WO2018164139A1 - Rolling bearing and method for producing same - Google Patents

Rolling bearing and method for producing same Download PDF

Info

Publication number
WO2018164139A1
WO2018164139A1 PCT/JP2018/008623 JP2018008623W WO2018164139A1 WO 2018164139 A1 WO2018164139 A1 WO 2018164139A1 JP 2018008623 W JP2018008623 W JP 2018008623W WO 2018164139 A1 WO2018164139 A1 WO 2018164139A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hard film
rolling bearing
mixed layer
rolling
Prior art date
Application number
PCT/JP2018/008623
Other languages
French (fr)
Japanese (ja)
Inventor
雅樹 中西
三上 英信
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017218848A external-priority patent/JP2018146108A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to US16/492,090 priority Critical patent/US20200408261A1/en
Publication of WO2018164139A1 publication Critical patent/WO2018164139A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/02Carbon based material
    • F16C2206/04Diamond like carbon [DLC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/80Cermets, i.e. composites of ceramics and metal
    • F16C2206/82Cermets, i.e. composites of ceramics and metal based on tungsten carbide [WC]

Definitions

  • the present invention relates to a rolling bearing and a manufacturing method thereof, and more specifically to a rolling bearing in which a hard film containing diamond-like carbon is formed on the inner ring, outer ring, and rolling element surface, and a manufacturing method thereof.
  • the hard carbon film is a hard film generally called diamond-like carbon (hereinafter referred to as DLC.
  • DLC diamond-like carbon
  • a film or layer mainly composed of DLC is also referred to as a DLC film or a DLC layer).
  • hard carbon such as hard amorphous carbon, amorphous carbon, hard amorphous carbon, i-carbon, diamond-like carbon, and these terms are clearly distinguished. Not.
  • DLC diamond-based liquid crystal display
  • DLC diamond-based liquid crystal display
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • UBMS unbalanced magnetron sputtering
  • DLC film has been formed on the raceway surface of the bearing ring of the rolling bearing and the rolling surface of the rolling element.
  • a DLC film generates extremely large internal stress during film formation.
  • the DLC film has high hardness and Young's modulus, but has extremely low deformability. For this reason, the DLC film has weaknesses such as weak adhesion to the substrate and easy peeling. In the case where a DLC film is formed on the raceway surface of the bearing ring of the rolling bearing or the rolling surface of the rolling element, it is necessary to improve the adhesion.
  • an intermediate layer is provided between the base material and the DLC film to improve the adhesion of the DLC film.
  • chromium hereinafter, at least one of Cr (hereinafter referred to as Cr), tungsten (hereinafter referred to as W), titanium (hereinafter referred to as Ti), silicon (hereinafter referred to as Si), nickel (hereinafter referred to as Ni), and iron
  • Cr Cr
  • W tungsten
  • Ti titanium
  • Si silicon
  • Ni nickel
  • iron an underlayer having an element-containing composition, a constituent element of the underlayer and carbon, an intermediate layer having a carbon content rate opposite to the underlayer and larger than that of the underlayer, and argon and carbon
  • a rolling device in which a DLC layer having a content rate of 0.02 mass% or more and 5 mass% or less is formed in this order (see Japanese Patent Application Laid-Open No. 2003-314560).
  • an object of the present invention is to provide a rolling bearing having excellent durability.
  • the rolling bearing according to the present disclosure includes an inner ring, an outer ring, a plurality of rolling elements, and a hard film.
  • the inner ring has an inner ring raceway surface on the outer periphery.
  • the outer ring has an outer ring raceway surface on the inner periphery.
  • the plurality of rolling elements roll between the inner ring raceway surface and the outer ring raceway surface.
  • the hard film is formed on at least one surface selected from the group consisting of an inner ring, an outer ring, and a rolling element.
  • the inner ring, the outer ring, and the plurality of rolling elements are made of an iron-based material.
  • the hard film includes an underlayer, a mixed layer, and a surface layer.
  • the underlayer is a layer mainly composed of chromium and formed directly on the surface.
  • the mixed layer is a layer mainly composed of tungsten carbide (WC) and diamond-like carbon (DLC) formed on the base layer.
  • the surface layer is a layer mainly composed of diamond-like carbon (DLC) formed on the mixed layer.
  • the content of tungsten carbide (WC) in the mixed layer decreases continuously or stepwise from the base layer side to the surface layer side, and the diamond-like carbon (DLC) content in the mixed layer This is a layer with a higher rate.
  • the rolling bearing manufacturing method includes a step of preparing an inner ring, an outer ring, and a rolling element, and a step of forming a hard film.
  • the hard film is formed on at least one surface selected from the group consisting of an inner ring, an outer ring, and a rolling element.
  • an unbalanced magnetron sputtering apparatus using argon gas as the sputtering gas is used.
  • a graphite target and a hydrocarbon gas are used in combination as a carbon supply source, and the ratio of the introduction amount of the hydrocarbon gas to the introduction amount 100 of argon gas into the apparatus is 1 or more and 10 or less.
  • the surface layer is formed by depositing carbon atoms generated from the carbon supply source on the mixed layer.
  • the durability is improved by improving the peel resistance of the hard film including the layer mainly composed of DLC formed on the inner / outer ring raceway surfaces of the rolling bearing and exhibiting the original characteristics of DLC.
  • Rolling bearings can be realized.
  • a hard film such as a DLC film has residual stress in the film.
  • the residual stress varies greatly depending on the film structure of the hard film, the film formation conditions, and the shape of the substrate on which the hard film is formed.
  • the present inventors have unexpectedly discovered that the influence of the substrate shape on the residual stress is large. For example, in a hard film formed on a flat surface, there is no peeling immediately after film formation, and the critical peeling load in the scratch test is large.
  • a hard film having the same structure is formed on curved surfaces such as the inner ring raceway surface and the outer ring raceway surface of the rolling bearing, it peels off immediately after film formation or does not peel immediately after film formation, but peels off during use.
  • a hard film formed on the inner ring raceway surface, outer ring raceway surface, and rolling surface of the rolling element, which are curved surfaces, is a base layer (a layer mainly composed of Cr). It has been found that peeling resistance can be greatly improved by limiting to a predetermined structure comprising a mixed layer (layer having a WC / DLC gradient composition) and a surface layer (layer mainly composed of DLC).
  • the hard film having such a configuration can suppress peeling even under actual use conditions of the bearing.
  • the indentation hardness of the surface layer was 10 to 20 GPa, the peel resistance could be further improved.
  • the present invention has been made based on such findings.
  • ⁇ Configuration of rolling bearing> 1 to 3 are schematic cross-sectional views of rolling bearings according to an embodiment of the present invention (hereinafter also referred to as this embodiment).
  • 4 is a schematic cross-sectional view of a rolling element of the rolling bearing shown in FIG.
  • FIG. 5 is a schematic partial sectional view of a hard film of the rolling bearing shown in FIG.
  • FIG. 1 shows a cross-sectional view of a deep groove ball bearing which is an example of a rolling bearing in which a hard film described later is formed on the inner ring raceway surface.
  • FIG. 2 shows a cross-sectional view of a deep groove ball bearing in which a hard film described later is formed on the outer ring raceway surface.
  • FIG. 3 shows a cross-sectional view of a deep groove ball bearing in which a hard film is formed on the rolling surface of the rolling element.
  • 1 to 3 includes an inner ring 2 having an inner ring raceway surface 2a on an outer periphery, an outer ring 3 having an outer ring raceway surface 3a on an inner periphery, and an inner ring raceway surface 2a and an outer ring raceway surface 3a. And a plurality of rolling elements 4 that roll.
  • the rolling elements 4 are held at regular intervals by a cage 5.
  • the seal member 6 seals both axial end openings between the inner ring and the outer ring.
  • Grease 7 is sealed in the bearing space sealed by the seal member 6. As the grease 7 enclosed around the rolling element 4, a known grease for a rolling bearing can be used.
  • a hard film 8 is formed on the outer peripheral surface of the inner ring 2 including the inner ring raceway surface 2a.
  • a hard film 8 is formed on the inner peripheral surface of the outer ring 3 including the outer ring raceway surface 3a.
  • a hard film 8 is formed on the rolling surface which is the surface of the rolling element 4 as shown in FIG. Since the rolling bearing 1 of FIG. 3 is a deep groove ball bearing, the rolling element 4 is a ball, and its rolling surface is the entire spherical surface. Cylindrical roller bearings or tapered roller bearings may be used as rolling bearings other than those shown in FIGS. At this time, when the hard film 8 is formed on the surface of the rolling element, the hard film 8 may be formed on at least the rolling surface of the rolling element such as the outer peripheral surface of the cylindrical roller. In the rolling bearing 1, the hard film 8 only needs to be formed on at least one surface of the inner ring 2, the outer ring 3, or the rolling element 4 according to the application.
  • the inner ring raceway surface 2a of the deep groove ball bearing is a circular curved surface having an arc-shaped cross section in the axial direction in order to guide the balls as the rolling elements 4.
  • the outer ring raceway surface 3a is also a circular curved surface having an arc-shaped cross section in the axial direction.
  • the radius of curvature of the arc groove is generally about 0.51 dw to 0.54 dw, where dw is the diameter of the ball (steel ball diameter).
  • the inner ring raceway surface and the outer ring raceway surface are at least circumferential in order to guide the rollers of these bearings. It becomes a curved surface in the direction.
  • the inner ring raceway surface and the outer ring raceway surface are curved in the axial direction in addition to the circumferential direction.
  • the inner ring raceway surface 2a and the outer ring raceway surface 3a may have any of the above shapes.
  • the inner ring 2, the outer ring 3, and the rolling element 4, which are bearing members for which the hard film 8 is to be formed, are made of an iron-based material.
  • the iron-based material is a material mainly composed of iron.
  • any steel material generally used as a bearing member can be used, and examples thereof include high carbon chromium bearing steel, carbon steel, tool steel, martensitic stainless steel, and the like.
  • the surface on which the hard film 8 is formed may have a Vickers hardness of Hv650 or higher.
  • Hv650 or more the hardness difference with the hard film 8 (more specifically, the base layer 8a shown in FIG. 5) can be reduced, and the adhesion of the hard film 8 to the bearing member can be improved.
  • a nitride layer may be formed by nitriding treatment on the surface of the bearing member on which the hard film 8 is formed before the hard film 8 is formed.
  • the nitriding treatment it is preferable to perform a plasma nitriding treatment that hardly forms an oxide layer that hinders adhesion on the surface of the bearing member as a base material.
  • the hardness of the nitrided layer surface after the nitriding treatment may be Vickers hardness of Hv1000 or more. In this case, the adhesion of the hard film 8 to the bearing member can be further improved.
  • the surface roughness Ra of the surface of the bearing member on which the hard film 8 is formed may be 0.05 ⁇ m or less. When the surface roughness Ra exceeds 0.05 ⁇ m, it is difficult to form the hard film 8 at the tip of the concavo-convex protrusion on the surface, and the film thickness of the hard film 8 may be locally reduced.
  • the indentation hardness of the surface layer 8c may be 10 GPa or more and 20 GPa or less. In this case, the peel resistance of the hard film 8 can be improved.
  • the indentation hardness may be 18 GPa or less, or 15 GPa or less.
  • the indentation hardness may be 12 GPa or more, or 13 GPa or more.
  • FIG. 5 shows the structure of the hard film 8 in the rolling bearing 1 shown in FIG.
  • the hard film 8 has a three-layer structure including a base layer 8a, a mixed layer 8b, and a surface layer 8c.
  • the foundation layer 8a is a layer formed directly on the inner ring raceway surface 2a of the inner ring 2 and mainly composed of Cr.
  • the mixed layer 8b is formed on the underlayer 8a and is a layer mainly composed of WC and DLC.
  • the surface layer 8c is formed on the mixed layer 8b and is a layer mainly composed of DLC.
  • the WC content in the mixed layer 8b decreases continuously or stepwise from the base layer 8a side to the surface layer 8c side, and the DLC content in the mixed layer 8b. The rate is high.
  • the foundation layer 8a is a layer mainly composed of Cr, the compatibility between the inner ring 2 which is a bearing member made of an iron-based material as a base material and the foundation layer 8a is good. Therefore, compared with the case where W, Ti, Si, etc. are used as the foundation layer 8a, the adhesion of the foundation layer 8a to the bearing member as the base material is high. In particular, when high carbon chromium bearing steel used as a material for the bearing race is used as a material for the bearing member, the base layer 8a mainly composed of Cr is excellent in adhesion to the bearing member.
  • WC used for the mixed layer 8b has intermediate hardness and elastic modulus between Cr and DLC. For this reason, concentration of residual stress after the hard film 8 is formed hardly occurs.
  • the intermediate in the hard film 8 Material selection in the mixed layer 8b as a layer is also an important factor.
