WO2019074298A1 - 광학식 피부 진단기, 피부 확대경에 설치되는 발광유닛 및 이를 포함한 피부 확대경 - Google Patents

광학식 피부 진단기, 피부 확대경에 설치되는 발광유닛 및 이를 포함한 피부 확대경 Download PDF

Info

Publication number
WO2019074298A1
WO2019074298A1 PCT/KR2018/011973 KR2018011973W WO2019074298A1 WO 2019074298 A1 WO2019074298 A1 WO 2019074298A1 KR 2018011973 W KR2018011973 W KR 2018011973W WO 2019074298 A1 WO2019074298 A1 WO 2019074298A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
polarizing
unit
light
emitting unit
Prior art date
Application number
PCT/KR2018/011973
Other languages
English (en)
French (fr)
Inventor
홍진혁
배정민
Original Assignee
주식회사 일루코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180027519A external-priority patent/KR102070014B1/ko
Application filed by 주식회사 일루코 filed Critical 주식회사 일루코
Publication of WO2019074298A1 publication Critical patent/WO2019074298A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only

Definitions

  • a first embodiment of the present invention relates to an optical skin diagnostic apparatus, and a second embodiment of the present invention relates to a light emitting unit provided in a skin magnifying glass and a skin magnifying glass including the same.
  • the optical skin diagnosis device can detect melanoma (malignant melanoma), epidermal tumor, papulosquamous disease (papulosquamous disease) by observing a pigmented lesion of skin epidermis and papillary dermis, which is difficult to be visually observed, And a device for diagnosing chalk lesions.
  • the optical skin diagnosis device is manufactured as a Portable Dermatoscope Type, and the user can check his or her skin condition anytime and anywhere through the skin light.
  • the surface of the skin can be observed with high precision by observing the light in the visible light wavelength band (in particular, the white wavelength band) in one direction (hereinafter referred to as "general polarized light"), (Hereinafter referred to as “cross polarized light "), the structure of the skin deep portion can be observed with high precision. Furthermore, observing the light in the ultraviolet wavelength band with a polarized light (general polarized light or crossed polarized light) has an advantage that a specific lesion (for example, stain or unevenness) can be closely observed.
  • both visible light and ultraviolet light need to be polarized.
  • the portable skin light type optical skin diagnosis device since the portable skin light type optical skin diagnosis device has a short overall length, the distance between the light emitting module and the polarizing film is narrow, and thus the polarizing film is damaged by heat generation (in particular, heat generation in the ultraviolet wavelength band) there is a problem.
  • a protection window is required. Unexpected polarization phenomenon occurring in the process of transmitting the emitted light of the light emitting unit through the protection window can not irradiate light meeting the design condition there is a problem. Further, there is a problem that the protection window is also damaged by heat generation of the light emitting unit.
  • the dermatoscope device is a diagnostic tool used to distinguish lesions such as malignant melanoma by observing pigmented lesions of skin epidermis and papillary dermis which are difficult to observe in the naked eye,
  • lesions such as malignant melanoma
  • papulosquamous disease epidermal tumor, papulosquamous disease, diagnosis of chamois lesion and parasitic on the skin are also used.
  • the Dermatoscope Device allows me to provide more information than the information that is based on diagnosis that can be acquired by an observer, such as a doctor, before a biopsy, so that accurate, .
  • Such a skin loupe improves visibility by increasing the resolution and reducing the degree of distortion so that an observer performing a diagnosis can observe the skin surface more clearly and clearly while observing the surface of the skin, It is required to develop a technique in which the observer can accurately acquire the information.
  • a polarizing plate for providing vertical polarization and horizontal polarization is provided, and when the light source is installed, the observer feels difficult to use the skin loupe There is a problem. Further, since light of various wavelengths can not be provided through a light source, there is a disadvantage that another wave loupe must be used in accordance with the observer's purpose of observation.
  • a problem to be solved by the first embodiment of the present invention is to provide an optical skin diagnosis device capable of irradiating both light in a visible light wavelength band and light in an ultraviolet wavelength band and polarizing the light in various wavelengths. It is a further object of the present invention to provide an optical skin diagnosis device which has a compact structure that can be carried, and which has a protection window, is excellent in durability, and can prevent damage due to heat generation of the light emitting module.
  • a polarizing plate comprising a first polarizer for providing a horizontal polarized light and a second polarizer for providing a vertical polarized light, Unit and a skin magnifier using the same.
  • the present invention can provide a light emitting unit provided in a skin magnifying glass in which LEDs are provided in two rows and each of the heat sources provides different wavelengths, and a skin magnifying glass using the same.
  • an optical skin diagnostic apparatus includes an exterior member; And a polarizing plate disposed in the exterior member and including an optical unit including a polarizing unit, a polarizing plate, and a light emitting unit, wherein the polarizing unit includes a first polarizing unit in which a polarization axis is formed in a first direction and a polarization axis is formed in a second direction And a second polarizing unit, wherein the polarizing plate has a polarization axis formed in a first direction, the outgoing light of the light emitting unit is transmitted through the polarizing unit and reflected by the skin, and the reflected light of the light emitting unit is transmitted through the polarizing plate .
  • the light emitting unit includes a substrate, a first light emitting unit and a second light emitting unit mounted on the substrate, the first light emitting unit emits light in a visible light wavelength band, and the second light emitting unit emits ultraviolet wavelength band Light can be emitted.
  • the polarized light unit further comprises a third polarized light unit
  • the outgoing light of the first light emitting unit is transmitted through at least one of the first polarized light unit and the second polarized light unit, reflected by the skin
  • the outgoing light is transmitted through the third polarizing unit and reflected by the skin, and the reflected light of the first light emitting unit and the second light emitting unit can transmit the polarizing plate.
  • the first light emitting unit may include a plurality of first light emitting devices and a plurality of first light emitting devices, which are arranged in the circumferential direction
  • the second light emitting unit may include a plurality of second light emitting devices arranged in the circumferential direction
  • the plurality of first light emitting devices, the plurality of first light emitting devices, and the plurality of second light emitting devices may be sequentially positioned inward from the radial direction.
  • the plurality of first light emitting devices and the plurality of first light emitting devices may overlap in the axial direction alternately with the first and second polarizing units along the circumferential direction.
  • the plurality of first light emitting devices (1-1), the plurality of first light emitting devices (1-2), and the plurality of second light emitting devices are arranged at regular intervals in the circumferential direction, and the number of the plurality of second light emitting devices May be smaller than the number of the first-first light-emitting elements, and may be smaller than the number of the plurality of first-second light-emitting elements.
  • the first polarizing unit includes a first main body having an open portion formed inside and a plurality of first polarizing portions protruding inward from the first main body, And a plurality of second polarized light portions protruding outward from the second main body, wherein the polarizing plate is disposed on the inner side of the second main body of the second polarizing unit As shown in FIG.
  • first main body of the first polarizing unit and the second main body of the second polarizing unit are ring-shaped concentric, and the plurality of first polarizing portions of the first polarizing unit are spaced apart from each other along the circumferential direction
  • a plurality of second polarizing portions of the second polarizing element are disposed apart from each other along a circumferential direction, and a plurality of second polarizing portions of the second polarizing unit are disposed between the plurality of first polarizing portions of the first polarizing unit Respectively.
  • the optical module further includes an optical lens and a protection window, and the polarizing unit, the polarizing plate, and the light emitting unit are disposed between the optical lens and the protection window, and the protection window is formed of a material that does not generate polarization .
  • the exterior member may further include a spacer frame fixing the protection window, and the axial distance between the protection window and the light emitting unit may be determined by the spacer frame.
  • a light emitting unit provided in a skin magnifying glass is a light emitting unit provided in a skin magnifying glass.
  • the light emitting unit includes a plurality of first LED units, A light emitting substrate having second LEDs cross-arranged at equal intervals along a circumferential direction; A first polarizer having a first polarizer disposed at an equal interval along a circumferential direction on an inner circumferential surface of a first ring for polarizing light of the first LED unit in a first direction; And a second polarizing plate disposed at equal intervals along the circumferential direction on the outer circumferential surface of the second ring for polarizing the light of the second LED unit in a second direction orthogonal to the first direction, The first polarizing plate and the second polarizing plate are arranged such that the first polarizing plate and the second polarizing plate are engaged with each other.
  • the light emitting unit further includes a light emitting unit housing including the light emitting substrate, the first polarizing unit, the second polarizing unit, and the control module.
  • the first ring and the second ring can be separated from the first polarizing plate and the second polarizing plate, respectively.
  • the first polarizing plate and the second polarizing plate may be separated from the first ring and the second ring, respectively, and the light emitting unit housing may include: a first polarizing plate groove to which the first polarizing plate is coupled; And a second polarizer plate groove to which the second polarizer plate is coupled.
  • first and second LED portions of the light emitting substrate are arranged in two rows on the upper and lower sides with respect to an arbitrary imaginary circle on the light emitting substrate, and are arranged at equal intervals in the circumferential direction.
  • the first LED and the second LED are formed of UV light LEDs, and the upper and lower rows of the virtual circumference line are formed at different wavelengths.
  • the first LED and the second LED are formed by a white LED and a UV LED, respectively.
  • the light-emitting substrate may have a structure in which the first LED portion and the second LED portion are disposed at an equal distance from one another in the circumferential direction, Are alternately arranged.
  • the first LED unit and the second LED unit are chip-type LEDs.
  • both visible light and ultraviolet light can be irradiated, and both general polarized light and cross polarized light can be realized. Furthermore, it has a compact structure in which the substrate of the light emitting unit, the first polarizing unit, the second polarizing unit and the polarizing plate can be arranged on one plane perpendicular to the axial direction (optical axis direction).
  • a protection window is provided to protect various optical elements, and a protection window is formed of a material that does not generate polarization (to prevent unexpected polarization generation). Furthermore, the exterior member is provided with a spacer frame to maintain an appropriate distance between the protection window and the light emitting unit, thereby preventing the protection window from being damaged by heat generation of the light emitting unit.
  • a first polarizer for providing horizontal polarization and a second polarizer for providing vertical polarization are formed to be thin and engaged, and the light source is formed of a chip-type LED, The volume of the skin magnifier can be reduced.
  • the LEDs are provided in two rows, and each row provides different wavelengths, so that the skin magnifier can be used for various purposes.
  • FIG. 1 is a perspective view showing an optical skin diagnosis device according to a first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing an optical skin diagnosis device according to a first embodiment of the present invention.
  • FIG 3 is an exploded perspective view showing an exterior member of the optical skin diagnosis device of the first embodiment of the present invention.
  • FIG. 4 is an exploded perspective view showing an optical module of an optical skin diagnostic device according to the first embodiment of the present invention.
  • FIG. 5 is an exploded perspective view showing a protection window and a window holder of the optical module according to the first embodiment of the present invention.
  • FIG. 6 is an exploded perspective view showing a first polarizing unit, a second polarizing unit and a light emitting unit of the optical module of the first embodiment of the present invention.
  • FIG. 7 is a front view of a first polarizing unit and a second polarizing unit of the optical module of the first embodiment of the present invention.
  • FIG 8 is a front view showing a light emitting unit of the optical module according to the first embodiment of the present invention.
  • FIG. 9 is a front view showing a first polarizing unit, a second polarizing unit, a light emitting unit and a polarizing plate of the optical module of the first embodiment of the present invention.
  • FIG. 10 is an exploded perspective view showing a second polarization unit, an optical lens, a lens holder, and a gasket of the optical module of the first embodiment of the present invention.
  • FIG. 11 is a conceptual diagram showing the polarization effect of the optical skin diagnosis device of the first embodiment of the present invention.
  • FIG. 12 is a cross-sectional view conceptually showing various modifications for securing an axial distance between the second light emitting device and the third polarization unit in the optical module of the first embodiment of the present invention.
  • FIG. 13 is a graph showing the transmittance of the visible light wavelength band and the ultraviolet wavelength band of the third polarizing unit of the first embodiment of the present invention.
  • FIG. 14 is an exploded perspective view illustrating that the light emitting unit according to the second embodiment of the present invention is installed in a skin magnifying glass.
  • FIG. 15 is an exploded perspective view of a light emitting unit installed in a skin magnifying glass according to a second embodiment of the present invention.
  • 16 is a front view of a light emitting substrate according to a second embodiment of the present invention.
  • 17 is a front view of the first polarizer plate according to the second embodiment of the present invention.
  • FIG. 18 is a front view of a second polarizing plate according to the second embodiment of the present invention.
  • 19 is a front view illustrating the first polarizer and the second polarizer are engaged with each other according to the second embodiment of the present invention.
  • FIG. 20 is a plan view illustrating that the first polarizing plate and the second polarizing plate are installed in the housing according to the second embodiment of the present invention.
  • 21 and 22 are front views of a light emitting substrate according to another embodiment of the present invention.
  • FIG. 23 is a sectional view showing an optical unit provided in a skin magnifying glass according to a second embodiment of the present invention.
  • spatially relative can be used to easily describe a correlation between an element and other elements.
  • Spatially relative terms should be understood in terms of the directions shown in the drawings, including the different directions of components at the time of use or operation. For example, when inverting an element shown in the figures, an element described as “below” or “beneath” of another element may be placed “above” another element .
  • the exemplary term “ below” can include both downward and upward directions.
  • the components can also be oriented in different directions, so that spatially relative terms can be interpreted according to orientation.
  • optical axis is defined as the optical axis of the optical lens 260. Is defined with respect to the optical axis of the optical lens 260.
  • circumferential direction " 4 is defined as a front side and is defined as one side of the optical axis of the optical lens 1260 and the rear side is defined as the rear side as shown in Fig. 4, which is the other side of the optical axis of the optical lens 1260 Direction.
  • the optical lens 1260 is not an essential component of the present invention, and may be omitted in response to a design request. In this case, instead of the optical axis of the optical lens 1260, " Concentric Axis of the first polarizing unit 1220 and the second polarizing unit 1230 "
  • the optical skin diagnostic apparatus 1001 may include an exterior member 1100, an optical module 1200, an electronic control module 1300, and a cradle 1400.
  • the cradle 1400 is not a mandatory configuration and may be omitted in response to a design request.
  • the skin member 1100 may be a member that forms the appearance of the optical skin diagnostic apparatus 1001 of the first embodiment of the present invention.
  • the exterior member 1100 may be formed of a plastic material.
  • the exterior member 1100 can be made by plastic injection.
  • the optical module 1200 may be disposed on one side of the exterior member 1100 and the electronic control module 1300 may be disposed inside the exterior member 1100.
  • the exterior member 1100 may include a first exterior member 1110, a second exterior member 1120, a button 1130, a first switch 1140, a second switch 1150 and a connector 1160 .
  • the first exterior member 1110 and the second exterior member 1120 are opposed to each other and the optical module 1200 is disposed on the upper portion of the first exterior member 1110 and the second exterior member 1120,
  • the electronic control module 1300 may be disposed in an inner space formed by the coupling of the first and second outer members 1110 and 1120.
  • the first exterior member 1110 may include a first frame 1111 and a first grip portion 1112 and the second exterior member 1120 may include a second frame 1121 and a second grip portion 1122 can do.
  • the first frame 1111 and the second frame 1121 may be substantially ring-shaped and open in the " axial direction ".
  • the optical module 1200 may be disposed in the first frame 1111 and the second frame 1121. In this case, by the engagement of the first frame 1111 and the second frame 1121, the optical module 1200 can be pressed and fixed in the " axial direction ".
  • the second skin member 1120 may further include a spacer frame 1123 and an O-ring frame 1124.
  • the space frame 1123 may be a plurality of support portions which protrude radially inward from the inner surface formed by the opening of the second skin member 1120.
  • a later-described protection window 1210 may be fixed to the spacer frame 1123 described later. Therefore, the spacer frame 1123 can secure a distance in the "axial direction" between the protection window 1210 and the light emitting unit 1240. As a result, it is possible to prevent the protection window 1210 from being damaged by heat generation of the light emitting unit 1240.
  • the O-ring frame 1124 can be positioned radially inward of the space frame 1123 and can be connected to the inner circumferential surface of the body of the second frame 1121 by the space frame 1123.
  • the O-ring frame 1123 presses the optical module 1200 in the " axial " direction and prevents the optical module 1200 from deviating in the " axial direction ".
