WO2019073861A1 - Wheel support device - Google Patents

Wheel support device Download PDF

Info

Publication number
WO2019073861A1
WO2019073861A1 PCT/JP2018/036884 JP2018036884W WO2019073861A1 WO 2019073861 A1 WO2019073861 A1 WO 2019073861A1 JP 2018036884 W JP2018036884 W JP 2018036884W WO 2019073861 A1 WO2019073861 A1 WO 2019073861A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
mixed layer
support device
film
wheel support
Prior art date
Application number
PCT/JP2018/036884
Other languages
French (fr)
Japanese (ja)
Inventor
雅樹 中西
三上 英信
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019073861A1 publication Critical patent/WO2019073861A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/02Hubs adapted to be rotatably arranged on axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B35/00Axle units; Parts thereof ; Arrangements for lubrication of axles
    • B60B35/02Dead axles, i.e. not transmitting torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles

Definitions

  • the present invention relates to a wheel support device for rotatably supporting a wheel with respect to a suspension system of a motor vehicle.
  • a wheel supporting apparatus for supporting non-driving wheels such as front wheels in a rear wheel drive type vehicle
  • two rolling bearings are mounted on an axle (knuckle spindle) provided on a steering knuckle, and are rotatably supported by the rolling bearings.
  • a flange is provided on the outer diameter surface of the axle hub, and a stud bolt provided on the flange and a nut screw-engaged with the flange are used to attach the brake drum of the brake device and the wheel disc of the wheel.
  • a back plate is attached to a flange provided on the steering knuckle, and the back plate supports a braking mechanism that applies a braking force to the brake drum.
  • a high-rigidity tapered roller bearing having a large load capacity is used as a rolling bearing for rotatably supporting an axle hub.
  • the tapered roller bearing is lubricated by grease filled between the axle and the axle hub.
  • the bearings used in the wheel support device are prone to breakage of the lubricating oil film of the lubricating grease, in particular, due to the sliding movement of the bearing ring collar at the large end face and the collar portion of the roller due to the severe use conditions of high speed and high load. .
  • the lubricating oil film breaks, metal contact occurs, causing a problem that heat generation and frictional wear increase.
  • an organic metal compound containing a metal selected from nickel, tellurium, selenium, copper and iron is contained in an amount of 20% by weight or less based on the total amount of grease.
  • a rail vehicle bearing having a grease sealed therein which is characterized by the following characteristics (see Patent Document 1).
  • the hard carbon film is a hard film generally called diamond-like carbon (hereinafter referred to as DLC, and a film / layer mainly composed of DLC is also referred to as a DLC film / layer).
  • DLC diamond-like carbon
  • Hard carbon also has various names such as hard amorphous carbon, amorphous carbon, hard amorphous carbon, i-carbon, and diamond-like carbon.
  • DLC diamond-based liquid crystal display
  • the hardness is as high as that of diamond, and excellent in wear resistance, solid lubricity, thermal conductivity, chemical stability, corrosion resistance, etc. For this reason, for example, it is being used as a protective film for molds / tools, wear resistant mechanical parts, abrasives, sliding members, magnetic / optical parts and the like.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • UBMS unbalanced magnetron sputtering
  • the DLC film has extremely high internal stress during film formation and has high hardness and Young's modulus, but has very low deformability, so it has weak adhesion to the substrate and has the disadvantage of being easily peeled off. ing. For this reason, when forming a DLC film on the above-mentioned each surface in a rolling bearing, it is necessary to improve adhesiveness.
  • Patent Document 2 a rolling device in which an intermediate layer is provided to improve the adhesion of the DLC film.
  • Cr chromium
  • W tungsten
  • Ti titanium
  • Si silicon
  • an underlayer containing a composition containing at least one of iron and iron, and the constituent elements of the underlayer and carbon, and the content of carbon on the opposite side of the underlayer is the underlayer
  • An intermediate layer larger than the side and a DLC layer composed of argon and carbon and having a content of argon of 0.02% by mass to 5% by mass are formed in this order.
  • Patent Document 3 a rolling bearing has been proposed in which adhesion of the DLC film is improved by an anchor effect.
  • irregularities having an average width of 300 nm or less are formed on the raceway surface by ion bombardment at a height of 10 to 100 nm, and a DLC film is formed on this raceway surface.
  • Patent No. 4178826 gazette Patent No. 3961739 gazette
  • the sliding surface on which the application of the DLC film is considered in the wheel support device is often in a state of poor lubrication and accompanied by slippage, and is often more severe than the operating condition in a general rolling bearing.
  • the present invention provides a wheel supporting device excellent in long-term durability by preventing friction wear on a lubricating surface in a state where high load or sliding motion occurs.
  • the wheel support device is a wheel support device that rotatably supports a rotating member that rotates with the wheel by a grease-sealed rolling bearing mounted on an outer diameter surface of an axle, the surface of the components of the wheel support device A hard film on which a hard film is formed on at least a sliding contact surface between the rolling element and the other member, the hard film comprising an underlayer formed directly on the surface of the component and the underlayer A mixed layer mainly composed of tungsten carbide and diamond like carbon deposited on the upper surface, and a surface layer mainly composed of diamond like carbon deposited on the mixed layer; The content of the tungsten carbide in the mixed layer decreases continuously or stepwise from the underlayer side to the surface layer side, and the diamond in the mixed layer becomes smaller.
  • tungsten carbide is an inorganic compound (carbide) composed of equimolar amounts of tungsten atoms and carbon atoms.
  • diamond-like carbon is a general term for a thin film made of a carbon-based material having both carbon and carbon bonds of diamond and graphite (graphite).
  • a hard film having a predetermined film structure including DLC is formed as a film on at least a sliding contact surface between the rolling element and another member among surfaces of component parts of the wheel support device.
  • the intermediate layer is a mixed layer of WC and DLC (WC / DLC) and has a gradient composition, concentration of residual stress after film formation hardly occurs.
  • the hydrogen content in this mixed layer is less than 10 atomic%, the peeling resistance of the hard film is excellent even when the lubricating state is bad and it is in contact with other members under the conditions involving slippage.
  • the surface layer of the hard film preferably has, on the side adjacent to the mixed layer, a graded layer portion whose hardness increases continuously or stepwise from the mixed layer side. As described above, in the case having the inclined layer portion, the rapid hardness difference between the mixed layer and the surface layer disappears, and the adhesion between the mixed layer and the surface layer can be improved.
  • An iron-based material selected from high carbon chromium bearing steel, carbon steel, tool steel, or martensitic stainless steel can be used for the main body of the component part of the wheel support device. That is, any material generally used as a holder material can be used as a holder body.
  • the underlayer of the hard film is preferably a layer mainly composed of chromium and tungsten carbide. By setting in this manner, the adhesion between the underlayer and the mixed layer can be improved.
  • a wheel support device using a rolling bearing comprising a plurality of rolling elements and a cage for holding the rolling elements, wherein the rolling bearing cage is a component having the hard film. preferable.
  • the hard film is excellent in peeling resistance while being formed on the cage sliding surface, and can exhibit the intrinsic characteristics of DLC.
  • the wheel supporting device of the present invention is excellent in seizure resistance, wear resistance, and corrosion resistance, and has a long life with less damage such as a sliding surface even in a severe lubrication state.
  • FIG. 2 is a schematic view of a two-cylinder tester.
  • a steering knuckle 1 is provided with a flange 2 and an axle 3 and an axle hub as a rotating member by a pair of tapered roller bearings 4a and 4b mounted on the outer diameter surface of the axle 3. 5 is rotatably supported.
  • the axle hub 5 has a flange 6 on the outer diameter surface, and a stud bolt 7 provided on the flange 6 and a nut 8 screw-engaged with the stud bolt 7 and the brake drum 9 of the brake device and the wheel disc 10 of the wheel. Is attached.
  • Reference numeral 11 denotes a rim attached to the outer diameter surface of the wheel disc 10, on which a tire is attached.
  • the back plate 12 of the brake device is attached to the flange 2 of the steering knuckle 1 by tightening a bolt and a nut. Although a braking mechanism for applying a braking force to the brake drum 9 is supported by the back plate 12, it is omitted in the figure.
  • the pair of tapered roller bearings 4 a, 4 b rotatably supporting the axle hub 5 is lubricated by the grease filled in the axle hub 5.
  • a grease cap 17 is attached to the outer end surface of the axle hub 5 so as to cover the tapered roller bearing 4b in order to prevent the leakage of grease from the tapered roller bearing 4b to the outside and the entry of muddy water from the outside.
  • FIG. 2 is a partially cutaway perspective view of the tapered roller bearing.
  • the tapered roller 46 is disposed between the inner ring 44 and the outer ring 43 via a cage 45. As shown in FIG. 3, the tapered roller 46 receives rolling friction between the rolling surface 44 a of the inner ring 44 and the rolling surface 43 a of the outer ring 43, and sliding friction is made between the ring portions 44 b and 44 c of the inner ring 44. receive. Grease for roller bearings is enclosed to reduce these frictions.
  • the cage 45 is provided with pockets 45a for holding the tapered rollers 46 as rolling elements, and the pillars 45b positioned between the pockets 45a maintain the intervals between the tapered rollers 46.
  • the cage 45 includes a cage body 45A made of an iron-based material selected from high carbon chromium bearing steel, carbon steel, tool steel, or martensitic stainless steel, and a hard formed on the outer surface of the cage body 45A. And a film (hard film) 30 (see FIG. 3).
  • the surface portion of the retainer main body 45A forming the hard film 30 is at least a sliding contact surface with the tapered roller 46 which is a rolling element and a sliding contact surface with other members out of the entire outer surface of the holder main body 45A.
  • the outer surface of the cage main body 45A is a surface which constitutes the outermost surface of the cage 45 and is in sliding contact with the tapered rollers 46, which are rolling elements, and other members. These outer surfaces are also parts that come in contact with lubricating oil and the like.
  • the other members are the inner ring 44, the outer ring 43, and the like.
  • the hard film (hard film) 30 be formed on the entire outer surface of the cage 45 including the surface of the pocket 45 a in contact with the tapered roller 46 because of easy manufacturing. Further, in addition to the outermost surface portion of the cage 45, a similar hard film can be formed on the surface of the tapered roller 46, which is a rolling element, and the like.
  • the hardness of the surface on which the hard film 30 is formed is preferably Hv 650 or more in Vickers hardness. By setting it as Hv650 or more, the hardness difference with the hard film 30 (underlying layer mentioned later) can be decreased, and adhesiveness can be improved.
  • a nitrided layer be formed by nitriding before forming the hard film.
  • the nitriding treatment it is preferable to perform plasma nitriding treatment in which it is difficult to form an oxide layer which prevents adhesion on the surface of the base material.
  • the hardness of the surface after the nitriding treatment is Hv 1000 or more in Vickers hardness in order to further improve the adhesion to the hard film (underlayer).
  • the surface roughness Ra of the surface on which the hard film 30 is formed is preferably 0.05 ⁇ m or less.
  • the surface roughness Ra exceeds 0.05 ⁇ m, it becomes difficult to form a hard film at the tip of the protrusion having the roughness, and the film thickness locally decreases.
  • FIG. 3 is a schematic cross-sectional view showing the structure of the hard film 30 shown in the tapered roller bearings 4a and 4b of FIG.
  • the hard film 30 includes an underlayer 30 a formed directly on the cage main body 45 A, and WC (tungsten carbide) and DLC (diamond like carbon) formed on the underlayer 30 a. And a surface layer 30c mainly made of DLC formed on the mixed layer 30b.
  • tungsten carbide is an inorganic compound (carbide) composed of equimolar amounts of tungsten atoms and carbon atoms.
  • diamond-like carbon is a general term for a thin film made of a carbon-based material having both carbon and carbon bonds of diamond and graphite (graphite).
  • graphite graphite
  • the foundation layer 30 a is a foundation layer formed directly on the surface of each bearing member as a base material.
  • the material and structure are not particularly limited as long as adhesion with the substrate can be secured, and for example, Cr (chromium), W (tungsten), Ti (titanium), Si (silicon) or the like can be used as the material.
  • Cr is preferably contained because it is excellent in adhesion to a bearing member (for example, high carbon chromium bearing steel) serving as a base material.
  • the underlayer 30a is preferably a layer mainly composed of Cr and WC in consideration of adhesion to the mixed layer 30b.
  • WC has an intermediate hardness and elastic modulus between Cr and DLC, and concentration of residual stress after film formation hardly occurs.
  • the mixed layer 30 b is an intermediate layer interposed between the underlayer 30 a and the surface layer 30 c.
  • WC used for the mixed layer 30b has hardness and elastic modulus intermediate between Cr and DLC, and concentration of residual stress after film formation is also less likely to occur.
  • the mixed layer 30 b has a gradient composition in which the content of WC decreases and the content of DLC increases from the base layer 30 a side to the surface layer 30 c side. For this reason, the adhesiveness on both surfaces of base layer 30a and surface layer 30c is excellent. Further, in the mixed layer 30b, the WC and the DLC are physically bonded to each other, so that damage or the like in the mixed layer 30b can be prevented. Furthermore, since the DLC content is increased on the surface layer 30c side, the adhesion between the surface layer 30c and the mixed layer 30b is excellent.
  • the mixed layer 30 b is a layer that bonds DLC having high non-adhesiveness to the base layer 30 a side by WC with an anchor effect. As shown in the examples below, it is important to reduce the hydrogen content in the mixed layer to a certain extent in order to improve the peel resistance in the case of contact with other members under a condition of poor lubrication and sliding. Become.
  • the hydrogen content in the mixed layer 30 b is less than 10 at%. By setting this range, it is possible to prevent the separation of the hard film even under the condition of rolling and sliding contact by boundary lubrication.
  • the hydrogen content of the mixed layer exceeds 10 atomic%, a relatively soft DLC is present in the mixed layer to be the intermediate layer, and there is a possibility that the layer may be easily peeled off under the above conditions.
  • a hydrocarbon-based gas as a carbon supply source for DLC in combination with a slight amount of hydrogen and within the above range.
  • the “hydrogen content (atomic%) in the mixed layer” in the present invention can be calculated by a known analysis method. For example, it can be determined by GDS analysis (glow discharge emission spectrometry). GDS analysis is an analysis that can examine the relationship between the depth direction and the amount of elements, and quantification is possible if a calibration curve of each element is prepared.
  • the hydrogen amount calibration curve can be created using ERDA analysis (elastic recoil particle detection method) that can measure the absolute amount of hydrogen. Since the hydrogen amount output value in GDS analysis differs depending on the difference in the test strip material, it is necessary to create a hydrogen amount calibration curve for each of DLC and WC that constitute the mixed layer (WC / DLC).
  • test pieces with different hydrogen content were adjusted by adjusting the amount of hydrocarbon gas introduced under the conditions matched to the film forming conditions of the mixed layer (WC / DLC).
  • Prepare ERDA analysis and GDS analysis and examine the relationship (calibration curve) between the hydrogen amount output value in GDS analysis and the amount of hydrogen (atomic%) measured in ERDA analysis. Since the hydrogen content determined by the DLC hydrogen content calibration curve and the hydrogen content determined by the WC hydrogen content calibration curve are different, any hydrogen content obtained by these two calibration curves is averaged to obtain an arbitrary value. The hydrogen content (atomic%) corresponding to the hydrogen content output value of can be calculated.
  • the surface layer 30c is a film mainly made of DLC.
  • the difference between the physical properties (hardness, elastic modulus, etc.) of the mixed layer 30b and the surface layer 30c is eliminated rapidly, and the adhesion between the mixed layer 30b and the surface layer 30c is further excellent.
  • the composition ratio of the graphite structure (sp 2 ) and the diamond structure (sp 3 ) in the DLC structure is biased to the latter by increasing the bias voltage continuously or stepwise, and the hardness is inclined (increased). .
  • the film thickness of the hard film 30 (total of three layers) is preferably 0.5 to 3.0 ⁇ m. If the film thickness is less than 0.5 ⁇ m, the abrasion resistance and mechanical strength may be poor, and if it exceeds 3.0 ⁇ m, the film may be easily peeled off. Furthermore, the ratio of the thickness of the surface layer 30c to the thickness of the hard film 30 is preferably 0.8 or less. If this ratio exceeds 0.8, the inclined structure for physically bonding WC and DLC in the mixed layer 30b is likely to be a discontinuous structure, and the adhesion may be deteriorated.
  • the peeling resistance is excellent.
  • the wheel support device of the present invention by forming a hard film having the above-described structure and physical properties, abrasion and peeling of the film can be prevented even when a load such as rolling and sliding contact is received at the time of use. Even in a lubricated state, damage to the raceway surface and the like is reduced, resulting in long life.
  • a load such as rolling and sliding contact
  • Even in a lubricated state damage to the raceway surface and the like is reduced, resulting in long life.
  • grease degradation is promoted by the catalytic action, but in the wheel support device of the present invention Since damage to the moving surface can be prevented, this grease deterioration can also be prevented.
  • the hard film is obtained by forming the underlayer 30a, the mixed layer 30b, and the surface layer 30c in this order on the film forming surface of the bearing member.
  • the formation of the surface layer 30c is preferably performed using a UBMS apparatus using Ar gas as a sputtering gas.
  • the film forming principle of the UBMS method using the UBMS apparatus will be described with reference to a schematic view shown in FIG.
  • the base material 52 is an inner ring, an outer ring, or a rolling element which is a bearing member to be film-formed, but is schematically shown as a flat plate.
  • an inner magnet 54a and an outer magnet 54b having different magnetic characteristics are disposed at the central portion and the peripheral portion of the round target 55, and the magnet 54a, while forming a high density plasma 59 near the target 55.
  • a portion 56a of magnetic field lines 56 generated by 54b reaches the vicinity of the base material 52 connected to the bias power supply 51.
  • An effect of diffusing Ar plasma generated at the time of sputtering along the magnetic lines of force 56a to the vicinity of the base 52 is obtained.
  • the Ar assist ions 57 and electrons cause the ionized target 58 to reach the base material 52 more than in normal sputtering.
  • the dense film (layer) 53 can be formed.
  • the underlayer 30a and the mixed layer 30b are also preferably formed using a UBMS apparatus using Ar gas as the sputtering gas.
  • a Cr target and a WC target are used in combination as the target 55.
  • a WC target, and (2) a graphite target and, if necessary, a hydrocarbon-based gas are used. For each formation of each layer, the target used for each is replaced sequentially.
  • the sputtering power applied to the WC target is increased continuously or stepwise, and the power applied to the Cr target is decreased.
  • Membrane As a result, it is possible to obtain a layer having a structure in which the content of Cr decreases and the content of WC increases toward the mixed layer 30b.
  • the mixed layer 30 b is formed continuously or stepwise while increasing the sputtering power applied to the graphite target serving as a carbon source and decreasing the power applied to the WC target. As a result, it is possible to obtain a layer having a gradient composition in which the content of WC decreases toward the surface layer 30c and the content of DLC increases.
  • a hard film having a predetermined film structure including DLC is formed as a film on at least a sliding contact surface between the rolling element and another member among surfaces of component parts of the wheel support device.
  • the intermediate layer is a mixed layer of WC and DLC (WC / DLC) and has a gradient composition, concentration of residual stress after film formation hardly occurs.
  • the hydrogen content in this mixed layer is less than 10 atomic%, the peeling resistance of the hard film is excellent even when the lubricating state is bad and it is in contact with other members under the conditions involving slippage.
  • the hard film 30 is excellent in peeling resistance while being formed on, for example, a sliding surface, and can exhibit the characteristics intrinsic to DLC.
  • the wheel supporting device of the present invention is excellent in seizure resistance, wear resistance, and corrosion resistance, and has a long life with less damage such as a sliding surface even in a severe lubrication state.
  • the surface layer 30c of the hard film has an inclined layer portion on the side adjacent to the mixed layer 30b, in which the hardness increases continuously or stepwise from the mixed layer 30b side.
  • the inclined layer portion the rapid hardness difference between the mixed layer 30 b and the surface layer 30 c is eliminated, and the adhesion between the mixed layer 30 b and the surface layer 30 c can be improved.
  • the main body of the components of the wheel support device uses an iron-based material selected from high carbon chromium bearing steel, carbon steel, tool steel, or martensitic stainless steel. For this reason, any material generally used as a holder material etc. can be used as a main-body part.
  • the underlayer 30a of the hard film 30 is a layer mainly composed of chromium and tungsten carbide, the adhesion between the underlayer 30a and the mixed layer 30b can be improved.
  • the present invention can be variously modified without being limited to the above embodiment, and is a radial bearing as a type of a rolling bearing which is a component of a wheel support device. It may be a thrust bearing. Moreover, as a rolling element, it may be a ball or a roller. Also, in the case of a roller, it may be a cylindrical roller, a needle roller, a tapered roller, or a spherical roller having a barrel shape. A rolling bearing using needle rollers with high rigidity as rolling elements can receive a load of higher load than a rolling bearing using rollers as rolling elements.
  • a hard film was formed on a predetermined base material as a hard film of a rolling bearing which is a component of the wheel support device of the present invention, and the physical properties of the hard film were evaluated. Moreover, evaluation of peeling resistance was performed by the rolling slip test which used 2 cylindrical tester.
  • test pieces used for evaluation of the hard film, the UBMS apparatus, the sputtering gas, etc. are as follows.
  • UBMS device manufactured by Kobe Steel; UBMS 202 (5) Sputtering gas: Ar gas
  • the formation conditions of the underlayer are described below.
  • the inside of the film forming chamber is evacuated to about 5 ⁇ 10 -3 Pa, the specimen serving as the substrate is baked by the heater, the substrate surface is etched by Ar plasma, and then the Cr target and WC target are formed by the UBMS method.
  • the sputtering power applied to was adjusted, the composition ratio of WC to DLC was inclined, and a Cr / WC inclined layer having a large amount of Cr on the substrate side and a large amount of WC on the surface side was formed.
  • the conditions for forming the mixed layer will be described below. It formed into a film by the UBMS method similarly to a base layer.
  • the mixed layer while supplying methane gas that is a hydrocarbon-based gas, the sputtering power applied to the WC target and the graphite target is adjusted to make the composition ratio of WC and DLC inclined, and WC on the underlayer side. There are many WC / DLC gradient layers with many DLC on the surface layer side.
  • Specific film formation conditions of the mixed layer are shown in Table 1.
  • the hydrogen content (atomic%) in the mixed layer was determined by the above-mentioned method by GDS analysis (glow discharge emission spectroscopy). The results are shown in Table 1.
  • the conditions for forming the surface layer are as shown in Table 1 above.
  • FIG. 5 is a schematic view of the UBMS apparatus.
  • the plasma density in the vicinity of the substrate 21 is increased by the non-equilibrium magnetic field of the sputter evaporation source material (target) 22 to increase the ion assist effect.
  • target sputter evaporation source material
  • FIG. 4 is an apparatus equipped with a UBMS function that can control the characteristics of the film deposited on the substrate. With this apparatus, it is possible to form a composite film in which a plurality of UBMS films (including compositional gradients) are arbitrarily combined on the substrate.
  • a base layer, a mixed layer, and a surface layer are formed as a UBMS film on a ring as a base material.
  • Example 1 to 3 and Comparative Examples 1 to 5 the substrates shown in Table 1 were subjected to ultrasonic cleaning with acetone and then dried. After drying, this was attached to a UBMS apparatus, and an underlayer and a mixed layer were formed under the above-described forming conditions. A DLC film as the surface layer was formed thereon under the film forming conditions shown in Table 1 to obtain a test piece having a hard film.
  • the “degree of vacuum” in Table 1 is the degree of vacuum in the film forming chamber in the above apparatus.
  • the obtained test piece was subjected to a rolling and sliding test using a two-cylinder tester shown below. The results are shown in Table 1.
  • Example 1 to 3 and Comparative Examples 1 to 5 the film forming conditions of the base material and the surface layer to be used are the same, and the hardness of the surface layer is about 29 GPa in average value.
  • Table 1 when the hydrogen content at the time of forming the mixed layer is changed, when the hydrogen content is high, the peeling life in the two-cylinder rolling slip test tends to be short, and the hydrogen content is 10.2. The life is dramatically short at 8 atomic%, and it is considered that the presence of a relatively soft DLC having a high hydrogen content in the mixed layer adversely affects the peel resistance of the film.
  • a hard film such as a DLC film has residual stress in the film, and the residual stress is greatly different under the influence of the film structure and film forming conditions, and as a result, the peeling resistance is also greatly affected.
  • the peel resistance also changes depending on the conditions under which the hard film is used. For this reason, the inventors of the present invention have repeatedly conducted verifications under conditions such as rolling and sliding contact in a case where the lubrication state is poor (boundary lubrication condition) by a two-cylinder test or the like. With respect to the hard film formed on the surface, it has been found that the peel resistance can be improved under such conditions by limiting the film structure and, in particular, setting the hydrogen content within a predetermined range. The present invention has been made based on such findings.
  • the sliding surface and the rolling surface where the application of DLC is considered are often in a severe lubrication state such as thin lubrication or high sliding speed.
  • the DLC film is formed on the sliding surface of the cage, and the peeling resistance of this DL film is excellent even when operated under severe lubrication conditions, and the characteristics of the DLC main body can be exhibited. Resistance, wear resistance, and corrosion resistance. For this reason, the rolling bearing of the present invention is applicable to various applications including applications under severe lubrication conditions.
  • a wheel support device for rotatably supporting a wheel with respect to a suspension system of a motor vehicle.
  • rolling bearing which is a component of a wheel support device, It may be a radial bearing or a thrust bearing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

