WO2019074292A2 - 고발현 및 고기능성 목적 단백질의 생산을 위한 발현 카세트 및 이의 이용 - Google Patents

고발현 및 고기능성 목적 단백질의 생산을 위한 발현 카세트 및 이의 이용 Download PDF

Info

Publication number
WO2019074292A2
WO2019074292A2 PCT/KR2018/011953 KR2018011953W WO2019074292A2 WO 2019074292 A2 WO2019074292 A2 WO 2019074292A2 KR 2018011953 W KR2018011953 W KR 2018011953W WO 2019074292 A2 WO2019074292 A2 WO 2019074292A2
Authority
WO
WIPO (PCT)
Prior art keywords
protein
expression
intronized
rna
sequence
Prior art date
Application number
PCT/KR2018/011953
Other languages
English (en)
French (fr)
Other versions
WO2019074292A3 (ko
Inventor
김만수
김민수
조종문
장신재
Original Assignee
(주)셀트리온
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)셀트리온 filed Critical (주)셀트리온
Priority to CN201880076531.5A priority Critical patent/CN111386348B/zh
Priority to US16/755,453 priority patent/US20200299721A1/en
Priority to EP18866248.0A priority patent/EP3696271A4/en
Publication of WO2019074292A2 publication Critical patent/WO2019074292A2/ko
Publication of WO2019074292A3 publication Critical patent/WO2019074292A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1027Paramyxoviridae, e.g. respiratory syncytial virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/40Immunoglobulins specific features characterized by post-translational modification
    • C07K2317/41Glycosylation, sialylation, or fucosylation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/50Biochemical production, i.e. in a transformed host cell
    • C12N2330/51Specially adapted vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/42Vector systems having a special element relevant for transcription being an intron or intervening sequence for splicing and/or stability of RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2840/00Vectors comprising a special translation-regulating system
    • C12N2840/44Vectors comprising a special translation-regulating system being a specific part of the splice mechanism, e.g. donor, acceptor