  • the first grip portion 1112 and the second grip portion 1121 may extend downward from the first frame 1111 and the second frame 1121.
  • the first grip portion 1112 and the second grip portion 1121 may be provided for the user's grip.
  • the electronic control module 1300 may be disposed in the inner space of the first grip portion 1112 and the second grip portion 1121.
  • the first grip portion 1112 and the second grip portion 1121 can be mounted on the cradle 1400.
  • the charging terminal 1311 of the main board 1310 of the electronic control module 1300 is exposed to the outside and can be electrically connected to the connection terminal (not shown) of the cradle 1400,
  • the battery 1320 of the battery 1300 can be charged.
  • the button 1130 may be disposed on the upper rear surface of the first grip portion 1112.
  • the On / Off signal of the optical skin diagnosis device 1001 can be applied to the main substrate 1310 of the electronic control module 1300 by clicking the button 1130.
  • the first switch 1140 and the second switch 1150 may be disposed on both upper surfaces of the first grip portion 1112 and the second grip portion 1122, respectively.
  • the control signal of the light emitting unit 1240 can be applied to the main substrate 1310 of the electronic control module 1300 by switching the first switch 1140 and the second switch 1150.
  • the light emitting unit 1240 is divided into the first light emitting unit 1242 and the second light emitting unit 1243 according to the wavelength band of the emitted light, two switches are provided accordingly.
  • the connector 1160 may be disposed on one side of the first grip portion 1112 and the second grip portion 1122. [ The connector 1160 may be disposed under the first switch 1140. The connector 1160 may be electrically connected to the main board 1310 of the electronic control module 1300. The connector 1160 is provided to be electrically connected to an external electronic device (for example, a portable charger).
  • a portable charger for example, the connector 1160 may be a USB connector, and the USB terminal of the portable charger may be docked to proceed charging.
  • the optical module 1200 may form an " optical system " of the optical skin diagnostic apparatus 1001 of the first embodiment of the present invention.
  • Various optical units and optical elements are provided in the optical module 1200, and a holder or a sealing member for supporting, fixing, and sealing the optical module is also provided.
  • the optical module 1200 may include a protection window 1210, a first polarizing unit 1220, a second polarizing unit 1230, a light emitting unit 1240, a polarizing plate 1250, and an optical lens 1260.
  • the protection window 1210, the first polarizing unit 1220, the second polarizing unit 1230, the light emitting unit 1240, the polarizing plate 1250, and the optical lens 1260 can be sequentially arranged from front to back.
  • the protective window 1210, the first polarizing unit 1220, the second polarizing unit 1230, the light emitting unit 1240, the polarizing plate 1250, and the optical lens 1260 are concentric with respect to the " . ≪ / RTI >
  • the protection window 1210 may be provided to chemically and physically protect the optical module 1200 from the outside.
  • the specific gravity of the protection window 1210 may be 1.19 and the water absorption may be 0.3%.
  • the tensile strength of the protection window 1210 may be 73 Mpa, the elongation at break may be 4.5%, the flexural strength may be 108 Mpa, Can be 1.6 KJ / m < 2 >.
  • the protection window 1210 may be formed of a light transmitting material.
  • the material of the protection window 1210 may include PMMA (poly (methyl methacrylate)).
  • the number of days was 92% light transmittance (light transmittance) of the protect window 1210, may be a refractive index (refractive Index) is 1.49 (n D 20 condition).
  • the protection window 1210 of the protection window 1210 may be formed of a material that does not generate polarization. Therefore, it is possible to prevent the transmitted light of the protection window 1210 from being polarized in an unexpected direction without matching the optical design conditions.
  • the protection window 1210 must be able to effectively resist the heat generation of the light emitting unit 1240. Therefore, the deflection temp.
  • the protection window 1210 may be 95 ° C.
  • the protection window 1210 may be disposed on the exterior member.
  • the protection window 1210 may be disposed in front of the first polarizing unit 1220, the second polarizing unit 1230, and the light emitting unit 1240.
  • the protect window 1210 may be secured to the second frame 1122 of the second skin member 1120.
  • the protection window 1210 is mounted on the ring-shaped window holder 1210-1 opened in the front-rear direction, and the window holder 1210-1 is coupled to the spacer frame 1123 of the second frame 1122 So that it can be fixed to the second frame 1122 of the second skin member 1120.
  • the spacer frame 1123 of the window holder 1210-1 and the second frame 1122 can be screwed or pin-coupled.
  • the window holder 1210-1 and the second frame 1122 The spacer frame 1123 may be provided with a screw hole or a pin hole.
  • a certain distance is secured between the protection window 1210 and the light emitting unit 1240 by the spacer frame 1123 of the second frame 1122, and the protection window 1210 is damaged by the light emitting unit 1240 Can be prevented.
  • the first polarizing unit 1220 and the second polarizing unit 1230 can polarize the outgoing light of the first light emitting unit 1242 of the light emitting unit 1240. [ That is, the first polarizing unit 1220 and the second polarizing unit 1230 can polarize light in the visible light wavelength band (particularly, the white light wavelength band).
  • the first polarizing unit 1220 can polarize the outgoing light of the first light emitting unit 1242 of the light emitting unit 1240 in the first direction and the second polarizing unit 1230 can polarize the outgoing light of the first light emitting unit 1242 of the light emitting unit 1240 in the first direction,
  • the emitted light of the light emitting unit 1242 can be polarized in the second direction. That is, a part of the first light emitting unit 1242 of the light emitting unit 1240 may be polarized and emitted in the first direction, and the remaining part of the first light emitting unit 1242 of the light emitting unit 1240 may be emitted in the second direction It can be polarized and emitted.
  • the first polarization unit 1220 may have a polarization axis in a first direction
  • the second polarization unit 1230 may have a polarization axis in a second direction.
  • the first polarization unit 1220 may include a first body 1221 and a plurality of first polarization sections 1222.
  • the second polarization unit 1230 may include a second body 1231 and a plurality of second polarization (Not shown).
  • An opening portion may be formed inside the first body 1221 of the first polarizing unit 1220.
  • the first body 1221 of the first polarizing unit 1220 may be in the form of a ring that is substantially open in the " axial "
  • the plurality of first polarizing portions 1222 of the first polarizing unit 1220 may be spaced apart from each other along the " circumferential direction " to project inward (" radially inward ") as in a gear.
  • the plurality of first polarization sections 1222 of the first polarization unit 1220 are connected to the plurality of first 1-1 light emitting elements 1242-1 and the plurality of first 1-2 light emitting elements 1242-1 of the first light emitting unit 1242 -2 in the " axial direction ".
  • the emitted light of a part of the first light emitting unit 1242 of the light emitting unit 1240 can be transmitted through the plurality of first polarizing parts 1222 of the first polarizing unit 1220 and can be polarized in the first direction.
  • the second main body 1231 of the second polarizing unit 1230 may be disposed inside the first main body 1221 of the first polarizing unit 1220. An open portion may be formed inside the second body 1231 of the second polarizing unit 1230.
  • the second body 1231 of the second polarizing unit 1230 may be in the form of a ring that is opened substantially in the " axial "
  • the plurality of second polarizing portions 1232 of the second polarizing unit 1230 may be spaced apart from each other along the " circumferential direction "
  • the plurality of second polarizing parts 1232 of the second polarizing unit 1230 are disposed between the plurality of first light emitting devices 1242-1 and the plurality of first light emitting devices 1242 -2 in the axial direction. Accordingly, the outgoing light of the remaining part of the first light emitting unit 1242 can be transmitted through the plurality of second polarizing parts 1232 of the second polarizing unit 1230, and can be polarized in the second direction.
  • a plurality of second polarizing parts 1231 of the second polarizing unit 1230 may be disposed between the plurality of first polarizing parts 1221 of the first polarizing unit 1220, respectively. That is, a plurality of first polarizing sections 1221 of the first polarizing unit 1220 and a plurality of second polarizing sections 1231 of the second polarizing unit 1230 can be engaged with each other as if they are engaged with each other. That is, the plurality of first polarizing parts 1221 of the first polarizing unit 1220 and the plurality of second polarizing parts 1231 of the second polarizing unit 1230 may be disposed adjacent to each other in the "circumferential direction" . To this end, the first body 1221 of the first polarizing unit 1220 and the second body 1232 of the second polarizing unit 1230 may be concentric.
  • the plurality of first polarizing parts 1221 of the first polarizing unit 1220 and the plurality of second polarizing parts 1231 of the second polarizing unit 1230 can be alternately arranged in the " circumferential direction ".
  • the plurality of the first-first light-emitting elements 1242-1 and the plurality of the first-second light-emitting elements 1242-2 of the first light-emitting unit 1242 are aligned in the "circumferential direction" Axis direction so that the plurality of first polarizing portions 1221 of the first polarizing unit 1220 and the plurality of second polarizing portions 1232 of the second polarizing unit 1230 alternate with each other (see FIG. 9).
  • the first body 1221 of the first polarization unit 1220 may be disposed outside the second body 1232 of the second polarization unit 1230 and the first body 1221 of the first polarization unit 1220 may be disposed outside the second body 1232 of the second polarization unit 1230.
  • the plurality of first polarizing parts 1222 protrude inward and the plurality of second polarizing parts 1232 of the second polarizing unit 1230 protrude outward and mate with each other.
  • the first polarizing unit 1220 and the second polarizing unit 1230 can be positioned on one plane perpendicular to the " optical axis ", and as a result, the total length of the optical skin diagnostic apparatus 1001 of the present invention Axial direction ”) is shortened to realize a compact structure.
  • the light emitting unit 1240 may be a unit that generates emitted light.
  • the outgoing light of the light emitting unit 1240 can advance forward.
  • the emitted light of the light emitting unit 1240 may be polarized in the first direction or the second direction through the first polarizing unit 1220 and / or the second polarizing unit 1230.
  • the light emitting unit 1240 can emit light in the visible light wavelength band (particularly, the white wavelength band) and the ultraviolet wavelength band. That is, the optical skin diagnosis apparatus 1001 of the present invention can select light in a band that can emit light in various bands and can observe a specific lesion precisely.
  • the light emitting unit 1240 may be disposed behind the first polarizing unit 1220 and the second polarizing unit 1230.
  • the light emitting unit 1240 may be disposed on the protection window 1210 and the optical lens 1260.
  • the light emitting unit 1240 may include a light emitting unit substrate 1241, a first light emitting unit 1242, and a second light emitting unit 1243.
  • the light emitting unit substrate 1241 may be a printed circuit board (PCB).
  • the first light emitting unit 1242 and the second light emitting unit 1243 may be mounted on the light emitting unit substrate 1241.
  • the light emitting unit substrate 1241 may be electrically connected to the main substrate 1310 of the electronic control module 1300. In this case, the light emitting unit substrate 1241 and the main substrate 1310 of the electronic control module 1300 can be electrically connected to each other by the connection substrate 1241-1.
  • the connection board 1241-1 may be a flexible printed circuit board (FPCB).
  • the light emitting unit substrate 1241 may receive a control signal from the main substrate 1310 of the electronic control module 1300. As a result, on / off and illumination of the first light emitting unit 1242 and the second light emitting unit 1243 can be controlled.
  • the first light emitting unit 1242 can emit light in the visible light wavelength band (particularly, white light), and the second light emitting unit 1243 can emit light in the ultraviolet wavelength band.
  • the first light emitting unit 1242 may include a plurality of first light emitting devices 1242-1 and a plurality of first light emitting devices 1242-2, And may include a light emitting element 1243-1.
  • the light emitting element may be a " LED (Light Emitting Diode) lamp ".
  • the plurality of first 1-1 light emitting elements 1242-1, the plurality of first light emitting elements 1242-2, and the plurality of second light emitting elements 1243-1 are arranged at equally spaced intervals along the "circumferential direction" And can be spaced apart.
  • the plurality of first-first light-emitting elements 1242-1 may be arranged outside in the " radial direction " and the plurality of second light-emitting elements 1243-1 may be arranged inside in the " Light emitting device 1242-1 and the plurality of second light emitting devices 1243-1 in the " radial direction " .
  • the plurality of first-first light-emitting elements 1242-1, the plurality of first light-emitting elements 1242-2, and the plurality of second light-emitting elements 1243-1 are arranged in the "radial direction" Can be positioned sequentially.
  • the reason why the first light emitting units 1242 are arranged in two rows is to control the illuminance and wavelength band of emitted light. That is, the illuminance of the emitted light and the wavelength band within the visible light wavelength band may be different between the plurality of first light emitting devices 1242-1 and the plurality of first light emitting devices 1242-2. As a result, the user can selectively turn on / off the plurality of first light emitting devices 1242-1 and the plurality of first light emitting devices 1242-2 to change the illuminance and the wavelength band of the emitted light.
  • the number of the first 1-1 light emitting devices 1242-1 may be the same as the number of the first 1-2 light emitting devices 1242-2. That is, the plurality of the first-first light-emitting devices 1242-1 and the plurality of the first-second light-emitting devices 1242-2 may be arranged in a one-to-one correspondence with each other.
  • the plurality of first 1-1 light emitting devices 1242-1 and the plurality of first 1-2 light emitting devices 1242-2 are disposed along the circumferential direction of the first polarization unit 1220 and the second polarization unit 1230, Quot; axially " alternately (see Fig. 9).
  • One of the pair of the first-second light-emitting devices (b) overlaps with one of the plurality of first polarizing sections 1222 of the first polarizing unit 1220 in the " axial direction & Axially " with one of the plurality of second polarizing portions 1232 of the first polarizing element 1230.
  • outgoing light of one of the pair of the first-first light-emitting elements (a) and the pair of the first-second light-emitting elements (b) is polarized in the first direction and the other is polarized in the second direction .
  • one of the pair of the 1-1 light emitting elements (a) and the pair of the 1-2 light emitting elements (b) and the other one can be controlled separately.
  • the reason why the plurality of second light emitting devices 1243-1 are arranged in the inside of the " radial direction " is to concentrate the light in the ultraviolet wavelength band in a narrow region to observe a specific lesion tissue of the living tissue.
  • the number of the plurality of second light emitting devices 1243-1 is smaller than the number of the plurality of first light emitting devices 1242-1 and the number of the plurality of first light emitting devices 1242-2 small. That is, the plurality of first light emitting devices 1243-1 and the plurality of first light emitting devices 1243-1 have a small (high density) rotation angle in the " circumferential direction " The " circumferential " rotation angle of the rotor is large (the density is small).
  • the plurality of second light emitting devices 1243-1 prevents the damage of the protection window 1210.
  • the optimum observation light intensity of the light in the ultraviolet wavelength band can not be secured.
  • the problem that the proper observation light intensity can not be ensured by arranging the plurality of second light emitting devices 1243-1 in the inside of the inside of the optical skin diagnosis device 1001 and concentrating it in a predetermined area is solved.
  • the polarizing plate 1250 can transmit the reflected light reflected from the skin.
  • the polarizing plate 1250 may have a polarization axis in a first direction. That is, the light polarized in the first direction or the second direction through the polarizing plate 1250 through the first polarizing unit 1220 and the second polarizing unit 1230 is reflected by the skin and then transmitted through the polarizing plate 1250 And can be polarized in the first direction.
  • the light finally observed by the user may be " general polarized light " polarized in the first direction or " cross polarized light " sequentially polarized in the first and second directions.
  • the polarizing plate 1250 may be disposed between the protection window 1210 and the optical lens 1260 and arranged so as not to overlap in the " axial " direction with the optical path of the emitted light of the light emitting unit 1240. That is, the polarizing plate 1250 can overlap in the " axial direction " with the open portion of the light emitting unit substrate 1241 of the light emitting unit 1240.
  • the reflected light (recurrent light) transmitted through the polarizing plate 1250 can be seen through the optical lens 1260 and visually confirmed by the user.
  • the polarizing plate 1250 can be disposed inside the second polarizing unit 1220.
  • the polarizing plate 250 can be received in the " axial " opening of the second polarizing unit 1220 (see FIG. 9).
  • the first polarizing unit 1220, the second polarizing unit 1230, and the polarizing plate 1250 can be located on one plane perpendicular to the " optical axis ", so that the optical skin diagnostic apparatus 1001 of the present invention,
  • the overall length (" axial direction ") of the rotor can be shortened.
  • the first polarizing unit 1220, the second polarizing unit 1230 and the polarizing plate 1250 may be " polarizing films ".
  • the " polarizing film” can be made of a TAC film (Tri Acetate Cellulose Film) and a PVA film (Poly Vinyl Alcohol).
  • TAC film is a natural plastic that has been used as a photographic film for more than half a century and has good properties such as excellent transparency, smoothness and optical isotropy.
  • the PVA film is a water-soluble resin obtained by deacidifying a vinyl acetate resin, and can be used as a raw material for polyvinyl alcohol synthetic fibers, an adhesive, a paste (glue), a film, and the like.
  • the polarizing film manufacturing process can be performed by stretching a polyvinyl alcohol (PVA) film, immersing it in iodine (I 2 ) and a dichroic dye solution, and arranging the iodine molecule (I 2 ) and the dye molecule in the stretching direction in parallel . Since the iodine molecule (I 2 ) and the dye molecule have dichroism, they absorb light that oscillates in the stretching direction of the polarizing film and transmit light that oscillates in the vertical direction.
  • PVA polyvinyl alcohol
  • the polymer polarizing film used in LCD is made by adsorbing iodine or dichromatic dye to a PVA film stretched in one direction.
  • the polarizing film is composed of a TAC (Tri Acetate Cellulose) film on both sides of the PVA film, and each film is adhered with an adhesive.