Disclosed is a wheel support device that rotatably supports, by a grease-enclosed rolling bearing attached onto an outer-diameter surface of an axle, a rotary member that rotates together with a wheel. The wheel support device is provided with a hard film in which a hard coating is formed on at least a sliding surface between a rolling body and another member, among surfaces of constituent components of the wheel support device. The hard film includes: an undercoating layer directly formed on the outer surface of a retainer body; a mixed layer formed on the undercoating layer and made mainly of WC and DLC; and a surface layer formed on the mixed layer and made mainly of DLC. The mixed layer is a layer in which the content by percentage of WC in the mixed layer decreases and the content by percentage of DLC in the mixed layer increases, continuously or stepwise, from the undercoating layer side toward the surface layer side. The content of hydrogen in the mixed layer is less than 10 at.%.

Description

車輪支持装置Wheel support device
 本発明は、自動車の懸架装置に対して車輪を回転自在に支持するための車輪支持装置に関する。 The present invention relates to a wheel support device for rotatably supporting a wheel with respect to a suspension system of a motor vehicle.
 後輪駆動型車両における前輪の如き非駆動輪を支持する車輪支持装置においては、ステアリングナックルに設けられたアクスル(ナックルスピンドル)上に2個の転がり軸受を取付け、その転がり軸受によって回転自在に支持されたアクスルハブの外径面にフランジを設け、このフランジに設けられたスタッドボルトと、これにねじ係合されるナットによってブレーキ装置のブレーキドラムおよび車輪のホイールディスクを取付けるようにしている。 In a wheel supporting apparatus for supporting non-driving wheels such as front wheels in a rear wheel drive type vehicle, two rolling bearings are mounted on an axle (knuckle spindle) provided on a steering knuckle, and are rotatably supported by the rolling bearings. A flange is provided on the outer diameter surface of the axle hub, and a stud bolt provided on the flange and a nut screw-engaged with the flange are used to attach the brake drum of the brake device and the wheel disc of the wheel.
 また、ステアリングナックルに設けられたフランジにバックプレートを取付け、そのバックプレートによってブレーキドラムに制動力を付与する制動機構を支持するようにしている。 Also, a back plate is attached to a flange provided on the steering knuckle, and the back plate supports a braking mechanism that applies a braking force to the brake drum.
 上記のような車輪支持装置においては、アクスルハブを回転自在に支持する転がり軸受として、負荷容量の大きい剛性の高い円すいころ軸受が用いられる。この円すいころ軸受は、アクスルとアクスルハブ間に充填されたグリースによって潤滑される。 In the wheel support device as described above, a high-rigidity tapered roller bearing having a large load capacity is used as a rolling bearing for rotatably supporting an axle hub. The tapered roller bearing is lubricated by grease filled between the axle and the axle hub.
 車輪支持装置に用いられる軸受は、高速、高荷重という過酷な使用条件のため、特に、ころの大端面とつば部で軌道輪つばがすべり運動するため、潤滑グリースの潤滑油膜が破断しやすくなる。潤滑油膜が破断すると金属接触が起こり、発熱、摩擦摩耗が増大する不具合が発生する。 The bearings used in the wheel support device are prone to breakage of the lubricating oil film of the lubricating grease, in particular, due to the sliding movement of the bearing ring collar at the large end face and the collar portion of the roller due to the severe use conditions of high speed and high load. . When the lubricating oil film breaks, metal contact occurs, causing a problem that heat generation and frictional wear increase.
 そのため、高速、高荷重下での潤滑性および耐荷重性を向上させ、潤滑油膜破断による金属接触を防止する必要があり、極圧剤含有グリースを使用して、その不具合を軽減している。 Therefore, it is necessary to improve lubricity and load resistance under high speed and high load, to prevent metal contact due to lubricant film breakage, and the use of an extreme pressure agent-containing grease alleviates the problem.
 従来、高速下で、高荷重のかかる車輪支持装置の例として、ニッケル、テルル、セレン、銅、鉄の中から選択される金属を含む有機金属化合物がグリース全量に対して、20重量%以下含まれることを特徴とするグリースを封入した鉄道車両用軸受が知られている(特許文献1参照)。 Heretofore, as an example of a high-load, high-load wheel supporting apparatus, an organic metal compound containing a metal selected from nickel, tellurium, selenium, copper and iron is contained in an amount of 20% by weight or less based on the total amount of grease. There is known a rail vehicle bearing having a grease sealed therein, which is characterized by the following characteristics (see Patent Document 1).
 しかしながら、ころ軸受の使用条件がdN値 10 万以上という高速条件下での潤滑など過酷になるにつれて、従来のグリースではころ軸受の使用が困難になるなどの問題がある。 However, as the use condition of the roller bearing becomes severe such as lubrication under a high speed condition having a dN value of 100,000 or more, there is a problem that the use of the roller bearing becomes difficult with conventional grease.
 車輪支持装置用ころ軸受は、内、外輪の転走面と転動体である「ころ」との間にころがり摩擦が、つば部と「ころ」との間にすべり摩擦が発生する。ころがり摩擦に比べるとすべり摩擦は大きいので、使用条件が過酷になるとつば部の焼付きが生じやすくなる。そのためグリースの交換作業等が頻繁になりメンテナンスフリー化を達成できないという問題がある。 In the roller bearing for a wheel support device, rolling friction occurs between the rolling surfaces of the inner and outer rings and the "rollers" that are rolling elements, and sliding friction occurs between the flange portion and the "rollers". Since sliding friction is large compared to rolling friction, seizure of the collar tends to occur under severe conditions of use. Therefore, there is a problem that maintenance work can not be achieved because of frequent replacement work of grease.
 一方、転がり軸受の軌道輪の軌道面、転動体の転動面、保持器摺接面などに対し、硬質カーボン膜DLC膜を形成する試みがなされている。硬質カーボン膜は、一般にダイヤモンドライクカーボン(以下、DLCと記す。また、DLCを主体とする膜/層をDLC膜/層ともいう。)と呼ばれている硬質膜である。硬質カーボンはその他にも、硬質非晶質炭素、無定形炭素、硬質無定形型炭素、i-カーボン、ダイヤモンド状炭素など、様々な呼称がある。 On the other hand, attempts have been made to form a hard carbon film DLC film on the raceway surface of the bearing ring of the rolling bearing, the rolling surface of the rolling element, the contact surface of the cage, and the like. The hard carbon film is a hard film generally called diamond-like carbon (hereinafter referred to as DLC, and a film / layer mainly composed of DLC is also referred to as a DLC film / layer). Hard carbon also has various names such as hard amorphous carbon, amorphous carbon, hard amorphous carbon, i-carbon, and diamond-like carbon.
 DLCの本質は、構造的にはダイヤモンドとグラファイトが混ざり合った両者の中間構造を有するものである。ダイヤモンドと同等に硬度が高く、耐摩耗性、固体潤滑性、熱伝導性、化学安定性、耐腐食性などに優れる。このため、例えば、金型・工具類、耐摩耗性機械部品、研磨材、摺動部材、磁気・光学部品などの保護膜として利用されつつある。こうしたDLC膜を形成する方法として、スパッタリング法やイオンプレーティング法などの物理的蒸着(以下、PVDと記す)法、化学的蒸着(以下、CVDと記す)法、アンバランスド・マグネトロン・スパッタリング(以下、UBMSと記す)法などが採用されている。 The essence of DLC is structurally having an intermediate structure in which both diamond and graphite are mixed. The hardness is as high as that of diamond, and excellent in wear resistance, solid lubricity, thermal conductivity, chemical stability, corrosion resistance, etc. For this reason, for example, it is being used as a protective film for molds / tools, wear resistant mechanical parts, abrasives, sliding members, magnetic / optical parts and the like. As a method of forming such a DLC film, physical vapor deposition (hereinafter referred to as PVD) such as sputtering method or ion plating method, chemical vapor deposition (hereinafter referred to as CVD) method, unbalanced magnetron sputtering ( Hereinafter, the UBMS method is adopted.
 DLC膜は、膜形成時に極めて大きな内部応力が発生し、また高い硬度およびヤング率を持つ反面、変形能が極めて小さいことから、基材との密着性が弱く、剥離しやすいなどの欠点を持っている。このため、転がり軸受における上記各面にDLC膜を成膜する場合には、密着性を改善する必要性がある。 The DLC film has extremely high internal stress during film formation and has high hardness and Young's modulus, but has very low deformability, so it has weak adhesion to the substrate and has the disadvantage of being easily peeled off. ing. For this reason, when forming a DLC film on the above-mentioned each surface in a rolling bearing, it is necessary to improve adhesiveness.
 すなわち、従来には、中間層を設けてDLC膜の密着性改善を図った転動装置が提案されている(特許文献2)。この場合、鉄鋼材料で形成された軌道溝や転動体の転動面に、クロム(以下、Crと記す)、タングステン(以下、Wと記す)、チタン(以下、Tiと記す)、珪素(以下、Siと記す)、ニッケル、および鉄の少なくともいずれかの元素を含む組成の下地層と、この下地層の構成元素と炭素とを含有し、炭素の含有率が下地層の反対側で下地層側より大きい中間層と、アルゴンと炭素とからなりアルゴンの含有率が0.02質量%以上5質量%以下であるDLC層とが、この順に形成されたものである。 That is, conventionally, there has been proposed a rolling device in which an intermediate layer is provided to improve the adhesion of the DLC film (Patent Document 2). In this case, chromium (hereinafter referred to as "Cr"), tungsten (hereinafter referred to as "W"), titanium (hereinafter referred to as "Ti"), silicon (hereinafter referred to as "Ti") are formed on the rolling surface of the raceway grooves and rolling elements formed of steel. , Si), nickel, and an underlayer containing a composition containing at least one of iron and iron, and the constituent elements of the underlayer and carbon, and the content of carbon on the opposite side of the underlayer is the underlayer An intermediate layer larger than the side and a DLC layer composed of argon and carbon and having a content of argon of 0.02% by mass to 5% by mass are formed in this order.
 また、従来には、アンカー効果によりDLC膜の密着性改善を図った転がる軸受が提案されている(特許文献3)。この場合、軌道面にイオン衝撃処理により10~100nmの高さで平均幅300nm以下の凹凸を形成し、この軌道面上にDLC膜を形成したものである。 Also, conventionally, a rolling bearing has been proposed in which adhesion of the DLC film is improved by an anchor effect (Patent Document 3). In this case, irregularities having an average width of 300 nm or less are formed on the raceway surface by ion bombardment at a height of 10 to 100 nm, and a DLC film is formed on this raceway surface.
特開平10-17884号公報JP 10-17884 A 特許第4178826号公報Patent No. 4178826 gazette 特許第3961739号公報Patent No. 3961739 gazette
  しかしながら、転がりすべり運動において発生する高い接触面圧下ではフレーキングの防止は容易でなく、特に滑り摩擦により強いせん断力が発生し得るような潤滑・運転条件においてはより困難となる。車輪支持装置においてDLC膜の適用が検討される摺動面は、潤滑状態が悪く、滑りを伴うといった状況であることが多く、一般的な転がり軸受における運転状況より厳しい場合が多い。 However, it is not easy to prevent the flaking under the high contact surface pressure generated in the rolling and sliding motion, and it becomes more difficult particularly under lubricating and operating conditions where a strong shear force can be generated due to sliding friction. The sliding surface on which the application of the DLC film is considered in the wheel support device is often in a state of poor lubrication and accompanied by slippage, and is often more severe than the operating condition in a general rolling bearing.
 すなわち、上記した各特許文献の技術は、硬質膜の剥離防止などを図ったものであるが、得られた転がり軸受について、使用条件に応じた要求特性を満足させるべく、DLC膜を適用する際の膜構造や成膜条件には更なる改善の余地がある。 That is, although the technology of each patent document mentioned above aimed at the peeling prevention of a hard film etc., when applying a DLC film, in order to satisfy the required characteristic according to use conditions about the obtained rolling bearing, There is room for further improvement in the film structure and film formation conditions of the above.