  • the mixed layer 8b has a gradient composition in which the WC content decreases toward the surface layer 8c and the DLC content increases. Therefore, the mixed layer 8b has excellent adhesion on both the interface with the base layer 8a and the interface with the surface layer 8c.
  • the mixed layer 8b has a structure in which WC and DLC are physically combined, and the DLC content is increased on the surface layer 8c side in the mixed layer 8b. Therefore, the surface layer 8c and the mixed layer 8b Excellent adhesion.
  • the surface layer 8c is a film mainly composed of DLC.
  • the surface layer 8c has an inclined layer portion 8d whose hardness increases continuously or stepwise from the mixed layer 8b side to the opposite side (upper surface side of the surface layer 8c) on the side adjacent to the mixed layer 8b. preferable. This is because when the bias voltage at the time of film formation is different between the mixed layer 8b and the surface layer 8c, the bias voltage is changed continuously or stepwise in order to avoid a sudden change in the bias voltage (for example, a set value of the bias voltage). This is the part obtained by raising the The inclined layer portion 8d changes the bias voltage in this way, and as a result, the hardness changes in the thickness direction of the surface layer 8c as described above.
  • the reason why the hardness increases continuously or stepwise is that the constituent ratio of the graphite structure (sp2) and the diamond structure (sp3) in the DLC structure is biased toward the latter as the bias voltage increases. Thereby, a sudden change in hardness in the interface region between the mixed layer 8b and the surface layer 8c is reduced, and the adhesion between the mixed layer 8b and the surface layer 8c is further improved.
  • the film thickness of the hard film 8 (the total film thickness of the base layer 8a, the mixed layer 8b, and the surface layer 8c) may be 0.5 ⁇ m or more and 3.0 ⁇ m or less. If the film thickness is less than 0.5 ⁇ m, the hard film 8 may have insufficient wear resistance and mechanical strength. If the film thickness exceeds 3.0 ⁇ m, the hard film 8 may be easily peeled off. Furthermore, the ratio of the thickness of the surface layer 8c to the thickness of the hard film 8 is preferably 0.8 or less. If this ratio exceeds 0.8, the gradient structure for physically bonding WC and DLC in the mixed layer 8b becomes a discontinuous structure, so that the adhesion of the hard film 8 may deteriorate.
  • the hard film 8 has a three-layer structure including the base layer 8a, the mixed layer 8b, and the surface layer 8c having the above-described composition, thereby realizing excellent peeling resistance.
  • a rolling bearing 1 includes an inner ring 2, an outer ring 3, a plurality of rolling elements 4, and a hard film 8.
  • the inner ring 2 has an inner ring raceway surface 2a on the outer periphery.
  • the outer ring 3 has an outer ring raceway surface 3a on the inner periphery.
  • the plurality of rolling elements 4 roll between the inner ring raceway surface 2a and the outer ring raceway surface 3a.
  • the hard film 8 is formed on at least one surface selected from the group consisting of the inner ring 2, the outer ring 3, and the rolling elements 4.
  • the inner ring 2, the outer ring 3, and the plurality of rolling elements 4 are made of an iron-based material.
  • the hard film 8 includes a base layer 8a, a mixed layer 8b, and a surface layer 8c.
  • the underlayer 8a is a layer mainly composed of chromium (Cr), which is directly formed on the surface.
  • the mixed layer 8b is a layer mainly composed of tungsten carbide (WC) and diamond-like carbon (DLC) formed on the base layer 8a.
  • the surface layer 8c is a layer mainly composed of diamond-like carbon (DLC) formed on the mixed layer 8b.
  • the content of tungsten carbide (WC) in the mixed layer 8b decreases continuously or stepwise from the base layer 8a side to the surface layer 8c side, so that the diamond-like carbon ( DLC) is a layer with a high content.
  • the underlying layer 8 a mainly composed of Cr formed directly on the surface has good compatibility with the iron-based material, and is more closely adhered to the iron-based material than the layer mainly composed of W or Si. Excellent in properties. Since the WC used for the mixed layer 8b has intermediate hardness and elastic modulus between Cr and DLC, it is possible to suppress the concentration of residual stress in the mixed layer 8b after the hard film 8 is formed. Further, the mixed layer 8b mainly composed of WC and DLC has a gradient composition as described above, so that the mixed layer 8b has a structure in which WC and DLC are physically coupled.
  • the rolling bearing 1 has excellent seizure resistance, wear resistance, and corrosion resistance, and has a long life with little damage to the raceway surface even under severe lubrication.
  • the rolling bearing 1 by forming the hard film 8 having the above-described structure and properties, even when the hard film 8 receives a load such as rolling contact when the bearing is used. The wear and peeling of the hard film 8 can be suppressed. For this reason, the rolling bearing 1 having a long service life with little damage to the raceway surface and the like can be obtained even in a severely lubricated state. Further, in the rolling bearing 1 in which the grease 7 is sealed, if the new metal surface is exposed due to damage to the race rings such as the inner ring 2 and the outer ring 3, the grease is promoted to be deteriorated by the catalytic action.
  • the hard film 8 since the hard film 8 is formed, damage to the inner ring raceway surface 2a, the outer ring raceway surface 3a and the rolling surfaces of the rolling elements 4 due to metal contact can be suppressed. Deterioration can also be suppressed.
  • FIG. 6 is a flowchart for explaining a method of manufacturing the rolling bearing shown in FIGS.
  • FIG. 7 is a schematic diagram for explaining the film forming principle of the UBMS method.
  • FIG. 8 is a schematic diagram illustrating a configuration of an example of the UBMS apparatus.
  • a preparation step (S10) is performed.
  • parts to be a bearing member constituting the rolling bearing 1 are prepared. Examples of the parts include the inner ring 2, the outer ring 3, the rolling element 4, and the seal member 6.
  • a film forming step (S20) is performed.
  • a hard film is formed on the surface of the component prepared in the above step (S10). Details of the film forming step (S20) will be described later.
  • a post-processing step (S30) is performed in which finishing processing, assembly processing, or the like of the part on which the hard film is formed is performed. In this way, the rolling bearing 1 shown in FIGS. 1 to 3 can be obtained.
  • the hard film 8 is obtained by forming the base layer 8a, the mixed layer 8b, and the surface layer 8c in this order on the film formation surface of the component to be the bearing member.
  • the underlayer 8a and the mixed layer 8b are preferably formed using a UBMS apparatus using Ar gas as a sputtering gas.
  • the film forming principle of the UBMS method using the UBMS apparatus will be described with reference to the schematic diagram shown in FIG.
  • the base material 12 is an inner ring 2, an outer ring 3, or a rolling element 4 that is a component to be a bearing member to be formed, but is schematically illustrated as a flat plate shape.
  • the substrate 12 is connected to a bias power source 11.
  • the target 15 is disposed so as to face the substrate 12.
  • the planar shape of the target 15 which is a supply source of the film forming raw material is, for example, a round shape.
  • An inner magnet 14 a and an outer magnet 14 b having different magnetic characteristics in the central portion and the peripheral portion of the round target 15 are disposed below the round target 15.
  • the outer magnet 14b forms a relatively strong magnetic field
  • the inner magnet 14a forms a relatively weak magnetic field.
  • an inner magnet is formed such that a portion 16a of the magnetic force lines 16 generated by the inner magnet 14a and the outer magnet 14b reaches the vicinity of the substrate 12 while forming a high-density plasma 19 from Ar gas near the target 15.
  • a magnetic field is formed by 14a and the outer magnet 14b.
  • a part of the high-density plasma 19 (Ar plasma) generated at the time of sputtering diffuses to the vicinity of the substrate 12 along a part 16a of the lines of magnetic force.
  • the Ar plasma 17 and electrons reach the base material 12 more than the amount of ionized particles 18 derived from the target 15 along the part 16a of the magnetic field lines reaching the vicinity of the base material 12 than during normal sputtering.
  • an ion assist effect is called an ion assist effect.
  • a dense film 13 can be formed on the surface of the substrate 12 by an ion assist effect.
  • a Cr target is used as the target 15.
  • a WC target and a graphite target are used in combination as the target 15.
  • the mixed layer 8b is formed in a continuous or stepwise manner while increasing the power applied to the graphite target serving as the carbon supply source and decreasing the power applied to the WC target.
  • the WC content rate decreases continuously or stepwise from the base layer 8a side to the surface layer 8c side, and the DLC content rate increases continuously or stepwise. The part which became the layer of can be formed.
  • the surface layer 8c may also be formed using a UBMS apparatus using Ar gas as the sputtering gas. More specifically, the following conditions can be used as conditions for forming the surface layer 8c. That is, using a UBMS apparatus, a graphite target and a hydrocarbon gas are used in combination as a carbon supply source. The ratio of the introduction amount of the hydrocarbon-based gas to the introduction amount 100 of the Ar gas into the UBMS apparatus is set to 1 or more and 10 or less. The degree of vacuum in the UBMS device is set to 0.2 Pa or more and 0.8 Pa or less. It is preferable to form the surface layer 8c which is a DLC film by depositing particulate carbon generated by sputtering from the carbon supply source on the mixed layer 8b using such conditions. The conditions described above will be described below.
  • the hardness and elastic modulus of the DLC film can be adjusted by using a graphite target and a hydrocarbon-based gas in combination as a carbon supply source.
  • Gases such as methane, acetylene, and benzene can be used as the hydrocarbon gas. Although it does not specifically limit as hydrocarbon type gas, It is preferable to use methane gas from the point of cost and handleability.
  • the ratio of the introduction amount of the hydrocarbon-based gas is 1 to 10 (volume part) with respect to 100 introduction amount (volume part) of Ar gas into the UBMS apparatus (specifically, in the film forming chamber of the UBMS apparatus).
  • the degree of vacuum in the film forming chamber is preferably 0.2 Pa or more and 0.8 Pa or less as described above. More preferably, the degree of vacuum is 0.25 Pa or more and 0.8 Pa or less.
  • the degree of vacuum is less than 0.2 Pa, since the amount of Ar gas in the film formation chamber is small, Ar plasma is not generated and the surface layer 8c may not be formed. Further, when the degree of vacuum in the film forming chamber is higher than 0.8 Pa, reverse sputtering phenomenon tends to occur, and the wear resistance of the surface layer 8c may be deteriorated.
  • the method for manufacturing the rolling bearing 1 includes a step of preparing an inner ring, an outer ring, and a rolling element (S10), and a step of forming a hard film (film formation step (S20)).
  • the hard film 8 is formed on at least one surface selected from the group consisting of the inner ring 2, the outer ring 3, and the rolling element 4.
  • an unbalanced magnetron sputtering (UBMS) apparatus using argon gas as the sputtering gas is used.
  • a graphite target and a hydrocarbon gas are used in combination as a carbon supply source, and the ratio of the introduction amount of the hydrocarbon gas to the introduction amount 100 of argon gas into the apparatus is 1 or more. 10 or less.
  • the surface layer 8c is formed by depositing carbon atoms generated from the carbon supply source on the mixed layer 8b. If it does in this way, the rolling bearing 1 excellent in durability which concerns on this embodiment can be obtained.
  • the surface layer 8c formed by the step (S20) has an inclined layer portion 8d whose hardness increases continuously or stepwise from the mixed layer 8b side on the side adjacent to the mixed layer 8b. You may have.
  • the bias voltage applied to at least one selected from the group consisting of the inner ring 2, the outer ring 3, and the rolling element 4 including the surface is increased continuously or stepwise.
  • the inclined layer portion 8d is formed. In this way, the inclined layer portion 8d can be easily formed.
  • the base layer 8a and the mixed layer 8b are formed using the UBMS apparatus using argon gas as the sputtering gas as described above. Also good.
  • the mixed layer is continuously or stepwise increased while increasing the sputtering power applied to the graphite target serving as the carbon supply source and lowering the power applied to the tungsten carbide target. 8b may be formed. In this way, the composition of WC and DLC in the mixed layer 8b can be changed in the thickness direction.
  • the method for manufacturing a rolling bearing includes a step of forming a nitride layer by performing nitriding treatment on the surface on which the hard film 8 is formed before the step of forming the hard film (S20). Also good.
  • the nitriding treatment may be a plasma nitriding treatment.
  • the surface roughness Ra of the surface on which the hard film 8 is formed in the step of forming the hard film (S20) may be 0.05 ⁇ m or less. In this case, the hard film 8 in which the film thickness variation is suppressed can be formed.
  • the above rolling bearing manufacturing method may further include a step of enclosing grease around the rolling element 4.
  • the rolling bearing 1 in which the grease 7 is enclosed can be obtained.