  • the PVA film is a part that is processed by processes such as stretching and dyeing to exhibit polarization performance, and the TAC film serves as a protective film for protecting the PVA film.
  • the structure consisting of the PVA film and the TAC film is the basic structure of the polarizing film, and the structure state of these three layers is called a polarizer.
  • the core technology of polarizing films is 'laminating' technology that pulls PVA at regular intervals and laminating technology to evenly adhere films.
  • TFT-LCD adds some processes based on these two core technologies.
  • the light transmitted through the polarizing plate 1250 can be irradiated to the optical lens 1260.
  • the optical lens 1260 may refract the light transmitted through the polarizing plate 1250 to enlarge the image.
  • the light refracted by the optical lens 1260 can be observed by the user.
  • the optical lens 1260 can be fixed to the second frame 1122 of the second exterior member 1120 while being mounted on the optical lens holder 1260-1.
  • a gasket 1260-2 may be added to maintain airtightness between the optical lens 1260 and the optical lens holder 1260-1.
  • the optical lens 1260 may be disposed behind the protection window 1210, the first polarizing unit 1220, the second polarizing unit 1230, the light emitting unit 1240, and the polarizing plate 1250.
  • a part of the outgoing light of the first light emitting unit 1242 in the visible light wavelength band passes through the first polarizing unit 1220 and is polarized in the first direction, And the reflected light is transmitted through the polarizing plate 1250 and then magnified and observed in the optical lens 1260 in a state of being polarized in the first direction (see (1) in FIG. 11, the normal polarized light in the first direction).
  • the polarized light is polarized in the first direction by the first polarizing unit 1220, but the polarized state may be disturbed in the process of being reflected from the skin. Therefore, the polarized light is filtered once again using the polarizing plate 1250. Thereby, the user can magnify and observe the fully polarized reflected light in the first direction.
  • the first leg of the visible light wavelength band (particularly the white light wavelength band) and the remaining part of the outgoing light of the unit 1242 are reflected by the skin in a state of being polarized in the second direction through the second polarizing unit 1230,
  • the reflected light can be observed in an enlarged form in the optical lens 1260 in a state of being transmitted through the polarizing plate 1250 and polarized in the first direction (see (2) in FIG. 11, cross polarized light in the first direction and the second direction).
  • the user can select polarized light including both normal polarized light or crossed polarized light or both normal polarized light and crossed polarized light, thereby enabling accurate diagnosis of various lesions.
  • the outgoing light of the second light emitting unit 1243 in the ultraviolet wavelength band can be observed by being magnified in the optical lens 1260 in a state of being reflected by the skin and then transmitted through the polarizing plate 1250 and polarized in the first direction.
  • first polarizing unit 1220 and the second polarizing unit 1230 of the first embodiment of the present invention are not limited thereto.
  • a polarizing axis for polarizing the first polarizing unit 1220 in the second direction may be formed, and a polarizing axis for polarizing the second polarizing unit 1230 in the first direction may be formed.
  • a third polarizing unit 1270 for polarizing the outgoing light of the second light emitting unit 1243 in the ultraviolet wavelength band may be added.
  • the third polarizing unit 1270 may have a polarization axis in the first direction or the second direction.
  • the third polarizing unit 1270 of the modification of the first embodiment of the present invention may have a transmittance of 99.5% in the visible light wavelength band in the 0 degree direction (P y ), and the ultraviolet wavelength
  • the transmittance in the band (350 nm to 395 nm) is 26% or more. As a result, the visibility of the lesion observed in the ultraviolet wavelength band can be enhanced.
  • the third polarized light unit 270 may be damaged by the heat generated by the second light emitting unit 1243 in the ultraviolet wavelength band.
  • FIG. 12 shows a configuration in which the third polarizing unit 1270 is disposed apart from the first polarizing unit 1220 and the second polarizing unit 1230.
  • the third polarizing unit 1270 may be located behind the first polarizing unit 1220 and the second polarizing unit 1230.
  • Fig. 12 (2) of Fig. 12 is to coat the third polarizing unit 1270 on the rear surface of the protection window 1210.
  • the third polarizing unit 1270 can be protected by the protection window 1210, and the separation distance from the second light emitting unit 1243 can be secured.
  • FIG. 12 shows that the second light emitting unit 1243 is disposed behind the first light emitting unit 1242 in the rear direction.
  • an auxiliary substrate 1241-2 for mounting the second light emitting unit 1243 may be separately provided, and the auxiliary substrate 1241-2 may be provided for electrically connecting the light emitting unit substrate 1242-1 and the auxiliary substrate 1241-2
  • a first auxiliary connection substrate 1241-3 may be provided.
  • FIG. 12 (4) shows a case in which the auxiliary substrate 1241-2 on which the second light emitting unit 1243 is mounted is electrically connected directly to the main substrate 1310 of the electronic control module 1300.
  • a second auxiliary connection substrate 1241-4 for electrically connecting the auxiliary substrate 1241-2 and the main substrate 1310 of the electronic control module 1300 may be provided.
  • the electronic control module 1300 can electronically control the optical skin diagnostic apparatus 1001 of the present invention.
  • the electronic control module 1300 may include a main substrate 1310 and a battery 1320.
  • the main substrate 1310 is electrically connected to the light emitting unit 1240 to control the light emitting unit 1240 in correspondence with the first switch 1140 and the second switch 1150 of the user's exterior member 1100 can do.
  • the main board 1310 is electrically connected to the battery 1320 and can receive control power from the battery 1320 and can supply the external battery power to the battery 1320.
  • the main board 1310 may be provided with a charging terminal 1311 for charging the battery 1320.
  • the charging terminal 1311 can be electrically connected to a supply terminal (not shown) provided in the cradle 1400 to charge the battery 1320 when the foreign matter member 1100 is mounted on the cradle 1400.
  • the battery 1320 may be a rechargeable battery.
  • the battery 1320 may be a lithium ion battery.
  • the battery 1320 may be attached to the battery holder 1321 and fixed to the inner space of the first grip portion 1112 and the second grip portion 1122 of the outer casing member 1100.
  • FIG. 14 is an exploded perspective view illustrating that the light emitting unit 2100 according to the second embodiment of the present invention is installed in the skin loupe 2000.
  • a skin magnifier 2000 includes a focal length adjuster 2600, an optical tube structure 2100, a control module 2200, a battery 2700, And is provided by the engagement of the first housing part 2300A and the second housing part 2300B.
  • the optical tube structure 2100 is provided with an optical unit 2120 provided for the observer to enlarge and confirm the object to be observed, and a substantial skin magnifier 2000 ) Optical properties and functions.
  • FIG. 15 the light emitting unit 3100 according to the second embodiment of the present invention will be described with reference to FIGS. 15 to 21.
  • FIG. 15 the light emitting unit 3100 according to the second embodiment of the present invention.
  • a light emitting unit 3100 includes a light emitting substrate 3200, a first polarizing unit 3300, a second polarizing unit 3400, and a housing 3500 .
  • the light emitting substrate 3200 according to the second embodiment of the present invention has the first LED portion 3210 and the second LED portion 3220 arranged in an equally spaced relation to each other along the circumferential direction.
  • the first LED unit 3210 and the second LED unit 3220 emit light through the emission signal of the control module 2200. More specifically, And the second LED unit 3220 emits light collectively by the second light emission signal transmitted from the control module 2200.
  • first LEDs 3210 and eight second LEDs 3220 are arranged at equal intervals in the circumferential direction.
  • the first LED portion 3210 and the second LED portion 3220 are chip-type LEDs.
  • the first LED portion 3210 and the second LED portion 3220 may be UV light LEDs or white light LEDs. Therefore, the first LED portion 3210 and the second LED portion 3220 may be formed of a UV light LED or a white light LED, if necessary, so that the first LED portion 3210 and the second LED portion 3220 can be used according to circumstances.
  • a first polarizer 3300 includes a first polarizer 3330 for polarizing light of the first LED unit 3210 in a first direction, At regular intervals along the circumferential direction.
  • a plurality of first polarizing plates 3330 each having a polarization axis set in a first direction and located at the front ends of the plurality of first LED portions 3210 in the direction in which light is irradiated, And are arranged at regular intervals along the circumferential direction on the inner circumferential surface.
  • the first polarizing portion 3300 is installed in the housing 3500 so that the first LED portion 3210 and the first polarizing plate 3330 are installed at corresponding positions.
  • the second polarizer 3400 includes a second polarizer 3430 for polarizing the light of the second LED 3220 in a second direction orthogonal to the first direction, Are arranged on the outer circumferential surface of the second ring 3410 at equal intervals along the circumferential direction.
  • a plurality of second polarizing plates 3430 are disposed at the front ends of the plurality of second LED portions 3220 in the direction of light irradiation, 2 ring 3410 at regular intervals along the circumferential direction.
  • the second polarizing portion 3400 is installed in the housing 3500, and the second LED portion 3220 and the second polarizing plate 3430 are installed at corresponding positions.
  • the first polarization section 3300 and the second polarization section 3400 are shown to be engaged with each other.
  • the first polarizing unit 300 and the second polarizing unit 3400 are formed in the form of a thin plate and are embedded in the housing 3500 in a state of being engaged with each other and the first LED unit 3210 and the second LED unit 3220 Is formed of a chip-type LED, it becomes possible to form the light emitting unit 3100 with a small thickness, and consequently, the skin loupe 2000 can be downsized, which is effective for the observer's treatment.
  • FIG. 20 is a plan view illustrating that the first polarizing plate and the second polarizing plate are installed in the housing 3500 according to the second embodiment of the present invention.
  • the housing 3500 includes a light emitting substrate 3200, a first polarizing unit 3300, and a second polarizing unit 3400.
  • the first ring 3310 and the second ring 3410 are disposed on the first polarizing plate 3330 ) And the second polarizing plate 3430.
  • the first polarizing plate 3330 and the second polarizing plate 3430 can be separated from the first ring 3310 and the second ring 3410 respectively and the housing 3500 can be separated from the first polarizing plate 3330 And a second polarizer plate groove 3520 to which the second polarizer plate 3430 is coupled are formed on the first polarizer plate groove 3510 and the second polarizer plate groove 3520, respectively.
  • the first polarizing plate 3330 and the second polarizing plate 3310 are separated from the first ring 3310 and the second ring 3410,
  • the first polarizing plate 3330 and the second polarizing plate 3430 are provided in the first polarizing plate grooves 3510 and the second polarizing plate grooves 3520 respectively so as to reduce the size of the light emitting unit 3100 do.
  • 21 and 22 are front views of a light emitting substrate according to another embodiment of the present invention.
  • a virtual circle 3230 is formed in the light emitting substrate 3200 according to the second embodiment of the present invention.
  • the first LED portion 3210 and the second LED portion 3220 are arranged in two rows on the upper and lower sides with respect to the imaginary circle 3230 and are arranged at equal intervals and crosswise along the circumferential direction.
  • the first LED portion 3210 and the second LED portion 3220 are formed of UV light LEDs, and the upper row and the lower row of the imaginary circle 3230 are formed by light sources having different wavelengths.
  • the first wavelength 3250 is formed in the upper row of the imaginary circle 3230 and the second wavelength 3260 is formed in the lower row.
  • a first wavelength 3250 of 365 nm is formed
  • a second wavelength 260 of 395 nm is formed in the lower row.
  • the first LED portion 3210 or the second LED portion 3220 in the upper row corresponding to the first wavelength 3250 of 365 nm is emitted to observe the observer's eye
  • the first LED portion 3210 or the second LED portion 3220 in the lower row corresponding to the second wavelength 3260 of 395 nm can be observed by emitting light.
  • the first LED portion 3210 and the second LED portion 3220 may be formed of a white light LED, and the other side may be formed of a UV light LED.
  • the LED portion on the lower side may be formed of a white light LED and the LED portion on the upper side may be formed of a UV light LED based on the virtual circumference line 3230.
  • the LED portion on the lower side may be formed of a UV light LED and the LED portion on the upper side may be formed as a white light LED portion with respect to the imaginary circle line 3230.
  • the white light LED portion and the UV light LED together, it is possible to cause only the white light LED to emit light or to emit only the UV light LED, if necessary.
  • the first LED portion 3210 and the second LED portion 3220 emit white light LEDs through the third emission signal, and the first LED portion 3210 and the second LED portion 3210 3220 can be made to emit light.
  • the light emitting substrate 3200 includes first LED portions 3210 and second LED portions 3220 which are arranged at equal intervals in the circumferential direction, UV wavelengths are alternately arranged, and the second LED portion 3220 is disposed with two different UV wavelengths alternately.
  • the first LED 3210 of the first wavelength 3250 is disposed, the second LED 3220 of the first wavelength 3250 is disposed on the right side of the predetermined distance, The first LED portion 3210 of the first wavelength 3260 is disposed and the second LED portion 3220 of the second wavelength 3260 is disposed on the right side of the predetermined interval.
  • FIG. 23 is a sectional view showing an optical unit provided in a skin lighter according to an embodiment of the present invention.
  • the skin magnifying glass 2000 includes an optical unit 2120 provided so that an observer can enlarge and confirm an object to be observed, and a light emitting unit 2120 for irradiating light to an observation object to be magnified and confirmed through the optical unit 2120 (3100).
  • the optical tube structure 2100 is provided with a substantial skin magnifier 2000 through an optical unit 2120 provided for the observer to enlarge and confirm the object to be observed, and a light emitting unit 3100 for irradiating light around the object to be observed.
  • Optical properties and functions of the optical system are provided with a substantial skin magnifier 2000 through an optical unit 2120 provided for the observer to enlarge and confirm the object to be observed, and a light emitting unit 3100 for irradiating light around the object to be observed.
  • the optical unit 2120 includes a first optical lens 2121, a lens array 2122 for correction of chromatic aberration, a third polarizer 2123, a first spacer 2124, and a second spacer 2125, .
  • the third polarizing plate 2123 directly related to the first LED portion 3210, the first polarizing plate 3330, the second LED portion 3220, and the second polarizing plate 3430 of the light emitting unit 3100 is mainly dealt with .
  • the optical unit includes a third polarizing plate 2123 set in parallel with the first polarizing plate provided in the first polarizing plate 3330 in the same direction.
  • it is located at the tip of the observation object S side of the chromatic aberration correcting lens array 2122.
  • the third polarizing plate 2123 is located at the front end of the optical unit 2120 on the observation object S side, and the first polarizing plate (first polarizing plate) 3330 in parallel with the first direction.
  • the light irradiated through the plurality of first LEDs 3210 is provided in a state of being primarily polarized around a certain region around the observation target S via the first polarizing plate 3330, reflected from the observation target S,
  • the light incident on the third polarizing plate 2123 consequently provides the observer P with a parallel polarizing function.
  • the light irradiated through the plurality of second LED portions 3220 is provided as a first polarized light to a certain region around the observation target S via the second polarizing plate 3430 and is reflected from the observation target S
  • the light incident on the third polarizing plate 2123 consequently provides the observer P with the cross polarization function.
  • the skin magnifying glass 2000 according to the second embodiment of the present invention has an effect of providing the observer P with a parallel polarizing function and a cross polarizing function.
  • the first optical lens 2121 is provided on the observer P side of the optical unit 2120 as a whole, and is provided in the form of a cross-sectional convex lens in which the observation object S side is convexly formed .
  • the chromatic aberration correction lens array 2122 is a lens bonding material which is located on the observation object S side of the first optical lens 2121 and is formed on both sides of the convex lens, 3 < / RTI > optical lens 2122B.
  • the second optical lens 2122A is in the form of a double-sided convex lens having convex surfaces on both sides and is positioned at the tip of the first optical lens 2121 on the side of the observation object S so that the convex surface on the observer P side Corresponds to the convex surface of the lens array 2122 on the observer P side.
  • the third optical lens 2122B is in the form of a negative meniscus lens in which the observation object S side is convexly formed, Is formed in a concave shape corresponding to the convex shape of the observation object S side surface of the optical lens 2122A so as to be in contact with the observation object S side surface of the second optical lens 2122A, Side convex surface corresponds to the convex surface on the observation object S side of the lens array 2122 for correcting chromatic aberration.
  • the first spacer 2124 separates the first optical lens 2121 and the chromatic aberration correcting lens array 2122 from each other by the first distance D1 and the second spacer 2125 is disposed between the chromatic aberration correcting lens array 2122 And the third polarizing plate 2123 are spaced apart from each other by a second distance D2.
  • the first LED 3210 of the first wavelength 3250 when horizontally polarized light is required at the first wavelength 3250, the first LED 3210 of the first wavelength 3250 emits light, and when vertical polarized light is required at the first wavelength 3250, The first LED portion 3210 of the second wavelength 3260 emits light when the second wavelength 3260 is required to horizontally polarize light and the second LED portion 3220 of the second wavelength 3260 emits light
  • the second LED portion 3220 of the second wavelength 3260 may emit light when vertically polarized light is required.
  • the first LED portion 3210 provides horizontal polarization and the second LED portion 3220 provides a horizontal polarization. For example, provide vertical polarization).
  • a new embodiment combining the first embodiment of the present invention and the second embodiment of the present invention can also be derived from the present invention.
  • the first polarization section 3330, the second polarization section 3400, the first LED section 3210, and the second LED section 3220 of the second embodiment of the present invention may be mutually associated.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