 そこで、本発明は、上記課題に鑑みて、高荷重またはすべり運動が生じる状態での潤滑面での摩擦摩耗を防止し、長期耐久性に優れた車輪支持装置を提供するものである。 Then, in view of the above-mentioned subject, the present invention provides a wheel supporting device excellent in long-term durability by preventing friction wear on a lubricating surface in a state where high load or sliding motion occurs.
 本発明の車輪支持装置は、アクスルの外径面上に取付けられたグリース封入転がり軸受によって車輪と共に回転する回転部材を回転自在に支持する車輪支持装置において、車輪支持装置の構成部品の表面のうち、少なくとも転動体と他部材との摺接面に硬質被膜が形成される硬質膜を備え、前記硬質膜は、前記構成部品の表面の上に直接成膜された下地層と、この下地層の上に成膜されたタングステンカーバイドとダイヤモンドライクカーボンとを主体とする混合層と、この混合層の上に成膜されたダイヤモンドライクカーボンを主体とする表面層とを有し、前記混合層は、前記下地層側から前記表面層側へ向けて連続的または段階的に、該混合層中の前記タングステンカーバイドの含有率が小さくなり、この混合層中の前記ダイヤモンドライクカーボンの含有率が高くなる層であり、前記混合層における水素含有量が10原子%未満である。ここで、タングステンカーバイドとは、等モル量のタングステン原子と炭素原子からなる無機化合物(炭化物)である。また、ダイヤモンドライクカーボンとは、ダイヤモンドとグラファイト(黒鉛)の両方の炭素-炭素結合を併せ持つ炭素を主成分とした物質で作られた薄膜の総称である。 The wheel support device according to the present invention is a wheel support device that rotatably supports a rotating member that rotates with the wheel by a grease-sealed rolling bearing mounted on an outer diameter surface of an axle, the surface of the components of the wheel support device A hard film on which a hard film is formed on at least a sliding contact surface between the rolling element and the other member, the hard film comprising an underlayer formed directly on the surface of the component and the underlayer A mixed layer mainly composed of tungsten carbide and diamond like carbon deposited on the upper surface, and a surface layer mainly composed of diamond like carbon deposited on the mixed layer; The content of the tungsten carbide in the mixed layer decreases continuously or stepwise from the underlayer side to the surface layer side, and the diamond in the mixed layer becomes smaller. A layer content of Ik carbon increases, the hydrogen content in the mixed layer is less than 10 atomic%. Here, tungsten carbide is an inorganic compound (carbide) composed of equimolar amounts of tungsten atoms and carbon atoms. Also, diamond-like carbon is a general term for a thin film made of a carbon-based material having both carbon and carbon bonds of diamond and graphite (graphite).
 本発明の車輪支持装置は、車輪支持装置の構成部品の表面のうち、少なくとも転動体と他部材との摺接面に、DLCを含む所定の膜構造を有する硬質膜が成膜されてなる。中間層がWCとDLCの混合層(WC/DLC)であり、傾斜組成とされているので、成膜後の残留応力の集中が発生し難い。これに加えて、この混合層における水素含有量が10原子%未満であるので、潤滑状態が悪く滑りを伴う条件下で他部材と接触する場合でも硬質膜の耐剥離性に優れる。 In the wheel support device of the present invention, a hard film having a predetermined film structure including DLC is formed as a film on at least a sliding contact surface between the rolling element and another member among surfaces of component parts of the wheel support device. Since the intermediate layer is a mixed layer of WC and DLC (WC / DLC) and has a gradient composition, concentration of residual stress after film formation hardly occurs. In addition to this, since the hydrogen content in this mixed layer is less than 10 atomic%, the peeling resistance of the hard film is excellent even when the lubricating state is bad and it is in contact with other members under the conditions involving slippage.
 前記硬質膜の表面層は、前記混合層との隣接側に、前記混合層側から硬度が連続的または段階的に高くなる傾斜層部分を有するのが好ましい。このように、傾斜層部分を有するものでは、混合層と表面層との急激な硬度差がなくなり、混合層と表面層との密着性の向上を図ることができる。 The surface layer of the hard film preferably has, on the side adjacent to the mixed layer, a graded layer portion whose hardness increases continuously or stepwise from the mixed layer side. As described above, in the case having the inclined layer portion, the rapid hardness difference between the mixed layer and the surface layer disappears, and the adhesion between the mixed layer and the surface layer can be improved.
 前記車輪支持装置の構成部品の本体部は、高炭素クロム軸受鋼、炭素鋼、工具鋼、または、マルテンサイト系ステンレス鋼から選ばれる鉄系材料を用いることができる。すなわち、保持器本体として、保持器材として一般的に用いられる任意の材料を使用できる。 An iron-based material selected from high carbon chromium bearing steel, carbon steel, tool steel, or martensitic stainless steel can be used for the main body of the component part of the wheel support device. That is, any material generally used as a holder material can be used as a holder body.
 前記硬質膜の下地層が、クロムとタングステンカーバイドとを主体とする層であるのが好ましい。このように設定することによって、下地層と混合層との密着性の向上を図ることができる。 The underlayer of the hard film is preferably a layer mainly composed of chromium and tungsten carbide. By setting in this manner, the adhesion between the underlayer and the mixed layer can be improved.
 複数の転動体と、この転動体を保持する保持器とを備えてなる転がり軸受を用いた車輪支持装置であって、前記転がり軸受の保持器が、前記硬質膜を有する構成部品であるのが好ましい。 A wheel support device using a rolling bearing comprising a plurality of rolling elements and a cage for holding the rolling elements, wherein the rolling bearing cage is a component having the hard film. preferable.
 本発明の車輪支持装置では、硬質膜は、例えば、保持器摺動面に形成されながら耐剥離性に優れ、DLC本来の特性を発揮できる。この結果、本発明の車輪支持装置は、耐焼き付き性、耐摩耗性、および耐腐食性に優れ、苛酷な潤滑状態でも摺動面などの損傷が少なく長寿命となる。 In the wheel support device of the present invention, for example, the hard film is excellent in peeling resistance while being formed on the cage sliding surface, and can exhibit the intrinsic characteristics of DLC. As a result, the wheel supporting device of the present invention is excellent in seizure resistance, wear resistance, and corrosion resistance, and has a long life with less damage such as a sliding surface even in a severe lubrication state.
本発明の車輪支持装置の断面図である。It is sectional drawing of the wheel support apparatus of this invention. 円すいころ軸受の一部切欠いた状態の斜視図である。It is a perspective view of the state which partially cut away the tapered roller bearing. 硬質膜の構造を示す模式断面図である。It is a schematic cross section which shows the structure of a hard film. UBMS法の成膜原理を示す模式図である。It is a schematic diagram which shows the film-forming principle of UBMS method. UBMS装置の模式図である。It is a schematic diagram of a UBMS apparatus. 2円筒試験機の模式図である。FIG. 2 is a schematic view of a two-cylinder tester.
  以下本発明の実施の形態を図1~図6に基づいて説明する。図1に示す車輪支持装置は、ステアリングナックル1にはフランジ2と、アクスル3とが設けられ、そのアクスル3の外径面上に取付けた一対の円すいころ軸受4a、4bによって回転部材としてのアクスルハブ5が回転自在に支持されている。 Hereinafter, an embodiment of the present invention will be described based on FIGS. 1 to 6. In the wheel support device shown in FIG. 1, a steering knuckle 1 is provided with a flange 2 and an axle 3 and an axle hub as a rotating member by a pair of tapered roller bearings 4a and 4b mounted on the outer diameter surface of the axle 3. 5 is rotatably supported.
 アクスルハブ5は、外径面にフランジ6を有し、そのフランジ6に設けたスタッドボルト7と、そのスタッドボルト7にねじ係合したナット8によってブレーキ装置のブレーキドラム9、および車輪のホイールディスク10が取付けられている。11はホイールディスク10の外径面に取付けられたリムを示し、そのリム上にタイヤが取付けられる。 The axle hub 5 has a flange 6 on the outer diameter surface, and a stud bolt 7 provided on the flange 6 and a nut 8 screw-engaged with the stud bolt 7 and the brake drum 9 of the brake device and the wheel disc 10 of the wheel. Is attached. Reference numeral 11 denotes a rim attached to the outer diameter surface of the wheel disc 10, on which a tire is attached.
 前記ステアリングナックル1のフランジ2にはボルト、ナットの締付けによってブレーキ装置のバックプレート12が取付けられている。バックプレート12にはブレーキドラム9に制動力を付与する制動機構が支持されるが、図では省略してある。 The back plate 12 of the brake device is attached to the flange 2 of the steering knuckle 1 by tightening a bolt and a nut. Although a braking mechanism for applying a braking force to the brake drum 9 is supported by the back plate 12, it is omitted in the figure.
 アクスルハブ5を回転自在に支持する前記一対の円すいころ軸受4a、4bは、アクスルハブ5内に充填されたグリースによって潤滑される。その円すいころ軸受4bから外部にグリースが漏洩したり、外部から泥水が浸入するのを防止するため、アクスルハブ5の外側端面に円すいころ軸受4bを覆うようにしてグリースキャップ17が取付けられている。 The pair of tapered roller bearings 4 a, 4 b rotatably supporting the axle hub 5 is lubricated by the grease filled in the axle hub 5. A grease cap 17 is attached to the outer end surface of the axle hub 5 so as to cover the tapered roller bearing 4b in order to prevent the leakage of grease from the tapered roller bearing 4b to the outside and the entry of muddy water from the outside.
 本発明の車輪支持装置の円すいころ軸受の一例について図2により説明する。図2は円すいころ軸受の一部切り欠き斜視図である。円すいころ軸受4は内輪44と外輪43との間に円すいころ46が保持器45を介して配置されている。図3に示すように、円すいころ46は内輪44の転走面44aと外輪43の転走面43aとの間でころがり摩擦を受け、内輪44のつば部44b、44cとの間ですべり摩擦を受ける。これらの摩擦を低減するためにころ軸受用グリースが封入されている。 An example of the tapered roller bearing of the wheel supporting device of the present invention will be described with reference to FIG. FIG. 2 is a partially cutaway perspective view of the tapered roller bearing. In the tapered roller bearing 4, the tapered roller 46 is disposed between the inner ring 44 and the outer ring 43 via a cage 45. As shown in FIG. 3, the tapered roller 46 receives rolling friction between the rolling surface 44 a of the inner ring 44 and the rolling surface 43 a of the outer ring 43, and sliding friction is made between the ring portions 44 b and 44 c of the inner ring 44. receive. Grease for roller bearings is enclosed to reduce these frictions.
 保持器45には、転動体としての円すいころ46を保持するためのポケット45aが設けられ、各ポケット45aの間に位置する柱部45bで、各円すいころ46の間隔を保持する。保持器45は、高炭素クロム軸受鋼、炭素鋼、工具鋼、または、マルテンサイト系ステンレス鋼から選ばれる鉄系材料からなる保持器本体45Aと、保持器本体45Aの外表面に形成される硬質膜(硬質被膜)30(図3参照)とで構成される。硬質膜30を形成する保持器本体45Aの表面部位は、保持器本体45Aの外表面全体のうち、少なくとも転動体である円すいころ46との摺接面および他部材との摺接面である。保持器本体45Aの外表面とは、保持器45の最外表面を構成し、実際に転動体である円すいころ46や他部材と摺接する表面である。これらの外表面は、潤滑油等と接触する部位でもある。
また、他部材とは、内輪44や外輪43などである。
The cage 45 is provided with pockets 45a for holding the tapered rollers 46 as rolling elements, and the pillars 45b positioned between the pockets 45a maintain the intervals between the tapered rollers 46. The cage 45 includes a cage body 45A made of an iron-based material selected from high carbon chromium bearing steel, carbon steel, tool steel, or martensitic stainless steel, and a hard formed on the outer surface of the cage body 45A. And a film (hard film) 30 (see FIG. 3). The surface portion of the retainer main body 45A forming the hard film 30 is at least a sliding contact surface with the tapered roller 46 which is a rolling element and a sliding contact surface with other members out of the entire outer surface of the holder main body 45A. The outer surface of the cage main body 45A is a surface which constitutes the outermost surface of the cage 45 and is in sliding contact with the tapered rollers 46, which are rolling elements, and other members. These outer surfaces are also parts that come in contact with lubricating oil and the like.
The other members are the inner ring 44, the outer ring 43, and the like.
 製造が容易であることから、硬質膜(硬質被膜)30は、円すいころ46と接触するポケット45aの表面を含めた保持器45の全外表面に形成することが好ましい。また、保持器45の最外表面部位に加えて、転動体である円すいころ46の表面等にも同様の硬質被膜を形成することができる。 It is preferable that the hard film (hard film) 30 be formed on the entire outer surface of the cage 45 including the surface of the pocket 45 a in contact with the tapered roller 46 because of easy manufacturing. Further, in addition to the outermost surface portion of the cage 45, a similar hard film can be formed on the surface of the tapered roller 46, which is a rolling element, and the like.