  • Example 2 In order to confirm the effect of the hard film formed on the rolling bearing according to the present embodiment, a hard film was formed on a predetermined substrate, and the physical properties of the hard film were evaluated. The peel resistance was evaluated by a friction and wear test using a reciprocating sliding tester. This will be specifically described below.
  • FIG. 8 is a schematic diagram of a UBMS apparatus.
  • the UBMS apparatus instantaneously vaporizes and ionizes the AIP evaporation source material 22a using the vacuum arc discharge to the base material 21 arranged on the disk 20, and based on this. It has an AIP function of depositing on the material 21 to form a film. Further, the UBMS apparatus forms a non-equilibrium magnetic field between the target 22b, which is a sputter evaporation source material, and the base material 21, and increases the plasma density near the base material 21 by the magnetic field to increase the ion assist effect. (See FIG.
  • the sputtering power applied to the Cr target and WC target is adjusted by the UBMS method, the composition ratio of Cr and WC is tilted, and a Cr / WC graded layer with a lot of Cr on the substrate side and a lot of WC on the surface side is formed. did.
  • the formation conditions of the mixed layer are basically the same as the formation conditions of the underlayer except for the sputtering power described above.
  • Sample No. Regarding 1 to 7, the above-described underlayer and mixed layer were formed under the same conditions.
  • Surface layer formation conditions Sample No. For each of 1 to 7, a surface layer was formed under the conditions shown in Table 1.
  • Manufacturing method of each sample The substrate shown in Table 1 described later was ultrasonically cleaned with acetone and then dried.
  • the substrate was attached to a UBMS apparatus, and an underlayer and a mixed layer were formed under the above-described formation conditions.
  • a DLC film which is a surface layer, was formed on the film formation conditions shown in Table 1 to obtain a test piece having a hard film. Note that “degree of vacuum” in each table is the degree of vacuum in the film forming chamber in the above apparatus.
  • the reciprocating sliding test machine shown in FIG. 9 includes a pedestal 32 that holds a sample on which a base material 21 and a hard film 8 are formed, a load cell 27 and an acceleration sensor 28 installed on the pedestal 32, and a hard film 8 of the sample.
  • the holder 26 can apply a load from the direction indicated by the arrow 30.
  • the test was performed without lubrication. In the test, the load was increased, and the load when the friction coefficient increased due to the peeling of the hard film 8 was defined as the limit load. Specific test conditions are shown below.
  • Lubrication No lubrication Ball: 3/8 inch, silicon nitride ball Load: 30-80N Load increase speed: 10 N / min Vibration frequency: 60Hz Amplitude: 2mm
  • Indentation hardness measurement For the hard film 8 of each sample, the indentation hardness was measured using a nanoindenter (G200) manufactured by Agilent Technologies. In addition, the measured value has shown the average value of the depth (location where hardness is stabilized) which is not influenced by surface roughness, and measured 10 places for each sample.
  • Table 1 shows the sample conditions and test results.
  • the methane gas introduction ratio is the ratio of the methane gas introduction amount to the argon gas introduction amount 100.
  • Sliding surfaces and rolling surfaces for which application of DLC is considered are often in a severely lubricated state such as poor lubrication or high sliding speed.
  • DLC is formed on the inner and outer ring raceway surfaces and the rolling surfaces of the rolling elements. Therefore, even when operated in a severely lubricated state, the rolling bearing has excellent peeling resistance, and The characteristics can be demonstrated. For this reason, the rolling bearing is excellent in seizure resistance, wear resistance, and corrosion resistance. Therefore, the rolling bearing can be applied to various uses including use in severe lubrication.

Abstract

Provided is a rolling bearing which has excellent durability. This rolling bearing (1) is provided with an inner ring (2), an outer ring (3), a plurality of rolling bodies (4) and a hard film (8). The hard film (8) is formed on the surface of at least one component selected from the group consisting of the inner ring (2), the outer ring (3) and the rolling bodies (4). The inner ring (2), the outer ring (3) and the plurality of rolling bodies (4) are formed from an iron-based material. The hard film (8) comprises a base layer (8a), a mixed layer (8b) and a surface layer (8c). The base layer (8a) is mainly composed of Cr, and is formed directly on the above-mentioned surface. The mixed layer (8b) is mainly composed of WC and DLC, and is formed on the base layer (8a). The surface layer (8c) is mainly composed of DLC, and is formed on the mixed layer (8b). The mixed layer (8b) is configured such that the WC content in the mixed layer (8b) decreases and the DLC content in the mixed layer increases continuously or in stages from the base layer (8a) side toward the surface layer (8c) side.

Description

転がり軸受およびその製造方法Rolling bearing and manufacturing method thereof
 この発明は、転がり軸受およびその製造方法に関し、より特定的には、内輪、外輪、転動体表面にダイヤモンドライクカーボンを含む硬質膜を成膜した転がり軸受およびその製造方法に関する。 The present invention relates to a rolling bearing and a manufacturing method thereof, and more specifically to a rolling bearing in which a hard film containing diamond-like carbon is formed on the inner ring, outer ring, and rolling element surface, and a manufacturing method thereof.
 硬質カーボン膜は、一般にダイヤモンドライクカーボン(以下、DLCと記す。また、DLCを主体とする膜または層をDLC膜またはDLC層ともいう。)と呼ばれている硬質膜である。硬質カーボンの呼称は上記以外にも、硬質非晶質炭素、無定形炭素、硬質無定形型炭素、i-カーボン、ダイヤモンド状炭素など、様々なものがあるが、これらの用語は明確に区別されていない。 The hard carbon film is a hard film generally called diamond-like carbon (hereinafter referred to as DLC. A film or layer mainly composed of DLC is also referred to as a DLC film or a DLC layer). In addition to the above, there are various names for hard carbon, such as hard amorphous carbon, amorphous carbon, hard amorphous carbon, i-carbon, diamond-like carbon, and these terms are clearly distinguished. Not.
 このような用語が用いられるDLCの本質は、構造的にはダイヤモンドとグラファイトが混ざり合ったものである。DLCはダイヤモンドとグラファイトとの中間構造を有する。DLCは、ダイヤモンドと同等に硬度が高く、耐摩耗性、固体潤滑性、熱伝導性、化学安定性、耐腐食性などに優れる。このため、例えば、金型・工具類、耐摩耗性機械部品、研磨材、摺動部材、磁気・光学部品などの保護膜としてDLCは利用されつつある。こうしたDLC膜を形成する方法として、スパッタリング法やイオンプレーティング法などの物理的蒸着(以下、PVDと記す)法、化学的蒸着(以下、CVDと記す)法、アンバランスド・マグネトロン・スパッタリング(以下、UBMSと記す)法などが採用されている。 The essence of DLC in which such terms are used is structurally a mixture of diamond and graphite. DLC has an intermediate structure between diamond and graphite. DLC is as hard as diamond and is excellent in wear resistance, solid lubricity, thermal conductivity, chemical stability, corrosion resistance, and the like. For this reason, for example, DLC is being used as a protective film for molds / tools, wear-resistant mechanical parts, abrasives, sliding members, magnetic / optical parts, and the like. As a method for forming such a DLC film, physical vapor deposition (hereinafter referred to as PVD) such as sputtering or ion plating, chemical vapor deposition (hereinafter referred to as CVD), unbalanced magnetron sputtering ( Hereinafter, a method such as UBMS) is employed.
 従来より、転がり軸受の軌道輪の軌道面や転動体の転動面に対し、DLC膜を形成する試みがなされている。DLC膜は、膜形成時に極めて大きな内部応力が発生する。またDLC膜は、高い硬度およびヤング率を持つ反面、変形能が極めて小さい。このため、DLC膜は基材との密着性が弱く、剥離しやすいなどの欠点を持っている。転がり軸受の軌道輪の軌道面や転動体の転動面にDLC膜を成膜する場合には、密着性を改善する必要性がある。 Conventionally, attempts have been made to form a DLC film on the raceway surface of the bearing ring of the rolling bearing and the rolling surface of the rolling element. A DLC film generates extremely large internal stress during film formation. In addition, the DLC film has high hardness and Young's modulus, but has extremely low deformability. For this reason, the DLC film has weaknesses such as weak adhesion to the substrate and easy peeling. In the case where a DLC film is formed on the raceway surface of the bearing ring of the rolling bearing or the rolling surface of the rolling element, it is necessary to improve the adhesion.
 例えば、基材とDLC膜との間に中間層を設けてDLC膜の密着性改善を図ったものとして、鉄鋼材料で形成された軌道輪の軌道溝や転動体の転動面に、クロム(以下、Crと記す)、タングステン(以下、Wと記す)、チタン(以下、Tiと記す)、珪素(以下、Siと記す)、ニッケル(以下、Niと記す)、および鉄の少なくともいずれかの元素を含む組成の下地層と、この下地層の構成元素と炭素とを含有し、炭素の含有率が下地層の反対側で下地層側より大きい中間層と、アルゴンと炭素とからなりアルゴンの含有率が0.02質量%以上5質量%以下であるDLC層とが、この順に形成されてなる転動装置が提案されている(特開2003-314560号公報参照)。 For example, an intermediate layer is provided between the base material and the DLC film to improve the adhesion of the DLC film. On the raceway groove of the race ring formed of a steel material or the rolling surface of the rolling element, chromium ( Hereinafter, at least one of Cr (hereinafter referred to as Cr), tungsten (hereinafter referred to as W), titanium (hereinafter referred to as Ti), silicon (hereinafter referred to as Si), nickel (hereinafter referred to as Ni), and iron An underlayer having an element-containing composition, a constituent element of the underlayer and carbon, an intermediate layer having a carbon content rate opposite to the underlayer and larger than that of the underlayer, and argon and carbon There has been proposed a rolling device in which a DLC layer having a content rate of 0.02 mass% or more and 5 mass% or less is formed in this order (see Japanese Patent Application Laid-Open No. 2003-314560).
 また、アンカー効果によりDLC膜の密着性改善を図ったものとして、軌道輪の軌道面にイオン衝撃処理により10~100nmの高さで平均幅300nm以下の凹凸を形成し、この軌道面上にDLC膜を形成した転がり軸受が提案されている(特開2001-304275号公報参照)。 Further, assuming that the adhesion of the DLC film was improved by the anchor effect, irregularities with a height of 10 to 100 nm and an average width of 300 nm or less were formed on the raceway surface of the raceway by ion impact treatment, and the DLC was formed on this raceway surface. A rolling bearing in which a film is formed has been proposed (see JP 2001-304275 A).
特開2003-314560号公報JP 2003-314560 A 特開2001-304275号公報JP 2001-304275 A
 しかしながら、転がり軸受において発生する高い接触面圧下では被膜の耐剥離性の確保は容易でない。特に滑り摩擦により被膜に対して強いせん断力が発生し得るような潤滑・運転条件においては、被膜の耐剥離性の確保はより困難となる。DLCの適用が検討される摺動面は潤滑状態が悪い、滑りを伴うといった状況であることが多く、一般的な転がり軸受における運転状況より厳しい条件となる場合が多い。 However, it is not easy to ensure the peeling resistance of the coating under the high contact surface pressure generated in the rolling bearing. In particular, it is more difficult to ensure the peeling resistance of the film under lubrication and operating conditions where a strong shearing force can be generated on the film due to sliding friction. Sliding surfaces for which application of DLC is considered are often in a state of poor lubrication or accompanied by slipping, and often have stricter conditions than operating conditions in a general rolling bearing.
 軸受においては転走面のみでなく外周面や端面における摩耗やシール溝での摺動抵抗などが問題となる場合もある。このため、軸受における転走面以外へのDLC処理も軸受の耐久性および機能性向上に有効である。 In bearings, wear on the outer peripheral surface and end face as well as the rolling surface and sliding resistance in the seal groove may cause problems. For this reason, the DLC process other than the rolling surface in the bearing is also effective in improving the durability and functionality of the bearing.
 本発明はこのような問題に対処するためになされたものであり、例えば転がり軸受の内・外輪軌道面などに形成されたDLC膜の耐剥離性を向上させ、DLC膜本来の特性を発揮することで、耐久性に優れる転がり軸受の提供を目的とする。 The present invention has been made to cope with such problems. For example, the DLC film formed on the inner and outer ring raceways of a rolling bearing is improved in peel resistance and exhibits the original characteristics of the DLC film. Thus, an object of the present invention is to provide a rolling bearing having excellent durability.