본 발명의 제1실시예에서는 가시광선 파장 대역의 광과 자외선 파장 대역의 광을 모두 조사할 수 있고 이를 다양하게 편광시킬 수 있는 광학식 피부 진단기가 제공되고, 본 발명의 제2실시예에서는 피부 확대경에 설치되는 발광유닛 및 이를 이용한 피부 확대경이 제공된다.

Description

광학식 피부 진단기, 피부 확대경에 설치되는 발광유닛 및 이를 포함한 피부 확대경
본 발명의 제1실시예는 광학식 피부 진단기에 관한 것이고, 본 발명의 제2실시예는 피부 확대경에 설치되는 발광유닛 및 이를 포함하는 피부 확대경에 관한 것이다.
광학식 피부 진단기는 육안으로는 관찰하기 어려운 피부 표피 및 유두 진피의 색소성 병변에, 특정 파장 대역의 광을 편광시켜 관찰함으로써, 흑색종(Malignant Melanoma), 표피 종양, 구진인설성 병변(Papulosquamous disease) 및 조갑병변을 진단하는 기기이다. 최근, 광학식 피부 진단기는 휴대용 피부경 타입(Portable Dermatoscope Type)으로 제작되고 있으며, 사용자는 피부경을 통해 언제 어디서나 자신의 피부 상태를 확인할 수 있다.
한편, 가시광선 파장 대역(특히, 백색 파장 대역)의 광을 일방향으로 편광(이하, "일반 편광"으로 호칭함)시켜 관찰하면 피부 표면을 정밀하게 관찰할 수 있는 장점이 있고, 이방향으로 순차적으로 편광(이하, "교차 편광"으로 호칭함)시켜 관찰하면 피부 심부의 조직을 정밀하게 관찰할 수 있는 장점이 있다. 나아가 자외선 파장 대역의 광을 편광(일반 편광 또는 교차 편광)시켜 관찰하면 특정 병변(일 예로, 기미나 잡티 등)을 정밀하게 관찰할 수 있는 장점이 있다.
즉, 피부의 표면과 심부를 정밀하게 관찰하며 다양한 병변을 커버하기 위해서는, 가시광선 파장 대역과 자외선 파장 대역의 광이 모두 필요하며 다양하게 편광시킬 수 있어야 한다.
그러나 휴대용 피부경 타입의 광학식 피부 진단기에는 광학 모듈의 사이즈 증가 문제로, 다양한 파장 대역과 편광을 구현할 수 없는 문제가 있다.
또한, 휴대용 피부경 타입의 광학식 피부 진단기는 전장 길이가 짧아 발광 모듈과 편광 필름 사이의 거리가 좁고, 이로 인해, 발광 유닛의 발열(특히, 자외선 파장 대역에서의 발열)에 의해 편광 필름이 손상되는 문제가 있다.
또한, 내구성이 약한 광학 소자를 외부로부터 보호하기 위해서는 프로텍트 윈도우가 필요한데, 발광 유닛의 출사광이 프로텍트 윈도우를 투과하는 과정에서 발생하는 예기치 못한 편광 현상에 의해 설계 조건에 부합하는 광을 조사할 수 없는 문제가 있다. 나아가 발광 유닛의 발열에 의해 프로텍트 윈도우 또한 손상되는 문제가 있다.
한편, 피부 확대경(Dermatoscope Device)은 나안으로는 관찰하기 어려운 피부 표피 및 유두 진피의 색소성 병변을 관찰하여 흑색종(Malignant Melanoma)과 같은 병변의 감별에 사용되는 진단 도구로서, 이와 같은 색소성 피부 병변의 감별진단 외에도 더 나아가 표피 종양, 구진인설성 병변(Papulosquamous disease), 조갑병변의 진단 및 피부상의 기생충 확인에도 이용되고 있다.
다시 말해, 피부 확대경(Dermatoscope Device)은 조직검사 이전에 나안으로 의사와 같은 관찰자가 획득할 수 있는 진단에 기초가 되는 정보보다 더 많은 정보를 제공할 수 있도록 함으로서, 정확하고 진단 및 더 나아가 신속한 치료로 이어질 수 있도록 도움을 준다.
이러한 피부 확대경은 진단을 수행하는 관찰자가 피부 표면을 관찰함에 있어서, 확대되어 관찰되는 상을 더욱 명확하고 선명하게 관찰할 수 있도록 해상력을 높이고 왜곡의 정도를 줄여 시인성(Visibility)을 개선시킴으로써, 더 많은 정보를 정확하게 관찰자가 획득할 수 있는 기술의 개발이 요구되고 있는 실정이다.
또한, 피부 확대경의 휴대성 및 사용상의 편의성을 고려하여 다양한 구조를 갖춤 피부 확대경이 개발되고 있는데, 이와 관련하여 좀 더 편하게 관찰자가 사용할 수 있고, 타 기기와의 연동이 가능하도록 하기 위해 마련된 종래기술에 대한 선행문헌에는 미국 공개특허공보 US2014-0243685호의 "DERMATOSCOPE DEVICES"(이하, '종래기술'이라고 함)가 있다.
하지만, 종래 기술을 비롯한 기존의 피부 확대경의 경우, 수직편광 및 수평편광을 제공하기 위한 편광판을 설치하고, 광원을 설치할 경우 장치의 부피가 커짐에 따라서, 관찰자가 피부 확대경을 사용하는데 어려움을 느낀다는 문제점이 있다. 또한, 광원을 통해서 다양한 파장의 광을 제공할 수 없기 때문에 관찰자의 관찰 목적에 따라서 또 다른 파부 확대경을 사용해야 한다는 단점이 있다.
본 발명의 제1실시예가 해결하고자 하는 과제는 가시광선 파장 대역의 광과 자외선 파장 대역의 광을 모두 조사할 수 있고 이를 다양하게 편광시킬 수 있는 광학식 피부 진단기를 제공하는 것이다. 나아가 휴대할 수 있는 컴팩트한 구조(Compact)를 가지며, 프로텍트 윈도우를 구비하여 내구성이 뛰어나며, 발광 모듈의 발열에 의한 손상을 방지할 수 있는 광학식 피부 진단기를 제공하는 것이다.
상술한 바와 같은 문제점을 해결하기 위한 본 발명은 수평 편광을 제공하는 제1편광판과 수직 편광을 제공하는 제2편광판을 얇게 형성하여 맞물리도록 하고, 광원을 칩형 LED로 형성하는 피부 확대경에 설치되는 발광유닛 및 이를 이용한 피부 확대경을 제공할 수 있다.
또한, 본 발명은 LED부를 2열로 마련하고, 각각의 열이 다른 파장을 제공하도록하는 피부 확대경에 설치되는 발광유닛 및 이를 이용한 피부 확대경을 제공할 수 있다.
본 발명의 제2실시예가 해결하고자 하는 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위한 본 발명의 제1실시예에 따른 광학식 피부 진단기는 외장 부재; 상기 외장 부재에 배치되고, 편광 유닛과 편광판과 발광 유닛을 포함하는 광학 모듈을 포함하고, 상기 편광 유닛은 제1방향으로 편광축이 형성되어 있는 제1편광 유닛과 제2방향으로 편광축이 형성되어 있는 제2편광 유닛을 포함하고, 상기 편광판은 제1방향으로 편광축이 형성되어 있고, 상기 발광 유닛의 출사광은 상기 편광 유닛을 투과하여 피부에서 반사되고, 상기 발광 유닛의 반사광은 상기 편광판을 투과할 수 있다.
상기 발광 유닛은 기판과, 상기 기판에 실장되는 제1발광 유닛과 제2발광 유닛을 포함하고, 상기 제1발광 유닛은 가시광선 파장 대역의 광을 출사하고, 상기 제2발광 유닛은 자외선 파장 대역의 광을 출사할 수 있다.
상기 편광 유닛은 제3편광 유닛을 더 포함하고, 상기 제1발광 유닛의 출사광은 상기 제1편광 유닛과 상기 제2편광 유닛 중 적어도 하나를 투과하여 피부에서 반사되고, 상기 제2발광 유닛의 출사광은 상기 제3편광 유닛을 투과하여 피부에서 반사되고, 상기 제1발광 유닛과 상기 제2발광 유닛의 반사광은 상기 편광판을 투과할 수 있다.
상기 제1발광 유닛은 원주 방향으로 배열되는 복수 개의 제1-1발광 소자와 복수 개의 제1-2발광 소자를 포함하고, 상기 제2발광 유닛은 원주 방향으로 배열되는 복수 개의 제2발광 소자를 포함하고, 상기 복수 개의 제1-1발광 소자와 상기 복수 개의 제1-2발광 소자와 상기 복수 개의 제2발광 소자는 경 방향 외측에서 내측으로 순차적으로 위치할 수 있다.
상기 복수 개의 제1-1발광 소자와 상기 복수 개의 제1-2발광 소자는 원주 방향을 따라 상기 제1편광 유닛과 상기 제2편광 유닛과 교번하여 축 방향으로 오버랩될 수 있다.
상기 복수 개의 제1-1발광 소자와 상기 복수 개의 제1-2발광 소자와 복수 개의 제2발광 소자 각각은 원주 방향에서 등간격으로 배치되며, 상기 복수 개의 제2발광 소자의 수는 상기 복수 개의 제1-1발광 소자의 수보다 작고, 상기 복수 개의 제1-2발광 소자의 수보다 작을 수 있다.
상기 제1편광 유닛은 내측에 개방 부분이 형성되는 제1본체와, 상기 제1본체에서 내측으로 돌출되는 복수 개의 제1편광부를 포함하고, 상기 제2편광 유닛은 상기 제1편광 소자의 제1본체의 내측에 배치되며 내측에 개방 부분이 형성되는 제2본체와, 상기 제2본체에서 외측으로 돌출되는 복수 개의 제2편광부를 포함하고, 상기 편광판은 상기 제2편광 유닛의 제2본체의 내측에 배치될 수 있다.
상기 제1편광 유닛의 제1본체와 상기 제2편광 유닛의 제2본체는 동심(concentric)을 가지는 링 형태이며, 상기 제1편광 유닛의 복수 개의 제1편광부는 원주 방향을 따라 상호 이격되어 배치되며, 상기 제2편광 소자의 복수 개의 제2편광부는 원주 방향을 따라 상호 이격되어 배치되며, 상기 제1편광 유닛의 복수 개의 제1편광부 사이에 상기 제2편광 유닛의 복수 개의 제2편광부가 각각 배치될 수 있다.
상기 광학 모듈은 광학 렌즈와 프로텍트 윈도우를 더 포함하고, 상기 광학 렌즈와 상기 프로텍트 윈도우 사이에는 상기 상기 편광 유닛과 상기 편광판과 상기 발광 유닛이 배치되고, 상기 프로텍트 윈도우는 편광을 발생시키지 않는 재질로 형성될 수 있다.
상기 외장 부재는 상기 프로텍트 윈도우를 고정하는 스페이서 프레임을 더 포함하고, 상기 스페이서 프레임에 의해 상기 프로텍트 윈도우와 상기 발광 유닛 사이의 축 방향 거리가 결정될 수 있다.
상술한 과제를 해결하기 위한 본 발명의 제2실시예에 따른 피부 확대경에 설치되는 발광유닛은, 피부 확대경에 설치되는 발광유닛에 있어서, 제어모듈의 발광신호를 통해 발광되는 다수의 제1LED부 및 제2LED부가 원주방향을 따라서 상호 등간격을 이루며 교차 배치된 발광기판; 상기 제1LED부의 광을 제1방향으로 편광시키는 제1편광판이 제1링의 내주면에 원주방향을 따라서 등간격으로 배치된 제1편광부; 및 상기 제2LED부의 광을 상기 제1방향과 직교한 제2방향으로 편광시키는 제2편광판이 제2링의 외주면에 원주방향을 따라서 등간격으로 배치된 제2편광부;를 포함하며, 상기 제1편광부와 제2편광판은, 상기 제1편광판과 제2편광판이 맞물리게 배치된다.
또한, 상기 발광기판, 제1편광부, 제2편광부 및 제어모듈이 내장 설치되는 발광유닛 하우징;을 더 포함한다.
또한, 상기 제1편광부 및 제2편광부는, 상기 발광유닛 하우징에 설치되면, 상기 제1링 및 제2링이 각각 상기 제1편광판 및 제2편광판으로부터 분리 가능한 것을 특징으로 한다.
또한, 상기 제1편광판 및 제2편광판은 각각 상기 제1링 및 제2링으로부터 분리가 가능하며, 상기 발광유닛 하우징은, 상기 제1편광판이 결합되는 제1편광판홈; 및 상기 제2편광판이 결합되는 제2편광판홈;이 형성된다.
또한, 상기 발광기판은, 상기 제1LED부 및 제2LED부는 상기 발광기판 상에 임의의 가상 원주선을 기준으로 상하에 2열로 배치되며, 원주방향을 따라서 상호 등간격을 이루며 교차 배치된다.
또한, 상기 제1LED부 및 제2LED부는, UV광 LED로 형성되되, 상기 가상 원주선의 상측 열과 하측 열이 서로 다른 파장으로 형성된다.
또한, 상기 제1LED부 및 제2LED부는, 일측 열은 백색광 LED이고, 타측 열은 UV광 LED로 형성된다.
또한, 상기 발광기판은, 제1LED부 및 제2LED부가 원주방향을 따라서 상호 등간격을 이루며 교차 배치되되, 제1LED부가 서로 다른 2개의 UV 파장이 번갈아서 배치되고, 제2LED부가 서로 다른 2개의 UV 파장이 번갈아서 배치된다.
또한, 상기 제1LED부 및 제2LED부는 칩형 LED인 것을 특징으로 한다.
본 발명의 제1실시예에서는 가시 광선 대역과 자외선 대역의 광을 모두 조사할 수 있으며, 일반 편광과 교차 편광 모두를 구현할 수 있다. 나아가 발광 유닛의 기판과 제1편광 유닛과 제2편광 유닛과 편광판을, 축 방향(광축 방향)과 수직한 하나의 평면 상에 배치시킬 수 있는 컴팩트한 구조를 가진다.
또한, 프로텍트 윈도우를 구비하여 다양한 광학 소자를 보호하였고, 프로텍트 윈도우는 편광을 발생시키지 않는 재질로 형성하였다(예상치 못한 편광 발생 방지). 나아가 외장 부재에는 스페이서 프레임이 구비되어, 프로텍트 윈도우와 발광 유닛 사이의 적정 거리를 유지시켜, 프로텍트 윈도우가 발광 유닛의 발열에 의해 손상되는 것을 방지하였다.
본 발명의 제2실시예에 따르면, 수평 편광을 제공하는 제1편광판과 수직 편광을 제공하는 제2편광판을 얇게 형성하여 맞물리도록 하고, 광원을 칩형 LED로 형성함으로써, 얇은 사이즈의 발광유닛을 통해 피부 확대경의 부피를 줄일 수 있는 효과가 있다.
또한, LED부를 2열로 마련하고, 각각의 열이 다른 파장을 제공하여 피부 확대경을 다양한 용도로 사용할 수 있는 효과가 있다.
본 발명의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 제1실시예의 광학식 피부 진단기를 나타낸 사시도이다.
도 2는 본 발명의 제1실시예의 광학식 피부 진단기를 나타낸 분해 사시도이다.
도 3은 본 발명의 제1실시예의 광학식 피부 진단기의 외장 부재를 나타낸 분해 사시도이다.
도 4는 본 발명의 제1실시예의 광학식 피부 진단기의 광학 모듈을 나타낸 분해 사시도이다.
도 5는 본 발명의 제1실시예의 광학 모듈의 프로텍트 윈도우와 윈도우 홀더를 나타낸 분해 사시도이다.
도 6은 본 발명의 제1실시예의 광학 모듈의 제1편광 유닛과 제2편광 유닛과 발광 유닛을 나타낸 분해 사시도이다.
도 7은 본 발명의 제1실시예의 광학 모듈의 제1편광 유닛과 제2편광 유닛의 정면도이다.
도 8은 본 발명의 제1실시예의 광학 모듈의 발광 유닛을 나타낸 정면도이다.
도 9는 본 발명의 제1실시예의 광학 모듈의 제1편광 유닛과 제2편광 유닛과 발광 유닛과 편광판을 나타낸 정면도이다.
도 10은 본 발명의 제1실시예의 광학 모듈의 제2편광 유닛과 광학 렌즈와 렌즈 홀더와 가스켓을 나타낸 분해 사시도이다.
도 11은 본 발명의 제1실시예의 광학식 피부 진단기의 편광 효과를 나타낸 개념도이다.
도 12는 본 발명의 제1실시예의 광학 모듈에서 제2발광 소자와 제3편광 유닛 사이의 축 방향 거리를 확보하기 위한 다양한 변형례를 개념적으로 나타낸 단면도이다.
도 13은 본 발명의 제1실시예의 제3편광 유닛의 가시광선 파장 대역과 자외선 파장 대역의 투과율을 나타낸 그래프이다.
도 14는 본 발명의 제2실시예에 따른 발광유닛이 피부 확대경에 설치되는 것을 예시한 분해 사시도이다.
도 15는 본 발명의 제2실시예에 따른 피부 확대경에 설치되는 발광유닛의 분해 사시도이다.
도 16은 본 발명의 제2실시예에 따른 발광기판의 정면도이다.
도 17은 본 발명의 제2실시예에 따른 제1편광판의 정면도이다.
도 18은 본 발명의 제2실시예에 따른 제2편광판의 정면도이다.
도 19는 본 발명의 제2실시예에 따른 제1편광판과 제2편광판이 맞물린 것을 예시한 정면도이다.
도 20은 본 발명의 제2실시예에 따른 제1편광판과 제2편광판이 하우징에 설치된 것을 예시한 평면도이다.
도 21 및 도 22는 본 발명의 다른 제2실시예에 따른 발광기판의 정면도이다.
도 23은 본 발명의 제2실시예에 따른 피부 확대경에 설치된 광학유닛을 도시한 단면도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 제한되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야의 통상의 기술자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. 명세서 전체에 걸쳐 동일한 도면 부호는 동일한 구성 요소를 지칭하며, "및/또는"은 언급된 구성요소들의 각각 및 하나 이상의 모든 조합을 포함한다. 비록 "제1", "제2" 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야의 통상의 기술자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