 これらの軸受部材において、硬質膜30が形成される面の硬さが、ビッカース硬さでHv650以上であることが好ましい。Hv650以上とすることで、硬質膜30(後述する下地層)との硬度差を少なくし、密着性を向上させることができる。 In these bearing members, the hardness of the surface on which the hard film 30 is formed is preferably Hv 650 or more in Vickers hardness. By setting it as Hv650 or more, the hardness difference with the hard film 30 (underlying layer mentioned later) can be decreased, and adhesiveness can be improved.
 硬質膜30が形成される面において、硬質膜形成前に、窒化処理により窒化層が形成されていることが好ましい。窒化処理としては、基材表面に密着性を妨げる酸化層が生じ難いプラズマ窒化処理を施すことが好ましい。また、窒化処理後の表面の硬さがビッカース硬さでHv1000以上であることが、硬質膜(下地層)との密着性をさらに向上させるために好ましい。 In the surface on which the hard film 30 is formed, it is preferable that a nitrided layer be formed by nitriding before forming the hard film. As the nitriding treatment, it is preferable to perform plasma nitriding treatment in which it is difficult to form an oxide layer which prevents adhesion on the surface of the base material. Moreover, it is preferable that the hardness of the surface after the nitriding treatment is Hv 1000 or more in Vickers hardness in order to further improve the adhesion to the hard film (underlayer).
 硬質膜30が形成される面の表面粗さRaは、0.05μm以下であることが好ましい。表面粗さRaが0.05μmをこえると、粗さの突起先端に硬質膜が形成され難くなり、局所的に膜厚が小さくなる。 The surface roughness Ra of the surface on which the hard film 30 is formed is preferably 0.05 μm or less. When the surface roughness Ra exceeds 0.05 μm, it becomes difficult to form a hard film at the tip of the protrusion having the roughness, and the film thickness locally decreases.
 硬質膜30の構造を図3に基づいて説明する。図3は、図1の円すいころ軸受4a、4bに示す硬質膜30の構造を示す模式断面図である。図3に示すように、硬質膜30は、保持器本体45A上に直接成膜される下地層30aと、下地層30aの上に成膜されるWC(タングステンカーバイド)とDLC(ダイヤモンドライクカーボン)とを主体とする混合層30bと、混合層30bの上に成膜されるDLCを主体とする表面層30cとからなる3層構造を有する。ここで、タングステンカーバイドとは、等モル量のタングステン原子と炭素原子からなる無機化合物(炭化物)である。また、ダイヤモンドライクカーボンとは、ダイヤモンドとグラファイト(黒鉛)の両方の炭素-炭素結合を併せ持つ炭素を主成分とした物質で作られた薄膜の総称である。このように、硬質膜30の膜構造を上記のような3層構造とすることで、急激な物性(硬度・弾性率等)変化を避けるようにしている。 The structure of the hard film 30 will be described based on FIG. FIG. 3 is a schematic cross-sectional view showing the structure of the hard film 30 shown in the tapered roller bearings 4a and 4b of FIG. As shown in FIG. 3, the hard film 30 includes an underlayer 30 a formed directly on the cage main body 45 A, and WC (tungsten carbide) and DLC (diamond like carbon) formed on the underlayer 30 a. And a surface layer 30c mainly made of DLC formed on the mixed layer 30b. Here, tungsten carbide is an inorganic compound (carbide) composed of equimolar amounts of tungsten atoms and carbon atoms. Also, diamond-like carbon is a general term for a thin film made of a carbon-based material having both carbon and carbon bonds of diamond and graphite (graphite). As described above, by setting the film structure of the hard film 30 to the three-layer structure as described above, abrupt changes in physical properties (hardness, elastic modulus, etc.) are avoided.
 下地層30aは、基材となる各軸受部材の表面に直接成膜される下地層である。材質や構造は、基材との密着性を確保できるものであれば特に限定されず、例えば材質としてCr(クロム)、W(タングステン)、Ti(チタン)、Si(ケイ素)などが使用できる。これらの中でも、基材となる軸受部材(例えば高炭素クロム軸受鋼)との密着性に優れることから、Crを含むことが好ましい。 The foundation layer 30 a is a foundation layer formed directly on the surface of each bearing member as a base material. The material and structure are not particularly limited as long as adhesion with the substrate can be secured, and for example, Cr (chromium), W (tungsten), Ti (titanium), Si (silicon) or the like can be used as the material. Among these, Cr is preferably contained because it is excellent in adhesion to a bearing member (for example, high carbon chromium bearing steel) serving as a base material.
 また、下地層30aは、混合層30bとの密着性も考慮して、CrとWCとを主体とする層であることが好ましい。WCは、CrとDLCとの中間的な硬さや弾性率を有し、成膜後の残留応力の集中が発生し難い。特に、本体部側から混合層30b側に向けてCrの含有率が小さく、かつ、WCの含有率が高くなる傾斜組成とすることが好ましい。これにより、本体部と混合層30bとの両面での密着性に優れる。 The underlayer 30a is preferably a layer mainly composed of Cr and WC in consideration of adhesion to the mixed layer 30b. WC has an intermediate hardness and elastic modulus between Cr and DLC, and concentration of residual stress after film formation hardly occurs. In particular, it is preferable to set a gradient composition in which the content of Cr is small and the content of WC is high from the main body side toward the mixed layer 30b. Thereby, the adhesiveness on both surfaces of a main-body part and the mixed layer 30b is excellent.
 混合層30bは、下地層30aと表面層30cとの間に介在する中間層となる。混合層30bに用いるWCは、上述のように、CrとDLCとの中間的な硬さや弾性率を有し、成膜後の残留応力の集中も発生し難い。混合層30bが、下地層30a側から表面層30c側に向けてWCの含有率が小さく、かつ、DLCの含有率が高くなる傾斜組成である。このため、下地層30aと表面層30cとの両面での密着性に優れる。また、混合層30b内において、WCとDLCとが物理的に結合する構造となっており、混合層30b内での破損などを防止できる。さらに、表面層30c側ではDLC含有率が高められているので、表面層30cと混合層30bとの密着性に優れる。 The mixed layer 30 b is an intermediate layer interposed between the underlayer 30 a and the surface layer 30 c. As described above, WC used for the mixed layer 30b has hardness and elastic modulus intermediate between Cr and DLC, and concentration of residual stress after film formation is also less likely to occur. The mixed layer 30 b has a gradient composition in which the content of WC decreases and the content of DLC increases from the base layer 30 a side to the surface layer 30 c side. For this reason, the adhesiveness on both surfaces of base layer 30a and surface layer 30c is excellent. Further, in the mixed layer 30b, the WC and the DLC are physically bonded to each other, so that damage or the like in the mixed layer 30b can be prevented. Furthermore, since the DLC content is increased on the surface layer 30c side, the adhesion between the surface layer 30c and the mixed layer 30b is excellent.
 また、混合層30bは、非粘着性の高いDLCをWCによって下地層30a側にアンカー効果で結合させる層となる。後述の実施例に示すように、潤滑状態が悪く滑りを伴う条件下で他部材と接触する場合において耐剥離性を向上させるには、混合層中の水素含有量をある程度少なくすることが重要となる。 In addition, the mixed layer 30 b is a layer that bonds DLC having high non-adhesiveness to the base layer 30 a side by WC with an anchor effect. As shown in the examples below, it is important to reduce the hydrogen content in the mixed layer to a certain extent in order to improve the peel resistance in the case of contact with other members under a condition of poor lubrication and sliding. Become.
 混合層30bにおける水素含有量は、10原子%未満とする。この範囲とすることで、境界潤滑で転がり滑り接触する条件下でも硬質膜の剥離を防止できる。混合層の水素含有量が10原子%をこえる場合、中間層となる混合層中に比較的軟質なDLCが存在することとなり、上記のような条件下では剥離しやすくなるおそれがある。また、転がり接触時の疲労特性を向上させるため、DLC用の炭素供給源として炭化水素系ガスは併用して水素を僅かに含有させつつ上記範囲内とすることが好ましい。 The hydrogen content in the mixed layer 30 b is less than 10 at%. By setting this range, it is possible to prevent the separation of the hard film even under the condition of rolling and sliding contact by boundary lubrication. When the hydrogen content of the mixed layer exceeds 10 atomic%, a relatively soft DLC is present in the mixed layer to be the intermediate layer, and there is a possibility that the layer may be easily peeled off under the above conditions. Further, in order to improve the fatigue characteristics at the time of rolling contact, it is preferable to use a hydrocarbon-based gas as a carbon supply source for DLC in combination with a slight amount of hydrogen and within the above range.
 ここで、本発明における「混合層における水素含有量(原子%)」は、公知の分析法により算出できる。例えば、GDS分析(グロー放電発光分光分析)で求めることができる。GDS分析は深さ方向と元素量の関係を調べることができる分析であり、各元素の検量線を用意すれば定量が可能である。水素量検量線は、水素の絶対量測定が可能なERDA分析(弾性反跳粒子検出法)を用いて作成できる。GDS分析における水素量出力値は、試験片材質の違いによって異なるため、混合層(WC/DLC)を構成しているDLCとWCそれぞれについて水素量検量線を作成する必要がある。DLC単層膜試験片およびWC単層膜試験片について、混合層(WC/DLC)の成膜条件に合わせた条件で炭化水素系ガス導入量を調整することで水素含有量の異なる試験片を作製し、ERDA分析とGDS分析を行ない、GDS分析における水素量出力値とERDA分析で測定した水素量(原子%)の関係(検量線)を調べる。上記DLC水素量検量線で求めた水素含有量と、上記WC水素量検量線で求めた水素含有量とは異なるため、これら両方の検量線で求めた水素含有量の平均をとることで、任意の水素量出力値に対応する水素含有量(原子%)が算出できる。 Here, the “hydrogen content (atomic%) in the mixed layer” in the present invention can be calculated by a known analysis method. For example, it can be determined by GDS analysis (glow discharge emission spectrometry). GDS analysis is an analysis that can examine the relationship between the depth direction and the amount of elements, and quantification is possible if a calibration curve of each element is prepared. The hydrogen amount calibration curve can be created using ERDA analysis (elastic recoil particle detection method) that can measure the absolute amount of hydrogen. Since the hydrogen amount output value in GDS analysis differs depending on the difference in the test strip material, it is necessary to create a hydrogen amount calibration curve for each of DLC and WC that constitute the mixed layer (WC / DLC). For DLC single layer film test pieces and WC single layer film test pieces, test pieces with different hydrogen content were adjusted by adjusting the amount of hydrocarbon gas introduced under the conditions matched to the film forming conditions of the mixed layer (WC / DLC). Prepare ERDA analysis and GDS analysis, and examine the relationship (calibration curve) between the hydrogen amount output value in GDS analysis and the amount of hydrogen (atomic%) measured in ERDA analysis. Since the hydrogen content determined by the DLC hydrogen content calibration curve and the hydrogen content determined by the WC hydrogen content calibration curve are different, any hydrogen content obtained by these two calibration curves is averaged to obtain an arbitrary value. The hydrogen content (atomic%) corresponding to the hydrogen content output value of can be calculated.
 表面層30cは、DLCを主体とする膜である。表面層30cにおいて、混合層30bとの隣接側に、緩和層部分30dを有することが好ましい。これは、混合層30bと表面層30cとで成膜条件パラメータ(炭化水素系ガス導入量、真空度、バイアス電圧)が異なる場合、これらパラメータの急激な変化を避けるために、このパラメータの少なくとも1つを連続的または段階的に変化させることで得られる緩和層部分である。より詳細には、混合層30bの最表層形成時の成膜条件パラメータを始点とし、表面層30cの最終的な成膜条件パラメータを終点として、各パラメータをこの範囲内で連続的または段階的に変化させる。これにより、混合層30bと表面層30cとの急激な物性(硬度・弾性率等)の差がなくなり、混合層30bと表面層30cとの密着性がさらに優れる。なお、バイアス電圧を連続的または段階的に上昇させることで、DLC構造におけるグラファイト構造(sp2)とダイヤモンド構造(sp3)との構成比率が後者に偏っていき、硬度が傾斜(上昇)する。 The surface layer 30c is a film mainly made of DLC. In the surface layer 30c, it is preferable to have a relaxation layer portion 30d on the side adjacent to the mixed layer 30b. This is because, when the film forming condition parameters (hydrocarbon gas introduction amount, vacuum degree, bias voltage) are different between the mixed layer 30 b and the surface layer 30 c, at least one of these parameters is avoided in order to avoid abrupt change of these parameters. It is a part of the relaxation layer obtained by continuously or stepwise changing one. More specifically, starting from the film forming condition parameters at the time of forming the outermost layer of the mixed layer 30b and ending point of the final film forming condition parameters of the surface layer 30c, each parameter is continuously or stepwise within this range. Change. As a result, the difference between the physical properties (hardness, elastic modulus, etc.) of the mixed layer 30b and the surface layer 30c is eliminated rapidly, and the adhesion between the mixed layer 30b and the surface layer 30c is further excellent. The composition ratio of the graphite structure (sp 2 ) and the diamond structure (sp 3 ) in the DLC structure is biased to the latter by increasing the bias voltage continuously or stepwise, and the hardness is inclined (increased). .