 本開示に従った転がり軸受は、内輪と外輪と複数の転動体と硬質膜とを備える。内輪は外周に内輪軌道面を有する。外輪は内周に外輪軌道面を有する。複数の転動体は、内輪軌道面と外輪軌道面との間を転動する。硬質膜は、内輪、外輪、および転動体からなる群から選択される少なくとも一つの表面に形成される。内輪、外輪、および複数の転動体は鉄系材料からなる。硬質膜は、下地層と、混合層と、表面層とを含む。下地層は、上記表面の上に直接成膜される、クロムを主体とする層である。混合層は、下地層の上に成膜されるタングステンカーバイト(WC)とダイヤモンドライクカーボン(DLC)とを主体とする層である。表面層は、混合層の上に成膜されるダイヤモンドライクカーボン(DLC)を主体とする層である。混合層は、下地層側から表面層側へ向けて連続的または段階的に、混合層中のタングステンカーバイト(WC)の含有率が小さくなり、混合層中のダイヤモンドライクカーボン(DLC)の含有率が高くなる層である。 The rolling bearing according to the present disclosure includes an inner ring, an outer ring, a plurality of rolling elements, and a hard film. The inner ring has an inner ring raceway surface on the outer periphery. The outer ring has an outer ring raceway surface on the inner periphery. The plurality of rolling elements roll between the inner ring raceway surface and the outer ring raceway surface. The hard film is formed on at least one surface selected from the group consisting of an inner ring, an outer ring, and a rolling element. The inner ring, the outer ring, and the plurality of rolling elements are made of an iron-based material. The hard film includes an underlayer, a mixed layer, and a surface layer. The underlayer is a layer mainly composed of chromium and formed directly on the surface. The mixed layer is a layer mainly composed of tungsten carbide (WC) and diamond-like carbon (DLC) formed on the base layer. The surface layer is a layer mainly composed of diamond-like carbon (DLC) formed on the mixed layer. In the mixed layer, the content of tungsten carbide (WC) in the mixed layer decreases continuously or stepwise from the base layer side to the surface layer side, and the diamond-like carbon (DLC) content in the mixed layer This is a layer with a higher rate.
 上記転がり軸受の製造方法は、内輪と外輪と転動体とを準備する工程と、硬質膜を形成する工程とを備える。硬質膜を形成する工程では、内輪、外輪、および転動体からなる群から選択される少なくとも一つの表面に硬質膜を形成する。硬質膜を形成する工程では、スパッタリングガスとしてアルゴンガスを用いたアンバランスド・マグネトロン・スパッタリング装置を使用する。硬質膜を形成する工程では、炭素供給源として黒鉛ターゲットと炭化水素系ガスとを併用し、アルゴンガスの装置内への導入量100に対する炭化水素系ガスの導入量の割合を1以上10以下とする。硬質膜を形成する工程では、炭素供給源から生じる炭素原子を、混合層上に堆積させて表面層が成膜される。 The rolling bearing manufacturing method includes a step of preparing an inner ring, an outer ring, and a rolling element, and a step of forming a hard film. In the step of forming the hard film, the hard film is formed on at least one surface selected from the group consisting of an inner ring, an outer ring, and a rolling element. In the step of forming the hard film, an unbalanced magnetron sputtering apparatus using argon gas as the sputtering gas is used. In the step of forming the hard film, a graphite target and a hydrocarbon gas are used in combination as a carbon supply source, and the ratio of the introduction amount of the hydrocarbon gas to the introduction amount 100 of argon gas into the apparatus is 1 or more and 10 or less. To do. In the step of forming the hard film, the surface layer is formed by depositing carbon atoms generated from the carbon supply source on the mixed layer.
 上記によれば、転がり軸受の内・外輪軌道面などに形成されたDLCを主体とする層を含む硬質膜の耐剥離性を向上させ、DLC本来の特性を発揮させることで、耐久性に優れる転がり軸受を実現できる。 According to the above, the durability is improved by improving the peel resistance of the hard film including the layer mainly composed of DLC formed on the inner / outer ring raceway surfaces of the rolling bearing and exhibiting the original characteristics of DLC. Rolling bearings can be realized.
本発明の実施の形態に係る転がり軸受の断面模式図である。It is a cross-sectional schematic diagram of the rolling bearing which concerns on embodiment of this invention. 本発明の実施の形態に係る転がり軸受の断面模式図である。It is a cross-sectional schematic diagram of the rolling bearing which concerns on embodiment of this invention. 本発明の実施の形態に係る転がり軸受の断面模式図である。It is a cross-sectional schematic diagram of the rolling bearing which concerns on embodiment of this invention. 図3に示した転がり軸受の転動体の断面模式図である。It is a cross-sectional schematic diagram of the rolling element of the rolling bearing shown in FIG. 図1に示した転がり軸受の硬質膜の部分断面模式図である。It is a partial cross section schematic diagram of the hard film | membrane of the rolling bearing shown in FIG. 本発明の実施の形態に係る転がり軸受の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the rolling bearing which concerns on embodiment of this invention. UBMS法の成膜原理を説明するための模式図である。It is a schematic diagram for demonstrating the film-forming principle of UBMS method. UBMS装置の一例の構成を示す模式図である。It is a schematic diagram which shows the structure of an example of a UBMS apparatus. 往復動すべり試験気の構成を示す模式図である。It is a schematic diagram which shows the structure of a reciprocating sliding test air.
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (実施の形態)
 DLC膜などの硬質膜は膜内に残留応力がある。当該残留応力は硬質膜の膜構造、成膜条件、および硬質膜が形成される基材形状の影響を受け大きく変化する。実験を重ねた結果、本発明者らは予想外に残留応力に対する基材形状の影響が大きいことを発見した。例えば、平面上に形成された硬質膜では、成膜直後の剥離もなくスクラッチテストでの臨界剥離荷重も大きい。しかし、同じ構造の硬質膜を転がり軸受の内輪軌道面および外輪軌道面のような曲面上に形成した場合、成膜直後に剥離する、または成膜直後には剥離しなくとも、使用時に剥離するといった場合があった。本発明者らは、鋭意検討の結果、曲面である転がり軸受の内輪軌道面、外輪軌道面、および転動体の転動面に形成する硬質膜を、下地層(Crを主体とする層)と混合層(WC/DLCの傾斜組成を有する層)と表面層(DLCを主体とする層)とからなる所定の構造に限定することで、耐剥離性の大幅な向上が図れることを見出した。このような構成の硬質膜は、軸受の実使用条件においても剥離を抑制できる。さらに、上記表面層の押し込み硬さを10~20GPaとすれば、さらに耐剥離性を向上させることができた。本発明はこのような知見に基づきなされたものである。
(Embodiment)
A hard film such as a DLC film has residual stress in the film. The residual stress varies greatly depending on the film structure of the hard film, the film formation conditions, and the shape of the substrate on which the hard film is formed. As a result of repeated experiments, the present inventors have unexpectedly discovered that the influence of the substrate shape on the residual stress is large. For example, in a hard film formed on a flat surface, there is no peeling immediately after film formation, and the critical peeling load in the scratch test is large. However, when a hard film having the same structure is formed on curved surfaces such as the inner ring raceway surface and the outer ring raceway surface of the rolling bearing, it peels off immediately after film formation or does not peel immediately after film formation, but peels off during use. There was a case. As a result of intensive studies, the present inventors have determined that a hard film formed on the inner ring raceway surface, outer ring raceway surface, and rolling surface of the rolling element, which are curved surfaces, is a base layer (a layer mainly composed of Cr). It has been found that peeling resistance can be greatly improved by limiting to a predetermined structure comprising a mixed layer (layer having a WC / DLC gradient composition) and a surface layer (layer mainly composed of DLC). The hard film having such a configuration can suppress peeling even under actual use conditions of the bearing. Furthermore, when the indentation hardness of the surface layer was 10 to 20 GPa, the peel resistance could be further improved. The present invention has been made based on such findings.
 <転がり軸受の構成>
 図1~図3は、本発明の実施の形態(以下、本実施形態とも記載する)に係る転がり軸受の断面模式図である。図4は、図3に示した転がり軸受の転動体の断面模式図である。図5は、図1に示した転がり軸受の硬質膜の部分断面模式図である。
<Configuration of rolling bearing>
1 to 3 are schematic cross-sectional views of rolling bearings according to an embodiment of the present invention (hereinafter also referred to as this embodiment). 4 is a schematic cross-sectional view of a rolling element of the rolling bearing shown in FIG. FIG. 5 is a schematic partial sectional view of a hard film of the rolling bearing shown in FIG.
 本実施形態に係る転がり軸受を図1~図5に基づいて説明する。図1では、内輪軌道面に後述の硬質膜を形成した、転がり軸受の一例である深溝玉軸受の断面図が示されている。図2では、外輪軌道面に後述の硬質膜を形成した深溝玉軸受の断面図が示されている。図3では、転動体の転動面に硬質膜を形成した深溝玉軸受の断面図が示されている。 The rolling bearing according to this embodiment will be described with reference to FIGS. FIG. 1 shows a cross-sectional view of a deep groove ball bearing which is an example of a rolling bearing in which a hard film described later is formed on the inner ring raceway surface. FIG. 2 shows a cross-sectional view of a deep groove ball bearing in which a hard film described later is formed on the outer ring raceway surface. FIG. 3 shows a cross-sectional view of a deep groove ball bearing in which a hard film is formed on the rolling surface of the rolling element.
 図1~図3に示した転がり軸受1は、外周に内輪軌道面2aを有する内輪2と、内周に外輪軌道面3aを有する外輪3と、内輪軌道面2aと外輪軌道面3aとの間を転動する複数の転動体4とを備える。転動体4は保持器5により一定間隔で保持されている。シール部材6により、内輪および外輪の間における軸方向両端開口部がシールされる。このシール部材6によりシールされた軸受空間にグリース7が封入されている。転動体4の周囲に封入されるグリース7としては、転がり軸受用の公知のグリースを使用できる。 1 to 3 includes an inner ring 2 having an inner ring raceway surface 2a on an outer periphery, an outer ring 3 having an outer ring raceway surface 3a on an inner periphery, and an inner ring raceway surface 2a and an outer ring raceway surface 3a. And a plurality of rolling elements 4 that roll. The rolling elements 4 are held at regular intervals by a cage 5. The seal member 6 seals both axial end openings between the inner ring and the outer ring. Grease 7 is sealed in the bearing space sealed by the seal member 6. As the grease 7 enclosed around the rolling element 4, a known grease for a rolling bearing can be used.
 例えば図1に示した転がり軸受1では、内輪軌道面2aを含む内輪2の外周面に硬質膜8が形成されている。図2に示した転がり軸受1では、外輪軌道面3aを含む外輪3の内周面に硬質膜8が形成されている。 For example, in the rolling bearing 1 shown in FIG. 1, a hard film 8 is formed on the outer peripheral surface of the inner ring 2 including the inner ring raceway surface 2a. In the rolling bearing 1 shown in FIG. 2, a hard film 8 is formed on the inner peripheral surface of the outer ring 3 including the outer ring raceway surface 3a.
 図3に示した転がり軸受1では、図4に示すように転動体4の表面である転動面に硬質膜8が形成されている。図3の転がり軸受1は深溝玉軸受であることから、転動体4は玉であり、その転動面は球面全体である。図1~図3に示した態様以外の転がり軸受として、円筒ころ軸受や円錐ころ軸受を用いてもよい。このとき、該硬質膜8をその転動体の表面に形成する場合は、円筒ころの外周面など少なくとも転動体の転動面上に硬質膜8を形成すればよい。転がり軸受1では、適用用途に応じて内輪2、外輪3または転動体4の少なくとも1面に硬質膜8が形成されていればよい。 In the rolling bearing 1 shown in FIG. 3, a hard film 8 is formed on the rolling surface which is the surface of the rolling element 4 as shown in FIG. Since the rolling bearing 1 of FIG. 3 is a deep groove ball bearing, the rolling element 4 is a ball, and its rolling surface is the entire spherical surface. Cylindrical roller bearings or tapered roller bearings may be used as rolling bearings other than those shown in FIGS. At this time, when the hard film 8 is formed on the surface of the rolling element, the hard film 8 may be formed on at least the rolling surface of the rolling element such as the outer peripheral surface of the cylindrical roller. In the rolling bearing 1, the hard film 8 only needs to be formed on at least one surface of the inner ring 2, the outer ring 3, or the rolling element 4 according to the application.