공간적으로 상대적인 용어인 "아래(below)", "아래(beneath)", "하부(lower)", "위(above)", "위(upper)"등은 도면에 도시되어 있는 바와 같이 하나의 구성요소와 다른 구성요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작시 구성요소들의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들어, 도면에 도시되어 있는 구성요소를 뒤집을 경우, 다른 구성요소의 "아래(below)"또는 "아래(beneath)"로 기술된 구성요소는 다른 구성요소의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 구성요소는 다른 방향으로도 배향될 수 있으며, 이에 따라 공간적으로 상대적인 용어들은 배향에 따라 해석될 수 있다.
[제1실시예]
이하, "광축(Optical Axis)"은 광학 렌즈(260)의 광축으로 정의된다. 또한, "축 방향"은 광학 렌즈(260)의 광축 방향으로 정의되고, "원주 방향"과 "경 방향"은 광학 렌즈(260)의 광축을 기준으로 정의된다. 나아가 "전방"은 도 4에 도시된 전방으로 정의되고 이는 광학 렌즈(1260)의 광축의 일측 방향이며, "후방"은 도 4에 도시된 후방으로 정의되고 이는 광학 렌즈(1260)의 광축의 타측 방향이다.
다만, 광학 렌즈(1260)는 본 발명의 필수 구성이 아니며, 설계적 요청에 따라 생략될 수도 있다. 이 경우, 광학 렌즈(1260)의 광축을 대신하여, "제1편광 유닛(1220)과 제2편광 유닛(1230)의 동심축(Concentric Axis)"이 기준이 될 수 있다.
이하, 도 1 내지 도 13을 참조하여 본 발명의 제1실시예의 광학식 피부 진단기(1001)를 설명한다. 광학식 피부 진단기(1001)는 외장 부재(1100), 광학 모듈(1200), 전자 제어 모듈(1300) 및 크래들(1400)을 포함할 수 있다. 다만, 광학식 피부 진단기(1001)에서 크래들(1400)은 필수 구성이 아니며, 설계적 요청에 따라 생략될 수 있다.
외장 부재(1100)는 본 발명의 제1실시예의 광학식 피부 진단기(1001)의 외관을 형성하는 부재일 수 있다. 외장 부재(1100)는 플라스틱 재질로 형성될 수 있다. 외장 부재(1100)는 플라스틱 사출에 의해 제작될 수 있다. 외장 부재(1100)의 일측에는 외부로 노출되도록 광학 모듈(1200)이 배치될 수 있으며, 외장 부재(1100)의 내부에는 전자 제어 모듈(1300)이 배치될 수 있다. 외장 부재(1100)는 제1외장 부재(1110), 제2외장 부재(1120), 버튼(1130), 제1스위치(1140), 제2스위치(1150) 및 커넥터(1160)를 포함할 수 있다.
제1외장 부재(1110)와 제2외장 부재(1120)는 상호 대향하며 배치되며, 제1외장 부재(1110)와 제2외장 부재(1120)의 상부에는 광학 모듈(1200)이 배치되며, 제1외장 부재(1110)와 제2외장 부재(1120)의 결합에 의해 생기는 내부 공간에는 전자 제어 모듈(1300)이 배치될 수 있다.
제1외장 부재(1110)는 제1프레임(1111)과 제1그립부(1112)를 포함할 수 있고, 제2외장 부재(1120)는 제2프레임(1121)과 제2그립부(1122)를 포함할 수 있다.
제1프레임(1111)과 제2프레임(1121)은 실질적으로 "축 방향"으로 개방되며 두께를 갖는 링 형태일 수 있다. 제1프레임(1111)과 제2프레임(1121)에는 광학 모듈(1200)이 배치될 수 있다. 이 경우, 제1프레임(1111)과 제2프레임(1121)의 결합에 의해, 광학 모듈(1200)은 "축 방향"으로 가압되어 고정될 수 있다.
제2외장 부재(1120)는 스페이서 프레임(1123)과 오링 프레임(1124)을 더 포함할 수 있다. 스페이스 프레임(1123)은 제2외장 부재(1120)의 개구에 의해 형성된 내측면에서 경 방향 내측으로 돌출되는 복수 개의 지지부일 수 있다. 후술하는 스페이서 프레임(1123)에는 후술하는 프로텍트 윈도우(1210)가 고정될 수 있다. 따라서 스페이서 프레임(1123)에 의해 프로텍트 윈도우(1210)와 발광 유닛(1240)의 "축 방향" 이격 거리가 확보될 수 있다. 그 결과, 프로텍트 윈도우(1210)가 발광 유닛(1240)의 발열에 의해 손상되는 것을 방지할 수 있다.
오링 프레임(1124)은 스페이스 프레임(1123)의 경 방향 내측에 위치할 수 있으며, 스페이스 프레임(1123)에 의해 제2프레임(1121)의 본체의 내주면과 연결될 수 있다. 오링 프레임(1123)은 광학 모듈(1200)을 "축 방향"으로 가압하며, 광학 모듈(1200)이 "축 방향"으로 이탈하는 것을 방지한다.
제1그립부(1112)와 제2그립부(1121)는 제1프레임(1111)과 제2프레임(1121)에서 하측으로 연장되어 형성될 수 있다. 제1그립부(1112)와 제2그립부(1121)는 사용자의 그립을 위해 마련될 수 있다. 제1그립부(1112)와 제2그립부(1121)의 내부 공간에는 전자 제어 모듈(1300)이 배치될 수 있다.
제1그립부(1112)와 제2그립부(1121)는 크래들(1400)에 거치될 수 있다. 이 경우, 전자 제어 모듈(1300)의 메인 기판(1310)의 충전 단자(1311)는 외부로 노출되어 크래들(1400)의 접속 단자(미도시)와 전기적으로 연결될 수 있으며, 이를 통해, 전자 제어 모듈(1300)의 전지(1320)가 충전될 수 있다.
버튼(1130)은 제1그립부(1112)의 상부 후방면에 배치될 수 있다. 버튼(1130)의 클릭에 의해, 전자 제어 모듈(1300)의 메인 기판(1310)에 광학식 피부 진단기(1001)의 On/Off 신호가 인가될 수 있다.
제1스위치(1140)와 제2스위치(1150)는 제1그립부(1112)와 제2그립부(1122)의 상부 양측면에 각각 배치될 수 있다. 제1스위치(1140)와 제2스위치(1150)의 스위칭에 의해, 전자 제어 모듈(1300)의 메인 기판(1310)에 발광 유닛(1240)의 제어 신호가 인가될 수 있다. 한편, 발광 유닛(1240)은 출사광의 파장 대역에 따라 제1발광 유닛(1242)과 제2발광 유닛(1243)으로 양분되므로, 이에 따라 2개의 스위치가 마련되었다.
커넥터(1160)는 제1그립부(1112)와 제2그립부(1122)의 일측면에 배치될 수 있다. 커넥터(1160)는 제1스위치(1140)의 아래에 배치될 수 있다. 커넥터(1160)는 전자 제어 모듈(1300)의 메인 기판(1310)과 전기적으로 연결될 수 있다. 커넥터(1160)는 외부의 전자 기기(예를 들면, 휴대용 충전기)와 전기적으로 연결되기 위해 마련되었다. 일 예로, 커넥터(1160)는 USB 커넥터일 수 있고, 휴대용 충전기의 USB 단자가 도킹(Docking)되어 충전이 진행될 수 있다.
광학 모듈(1200)은 본 발명의 제1실시예의 광학식 피부 진단기(1001)의 "광학계(Optical System)"를 형성할 수 있다. 광학 모듈(1200)에는 다양한 광학 유닛과 광학 소자가 마련되어 있으며, 이를 지지하거나 고정 및 밀폐하기 위한 홀더나 실링 부재 등도 마련된다. 광학 모듈(1200)은 프로텍트 윈도우(1210), 제1편광 유닛(1220), 제2편광 유닛(1230), 발광 유닛(1240), 편광판(1250) 및 광학 렌즈(1260)를 포함할 수 있다. 프로텍트 윈도우(1210), 제1편광 유닛(1220), 제2편광 유닛(1230), 발광 유닛(1240), 편광판(1250) 및 광학 렌즈(1260)는 전방에서 후방으로 순차적으로 배열될 수 있다. 나아가 프로텍트 윈도우(1210), 제1편광 유닛(1220), 제2편광 유닛(1230), 발광 유닛(1240), 편광판(1250) 및 광학 렌즈(1260)는 "광축"을 기준으로 동심(concentric)을 가지도록 배치될 수 있다.
프로텍트 윈도우(1210)는 광학 모듈(1200)을 외부로부터 화학적 및 물리적으로 보호하기 위해 마련될 수 있다. 이를 위해, 프로텍트 윈도우(1210)의 비중(specific gravity)은 1.19일 수 있고, 수분 흡수율(water absorption)은 0.3%일 수 있다. 나아가 프로텍트 윈도우(1210)의 인장 강도(tensile strength)는 73Mpa일 수 있고, 연신율(elongation at break)은 4.5%일 수 있고, 휨 강도(flexural strength)는 108Mpa일 수 있고, 충격 강도(impact strength)는 1.6KJ/m2일 수 있다.
프로텍트 윈도우(1210)는 광 투과 재질로 형성될 수 있다. 프로텍트 윈도우(1210)의 재질은 PMMA(Poly(methyl methacrylate))를 포함할 수 있다. 이 경우, 프로텍트 윈도우(1210)의 광 투과율(light transmittance)은 92%일 수 있고, 굴절률(refractive Index)는 1.49(nD 20 조건)일 수 있다. 나아가 프로텍트 윈도우(1210)의 프로텍트 윈도우(1210)는 편광을 발생시키지 않는 재질로 형성될 수 있다. 따라서 프로텍트 윈도우(1210)의 투과광이 광학적 설계 조건에 정합하지 않게 예상치 못한 방향으로 편광되는 것을 방지할 수 있다.
한편, 프로텍트 윈도우(1210)는 발광 유닛(1240)의 발열에 효과적으로 저항할 수 있어야 한다. 따라서 프로텍트 윈도우(1210)의 열 변형 온도(deflection temp.)는 95℃일 수 있다.
프로텍트 윈도우(1210)는 외장 부재에 배치될 수 있다. 프로텍트 윈도우(1210)는 제1편광 유닛(1220), 제2편광 유닛(1230) 및 발광 유닛(1240)의 전방에 배치될 수 있다. 프로텍트 윈도우(1210)는 제2외장 부재(1120)의 제2프레임(1122)에 고정될 수 있다. 이 경우, 프로텍트 윈도우(1210)는 전후 방향으로 개방된 링 형태의 윈도우 홀더(1210-1)에 장착되며, 윈도우 홀더(1210-1)가 제2프레임(1122)의 스페이서 프레임(1123)에 결합됨으로써, 제2외장 부재(1120)의 제2프레임(1122)에 고정될 수 있다. 이 경우, 윈도우 홀더(1210-1)와 제2프레임(1122)의 스페이서 프레임(1123)은 스크류 또는 핀 결합할 수 있으며, 이를 위해, 윈도우 홀더(1210-1)와 제2프레임(1122)의 스페이서 프레임(1123)에는 스크류 홀이나 핀 홀이 마련될 수 있다. 한편, 제2프레임(1122)의 스페이서 프레임(1123)에 의해, 프로텍트 윈도우(1210)와 발광 유닛(1240) 간의 일정 거리가 확보되어, 프로텍트 윈도우(1210)가 발광 유닛(1240)에 의해 손상되는 것을 방지할 수 있다.
제1편광 유닛(1220)과 제2편광 유닛(1230)은 발광 유닛(1240)의 제1발광 유닛(1242)의 출사광을 편광시킬 수 있다. 즉, 제1편광 유닛(1220)과 제2편광 유닛(1230)은 가시광선 파장 대역(특히, 백색광 파장 대역)의 광을 편광시킬 수 있다.
제1편광 유닛(1220)은 발광 유닛(1240)의 제1발광 유닛(1242)의 출사광을 제1방향으로 편광시킬 수 있고, 제2편광 유닛(1230)은 발광 유닛(1240)의 제1발광 유닛(1242)의 출사광을 제2방향으로 편광시킬 수 있다. 즉, 발광 유닛(1240)의 제1발광 유닛(1242)의 일부는 제1방향으로 편광되어 출사될 수 있으며, 발광 유닛(1240)의 제1발광 유닛(1242)의 나머지 일부는 제2방향으로 편광되어 출사될 수 있다. 이를 위해, 제1편광 유닛(1220)에는 제1방향으로 편광축이 형성될 수 있고, 제2편광 유닛(1230)에는 제2방향으로 편광축이 형성될 수 있다.
제1편광 유닛(1220)은 제1본체(1221) 및 복수 개의 제1편광부(1222)를 포함할 수 있고, 제2편광 유닛(1230)은 제2본체(1231) 및 복수 개의 제2편광부(1232)를 포함할 수 있다.
제1편광 유닛(1220)의 제1본체(1221)의 내측에는 개방 부분이 형성될 수 있다. 제1편광 유닛(1220)의 제1본체(1221)는 실질적으로 "축 방향"으로 개방되는 링 형태일 수 있다. 제1편광 유닛(1220)의 복수 개의 제1편광부(1222)는 마치 기어이와 같이, "원주 방향"을 따라 상호 이격되어 내측("경 방향" 내측)으로 돌출될 수 있다. 제1편광 유닛(1220)의 복수 개의 제1편광부(1222)는 제1발광 유닛(1242)의 복수 개의 제1-1발광 소자(1242-1) 및 복수 개의 제1-2발광 소자(1242-2)의 일부와 "축 방향"으로 오버랩될 수 있다. 따라서 발광 유닛(1240)의 제1발광 유닛(1242)의 일부의 출사광은 제1편광 유닛(1220)의 복수 개의 제1편광부(1222)를 투과하여, 제1방향으로 편광될 수 있다.
제2편광 유닛(1230)의 제2본체(1231)는 제1편광 유닛(1220)의 제1본체(1221)의 내측에 배치될 수 있다. 제2편광 유닛(1230)의 제2본체(1231)의 내측에는 개방 부분이 형성될 수 있다. 제2편광 유닛(1230)의 제2본체(1231)는 실질적으로 "축 방향"으로 개방되는 링 형태일 수 있다. 제2편광 유닛(1230)의 복수 개의 제2편광부(1232)는 마치 기어이와 같이, "원주 방향"을 따라 상호 이격되어 외측("경 방향" 외측)으로 돌출될 수 있다. 제2편광 유닛(1230)의 복수 개의 제2편광부(1232)는 제1발광 유닛(1242)의 복수 개의 제1-1발광 소자(1242-1)와 복수 개의 제1-2발광 소자(1242-2)의 나머지 일부와 "축 방향"으로 오버랩될 수 있다. 따라서 제1발광 유닛(1242)의 나머지 일부의 출사광은 제2편광 유닛(1230)의 복수 개의 제2편광부(1232)를 투과하여, 제2방향으로 편광될 수 있다.
한편, 제1편광 유닛(1220)의 복수 개의 제1편광부(1221) 사이에 제2편광 유닛(1230)의 복수 개의 제2편광부(1231)가 각각 배치될 수 있다. 즉, 제1편광 유닛(1220)의 복수 개의 제1편광부(1221)와 제2편광 유닛(1230)의 복수 개의 제2편광부(1231)는 기어이가 맞물리듯이 치합할 수 있다. 즉, 제1편광 유닛(1220)의 복수 개의 제1편광부(1221)와 제2편광 유닛(1230)의 복수 개의 제2편광부(1231)는 "원주 방향"에서 상호 이웃하여 배치될 수 있다. 이를 위해, 제1편광 유닛(1220)의 제1본체(1221)와 제2편광 유닛(1230)의 제2본체(1232)는 동심(concentric)을 가질 수 있다.
따라서 제1편광 유닛(1220)의 복수 개의 제1편광부(1221)와 제2편광 유닛(1230)의 복수 개의 제2편광부(1231)는 "원주 방향"으로 교번하며 배치될 수 있다. 그 결과, 제1발광 유닛(1242)의 복수 개의 제1-1발광 소자(1242-1)와 복수 개의 제1-2발광 소자(1242-2)는 "원주 방향"을 따라 제1편광 유닛(1220)의 복수 개의 제1편광부(1221)와 제2편광 유닛(1230)의 복수 개의 제2편광부(1232)가 교번하도록, "축 방향"으로 오버랩될 수 있다(도 9 참조).