Definitions

  • the present invention relates to expression cassettes and their uses for the production of promoters, high expression and high functionality target proteins.
  • Animal cells such as Chinese hamster ovary cells (CHO) have been widely used industrially for the production of recombinant proteins, especially therapeutic proteins such as antibodies. Proteins produced using mammalian cells such as CHO are post-translationally modified and glycosylated to have complete biological activity.
  • CHO Chinese hamster ovary cells
  • an animal cell line in which expression of a specific endogenous gene is regulated can be used for producing a recombinant protein, particularly a therapeutic antibody, it can be used for improving productivity or for improving therapeutic effect and broadening the therapeutic range.
  • RNA interference RNA interference that induces mRNA degradation of a target gene using RNA having a sequence complementary to the mRNA of the target gene , 2004.
  • Examples of the method for enhancing expression of an endogenous gene include a method of inducing high expression by transfection of a specific endogenous gene having a strong promoter (Promoter).
  • miRNAs miRNAs
  • of small size that are transcribed from non-coding DNA have been reported to be novel modulators of cell function and fate, as the biological function of regulating protein translation is known, (Amelia Cimmino et al., PNAS, 102 (39), 13944-13949, 2005), which regulates endogenous gene expression and regulates cell proliferation and death.
  • an expression vector having genetic information capable of regulating the expression of a specific endogenous gene is required, and a cell line in which an endogenous gene is stably increased or suppressed through transduction into an animal cell Should be selected.
  • vectors with endogenous gene control information will also contain genetic information from selection makers.
  • a specific endogenous gene expression-regulated cell line is first prepared, an expression vector for expression of recombinant protein is further transfected, and a recombinant protein expression using a different kind of screening marker other than that contained in a specific endogenous gene expression control vector Cell lines are screened. Because of the complexity of this process, it is more difficult to produce recombinant proteins while simultaneously controlling the expression of several endogenous genes.
  • Intron a sequence found in eukaryotic cells, is a process in which mRNA precursor (precursor mRNA; pre-mRNA) transcribed by RNA polymerase is processed into mature RNA (mRNA) through a splicing process (Herve < / RTI > Le Hir. Et al., TRENDS in Biochemical Sciences, 28 (4), 215-220, 2003), which has been reported to improve protein expression through splicing induced by introns ).
  • the present inventors have found that, in order to overcome the existing difficulties that occur when controlling a plurality of endogenous genes, the present inventors have found that sequences of intronized short hairpin RNA (shRNA) regulating the expression of endogenous genes and sequences of target recombinant proteins
  • shRNA short hairpin RNA
  • the object of the present invention is to provide a target protein expression cassette comprising a promoter, a polynucleotide encoding an objective protein, an intronized RNA sequence, and a poly A sequence in order to produce a highly expressed and highly functional target protein.
  • Another object of the present invention is to provide a vector comprising an expression cassette for producing a target protein.
  • Another object of the present invention is to provide a transformant comprising an expression cassette for producing a target protein.
  • Another object of the present invention is to provide a method for producing a target protein, which comprises culturing a transformant containing an expression cassette for producing a target protein.
  • the present invention provides a target protein expression cassette comprising a promoter, a polynucleotide encoding an objective protein, an intronized RNA sequence, and a poly A sequence, wherein the intronized RNA sequence comprises a splicing donor, a branch, An expression cassette for producing a target protein comprising a splicing acceptor.
  • the target protein may be an antibody or fragment thereof.
  • the intronized RNA sequence may be present on the single-purpose protein expression cassette in more than one manner.
  • the expression cassette can comprise any one or more intronized RNA sequences selected from the group consisting of: a) one or more intronized RNA sequences located between the promoter and the polynucleotide encoding the protein of interest ; b) one or more intronized RNA sequences located between the polynucleotide encoding the target protein and the poly A; And c) one or more intronized RNA sequences located between the promoter and the polynucleotide encoding the protein of interest, and one or more intronized RNA sequences located between the polynucleotide encoding the protein of interest and the polyA.
  • the intronized RNA sequence may additionally comprise an RNA sequence for regulating target gene expression.
  • the target gene is selected from the group consisting of FUT8 (Alpha-1,6-fucosyltransferase), HDAC5 (Histone Deacetylase 5), LDHA (lactate dehydrogenase A), CXCR4 (CXC chemokine receptor type 4), DHFR ), PDK4 (Pyruvate dehydrogenase lipoamide kinase isozyme 4), MAPK3 (Mitogen-activated protein kinase 3), KANK4 (KN motif and Ankyrin Repeat Domains 4), PDI (Protein disulfide isomerase), CNX (Calnexin), CRT (non-phosphorylatable version of the eukaryotic translation initiation factor 2 alpha), ZFP-TF (artificial zinc finger protein transcription factor), ATF4 (activating transcription factor 4), GADD34 (growth arrest and DNA damage inducible protein 34), mTOR Mammalian target of rapamycin
  • the intronized RNA sequence for regulating the target gene expression is selected from the group consisting of short hairpin RNA, miRNA, small temporal RNA, small interfering RNA, piwi (RNA), small nucleolar RNA (snRNA), small nuclear RNA, extracellular RNA, small cajal body RNA, long non-coding RNA, small modulatory dsRNA and snRNA (small noncoding RNA), and the like.
  • the shRNA sequence for regulating the target gene expression comprises an intronized FUT8 shRNA represented by SEQ ID NO: 24, an intronized HDAC5 (Histone deacetylase 5) shRNA represented by any one of SEQ ID NOS: 25 to 27, (Lactate dehydrogenase A) shRNA represented by any one of SEQ ID NOS: 28 to 30, and an intronized dihydrofolate reductase (DHFR) shRNA represented by any one of SEQ ID NOS: 31 to 33.
  • the intronized miRNA sequence for the target gene regulation may be miR483 represented by any one of SEQ ID NOS: 34 to 36.
  • the splicing donor sequence is at least one selected from SEQ ID NOs: 12 to 15, and the branch sequence is at least one selected from SEQ ID NOs: 16 to 18 And the splicing acceptor sequence may be any one selected from SEQ ID NOS: 19 to 22.
  • the expression cassette for producing a target protein is expressed by splicing of an intron or by controlling expression of an endogenous gene, thereby inhibiting high expression of a target protein, inhibition of lactate formation
  • the protein may have one or more effects selected from the group consisting of deacetylation of a protein, regulation of glucose metabolism, regulation of cell growth, regulation of cell proliferation, high functionality of a target protein, and low fucose content of a target protein.
  • the present invention also provides a vector comprising an expression cassette for producing a target protein.
  • the present invention also provides a transformant transformed with a vector comprising an expression cassette for producing a target protein.
  • the transformant may be a eukaryotic cell.
  • the present invention also provides a method for producing a target protein, comprising culturing an expression cassette-containing transformant for producing a target protein.
  • the target protein expression cassette according to the present invention can simultaneously perform intronization and expression of a target protein by transfection and has an effect of inducing high expression and high functionality of a target protein by regulating expression of an endogenous gene have.
  • the expression vector according to the present invention is integrally linked with the intronized sequence by a single promoter, it is possible to select the cell line in which transcription of the intronized sequence is smooth even when the cell line is selected by confirming expression of the target protein It is effective.
  • FIG. 1 is a schematic diagram showing the structure of an expression cassette of a recombinant protein containing an intronized shRNA / miRNA.
  • the shRNA / miRNA and the recombinant protein are produced by splicing the intron after transfection into the cell.
  • FIG. 2 is a schematic diagram of an antibody expression vector containing an intron-free recombinant protein (antibody) expression vector (Control), an antibody expression vector containing an intron sequence (IS) without endogenous gene control function, and an intronized shRNA / miRNA for endogenous gene control to be.
  • antibody intron-free recombinant protein
  • IS intron sequence
  • shRNA shRNA / miRNA
  • FIG. 3 is a graph showing the amount of mRNA of HDAC5 regulated by shRNA by quantitative RT-PCR after transfection of an antibody expression vector containing intronized shRNA for HDAC5 control.
  • FIG. 4 is a graph showing the amount of mRNA of LDHA regulated by shRNA by quantitative RT-PCR after transfection of an antibody expression vector containing intronized shRNA for LDHA regulation.
  • FIG. 5 is a graph showing the amount of DHFR mRNA regulated by shRNA by quantitative RT-PCR after transfection of an antibody expression vector containing intronized shRNA for DHFR regulation.
  • FIG. 6 is a graph showing the amount of mRNA of CXCR4 regulated by miR483 after transfection with an antibody expression vector containing intronic miR483 by quantitative RT-PCR.
  • FIG. 7 is a graph showing the quantitative RT-PCR method of confirming the amount of mRNA of PDK4 regulated by miR483 after transfection of an antibody expression vector containing intronized miR483.
  • FIG. 8 shows an antibody expression vector containing an intron-free antibody expression control (Control), an intronic sequence-lacking introns expression (IS) antibody expression vector, and an intrinsic shRNA / miRNA for endogenous gene regulation, And the antibody production over a short period of time through transient expression.
  • FIG. 9 is a graph showing the result of measuring the amount of antibody production after preparing a stable cell line by transfecting an intron-free antibody expression control (control) and an intrinsic shRNA / miRNA-containing antibody expression vector for endogenous gene regulation.
  • 10 is a graph showing the number of stable cell lines selected using methotrexate (MTX) after transfection of an antibody expression vector containing intronized shRNA for DHFR regulation.
  • MTX methotrexate
  • FIGS. 11A to 11F show results obtained by transfecting an antibody expression vector containing an intronized shRNA for endogenous gene regulation and then analyzing the sugar chain of the antibody produced in the stable cell line using Bio-LC (a: control group, b: an experimental group containing FUT8 intronized shRNA, c: an experimental group containing two FUT8 intronsized shRNAs, d: an experimental group containing both HDAC5 and FUT8 shRNA, an e: group containing both LDHA and FUT8 shRNA, f: miR483 miRNA And FUT8 shRNA).
  • FIG. 12 shows the results of transfection of mRNA of endogenous genes (a: HDAC5, b: LDHA, c: CXCR4 and d: PDK4) after transfection of an antibody expression vector containing intronized shRNA / miRNA for endogenous gene regulation,
  • the quantitative RT-PCR method was used for the quantitative analysis.
  • the present invention relates to expression cassettes and their uses for the production of promoters, high expression and high functionality target proteins.
  • the expression vector according to the present invention can simultaneously perform the intronization sequence and the expression of the desired recombinant protein by a single transfection and has the effect of inducing high expression and high functionality of the recombinant protein by regulating the expression of the endogenous gene have.
  • the expression vector according to the present invention since the recombinant protein and the shRNA sequence are linked to each other by the single promoter, the expression vector according to the present invention has the effect of selecting the cell line in which the transcription of the shRNA is smooth even when the cell line is selected only by confirming the expression of the recombinant protein.
  • the expression vector according to the present invention has an effect of controlling several endogenous genes by a single transfection.
  • the expression vector according to the present invention can produce an antibody in which the intronized shRNA sequence inhibits the expression of the glycosylation-related gene (ex. FUT8) to inhibit the fucose glycosylation of the antibody when the antibody is produced with the target protein.
  • the intronized shRNA sequence may inhibit the expression of the apoptosis-related gene to increase the production of the antibody.
  • Target protein means a protein to be produced.
  • intronized RNA sequence refers to the RNA sequence of the portion of the DNA that is removed by the intron in the process of being transcribed into mRNA.
  • the splicing donor usually has the same sequence as AG_GTRAGT (R: A or G), the splice acceptor YYYYYYYYYYNCAG_G (Y: C or T; N: A, G, C or T) In addition to this sequence, it includes all sequences in which splicing can occur.
  • Intronized RNA sequences may or may not have functionality by themselves.
  • sequence " means a contiguous sequence of adenylic acid located at the 3 ' mRNA end.
  • the "splicing donor” and “splicing acceptor” are sequences that allow the splicing process to occur.
  • the splicing donor is located at the 5 'portion of the intron, and the splicing acceptor is located at the 3' do.
  • a “ branch” is a moiety that includes the nucleotide adenine and is involved in forming a lariat structure during the splicing process
  • Expression cassette means a unit cassette containing a promoter and a target protein, and capable of expressing a target protein for production of the target protein.
  • the expression cassette may contain various factors that can facilitate the efficient production of the desired protein. More specifically, the expression cassette may comprise a promoter, a polynucleotide encoding a protein of interest, and a poly A sequence.
  • Antibody refers to an immunoglobulin molecule consisting of four polypeptide chains in which two heavy chains and two light chains are linked to each other by a disulfide bond. Other naturally occurring antibodies with altered structures, such as camelid antibodies, are also included in this definition.
  • Each heavy chain consists of a heavy chain variable region and a heavy chain constant region.
  • the heavy chain constant region consists of three domains (CH1, CH2 and CH3).
  • Each light chain consists of a light chain variable region and a light chain constant region.
  • the light chain constant region consists of one domain (CL).
  • the heavy chain variable region and the light chain variable region can be further subdivided into a more conserved region called the framework region (FR) and a hypervariable region called the complementarity determining region (CDR).
  • FR framework region
  • CDR complementarity determining region
  • Each heavy chain variable region and light chain variable region consists of three CDRs and four FRs, arranged from the amino terminus to the carboxy terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
  • Expression control means controlling the amount of expression of a specific gene, wherein 'regulation' includes both concepts of increase or decrease.
  • siRNA is an RNA of a hairpin structure containing a sequence of short interference RNA (siRNA) that is processed into short interfering RNA by a RNase enzyme called Dicer in the cell.
  • the present invention provides a target protein expression cassette comprising a promoter, a polynucleotide encoding an objective protein, an intronized RNA sequence, and a poly A sequence, wherein the intronized RNA sequence comprises a splicing donor, a branch and a splicing acceptor
  • the expression cassette comprises a nucleotide sequence encoding an amino acid sequence of SEQ ID NO.
  • FIG. 1 of the present invention is a schematic diagram showing the structure of an expression cassette of a recombinant protein containing an intronized shRNA / miRNA. This illustrates the principle of the present invention in which shRNA / miRNA and recombinant protein are produced after transfection into intracellular intron.
  • the present invention provides a method for enhancing the productivity and function of a target protein through splicing after the intronized RNA sequence and the sequence of the target protein are transcribed into a single mRNA under a single promoter.
  • the promoter may be any promoter capable of activating the expression cassette of the present invention, but preferably it may be a promoter of the polII series.
  • CBA chickenbeta-actin
  • CAG CMV early enhancer / chicken beta-actin promoter & intron
  • CMV cytomegalovirus
  • CBH CBH (CMV early enhancer / chicken beta-actin promoter), GAPDH (Glyceraldehyde 3-phosphate dehydrogenase), SV40 (Simian virus 40), UBC (ubiquitin C), PGK (phosphoglycerate kinase), LTR CD4 mini-promoter / enhancer, CD4 mini-promoter / enhancer, CD2 locus control region, CD4 minimal promoter / proximal enhancer / silencer, CD4 mini-promoter / enhancer, GATA-1 enhancer HS2 1 enhancer, GATA-1 enhancer, Ankyrin-1 promoter / ⁇ -globin HS-40 enhancer, GATA-1 enhancer HS1 to HS2 / retroviral LTR , MCH II-specific HLA-DR promoter, Fascin promoter, Dectin-2 gene promoter, 5 'untranslated region from DC-STAMP, Heavy chain intronic enhancer (E ⁇ ) / matrix attac H
  • hAAT Polipoprotein E enhancer / alpha1-antitrypsin promoter
  • HAAT promoter / Apo E locus control region Albumin promoter
  • HAAT promoter / four copies of the Apo E enhancer HAAT promoter / Apo E locus control region
  • hAAT promoter / four copies of the Apo E enhancer the thyroid hormone-binding globulin promoter / ⁇ 1-microglobulin / bikunin enhancer
  • the DC172 promoter ⁇ 1-antitrypsin promoter / ⁇ 1-microglobulin enhancer
  • LCAT kLSP-IVS
  • ApoE / hAAT / promoter RU486-responsive promoter
  • Creatine kinase promoter Synthetic muscle-specific promoter
  • MHCK7 Hybrid enhancer / promoter regions of a-myosin and creat
  • polIII promoter In order to effectively transcribe short fragment DNA such as shRNA, the use of the polIII promoter is required. However, since such polIII promoters are difficult to induce high expression of the target protein, expression cassettes having respective promoters are required to express the shRNA and the target protein. Therefore, it has been difficult to produce a cell line in which the expression of the target protein and the endogenous gene expression are regulated at once, due to the problems such as the size of the expression cassettes, the transduction and screening operations. In order to overcome this problem, a polII-based CMV promoter, one of the strong promoters, was used. In order to form a shRNA structure in which the DNA sequence of the shRNA is capable of regulating gene after transcription, an intron sequence Respectively.
  • shRNAs are produced by splicing during transcription, and the resulting shRNAs regulate the expression of specific endogenous genes.
  • the target protein transcribed and expressed by the same CMV promoter has an effect of increasing the production amount and enhancing the function due to the regulation of the expression of the endogenous gene.
  • the target protein may be any, but preferably it may be an antibody or a fragment thereof.
  • the antibody or fragment thereof is selected from the group consisting of CD19, CD20, CD22, CD33, CD52, Her2 / neu, EGFR, EpCAM, MUC1, GD3, CEA, CA125, HLA- IL-6, IL-6, VEGF receptor kinase inhibitor, complement factor C5, IL-1 beta, RANK ligand, VEGFR2 (KDR), IL-6, IL-13 Mab, Bacillus anthracis anthrax, CD25, IL-12, PDGF-R, CTLA-4, CD3, IL-17A, PD-L1, PD-1, BAFF, BLyS, Dabigatran, SLAMF7 , Clostridium difficile toxin B, PCSK9, hemagglutinin (HA) of influenza virus, F protein of RSV (respiratory syncytial virus), G protein of RSV, IgE (immunoglobulin E) and G protein of Rabies virus Lt; RTI
  • the intronized RNA sequence may be present on the single-purpose protein expression cassette in more than one manner.
  • the expression vector of the present invention comprises sequence information of one or more shRNA / miRNAs targeting target endogenous genes of animal cells, and comprises an intronization sequence that allows one or more shRNA / miRNA to be generated do.
  • the expression cassette can comprise any one or more intronized RNA sequences selected from the group consisting of: a) one or more intronized RNA sequences located between the promoter and the polynucleotide encoding the protein of interest ; b) one or more intronized RNA sequences located between the polynucleotide encoding the target protein and the poly A; And c) one or more intronized RNA sequences located between the promoter and the polynucleotide encoding the protein of interest, and one or more intronized RNA sequences located between the polynucleotide encoding the protein of interest and the polyA.
  • antibody intron-free recombinant protein
  • IS intron sequence
  • shRNA shRNA
  • miRNA miRNA for endogenous gene control
  • the intronized RNA sequence may additionally comprise an RNA sequence for regulating target gene expression.
  • the target gene is selected from the group consisting of FUT8 (Alpha-1,6-fucosyltransferase), HDAC5 (Histone Deacetylase 5), LDHA (lactate dehydrogenase A), CXCR4 (CXC chemokine receptor type 4), DHFR ), PDK4 (Pyruvate dehydrogenase lipoamide kinase isozyme 4), MAPK3 (Mitogen-activated protein kinase 3), KANK4 (KN motif and Ankyrin Repeat Domains 4), PDI (Protein disulfide isomerase), CNX (Calnexin), CRT (non-phosphorylatable version of the eukaryotic translation initiation factor 2 alpha), ZFP-TF (artificial zinc finger protein transcription factor), ATF4 (activating transcription factor 4), GADD34 (growth arrest and DNA damage inducible protein 34), mTOR Mammalian target of rapamycin
  • FUT8 Alpha-1,6-fucosyltransferase
  • HDAC5 Histone Deacetylase 5
  • LDHA lactate dehydrogenase A
  • DHFR Dihydrofolate reductase
  • PDK4 Pyruvate dehydrogenase lipoamide kinase isozyme 4
  • CXCR4 type 4 MAPK3 (Mitogen-activated protein kinase 3), and KANK4 (KN motif and Ankyrin Repeat Domains 4).
  • Alpha-1,6-fucosyltransferase (FUT8), which plays a role in glycosylation of fucose involved in antibody-dependent cytotoxicity as an endogenous gene for expression control, , And the expression of FUT8 was effectively inhibited to produce antibodies with little fucose.
  • the RNA sequence for regulating the target gene expression is selected from the group consisting of short hairpin RNA, miRNA, small temporal RNA, small interfering RNA, piwi-interacting RNA, RNA), snoRNA (small nucleolar RNA), snRNA (small nuclear RNA), exRNA (Extracellular RNA), scaRNA (small cajal body RNA), lncRNA (long non-coding RNA) noncoding RNA). < / RTI > And most preferably at least one sequence selected from the group consisting of shRNA (short hairpin RNA), miRNA (microRNA), stRNA (small temporal RNA) and siRNA (small interfering RNA).
  • the shRNA sequence for regulating the target gene expression comprises an intronized FUT8 shRNA represented by SEQ ID NO: 24, an intronized HDAC5 (Histone deacetylase 5) shRNA represented by any one of SEQ ID NOS: 25 to 27, (Lactate dehydrogenase A) shRNA represented by any one of SEQ ID NOS: 28 to 30, and an intronized dihydrofolate reductase (DHFR) shRNA represented by any one of SEQ ID NOS: 31 to 33.
  • the shRNA that inhibits HDCA5 gene expression may be any one selected from the group consisting of SEQ ID NOS: 25 to 27, and most preferably, the intronized HDAC5 shRNA represented by SEQ ID NO: 27.
  • the effect of inhibiting HDAC5 expression by intronized HDAC5 shRNAs shown in SEQ ID NOS: 25 to 27, respectively, was examined.
  • the intronized HDAC5 shRNA shown in SEQ ID NO: 27 inhibited HDAC5 expression most effectively 3).
  • the shRNA for suppressing gene expression of LDHA may be any one selected from the group consisting of SEQ ID NOS: 28 to 30, and most preferably, the intronized LDHA shRNA represented by SEQ ID NO: 30.
  • intron LDHA shRNAs shown in SEQ ID NOS: 28 to 30 respectively inhibited the LDHA expression
  • the intronized LDHA shRNAs shown in SEQ ID NO: 30 inhibited LDHA expression most effectively 4).
  • the shRNA for inhibiting gene expression of DHFR may be any one selected from the group consisting of SEQ ID NOS: 31 to 33, and most preferably, the intronized DHFR shRNA represented by SEQ ID NO: 32.
  • DHFR shRNA inhibited the expression of DHFR by the intron DHFR shRNAs shown in SEQ ID NOS: 31 to 33, respectively.
  • the intron DHFR shRNA of SEQ ID NO: 32 inhibited DHFR expression most effectively 5).
  • the miRNA sequence for the target gene regulation may be intronized miR483 represented by any one of SEQ ID NOS: 34 to 36.
  • experiments were conducted to find optimal branch sequence and splice acceptor combinations to maximize PDK4 target expression inhibition and CXCR4 target expression increase in the production of expression cassettes containing intronized miR483 .
  • the intronized RNA sequence was constructed as shown in SEQ ID NOS: 34 to 36, respectively, except for the branch sequence and the splicing acceptor. Thereafter, the inhibition of PDK4 expression and the effect of increasing the expression of CXCR4 were confirmed. As a result, it was confirmed that the intronized miR483 sequence shown in SEQ ID NO: 36 was the most effective (see FIGS. 6 and 7).
  • the splicing donor sequence is at least one selected from SEQ ID NOs: 12 to 15, and the branch sequence is at least one selected from SEQ ID NOs: 16 to 18 And the splicing acceptor sequence may be any one selected from SEQ ID NOS: 19 to 22.
  • the expression cassette for production of the desired protein is expressed by splicing of the intron or by controlling the expression of the endogenous gene, thereby inhibiting high expression of the target protein, inhibition of lactate formation, And may be characterized by at least one selected from the group consisting of deacetylation, glucose metabolism, cell growth regulation, proliferation regulation, high functionality of the target protein and low fucose content of the target protein.
  • the expression cassette can regulate the expression of the target endogenous gene by an endogenous gene-regulated intronized RNA sequence. Regulation of gene expression includes methods that are either increased or decreased. It has a structure in which the intronized RNA sequence and the target protein are linked to each other by a single promoter so that the endogenous gene-regulated cell line can be selected by intronized RNA even if the cell line is selected by confirming the expression of the target protein Do.
  • DHFR dihydrofolate reductase
  • the enzyme involved in the fucosylation of the N-linked glycan of the 297-asparagine Fc region of the antibody (Alpha 1,6-fucosyltransferase; FUT8) was regulated, and it was confirmed that the fucose content of the antibody expressed by the same promoter was decreased (see FIG. 11).
  • histone deacetylase 5 HDAC5
  • histone deacetylase 5 HDAC5
  • lactate dehydrogenase A an enzyme involved in the conversion of pyruvate into lactate
  • expression of CXCR4, PDK4, MAPK3 and KANK4 was regulated using miR483, indicating that expression of CXCR4 and expression of PDK4 were decreased (see FIGS. 12C and 12D).
  • the present invention also provides a vector comprising an expression cassette for producing a target protein.
  • the present invention also provides a transformant transformed with a vector comprising an expression cassette for producing a target protein.
  • the transformant is not limited as long as it is capable of producing a target protein, but may preferably be an animal cell.
  • the transformant may be a eukaryotic cell.
  • the eukaryotic cell may be a mammalian cell. More preferably, the mammalian cells are selected from the group consisting of CHO (Chinese hamster ovary) cells, BHK (baby hamster kidney) cells, mouse myeloma cells, Rat myeloma cells, Hybridoma cells ), Embryonic stem cells, fertilized egg cells, CHO-K1 cells, CHO DUXB11 cells, CHO DG44 cells, N50 cells, NS0 cells, SP2 / 0 cells, YB2 cells, HEK 293 cells, HEK 293 EBNA cells, PER.C6 cells, Namalwa cells and COS cells.
  • CHO Choinese hamster ovary
  • BHK baby hamster kidney
  • mouse myeloma cells Rat myeloma cells
  • Hybridoma cells Hybridoma cells
  • the present invention also provides a method for producing a target protein, comprising culturing an expression cassette-containing transformant for producing a target protein.
  • the present invention provides a method for producing a target protein, comprising the step of transfecting an animal cell with an endogenous gene-regulated intronization sequence and a vector having a target protein expressed as a single promoter; Culturing the transfected animal cells under conditions suitable for expression of the target protein; And recovering the protein of interest from animal cells or cell cultures.
  • a new intron DNA sequence capable of splicing as shown in Table 1 was prepared by appropriately combining the splicing donor (hereinafter referred to as SD), the gene target shRNA sequence, the branch sequence and the splice acceptor (hereinafter, referred to as SA) And synthesized.
  • SD splicing donor
  • SA splice acceptor
  • No. 1 intron (IS) in Table 1 inserts the shRNA sequence without the gene target shRNA or the gene expression regulatory function so that only the splicing effect can occur in the gene DNA.
  • intron 2 to 5 an intron DNA sequence was prepared by inserting shRNA to induce inhibition of expression of each gene.
  • a non-shRNA miRNA was also produced to confirm that it is applicable to the present invention.
  • an expression cassette capable of simultaneously performing intronized shRNA sequences and expression of a target protein was designed by inserting one or more intronized shRNA sequences into one expression cassette expressing a target protein.
  • the expression cassette was synthesized by a GeneArt company combining a splicing donor, a gene target shRNA or miRNA sequence, a branch sequence, and a splicing acceptor nucleotide sequence.
  • the HpaI / NheI or ClaI restriction site was added to both ends of the synthesized DNA sequence by PCR and cloned into an expression cassette composed of CMV (Cytomegalovirus) promoter + palivizumab light chain + poly A.
  • the HpaI and NheI restriction enzymes were used between the CMV promoter and the palivizumab light chain, and the cloning was performed between the Palivizumab light chain and the poly A using ClaI restriction enzyme to prepare a final expression cassette.
  • Palivizumab which is used as a therapeutic agent to prevent respiratory syncytial virus infection in MarEx vector (Korean Patent No. 10-1076602) having dihydrofolate reductase (DHFR) as a selective marker
  • MarEx vector Korean Patent No. 10-1076602
  • DHFR dihydrofolate reductase
  • intronized sequences or intronized shRNA / miRNA sequences for the modulation of one or more endogenous genes in the light chain expression cassette of the MarEx vector expressing Palivizumab see Table 1 and Table 2
  • the plasmid was transformed with E. coli (DH5alpha) to obtain a plasmid.
  • the final vector was obtained by confirming the sequence of the intronized sequence or the MarEx vector containing the intronized shRNA / miRNA sequence and the antibody sequence for one or more endogenous gene regulation, and the plasmid DNA was obtained using the endo-free plasmid maxi kit (Qiagen) Respectively.
  • Inhibition intron shRNA1 (SEQ ID NO: 25) targeting the sequence 626 bp of HDAC5 in Example 3, inhibitory intron shRNA2 (SEQ ID NO: 26) targeting the sequence 823 bp of HDAC5, and inhibitory intron shRNA3 targeting the sequence 2326 bp of HDAC5 (SEQ ID NO: 27). Thereafter, expression of the HDAC5 in the cells was inhibited by temporary expression.
  • RT-PCR was carried out using a one step SYBR PrimeScript RT-PCR kit II (TaKaRa) with the equivalent amount of total RNA (100 ng) and analyzed by real-time PCR after reverse transcription and cDNA synthesis.
  • SYBR PrimeScript RT-PCR kit II TaKaRa
  • the GAPDH primers shown in SEQ ID NOs: 37 and 38 and the HDAC5 primers shown in SEQ ID NOs: 39 and 40 were used.
  • HDAC5 expression inhibition effect was confirmed in all HDAC5 shRNA sequences, and it was confirmed that HDAC5 shRNA3 represented by SEQ ID NO: 27 inhibited 37% compared with the control group and inhibited HDAC5 expression most effectively .
  • Inhibition intron shRNA1 (SEQ ID NO: 28) targeting the 273 bp sequence of LDHA in Example 3, inhibitory intron shRNA2 targeting the sequence 473 bp of LDHA (SEQ ID NO: 29), and inhibitory intron shRNA targeting the sequence 906 bp of LDHA (SEQ ID NO: 30). After that, the expression of the intracellular LDHa was inhibited by temporary expression.
  • the GAPDH primers shown in SEQ ID NOs: 37 and 38 and the LDHA primers shown in SEQ ID NOs: 41 and 42 Respectively.
  • Inhibition intron shRNA1 (SEQ ID NO: 31) targeting the 41 bp sequence of DHFR in Example 3, inhibitory intron shRNA2 (SEQ ID NO: 32) targeting the DHFR sequence 307 bp and inhibitory intron shRNA2 (SEQ ID NO: 33). After that, the expression of DHFR in the cells was inhibited by temporary expression.
  • DHFR expression inhibition effect was confirmed.
  • DHFR shRNA2 shown by SEQ ID NO: 32 inhibited DHFR expression most effectively by inhibiting 58.8% of the control group.
  • Example 4-4 Expression of CXCR4 and PDK4 by miR483 expression
  • the intronized sequences miR483 1 (SEQ ID NO: 34), miR483 2 (SEQ ID NO: 35) and miR483 3 (SEQ ID NO: 36) were derived to induce expression of miR483 in Example 3 above.
  • the expression of CXCR4 (C-X-C chemokine receptor type 4), which is a target of mi483, and the inhibitory effect of PDK4 (Pyruvate Dehydrogenase Kinase 4) were examined through transient expression.
  • Expression confirmation of the gene was the same as the method of Example 4-1.
  • the GAPDH primer represented by SEQ ID NOs: 37 and 38 the GAPDH primer represented by SEQ ID NOs: 37 and 44
  • the CXCR4 represented by SEQ ID NOs: 43 and 44 Primers and PDK4 primers represented by SEQ ID NOs: 45 and 46 were used.
  • miR483 3 represented by SEQ ID NO: 36 increased the expression of CXCR4 by more than 270.4% compared to the control group, and miR483 3 represented by SEQ ID NO: 36 showed expression of PDK4 23.2% inhibitory effect against the control group was confirmed.
  • Example 3 Using the vectors prepared in Example 3, a stable cell line transcribed and expressed with an antibody and intronized sequence or one or more endogenous gene-regulated intronized shRNA / miRNA was prepared.
  • the cells were transfected with the lipofectamine LTX (Lipofectamin LTX, Invitrogen) reagent into CHO-K1 cells (American Type Culture Collection, CCL-61, USA) and then stably transfected Methotrexate (MTX), a DHFR inhibitor, was treated with 500 nM to prepare a cell line stably expressing the antibody.
  • lipofectamine LTX Lipofectamin LTX, Invitrogen
  • MTX Methotrexate
  • Example 6-1 Identify short-term antibody production through transient expression
  • An antibody expression vector containing an intron-free antibody expression vector (Control), an antibody expression vector containing an intron sequence without an endogenous gene control function (IS), and an intronic shRNA / miRNA sequence for endogenous gene regulation was transduced into a transient expression Transient expression) was measured for short-term antibody production.
  • Antibody production was measured using an enzyme linked immunoabsorption assay (ELISA) technique specific for the Fc region of the antibody.
  • ELISA enzyme linked immunoabsorption assay
  • Example 6-2 Identify antibody expression levels in stabilized cell lines
  • An antibody expression vector containing an intron-free antibody expression vector (Control) and an intronized shRNA / miRNA for endogenous gene regulation was transduced to measure the amount of antibody production after the production of the stable cell line.
  • Antibody production was measured using an enzyme linked immunoabsorption assay (ELISA) technique specific for the Fc region of the antibody.
  • ELISA enzyme linked immunoabsorption assay
  • the amount of antibody expressed in the cell line containing the intronized sequence for endogenous gene regulation was increased from 1.57 times to 2.95 times.
  • Antibodies were purified from the cell line prepared in Example 5 and analyzed for sugar chains in the Fc region using a BIO-LC system (DC ICS 3000 system, DIONEX, 06110276).
  • the purified antibody was first heated at 4O < 0 > C for 4 hours using 4M TFA (Trifluoroacetic acid) to separate the monosaccharide.
  • the filtrate was removed using a vacuum drier and dissolved in distilled water. system.
  • the ED detector (DIONEX, 06110046) was used for the measurement and the amino trap column (DIONEX, 046122) was used for the guard column.
  • the analysis column was CarboPac PA 10 column (DIONEX, 046110). Analysis by Bio-LC was shown in Fig. 11, and the area ratio of each peak was quantified and shown in Table 5 below.
  • ⁇ Man5 is a glycan form before G0, G1 or G2 is formed, so it is not calculated by adding to the ratio of fucose not glycosylated
  • the ratio of the antibody without fucose was 16.0 times that of the control.
  • the antibody ratio without fucose binding was 20.9 times that of the control.
  • the ratio of the antibody not conjugated with fucose was 22.2, 20.1, 16.4 times.
  • RNA RNeasy Mini Kit Qiagen
  • RT-PCR was carried out using a one step SYBR PrimeScript RT-PCR kit II (TaKaRa) with the equivalent amount of total RNA (100 ng) and analyzed by real-time PCR after reverse transcription and cDNA synthesis.
  • the GAPDH primers shown in SEQ ID NOs: 37 and 38 and the HDAC5 primers shown in SEQ ID NOs: 39 and 40 were used.
  • the HDAC5 cDNA level was amplified using an Applied Biosystems 7500 Real-Time PCR System for 5 min at 42 ° C, 10 min reverse transcription at 95 ° C, 5 sec at 95 ° C, and 40 sec at 60 ° C, And normalized to the level of the gene GAPDH.
  • HDAC5 and HDAC5 ⁇ FUT8 expression-regulated stable cell lines showed 51.0% and 30.2% inhibition of HDAC5 expression, respectively, as shown in FIG. 12 a.
  • Example 9-2 Identification of LDHA expression control
  • Example 5 Using the stable cell line prepared in Example 5, the inhibition of intracellular LDHA expression was confirmed.
  • the amplification and detection of GAPDH and LDHA cDNA were carried out using the GAPDH primers shown in SEQ ID NOS: 37 and 38 and the LDHA primers shown in SEQ ID NOs: 41 and 42, respectively, in the same manner as in Example 9-1. Respectively.
  • LDHA expression in the LHDA and LDHA x FUT8 expression-regulated stable cell line was inhibited by 71.52% and 40.5%, respectively, compared to the control.
  • Example 9-3 Expression of CXCR4 and PDK4 by miR483 expression
  • CXCR4 which is a target of miR483, and the inhibitory effect of PDK4 were examined using the stable cell line prepared in Example 5 above.
  • the amplification and detection of GAPDH, CXCR4 and PDK4 cDNA were carried out using the GAPDH primers shown in SEQ ID NOs: 37 and 38, the CXCR4 primer shown in SEQ ID NOs: 43 and 44, and the SEQ ID NO: 45 and SEQ ID NO:
  • the PDK4 primer represented by 46 was used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Pulmonology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 프로모터, 목적 단백질을 암호화하는 폴리뉴클레오티드, 인트론화 서열 및 poly A서열을 포함하는 목적 단백질 발현 카세트, 발현 벡터 및 형질전환체에 관한 것이다. 본 발명에 따른 목적 단백질 발현 카세트는 한번의 형질도입으로 인트론화 서열과 목적 단백질의 발현을 동시에 수행할 수 있으며, 내인성 유전자의 발현 조절로 목적 단백질의 고발현 및 고기능성을 유도하는 효과를 보유하고 있다.