 硬質膜30の膜厚(3層の合計)は0.5~3.0μmとすることが好ましい。膜厚が0.5μm未満であれば、耐摩耗性および機械的強度に劣る場合があり、3.0μmをこえると剥離し易くなる。さらに、該硬質膜30の膜厚に占める表面層30cの厚さの割合が0.8以下であることが好ましい。この割合が0.8をこえると、混合層30bにおけるWCとDLCの物理結合するための傾斜組織が不連続な組織となりやすく、密着性が劣化するおそれがある。 The film thickness of the hard film 30 (total of three layers) is preferably 0.5 to 3.0 μm. If the film thickness is less than 0.5 μm, the abrasion resistance and mechanical strength may be poor, and if it exceeds 3.0 μm, the film may be easily peeled off. Furthermore, the ratio of the thickness of the surface layer 30c to the thickness of the hard film 30 is preferably 0.8 or less. If this ratio exceeds 0.8, the inclined structure for physically bonding WC and DLC in the mixed layer 30b is likely to be a discontinuous structure, and the adhesion may be deteriorated.
 硬質膜30を以上のような組成の下地層30a、混合層30b、表面層30cからなる3層構造とすることで、耐剥離性に優れる。 By forming the hard film 30 into a three-layer structure including the base layer 30a having the above composition, the mixed layer 30b, and the surface layer 30c, the peeling resistance is excellent.
 本発明の車輪支持装置において、以上のような構造・物性の硬質膜を形成することで、使用時に転がり滑り接触などの負荷を受けた場合でも、該膜の摩耗や剥離を防止でき、苛酷な潤滑状態でも軌道面などの損傷が少なく長寿命となる。また、グリースを封入した転がり軸受において、軌道輪などの損傷により金属新生面が露出すると、触媒作用によりグリース劣化を促進させるが、本発明の車輪支持装置では、硬質膜により金属接触による軌道面や転動面の損傷を防止できるので、このグリース劣化も防止できる。 In the wheel support device of the present invention, by forming a hard film having the above-described structure and physical properties, abrasion and peeling of the film can be prevented even when a load such as rolling and sliding contact is received at the time of use. Even in a lubricated state, damage to the raceway surface and the like is reduced, resulting in long life. In addition, in a rolling bearing in which grease is enclosed, when a new metal surface is exposed due to damage to a bearing ring or the like, grease degradation is promoted by the catalytic action, but in the wheel support device of the present invention Since damage to the moving surface can be prevented, this grease deterioration can also be prevented.
 以下、本発明の硬質膜30の形成方法について説明する。上記硬質膜は、軸受部材の成膜面に対して、下地層30a、混合層30b、表面層30cをこの順に成膜して得られる。 Hereinafter, the method for forming the hard film 30 of the present invention will be described. The hard film is obtained by forming the underlayer 30a, the mixed layer 30b, and the surface layer 30c in this order on the film forming surface of the bearing member.
 表面層30cの形成は、スパッタリングガスとしてArガスを用いたUBMS装置を使用してなされることが好ましい。UBMS装置を用いたUBMS法の成膜原理を図4に示す模式図を用いて説明する。図中において、基材52は、成膜対象の軸受部材である内輪、外輪、または転動体であるが、模式的に平板で示してある。図4に示すように、丸形ターゲット55の中心部と周辺部で異なる磁気特性を有する内側磁石54a、外側磁石54bが配置され、ターゲット55付近で高密度プラズマ59を形成しつつ、磁石54a、54bにより発生する磁力線56の一部56aがバイアス電源51に接続された基材52近傍まで達するようにしたものである。この磁力線56aに沿ってスパッタリング時に発生したArプラズマが基材52付近まで拡散する効果が得られる。このようなUBMS法では、基材52付近まで達する磁力線56aに沿って、Arイオン57および電子が、通常のスパッタリングに比べてイオン化されたターゲット58をより多く基材52に到達させるイオンアシスト効果によって、緻密な膜(層)53を成膜できる。 The formation of the surface layer 30c is preferably performed using a UBMS apparatus using Ar gas as a sputtering gas. The film forming principle of the UBMS method using the UBMS apparatus will be described with reference to a schematic view shown in FIG. In the drawing, the base material 52 is an inner ring, an outer ring, or a rolling element which is a bearing member to be film-formed, but is schematically shown as a flat plate. As shown in FIG. 4, an inner magnet 54a and an outer magnet 54b having different magnetic characteristics are disposed at the central portion and the peripheral portion of the round target 55, and the magnet 54a, while forming a high density plasma 59 near the target 55. A portion 56a of magnetic field lines 56 generated by 54b reaches the vicinity of the base material 52 connected to the bias power supply 51. An effect of diffusing Ar plasma generated at the time of sputtering along the magnetic lines of force 56a to the vicinity of the base 52 is obtained. In such a UBMS method, along the magnetic field lines 56a reaching the vicinity of the base material 52, the Ar assist ions 57 and electrons cause the ionized target 58 to reach the base material 52 more than in normal sputtering. And the dense film (layer) 53 can be formed.
 下地層30aおよび混合層30bの形成も、上記のスパッタリングガスとしてArガスを用いたUBMS装置を使用してなされることが好ましい。下地層30aがCrとWCとを主体とする層である場合は、ターゲット55としてCrターゲットおよびWCターゲットを併用する。また、混合層30bを形成する際には、(1)WCターゲット、および、(2)黒鉛ターゲットと必要に応じて炭化水素系ガスを用いる。各層の形成毎に、それぞれに用いるターゲットを逐次取り替える。 The underlayer 30a and the mixed layer 30b are also preferably formed using a UBMS apparatus using Ar gas as the sputtering gas. When the underlayer 30a is a layer mainly composed of Cr and WC, a Cr target and a WC target are used in combination as the target 55. Further, when forming the mixed layer 30b, (1) a WC target, and (2) a graphite target and, if necessary, a hydrocarbon-based gas are used. For each formation of each layer, the target used for each is replaced sequentially.
 下地層30aにおいて、上述のようなCrとWCの傾斜組成とする場合は、連続的または段階的に、WCターゲットに印加するスパッタ電力を上げながら、かつ、Crターゲットに印加する電力を下げながら成膜する。これにより混合層30b側に向けてCrの含有率が小さく、かつ、WCの含有率が高くなる構造の層とできる。 In the case where the underlayer 30a has the above-described gradient composition of Cr and WC, the sputtering power applied to the WC target is increased continuously or stepwise, and the power applied to the Cr target is decreased. Membrane. As a result, it is possible to obtain a layer having a structure in which the content of Cr decreases and the content of WC increases toward the mixed layer 30b.
 混合層30bは、連続的または段階的に、炭素供給源となる黒鉛ターゲットに印加するスパッタ電力を上げながら、かつ、WCターゲットに印加する電力を下げながら成膜する。これにより表面層30c側に向けてWCの含有率が小さく、かつ、DLCの含有率が高くなる傾斜組成の層とできる。 The mixed layer 30 b is formed continuously or stepwise while increasing the sputtering power applied to the graphite target serving as a carbon source and decreasing the power applied to the WC target. As a result, it is possible to obtain a layer having a gradient composition in which the content of WC decreases toward the surface layer 30c and the content of DLC increases.
 本発明の車輪支持装置は、車輪支持装置の構成部品の表面のうち、少なくとも転動体と他部材との摺接面に、DLCを含む所定の膜構造を有する硬質膜が成膜されてなる。中間層がWCとDLCの混合層(WC/DLC)であり、傾斜組成とされているので、成膜後の残留応力の集中が発生し難い。これに加えて、この混合層における水素含有量が10原子%未満であるので、潤滑状態が悪く滑りを伴う条件下で他部材と接触する場合でも硬質膜の耐剥離性に優れる。 In the wheel support device of the present invention, a hard film having a predetermined film structure including DLC is formed as a film on at least a sliding contact surface between the rolling element and another member among surfaces of component parts of the wheel support device. Since the intermediate layer is a mixed layer of WC and DLC (WC / DLC) and has a gradient composition, concentration of residual stress after film formation hardly occurs. In addition to this, since the hydrogen content in this mixed layer is less than 10 atomic%, the peeling resistance of the hard film is excellent even when the lubricating state is bad and it is in contact with other members under the conditions involving slippage.
 このため、本発明の車輪支持装置では、硬質膜30は、例えば、摺動面に形成されながら耐剥離性に優れ、DLC本来の特性を発揮できる。この結果、本発明の車輪支持装置は、耐焼き付き性、耐摩耗性、および耐腐食性に優れ、苛酷な潤滑状態でも摺動面などの損傷が少なく長寿命となる。 For this reason, in the wheel support device of the present invention, the hard film 30 is excellent in peeling resistance while being formed on, for example, a sliding surface, and can exhibit the characteristics intrinsic to DLC. As a result, the wheel supporting device of the present invention is excellent in seizure resistance, wear resistance, and corrosion resistance, and has a long life with less damage such as a sliding surface even in a severe lubrication state.
 前記硬質膜の表面層30cは、前記混合層30bとの隣接側に、前記混合層30b側から硬度が連続的または段階的に高くなる傾斜層部分を有することになる。このように、傾斜層部分を有するものでは、混合層30bと表面層30cとの急激な硬度差がなくなり、混合層30bと表面層30cとの密着性の向上を図ることができる。 The surface layer 30c of the hard film has an inclined layer portion on the side adjacent to the mixed layer 30b, in which the hardness increases continuously or stepwise from the mixed layer 30b side. As described above, in the case having the inclined layer portion, the rapid hardness difference between the mixed layer 30 b and the surface layer 30 c is eliminated, and the adhesion between the mixed layer 30 b and the surface layer 30 c can be improved.
 前記車輪支持装置の構成部品の本体部は、高炭素クロム軸受鋼、炭素鋼、工具鋼、または、マルテンサイト系ステンレス鋼から選ばれる鉄系材料を用いる。このため、本体部として、保持器材等として一般的に用いられる任意の材料を使用できる。 The main body of the components of the wheel support device uses an iron-based material selected from high carbon chromium bearing steel, carbon steel, tool steel, or martensitic stainless steel. For this reason, any material generally used as a holder material etc. can be used as a main-body part.
 前記硬質膜30の下地層30aが、クロムとタングステンカーバイドとを主体とする層であるので、下地層30aと混合層30bとの密着性の向上を図ることができる。 Since the underlayer 30a of the hard film 30 is a layer mainly composed of chromium and tungsten carbide, the adhesion between the underlayer 30a and the mixed layer 30b can be improved.
 以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、車輪支持装置の構成部品である転がり軸受の形式として、ラジアル軸受であっても、スラスト軸受であってもよい。また、転動体として、玉であってもころであってもよい。また、ころの場合、円筒ころ,針状ころ,円すいころ,又はたる形をした球面ころ等であってもよい。高剛性である針状ころを転動体として使用した転がり軸受は、ころを転動体として使用した転がり軸受よりも、さらに高荷重の負荷を受けることができる。 Although the embodiment of the present invention has been described above, the present invention can be variously modified without being limited to the above embodiment, and is a radial bearing as a type of a rolling bearing which is a component of a wheel support device. It may be a thrust bearing. Moreover, as a rolling element, it may be a ball or a roller. Also, in the case of a roller, it may be a cylindrical roller, a needle roller, a tapered roller, or a spherical roller having a barrel shape. A rolling bearing using needle rollers with high rigidity as rolling elements can receive a load of higher load than a rolling bearing using rollers as rolling elements.