 図1~図3に示すように、深溝玉軸受の内輪軌道面2aは、転動体4である玉を案内するため、軸方向断面が円弧溝状である円曲面である。同様に、外輪軌道面3aも、軸方向断面が円弧溝状である円曲面である。この円弧溝の曲率半径は、一般的に玉の直径(鋼球径)をdwとすると、0.51dw~0.54dw程度である。また、図1~図3に示した態様以外の転がり軸受として、円筒ころ軸受や円錐ころ軸受を用いる場合、これらの軸受のころを案内するため、内輪軌道面および外輪軌道面は、少なくとも円周方向で曲面となる。その他、転がり軸受として自動調心ころ軸受を用いる場合、転動体としてたる型ころを用いるので、内輪軌道面および外輪軌道面は、円周方向に加えて、軸方向についても曲面となる。本実施形態に係る転がり軸受1は、内輪軌道面2aおよび外輪軌道面3aが、以上のいずれの形状であってもよい。 As shown in FIGS. 1 to 3, the inner ring raceway surface 2a of the deep groove ball bearing is a circular curved surface having an arc-shaped cross section in the axial direction in order to guide the balls as the rolling elements 4. Similarly, the outer ring raceway surface 3a is also a circular curved surface having an arc-shaped cross section in the axial direction. The radius of curvature of the arc groove is generally about 0.51 dw to 0.54 dw, where dw is the diameter of the ball (steel ball diameter). Further, when cylindrical roller bearings or tapered roller bearings are used as rolling bearings other than those shown in FIGS. 1 to 3, the inner ring raceway surface and the outer ring raceway surface are at least circumferential in order to guide the rollers of these bearings. It becomes a curved surface in the direction. In addition, when a self-aligning roller bearing is used as a rolling bearing, since a cylindrical roller is used as a rolling element, the inner ring raceway surface and the outer ring raceway surface are curved in the axial direction in addition to the circumferential direction. In the rolling bearing 1 according to this embodiment, the inner ring raceway surface 2a and the outer ring raceway surface 3a may have any of the above shapes.
 本実施形態に係る転がり軸受1において、硬質膜8の成膜対象となる軸受部材である内輪2、外輪3、および転動体4は、鉄系材料からなる。ここで、鉄系材料とは、鉄を主体とした材料である。鉄系材料としては、軸受部材として一般的に用いられる任意の鋼材などを使用でき、例えば、高炭素クロム軸受鋼、炭素鋼、工具鋼、マルテンサイト系ステンレス鋼などが挙げられる。 In the rolling bearing 1 according to the present embodiment, the inner ring 2, the outer ring 3, and the rolling element 4, which are bearing members for which the hard film 8 is to be formed, are made of an iron-based material. Here, the iron-based material is a material mainly composed of iron. As the iron-based material, any steel material generally used as a bearing member can be used, and examples thereof include high carbon chromium bearing steel, carbon steel, tool steel, martensitic stainless steel, and the like.
 これらの軸受部材において、硬質膜8が形成される面の硬さが、ビッカース硬さでHv650以上であってもよい。Hv650以上とすることで、硬質膜8(より具体的には図5に示す下地層8a)との硬度差を少なくし、軸受部材に対する硬質膜8の密着性を向上させることができる。 In these bearing members, the surface on which the hard film 8 is formed may have a Vickers hardness of Hv650 or higher. By setting it as Hv650 or more, the hardness difference with the hard film 8 (more specifically, the base layer 8a shown in FIG. 5) can be reduced, and the adhesion of the hard film 8 to the bearing member can be improved.
 上記硬質膜8が形成される軸受部材の表面において、硬質膜8の形成前に、窒化処理により窒化層が形成されていてもよい。窒化処理としては、基材としての軸受部材表面に密着性を妨げる酸化層が生じ難いプラズマ窒化処理を施すことが好ましい。また、窒化処理後の窒化層表面の硬さがビッカース硬さでHv1000以上であってもよい。この場合、軸受部材に対する硬質膜8の密着性をさらに向上させることができる。 A nitride layer may be formed by nitriding treatment on the surface of the bearing member on which the hard film 8 is formed before the hard film 8 is formed. As the nitriding treatment, it is preferable to perform a plasma nitriding treatment that hardly forms an oxide layer that hinders adhesion on the surface of the bearing member as a base material. Further, the hardness of the nitrided layer surface after the nitriding treatment may be Vickers hardness of Hv1000 or more. In this case, the adhesion of the hard film 8 to the bearing member can be further improved.
 上記硬質膜8が形成される軸受部材の表面の表面粗さRaは、0.05μm以下であってもよい。表面粗さRaが0.05μmを超えると、当該表面における凹凸形状の突起先端に硬質膜8が形成され難くなり、局所的に硬質膜8の膜厚が小さくなる場合がある。 The surface roughness Ra of the surface of the bearing member on which the hard film 8 is formed may be 0.05 μm or less. When the surface roughness Ra exceeds 0.05 μm, it is difficult to form the hard film 8 at the tip of the concavo-convex protrusion on the surface, and the film thickness of the hard film 8 may be locally reduced.
 上記転がり軸受1において、表面層8cの押し込み硬さは10GPa以上20GPa以下であってもよい。この場合、硬質膜8の耐剥離性を向上させることができる。上記押し込み硬さは18GPa以下でもよく、15GPa以下でもよい。上記押し込み硬さは12GPa以上でもよく13GPa以上でもよい。 In the rolling bearing 1, the indentation hardness of the surface layer 8c may be 10 GPa or more and 20 GPa or less. In this case, the peel resistance of the hard film 8 can be improved. The indentation hardness may be 18 GPa or less, or 15 GPa or less. The indentation hardness may be 12 GPa or more, or 13 GPa or more.
 本実施形態に係る転がり軸受1における硬質膜8の具体的な構造を図5に基づいて説明する。図5は、図1に示した転がり軸受1における硬質膜8の構造を示す。図5に示すように、硬質膜8は、下地層8aと混合層8bと表面層8cとからなる3層構造を有する。下地層8aは、内輪2の内輪軌道面2a上に直接成膜され、Crを主体とする層である。混合層8bは、下地層8aの上に成膜され、WCとDLCとを主体とする層である。表面層8cは、混合層8bの上に成膜され、DLCを主体とする層である。ここで、混合層8bでは、下地層8a側から表面層8c側へ向けて連続的または段階的に、混合層8b中のWCの含有率が小さくなり、かつ、混合層8b中のDLCの含有率が高くなる。 A specific structure of the hard film 8 in the rolling bearing 1 according to the present embodiment will be described with reference to FIG. FIG. 5 shows the structure of the hard film 8 in the rolling bearing 1 shown in FIG. As shown in FIG. 5, the hard film 8 has a three-layer structure including a base layer 8a, a mixed layer 8b, and a surface layer 8c. The foundation layer 8a is a layer formed directly on the inner ring raceway surface 2a of the inner ring 2 and mainly composed of Cr. The mixed layer 8b is formed on the underlayer 8a and is a layer mainly composed of WC and DLC. The surface layer 8c is formed on the mixed layer 8b and is a layer mainly composed of DLC. Here, in the mixed layer 8b, the WC content in the mixed layer 8b decreases continuously or stepwise from the base layer 8a side to the surface layer 8c side, and the DLC content in the mixed layer 8b. The rate is high.
 下地層8aがCrを主体とする層であることから、基材としての鉄系材料製の軸受部材である内輪2と下地層8aとの相性が良い。そのため、下地層8aとしてW、Ti、Siなどを用いる場合と比較して、基材としての軸受部材に対する下地層8aの密着性が高い。特に、軸受軌道輪の材料として使用される高炭素クロム軸受鋼を軸受部材の材料として用いた場合、Crを主体とした下地層8aは軸受部材との密着性に優れる。 Since the foundation layer 8a is a layer mainly composed of Cr, the compatibility between the inner ring 2 which is a bearing member made of an iron-based material as a base material and the foundation layer 8a is good. Therefore, compared with the case where W, Ti, Si, etc. are used as the foundation layer 8a, the adhesion of the foundation layer 8a to the bearing member as the base material is high. In particular, when high carbon chromium bearing steel used as a material for the bearing race is used as a material for the bearing member, the base layer 8a mainly composed of Cr is excellent in adhesion to the bearing member.
 混合層8bに用いるWCは、CrとDLCとの中間的な硬さや弾性率を有している。このため、硬質膜8の成膜後における残留応力の集中も発生し難い。このように、曲面である転がり軸受の内輪軌道面、外輪軌道面、転動体の転動面において、耐剥離性に優れたDLCを含む硬質膜8を形成しようとする場合、硬質膜8における中間層としての混合層8bにおける材料選定も重要な要素となる。 WC used for the mixed layer 8b has intermediate hardness and elastic modulus between Cr and DLC. For this reason, concentration of residual stress after the hard film 8 is formed hardly occurs. Thus, when it is going to form the hard film 8 containing DLC excellent in peeling resistance in the inner ring raceway surface, outer ring raceway surface of the rolling bearing which is a curved surface, and the rolling surface of the rolling element, the intermediate in the hard film 8 Material selection in the mixed layer 8b as a layer is also an important factor.
 また、混合層8bは、表面層8c側に向けてWCの含有率が小さくなり、かつ、DLCの含有率が高くなる傾斜組成を有している。したがって、混合層8bは下地層8aとの界面および表面層8cとの界面の両面において密着性に優れる。特に、該混合層8b内において、WCとDLCとが物理的に結合する構造となり、混合層8bにおける表面層8c側ではDLC含有率が高められているので、表面層8cと混合層8bとの密着性に優れる。 The mixed layer 8b has a gradient composition in which the WC content decreases toward the surface layer 8c and the DLC content increases. Therefore, the mixed layer 8b has excellent adhesion on both the interface with the base layer 8a and the interface with the surface layer 8c. In particular, the mixed layer 8b has a structure in which WC and DLC are physically combined, and the DLC content is increased on the surface layer 8c side in the mixed layer 8b. Therefore, the surface layer 8c and the mixed layer 8b Excellent adhesion.
 表面層8cは、DLCを主体とする膜である。表面層8cは、混合層8bと隣接する側に、混合層8b側から反対側(表面層8cの上面側)に向けて硬度が連続的または段階的に高くなる傾斜層部分8dを有することが好ましい。これは、混合層8bと表面層8cとで成膜時のバイアス電圧が異なる場合、バイアス電圧の急激な変化を避けるためにバイアス電圧を連続的または段階的に変化させる(たとえばバイアス電圧の設定値を上げる)ことで得られる部分である。傾斜層部分8dは、このようにバイアス電圧を変化させることで、結果として上記のように硬度が表面層8cの厚さ方向において変化する。硬度が連続的または段階的に上昇するのは、DLC構造におけるグラファイト構造(sp2)とダイヤモンド構造(sp3)との構成比率が、バイアス電圧の上昇により後者に偏っていくためである。これにより、混合層8bと表面層8cとの界面領域における急激な硬度変化が低減され、混合層8bと表面層8cとの密着性がさらに向上する。 The surface layer 8c is a film mainly composed of DLC. The surface layer 8c has an inclined layer portion 8d whose hardness increases continuously or stepwise from the mixed layer 8b side to the opposite side (upper surface side of the surface layer 8c) on the side adjacent to the mixed layer 8b. preferable. This is because when the bias voltage at the time of film formation is different between the mixed layer 8b and the surface layer 8c, the bias voltage is changed continuously or stepwise in order to avoid a sudden change in the bias voltage (for example, a set value of the bias voltage). This is the part obtained by raising the The inclined layer portion 8d changes the bias voltage in this way, and as a result, the hardness changes in the thickness direction of the surface layer 8c as described above. The reason why the hardness increases continuously or stepwise is that the constituent ratio of the graphite structure (sp2) and the diamond structure (sp3) in the DLC structure is biased toward the latter as the bias voltage increases. Thereby, a sudden change in hardness in the interface region between the mixed layer 8b and the surface layer 8c is reduced, and the adhesion between the mixed layer 8b and the surface layer 8c is further improved.
 硬質膜8の膜厚(下地層8a、混合層8b、表面層8cの合計膜厚)は0.5μm以上3.0μm以下としてもよい。当該膜厚が0.5μm未満であれば、硬質膜8の耐摩耗性および機械的強度が不十分となる場合がある。当該膜厚が3.0μmを超えると硬質膜8が剥離し易くなる場合がある。さらに、該硬質膜8の膜厚に占める表面層8cの厚さの割合が0.8以下であることが好ましい。この割合が0.8を超えると、混合層8bにおいてWCとDLCとが物理結合するための傾斜組織が不連続な組織となるため、硬質膜8の密着性が劣化する可能性がある。 The film thickness of the hard film 8 (the total film thickness of the base layer 8a, the mixed layer 8b, and the surface layer 8c) may be 0.5 μm or more and 3.0 μm or less. If the film thickness is less than 0.5 μm, the hard film 8 may have insufficient wear resistance and mechanical strength. If the film thickness exceeds 3.0 μm, the hard film 8 may be easily peeled off. Furthermore, the ratio of the thickness of the surface layer 8c to the thickness of the hard film 8 is preferably 0.8 or less. If this ratio exceeds 0.8, the gradient structure for physically bonding WC and DLC in the mixed layer 8b becomes a discontinuous structure, so that the adhesion of the hard film 8 may deteriorate.
 本実施形態に係る転がり軸受1では、硬質膜8を以上のような組成の下地層8a、混合層8b、表面層8cとの3層構造とすることで、優れた耐剥離性を実現できる。 In the rolling bearing 1 according to the present embodiment, the hard film 8 has a three-layer structure including the base layer 8a, the mixed layer 8b, and the surface layer 8c having the above-described composition, thereby realizing excellent peeling resistance.