Description

고발현 및 고기능성 목적 단백질의 생산을 위한 발현 카세트 및 이의 이용
본 발명은 프로모터, 고발현 및 고기능성 목적 단백질의 생산을 위한 발현 카세트 및 이의 이용에 관한 것이다.
중국 햄스터 난소세포(Chinese hamster ovary cell, CHO)와 같은 동물세포는, 재조합단백질 생산, 특히 항체와 같은 치료용단백질 생산을 위해 산업적으로 널리 이용되고 있다. CHO와 같은 포유동물세포를 이용하여 생산된 단백질은 번역 후 수식(Post translational modification) 과정을 거쳐 당쇄화(Glycosylation)됨으로써 완전한 생물학적 활성(Biological activity)을 갖게 된다.
CHO와 같은 포유동물세포를 이용한 재조합단백질 생산은 발현 벡터, 발현 방법, 배양 기술 등의 개량으로 과거에 비해 고농도 생산이 가능해졌음에도 불구하고, 미생물 또는 효모 등을 이용한 생산에 비하여 고가의 배지를 사용하고 성장속도 또한 느리기 때문에 생산 비용이 높을 수 밖에 없다. 따라서 포유동물세포를 이용하여 재조합단백질을 생산할 경우, 생산성을 최대한 증가시키는 것이 상업성 측면에서 꼭 필요하다.
또한 특정 내인성 유전자(Endogenous gene)의 발현이 조절된 동물세포주를 이용하여 재조합단백질 특히 치료용 항체 생산에 이용할 수 있다면 생산성 향상 또는 치료 효과 향상 및 치료 범위를 넓히는 데 이용할 수 있어 상당히 유용하다.
예를 들어 IgG형 치료항체의 경우 Fc 영역의 297번 아스파라긴에 부착된 당쇄 중 푸코오스(Fucose)가 부재하는 경우 자연살해세포(Natural killer cell)의 항체 Fc 영역 수용체와의 결합력을 증대시켜 항체의존성 세포독성(Antibody-dependent cellular cytotoxicity, ADCC)을 높이는 효과가 있다고 보고 되어 있다(Shields, R. L. et al., The Journal of Biological Chemistry, 277(30), 26733-26740, 2002). 따라서 항체의 Fc 영역의 297번 아스파라긴에 푸코오스를 부착시키는 효소를 저해할 수 있다면 항체의존성 세포독성이 높은 치료용 항체를 생산할 수 있다.
재조합단백질의 생산성 증대 및 품질 조절을 위한 방법으로, 특정 내인성 유전자의 발현을 조절하는 방법이 있을 수 있다. 내인성 유전자의 발현 저해 방법으로는 상동 재조합(Homologous recombination)에 의한 유전자 파괴법(Gene knockout)(Yamane-Ohnuki, N. et al., Biotechnology and Bioengineering, 87(5), 614-622, 2004), 타겟 유전자의 mRNA와 상보적인 서열을 가지는 RNA를 이용하여 타겟 유전자의 mRNA 분해를 유도하는 RNA 간섭법(RNA interference)(Mori, K. et al., Biotechnology and Bioengineering, 88(7), 901-908, 2004)등이 있고, 내인성 유전자의 발현 증대 방법으로는 강력한 프로모터(Promoter)를 가진 특정 내인성 유전자를 형질도입(Transfection)하여 고발현을 유도하는 방법이 있을 수 있다. 또한 Non coding DNA로부터 전사되는 작은 사이즈의 마이크로 RNA(mircoRNA; miRNA)는 단백질의 번역을 조절하는 생물학적 기능이 알려지면서 세포의 기능 및 운명을 조절하는 새로운 조절자로 보고되고 있으며, 이러한 miRNA를 이용하여 전사 후 조절 과정에서 내인성 유전자 발현을 조절하여 세포증식 및 사멸을 조절한 연구결과가 보고 되었다(Amelia Cimmino et al., PNAS, 102(39), 13944-13949, 2005).
위와 같은 방법으로 특정 내인성 유전자의 발현을 조절하기 위해서는 특정 내인성 유전자의 발현을 조절할 수 있는 유전정보를 가진 발현 벡터가 필요하며 동물세포 내로 형질도입 과정을 거쳐 내인성 유전자가 안정적으로 증가 또는 억제된 세포주를 선별하여야 한다. 이러한 세포주를 선별하기 위하여 내인성 유전자 조절 정보를 가진 벡터는 선별표지자(Selection maker)의 유전 정보도 포함하게 된다. 특정 내인성 유전자 발현이 조절된 세포주를 먼저 제작한 후, 재조합단백질 발현을 위한 발현 벡터를 추가로 형질도입 하고, 특정 내인성 유전자 발현 조절 벡터가 포함하고 있는 것과는 다른 종류의 선별표지자를 이용하여 재조합단백질 발현 세포주가 선별된다. 이렇게 여러 과정을 거쳐야 하는 복잡성 때문에 여러 내인성 유전자들의 발현을 동시에 조절하면서 재조합단백질을 생산하는 것은 더욱 어려운 작업이라 할 수 있다.
재조합단백질의 생산성을 증대시킬 수 있는 또 다른 방법으로, 인트론 구조를 이용하는 방법이 있을 수 있다. 진핵세포에서 발견되는 서열인 인트론(Intron)은, RNA 중합효소에 의하여 전사된 mRNA 전구체(Precursor mRNA; pre-mRNA)가 스플라이싱(Splicing)과정을 통해 성숙 mRNA(mature RNA)로 프로세싱 되는 과정에서 제거되는 서열로써, 인트론에 의하여 유도되는 스플라이싱 과정을 통해 단백질 발현이 향상된다고 보고되어 있다(Herve' Le Hir. et al., TRENDS in Biochemical Sciences, 28(4), 215-220, 2003).
이에 본 발명자들은 동시에 다수의 내인성 유전자를 조절 시 발생하는 기존의 어려움을 극복하기 위하여 내인성 유전자의 발현을 조절하는 인트론화된 짧은 헤어핀 RNA(short hairpin RNA; shRNA)의 서열들과 목적 재조합 단백질의 서열이 단일 프로모터로 전사 및 발현되는 벡터를 발명하였으며, 한번의 형질도입으로 다수의 내인성 유전자들의 발현을 조절하여 재조합 단백질의 고발현 및 고기능성 유도할 수 있는 본 발명을 완성하였다.
기존의 내인성 유전자 발현 조절과 목적 단백질의 생산 시, 각각의 발현 카세트를 이용함으로써 세포주 선별이 용이하지 못하고, 내인성 유전자의 발현 조절이 적절히 이루어지지 않는 등의 문제점이 있었다.
본 발명이 해결하고자 하는 과제는 고발현, 고기능성 목적 단백질 생산을 위하여, 프로모터, 목적 단백질을 암호화하는 폴리뉴클레오티드, 인트론화 RNA 서열 및 poly A 서열을 포함하는 목적 단백질 발현 카세트를 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는 목적 단백질 생산용 발현 카세트를 포함하는 벡터를 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는 목적 단백질 생산용 발현 카세트를 포함하는 형질전환체를 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는 목적 단백질 생산용 발현 카세트가 포함된 형질전환체를 배양하는 단계를 포함하는, 목적 단백질의 제조 방법을 제공하는 것이다.
본 발명은 프로모터, 목적 단백질을 암호화하는 폴리뉴클레오티드, 인트론화 RNA 서열 및 poly A 서열을 포함하는 목적 단백질 발현 카세트로써, 상기 인트론화 RNA 서열은 스플라이싱 공여체(Splicing donor), 브랜치(Branch) 및 스플라이싱 수용체(Splicing acceptor)를 포함하는 목적 단백질 생산용 발현 카세트를 제공한다.
본 발명의 일 구현예에서, 상기 목적 단백질은 항체 또는 이의 단편일 수 있다.
본 발명의 일 구현예에서, 상기 인트론화 RNA 서열은 단일 목적 단백질 발현 카세트 상에 1개 이상 존재할 수 있다.
본 발명의 일 구현예에서, 상기 발현 카세트는 하기 군으로부터 선택된 어느 하나 이상의 인트론화 RNA 서열을 포함할 수 있다: a) 프로모터와 목적 단백질을 암호화하는 폴리뉴클레오티드 사이에 위치한 1개 이상의 인트론화 RNA 서열; b) 목적 단백질을 암호화하는 폴리뉴클레오티드와 poly A 사이에 위치한 1개 이상의 인트론화 RNA 서열; 및 c) 프로모터와 목적 단백질을 암호화하는 폴리뉴클레오티드 사이에 위치한 1개 이상의 인트론화 RNA 서열과 목적 단백질을 암호화하는 폴리뉴클레오티드와 poly A 사이에 위치한 1개 이상의 인트론화 RNA 서열.
본 발명의 일 구현예에서, 상기 인트론화 RNA 서열은 타겟 유전자 발현 조절을 위한 RNA 서열을 추가적으로 포함할 수 있다.
본 발명의 일 구현예에서, 상기 타겟 유전자는 FUT8(Alpha-1,6-fucosyltransferase), HDAC5(Histone Deacetylase 5), LDHA(Lactate dehydrogenase A), CXCR4(C-X-C chemokine receptor type 4), DHFR(Dihydrofolate reductase), PDK4(Pyruvate dehydrogenase lipoamide kinase isozyme 4), MAPK3(Mitogen-activated protein kinase 3), KANK4(KN Motif And Ankyrin Repeat Domains 4), PDI(Protein disulfide isomerase), CNX(Calnexin), CRT(Calreticulin), elF2alpha(Non-phosphorylatable version of the eukaryotic translation initiation factor 2 alpha), ZFP-TF(Artificial zinc finger protein transcription factor), ATF4(Activating transcription factor 4), GADD34(Growth arrest and DNA damage inducible protein 34), mTOR(Mammalian target of rapamycin), BIP(Heat shock 70kDa protein 5), ATF6C(Activating transcription factor 6C), XBP1(X-box binding protein 1), BCL2(B-cell lymphoma 2), BCLxL(BCL2-like 1), Mutated form of BCL-xL(Asp29Asn variant), XIAP(X-linked inhibitor of apoptosis), a mutant form of XIAP(EAX197), AVEN(Apoptosis, caspase inhibitor), C-MYC(Myelocytomatosis oncogene), FAIM(Fas apoptotic inhibitory molecule), 30Kc6(Apoptosis-inhibiting 30K protein), TERT(Telomerase reverse transcriptase), E1B-19K(Control protein E1B 19K), MDM2(Murine double-mutant 2), E2F1(E2F transcription factor 1), HSP27(Heat shock proteins 27), HSP70(Heat shock proteins 70), MCL1(Myeliod cell leukemia 1), AKT1(RAC-alpha serine/threonineprotein kinase), Beclin-1, ST6GAL(Alpha 2,6 sialyltransferase), GnT-IV(Alpha-1,3-D-mannoside beta 1,4 Nacetylglucosaminyltransferase), GnT-V(alpha 1,6 Dmannoside beta-1,6 Nacetylglucosaminyltransferase), ST3GAL(Alpha 2,3 sialyltransferase), GalT(beta 1,4 galactosyltransferase), CMP-SAT(CMP-sialic acid transporter), CMP-SAS(CMP-sialic acid synthetase), GNE(Mutant uridine diphosphate-N-acetyl glucosamine 2- epimerase), GnT-III(Beta 1,4 Nacetylglucosaminyltransferase III), ManII(Golgi alphamannosidase II), C2GnT(Beta 1,6 Nacetylglucosaminyltransferase), RMD(GDP-6-deoxy-d-lyxo-4- hexulose reductase), VHb(Vitreoscilla hemoglobin), CPS I(Carbamoyl phosphate synthetase I), OTC(Ornithine transcarbamoylase), PC(Pyruvate carboxylase), GLUT5(Glucose transporter protein 5), MDH2(Malate dehydrogenase II), TAUT(Taurine transporter), ALT1(Alanine aminotransferase 1), XBP1(X-box binding protein 1), XBP1s(Spliced form of XBP-1), SLY1(Suppressor of loss of YPT1 protein 1), MUNC18C(syntaxin binding protein 3), CERT(Ceramide transfer protein), Mutant form of CERT(S132A), SNAP-23(Synaptosome-associated protein of 23 kDa), VAMP8(Vesicle-associated membrane protein 8), SRP14(Human signaling receptor protein 14), p21CIP1(Cyclin-dependent kinase Inhibitor 1A), C/EBP-alpha(CCAAT/enhancer-binding protein alpha), p27KIP1(Cyclin-dependent kinase inhibitor 1B), CDKL3(Cyclin-dependent kinase like 3), COX15(Cytochrome c oxidase subunit), VCP(Valosin-containing protein), BAX(BCL2-associated X protein), BAK(BCL2-antagonist/killer), GS(Glutamine synthetase), MGAT1(N-acetylglucosaminyltransferase 1), SLC35C1(GDP-fucose transporter), SLC35A1(CMPsialic acid transporter), B4GALT1(Beta 1,4 galactosyltransferase 1), B3GNT2(Beta 1,3 Nacetylglucosaminyltransferase 2), PAM(Peptidylglycine alphaamidating monooxygenase), Caspase 3, Caspase 7, Caspase 8, Caspase 9, ALG2(Alpha-1,3/1,6- mannosyltransferase), REQ(Requiem), FADD(Fas(TNFRSF6)-associated via death domain), FAIM(Fas apoptotic inhibitory molecule), NEU2(Sialidase 2), NEU1(Sialidases 1), NEU3(Sialidases 3), GMD(GDP-fucose 4,6-dehydratase), GFT(GDP-fucose transporter),CFL1(Cofilin), ATR(Ataxia telangiectasia and Rad3 related), ENO1(Enolase 1) 및 PDHK(Pyruvate dehydrogenase kinase)로 이루어지는 군에서 선택되는 어느 하나 이상일 수 있다.
본 발명의 일 구현예에서, 상기 타겟 유전자 발현 조절을 위한 인트론화 RNA서열은 shRNA(Short hairpin RNA), miRNA(micro RNA), stRNA(Small temporal RNA), siRNA(small interfering RNA), piRNA(piwi-interacting RNA), snoRNA(small nucleolar RNA), snRNA(small nuclear RNA), exRNA(Extracellular RNA), scaRNA(small cajal body RNA), lncRNA(long non-coding RNA), smRNA(small modulatory dsRNA) 및 snRNA(small noncoding RNA)로 이루어진 군에서 선택되는 어느 하나 이상의 서열일 수 있다.
본 발명의 일 구현예에서, 상기 타겟 유전자 발현 조절을 위한 shRNA 서열은 서열번호 24로 표시되는 인트론화 FUT8 shRNA, 서열번호 25 내지 27 중 어느 하나로 표시되는 인트론화 HDAC5(Histone deacetylase 5) shRNA, 서열번호 28 내지 30 중 어느 하나로 표시되는 인트론화 LDHA(Lactate dehydrogenase A) shRNA 및 서열번호 31 내지 33 중 어느 하나로 표시되는 인트론화 DHFR(Dihydrofolate reductase) shRNA로 이루어지는 군에서 선택되는 어느 하나 이상일 수 있다.
본 발명의 일 구현예에서, 상기 타겟 유전자 조절을 위한 인트론화 miRNA 서열은 서열번호 34 내지 36 중 어느 하나로 표시되는 miR483일 수 있다.
본 발명의 일 구현예에서, 상기 스플라이싱 공여체(Splicing donor) 서열은 서열번호 12 내지 15 중 선택되는 어느 하나 이상이고, 상기 브랜치(Branch) 서열은 서열번호 16 내지 18 중 선택되는 어느 하나 이상이며, 상기 스플라이싱 수용체(Splicing acceptor) 서열은 서열번호 19 내지 22 중 선택되는 어느 하나 이상인 것일 수 있다.
본 발명의 일 구현예에서, 목적 단백질 생산용 발현 카세트는 인트론의 스플라이싱(Splicing) 또는 내인성 유전자의 발현 조절을 통해, 목적 단백질의 고발현, 락테이트(Lactate) 생성 저해, 히스톤(Histone) 단백질의 탈아세틸화 조절, 글루코오스(Glucose) 대사 조절, 세포 성장 조절, 세포 증식 조절, 목적 단백질의 고기능성 및 목적 단백질의 푸코오스 저함량으로 이루어지는 군에서 선택되는 어느 하나 이상의 효과를 가지는 것일 수 있다.
또한, 본 발명은 목적 단백질 생산용 발현 카세트를 포함하는 벡터를 제공한다.
또한 본 발명은 목적 단백질 생산용 발현 카세트를 포함하는 벡터로 형질전환된 형질전환체를 제공한다.
본 발명의 일 구현예에서, 상기 형질전환체는 진핵생물 세포인 것일 수 있다.
또한, 본 발명은 목적 단백질 생산용 발현 카세트 포함 형질전환체를 배양하는 단계를 포함하는, 목적 단백질의 제조방법을 제공한다.
본 발명에 따른 목적 단백질 발현 카세트는 한번의 형질도입으로 인트론화 서열과 목적 단백질의 발현을 동시에 수행할 수 있으며, 내인성 유전자의 발현 조절로 목적 단백질의 고발현 및 고기능성을 유도하는 효과를 보유하고 있다. 또한, 본 발명에 따른 발현 벡터는 단일 프로모터에 의해 목적 단백질과 인트론화 서열이 전사적으로 연결되어 있으므로, 목적 단백질의 발현만을 확인하여 세포주를 선별하여도 인트론화 서열의 전사가 원활이 이루어지는 세포주 선별을 할 수 있어 효과적이다.
도 1은 인트론화 shRNA/miRNA를 포함한 재조합단백질의 발현 카세트의 구조를 나타낸 모식도이다. 세포 내로 형질도입 후 인트론의 스플라이싱 과정을 거쳐 shRNA/miRNA와 재조합단백질이 만들어지는 본 발명의 원리를 도식화한 것이다.