상술한 바에 따르면, 제1편광 유닛(1220)의 제1본체(1221)는 제2편광 유닛(1230)의 제2본체(1232)의 외측에 배치될 수 있으며, 제1편광 유닛(1220)의 복수 개의 제1편광부(1222)는 내측으로 돌출되고 제2편광 유닛(1230)의 복수 개의 제2편광부(1232)는 외측으로 돌출되어 치합한다. 따라서 제1편광 유닛(1220)과 제2편광 유닛(1230)은 "광축"과 수직한 하나의 평면 상에 위치할 수 있으며, 그 결과, 본 발명의 광학식 피부 진단기(1001)의 전장 길이("축 방향")는 짧아져 컴팩트한 구조를 구현할 수 있다.
발광 유닛(1240)은 출사광을 발생시키는 유닛일 수 있다. 발광 유닛(1240)의 출사광은 전방으로 진행할 수 있다. 발광 유닛(1240)의 출사광은 제1편광 유닛(1220) 및/또는 제2편광 유닛(1230)을 투과하여 제1방향 또는 제2방향으로 편광될 수 있다. 발광 유닛(1240)은 가시 광선 파장 대역(특히, 백색 파장 대역)과 자외선 파장 대역의 광을 출사할 수 있다. 즉, 본 발명의 광학식 피부 진단기(1001)는 다양한 대역의 광을 출사하여, 특정 병변을 정밀하게 관찰할 수 있는 대역의 광을 선택할 수 있다.
발광 유닛(1240)은 제1편광 유닛(1220)과 제2편광 유닛(1230)의 후방에 배치될 수 있다. 발광 유닛(1240)은 프로텍트 윈도우(1210)와 광학 렌즈(1260)의 상이에 배치될 수 있다.
발광 유닛(1240)은 발광 유닛 기판(1241), 제1발광 유닛(1242) 및 제2발광 유닛(1243)을 포함할 수 있다.
발광 유닛 기판(1241)은 인쇄 회로 기판(PCB, Printed Circuit Board)일 수 있다. 발광 유닛 기판(1241)에는 제1발광 유닛(1242) 및 제2발광 유닛(1243)이 실장될 수 있다. 발광 유닛 기판(1241)은 전자 제어 모듈(1300)의 메인 기판(1310)과 전기적으로 연결될 수 있다. 이 경우, 발광 유닛 기판(1241)과 전자 제어 모듈(1300)의 메인 기판(1310)은 연결 기판(1241-1)에 의해 전기적으로 연결될 수 있다. 연결 기판(1241-1)은 연성 인쇄 회로 기판(FPCB, Flexible Printed Circuit Board)일 수 있다. 발광 유닛 기판(1241)은 전자 제어 모듈(1300)의 메인 기판(1310)으로부터 제어 신호를 수신할 수 있다. 그 결과, 제1발광 유닛(1242)과 제2발광 유닛(1243)의 On/Off와 조도 등이 제어될 수 있다.
제1발광 유닛(1242)은 가시 광선 파장 대역(특히, 백색광)의 광을 출사할 수 있고, 제2발광 유닛(1243)은 자외선 파장 대역의 광을 출사할 수 있다. 제1발광 유닛(1242)은 복수 개의 제1-1발광 소자(1242-1)와 복수 개의 제1-2발광 소자(1242-2)를 포함할 수 있고, 제2발광 유닛은 복수 개의 제2발광 소자(1243-1)를 포함할 수 있다. 이 경우, 발광 소자는 "LED(Light Emitting Diode) 램프"일 수 있다.
복수 개의 제1-1발광 소자(1242-1), 복수 개의 제1-2발광 소자(1242-2) 및 복수 개의 제2발광 소자(1243-1)는 각각 "원주 방향"을 따라 등간격으로 이격되어 배치될 수 있다. 이 경우, 복수 개의 제1-1발광 소자(1242-1)는 "경 방향"에서 외측에 배치될 수 있고, 복수 개의 제2발광 소자(1243-1)는 "경 방향"에서 내측에 배치될 수 있고, 복수 개의 제1-2발광 소자(1242-2)는 "경 방향"에서 복수 개의 제1-1발광 소자(1242-1)와 복수 개의 제2발광 소자(1243-1)의 사이에 배치될 수 있다. 즉, 복수 개의 제1-1발광 소자(1242-1), 복수 개의 제1-2발광 소자(1242-2) 및 복수 개의 제2발광 소자(1243-1)는 "경 방향" 외측에서 내측으로 순차적으로 위치할 수 있다.
제1발광 유닛(1242)을 2열로 배열한 이유는 출사광의 조도 및 파장 대역을 제어하기 위함이다. 즉, 복수 개의 제1-1발광 소자(1242-1) 및 복수 개의 제1-2발광 소자(1242-2)는 출사광의 조도 및 가시광선 파장 대역 안에서의 파장 대역 등이 다를 수 있다. 그 결과, 사용자는 복수 개의 제1-1발광 소자(1242-1) 및 복수 개의 제1-2발광 소자(1242-2)를 선택적으로 On/Off하여 출사광의 조도 및 파장 대역을 변경할 수 있다. 한편, 복수 개의 제1-1발광 소자(1242-1)의 수는 복수 개의 제1-2발광 소자(1242-2)의 수와 동일할 수 있다. 즉, 복수 개의 제1-1발광 소자(1242-1)와 복수 개의 제1-2발광 소자(1242-2)는 일대일로 대응되어 배치될 수 있다.
복수 개의 제1-1발광 소자(1242-1) 및 복수 개의 제1-2발광 소자(1242-2)는 "원주 방향"을 따라 제1편광 유닛(1220) 및 제2편광 유닛(1230)과 교번하여 "축 방향"으로 오버랩될 수 있다(도 9 참조).
즉, 복수 개의 제1-1발광 소자(1242-1) 및 복수 개의 제1-2발광 소자(1242-2) 중 "원주 방향"에서 이웃하는 한 쌍의 제1-1발광 소자(a) 및 한 쌍의 제1-2발광 소자(b) 중 하나는 제1편광 유닛(1220)의 복수 개의 제1편광부(1222) 중 하나와 "축 방향"으로 오버랩되고, 나머지 하나는 제2편광 유닛(1230)의 복수 개의 제2편광부(1232) 중 하나와 "축 방향"으로 오버랩될 수 있다.
그 결과, 한 쌍의 제1-1발광 소자(a) 및 한 쌍의 제1-2발광 소자(b)중 하나의 출사광은 제1방향으로 편광되고, 나머지 하나는 제2방향으로 편광될 수 있다. 나아가 한 쌍의 제1-1발광 소자(a) 및 한 쌍의 제1-2발광 소자(b)중 하나와 나머지 하나는 개별적으로 제어될 수 있다.
한편, 복수 개의 제2발광 소자(1243-1)를 "경 방향"에서 내곽에 배치한 이유는, 자외선 파장 대역의 광을 좁은 지역에 집중시켜, 생체 조직의 특정 병변 조직을 관찰하기 위함이다. 한편, 복수 개의 제2발광 소자(1243-1)의 수는 복수 개의 제1-1발광 소자(1242-1)의 수보다 작고, 복수 개의 제1-2발광 소자(1242-2)의 수보다 작다. 즉, 복수 개의 제1-1발광 소자(1242-1)와 복수 개의 제1-1발광 소자의 "원주 방향" 회전 각도는 작고(밀집도가 크다), 복수 개의 제2발광 소자(1243-1)의 "원주 방향" 회전 각도는 크다(밀집도가 작다).
자외선 파장 대역의 광은 열 에너지가 높기 때문에, 복수 개의 제2발광 소자(1243-1)에 의해 프로텍트 윈도우(1210)가 손상되는 것을 방지하기 위함이다. 다만, 자외선 파장 대역의 광의 적정 관찰 조도를 확보하지 못하는 문제가 생길 수 있다. 본 발명의 제1실시예의 광학식 피부 진단기(1001)에서는 복수 개의 제2발광 소자(1243-1)를 내곽에 배치하여 일정 영역에 집중되게 조사함으로써, 적정 관찰 조도를 확보하지 못하는 문제를 해결하였다.
편광판(1250)은 피부에서 반사된 반사광이 투과할 수 있다. 편광판(1250)에는 제1방향으로 편광축이 형성될 수 있다. 즉, 편광판(1250)을 제1편광 유닛(1220)과 제2편광 유닛(1230)을 투과하여 제1방향 또는 제2방향으로 편광된 광은 피부에서 반사된 후, 편광판(1250)을 투과하여 제1방향으로 편광될 수 있다. 즉, 최종적으로 사용자가 관찰하는 광은 제1방향으로만 편광된 "일반 편광"이거나 제1방향과 제2방향으로 순차적으로 편광된 "교차 편광"일 수 있다.
이를 위해, 편광판(1250)은 프로텍트 윈도우(1210)와 광학 렌즈(1260) 사이에 배치될 수 있고, 발광 유닛(1240)의 출사광의 광 경로와 "축 방향"으로 오버랩되지 않도록 배치될 수 있다. 즉, 편광판(1250)은 발광 유닛(1240)의 발광 유닛 기판(1241)의 개방 부분과 "축 방향"으로 오버랩될 수 있다. 편광판(1250)을 투과한 반사광(재귀광)은 광학 렌즈(1260)를 투과하여 사용자의 육안으로 확인할 수 있다.
한편, 컴팩트한 구조를 위해, 편광판(1250)은 제2편광 유닛(1220)의 내측에 배치될 수 있다. 즉, 편광판(250)은 제2편광 유닛(1220)의 "축 방향" 개구에 수용될 수 있다(도 9 참조). 따라서 제1편광 유닛(1220)과 제2편광 유닛(1230)과 편광판(1250)은 "광축"과 수직한 하나의 평면 상에 위치할 수 있으며, 그 결과, 본 발명의 광학식 피부 진단기(1001)의 전장 길이("축 방향")는 짧아질 수 있다.
제1편광 유닛(1220), 제2편광 유닛(1230) 및 편광판(1250)은 "편광 필름"일 수 있다. 이 경우, "편광 필름"은 TAC 필름(Tri Acetate Cellulose Film)과 PVA필름(Poly Vinyl Alcohol)으로 제작될 수 있다.
TAC 필름은 사진 필름으로 반세기 이상 사용되어 온 천연 소재 플라스틱으로서 뛰어난 투명성, 평활성, 광학적 등방성 등의 양호한 특성을 지닌다. PVA 필름은 초산 비닐 수지를 탈초산하여 얻어지는 수용성 수지로, 폴리비닐 알코올 합성섬유의 원료, 접착제, 호료(糊料), 필름 등에 사용될 수 있다.
편광필름 제조공정은 PVA(Poly Vinyl Alcohol) 필름을 연신시켜, 요오드(I2)와 이색성 염료 용액에 담구어 요오드 분자(I2)와 염료분자를 연신 방향으로 나란하게 배열시킴으로써 수행될 수 있다. 요오드분자(I2)와 염료 분자는 이색성을 가지고 있기 때문에 편광필름의 연신방향으로 진동하는 빛은 흡수하고, 수직방향으로 진동하는 빛은 투과하는 기능을 가진다.
한편, LCD에 쓰이는 고분자 편광필름은 한쪽 방향으로 늘인 PVA 필름에 요오드나 이색성 염료를 흡착하여 만든다. 편광 필름은 PVA 필름을 중심으로 양쪽에 TAC(Tri Acetate Cellulose) 필름으로 구성되어 있으며, 각각의 필름 사이는 접착제로 접착되어 있다. PVA 필름은 연신과 염착이라는 공정으로 가공되어 편광성능을 발휘하는 부분이며, TAC 필름은 PVA 필름을 보호하는 보호필름의 역할을 한다.
이렇게 PVA 필름과 TAC 필름으로 구성된 구조가 편광 필름의 기본적인 구조이며 이러한 3층의 구조상태를 편광자(Polarizer)라고 부른다. 편광필름의 핵심기술은 PVA를 일정한 간격으로 당겨주는 ‘라미네이팅(Laminating)’ 기술과 필름들을 균등하게 접착시키는 합지기술이며, TFT-LCD는 이 두 핵심기술을 바탕으로 일부 공정이 추가된다.
광학 렌즈(1260)에는 편광판(1250)을 투과한 광이 조사될 수 있다. 광학 렌즈(1260)는 편광판(1250)을 투과한 광을 굴절시켜 이미지를 확대할 수 있다. 광학 렌즈(1260)에서 굴절된 광은 사용자에 의해 관찰될 수 있다.
광학 렌즈(1260)는 광학 렌즈 홀더(1260-1)에 장착된 상태로, 제2외장 부재(1120)의 제2프레임(1122)에 고정될 수 있다. 한편, 광학 렌즈(1260)와 광학 렌즈 홀더(1260-1) 사이의 기밀성을 유지하기 위해, 가스켓(1260-2)이 추가될 수 있다. 광학 렌즈(1260)는 프로텍트 윈도우(1210), 제1편광 유닛(1220), 제2편광 유닛(1230), 발광 유닛(1240) 및 편광판(1250)의 후방에 배치될 수 있다.
상술한 바를 종합하면, 가시 광선 파장 대역(특히, 백색광 파장 대역)의 제1발광 유닛(1242)의 출사광의 일부는 제1편광 유닛(1220)을 투과하여 제1방향으로 편광된 상태에서 피부에서 반사되고, 반사광은 편광판(1250)을 투과하여 다시 제1방향으로 편광된 상태에서 광학 렌즈(1260)에서 확대되어 관찰될 수 있다(도 11의 (1) 참조, 제1방향으로 일반 편광). 한편, 제1편광 유닛(1220)에 의해 제1방향으로 편광되지만, 피부에서 반사되는 과정에서 편광 상태가 흐트러질 수 있으므로, 편광판(1250)을 이용하여 다시 한 번 반사광을 필터링하는 것이다. 이를 통해, 사용자는 제1방향으로 완전히 편광된 반사광을 확대하여 관찰할 수 있다.
가시 광선 파장 대역(특히, 백생광 파장 대역)의 제1발과 유닛(1242)의 출사광의 나머지 일부는 제2편광 유닛(1230)을 투과하여 제2방향으로 편광된 상태에서 피부에서 반사되고, 반사광은 편광판(1250)을 투과하여 제1방향으로 편광된 상태에서 광학 렌즈(1260)에서 확대되어 관찰될 수 있다(도 11의 (2) 참조, 제1방향과 제2방향으로 교차 편광).
사용자는 일반 편광 또는 교차 편광 또는 일반 편광과 교차 편광을 모두 포함하는 편광을 선택할 수 있으며, 이를 통해, 다양한 병변을 정밀하게 진단할 수 있다.
자외선 파장 대역의 제2발광 유닛(1243)의 출사광은 피부에서 반사된 후, 편광판(1250)만 투과하여 제1방향으로 편광된 상태에서 광학 렌즈(1260)에서 확대되어 관찰될 수 있다.
한편, 본 발명의 제1실시예의 제1편광 유닛(1220)과 제2편광 유닛(1230)의 실시예가 이에 한정되는 것은 아니다. 일 예로, 제1편광 유닛(1220)에 제2방향으로 편광시키는 편광축이 형성될 수 있으며, 제2편광 유닛(1230)에 제1방향으로 편광시키는 편광축이 형성될 수 있다.
본 발명의 제1실시예의 변형례에서는 자외선 파장 대역의 제2발광 유닛(1243)의 출사광을 편광시키기 위한 제3편광 유닛(1270)이 추가될 수 있다. 이 경우, 제3편광 유닛(1270)은 제1방향 또는 제2방향으로 편광축을 가질 수 있다. 도 13에서 도시하는 바와 같이, 본 발명의 제1실시예의 변형례의 제3편광 유닛(1270)은 0도 방향(Py)에서의 가시광선 파장 대역의 투과율이 99.5%일 수 있으며, 자외선 파장 대역(350nm~395nm)의 투과율이 26% 이상이다. 그 결과, 자외선 파장 대역에서 관찰되는 병변의 시현성을 높일 수 있다.
한편, 자외선 파장 대역의 제2발광 유닛(1243)의 발열에 의해 제3편광 유닛(270)이 손상될 수 있는 문제가 있어 이에 대한 해결이 요구된다.
이하, 도 12를 참조하여, 제2발광 유닛의 발열에 의해 제3편광 유닛(1270)의 손상을 방지하기 위한 다양한 변형례를 설명한다. 도 12의 (1)은 제3편광 유닛(1270)을 제1편광 유닛(1220) 및 제2편광 유닛(1230)과 이격시켜 배치하는 것이다. 이 경우, 제3편광 유닛(1270)은 제1편광 유닛(1220) 및 제2편광 유닛(1230)보다 후방에 위치할 수 있다.
도 12의 (2)는 제3편광 유닛(1270)을 프로텍트 윈도우(1210)의 후방면에 코팅하는 것이다. 이 경우, 제3편광 유닛(1270)은 프로텍트 윈도우(1210)에 의해 보호될 수 있으며, 제2발광 유닛(1243)과의 이격거리도 확보할 수 있다.
도 12의 (3)은 제2발광 유닛(1243)을 제1발광 유닛(1242)보다 후방으로 이격시켜 배치하는 것이다. 이 경우, 제2발광 유닛(1243)을 실장하기 위한 보조 기판(1241-2)이 따로 마련될 수 있으며, 발광 유닛 기판(1242-1)과 보조 기판(1241-2)을 전기적으로 연결하기 위한 제1보조 연결 기판(1241-3)이 마련될 수 있다.
도 12의 (4)는 제2발광 유닛(1243)이 실장되는 보조 기판(1241-2)이 전자 제어 모듈(1300)의 메인 기판(1310)과 직접 전기적으로 연결되는 경우이다. 이를 위해, 보조 기판(1241-2)과 전자 제어 모듈(1300)의 메인 기판(1310)을 전기적으로 연결하는 제2보조 연결 기판(1241-4)이 마련될 수 있다.