 本発明の車輪支持装置の構成部品である転がり軸受の硬質膜として、所定の基材に対して硬質膜を形成し、該硬質膜の物性に関する評価をした。また、2円筒試験機を用いた転がり滑り試験にて耐剥離性の評価を行なった。 A hard film was formed on a predetermined base material as a hard film of a rolling bearing which is a component of the wheel support device of the present invention, and the physical properties of the hard film were evaluated. Moreover, evaluation of peeling resistance was performed by the rolling slip test which used 2 cylindrical tester.
 硬質膜の評価用に用いた試験片、UBMS装置、およびスパッタリングガスなどは以下のとおりである。
 (1)試験片物性:SUJ2 焼き入れ焼き戻し品 硬さ780Hv
 (2)試験片:鏡面研磨された(0.02μmRa)SUJ2リング(φ40×L12副曲率なし)の摺動表面に対して各条件にてDLC膜を成膜したもの
 (3)相手材:研削仕上げ(0.7μmRa)SUJ2リング(φ40×L12副曲率60)
 (4)UBMS装置:神戸製鋼所製;UBMS202
 (5)スパッタリングガス:Arガス
The test pieces used for evaluation of the hard film, the UBMS apparatus, the sputtering gas, etc. are as follows.
(1) Specimen physical properties: SUJ2 Hardened and tempered product Hardness 780 Hv
(2) Test piece: DLC film was formed on each sliding surface of mirror-polished (0.02 μm Ra) SUJ 2 ring (φ 40 × L 12 with no subcurvature) (3) Counterpart material: grinding Finished (0.7μmRa) SUJ2 Ring (φ 40 × L 12 Sub-curvature 60)
(4) UBMS device: manufactured by Kobe Steel; UBMS 202
(5) Sputtering gas: Ar gas
 下地層の形成条件を以下に説明する。成膜チャンバー内を5×10-3Pa程度まで真空引きし、ヒータで基材となる試験片をベーキングして、Arプラズマにて基材表面をエッチング後、UBMS法にてCrターゲットとWCターゲットに印加するスパッタ電力を調整し、WCとDLCの組成比を傾斜させ、基材側でCrが多く表面側でWCが多いCr/WC傾斜層を形成した。 The formation conditions of the underlayer are described below. The inside of the film forming chamber is evacuated to about 5 × 10 -3 Pa, the specimen serving as the substrate is baked by the heater, the substrate surface is etched by Ar plasma, and then the Cr target and WC target are formed by the UBMS method. The sputtering power applied to was adjusted, the composition ratio of WC to DLC was inclined, and a Cr / WC inclined layer having a large amount of Cr on the substrate side and a large amount of WC on the surface side was formed.
 混合層の形成条件を以下に説明する。下地層と同様にUBMS法にて成膜した。ここで、該混合層については、炭化水素系ガスであるメタンガスを供給しながら、WCターゲットと黒鉛ターゲットに印加するスパッタ電力を調整し、WCとDLCの組成比を傾斜させ、下地層側でWCが多く表面層側でDLCが多いWC/DLC傾斜層を形成した。混合層の具体的な成膜条件を表1に示す。なお、混合層における水素含有量(原子%)は、GDS分析(グロー放電発光分光分析)により上述の方法で求めた。結果を表1に併記する。
Figure JPOXMLDOC01-appb-T000001
The conditions for forming the mixed layer will be described below. It formed into a film by the UBMS method similarly to a base layer. Here, with respect to the mixed layer, while supplying methane gas that is a hydrocarbon-based gas, the sputtering power applied to the WC target and the graphite target is adjusted to make the composition ratio of WC and DLC inclined, and WC on the underlayer side. There are many WC / DLC gradient layers with many DLC on the surface layer side. Specific film formation conditions of the mixed layer are shown in Table 1. The hydrogen content (atomic%) in the mixed layer was determined by the above-mentioned method by GDS analysis (glow discharge emission spectroscopy). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 表面層の形成条件は、前記表1に示すとおりである。 The conditions for forming the surface layer are as shown in Table 1 above.
 図5はUBMS装置の模式図である。図5に示すように、円盤20上に配置された基材21に対し、スパッタ蒸発源材料(ターゲット)22を非平衡な磁場により、基材21近傍のプラズマ密度を上げてイオンアシスト効果を増大すること(図4参照)によって、基材上に堆積する被膜の特性を制御できるUBMS機能を備える装置である。この装置により、基材上に、複数のUBMS被膜(組成傾斜を含む)を任意に組合せた複合被膜を成膜することができる。この実施例では、基材とするリングに、下地層、混合層、表面層をUBMS被膜として成膜している。 FIG. 5 is a schematic view of the UBMS apparatus. As shown in FIG. 5, with respect to the substrate 21 disposed on the disk 20, the plasma density in the vicinity of the substrate 21 is increased by the non-equilibrium magnetic field of the sputter evaporation source material (target) 22 to increase the ion assist effect. (Refer to FIG. 4) is an apparatus equipped with a UBMS function that can control the characteristics of the film deposited on the substrate. With this apparatus, it is possible to form a composite film in which a plurality of UBMS films (including compositional gradients) are arbitrarily combined on the substrate. In this embodiment, a base layer, a mixed layer, and a surface layer are formed as a UBMS film on a ring as a base material.
  実施例1~3及び比較例1~5では、表1に示す基材をアセトンで超音波洗浄した後、乾燥した。乾燥後、これをUBMS装置に取り付け、上述の形成条件にて下地層および混合層を形成した。その上に、表1に示す成膜条件にて表面層であるDLC膜を成膜し、硬質膜を有する試験片を得た。なお、表1における「真空度」は上記装置における成膜チャンバー内の真空度である。得られた試験片を下記に示す2円筒試験機を用いた転がり滑り試験に供した。結果を表1に併記する。 In Examples 1 to 3 and Comparative Examples 1 to 5, the substrates shown in Table 1 were subjected to ultrasonic cleaning with acetone and then dried. After drying, this was attached to a UBMS apparatus, and an underlayer and a mixed layer were formed under the above-described forming conditions. A DLC film as the surface layer was formed thereon under the film forming conditions shown in Table 1 to obtain a test piece having a hard film. The “degree of vacuum” in Table 1 is the degree of vacuum in the film forming chamber in the above apparatus. The obtained test piece was subjected to a rolling and sliding test using a two-cylinder tester shown below. The results are shown in Table 1.
<2円筒試験機による転がり滑り試験>
 得られた試験片について図6に示す2円筒試験機を用いて転がり滑りによる耐剥離性の試験を行なった。この2円筒試験機は、駆動側試験片23と転がり滑り接触する従動側試験片24とを備え、それぞれの試験片(リング)は支持軸受26で支持されており、負荷用バネ27により荷重が負荷されている。また、図中の25は駆動用プーリ、28は非接触回転計である。硬質膜の剥離を助長するために相手材粗さを大きくし、潤滑油粘度を下げ境界潤滑とし、回転差をつけて滑りを発生させ、被膜の剥離が発生するまでの時間(h)を剥離寿命として評価を行った。具体的な試験条件は以下のとおりである。
(試験条件)
  潤滑油:VG1.5相当油(添加剤含有)    滴下給油
  油温:40~50℃
  最大接触面圧:2.7GPa
  回転数:(試験片側)270 min-1
      (相手材側)300 min-1
  相対滑り速度:0.06 m/s
  油膜パラメータ:0.006
  打ち切り時間:48h
<Rolling and sliding test by 2 cylindrical testing machine>
About the obtained test piece, the test of peeling resistance by rolling and sliding was done using the 2 cylindrical tester shown in FIG. This two-cylinder test machine is provided with a drive-side test piece 23 and a driven-side test piece 24 in rolling-sliding contact, and each test piece (ring) is supported by a support bearing 26. It is loaded. Further, in the figure, reference numeral 25 denotes a driving pulley, and reference numeral 28 denotes a noncontact tachometer. In order to promote the peeling of the hard film, the mating material is made larger, the viscosity of the lubricating oil is lowered, boundary lubrication is made, rotation difference is given, slippage is generated, and the time (h) until peeling of the film occurs is peeled It evaluated as a life. Specific test conditions are as follows.
(Test conditions)
Lubricating oil: VG1.5 equivalent oil (containing additives) Dropping oil temperature: 40 to 50 ° C
Maximum contact pressure: 2.7 GPa
Number of rotations: (Test one side) 270 min -1
(The opposite material side) 300 min -1
Relative sliding speed: 0.06 m / s
Oil film parameter: 0.006
Discontinuation time: 48 h
 各実施例1~3と各比較例1~5は、使用する基材および表面層の成膜条件が同一であり、表面層の硬度は平均値で約29GPaである。表1に示すように、混合層を形成する際の水素含有量を変化させた場合、水素含有量が高い場合において2円筒転がり滑り試験における剥離寿命が短い傾向があり、水素含有量が10.8原子%の時点で劇的に短寿命となっており、混合層内の水素含有量の高い比較的軟質なDLCの存在が被膜の耐剥離性に悪影響を及ぼしていると考えられる。 In Examples 1 to 3 and Comparative Examples 1 to 5, the film forming conditions of the base material and the surface layer to be used are the same, and the hardness of the surface layer is about 29 GPa in average value. As shown in Table 1, when the hydrogen content at the time of forming the mixed layer is changed, when the hydrogen content is high, the peeling life in the two-cylinder rolling slip test tends to be short, and the hydrogen content is 10.2. The life is dramatically short at 8 atomic%, and it is considered that the presence of a relatively soft DLC having a high hydrogen content in the mixed layer adversely affects the peel resistance of the film.
 DLC膜などの硬質膜は膜内に残留応力があり、残留応力は膜構造や成膜条件の影響を受け大きく異なり、その結果、耐剥離性にも大きな影響を及ぼす。また、耐剥離性は硬質膜が使用される条件によっても変化する。このため、本発明者らは、2円筒試験などにより、潤滑状態が悪い場合(境界潤滑条件)において転がり滑り接触するような条件下での検証を重ねた結果、該条件下となる軸受部材の表面に形成する硬質膜について、その膜構造を限定するとともに、特に水素含有量を所定範囲内とすることで、該条件での耐剥離性の向上が図れることを見出した。本発明はこのような知見に基づきなされたものである。 A hard film such as a DLC film has residual stress in the film, and the residual stress is greatly different under the influence of the film structure and film forming conditions, and as a result, the peeling resistance is also greatly affected. The peel resistance also changes depending on the conditions under which the hard film is used. For this reason, the inventors of the present invention have repeatedly conducted verifications under conditions such as rolling and sliding contact in a case where the lubrication state is poor (boundary lubrication condition) by a two-cylinder test or the like. With respect to the hard film formed on the surface, it has been found that the peel resistance can be improved under such conditions by limiting the film structure and, in particular, setting the hydrogen content within a predetermined range. The present invention has been made based on such findings.
 ところで、DLCの適用が検討される摺動面・転動面は潤滑が希薄または滑り速度が速いなど苛酷な潤滑状態であることが多い。本発明の転がり軸受は、保持器摺動面にDLC膜が形成され、苛酷な潤滑状態で運転した場合においてもこのDL膜の耐剥離性に優れ、DLC本体の特性を発揮できるので、耐焼き付き性、耐摩耗性、および耐腐食性に優れる。このため、本発明の転がり軸受は、苛酷な潤滑状態での用途を含め、各種用途に適用可能である。 By the way, the sliding surface and the rolling surface where the application of DLC is considered are often in a severe lubrication state such as thin lubrication or high sliding speed. In the rolling bearing of the present invention, the DLC film is formed on the sliding surface of the cage, and the peeling resistance of this DL film is excellent even when operated under severe lubrication conditions, and the characteristics of the DLC main body can be exhibited. Resistance, wear resistance, and corrosion resistance. For this reason, the rolling bearing of the present invention is applicable to various applications including applications under severe lubrication conditions.
  自動車の懸架装置に対して車輪を回転自在に支持するための車輪支持装置である。車輪支持装置の構成部品である転がり軸受の形式として、
ラジアル軸受であっても、スラスト軸受であってもよい。
A wheel support device for rotatably supporting a wheel with respect to a suspension system of a motor vehicle. As a form of rolling bearing which is a component of a wheel support device,
It may be a radial bearing or a thrust bearing.
3     アクスル
4、4a、4b       軸受
30   硬質膜
30a 下地層
30b 混合層
30c 表面層
30d 緩和層部分
45   保持器
45A 保持器本体
46   円すいころ(転動体)
Reference Signs List 3 axle 4, 4a, 4b bearing 30 hard film 30a underlayer 30b mixed layer 30c surface layer 30d relaxation layer portion 45 cage 45A cage body 46 tapered roller (rolling element)