도 2는 인트론이 없는 재조합 단백질(항체) 발현 벡터(Control), 내인성 유전자 조절 기능 없는 인트론 서열(IS)을 포함한 항체 발현 벡터, 내인성 유전자 조절을 위해 인트론화 shRNA/miRNA를 포함한 항체 발현 벡터의 모식도이다.
도 3은 HDAC5 조절용 인트론화 shRNA를 포함하는 항체 발현 벡터를 형질도입한 후, shRNA에 의하여 조절된 HDAC5의 mRNA 양을 정량적인 RT-PCR 방법으로 확인한 결과 그래프이다.
도 4는 LDHA 조절용 인트론화 shRNA를 포함하는 항체 발현 벡터를 형질도입한 후, shRNA에 의하여 조절된 LDHA의 mRNA 양을 정량적인 RT-PCR 방법으로 확인한 결과 그래프이다.
도 5는 DHFR 조절용 인트론화 shRNA를 포함하는 항체 발현 벡터를 형질도입한 후, shRNA에 의하여 조절된 DHFR의 mRNA 양을 정량적인 RT-PCR 방법으로 확인한 결과 그래프이다.
도 6은 인트론화 miR483을 포함하는 항체 발현 벡터를 형질도입한 후, miR483에 의하여 조절된 CXCR4의 mRNA 양을 정량적인 RT-PCR 방법으로 확인한 결과 그래프이다.
도 7은 인트론화 miR483을 포함하는 항체 발현 벡터를 형질도입한 후, miR483에 의하여 조절된 PDK4의 mRNA 양을 정량적인 RT-PCR 방법으로 확인한 결과 그래프이다.
도 8은 인트론이 없는 항체 발현 벡터(Control), 내인성 유전자 조절 기능이 없는 인트론 서열(IS)을 포함하는 항체 발현 벡터, 내인성 유전자 조절을 위한 인트론화 shRNA/miRNA를 포함하는 항체 발현 벡터를 각각 형질도입한 후, 일시 발현(Transient expression)을 통한 단기간 동안의 항체 생산량을 비교한 그래프이다.
도 9는 인트론이 없는 항체 발현 벡터(Control), 내인성 유전자 조절을 위한 인트론화 shRNA/miRNA를 포함하는 항체 발현 벡터를 각각 형질도입하여 안정성 세포주를 제작한 후, 항체 생산량을 측정한 결과 그래프이다.
도 10은 DHFR 조절용 인트론화 shRNA를 포함하는 항체 발현 벡터를 형질도입한 후, 메토트렉세이트(Methotrexate; MTX)를 이용하여 선별된 안정성 세포주 수를 확인한 결과 그래프이다.
도 11a 내지 도 11f는 내인성 유전자 조절을 위한 인트론화 shRNA를 포함하는 항체 발현 벡터를 형질도입한 후, 안정성 세포주에서 생산된 항체의 당쇄를 Bio-LC를 이용하여 분석한 결과이다(a: 대조군, b: FUT8 인트론화 shRNA 포함된 실험군, c: FUT8 인트론화 shRNA 2개 포함된 실험군, d: HDAC5와 FUT8 shRNA가 모두 포함된 실험군, e: LDHA와 FUT8 shRNA가 모두 포함된 실험군, f: miR483 miRNA와 FUT8 shRNA가 모두 포함된 실험군).
도 12는 내인성 유전자 조절을 위한 인트론화 shRNA/miRNA를 포함한 항체 발현 벡터를 형질도입하여, 안정성 세포주 제작한 후, 내인성 유전자(a: HDAC5, b: LDHA, c: CXCR4 및 d: PDK4)의 mRNA의 양을 정량적인 RT-PCR 방법으로 확인한 결과 그래프이다.
본 발명은 프로모터, 고발현 및 고기능성 목적 단백질의 생산을 위한 발현 카세트 및 이의 이용에 관한 것이다.
본 발명에 따른 발현 벡터는 한번의 형질도입으로 인트론화 서열과 목적하는 재조합 단백질의 발현을 동시에 수행할 수 있으며, 내인성 유전자의 발현 조절로 재조합 단백질의 고발현 및 고기능성을 유도하는 효과를 보유하고 있다. 또한 본 발명에 따른 발현 벡터는 단일 프로모터에 의해 재조합 단백질과 shRNA 서열이 전사적으로 연결되어 있으므로, 재조합 단백질의 발현 확인만으로 세포주를 선별하여도 shRNA의 전사가 원활이 이루어진 세포주 선별이 가능한 효과를 가진다.
또한 본 발명에 따른 발현 벡터는 한번의 형질도입으로 여러 내인성 유전자를 조절할 수 있는 효과를 보유하고 있다.
본 발명에 따른 발현 벡터는 목적 단백질로 항체를 생산할 때, 인트론화된 shRNA 서열이 당쇄화 관련 유전자(ex. FUT8)의 발현을 억제하여 항체의 푸코오스 당쇄화가 저해된 항체를 생산할 수 있다. 또는 인트론화된 shRNA 서열이 세포사멸 관련 유전자의 발현을 억제하여 항체의 생산량을 증대시킬 수 있다.
본 발명을 보다 용이하게 이해하기 위하여, 본 발명에서 사용된 용어가 하기에 정의된다.
"목적 단백질"은 생산하고자 하는 단백질을 의미한다.
"인트론화 RNA 서열"은 DNA가 전사되어 mRNA가 되는 과정에서 인트론으로 제거되는 부분의 RNA 서열을 의미한다. 스플라이싱 공여체, 스플라이싱 수용체, 브랜치를 포함한다. 보통 스플라이싱 공여체는 AG_GTRAGT(R: A 또는 G), 스플라이싱 수용체는 YYYYYYYYYYNCAG_G(Y: C 또는 T; N: A, G, C 또는 T), 브랜치는 YTRAC 와 같은 특징적인 서열을 가지고 있으나, 꼭 이러한 서열 외에도 스플라이싱이 일어날수 있는 모든 서열을 포함한다. 인트론화 RNA 서열은 그 자체로 기능성을 가질 수도 있고, 가지지 않을 수도 있다.
"Poly A 서열"은 3' mRNA 말단에 위치하는 아데닐산의 연속한 서열을 의미한다.
"스플라이싱 공여체" 및 "스플라이싱 수용체"는 스플라이싱 과정이 일어나도록 하는 서열로, 스플라이싱 공여체는 인트론의 5' 부분에 위치하고, 스플라이싱 수용체는 인트론의 3' 부분에 위치한다.
"브랜치(branch)"는 뉴클레오티드 아데닌을 포함하고 스플라이싱 과정 중 래리어트(lariat) 구조를 형성하는 데 관여하는 부분이다
"발현 카세트"는 프로모터와 목적 단백질을 포함하고, 목적 단백질 생산을 위해 목적 단백질을 발현시킬 수 있는 단위 카세트를 의미한다. 발현 카세트의 내부에는 상기 목적 단백질의 효율적인 생산을 도울 수 있는 다양한 인자가 포함될 수 있다. 보다 구체적으로 발현 카세트는 프로모터, 목적 단백질을 암호화하는 폴리뉴클레오티드 및 poly A 서열을 포함할 수 있다.
"항체"는 2개의 중쇄(Heavy Chain) 및 2개의 경쇄(Light Chain)가 디설파이드 결합(Disulfide bond)에 의해 서로 연결되어 있는 4개의 폴리펩타이드쇄로 이루어진 면역글로불린 분자를 가리킨다. 기타 변화된 구조를 갖는 자연 발생 항체, 예를 들어 카멜리드 항체(Camelid antibody)도 이 정의에 포함된다. 각각의 중쇄는 중쇄 가변 영역 및 중쇄 불변 영역으로 이루어진다. 중쇄 불변 영역은 3개의 도메인(CH1, CH2 및 CH3)으로 이루어진다. 각각의 경쇄는 경쇄 가변 영역 및 경쇄 불변 영역으로 이루어진다. 경쇄 불변 영역은 1개의 도메인(CL)으로 이루어진다. 중쇄 가변 영역 및 경쇄 가변 영역은, 골격 영역(FR)으로 불리는 보다 보존된 영역과 상보성 결정 영역(CDR)으로 불리는 초가변성 영역으로 더욱 세분될 수 있다. 각각의 중쇄 가변 영역 및 경쇄 가변 영역은 3개의 CDR 및 4개의 FR로 이루어지고, 이들은 아미노 말단에서 카복시 말단까지 하기의 순서로 배열되어 있다: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
"발현 조절"은 특정 유전자의 발현량을 조절한다는 의미로, 이 때, '조절'은 증가 또는 감소의 개념을 모두 포함한다.
"shRNA"는 짧은 간섭 RNA(short interference RNA; siRNA)의 서열을 포함하는 헤어핀 구조의 RNA로 세포 내에서 다이서(Dicer)라는 RNase 효소에 의해 짧은 간섭 RNA로 프로세싱 된다.
본 발명의 다양한 측면은 본원에 추가로 상세히 기술한다.
본 발명은 프로모터, 목적 단백질을 암호화하는 폴리뉴클레오티드, 인트론화 RNA 서열 및 poly A 서열을 포함하는 목적 단백질 발현 카세트로써, 상기 인트론화 RNA 서열은 스플라이싱 공여체, 브랜치 및 스플라이싱 수용체를 포함하는 것을 특징으로 하는 목적 단백질 생산용 발현 카세트를 제공한다.
본 발명의 도 1에는 인트론화 shRNA/miRNA를 포함한 재조합단백질의 발현 카세트의 구조를 나타낸 모식도를 나타내었다. 이는 세포 내로 형질도입 후 인트론의 스플라이싱 과정을 거쳐 shRNA/miRNA와 재조합단백질이 만들어지는 본 발명의 원리를 도식화한 것이다.
본 발명은 인트론화 RNA 서열과 목적 단백질의 서열이 단일 프로모터 하에서 하나의 mRNA로 전사된 후 스플라이싱을 통해 목적 단백질의 생산성 및 기능성을 향상시킬 수 있는 방법을 제공한다.
상기 프로모터는 본 발명의 발현 카세트를 작동시킬 수 있는 프로모터라면 무엇이든 사용 가능하나, 바람직하게는 polII 계열의 프로모터일 수 있다. 보다 바람직하게는 CMV(cytomegalovirus), EF1α(elongation factor 1 alpha), CEF(CMV early enhancer/EF1α promoter and intron), CBA(chickenbeta-actin), CAG(CMV early enhancer/chicken beta-actin promoter & intron), CBh(CMV early enhancer/chicken beta-actin promoter), GAPDH(Glyceraldehyde 3-phosphate dehydrogenase), SV40(Simian virus 40), UBC(ubiquitin C), PGK(phosphoglycerate kinase), LTR(long terminal repeats), GUSB(β glucuronidase), UCOE(ubiquitous chromatin opening element), WAS proximal promoter, CD4 mini-promoter/enhancer, CD2 locus control region, CD4 minimal promoter/proximal enhancer/silencer, CD4 mini-promoter/enhancer, GATA-1 enhancer HS2 within the LTR, Ankyrin-1/α-spectrin promoters/HS-40, GATA-1, ARE/intron 8 enhancers, Ankyrin-1 promoter/β-globin HS-40 enhancer, GATA-1 enhancer HS1 to HS2/retroviral LTR, MCH II-specific HLA-DR promoter, Fascin promoter, Dectin-2 gene promoter, 5' untranslated region from the DC-STAMP, Heavy chain intronic enhancer(Eμ)/matrix attachment regions, CD19 promoter, Hybrid immunoglobulin promoter(Igk promoter, intronic Enhancer/3' enhancer from Ig genes), CD68L promoter/first intron, Glycoprotein Ib α promoter, hAAT(α1-antitrypsin), ApoE(Apolipoprotein E), ApoE/hAAT(Apolipoprotein E enhancer/alpha1-antitrypsin) promoter, HAAT promoter/Apo E locus control region, Albumin promoter, HAAT promoter/four copies of the Apo E enhancer, HAAT promoter/Apo E locus control region, hAAT promoter/four copies of the Apo E enhancer, Thyroid hormone-binding globulin promoter/α1-microglobulin/bikunin enhancer, DC172 promoter(α1-antitrypsin promoter/α1-microglobulin enhancer), LCAT, kLSP-IVS, ApoE/hAAT/liver-fatty acid-binding protein promoters, RU486-responsive promoter, Creatine kinase promoter, C5-12(Synthetic muscle-specific promoter), MHCK7(Hybrid enhancer/promoter regions of α-myosin and creatine kinase), Cardiac troponin-I proximal promoter, E-selectin/KDR promoters, Prepro-endothelin-1 promoter, KDR promoter/hipoxia-responsive element, Flt-1(fms-like tyrosine kinase-1) promoter, ICAM-2(intercellular adhesion molecule2) promoter, Synthetic endothelial promoter, Endothelin-1 gene promoter, Amylase promoter, Insulin and human pdx-1 promoters, TRE-regulated insulina promoter, Enolase promoter, TRE-regulated synapsin promoter, Synapsin 1 promoter, PDGF(platelet-derived growth factor), PDGF-β promoter/CMV enhancer, tubulin-α,Ca2+/calmodulin-PK2 promoters/CMV enhancer, Phosphate-activated glutaminase/vesicular glutamate transporter-1 promoters, Glutamic acid decarboxylase-67 promoter, Tyrosine hydroxylase promoter, Neurofilament heavy gene promoter, Human red opsin promoter, Keratin-18 promoter, Keratin-14 promoter, Keratin-5 promoter, CD40L promoter, β-Globin promoter/LCR, β-Globin and -globin promoters/HS-40, GATA-1, ARE/intron 8 enhancers, β-Globin, LCR HS4, HS3, HS2/truncated β-globin intron 2, β-Globin promoter/LCR/cHS4, HSFE/LCR/β-globin promoter, Integrinα Iib promoter, Dystrophin promoter/regulatory sequences, Endoglin promoter, RPE65 promoter, TBG(thyroxine binding globulin), Desmin, MCK(muscle creatine kinase),NSE(neuronal-specific endolase), MeCP2(methyl-CpG binding protein 2), CaMKII(calcium/calmodulin dependent protein kinase II), mGluR2, NFL, NFH, nB2, PPE, Enk, EAAT2, GFAP(glial fibrillary acidic protein), MBP(Myelin basic protein), Myosin heavy-chain, Myosin light-chain, MND(a synthetic promoter that contains the U3 region of a modified MoMuLV LTR with myeloproliferative sarcoma virus enhancer), CYP2E1(Cytochrome P450 2E1), MeCP2(methyl-CpG binding protein 2) 프로모터 중에서 선택되는 polII 계열의 프로모터 일 수 있다. 가장 바람직하게, 프로모터는 CMV(Cytomegalovirus) 프로모터일 수 있다.
shRNA와 같은 짧은 단편 DNA를 효과적으로 전사 시키기 위해서는 polIII 계열의 프로모터 사용이 필요하다. 그러나 이러한 polIII 계열의 프로모터들은 목적 단백질의 고발현을 유도하기 어려워 shRNA 와 목적 단백질을 발현시키기 위해서는 각각의 프로모터를 가진 발현 카세트가 필요하였다. 따라서, 발현 카세트들의 크기, 형질도입 및 선별작업 등의 문제로 목적 단백질 발현과 내인성 유전자 발현이 조절되는 세포주를 한번에 제작하는 데에는 어려움이 있었다. 이러한 문제점을 극복하기 위하여 강력한 프로모터 중에 하나인 polII 계열의 CMV 프로모터를 사용하였고, 이 shRNA의 DNA 서열이 전사 후 유전자조절 기능을 할 수 있는 shRNA 구조를 형성할 수 있도록 서열 양 말단에 인트론화 서열을 배치하였다. 따라서, 전사 과정 중 스플라이싱을 통해 shRNA가 만들어지게 되고 이렇게 만들어진 shRNA들은 특정 내인성 유전자들의 발현을 조절하게 된다. 동시에 동일 CMV 프로모터로 전사 및 발현되는 목적 단백질은 내인성 유전자의 발현 조절로 인하여 생산량 증대 및 기능성 강화 효과를 가지게 된다.
상기 목적 단백질은 어느 것이든 될 수 있으나, 바람직하게는 항체 또는 이의 단편일 수 있다.
본 발명의 일 구현예에서, 상기 항체 또는 이의 단편은 CD19, CD20, CD22, CD33, CD52, Her2/neu, EGFR, EpCAM, MUC1, GD3, CEA, CA125, HLA-DR, TNF-α, VEGF, Integrinα4β7, IL-12, IL-23, Anti-CD20 Mab, IL-6R, VEGF receptor kinase inhibitor, complement factor C5, IL-1 beta, RANK Ligand, VEGFR2(KDR), IL-6, GD20, IL-5, PDGF-Rα, CTLA-4, CD3, IL-17A, PD-L1, PD-1, BAFF, BLyS, Dabigatran, SLAMF7(CD319), Anti-IL-4, IL-13 Mab, Bacillus anthracis anthrax, CD25, Clostridium difficile toxin B, PCSK9, hemagglutinin(HA) of influenza virus, F protein of RSV(Respiratory syncytial virus), G protein of RSV, IgE(immunoglobulin E) 및 G protein of Rabies virus로 이루어지는 군으로부터 선택되는 어느 하나의 타겟 항원에 대해 특이성(specificity)을 갖는 것일 수 있다.
본 발명의 일 구현예에서, 상기 인트론화 RNA 서열은 단일 목적 단백질 발현 카세트 상에 1개 이상 존재할 수 있다. 본 발명의 발현 벡터는 동물세포의 목적 내인성 유전자들을 타겟으로 하는 한 개 이상의 shRNA/miRNA의 서열 정보를 구성으로 포함하고, 한 개 이상의 shRNA/miRNA가 생성될 수 있도록 하는 인트론화 서열을 구성으로 포함한다.
본 발명의 일 구현예에서, 상기 발현 카세트는 하기 군으로부터 선택된 어느 하나 이상의 인트론화 RNA 서열을 포함할 수 있다: a) 프로모터와 목적 단백질을 암호화하는 폴리뉴클레오티드 사이에 위치한 1개 이상의 인트론화 RNA 서열; b) 목적 단백질을 암호화하는 폴리뉴클레오티드와 poly A 사이에 위치한 1개 이상의 인트론화 RNA 서열; 및 c) 프로모터와 목적 단백질을 암호화하는 폴리뉴클레오티드 사이에 위치한 1개 이상의 인트론화 RNA 서열과 목적 단백질을 암호화하는 폴리뉴클레오티드와 poly A 사이에 위치한 1개 이상의 인트론화 RNA 서열.