전자 제어 모듈(1300)은 본 발명의 광학식 피부 진단기(1001)를 전자적으로 제어할 수 있다. 전자 제어 모듈(1300)은 메인 기판(1310) 및 전지(1320)를 포함할 수 있다.
메인 기판(1310)은 발광 유닛(1240)과 전기적으로 연결되어, 사용자의 외장 부재(1100)의 제1스위치(1140) 및 제2스위치(1150) 조자에 대응하여, 발광 유닛(1240)을 제어할 수 있다.
한편, 메인 기판(1310)은 전지(1320)와 전기적으로 연결되어, 전지(1320)로부터 제어 전원을 공급받을 수 있고, 외부 충전 전원을 전지(1320)로 공급할 수 있다. 메인 기판(1310)에는 전지(1320)의 충전을 위한 충전 단자(1311)가 마련될 수 있다. 외자 부재(1100)가 크래틀(1400)에 거치되는 경우, 충전 단자(1311)는 크래들(1400)에 마련된 공급 단자(미도시)와 전기적으로 연결되어 전지(1320)를 충전시킬 수 있다.
전지(1320)는 충전이 가능한 전지일 수 있다. 일 예로, 전지(1320)는 리튬 이온 전지일 수 있다. 전지(1320)는 전지 홀더(1321)에 장착되어, 외장 부재(1100)의 제1그립부(1112)와 제2그립부(1122)의 내부 공간에 고정될 수 있다.
[제2실시예]
이하, 첨부된 도면을 참조하여 본 발명의 제2실시예의 피부 확대경(2000)을 상세하게 설명한다.
도 14는 본 발명의 제2실시예에 따른 발광유닛(2100)이 피부 확대경(2000)에 설치되는 것을 예시한 분해 사시도이다.
도 14를 참조하면, 본 발명의 제2실시예에 따른 피부 확대경(2000)은 큰 구성으로 초점거리 조절체(2600), 광학 튜브 구조체(2100), 제어모듈(2200), 배터리(2700)를 포함하며, 제1하우징부(2300A)와 제2하우징부(2300B)의 결합에 의해 마련된다.
여기서, 바람직하게는 광학 튜브 구조체(2100)에 관찰자가 관찰대상을 확대하여 확인할 수 있도록 마련된 광학유닛(2120) 및 관찰대상의 주변에 광을 조사하는 발광유닛(3100)을 통해 실질적인 피부 확대경(2000)의 광학적 특성 및 기능을 제공하게 된다.
이하, 도 15 내지 도 21을 참조하여 본 발명의 제2실시예에 따른 발광유닛(3100)에 대해서 설명하도록 한다.
도 15를 참조하면, 본 발명의 제2실시예에 따른 발광유닛(3100)은 발광기판(3200), 제1편광부(3300), 제2편광부(3400) 및 하우징(3500)을 포함한다.
도 16을 참조하면, 본 발명의 제2실시예에 따른 발광기판(3200)은 제1LED부(3210) 및 제2LED부(3220)가 원주방향을 따라서 상호 등간격을 이루며 교차 배치된다.
이때, 제1LED부(3210)와 제2LED부(3220)는 제어모듈(2200)의 발광신호를 통해 발광되며, 보다 상세하게는, 제1LED부(3210)는 제어모듈(2200)로부터 전달되는 제1발광신호에 의해 일괄적으로 발광하고, 제2LED부(3220)는 제어모듈(2200)로부터 전달되는 제2발광신호에 의해 일괄적으로 발광한다.
도 16에서는 8개의 제1LED부(3210)와 8개의 제2LED부(3220)가 원주방향을 따라서 상호 등간격을 이루며 교차 배치된 것을 예시하고 있다.
또한, 제1LED부(3210) 및 제2LED부(3220)는 칩형 LED인 것을 특징으로 한다.
또한, 제1LED부(3210) 및 제2LED부(3220)는 UV광 LED 또는 백색광 LED인 것을 특징으로 한다. 따라서 필요에 따라 제1LED부(3210) 및 제2LED부(3220)를 UV광 LED로 형성할 수도 있고, 백색광 LED로 형성하여 상황에 맞게 사용할 수 있다.
도 17을 참조하면, 본 발명의 제2실시예에 따른 제1편광부(3300)는 제1LED부(3210)의 광을 제1방향으로 편광시키는 제1편광판(3330)이 제1링(3310)의 내주면에 원주방향을 따라서 등간격으로 배치된다.
보다 상세하게는, 다수의 제1LED부(3210)의 광이 조사되는 방향 측 선단에 각각 위치하여 제1방향으로 설정된 편광축을 구비하는 다수의 제1편광판(3330)이 제1링(3310)의 내주면에 원주방향을 따라서 등간격으로 배치된다.
바람직하게는, 제1편광부(3300)는 하우징(3500)에 내장 설치되되, 제1LED부(3210)와 제1편광판(3330)이 대응되는 위치에 설치되도록 한다.
도 18을 참조하면, 본 발명의 제2실시예에 따른 제2편광부(3400)는 제2LED부(3220)의 광을 제1방향과 직교한 제2방향으로 편광시키는 제2편광판(3430)이 제2링(3410)의 외주면에 원주방향을 따라서 등간격으로 배치된다.
보다 상세하게는, 다수의 제2LED부(3220)의 광이 조사되는 방향 측 선단에 각각 위치하여 제1방향과 직교한 제2방향으로 설정된 편광축을 구비하는 다수의 제2편광판(3430)이 제2링(3410)의 외주면에 원주방향을 따라서 등간격으로 배치된다.
바람직하게는, 제2편광부(3400)는 하우징(3500)에 내장 설치되되, 제2LED부(3220)와 제2편광판(3430)이 대응되는 위치에 설치되도록 한다.
도 19를 참조하면, 제1편광부(3300)와 제2편광부(3400)가 맞물린 것을 예시하고 있다.
이와 같이 제1편광부(300)와 제2편광부(3400)가 얇은 판의 형태로 형성되어 서로 맞물린 상태로 하우징(3500)에 내장 설치되고, 제1LED부(3210) 및 제2LED부(3220)가 칩형 LED로 형성됨에 따라서, 발광유닛(3100)의 두께를 얇게 형성하는 것이 가능해지고, 결론적으로 피부 확대경(2000)의 소형화가 가능해져 관찰자의 치료에 도움이 되는 효과가 있다.
도 20은 본 발명의 제2실시예에 따른 제1편광판과 제2편광판이 하우징(3500)에 설치된 것을 예시한 평면도이다.
도 20을 참조하면, 본 발명의 제2실시예에 따른 하우징(3500)은 발광기판(3200), 제1편광부(3300) 및 제2편광부(3400)가 내장 설치된다.
또 다른 변형례로, 제1편광부(3300) 및 제2편광부(3400)는 하우징(3500)에 설치되면, 제1링(3310) 및 제2링(3410)이 각각 제1편광판(3330) 및 제2편광판(3430)으로부터 분리가 가능하다.
따라서 제1링(3310) 및 제2링(3410)을 분리하고, 제1편광판(3330) 및 제2편광판(3430)만 내장 설치하는 것이 가능하다.
또 다른 변형례로, 제1편광판(3330) 및 제2편광판(3430)은 각각 제1링(3310) 및 제2링(3410)으로부터 분리가 가능하며, 하우징(3500)은 제1편광판(3330)이 설치되는 제1편광판홈(3510) 및 제2편광판(3430)이 결합되는 제2편광판홈(3520)이 형성되어 있다.
따라서 제1편광부(3300) 및 제2편광부(3400)를 하우징(3500)에 설치하기 전에, 제1링(3310) 및 제2링(3410)으로부터 제1편광판(3330) 및 제2편광판(3430)을 분리하고, 제1편광판(3330) 및 제2편광판(3430)을 각각 제1편광판홈(3510) 및 제2편광판홈(3520)에 설치함으로써 발광유닛(3100)을 소형화시킬 수 있게 된다.
도 21 및 도 22는 본 발명의 다른 제2실시예에 따른 발광기판의 정면도이다.
도 21을 참조하면, 본 발명의 다른 제2실시예에 따른 발광기판(3200)은 가상 원주선(3230)이 형성되어 있다.
그리고, 제1LED부(3210) 및 제2LED부(3220)는 가상 원주선(3230)을 기준으로 상하에 2열로 배치되며, 원주방향을 따라서 상호 등간격을 이루며 교차 배치된다.
그리고, 제1LED부(3210) 및 제2LED부(3220)는 UV광 LED로 형성되며, 가상 원주선(3230)의 상측 열과 하측 열이 서로 다른 파장의 광원으로 형성된다.
따라서 가상 원주선(3230)의 상측 열에는 제1파장(3250), 하측 열에는 제2파장(3260)으로 형성되고, 보다 상세하게 예를 들면, 상측 열에는 365nm의 제1파장(3250)으로, 하측 열에는 395nm의 제2파장(260)으로 형성할 수 있다.
예컨대, 관찰자가 피부의 기미, 잡티를 확인할 때는 365nm의 제1파장(3250)에 해당하는 상측 열의 제1LED부(3210) 또는 제2LED부(3220)를 발광시켜 관찰하고, 관찰자가 피부 여드름을 형광으로 관찰해야 할 때는 395nm의 제2파장(3260)에 해당하는 하측 열의 제1LED부(3210) 또는 제2LED부(3220)를 발광시켜 관찰할 수 있다.
또 다른 실시예로, 제1LED부(3210) 및 제2LED부(3220)는 일측 열은 백색광 LED로 형성하고, 타측 열은 UV광 LED로 형성할 수 있다.
예컨대, 가상 원주선(3230)을 기준으로 하측의 LED부를 백색광 LED로 형성하고, 상측의 LED부를 UV광 LED로 형성할 수 있다. 또한, 반대로 가상 원주선(3230)을 기준으로 하측의 LED부를 UV광 LED로 형성하고, 상측의 LED부를 백색광 LED부로 형성할 수 있다.
이와 같이 백색광 LED부와 UV광 LED를 함께 마련함으로써, 필요에 따라서 백색광 LED만 발광하게 하거나, UV광 LED만 발광하게 하여 작동시킬 수 있다.
보다 상세하게 예를 들면, 제3발광신호를 통해 제1LED부(3210) 및 제2LED부(3220)의 백색광 LED를 발광시키고, 제4발광신호를 통해 제1LED부(3210) 및 제2LED부(3220)의 UV광 LED를 발광시킬 수 있다.
또한, 도 22를 참조하면, 발광기판(3200)은 제1LED부(3210) 및 제2LED부(3220)가 원주방향을 따라서 등간격을 이루며 교차 배치되되, 제1LED부(3210)가 서로 다른 2개의 UV 파장이 번갈아서 배치되고, 제2LED부(3220)가 서로 다른 2개의 UV 파장이 번갈아서 배치된다.
따라서 도 22와 같이 제1파장(3250)의 제1LED부(3210)가 배치되고, 일정 간격 우측으로 제1파장(3250)의 제2LED부(3220)가 배치되며, 일정 간격 우측으로 제2파장(3260)의 제1LED부(3210)가 배치되고, 일정 간격 우측으로 제2파장(3260)의 제2LED부(3220)가 배치된다.
도 23은 본 발명의 실시예에 따른 피부 확대경에 설치된 광학유닛을 도시한 단면도이다.
도 23을 참조하면, 피부 확대경(2000)은 관찰자가 관찰 대상을 확대하여 확인할 수 있도록 마련된 광학유닛(2120) 및 광학유닛(2120)을 통해 확대하여 확인하고자 하는 관찰대상에 광을 조사하는 발광유닛(3100)을 포함한다.
바람직하게는, 광학 튜브 구조체(2100)에 관찰자가 관찰대상을 확대하여 확인할 수 있도록 마련된 광학유닛(2120) 및 관찰대상의 주변에 광을 조사하는 발광유닛(3100)을 통해 실질적인 피부 확대경(2000)의 광학적 특성 및 기능을 제공하게 된다.
광학유닛(2120)은 제1광학렌즈(2121), 색수차 보정용 렌즈 어레이(2122, Lens array), 제3편광판(2123), 제1스페이서(2124, Spacer) 및 제2스페이서(2125, Spacer)를 포함한다.
여기서, 발광유닛(3100)의 제1LED부(3210), 제1편광판(3330), 제2LED부(3220), 제2편광판(3430)과 직접적으로 관련된 제3편광판(2123)에 대해서 중점적으로 다루도록 한다.
광학유닛은 제1편광판(3330)이 갖춘 편광축과 동일한 제1방향으로 평행하게 설정된 제3편광판(2123)을 구비한다.
바람직하게는, 색수차 보정용 렌즈 어레이(2122)의 관찰대상(S) 측 선단에 위치한다.
보다 상세하게는, 제3편광판(2123)은 도 20에 도시된 바와 같이 광학유닛(2120)의 관찰대상(S) 측 선단에 위치하며, 제1편광부(3300)에 배치된 제1편광판(3330)의 편광축과 동일한 제1방향으로 평행하게 설정되어 있다.
따라서 다수의 제1LED부(3210)를 통해 조사된 광은 제1편광판(3330)을 거쳐 관찰대상(S) 주변 일정 영역에 1차 편광된 상태로 제공되고, 관찰대상(S)으로부터 반사되어 제3편광판(2123)으로 입사되는 광은 결과적으로 평행 편광 기능을 관찰자(P)에게 제공하게 된다.
그리고, 다수의 제2LED부(3220)를 통해 조사된 광은 제2편광판(3430)을 거쳐 관찰대상(S) 주변 일정 영역에 1차 편광된 상태로 제공되고, 관찰대상(S)으로부터 반사되어 제3편광판(2123)으로 입사되는 광은 결과적으로 교차 편광 기능을 관찰자(P)에게 제공하게 된다.
이와 같은 구성으로 인해, 본 발명의 제2실시예에 따른 피부 확대경(2000)은 관찰자(P)에게 평행 편광 기능과 교차 편광 기능을 제공하는 효과가 있다.
이하, 그 외 구성에 대해서 간략하게 설명하도록 한다.
제1광학렌즈(2121)는 도 23에 도시된 바와 같이 광학 유닛(2120) 전체상 관찰자(P) 측에 위치하며, 관찰대상(S) 측 면이 볼록하게 형성된 단면형 볼록렌즈 형태로 마련된다.
또한, 색수차 보정용 렌즈 어레이(2122, Lens Array)는 제1광학렌즈(2121)의 관찰대상(S) 측 선단에 위치하며, 양면이 볼록하게 형성된 렌즈 접착체로, 제2광학렌즈(2122A)와 제3광학렌즈(2122B)로 마련되는 접착 몰색렌즈에 해당된다.
여기서, 제2광학렌즈(2122A)는 양면이 볼록하게 형성된 양면형 볼록렌즈 형태로, 제1광학렌즈(2121)의 관찰대상(S) 측 선단에 위치하여 관찰자(P) 측 볼록면이 색수차 보정용 렌즈 어레이(2122)의 관찰자(P) 측 볼록면에 해당된다.
또한, 제3광학렌즈(2122B)는 관찰대상(S) 측 면이 볼록하게 형성된 음형 메니스커스 렌즈(Negative Meniscus lens) 형태로, 관찰자(P) 측 면이 도 23에 도시된 바와 같이 제2광학렌즈(2122A)의 관찰대상(S) 측 면의 볼록한 형상과 대응되는 오목한 형상으로 형성되어 제2광학렌즈(2122A)의 관찰대상(S) 측 면에 접하도록 마련되고, 관찰대상(S) 측 볼록면이 색수차 보정용 렌즈 어레이(2122)의 관찰대상(S) 측 볼록면에 해당된다.
그리고, 제1스페이서(2124)는 제1광학렌즈(2121)와 색수차 보정용 렌즈 어레이(2122)를 제1간격(D1)만큼 상호 이격 배치시키고, 제2스페이서(2125)는 색수차 보정용 렌즈 어레이(2122)와 제3편광판(2123)을 제2간격(D2)만큼 상호 이격 배치시킨다.
이와 같은 구성으로, 제1파장(3250)으로 수평 편광이 필요할 때, 제1파장(3250)의 제1LED부(3210)를 발광시키고, 제1파장(3250)으로 수직 편광이 필요할 때 제1파장(3250)의 제2LED부(3220)를 발광시키며, 제2파장(3260)으로 수평 편광이 필요할 때 제2파장(3260)의 제1LED부(3210)를 발광시키고, 제2파장(3260)으로 수직 편광이 필요할 때 제2파장(3260)의 제2LED부(3220)를 발광시켜 다양한 목적에 따라서 적용이 가능하게 된다(제1LED부(3210)는 수평 편광을 제공하고, 제2LED부(3220)는 수직 편광을 제공한다고 예시).
이상, 첨부된 도면을 참조로 하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 제한적이 아닌 것으로 이해해야만 한다.
일 예로, 본 발명의 제1실시예와 본 발명의 제2실시예가 결합된 새로운 실시예 또한 본 발명에서 도출될 수 있다. 이 경우, 본 발명의 제1실시예의 제1편광 유닛(1220), 제2편광 유닛(1230), 제1-1발광 소자(1242-1) 및 제1-2발광 소자(1242-2)와 본 발명의 제2실시예의 제1편광부(3330), 제2편광부(3400), 제1LED부(3210) 및 제2LED부(3220)는 상호 대응될 수 있다.