Claims (5)

  1.   アクスルの外径面上に取付けられたグリース封入転がり軸受によって車輪と共に回転する回転部材を回転自在に支持する車輪支持装置において、
     車輪支持装置の構成部品の表面のうち、少なくとも転動体と他部材との摺接面に硬質被膜が形成される硬質膜を備え、
     前記硬質膜は、前記構成部品の表面の上に直接成膜された下地層と、この下地層の上に成膜されたタングステンカーバイドとダイヤモンドライクカーボンとを主体とする混合層と、この混合層の上に成膜されたダイヤモンドライクカーボンを主体とする表面層とを有し、
     前記混合層は、前記下地層側から前記表面層側へ向けて連続的または段階的に、該混合層中の前記タングステンカーバイドの含有率が小さくなり、この混合層中の前記ダイヤモンドライクカーボンの含有率が高くなる層であり、前記混合層における水素含有量が10原子%未満であることを特徴とする車輪支持装置。
    A wheel support device rotatably supporting a rotating member rotating with a wheel by a grease-sealed rolling bearing mounted on an outer diameter surface of an axle.
    A hard film on which a hard film is formed on at least a sliding contact surface between a rolling element and another member among surfaces of component parts of a wheel support device,
    The hard film includes an underlayer formed directly on the surface of the component, a mixed layer mainly composed of tungsten carbide and diamond-like carbon formed on the underlayer, and the mixed layer And a surface layer mainly composed of diamond like carbon deposited on the
    In the mixed layer, the content of the tungsten carbide in the mixed layer decreases continuously or stepwise from the underlayer side to the surface layer side, and the diamond-like carbon in the mixed layer is contained. A wheel supporting device characterized in that the layer has a high rate, and the hydrogen content in the mixed layer is less than 10 atomic%.
  2.  前記硬質膜の表面層は、前記混合層との隣接側に、前記混合層側から硬度が連続的または段階的に高くなる傾斜層部分を有することを特徴とする請求項1記載の車輪支持装置。 The wheel support device according to claim 1, characterized in that the surface layer of the hard film has, on the side adjacent to the mixed layer, an inclined layer portion whose hardness increases continuously or stepwise from the mixed layer side. .
  3.  前記構成部品の本体部は、高炭素クロム軸受鋼、炭素鋼、工具鋼、または、マルテンサイト系ステンレス鋼から選ばれる鉄系材料であることを特徴とする請求項1または請求項2に記載の車輪支持装置。 The body portion of the component is an iron-based material selected from high carbon chromium bearing steel, carbon steel, tool steel, or martensitic stainless steel. Wheel support device.
  4.  前記硬質膜の下地層が、クロムとタングステンカーバイドとを主体とする層であることを特徴とする請求項1~請求項3のいずれか1項に記載の車輪支持装置。 The wheel support device according to any one of claims 1 to 3, wherein the underlayer of the hard film is a layer mainly composed of chromium and tungsten carbide.
  5.  複数の転動体と、この転動体を保持する保持器とを備えてなる転がり軸受を用いた車輪支持装置であって、前記転がり軸受の保持器が、前記硬質膜を有する構成部品であることを特徴とする請求項1~請求項4のいずれか1項に記載の車輪支持装置。 A wheel supporting device using a rolling bearing comprising a plurality of rolling elements and a cage for holding the rolling elements, wherein the rolling bearing cage is a component having the hard film. The wheel support device according to any one of claims 1 to 4, characterized in that
PCT/JP2018/036884 2017-10-10 2018-10-02 Wheel support device WO2019073861A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017196893A JP2019070407A (en) 2017-10-10 2017-10-10 Wheel support device
JP2017-196893 2017-10-10