본 발명의 도 2에는 인트론이 없는 재조합 단백질(항체) 발현 벡터(control), 내인성 유전자 조절 기능 없는 인트론 서열(IS)을 포함한 항체 발현 벡터, 내인성 유전자 조절을 위해 인트론화 shRNA/miRNA를 포함한 항체 발현 벡터의 모식도가 나타나 있으며, 이를 통해 인트론화 RNA 서열이 1개 이상 포함될 수 있음을 알 수 있다.
본 발명의 일 구현예에서, 상기 인트론화 RNA 서열은 타겟 유전자 발현 조절을 위한 RNA 서열을 추가적으로 포함할 수 있다.
본 발명의 일 구현예에서, 상기 타겟 유전자는 FUT8(Alpha-1,6-fucosyltransferase), HDAC5(Histone Deacetylase 5), LDHA(Lactate dehydrogenase A), CXCR4(C-X-C chemokine receptor type 4), DHFR(Dihydrofolate reductase), PDK4(Pyruvate dehydrogenase lipoamide kinase isozyme 4), MAPK3(Mitogen-activated protein kinase 3), KANK4(KN Motif And Ankyrin Repeat Domains 4), PDI(Protein disulfide isomerase), CNX(Calnexin), CRT(Calreticulin), elF2alpha(Non-phosphorylatable version of the eukaryotic translation initiation factor 2 alpha), ZFP-TF(Artificial zinc finger protein transcription factor), ATF4(Activating transcription factor 4), GADD34(Growth arrest and DNA damage inducible protein 34), mTOR(Mammalian target of rapamycin), BIP(Heat shock 70kDa protein 5), ATF6C(Activating transcription factor 6C), XBP1(X-box binding protein 1), BCL2(B-cell lymphoma 2), BCLxL(BCL2-like 1), Mutated form of BCL-xL(Asp29Asn variant), XIAP(X-linked inhibitor of apoptosis), a mutant form of XIAP(EAX197), AVEN(Apoptosis, caspase inhibitor), C-MYC(Myelocytomatosis oncogene), FAIM(Fas apoptotic inhibitory molecule), 30Kc6(Apoptosis-inhibiting 30K protein), TERT(Telomerase reverse transcriptase), E1B-19K(Control protein E1B 19K), MDM2(Murine double-mutant 2), E2F1(E2F transcription factor 1), HSP27(Heat shock proteins 27), HSP70(Heat shock proteins 70), MCL1(Myeliod cell leukemia 1), AKT1(RAC-alpha serine/threonineprotein kinase), Beclin-1, ST6GAL(Alpha 2,6 sialyltransferase), GnT-IV(Alpha-1,3-D-mannoside beta 1,4 Nacetylglucosaminyltransferase), GnT-V(alpha 1,6 Dmannoside beta-1,6 Nacetylglucosaminyltransferase), ST3GAL(Alpha 2,3 sialyltransferase), GalT(beta 1,4 galactosyltransferase), CMP-SAT(CMP-sialic acid transporter), CMP-SAS(CMP-sialic acid synthetase), GNE(Mutant uridine diphosphate-N-acetyl glucosamine 2- epimerase), GnT-III(Beta 1,4 Nacetylglucosaminyltransferase III), ManII(Golgi alphamannosidase II), C2GnT(Beta 1,6 Nacetylglucosaminyltransferase), RMD(GDP-6-deoxy-d-lyxo-4- hexulose reductase), VHb(Vitreoscilla hemoglobin), CPS I(Carbamoyl phosphate synthetase I), OTC(Ornithine transcarbamoylase), PC(Pyruvate carboxylase), GLUT5(Glucose transporter protein 5), MDH2(Malate dehydrogenase II), TAUT(Taurine transporter), ALT1(Alanine aminotransferase 1), XBP1(X-box binding protein 1), XBP1s(Spliced form of XBP-1), SLY1(Suppressor of loss of YPT1 protein 1), MUNC18C(syntaxin binding protein 3), CERT(Ceramide transfer protein), Mutant form of CERT(S132A), SNAP-23(Synaptosome-associated protein of 23 kDa), VAMP8(Vesicle-associated membrane protein 8), SRP14(Human signaling receptor protein 14), p21CIP1(Cyclin-dependent kinase Inhibitor 1A), C/EBP-alpha(CCAAT/enhancer-binding protein alpha), p27KIP1(Cyclin-dependent kinase inhibitor 1B), CDKL3(Cyclin-dependent kinase like 3), COX15(Cytochrome c oxidase subunit), VCP(Valosin-containing protein), BAX(BCL2-associated X protein), BAK(BCL2-antagonist/killer), GS(Glutamine synthetase), MGAT1(N-acetylglucosaminyltransferase 1), SLC35C1(GDP-fucose transporter), SLC35A1(CMPsialic acid transporter), B4GALT1(Beta 1,4 galactosyltransferase 1), B3GNT2(Beta 1,3 Nacetylglucosaminyltransferase 2), PAM(Peptidylglycine alphaamidating monooxygenase), Caspase 3, Caspase 7, Caspase 8, Caspase 9, ALG2(Alpha-1,3/1,6- mannosyltransferase), REQ(Requiem), FADD(Fas(TNFRSF6)-associated via death domain), FAIM(Fas apoptotic inhibitory molecule), NEU2(Sialidase 2), NEU1(Sialidases 1), NEU3(Sialidases 3), GMD(GDP-fucose 4,6-dehydratase), GFT(GDP-fucose transporter),CFL1(Cofilin), ATR(Ataxia telangiectasia and Rad3 related), ENO1(Enolase 1) 및 PDHK(Pyruvate dehydrogenase kinase)로 이루어지는 군에서 선택되는 어느 하나 이상일 수 있다. 보다 바람직하게는 FUT8(Alpha-1,6-fucosyltransferase), HDAC5(Histone Deacetylase 5), LDHA(Lactate dehydrogenase A), DHFR(Dihydrofolate reductase), PDK4(Pyruvate dehydrogenase lipoamide kinase isozyme 4), CXCR4(C-X-C chemokine receptor type 4), MAPK3(Mitogen-activated protein kinase 3) 및 KANK4(KN Motif And Ankyrin Repeat Domains 4)로 이루어지는 군에서 선택되는 어느 하나 이상일 수 있다.
본 발명의 일 실시예에서는 발현조절을 위한 내인성 유전자로 항체의존성 세포독성에 관여하는 푸코오스의 당쇄화에 역할을 하는 알파 1,6-푸코실트랜스퍼레이즈(Alpha-1,6-fucosyltransferase, FUT8)를 선정하여 실험하였고, FUT8의 발현이 효과적으로 억제되어 푸코오스가 거의 없는 항체를 생산하였다.
본 발명의 일 구현예에서, 상기 타겟 유전자 발현 조절을 위한 RNA 서열은 shRNA(Short hairpin RNA), miRNA(micro RNA), stRNA(Small temporal RNA), siRNA(small interfering RNA), piRNA(piwi-interacting RNA), snoRNA(small nucleolar RNA), snRNA(small nuclear RNA), exRNA(Extracellular RNA), scaRNA(small cajal body RNA), lncRNA(long non-coding RNA), smRNA(small modulatory dsRNA) 및 snRNA(small noncoding RNA)로 이루어진 군에서 선택되는 어느 하나 이상의 서열일 수 있다. 가장 바람직하게는 shRNA(short hairpin RNA), miRNA(micro RNA), stRNA(small temporal RNA) 및 siRNA(small interfering RNA)로 이루어진 군에서 선택되는 어느 하나 이상의 서열일 수 있다.
본 발명의 일 구현예에서, 상기 타겟 유전자 발현 조절을 위한 shRNA 서열은 서열번호 24로 표시되는 인트론화 FUT8 shRNA, 서열번호 25 내지 27 중 어느 하나로 표시되는 인트론화 HDAC5(Histone deacetylase 5) shRNA, 서열번호 28 내지 30 중 어느 하나로 표시되는 인트론화 LDHA(Lactate dehydrogenase A) shRNA 및 서열번호 31 내지 33중 어느 하나로 표시되는 인트론화 DHFR(Dihydrofolate reductase) shRNA로 이루어지는 군에서 선택되는 어느 하나 이상일 수 있다.
HDCA5 유전자 발현을 억제하는 shRNA로는 바람직하게는 서열번호 25 내지 27로 이루어지는 군에서 선택되는 어느 하나일 수 있으며, 가장 바람직하게는 서열번호 27로 나타나는 인트론화 HDAC5 shRNA일 수 있다. 본 발명의 일 구현예에서 각각 서열번호 25 내지 27로 나타나는 인트론화 HDAC5 shRNA로 HDAC5 발현 억제 효과에 대한 실험을 실시한 결과, 서열번호 27로 나타나는 인트론화 HDAC5 shRNA가 가장 효과적으로 HDAC5의 발현을 억제시켰다(도 3 참조).
LDHA의 유전자 발현을 억제하는 shRNA로는 바람직하게는 서열번호 28 내지 30으로 이루어지는 군에서 선택되는 어느 하나일 수 있으며, 가장 바람직하게는 서열번호 30으로 나타나는 인트론화 LDHA shRNA일 수 있다. 본 발명의 일 구현예에서 각각 서열번호 28 내지 30으로 나타나는 인트론화 LDHA shRNA로 LDHA 발현 억제 효과에 대한 실험을 실시한 결과, 서열번호 30으로 나타나는 인트론화 LDHA shRNA가 가장 효과적으로 LDHA의 발현을 억제시켰다(도 4 참조).
DHFR의 유전자 발현을 억제하는 shRNA로는 바람직하게는 서열번호 31 내지 33으로 이루어지는 군에서 선택되는 어느 하나일 수 있으며, 가장 바람직하게는 서열번호 32로 나타나는 인트론화 DHFR shRNA일 수 있다. 본 발명의 일 구현예에서 각각 서열번호 31 내지 33으로 나타나는 인트론화 DHFR shRNA로 DHFR 발현 억제 효과에 대한 실험을 실시한 결과, 서열번호 32로 나타나는 인트론화 DHFR shRNA가 가장 효과적으로 DHFR의 발현을 억제시켰다(도 5 참조).
본 발명의 일 구현예에서, 상기 타겟 유전자 조절을 위한 miRNA 서열은 서열번호 34 내지 36 중 어느 하나로 표시되는 인트론화 miR483일 수 있다. 본 발명의 일 구현예에서 인트론화 miR483을 포함하는 발현 카세트를 제조하는데 있어서 PDK4 타겟 발현 저해 및 CXCR4 타겟 발현 증가를 극대화 시키기 위하여, 최적의 브랜치 서열 및 스플라이싱 수용체 조합을 찾기 위한 실험을 실시하였다. 브랜치 서열 및 스플라이싱 수용체를 달리하여 각각 서열번호 34 내지 36과 같이 인트론화 RNA 서열을 구성하였다. 그 후, PDK4 발현 저해 및 CXCR4의 발현 증가 효과를 확인한 결과, 서열번호 36으로 나타나는 인트론화 miR483 서열이 가장 효과적임을 확인하였다(도 6 및 도 7 참조).
본 발명의 일 구현예에서, 상기 스플라이싱 공여체(Splicing donor) 서열은 서열번호 12 내지 15 중 선택되는 어느 하나 이상이고, 상기 브랜치(Branch) 서열은 서열번호 16 내지 18 중 선택되는 어느 하나 이상이며, 상기 스플라이싱 수용체(Splicing acceptor) 서열은 서열번호 19 내지 22 중 선택되는 어느 하나 이상일 수 있다.
본 발명의 일 구현예에서, 상기 목적 단백질 생산용 발현 카세트는 인트론의 스플라이싱 또는 내인성 유전자의 발현 조절을 통해, 목적 단백질의 고발현, 락테이트(Lactate) 생성 저해, 히스톤(Histone) 단백질의 탈아세틸화 조절, 글루코즈(Glucose) 대사 조절, 세포 성장 조절, 증식 조절, 목적 단백질의 고기능성 및 목적 단백질의 푸코오스 저함량으로 이루어지는 군에서 선택되는 어느 하나 이상을 특징으로 하는 것일 수 있다.
본 발명의 일 구현예에서, 도 8 및 도 9에 따르면, 인트론화 RNA를 포함하지 않는 형질전환체보다 인트론화 RNA를 포함하는 형질전환체에서 더욱 많은 항체가 생산되는 것을 확인하였다. 특히, 인트론화 RNA가 2개 이상 포함된 경우, 더욱 높은 항체 생산성을 보이는 것을 확인하였다(도 8 및 도 9 참조).
상기 발현 카세트는 내인성 유전자조절 인트론화 RNA 서열에 의하여 타겟 내인성 유전자의 발현을 조절할 수 있다. 유전자 발현의 조절이라 함은 증대 또는 감소되는 방법을 포함한다. 이는, 단일 프로모터에 의하여 인트론화 RNA 서열과 목적 단백질이 전사적으로 연결되어 있는 구조를 가지고 있어 목적 단백질의 발현을 확인하는 것 만으로 세포주를 선별하여도 인트론화 RNA에 의한 내인성 유전자 조절된 세포주 선별이 가능하다.
본 발명의 일 실시예에서는 디하이드로폴레이트(Dihydrofolate)를 테트라하이드로폴레이트(Tetrahydrofolate)로의 전환에 관여하는 효소인 디하이드로폴레이트 리덕테이즈(Dihydrofolate reductase, DHFR)의 발현을 저해하여, DHFR를 선별표지자로 세포주 선별 시 적은 수의 세포주가 자라는 것을 확인 하였다(도 10 참조).
본 발명의 일 실시예에서는 항체의 Fc 영역인 297번 아스파라긴의 N-연결형 당쇄(N-linked glycan)의 푸코실화에 관련된 효소인 알파 1,6-푸코실트랜스퍼레이즈(Alpha 1,6-fucosyltransferase; FUT8)의 발현을 조절하여, 동일 프로모터로 발현되는 항체의 푸코오스 함량이 감소되는 것을 확인하였다(도 11 참조).
본 발명의 일 실시예에서는 히스톤(Histone) 단백질의 탈아세틸화(Deacetylation)에 관여하는 히스톤 디아세틸레이즈(Histone deacetylase 5; HDAC5)의 발현을 조절하여, 히스톤 디아세틸레이즈의 발현이 감소하는 것을 확인하였다(도 12a 참조).
본 발명의 일 실시예에서는 피루베이트(Pyruvate)에서 락테이트(Lactate)로의 전환에 관여하는 효소인 락테이트 디하이드로게네이즈 A(Lactate dehydrogenase A; LDHA)의 발현을 조절하여, 락테이트 디하이드로게네이즈 A의 발현이 감소하는 것을 확인하였다(도 12b 참조).
본 발명의 일 실시예에서는 miR483을 이용하여 CXCR4, PDK4, MAPK3 및 KANK4의 발현을 조절하여, CXCR4의 발현 증가와 PDK4의 발현이 감소하는 것을 것을 확인하였다(도 12c, 12d 참조).
또한 본 발명은 목적 단백질 생산용 발현 카세트를 포함하는 벡터를 제공한다.
또한 본 발명은 목적 단백질 생산용 발현 카세트를 포함하는 벡터로 형질전환된 형질전환체를 제공한다. 형질전환체는 목적 단백질을 생산할 수 있는 것이라면 제한되지 않으나, 바람직하게는 동물세포일 수 있다.
본 발명의 일 구현예에서, 상기 형질전환체는 진핵생물 세포일 수 있다. 바람직하게 진핵생물 세포는 포유동물 세포일 수 있다. 보다 바람직하게는, 포유동물 세포는 CHO(Chinese hamster ovary) 세포, BHK(Baby hamster kidney) 세포, 마우스 골수종 세포(Mouse myeloma cell), 랫트 골수종 세포(Rat myeloma cell), 하이브리도마 세포(Hybridoma cell), 배아줄기세포(Embryonic stem cell), 수정란 세포(Fertilized egg cell), CHO-K1 세포, CHO DUXB11 세포, CHO DG44 세포, N50 세포, NS0세포, SP2/0 세포, YB2 세포, HEK 293 세포, HEK 293 EBNA 세포, PER.C6 세포, Namalwa 세포 및 COS 세포로부터 선택된 것일 수 있다.
또한, 본 발명은 목적 단백질 생산용 발현 카세트 포함 형질전환체를 배양하는 단계를 포함하는, 목적 단백질의 제조방법을 제공한다.
본 발명의 목적 단백질 제조 방법은 보다 구체적으로, 내인성 유전자 조절 인트론화 서열과 목적 단백질이 단일 프로모터로 발현되는 벡터를 동물 세포에 형질 감염시키는 단계; 형질 감염된 동물 세포를 목적 단백질 발현에 적합한 조건으로 배양하는 단계; 및 동물세포 또는 세포 배양물로부터 목적 단백질을 회수하는 단계를 포함할 수 있다.
이하 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예들은 본 발명을 예시하는 것으로 본 발명의 내용이 실시예에 의해 한정되는 것은 아니다.
실시예 1. 인트론화 서열 제작
스플라이싱 공여체(이하, SD), 유전자 타겟 shRNA 서열, 브랜치 서열 및 스플라이싱 수용체(이하, SA) 염기서열 중 적절히 조합하여, 하기 표 1과 같이 스플라이싱이 이루어질 수 있는 새로운 인트론 DNA 서열을 완성하고 합성을 통하여 제작하였다.
번호 구분 인트론화 서열의 구성 서열번호
1 인트론(IS) SD + 브랜치 + SA 23
2 FUT8 SD + FUT8 타겟 shRNA + 브랜치 + SA 24
3 HDAC5 SD + HDAC5 타겟 shRNA + 브랜치 + SA 25 ~ 27
