磁性件磁场生成的磁场参数;
    判断所述磁场参数,在磁场参数大于启动阈值时,启动电机,在磁场参数小于所述启动阈值时,停止对电机供电;
    其中,在磁场参数大于所述启动阈值启动电机后,继续获取所述磁性检测装置感应磁性件的磁场参数变化,根据所述磁场参数变化对所述电机进行调速。
  2. 根据权利要求1所述的方法,其特征在于,所述磁场参数为感生电压值或者感生电流值,所述电机的启动阈值为对应的电压阈值或者电流阈值。
  3. 一种电机系统,其特征在于,包括电机、控制器、连接所述控制器的磁性检测装置以及非接触式控制电机的磁性件,所述电机通过控制器连接供电电源,所述控制器包括接收模块、判断模块以及调速模块,
    所述磁性件相对于所述磁性检测装置发生位置变化时,所述磁性检测装置感应磁性件的磁场生成磁场参数,所述接收模块用于接收所述磁场参数;
    所述判断模块设置有对应于磁场参数的电机的启动阈值;所述判断模块用于在磁场参数大于所述启动阈值时,启动所述电机,在磁场参数小于所述启动阈值时,停止对电机供电;
    在磁场参数大于所述启动阈值时,所述调速模块用于根据磁场参数变化对所述电机进行调速。
  4. 根据权利要求3所述的电机系统,其特征在于,所述磁场参数为感生电压值或者感生电流值,所述电机的启动阈值为对应的电压阈值或者电流阈值。
  5. 根据权利要求3所述的电机系统,其特征在于,还包括功率驱动控制模块,所述功率驱动模块与所述控制器和所述电机连接,用于根据所述控制器的控制信号为所述电机提供驱动功率。
  6. 根据权利要求5所述的电机系统,其特征在于,所述磁性件设置在所述 磁性检测装置的可检测范围内,所述控制器的调速模块设置有感生电压值与电机转速的关联数据,所述磁性件靠近所述磁性检测装置时,所述磁性检测装置输出的感生电压值增大,所述调速模块用于控制所述电机的速度随之提高;所述磁性件远离所述磁性检测装置时,所述磁性检测装置输出的感生电压值减小,所述调速模块用于控制所述电机的速度随之降低。
  7. 根据权利要求5所述的电机系统,其特征在于,所述控制器集成所述功率驱动控制模块。
  8. 根据权利要求3-7任意一项所述的电机系统,其特征在于,所述控制器还包括用于改变电机转动方向的电机正反转开关。
  9. 根据权利要求8所述的电机系统,其特征在于,所述磁性件设置在由用户操控的推杆上,所述推杆上设置触摸识别装置用于识别是否是人为操作,所述触摸识别装置与所述控制器连接和数据通信。
  10. 根据权利要求9所述的电机系统,其特征在于,所述触摸识别装置包括连接控制器的电容以及设置在所述推杆上的电容触摸极板。
PCT/CN2017/106381 2017-10-16 2017-10-16 一种电机控制方法及电机系统 WO2019075616A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/106381 WO2019075616A1 (zh) 2017-10-16 2017-10-16 一种电机控制方法及电机系统
CN201780008982.0A CN108702119A (zh) 2017-10-16 2017-10-16 一种电机控制方法及电机系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/106381 WO2019075616A1 (zh) 2017-10-16 2017-10-16 一种电机控制方法及电机系统

Publications (1)

Publication Number Publication Date
WO2019075616A1 true WO2019075616A1 (zh) 2019-04-25

Family

ID=63844122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106381 WO2019075616A1 (zh) 2017-10-16 2017-10-16 一种电机控制方法及电机系统

Country Status (2)

Country Link
CN (1) CN108702119A (zh)
WO (1) WO2019075616A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1297605A (zh) * 1998-04-13 2001-05-30 巴西船用压缩机有限公司 用于电机的启动系统
CN106059410A (zh) * 2016-07-08 2016-10-26 深圳市高科润电子有限公司 一种单相直流无刷电机的启动方法
CN106788000A (zh) * 2016-12-02 2017-05-31 深圳天才动力科技有限公司 一种电机启动及调速控制电路及其驱动控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100423912C (zh) * 2004-07-13 2008-10-08 光荣电业公司 电动剃须刀
KR100797101B1 (ko) * 2005-07-13 2008-01-23 엘지전자 주식회사 이동 통신 단말기의 키 입력 검출 장치 및 방법
JP5175569B2 (ja) * 2008-02-07 2013-04-03 ルネサスエレクトロニクス株式会社 同期電動機の駆動システム
CN203998827U (zh) * 2013-12-09 2014-12-10 合肥泰拓机电科技有限公司 一种电动叉车控制系统
CN205881773U (zh) * 2016-01-26 2017-01-11 苏州宝时得电动工具有限公司 开关及电动工具
CN207399056U (zh) * 2017-10-16 2018-05-22 深圳和而泰智能控制股份有限公司 一种电机系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1297605A (zh) * 1998-04-13 2001-05-30 巴西船用压缩机有限公司 用于电机的启动系统
CN106059410A (zh) * 2016-07-08 2016-10-26 深圳市高科润电子有限公司 一种单相直流无刷电机的启动方法
CN106788000A (zh) * 2016-12-02 2017-05-31 深圳天才动力科技有限公司 一种电机启动及调速控制电路及其驱动控制方法

Also Published As

Publication number Publication date
CN108702119A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
CN104712823B (zh) 用于电磁阀的电磁驱动装置
CN101656136B (zh) 用于阀门的节能电磁头及用于阀门的节能电磁头控制方法
WO2016119689A1 (zh) 开关及电动工具
CN106997821A (zh) 开关及电动工具
CN205583666U (zh) 一种应用在电动晾衣机上的过零保护电路
CN201156501Y (zh) 交流接触器的电磁控制装置
CN201450311U (zh) 一种电机温控电路
CN202647983U (zh) 一种具有功率自适应功能的电暖器
CN207399056U (zh) 一种电机系统
WO2019075616A1 (zh) 一种电机控制方法及电机系统
CN108574481B (zh) 电子感应开关电路、电子感应开关系统及供电电路
CN205283508U (zh) 直流电动工具的非接触式调速开关
CN205881773U (zh) 开关及电动工具
CN217446716U (zh) 一种基于霍尔开关的磁粒均热烟具
CN202125447U (zh) 感应电风扇
CN209216889U (zh) 一种新型低功耗继电器驱动装置
TWM381217U (en) Inductive charging system capable of chagring automatically
CN201178394Y (zh) 一种直流电机控制电路
JP2007206776A5 (zh)
CN205581584U (zh) 一种家用电器智能控制器
CN203685642U (zh) 一种触停电风扇
CN203788208U (zh) 大功率圆筒型直线开关磁阻电机控制装置
CN207529188U (zh) 家用电器节能通断开关
CN211981487U (zh) 变频器硬件热保护电路结构
CN201487359U (zh) 节能电磁阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929343

Country of ref document: EP

Kind code of ref document: A1