 <転がり軸受の作用効果>
 本実施形態に係る転がり軸受1は、内輪2と外輪3と複数の転動体4と硬質膜8とを備える。内輪2は外周に内輪軌道面2aを有する。外輪3は内周に外輪軌道面3aを有する。複数の転動体4は、内輪軌道面2aと外輪軌道面3aとの間を転動する。硬質膜8は、内輪2、外輪3、および転動体4からなる群から選択される少なくとも一つの表面に形成される。内輪2、外輪3、および複数の転動体4は鉄系材料からなる。硬質膜8は、下地層8aと、混合層8bと、表面層8cとを含む。下地層8aは、上記表面の上に直接成膜される、クロム(Cr)を主体とする層である。混合層8bは、下地層8aの上に成膜されるタングステンカーバイト(WC)とダイヤモンドライクカーボン(DLC)とを主体とする層である。表面層8cは、混合層8bの上に成膜されるダイヤモンドライクカーボン(DLC)を主体とする層である。混合層8bは、下地層8a側から表面層8c側へ向けて連続的または段階的に、混合層8b中のタングステンカーバイト(WC)の含有率が小さくなり、混合層中のダイヤモンドライクカーボン(DLC)の含有率が高くなる層である。
<Effects of rolling bearing>
A rolling bearing 1 according to this embodiment includes an inner ring 2, an outer ring 3, a plurality of rolling elements 4, and a hard film 8. The inner ring 2 has an inner ring raceway surface 2a on the outer periphery. The outer ring 3 has an outer ring raceway surface 3a on the inner periphery. The plurality of rolling elements 4 roll between the inner ring raceway surface 2a and the outer ring raceway surface 3a. The hard film 8 is formed on at least one surface selected from the group consisting of the inner ring 2, the outer ring 3, and the rolling elements 4. The inner ring 2, the outer ring 3, and the plurality of rolling elements 4 are made of an iron-based material. The hard film 8 includes a base layer 8a, a mixed layer 8b, and a surface layer 8c. The underlayer 8a is a layer mainly composed of chromium (Cr), which is directly formed on the surface. The mixed layer 8b is a layer mainly composed of tungsten carbide (WC) and diamond-like carbon (DLC) formed on the base layer 8a. The surface layer 8c is a layer mainly composed of diamond-like carbon (DLC) formed on the mixed layer 8b. In the mixed layer 8b, the content of tungsten carbide (WC) in the mixed layer 8b decreases continuously or stepwise from the base layer 8a side to the surface layer 8c side, so that the diamond-like carbon ( DLC) is a layer with a high content.
 上記転がり軸受1において、上記表面上に直接成膜されるCrを主体とする下地層8aは鉄系材料と相性がよく、WやSiを主体とする層と比較して鉄系材料との密着性に優れる。混合層8bに用いるWCは、CrとDLCとの中間的な硬さや弾性率を有するため、硬質膜8の成膜後に混合層8bにおいて残留応力が集中することを抑制できる。さらに、WCとDLCとを主体とする混合層8bを上記のような傾斜組成とすることで、上記混合層8bはWCとDLCとが物理的に結合する構造となっている。 In the rolling bearing 1, the underlying layer 8 a mainly composed of Cr formed directly on the surface has good compatibility with the iron-based material, and is more closely adhered to the iron-based material than the layer mainly composed of W or Si. Excellent in properties. Since the WC used for the mixed layer 8b has intermediate hardness and elastic modulus between Cr and DLC, it is possible to suppress the concentration of residual stress in the mixed layer 8b after the hard film 8 is formed. Further, the mixed layer 8b mainly composed of WC and DLC has a gradient composition as described above, so that the mixed layer 8b has a structure in which WC and DLC are physically coupled.
 上記構造により、該硬質膜8は内輪2、外輪3、および転動体4のいずれかの表面に形成されても耐剥離性に優れる。このため、内輪軌道面2a、外輪軌道面3aおよび転動体4の転動面のいずれかに形成された硬質膜8は、剥離することなくDLC本来の特性を発揮できる。この結果、上記転がり軸受1は、耐焼き付き性、耐摩耗性、および耐腐食性に優れ、苛酷な潤滑状態でも軌道面などの損傷が少なく長寿命となる。 Due to the above structure, even if the hard film 8 is formed on any of the surfaces of the inner ring 2, the outer ring 3, and the rolling element 4, the peel resistance is excellent. For this reason, the hard film 8 formed on any of the inner ring raceway surface 2a, the outer ring raceway surface 3a, and the rolling surface of the rolling element 4 can exhibit the original characteristics of DLC without peeling off. As a result, the rolling bearing 1 has excellent seizure resistance, wear resistance, and corrosion resistance, and has a long life with little damage to the raceway surface even under severe lubrication.
 異なる観点から言えば、本実施形態に係る転がり軸受1において、以上のような構造・物性の硬質膜8を形成することで、軸受使用時に転がり接触などの負荷を硬質膜8が受けた場合でも、該硬質膜8の摩耗や剥離を抑制できる。このため、苛酷な潤滑状態でも軌道面などの損傷が少なく長寿命な転がり軸受1が得られる。また、グリース7を封入した転がり軸受1において、内輪2および外輪3といった軌道輪などの損傷により金属新生面が露出すると、触媒作用によりグリースの劣化が促進される。しかし、本実施形態に係る転がり軸受1では、硬質膜8が形成されているため金属接触による内輪軌道面2a、外輪軌道面3aおよび転動体4の転動面の損傷を抑制できるので、グリースの劣化も抑制できる。 From a different point of view, in the rolling bearing 1 according to this embodiment, by forming the hard film 8 having the above-described structure and properties, even when the hard film 8 receives a load such as rolling contact when the bearing is used. The wear and peeling of the hard film 8 can be suppressed. For this reason, the rolling bearing 1 having a long service life with little damage to the raceway surface and the like can be obtained even in a severely lubricated state. Further, in the rolling bearing 1 in which the grease 7 is sealed, if the new metal surface is exposed due to damage to the race rings such as the inner ring 2 and the outer ring 3, the grease is promoted to be deteriorated by the catalytic action. However, in the rolling bearing 1 according to the present embodiment, since the hard film 8 is formed, damage to the inner ring raceway surface 2a, the outer ring raceway surface 3a and the rolling surfaces of the rolling elements 4 due to metal contact can be suppressed. Deterioration can also be suppressed.
 <転がり軸受の製造方法>
 図6は、図1~図5に示した転がり軸受の製造方法を説明するためのフローチャートである。図7は、UBMS法の成膜原理を説明するための模式図である。図8は、UBMS装置の一例の構成を示す模式図である。
<Rolling bearing manufacturing method>
FIG. 6 is a flowchart for explaining a method of manufacturing the rolling bearing shown in FIGS. FIG. 7 is a schematic diagram for explaining the film forming principle of the UBMS method. FIG. 8 is a schematic diagram illustrating a configuration of an example of the UBMS apparatus.
 図6に示すように、転がり軸受の製造方法では、まず準備工程(S10)を実施する。この工程(S10)では、転がり軸受1を構成する軸受部材となるべき部品を準備する。当該部品としては、たとえば内輪2、外輪3、転動体4、シール部材6などが挙げられる。 As shown in FIG. 6, in the method of manufacturing a rolling bearing, first, a preparation step (S10) is performed. In this step (S10), parts to be a bearing member constituting the rolling bearing 1 are prepared. Examples of the parts include the inner ring 2, the outer ring 3, the rolling element 4, and the seal member 6.
 次に、成膜工程(S20)を実施する。この工程(S20)では、上記工程(S10)において準備された部品の表面に硬質膜を形成する。なお、成膜工程(S20)の詳細については後述する。その後、硬質膜が形成された部品の仕上げ加工や組み立て加工などを行う後処理工程(S30)を実施する。このようにして、図1~図3に示した転がり軸受1を得ることができる。 Next, a film forming step (S20) is performed. In this step (S20), a hard film is formed on the surface of the component prepared in the above step (S10). Details of the film forming step (S20) will be described later. Thereafter, a post-processing step (S30) is performed in which finishing processing, assembly processing, or the like of the part on which the hard film is formed is performed. In this way, the rolling bearing 1 shown in FIGS. 1 to 3 can be obtained.
 以下、工程(S20)における硬質膜の形成方法について説明する。硬質膜8は、軸受部材となるべき部品の成膜面に対して、下地層8a、混合層8b、表面層8cをこの順に成膜して得られる。 Hereinafter, the formation method of the hard film in the step (S20) will be described. The hard film 8 is obtained by forming the base layer 8a, the mixed layer 8b, and the surface layer 8c in this order on the film formation surface of the component to be the bearing member.
 下地層8aおよび混合層8bの形成は、スパッタリングガスとしてArガスを用いたUBMS装置を使用してなされることが好ましい。UBMS装置を用いたUBMS法の成膜原理を図7に示す模式図を用いて説明する。図7中において、基材12は、成膜対象の軸受部材となるべき部品である内輪2、外輪3、または転動体4であるが、模式的に平板状の形状として示している。基材12はバイアス電源11に接続される。図7に示すように、基材12と対向するようにターゲット15が配置される。成膜原料の供給源であるターゲット15の平面形状はたとえば丸型である。丸形のターゲット15の中心部と周辺部とで異なる磁気特性を有する内側磁石14a、外側磁石14bが、丸型ターゲット15の下側に配置される。たとえば外側磁石14bは相対的に強い磁場を形成し、内側磁石14aは相対的に弱い磁場を形成する。 The underlayer 8a and the mixed layer 8b are preferably formed using a UBMS apparatus using Ar gas as a sputtering gas. The film forming principle of the UBMS method using the UBMS apparatus will be described with reference to the schematic diagram shown in FIG. In FIG. 7, the base material 12 is an inner ring 2, an outer ring 3, or a rolling element 4 that is a component to be a bearing member to be formed, but is schematically illustrated as a flat plate shape. The substrate 12 is connected to a bias power source 11. As shown in FIG. 7, the target 15 is disposed so as to face the substrate 12. The planar shape of the target 15 which is a supply source of the film forming raw material is, for example, a round shape. An inner magnet 14 a and an outer magnet 14 b having different magnetic characteristics in the central portion and the peripheral portion of the round target 15 are disposed below the round target 15. For example, the outer magnet 14b forms a relatively strong magnetic field, and the inner magnet 14a forms a relatively weak magnetic field.
 UBMS法では、ターゲット15付近でArガスから高密度プラズマ19を形成しつつ、上記内側磁石14aおよび外側磁石14bにより発生する磁力線16の一部16aが基材12の近傍まで達するように、内側磁石14aおよび外側磁石14bにより磁場が形成される。スパッタリング時に発生した高密度プラズマ19の一部(Arプラズマ)はこの磁力線の一部16aに沿って基材12付近まで拡散する。このようなUBMS法では、基材12付近まで達する磁力線の一部16aに沿って、Arプラズマ17および電子が、ターゲット15由来のイオン化された粒子18を通常のスパッタリング時より多く基材12に到達させる。このような効果をイオンアシスト効果と呼ぶ。UBMS法では、イオンアシスト効果によって、基材12表面に緻密な膜13を成膜できる。 In the UBMS method, an inner magnet is formed such that a portion 16a of the magnetic force lines 16 generated by the inner magnet 14a and the outer magnet 14b reaches the vicinity of the substrate 12 while forming a high-density plasma 19 from Ar gas near the target 15. A magnetic field is formed by 14a and the outer magnet 14b. A part of the high-density plasma 19 (Ar plasma) generated at the time of sputtering diffuses to the vicinity of the substrate 12 along a part 16a of the lines of magnetic force. In such a UBMS method, the Ar plasma 17 and electrons reach the base material 12 more than the amount of ionized particles 18 derived from the target 15 along the part 16a of the magnetic field lines reaching the vicinity of the base material 12 than during normal sputtering. Let Such an effect is called an ion assist effect. In the UBMS method, a dense film 13 can be formed on the surface of the substrate 12 by an ion assist effect.
 下地層8aを形成する際には、ターゲット15としてCrターゲットを用いる。混合層8bを形成する際には、ターゲット15としてWCターゲットおよび黒鉛ターゲットを併用する。混合層8bは、連続的または段階的に、炭素供給源となる黒鉛ターゲットに印加する電力を上げながら、かつ、WCターゲットに印加する電力を下げながら成膜する。これにより、混合層8bにおいて下地層8a側から表面層8c側に向けてWCの含有率が連続的または段階的に小さくなり、かつ、DLCの含有率が連続的または段階的に高くなる傾斜組成の層となった部分を形成できる。 When forming the foundation layer 8 a, a Cr target is used as the target 15. When the mixed layer 8 b is formed, a WC target and a graphite target are used in combination as the target 15. The mixed layer 8b is formed in a continuous or stepwise manner while increasing the power applied to the graphite target serving as the carbon supply source and decreasing the power applied to the WC target. Thereby, in the mixed layer 8b, the WC content rate decreases continuously or stepwise from the base layer 8a side to the surface layer 8c side, and the DLC content rate increases continuously or stepwise. The part which became the layer of can be formed.