4 LDHA SD + LDHA 타겟 shRNA + 브랜치 + SA 28 ~ 30
5 DHFR SD + DHFR 타겟 shRNA + 브랜치 + SA 31 ~ 33
6 miR483 SD + miR483 타겟 miRNA + 브랜치 + SA 34 ~ 36
표 1의 1번 인트론(IS)은 유전자 타겟 shRNA를 넣지 않거나, 유전자 발현 조절 기능이 없는 shRNA 서열을 삽입하여, 유전자 DNA 내에서 스플라이싱 효과만 일어날 수 있도록 하였다. 또한, 2 내지 5번 인트론의 경우, 각 유전자의 발현 저해를 유도하기 위한 shRNA를 삽입하여 인트론 DNA 서열을 제작하였다. 마지막으로6번 인트론의 경우, shRNA가 아닌 miRNA 도 본 발명에 적용 가능한지 확인하기 위하여 제작되었다.
실시예 2. 발현 카세트의 제작
도 1에 나타난 바와 같이, 목적 단백질을 발현하는 하나의 발현 카세트 안에 인트론화 shRNA 서열을 1개 이상 삽입하여, 인트론화된 shRNA 서열과 목적 단백질의 발현을 동시에 수행할 수 있는 발현 카세트를 디자인하였다. 발현 카세트의 제작은 스플라이싱 공여체, 유전자 타겟 shRNA 또는 miRNA 서열, 브랜치 서열 및 스플라이싱 수용체 염기서열을 조합하여 진아트(GeneArt)사에 의뢰하여 합성하였다. 합성된 DNA 서열 양 말단에 HpaI/ NheI 또는 ClaI 제한효소 부위를 PCR 을 통하여 첨가한 후 CMV(Cytomegalovirus) 프로모터 + palivizumab 경쇄 + poly A 로 이루어진 발현 카세트에 클로닝하였다. CMV 프로모터와 palivizumab 경쇄 사이는 HpaI 및 NheI 제한효소를 이용하였으며, Palivizumab 경쇄와 poly A 사이는 ClaI 제한효소를 이용하여 클로닝하여 최종 발현 카세트를 제작하였다.
구체적인 발현 카세트의 구성은 도 2 및 하기 표 2에 나타낸 바와 같다.
번호 구분 발현 카세트의 구성
1 대조군 프로모터 + 목적 단백질 발현 유전자(이하, GOI) + poly A
2 인트론(IS) 프로모터 + 인트론(IS) + GOI + poly A
3 FUT8 프로모터 + FUT8 타겟 인트론화 shRNA + GOI + poly A
4 HDAC5 프로모터 + HDAC5 타겟 인트론화 shRNA + GOI + poly A
5 LDHA 프로모터 + LDHA 타겟 인트론화 shRNA + GOI + poly A
6 miR483 프로모터 + miR483 인트론화 miRNA + GOI + poly A
7 DHFR 프로모터 + GOI + DHFR 타겟 인트론화 shRNA + poly A
8 FUT8×FUT8 프로모터 + FUT8 타겟 인트론화 shRNA + GOI + FUT8 타겟 인트론화 shRNA + poly A
9 HDAC5×FUT8 프로모터 + HDAC5 타겟 인트론화 shRNA + GOI + FUT8 타겟 인트론화 shRNA + poly A
10 LDHA×FUT8 프로모터 + LDHA 타겟 인트론화 shRNA + GOI + FUT8 타겟 인트론화 shRNA + poly A
11 miR483×FUT8 프로모터 + miR483 인트론화 miRNA + GOI + FUT8 타겟 인트론화 shRNA + poly A
표 2의 3번 내지 5번은 목적 단백질 발현 유전자의 앞에 shRNA가 삽입될 경우, 각각의 타겟 유전자의 발현에 영향을 줄 수 있는지를 알아보고자 디자인 되었다. 7번은 목적 단백질 발현 유전자의 뒤에 shRNA가 삽입된 경우를 실험하고자 하였으며, 8 내지 11번은 2개 이상의 shRNA-shRNA 조합 또는 shRNA-miRNA 조합이 목적 단백질 발현 유전자 앞 뒤로 포함된 경우에도 본 발명의 효과를 나타내는지 확인하기 위해 제작되었다.
실시예 3. 벡터 클로닝
다이하이드로폴레이트 리덕테이즈(Dihydrofolate reductase; DHFR)를 선별표지자로 가지고 있는 MarEx 벡터(한국 등록특허: 10-1076602)에 호흡기세포융합바이러스(Respiratory syncytial virus) 감염을 막기 위한 치료제로 사용하는 Palivizumab의 중쇄(Heavy chain)와 경쇄(Light chain) 유전자를 클로닝 한 후, Palivizumab이 발현되는 MarEx 벡터의 경쇄 발현 카세트 내에 인트론화 서열 또는 한 개 이상의 내인성 유전자 조절용 인트론화 shRNA/miRNA 서열(상기 표 1 및 표2 참고)을 삽입하였다. 그 후 대장균(DH5alpha)을 이용하여 형질전환 시키고, 플라스미드를 확보하였다. 인트론화 서열 또는 한 개 이상의 내인성 유전자 조절용 인트론화 shRNA/miRNA 서열과 항체 서열을 포함한 MarEx 벡터의 서열을 확인하여 최종벡터를 확보하였고, Endo-free plasmid maxi kit(Qiagen)를 이용하여 플라스미드 DNA를 확보하였다.
실시예 4. 일시 발현을 통한 내인성 유전자 조절 확인
실시예 4-1. HDAC5 발현 조절 확인
상기 실시예 3에서 HDAC5의 서열 626bp을 타겟으로 하는 저해 인트론 shRNA1(서열번호 25), HDAC5의 서열 823bp을 타겟으로 하는 저해 인트론 shRNA2(서열번호 26) 및 HDAC5의 서열 2326bp을 타겟으로 하는 저해 인트론 shRNA3(서열번호 27)을 제작하였다. 그 후, 일시 발현을 통하여 세포 내 HDAC5의 발현 저해 여부를 확인하였다.
유전자의 발현 확인은 세포들을 수득하여, 전체 RNA를 RNeasy Mini Kit(Qiagen)를 사용하여 추출하였다. 전체 RNA의 동등한 양(100ng)을 가지고 one step SYBR PrimeScript RT-PCR kit II(TaKaRa)를 이용하여 역전사 및 cDNA 합성 후 실시간 PCR에 의하여 분석하였다. HDAC5 및 GAPDH cDNA의 증폭 및 검출을 위해, 서열번호 37 및 38로 표시되는 GAPDH 프라이머와 서열번호 39 및 40으로 표시되는 HDAC5 프라이머를 사용하였다.
Applied Biosystems 7500 Real-Time PCR System 을 이용하여 42℃에서 5분, 95℃에서의 10분의 역전사 단계 및 95℃에서 5초, 60℃에서 34초 40회 조건하에서 증폭하여, HDAC5 cDNA 수준을 하우스키핑 유전자(Housekeeping gene) GAPDH의 수준으로 표준화(Normalization)하였다. 그 결과, 도 3에 나타난 바와 같이, 모든 HDAC5 shRNA 서열에서 HDAC5 발현 저해 효과가 확인되었으며, 그 중에서도 서열번호 27로 표시되는 HDAC5 shRNA3이 대조군 대비 37% 저해시켜 가장 효과적으로 HDAC5의 발현을 저해하는 것으로 확인되었다.
실시예 4-2. LDHA 발현 조절 확인
상기 실시예 3에서 LDHA의 서열 273bp을 타겟으로 하는 저해 인트론 shRNA1(서열번호 28), LDHA의 서열 473bp을 타겟으로 하는 저해 인트론 shRNA2(서열번호 29) 및 LDHA의 서열 906bp을 타겟으로 하는 저해 인트론 shRNA(서열번호 30)을 제작하였다. 그 후, 일시 발현을 통하여 세포 내 LDHA의 발현 저해 여부를 확인하였다.
유전자의 발현 확인은 상기 실시예 4-1의 방법과 동일하며, GAPDH 및 LDHA cDNA의 증폭 및 검출을 위해, 서열번호 37 및 38로 표시되는 GAPDH 프라이머와 서열번호 41 및 42로 표시되는 LDHA 프라이머를 사용하였다.
그 결과, 도 4에 나타난 바와 같이, 모든 LDHA shRNA 서열에서 LDHA 발현 저해 효과가 확인되었으며, 그 중에서도 서열번호 30으로 나타나는 LDHA shRNA3가 대조군 대비 68.9% 저해시켜 가장 효과적으로 LDHA의 발현을 저해하는 것을 확인하였다.
실시예 4-3. DHFR 발현 조절 확인
상기 실시예 3에서 DHFR의 서열 41bp을 타겟으로 하는 저해 인트론 shRNA1(서열번호 31), DHFR의 서열 307bp을 타겟으로 하는 저해 인트론 shRNA2(서열번호 32) 및 DHFR의 서열 323bp을 타겟으로 하는 저해 인트론 shRNA(서열번호 33)을 제작하였다. 그 후, 일시 발현을 통하여 세포 내 DHFR의 발현 저해 여부를 확인하였다.
유전자의 발현 확인은 상기 실시예 4-1의 방법과 동일하며, GAPDH 및 DHFR cDNA의 증폭 및 검출을 위해, 서열번호 37 및 38로 표시되는 GAPDH 프라이머와 서열번호 47 및 48로 표시되는 DHFR 프라이머를 사용하였다.
그 결과, 도 5에 나타난 바와 같이, DHFR 발현 저해 효과가 확인되었으며, 그 중에서도 서열번호 32로 나타나는 DHFR shRNA2가 대조군 대비 58.8% 저해시켜 가장 효과적으로 DHFR의 발현을 저해하는 것을 확인하였다.
실시예 4-4. miR483 발현에 의한 CXCR4 와 PDK4 발현 조절 확인
상기 실시예 3에서 miR483을 발현을 유도하는 인트론화 서열 miR483 1(서열번호 34), miR483 2(서열번호 35) 및 miR483 3(서열번호 36)을 제작하였다. 그 후, 일시 발현을 통하여 mi483의 타깃이 되는 CXCR4(C-X-C chemokine receptor type 4)의 발현 증가와 PDK4(Pyruvate Dehydrogenase Kinase 4)의 저해 효과를 조사하였다.
유전자의 발현 확인은 상기 실시예 4-1의 방법과 동일하며, GAPDH, CXCR4 및 PDK4 cDNA의 증폭 및 검출을 위해, 서열번호 37 및 38로 표시되는 GAPDH 프라이머, 서열번호 43 및 44로 표시되는 CXCR4 프라이머 및 서열번호 45 및 46으로 표시되는 PDK4 프라이머를 사용하였다.
그 결과, 도 6에 나타난 바와 같이, 서열번호 36으로 나타나는 miR483 3이 CXCR4의 발현을 대조군 대비 270.4% 이상 증가시키는 것을 확인하였고 도 7에 나타난 바와 같이 서열번호 36으로 나타나는 miR483 3이 PDK4의 발현을 대조군 대비 23.2% 저해 효과를 확인하였다.
실시예 5. 발현 세포주 제작
상기 실시예 3에서 제작한 벡터들을 이용하여 항체와 인트론화 서열 또는 한 개 이상의 내인성 유전자 조절 인트론화 shRNA/miRNA가 전사 및 발현되는 안정성 세포주를 제작하였다.
구체적으로는 CHO-K1(American Type Culture Collection, CCL-61, USA) 세포에 리포펙타민 LTX(Lipofectamin LTX, Invitrogen사) 시약으로 위 벡터를 형질도입 후, 안정적으로 형질도입된 세포주를 선별하기 위하여 DHFR 저해제인 메토트렉세이트(Methotrexate; MTX)를 500 nM로 처리하여 항체가 안정적으로 발현되는 세포주를 제작하였다.
실시예 6. 항체 생산 및 발현량 확인
실시예 6-1. 일시 발현을 통한 단기간 항체 생산량 확인
인트론이 없는 항체 발현 벡터(Control), 내인성 유전자 조절기능 없는 인트론 서열(IS)을 포함한 항체 발현 벡터 및 내인성 유전자 조절을 위한 인트론화 shRNA/miRNA 서열을 포함한 항체 발현 벡터를 형질 도입하여, 일시 발현(Transient expression)을 통한 단기간 동안의 항체 생산량을 측정하였다.
항체 생산량은 항체의 Fc 영역에 대해 특이적인 효소 연결 면역흡수검정(ELISA) 기법 이용하여 측정하였다.
그 결과, 도 8 및 하기 표 3에 보이는 바와 같이, 내인성 유전자 조절 기능이 없는 인트론 서열을 포함한 세포주에서 대조군 대비 1.3배 높은 항체 생산량을 확인했다. 또한, 내인성 유전자 조절을 위한 인트론화 서열을 포함한 세포주의 경우 많게는 1.8배까지 항체 생산량이 증가되었다.
번호 구분 대조군 대비 상대적 항체 생산량
1 대조군 1.00 배
2 인트론(IS) 1.31 배
3 FUT8 1.29 배
4 HDAC5 1.17 배
5 LDHA 1.28 배
6 miR483 1.53 배
7 FUT8×FUT8 1.56 배
8 HDAC5×FUT8 1.44 배
9 LDHA×FUT8 1.54 배
10 miR483×FUT8 1.65 배
실시예 6-2. 안정화된 세포주의 항체 발현량 확인
인트론이 없는 항체 발현 벡터(Control), 내인성 유전자 조절을 위한 인트론화 shRNA/miRNA를 포함한 항체 발현 벡터를 형질 도입하여 안정성 세포주 제작 후 항체 생산량을 측정하였다.
항체 생산량은 항체의 Fc 영역에 대해 특이적인 효소 연결 면역흡수검정(ELISA) 기법 이용하여 측정하였다.
그 결과, 도 9 및 하기 표 4에 보이는 바와 같이, 내인성 유전자 조절을 위한 인트론화 서열을 포함한 세포주의 경우 적게는 1.57배에서 많게는 2.95배까지 항체 발현량이 증가되었다.
번호 구분 항체 발현량 대조군 대비 상대적 항체 발현량
1 대조군 126.6 μg/ml 1.00 배
2 FUT8 198.5 μg/ml 1.57 배
3 HDAC5 293.8 μg/ml 2.32 배
4 LDHA 260.1 μg/ml 2.05 배
5 miR483 217.7 μg/ml 1.72 배
6 FUT8×FUT8 374.0 μg/ml 2.95 배
7 HDAC5×FUT8 277.8 μg/ml 2.19 배
8 LDHA×FUT8 234.3 μg/ml 1.85 배
9 miR483×FUT8 257.6 μg/ml 2.03 배
실시예 7. 선별 세포주 감소 확인
인트론이 없는 항체 발현 벡터(Control), DHFR 저해를 위한 인트론화shRNA를 포함하는 항체 발현 벡터를 각각 형질 도입하였다. 그 후, DHFR의 발현을 억제하는 메토트렉세이트(Methotrexate, MTX) 를 처리하여 세포주 선별 작업을 진행하였다.
그 결과 도 10에 보는 것과 같이, DHFR 저해를 위한 인트론화 shRNA를 포함한 벡터로 형질 도입한 세포주가 대조군 대비 54.1% 적은 세포주가 선별되는 것을 확인하였다. 그 결과 적은 세포주 조사만으로 고발현 세포주를 확인할 수 있다.
실시예 8. 항체의 푸코오스 함량 확인
실시예 5에서 제작한 세포주로부터 항체를 정제한 후 BIO-LC system(DC ICS 3000 system, DIONEX, 06110276)을 이용하여 Fc 영역의 당쇄를 분석하였다. 정제된 항체는 우선 4M TFA(Trifluoroacetic acid)를 이용하여 100℃에서 4시간동안 가열하여 단당을 분리하였고, 진공건조기(Vacuum dryer)를 이용하여 여액을 제거한 후 증류수(Deionized water)에 녹여서 BIO-LC system을 이용하여 측정하였다. 측정시에는 ED detector(DIONEX, 06110046)를 이용하였고, 보호 컬럼(Guard column)은 아미노 트랩 컬럼(DIONEX, 046122)을 사용하였다. 또한, 분석 컬럼은 CarboPac PA 10 column(DIONEX, 046110)을 이용하였다. Bio-LC를 통하여 분석한 것을 도 11에 나타내었으며, 그 후 각 피크의 면적 비율을 정량화하여 하기 표 5에 나타내었다.
% Area/Total area G0F Man5 G0 G1F G1 G2F G2 비푸코오스비율(G0+G1+G2) Control대비
Control 57.14 5.65 1.7 27.55 2.41 5.54 - 4.11 -
FUT8 12.66 8.72 47.72 9.64 18.2 3.06 - 65.9 16.0배
FUT8×FUT8 1.89 7.66 61.9 2.4 21.45 1.98 2.71 86.1 20.9배
HDAC5×FUT8 1.64 4.02 59.99 2.27 27.79 0.88 3.41 91.2 22.2배
LDHA×FUT8 3.18 8.45 53.51 3.54 25.55 2.17 3.59 82.7 20.1배
miR483×FUT8 7.75 14.99 44.55 7.33 20.27 2.58 2.53 67.4 16.4배
* G0F, G1F 및 G2F는 푸코오스가 결합된 형태임
† Man5는 G0, G1 또는 G2 등이 형성되기 전 단계의 글리칸 형태이므로, 푸코오스 당쇄화 되지 않은 비율에 합산하여 계산하지 않음
FUT8 인트론화 서열이 포함된 세포주의 경우, 푸코오스가 결합되지 않은 항체 비율이 대조군 대비 16.0배로 나타났다. 또한, FUT8×FUT8 인트론화 서열이 포함된 세포주의 경우, 푸코오스가 결합되지 않은 항체 비율이 대조군 대비 20.9배인 것을 확인하였다.
계속해서, HDAC5×FUT8 FUT8 인트론화 서열, LDHA×FUT8 인트론화 서열 및 miR483×FUT8 인트론화 서열이 각각 포함된 세포주의 경우, 푸코오스가 결합되지 않은 항체 비율이 대조군 대비 각각 22.2배, 20.1배 및 16.4배로 나타났다.
실시예 9. 안정성 세포주를 통한 내인성 유전자 조절 확인
실시예 9-1. HDAC5 발현 조절 확인
상기 실시예 5에서 제작한 안정성 세포주를 이용하여 세포 내 HDAC5의 발현 저해 여부를 확인하였다. 유전자의 발현 확인은 세포들을 수득하여, 전체 RNA RNeasy Mini Kit(Qiagen)를 사용하여 추출하였다. 전체 RNA의 동등한 양(100ng)을 가지고 one step SYBR PrimeScript RT-PCR kit II(TaKaRa)를 이용하여 역전사 및 cDNA 합성 후 실시간 PCR에 의하여 분석하였다. HDAC5 및 GAPDH cDNA의 증폭 및 검출을 위해, 서열번호 37 및 38로 표시되는 GAPDH 프라이머와 서열번호 39 및 40으로 표시되는 HDAC5 프라이머를 사용하였다.
Applied Biosystems 7500 Real-Time PCR System 을 이용하여 42℃에서 5분, 95℃에서의 10분의 역전사 단계 및 95℃에서 5초, 60℃에서 34초 40회 조건하에서 증폭하여 HDAC5 cDNA 수준을 하우스키핑 유전자 GAPDH의 수준으로 정상화하였다.
그 결과, 도 12 a)에 나타난 바와 같이, HDAC5와 HDAC5×FUT8 발현 조절 안정성 세포주에서 HDAC5 발현이 대조군 대비 각각 51.0% 와 30.2% 저해 효과를 확인하였다.
실시예 9-2. LDHA 발현 조절 확인
상기 실시예 5에서 제작한 안정성 세포주를 이용하여 세포 내 LDHA의 발현 저해 여부를 확인하였다. 유전자의 조절 확인은 상기 실시예 9-1 방법과 동일하며, GAPDH 및 LDHA cDNA의 증폭 및 검출을 위해, 서열번호 37 및 38로 표시되는 GAPDH 프라이머와 서열번호 41 및 42로 표시되는 LDHA 프라이머를 사용하였다.
그 결과, 도 12 b)에 나타난 바와 같이, LHDA와 LDHA×FUT8 발현 조절 안정성 세포주에서 LDHA 발현이 대조군 대비 각각 71.52% 와 40.5% 저해 효과를 확인하였다.
실시예 9-3. miR483 발현에 의한 CXCR4 와 PDK4 발현 조절 확인
상기 실시예 5에서 제작한 안정성 세포주를 이용하여 miR483의 타깃이 되는 CXCR4 의 발현 증가와 PDK4의 저해 효과를 조사하였다. 상기 실시예 9-1 방법과 동일하며, GAPDH, CXCR4 및 PDK4 cDNA의 증폭 및 검출을 위해, 서열번호 37 및 38로 표시되는 GAPDH 프라이머, 서열번호 43 및 44로 표시되는 CXCR4 프라이머 및 서열번호 45 및 46으로 표시되는 PDK4 프라이머를 사용하였다.
그 결과, 도 12 c)에 나타난 바와 같이, miR483과 miR483×FUT8 발현 조절 안정성 세포주에서 CXCR4의 발현을 대조군 대비 112.2% 이상 증가시키는 것을 확인하였다. 또한, 도 12 d)에 나타난 바와 같이, 다른 타깃인 PDK4의 발현을 대조군 대비 각각 56.9% 와 25.1% 저해하는 효과를 확인하였다.