Publications (1)

Publication Number Publication Date
WO2019073861A1 true WO2019073861A1 (en) 2019-04-18

Family

ID=66100576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036884 WO2019073861A1 (en) 2017-10-10 2018-10-02 Wheel support device

Country Status (2)

Country Link
JP (1) JP2019070407A (en)
WO (1) WO2019073861A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031614A (en) * 2005-07-28 2007-02-08 Ntn Corp Wheel-supporting apparatus
WO2011122662A1 (en) * 2010-03-30 2011-10-06 Ntn株式会社 Anti-friction bearing
WO2013042765A1 (en) * 2011-09-22 2013-03-28 Ntn株式会社 Hard film, hard film formed body, and rolling bearing
JP2016186354A (en) * 2015-03-27 2016-10-27 Ntn株式会社 Bearing for main motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031614A (en) * 2005-07-28 2007-02-08 Ntn Corp Wheel-supporting apparatus
WO2011122662A1 (en) * 2010-03-30 2011-10-06 Ntn株式会社 Anti-friction bearing
WO2013042765A1 (en) * 2011-09-22 2013-03-28 Ntn株式会社 Hard film, hard film formed body, and rolling bearing
JP2016186354A (en) * 2015-03-27 2016-10-27 Ntn株式会社 Bearing for main motor

Also Published As

Publication number Publication date
JP2019070407A (en) 2019-05-09

Similar Documents

Publication Publication Date Title
WO2013042765A1 (en) Hard film, hard film formed body, and rolling bearing
JP2022107481A (en) Rolling bearing and wheel support device
JP2018146108A (en) Rolling bearing and its manufacturing method
JP5993680B2 (en) Rolling bearing and manufacturing method thereof
JP5938321B2 (en) Hard film and film forming method thereof, hard film forming body and manufacturing method thereof
JP4178826B2 (en) Rolling device
US20210317877A1 (en) Rolling bearing, wheel support device, and wind power generation rotor shaft support device
JP7079175B2 (en) Multi-row self-aligning roller bearings and spindle support devices for wind power generation equipped with them
WO2020031995A1 (en) Rolling bearing, wheel support device, and main shaft support device for wind power generation
JP7373341B2 (en) Rolling bearings and main shaft support devices for wind power generation
WO2018164139A1 (en) Rolling bearing and method for producing same
JP5620860B2 (en) Rolling bearing
WO2019073861A1 (en) Wheel support device
JP2004060668A (en) Rolling device
JP2019027476A (en) Cage for rolling bearing and rolling bearing
WO2020067334A1 (en) Rolling bearing, and main shaft support device for wind power generation
JP5379734B2 (en) Rolling bearing
JP6875880B2 (en) Rolling bearing and hard film film formation method
JP2024014629A (en) rolling bearing
JP2008151264A (en) Cage for roller bearing
JP2019035481A (en) Constant velocity universal joint
JP2003254341A (en) Rolling member and rolling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18866554

Country of ref document: EP

Kind code of ref document: A1