Claims (10)

  1. 외장 부재; 및
    상기 외장 부재에 배치되고, 편광 유닛과 편광판과 발광 유닛을 포함하는 광학 모듈을 포함하고,
    상기 편광 유닛은 제1방향으로 편광축이 형성되어 있는 제1편광 유닛과 제2방향으로 편광축이 형성되어 있는 제2편광 유닛을 포함하고, 상기 편광판은 제1방향으로 편광축이 형성되어 있고,
    상기 발광 유닛의 출사광은 상기 편광 유닛을 투과하여 피부에서 반사되고, 상기 발광 유닛의 반사광은 상기 편광판을 투과하는 광학식 피부 진단기.
  2. 제1항에 있어서,
    상기 발광 유닛은 기판과, 상기 기판에 실장되는 제1발광 유닛과 제2발광 유닛을 포함하고,
    상기 제1발광 유닛은 가시광선 파장 대역의 광을 출사하고, 상기 제2발광 유닛은 자외선 파장 대역의 광을 출사하는 광학식 피부 진단기.
  3. 제2항에 있어서,
    상기 편광 유닛은 제3편광 유닛을 더 포함하고, 상기 제1발광 유닛의 출사광은 상기 제1편광 유닛과 상기 제2편광 유닛 중 적어도 하나를 투과하여 피부에서 반사되고, 상기 제2발광 유닛의 출사광은 상기 제3편광 유닛을 투과하여 피부에서 반사되고, 상기 제1발광 유닛과 상기 제2발광 유닛의 반사광은 상기 편광판을 투과하는 광학식 피부 진단기.
  4. 제2항에 있어서,
    상기 제1발광 유닛은 원주 방향으로 배열되는 복수 개의 제1-1발광 소자와 복수 개의 제1-2발광 소자를 포함하고, 상기 제2발광 유닛은 원주 방향으로 배열되는 복수 개의 제2발광 소자를 포함하고,
    상기 복수 개의 제1-1발광 소자와 상기 복수 개의 제1-2발광 소자와 상기 복수 개의 제2발광 소자는 경 방향 외측에서 내측으로 순차적으로 위치하는 광학식 피부 진단기.
  5. 제4항에 있어서,
    상기 복수 개의 제1-1발광 소자와 상기 복수 개의 제1-2발광 소자는 원주 방향을 따라 상기 제1편광 유닛 및 상기 제2편광 유닛과 교번하여 축 방향으로 오버랩되는 광학식 피부 진단기.
  6. 제4항에 있어서,
    상기 복수 개의 제1-1발광 소자와 상기 복수 개의 제1-2발광 소자와 상기 복수 개의 제2발광 소자 각각은 원주 방향에서 등간격으로 배치되며,
    상기 복수 개의 제2발광 소자의 수는 상기 복수 개의 제1-1발광 소자의 수보다 작고, 상기 복수 개의 제1-2발광 소자의 수보다 작은 광학식 피부 진단기.
  7. 제1항에 있어서,
    상기 제1편광 유닛은 내측에 개방 부분이 형성되는 제1본체와, 상기 제1본체에서 내측으로 돌출되는 복수 개의 제1편광부를 포함하고,
    상기 제2편광 유닛은 상기 제1편광 소자의 제1본체의 내측에 배치되며 내측에 개방 부분이 형성되는 제2본체와, 상기 제2본체에서 외측으로 돌출되는 복수 개의 제2편광부를 포함하고,
    상기 편광판은 상기 제2편광 유닛의 제2본체의 내측에 배치되는 광학식 피부 진단기.
  8. 제7항에 있어서,
    상기 제1편광 유닛의 제1본체와 상기 제2편광 유닛의 제2본체는 동심(concentric)을 가지는 링 형태이며, 상기 제1편광 유닛의 복수 개의 제1편광부는 원주 방향을 따라 상호 이격되어 배치되며, 상기 제2편광 소자의 복수 개의 제2편광부는 원주 방향을 따라 상호 이격되어 배치되며, 상기 제1편광 유닛의 복수 개의 제1편광부 사이에 상기 제2편광 유닛의 복수 개의 제2편광부가 각각 배치되는 광학식 피부 진단기.
  9. 제1항에 있어서,
    상기 광학 모듈은 광학 렌즈와 프로텍트 윈도우를 더 포함하고, 상기 광학 렌즈와 상기 프로텍트 윈도우 사이에는 상기 상기 편광 유닛과 상기 편광판과 상기 발광 유닛이 배치되고, 상기 프로텍트 윈도우는 편광을 발생시키지 않는 재질로 형성되는 광학식 피부 진단기.
  10. 제9항에 있어서,
    상기 외장 부재는 상기 프로텍트 윈도우를 고정하는 스페이서 프레임을 더 포함하고, 상기 스페이서 프레임에 의해 상기 프로텍트 윈도우와 상기 발광 유닛 사이의 축 방향 거리가 결정되는 광학식 피부 진단기.
PCT/KR2018/011973 2017-10-11 2018-10-11 광학식 피부 진단기, 피부 확대경에 설치되는 발광유닛 및 이를 포함한 피부 확대경 WO2019074298A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2017-0131533 2017-10-11
KR20170131533 2017-10-11
KR1020180027519A KR102070014B1 (ko) 2017-10-11 2018-03-08 피부 확대경에 설치되는 발광유닛 및 이를 포함한 피부 확대경
KR10-2018-0027519 2018-03-08
KR10-2018-0032015 2018-03-20
KR1020180032015A KR102112603B1 (ko) 2017-10-11 2018-03-20 광학식 피부 진단기

Publications (1)

Publication Number Publication Date
WO2019074298A1 true WO2019074298A1 (ko) 2019-04-18

Family

ID=66100937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011973 WO2019074298A1 (ko) 2017-10-11 2018-10-11 광학식 피부 진단기, 피부 확대경에 설치되는 발광유닛 및 이를 포함한 피부 확대경

Country Status (1)

Country Link
WO (1) WO2019074298A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113288061A (zh) * 2021-05-28 2021-08-24 复旦大学附属华山医院 一种皮肤病诊断装置
US11395714B2 (en) 2019-11-11 2022-07-26 Dermlite Llc Medical illuminator with variable polarization

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060132774A1 (en) * 2003-03-07 2006-06-22 Mullani Nizar A Dermoscopy epiluminescence device employing cross and parallel polarization
US20150323446A1 (en) * 2012-11-30 2015-11-12 Konica Minolta, Inc. Reflection Properties Measuring Device and Manufacturing Method for Polarizing Plates Used in Same
KR20160061978A (ko) * 2013-07-22 2016-06-01 더 락커펠러 유니버시티 피부병의 광학 검출
KR20160068168A (ko) * 2014-12-05 2016-06-15 서울바이오시스 주식회사 피부 상태 검진 장치
KR20170104708A (ko) * 2016-03-07 2017-09-18 재단법인대구경북과학기술원 피부 다중 분광 이미징을 위한 모바일 기기 부착형 조명 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060132774A1 (en) * 2003-03-07 2006-06-22 Mullani Nizar A Dermoscopy epiluminescence device employing cross and parallel polarization
US20150323446A1 (en) * 2012-11-30 2015-11-12 Konica Minolta, Inc. Reflection Properties Measuring Device and Manufacturing Method for Polarizing Plates Used in Same
KR20160061978A (ko) * 2013-07-22 2016-06-01 더 락커펠러 유니버시티 피부병의 광학 검출
KR20160068168A (ko) * 2014-12-05 2016-06-15 서울바이오시스 주식회사 피부 상태 검진 장치
KR20170104708A (ko) * 2016-03-07 2017-09-18 재단법인대구경북과학기술원 피부 다중 분광 이미징을 위한 모바일 기기 부착형 조명 장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11395714B2 (en) 2019-11-11 2022-07-26 Dermlite Llc Medical illuminator with variable polarization
CN113288061A (zh) * 2021-05-28 2021-08-24 复旦大学附属华山医院 一种皮肤病诊断装置
CN113288061B (zh) * 2021-05-28 2023-06-02 复旦大学附属华山医院 一种皮肤病诊断装置

Similar Documents

Publication Publication Date Title
WO2018009028A1 (ko) 피부 확대경
WO2019107826A1 (ko) 디스플레이장치
KR20190040878A (ko) 광학식 피부 진단기
WO2019093683A1 (ko) 지문 센서를 포함하는 전자 장치
WO2018225909A1 (en) Display device
WO2016111466A1 (ko) 광학시트 및 이를 포함하는 광학표시장치
WO2019074298A1 (ko) 광학식 피부 진단기, 피부 확대경에 설치되는 발광유닛 및 이를 포함한 피부 확대경
EP3529793A1 (en) Outdoor display apparatus
WO2018128508A1 (ko) 액체 렌즈
EP2962293A1 (en) Transfer film, method for transferring the same and electronic device cross-reference to related applications
WO2013094969A2 (ko) 편광판 및 이를 구비한 화상표시장치
WO2017023057A1 (ko) 렌즈, 광학 장치 및 이를 포함하는 가상 현실 구현을 위한 헤드 장착 표시 장치
WO2021080100A1 (ko) 디스플레이 장치
WO2020032387A1 (en) Display apparatus
WO2019132242A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2014042318A1 (en) Optical member and display device having the same
WO2012008750A2 (ko) 편광 안경
WO2021060799A1 (en) Electronic device including display and camera device
WO2019083160A1 (ko) 액정 위상차 필름, 이를 포함하는 발광표시장치용 편광판 및 이를 포함하는 발광표시장치
WO2019198893A1 (ko) 백라이트 유닛, 백라이트 유닛을 포함하는 표시 장치 및 표시 장치를 제조하는 방법
WO2016076600A1 (ko) 헤드 업 디스플레이 장치
WO2022050515A1 (ko) 투명 초음파 센서 기반 초음파 광학 복합 이미징 시스템
WO2020231113A1 (ko) 치수 측정용 지그 및 그를 포함하는 치수 측정 장치
WO2018226057A1 (ko) 살균 장치
WO2021054558A1 (ko) 투명 초음파 센서 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18866352

Country of ref document: EP

Kind code of ref document: A1