Claims (15)

  1. 프로모터, 목적 단백질을 암호화하는 폴리뉴클레오티드, 인트론화 RNA 서열 및 poly A 서열을 포함하는 목적 단백질 발현 카세트로서,
    상기 인트론화 RNA 서열은 스플라이싱 공여체(Splicing donor), 브랜치(branch) 및 스플라이싱 수용체(Splicing acceptor)를 포함하는 것을 특징으로 하는 목적 단백질 생산용 발현 카세트.
  2. 제1항에 있어서, 상기 목적 단백질은 항체 또는 이의 단편인 것을 특징으로 하는 목적 단백질 생산용 발현 카세트.
  3. 제1항에 있어서, 상기 인트론화 RNA 서열은 단일 목적 단백질 발현 카세트 상에 1개 이상 존재하는 것을 특징으로 하는 목적 단백질 생산용 발현 카세트.
  4. 제1항에 있어서, 상기 목적 단백질 발현 카세트는 하기 군으로부터 선택된 어느 하나 이상의 인트론화 RNA 서열을 포함하는 것을 특징으로 하는 목적 단백질 생산용 발현 카세트:
    a) 프로모터와 목적 단백질을 암호화하는 폴리뉴클레오티드 사이에 위치한 1개 이상의 인트론화 RNA 서열;
    b) 목적 단백질을 암호화하는 폴리뉴클레오티드와 poly A 사이에 위치한 1개 이상의 인트론화 RNA 서열; 및
    c) 프로모터와 목적 단백질을 암호화하는 폴리뉴클레오티드 사이에 위치한 1개 이상의 인트론화 RNA 서열과 목적 단백질을 암호화하는 폴리뉴클레오티드와 poly A 사이에 위치한 1개 이상의 인트론화 RNA 서열.
  5. 제1항에 있어서, 상기 인트론화 RNA 서열은 타겟 유전자 발현 조절을 위한 RNA 서열을 추가적으로 포함하는 것을 특징으로 하는 목적 단백질 생산용 발현 카세트.
  6. 제5항에 있어서, 상기 타겟 유전자는 FUT8(Alpha-1,6-fucosyltransferase), HDAC5(Histone Deacetylase 5), LDHA(Lactate dehydrogenase A), CXCR4(C-X-C chemokine receptor type 4), DHFR(Dihydrofolate reductase), PDK4(Pyruvate dehydrogenase lipoamide kinase isozyme 4), MAPK3(Mitogen-activated protein kinase 3), KANK4(KN Motif And Ankyrin Repeat Domains 4), PDI(Protein disulfide isomerase), CNX(Calnexin), CRT(Calreticulin), elF2alpha(Non-phosphorylatable version of the eukaryotic translation initiation factor 2 alpha), ZFP-TF(Artificial zinc finger protein transcription factor), ATF4(Activating transcription factor 4), GADD34(Growth arrest and DNA damage inducible protein 34), mTOR(Mammalian target of rapamycin), BIP(Heat shock 70kDa protein 5), ATF6C(Activating transcription factor 6C), XBP1(X-box binding protein 1), BCL2(B-cell lymphoma 2), BCLxL(BCL2-like 1), Mutated form of BCL-xL(Asp29Asn variant), XIAP(X-linked inhibitor of apoptosis), a mutant form of XIAP(EAX197), AVEN(Apoptosis, caspase inhibitor), C-MYC(Myelocytomatosis oncogene), FAIM(Fas apoptotic inhibitory molecule), 30Kc6(Apoptosis-inhibiting 30K protein), TERT(Telomerase reverse transcriptase), E1B-19K(Control protein E1B 19K), MDM2(Murine double-mutant 2), E2F1(E2F transcription factor 1), HSP27(Heat shock proteins 27), HSP70(Heat shock proteins 70), MCL1(Myeliod cell leukemia 1), AKT1(RAC-alpha serine/threonineprotein kinase), Beclin-1, ST6GAL(Alpha 2,6 sialyltransferase), GnT-IV(Alpha-1,3-D-mannoside beta 1,4 Nacetylglucosaminyltransferase), GnT-V(alpha 1,6 Dmannoside beta-1,6 Nacetylglucosaminyltransferase), ST3GAL(Alpha 2,3 sialyltransferase), GalT(beta 1,4 galactosyltransferase), CMP-SAT(CMP-sialic acid transporter), CMP-SAS(CMP-sialic acid synthetase), GNE(Mutant uridine diphosphate-N-acetyl glucosamine 2- epimerase), GnT-III(Beta 1,4 Nacetylglucosaminyltransferase III), ManII(Golgi alphamannosidase II), C2GnT(Beta 1,6 Nacetylglucosaminyltransferase), RMD(GDP-6-deoxy-d-lyxo-4- hexulose reductase), VHb(Vitreoscilla hemoglobin), CPS I(Carbamoyl phosphate synthetase I), OTC(Ornithine transcarbamoylase), PC(Pyruvate carboxylase), GLUT5(Glucose transporter protein 5), MDH2(Malate dehydrogenase II), TAUT(Taurine transporter), ALT1(Alanine aminotransferase 1), XBP1(X-box binding protein 1), XBP1s(Spliced form of XBP-1), SLY1(Suppressor of loss of YPT1 protein 1), MUNC18C(syntaxin binding protein 3), CERT(Ceramide transfer protein), Mutant form of CERT(S132A), SNAP-23(Synaptosome-associated protein of 23 kDa), VAMP8(Vesicle-associated membrane protein 8), SRP14(Human signaling receptor protein 14), p21CIP1(Cyclin-dependent kinase Inhibitor 1A), C/EBP-alpha(CCAAT/enhancer-binding protein alpha), p27KIP1(Cyclin-dependent kinase inhibitor 1B), CDKL3(Cyclin-dependent kinase like 3), COX15(Cytochrome c oxidase subunit), VCP(Valosin-containing protein), BAX(BCL2-associated X protein), BAK(BCL2-antagonist/killer), GS(Glutamine synthetase), MGAT1(N-acetylglucosaminyltransferase 1), SLC35C1(GDP-fucose transporter), SLC35A1(CMPsialic acid transporter), B4GALT1(Beta 1,4 galactosyltransferase 1), B3GNT2(Beta 1,3 Nacetylglucosaminyltransferase 2), PAM(Peptidylglycine alphaamidating monooxygenase), Caspase 3, Caspase 7, Caspase 8, Caspase 9, ALG2(Alpha-1,3/1,6- mannosyltransferase), REQ(Requiem), FADD(Fas(TNFRSF6)-associated via death domain), FAIM(Fas apoptotic inhibitory molecule), NEU2(Sialidase 2), NEU1(Sialidases 1), NEU3(Sialidases 3), GMD(GDP-fucose 4,6-dehydratase), GFT(GDP-fucose transporter),CFL1(Cofilin), ATR(Ataxia telangiectasia and Rad3 related), ENO1(Enolase 1) 및 PDHK(Pyruvate dehydrogenase kinase)로 이루어지는 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는 목적 단백질 생산용 발현 카세트.
  7. 제5항에 있어서, 상기 인트론화 RNA 서열은 shRNA(Short hairpin RNA), miRNA(micro RNA), stRNA(Small temporal RNA), siRNA(small interfering RNA), piRNA(piwi-interacting RNA), snoRNA(small nucleolar RNA), snRNA(small nuclear RNA), exRNA(Extracellular RNA), scaRNA(small cajal body RNA), lncRNA(long non-coding RNA), smRNA(small modulatory dsRNA) 및 snRNA(small noncoding RNA)로 이루어지는 군에서 선택되는 어느 하나인 것을 특징으로 하는 목적 단백질 생산용 발현 카세트.
  8. 제7항에 있어서, 상기 타겟 유전자 발현 조절을 위한 shRNA 서열은 서열번호 24로 표시되는 인트론화 FUT8 shRNA, 서열번호25 내지 27 중 어느 하나로 표시되는 인트론화 HDAC5(Histone deacetylase 5) shRNA, 서열번호 28 내지 30 중 어느 하나로 표시되는 인트론화 LDHA(Lactate dehydrogenase A) shRNA 및 서열번호 31 내지 33중 어느 하나로 표시되는 인트론화 DHFR(Dihydrofolate reductase) shRNA로 이루어지는 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는 목적 단백질 생산용 발현 카세트.
  9. 제7항에 있어서, 상기 타겟 유전자 조절을 위한 miRNA 서열은 서열번호34 내지 36중 어느 하나로 표시되는 miR483인 것을 특징으로 하는 목적 단백질 생산용 발현 카세트.
  10. 제1항에 있어서, 상기 스플라이싱 공여체(Splicing donor) 서열은 서열번호 12 내지 15 중 선택되는 어느 하나 이상이고,
    상기 브랜치(branch) 서열은 서열번호 16 내지 18 중 선택되는 어느 하나 이상이며,
    상기 스플라이싱 수용체(Splicing acceptor) 서열은 서열번호 19 내지 22 중 선택되는 어느 하나 이상인 것을 특징으로 하는 목적 단백질 생산용 발현 카세트.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서, 상기 목적 단백질 생산용 발현 카세트는 인트론의 스플라이싱(splicing) 또는 내인성 유전자의 발현 조절을 통해, 목적 단백질의 고발현, 락테이트(Lactate) 생성 저해, 히스톤(Histone) 단백질의 탈아세틸화 조절, 글루코오스(Glucose) 대사 조절, 세포 성장 조절, 세포 증식 조절, 목적 단백질의 고기능성 및 목적 단백질의 푸코오스 저함량으로 이루어지는 군에서 선택되는 어느 하나 이상의 효과를 가지는 것을 특징으로 하는 목적 단백질 생산용 발현 카세트.
  12. 제1항 내지 제10항 중 어느 한 항의 목적 단백질 생산용 발현 카세트를 포함하는 벡터.
  13. 제12항의 벡터로 형질전환된 형질전환체.
  14. 제13항에 있어서, 상기 형질전환체는 진핵생물 세포인 것을 특징으로 하는 형질전환체.
  15. 제13항 또는 제14항의 형질전환체를 배양하는 단계를 포함하는, 목적 단백질의 제조방법.
PCT/KR2018/011953 2017-10-11 2018-10-11 고발현 및 고기능성 목적 단백질의 생산을 위한 발현 카세트 및 이의 이용 WO2019074292A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880076531.5A CN111386348B (zh) 2017-10-11 2018-10-11 用于制备高表达和高性能靶蛋白的表达盒及其用途
US16/755,453 US20200299721A1 (en) 2017-10-11 2018-10-11 Expression Cassette for Production of High-Expression and High-Functionality Target Protein and Use Thereof
EP18866248.0A EP3696271A4 (en) 2017-10-11 2018-10-11 EXPRESSION CASSETTE FOR THE PRODUCTION OF A HIGH EXPRESSION AND HIGH FUNCTIONALITY TARGET PROTEIN AND ITS USE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0129969 2017-10-11
KR20170129969 2017-10-11