 表面層8cも、上記のスパッタリングガスとしてArガスを用いたUBMS装置を使用して形成してもよい。より詳細には、表面層8cを形成する条件としては以下のような条件を用いることができる。すなわち、UBMS装置を用いて、炭素供給源として黒鉛ターゲットと炭化水素系ガスとを併用する。上記ArガスのUBMS装置内への導入量100に対する上記炭化水素系ガスの導入量の割合を1以上10以下とする。上記UBMS装置内の真空度を0.2Pa以上0.8Pa以下とする。このような条件を用いて、上記炭素供給源からスパッタリングにより生じる粒子炭素を、混合層8b上に堆積させてDLC膜である表面層8cを形成することが好ましい。上述した条件について以下に説明する。 The surface layer 8c may also be formed using a UBMS apparatus using Ar gas as the sputtering gas. More specifically, the following conditions can be used as conditions for forming the surface layer 8c. That is, using a UBMS apparatus, a graphite target and a hydrocarbon gas are used in combination as a carbon supply source. The ratio of the introduction amount of the hydrocarbon-based gas to the introduction amount 100 of the Ar gas into the UBMS apparatus is set to 1 or more and 10 or less. The degree of vacuum in the UBMS device is set to 0.2 Pa or more and 0.8 Pa or less. It is preferable to form the surface layer 8c which is a DLC film by depositing particulate carbon generated by sputtering from the carbon supply source on the mixed layer 8b using such conditions. The conditions described above will be described below.
 炭素供給源として黒鉛ターゲットと炭化水素系ガスとを併用することで、DLC膜の硬度および弾性率を調整できる。炭化水素系ガスとしては、メタン、アセチレン、ベンゼンなどのガスが使用できる。炭化水素系ガスとしては、特に限定されないが、コストおよび取り扱い性の点からメタンガスを用いることが好ましい。 The hardness and elastic modulus of the DLC film can be adjusted by using a graphite target and a hydrocarbon-based gas in combination as a carbon supply source. Gases such as methane, acetylene, and benzene can be used as the hydrocarbon gas. Although it does not specifically limit as hydrocarbon type gas, It is preferable to use methane gas from the point of cost and handleability.
 上記炭化水素系ガスの導入量の割合を、ArガスのUBMS装置内(具体的にはUBMS装置の成膜チャンバー内)への導入量100(体積部)に対して1~10(体積部)とすることで、表面層8cの耐摩耗性などを悪化させずに、混合層8bとの密着性を向上させることができる。 The ratio of the introduction amount of the hydrocarbon-based gas is 1 to 10 (volume part) with respect to 100 introduction amount (volume part) of Ar gas into the UBMS apparatus (specifically, in the film forming chamber of the UBMS apparatus). As a result, the adhesion to the mixed layer 8b can be improved without deteriorating the wear resistance of the surface layer 8c.
 成膜チャンバー内の真空度は上記のとおり0.2Pa以上0.8Pa以下であることが好ましい。より好ましくは、上記真空度は0.25Pa以上0.8Pa以下である。真空度が0.2Pa未満であると、成膜チャンバー内のArガス量が少ないため、Arプラズマが発生せず、表面層8cを成膜できない場合がある。また、成膜チャンバー内の真空度が0.8Paより高いと、逆スパッタ現象が起こり易くなり、表面層8cの耐摩耗性が劣化するおそれがある。 The degree of vacuum in the film forming chamber is preferably 0.2 Pa or more and 0.8 Pa or less as described above. More preferably, the degree of vacuum is 0.25 Pa or more and 0.8 Pa or less. When the degree of vacuum is less than 0.2 Pa, since the amount of Ar gas in the film formation chamber is small, Ar plasma is not generated and the surface layer 8c may not be formed. Further, when the degree of vacuum in the film forming chamber is higher than 0.8 Pa, reverse sputtering phenomenon tends to occur, and the wear resistance of the surface layer 8c may be deteriorated.
 <転がり軸受の製造方法の作用効果>
 上記転がり軸受1の製造方法は、図6に示すように、内輪と外輪と転動体とを準備する工程(S10)と、硬質膜を形成する工程(成膜工程(S20))とを備える。硬質膜を形成する工程(S20)では、内輪2、外輪3、および転動体4からなる群から選択される少なくとも一つの表面に硬質膜8を形成する。硬質膜を形成する工程(S20)では、スパッタリングガスとしてアルゴンガスを用いたアンバランスド・マグネトロン・スパッタリング(UBMS)装置を使用する。硬質膜を形成する工程(S20)では、炭素供給源として黒鉛ターゲットと炭化水素系ガスとを併用し、アルゴンガスの装置内への導入量100に対する炭化水素系ガスの導入量の割合を1以上10以下とする。硬質膜を形成する工程(S20)では、炭素供給源から生じる炭素原子を、混合層8b上に堆積させて表面層8cが成膜される。このようにすれば、本実施形態に係る耐久性に優れた転がり軸受1を得ることができる。
<Operational effects of the rolling bearing manufacturing method>
As shown in FIG. 6, the method for manufacturing the rolling bearing 1 includes a step of preparing an inner ring, an outer ring, and a rolling element (S10), and a step of forming a hard film (film formation step (S20)). In the step of forming the hard film (S20), the hard film 8 is formed on at least one surface selected from the group consisting of the inner ring 2, the outer ring 3, and the rolling element 4. In the step of forming the hard film (S20), an unbalanced magnetron sputtering (UBMS) apparatus using argon gas as the sputtering gas is used. In the step of forming the hard film (S20), a graphite target and a hydrocarbon gas are used in combination as a carbon supply source, and the ratio of the introduction amount of the hydrocarbon gas to the introduction amount 100 of argon gas into the apparatus is 1 or more. 10 or less. In the step of forming the hard film (S20), the surface layer 8c is formed by depositing carbon atoms generated from the carbon supply source on the mixed layer 8b. If it does in this way, the rolling bearing 1 excellent in durability which concerns on this embodiment can be obtained.
 上記転がり軸受の製造方法において、工程(S20)により形成される表面層8cは、混合層8bとの隣接側に、混合層8b側から硬度が連続的または段階的に高くなる傾斜層部分8dを有してもよい。この場合、硬質膜を形成する工程(S20)では、表面を含む内輪2、外輪3、および転動体4からなる群から選択される少なくとも一つに印加するバイアス電圧を連続的または段階的に上げながら、傾斜層部分8dが成膜される。このようにすれば、傾斜層部分8dを容易に形成できる。 In the rolling bearing manufacturing method, the surface layer 8c formed by the step (S20) has an inclined layer portion 8d whose hardness increases continuously or stepwise from the mixed layer 8b side on the side adjacent to the mixed layer 8b. You may have. In this case, in the step of forming the hard film (S20), the bias voltage applied to at least one selected from the group consisting of the inner ring 2, the outer ring 3, and the rolling element 4 including the surface is increased continuously or stepwise. However, the inclined layer portion 8d is formed. In this way, the inclined layer portion 8d can be easily formed.
 上記転がり軸受の製造方法において、硬質膜を形成する工程(S20)では、上述のようにスパッタリングガスとしてアルゴンガスを用いたUBMS装置を使用して、下地層8aおよび混合層8bが成膜されてもよい。硬質膜を形成する工程(S20)では、連続的または段階的に、炭素供給源となる黒鉛ターゲットに印加するスパッタ電力を上げながら、かつ、タングステンカーバイトターゲットに印加する電力を下げながら、混合層8bが成膜されてもよい。このようにすれば、混合層8bにおけるWCとDLCの組成を厚さ方向で様に変化させることができる。 In the rolling bearing manufacturing method, in the step of forming the hard film (S20), the base layer 8a and the mixed layer 8b are formed using the UBMS apparatus using argon gas as the sputtering gas as described above. Also good. In the step (S20) of forming the hard film, the mixed layer is continuously or stepwise increased while increasing the sputtering power applied to the graphite target serving as the carbon supply source and lowering the power applied to the tungsten carbide target. 8b may be formed. In this way, the composition of WC and DLC in the mixed layer 8b can be changed in the thickness direction.
 上記転がり軸受の製造方法は、硬質膜を形成する工程(S20)の前に、上記硬質膜8が形成される表面に対して窒化処理を実施することにより窒化層を形成する工程を備えていてもよい。上記窒化処理は、プラズマ窒化処理であってもよい。 The method for manufacturing a rolling bearing includes a step of forming a nitride layer by performing nitriding treatment on the surface on which the hard film 8 is formed before the step of forming the hard film (S20). Also good. The nitriding treatment may be a plasma nitriding treatment.
 上記転がり軸受の製造方法において、硬質膜を形成する工程(S20)にて上記硬質膜8が形成される表面の表面粗さRaが、0.05μm以下であってもよい。この場合、膜厚変動が抑制された硬質膜8を形成できる。 In the rolling bearing manufacturing method, the surface roughness Ra of the surface on which the hard film 8 is formed in the step of forming the hard film (S20) may be 0.05 μm or less. In this case, the hard film 8 in which the film thickness variation is suppressed can be formed.
 上記転がり軸受の製造方法は、転動体4の周囲にグリースを封入する工程をさらに備えていてもよい。この場合、グリース7を封入した転がり軸受1を得ることができる。 The above rolling bearing manufacturing method may further include a step of enclosing grease around the rolling element 4. In this case, the rolling bearing 1 in which the grease 7 is enclosed can be obtained.
 (実施例)
 本実施形態に係る転がり軸受に形成する硬質膜の効果を確認するため、所定の基材に対して硬質膜を形成し、硬質膜の物性に関して評価した。また往復動すべり試験機を用いた摩擦摩耗試験にて耐剥離性の評価を行った。以下具体的に説明する。
(Example)
In order to confirm the effect of the hard film formed on the rolling bearing according to the present embodiment, a hard film was formed on a predetermined substrate, and the physical properties of the hard film were evaluated. The peel resistance was evaluated by a friction and wear test using a reciprocating sliding tester. This will be specifically described below.
 <試料>
 試料No.1~7の7種類の試験片を準備した。硬質膜の評価のために用いた試験片の材質や、硬質膜の形成条件は以下のとおりである。
(1)基材材質:JIS規格SUJ2、焼入れ焼戻し品、表面硬度780Hv
(2)基材:上記基材材質からなり、鏡面研磨された平板(表面粗さ0.02μmRa)、基材の形状:平面形状が円形状、直径33mm×厚さ6mm
(3)UBMS装置:神戸製鋼所製;UBMS202
 図8はUBMS装置の模式図である。図8に示したUBMS装置は、アークイオンプレーティング(以下、AIPと記す)機能を備えたUBMS装置である。図8に示すように、UBMS装置は、円盤20上に配置された基材21に対し、真空アーク放電を利用して、AIP蒸発源材料22aを瞬間的に蒸気化・イオン化し、これを基材21上に堆積させて被膜を成膜するAIP機能を有する。さらに、上記UBMS装置は、スパッタ蒸発源材料であるターゲット22bと基材21との間に非平衡な磁場を形成し、当該磁場によって基材21近傍のプラズマ密度を上げてイオンアシスト効果を増大すること(図7参照)によって、基材上に堆積する被膜の特性を制御できるUBMS機能を有する。この装置により、基材21上に、AIP被膜および複数のUBMS被膜(組成傾斜部分を含む)を任意に組合せた複合被膜を成膜することができる。試料No.1~7では、基材とする平板の表面に、下地層、混合層、表面層をUBMS被膜として成膜している。
(4)スパッタリングガス:Arガス
(5)下地層および混合層の形成条件:
 下地層:成膜チャンバー内を5×10-3Pa程度まで真空引きし、ヒータで試験片をベーキングして、Arプラズマにて試験片表面をエッチングする。その後、UBMS法にてCrターゲットとWCターゲットに印加するスパッタ電力を調整し、CrとWCの組成比を傾斜させ、基材側でCrが多く表面側でWCが多いCr/WC傾斜層を形成した。
<Sample>
Sample No. Seven types of test pieces 1 to 7 were prepared. The material of the test piece used for the evaluation of the hard film and the conditions for forming the hard film are as follows.