Publications (2)

Publication Number Publication Date
WO2019074292A2 true WO2019074292A2 (ko) 2019-04-18
WO2019074292A3 WO2019074292A3 (ko) 2019-06-27

Family

ID=66100869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011953 WO2019074292A2 (ko) 2017-10-11 2018-10-11 고발현 및 고기능성 목적 단백질의 생산을 위한 발현 카세트 및 이의 이용

Country Status (5)

Country Link
US (1) US20200299721A1 (ko)
EP (1) EP3696271A4 (ko)
KR (1) KR20190040920A (ko)
CN (1) CN111386348B (ko)
WO (1) WO2019074292A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111091866A (zh) * 2019-11-21 2020-05-01 西安理工大学 鉴定长链非编码核糖核酸-转录因子-基因调控模体的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3528852A4 (en) 2016-10-20 2020-06-03 Sangamo Therapeutics, Inc. METHODS AND COMPOSITIONS FOR THE TREATMENT OF FABRY'S DISEASE
KR20210080071A (ko) * 2019-12-20 2021-06-30 (주)셀트리온 목적 단백질의 고발현을 위한 인트론을 포함하는 발현 카세트 및 이의 이용

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101076602B1 (ko) 2005-03-04 2011-10-26 (주)셀트리온 1 카피 이상의 mar dna 서열이 유전자의전사종결영역의 3′말단에 삽입된 동물세포 발현 벡터 및그를 이용한 외래 유전자의 발현 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1390934A (zh) * 2001-06-08 2003-01-15 桂林华诺威基因药业有限公司 二类内含子靶向整合真核细胞染色体基因组上的特定序列
US9453219B2 (en) * 2003-05-15 2016-09-27 Mello Biotech Taiwan Co., Ltd. Cosmetic designs and products using intronic RNA
BRPI0415446A (pt) * 2003-10-14 2006-12-05 Biogen Idec Inc recombinação mediada por flp
WO2008077545A1 (en) * 2006-12-22 2008-07-03 F. Hoffmann-La Roche Ag Selection method
WO2009091659A2 (en) * 2008-01-16 2009-07-23 Shi-Lung Lin Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant rna agents
KR101190591B1 (ko) * 2008-02-14 2012-10-15 재단법인 목암생명공학연구소 유전자 치료용 코딩 서열의 발현에 적합한 발현 벡터
AU2014255665B2 (en) * 2013-04-18 2018-08-02 Fondazione Telethon Effective delivery of large genes by dual AAV vectors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101076602B1 (ko) 2005-03-04 2011-10-26 (주)셀트리온 1 카피 이상의 mar dna 서열이 유전자의전사종결영역의 3′말단에 삽입된 동물세포 발현 벡터 및그를 이용한 외래 유전자의 발현 방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AMELIA CIMMINO ET AL., PNAS, vol. 102, no. 39, 2005, pages 13944 - 13949
HERVE' LE HIR. ET AL., TRENDS IN BIOCHEMICAL SCIENCES, vol. 28, no. 4, 2003, pages 215 - 220
SHIELDS, R. L. ET AL., THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 277, no. 30
YAMANE-OHNUKI, N. ET AL., BIOTECHNOLOGY AND BIOENGINEERING, vol. 88, no. 7, 2004, pages 901 - 908

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111091866A (zh) * 2019-11-21 2020-05-01 西安理工大学 鉴定长链非编码核糖核酸-转录因子-基因调控模体的方法
CN111091866B (zh) * 2019-11-21 2022-03-15 西安理工大学 鉴定长链非编码核糖核酸-转录因子-基因调控模体的方法

Also Published As

Publication number Publication date
WO2019074292A3 (ko) 2019-06-27
EP3696271A2 (en) 2020-08-19
US20200299721A1 (en) 2020-09-24
CN111386348B (zh) 2023-08-22
EP3696271A4 (en) 2021-05-19
KR20190040920A (ko) 2019-04-19
CN111386348A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
KR101114741B1 (ko) 알파-1,6-푸코실 전이효소 발현의 shrna-조절된 억제
JP2010536396A (ja) タンパク質力価を増加させる方法
WO2019074292A2 (ko) 고발현 및 고기능성 목적 단백질의 생산을 위한 발현 카세트 및 이의 이용
US20220064690A1 (en) CELL ENGINEERING USING RNAs
KR20100065332A (ko) 제조 방법
EP2935319A2 (en) Production of therapeutic proteins in genetically modified mammalian cells
US20230392147A1 (en) Mammalian cells for producing a secreted protein
EP2339015B1 (en) Methods for altering protein production rates
US20110124108A1 (en) Epigenetic engineering
JP2011505850A (ja) Smタンパク質ベースの分泌操作
US9476081B2 (en) Method for producing protein
US9315565B2 (en) Method for producing protein
Class et al. Patent application title: CELL ENGINEERING USING RNAs Inventors: Lore Florin (Danbury, CT, US) Hitto Kaufman (Ulm, DE) Angelika Hausser (Stuttgart, DE) Monilola Olayioye (Ulm, DE) Michaela Strotbek (Asperg, DE)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866248

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018866248

Country of ref document: EP

Effective date: 20200511