(1) Base material: JIS standard SUJ2, quenching and tempering product, surface hardness 780Hv
(2) Base material: A flat plate (surface roughness 0.02 μmRa) made of the above-mentioned base material and mirror-polished, and the shape of the base material: the planar shape is circular, diameter 33 mm × thickness 6 mm
(3) UBMS device: manufactured by Kobe Steel; UBMS202
FIG. 8 is a schematic diagram of a UBMS apparatus. The UBMS apparatus shown in FIG. 8 is a UBMS apparatus having an arc ion plating (hereinafter referred to as AIP) function. As shown in FIG. 8, the UBMS apparatus instantaneously vaporizes and ionizes the AIP evaporation source material 22a using the vacuum arc discharge to the base material 21 arranged on the disk 20, and based on this. It has an AIP function of depositing on the material 21 to form a film. Further, the UBMS apparatus forms a non-equilibrium magnetic field between the target 22b, which is a sputter evaporation source material, and the base material 21, and increases the plasma density near the base material 21 by the magnetic field to increase the ion assist effect. (See FIG. 7), it has a UBMS function capable of controlling the characteristics of the film deposited on the substrate. With this apparatus, a composite film in which an AIP film and a plurality of UBMS films (including a composition gradient portion) are arbitrarily combined can be formed on the substrate 21. Sample No. In Nos. 1 to 7, a base layer, a mixed layer, and a surface layer are formed as a UBMS film on the surface of a flat plate as a base material.
(4) Sputtering gas: Ar gas (5) Conditions for forming the underlayer and the mixed layer:
Underlayer: The inside of the deposition chamber is evacuated to about 5 × 10 −3 Pa, the test piece is baked with a heater, and the surface of the test piece is etched with Ar plasma. Then, the sputtering power applied to the Cr target and WC target is adjusted by the UBMS method, the composition ratio of Cr and WC is tilted, and a Cr / WC graded layer with a lot of Cr on the substrate side and a lot of WC on the surface side is formed. did.
 混合層:UBMS法にてWCターゲットと黒鉛ターゲットとに印加するスパッタ電力を調整し、WCとDLCとの組成比を傾斜させ、下地層側でWCが多く表面側でDLCが多いWC/DLC傾斜層を形成した。混合層の形成条件は、上述したスパッタ電力以外については、基本的には上記下地層の形成条件と同様である。なお、試料No.1~7について、上述した下地層および混合層は同じ条件で形成した。
(6)表面層の形成条件:
 試料No.1~7のそれぞれについて、表1に示す条件により表面層を形成した。
(7)各試料の製造方法:
 後述する表1に示す基材をアセトンで超音波洗浄した後、乾燥した。乾燥後、基材をUBMS装置に取り付け、上述の形成条件にて下地層および混合層を形成した。その上に、表1に示す成膜条件にて表面層であるDLC膜を成膜し、硬質膜を有する試験片を得た。なお、各表における「真空度」は上記装置における成膜チャンバー内の真空度である。
Mixed layer: Adjust the sputtering power applied to the WC target and the graphite target by the UBMS method, tilt the composition ratio of WC and DLC, and tilt the WC / DLC with a lot of WC on the base layer side and a lot of DLC on the surface side A layer was formed. The formation conditions of the mixed layer are basically the same as the formation conditions of the underlayer except for the sputtering power described above. Sample No. Regarding 1 to 7, the above-described underlayer and mixed layer were formed under the same conditions.
(6) Surface layer formation conditions:
Sample No. For each of 1 to 7, a surface layer was formed under the conditions shown in Table 1.
(7) Manufacturing method of each sample:
The substrate shown in Table 1 described later was ultrasonically cleaned with acetone and then dried. After drying, the substrate was attached to a UBMS apparatus, and an underlayer and a mixed layer were formed under the above-described formation conditions. A DLC film, which is a surface layer, was formed on the film formation conditions shown in Table 1 to obtain a test piece having a hard film. Note that “degree of vacuum” in each table is the degree of vacuum in the film forming chamber in the above apparatus.
 <試験方法>
 往復動すべり試験:
 得られた試料No.1~7について、図9に示す往復動すべり試験機を用いて滑りによる耐剥離性の試験を行った。図9に示す往復動すべり試験機は、基材21と硬質膜8とが形成された試料を保持する台座32と、台座32に設置されたロードセル27および加速度センサ28と、試料の硬質膜8に接触させる球としての窒化珪素球25と、窒化珪素球25を保持するホルダ26と、ホルダ26に接続されたアーム31と、アーム31を横方向に振動させる加振機29とを備える。ホルダ26は矢印30で示す方向から荷重を印加可能になっている。
<Test method>
Reciprocating sliding test:
The obtained sample No. With respect to 1 to 7, a peel resistance test by sliding was performed using a reciprocating sliding tester shown in FIG. The reciprocating sliding test machine shown in FIG. 9 includes a pedestal 32 that holds a sample on which a base material 21 and a hard film 8 are formed, a load cell 27 and an acceleration sensor 28 installed on the pedestal 32, and a hard film 8 of the sample. A silicon nitride sphere 25 as a sphere to be brought into contact with, a holder 26 for holding the silicon nitride sphere 25, an arm 31 connected to the holder 26, and a vibrator 29 for vibrating the arm 31 in the lateral direction. The holder 26 can apply a load from the direction indicated by the arrow 30.
 試験は無潤滑で行った。試験では、荷重を増加させ、硬質膜8の剥離により摩擦係数が増大したときの荷重を限界荷重とした。以下、具体的な試験条件を示す。 The test was performed without lubrication. In the test, the load was increased, and the load when the friction coefficient increased due to the peeling of the hard film 8 was defined as the limit load. Specific test conditions are shown below.
 (試験条件)
 潤滑:無潤滑
 球:3/8インチ、窒化珪素球
 荷重:30~80N
 負荷増加速度: 10N/min
 振動周波数: 60Hz
 振幅: 2mm
 押し込み硬さ測定:
 各試料の硬質膜8について、押し込み硬さをアジレントテクノロジー社製:ナノインデンタ(G200)を用いて測定した。なお、測定値は表面粗さの影響を受けない深さ(硬さが安定している箇所)の平均値を示しており、各試料ごとに10箇所ずつ測定している。
(Test conditions)
Lubrication: No lubrication Ball: 3/8 inch, silicon nitride ball Load: 30-80N
Load increase speed: 10 N / min
Vibration frequency: 60Hz
Amplitude: 2mm
Indentation hardness measurement:
For the hard film 8 of each sample, the indentation hardness was measured using a nanoindenter (G200) manufactured by Agilent Technologies. In addition, the measured value has shown the average value of the depth (location where hardness is stabilized) which is not influenced by surface roughness, and measured 10 places for each sample.
 <結果>
 上記試料の条件および試験結果を表1に示す。
<Result>
Table 1 shows the sample conditions and test results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表1中の下地層および混合層は、2成分を混合しているため「第1成分/第2成分」と表示している。また、メタンガス導入比はアルゴンガス導入量100に対するメタンガス導入量の割合である。 In addition, since the base layer and the mixed layer in Table 1 are mixed with two components, they are indicated as “first component / second component”. The methane gas introduction ratio is the ratio of the methane gas introduction amount to the argon gas introduction amount 100.
 表1からわかるように、硬質膜8の表面層の押し込み硬さを変化させた場合、当該押し込み硬さが15GPa以下の領域では、当該硬さが低い場合において往復動すべり試験における限界荷重が大きい傾向がある。 As can be seen from Table 1, when the indentation hardness of the surface layer of the hard film 8 is changed, in the region where the indentation hardness is 15 GPa or less, the limit load in the reciprocating sliding test is large when the hardness is low. Tend.
 以上のように本発明の実施の形態について説明を行ったが、上述の実施の形態を様々に変形することも可能である。また、本発明の範囲は上述の実施の形態および実施例に限定されるものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。 Although the embodiments of the present invention have been described above, the above-described embodiments can be variously modified. Further, the scope of the present invention is not limited to the above-described embodiments and examples. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 DLCの適用が検討される摺動面および転動面は潤滑が希薄または滑り速度が速いなど苛酷な潤滑状態であることが多い。本実施形態に係る転がり軸受は、例えば内・外輪軌道面や転動体の転動面にDLCが形成されているので、苛酷な潤滑状態で運転した場合においても耐剥離性に優れ、DLC本体の特性を発揮できる。このため、上記転がり軸受は耐焼き付き性、耐摩耗性、および耐腐食性に優れる。したがって、上記転がり軸受は、苛酷な潤滑状態での用途を含め、各種用途に適用可能である。 Sliding surfaces and rolling surfaces for which application of DLC is considered are often in a severely lubricated state such as poor lubrication or high sliding speed. In the rolling bearing according to the present embodiment, for example, DLC is formed on the inner and outer ring raceway surfaces and the rolling surfaces of the rolling elements. Therefore, even when operated in a severely lubricated state, the rolling bearing has excellent peeling resistance, and The characteristics can be demonstrated. For this reason, the rolling bearing is excellent in seizure resistance, wear resistance, and corrosion resistance. Therefore, the rolling bearing can be applied to various uses including use in severe lubrication.
 1 転がり軸受、2 内輪、2a 内輪軌道面、3 外輪、3a 外輪軌道面、4 転動体、5 保持器、6 シール部材、7 グリース、8 硬質膜、8a 下地層、8b 混合層、8c 表面層、8d 傾斜層部分、11 バイアス電源、12,21 基材、13 膜、14a 内側磁石、14b 外側磁石、15,22b ターゲット、16 磁力線、16a 一部、17 Arプラズマ、18 粒子、19 高密度プラズマ、20 円盤、22a 蒸発源材料、25 窒化珪素球、26 ホルダ、27 ロードセル、28 加速度センサ、29 加振機、30 矢印、31 アーム、32 台座。 1 Rolling bearing, 2 Inner ring, 2a Inner ring raceway surface, 3 Outer ring, 3a Outer ring raceway surface, 4 Rolling element, 5 Cage, 6 Seal member, 7 Grease, 8 Hard film, 8a Underlayer, 8b Mixed layer, 8c Surface layer 8d inclined layer portion, 11 bias power source, 12, 21 base material, 13 film, 14a inner magnet, 14b outer magnet, 15, 22b target, 16 magnetic field lines, 16a part, 17 Ar plasma, 18 particles, 19 high density plasma 20 disc, 22a evaporation source material, 25 silicon nitride sphere, 26 holder, 27 load cell, 28 acceleration sensor, 29 shaker, 30 arrow, 31 arm, 32 pedestal.

Claims (8)

  1.  外周に内輪軌道面を有する内輪と、
     内周に外輪軌道面を有する外輪と、
     前記内輪軌道面と前記外輪軌道面との間を転動する複数の転動体と、
     前記内輪、前記外輪、および前記転動体からなる群から選択される少なくとも一つの表面に形成された硬質膜とを備え、
     前記内輪、前記外輪、および前記複数の転動体が鉄系材料からなり、
     前記硬質膜は、
     前記表面の上に直接成膜されるクロムを主体とする下地層と、
     前記下地層の上に成膜されるタングステンカーバイトとダイヤモンドライクカーボンとを主体とする混合層と、
     前記混合層の上に成膜されるダイヤモンドライクカーボンを主体とする表面層とを含み、
     前記混合層は、前記下地層側から前記表面層側へ向けて連続的または段階的に、前記混合層中の前記タングステンカーバイトの含有率が小さくなり、前記混合層中の前記ダイヤモンドライクカーボンの含有率が高くなる層である、転がり軸受。
    An inner ring having an inner ring raceway surface on the outer periphery;
    An outer ring having an outer ring raceway surface on the inner periphery;
    A plurality of rolling elements rolling between the inner ring raceway surface and the outer ring raceway surface;
    A hard film formed on at least one surface selected from the group consisting of the inner ring, the outer ring, and the rolling element,
    The inner ring, the outer ring, and the plurality of rolling elements are made of an iron-based material,
    The hard film is
    An underlayer mainly composed of chrome directly formed on the surface;
    A mixed layer mainly composed of tungsten carbide and diamond-like carbon formed on the underlayer;
    A surface layer mainly composed of diamond-like carbon formed on the mixed layer,
    In the mixed layer, the content of the tungsten carbide in the mixed layer decreases continuously or stepwise from the base layer side to the surface layer side, and the diamond-like carbon in the mixed layer decreases. Rolling bearing that is a layer with a high content.
  2.  前記表面層の押し込み硬さが10GPa以上20GPa以下である、請求項1に記載の転がり軸受。 The rolling bearing according to claim 1, wherein the indentation hardness of the surface layer is 10 GPa or more and 20 GPa or less.
  3.  前記表面層は、前記混合層との隣接側に、前記混合層側から硬度が連続的または段階的に高くなる傾斜層部分を有する、請求項1または2に記載の転がり軸受。 The rolling bearing according to claim 1 or 2, wherein the surface layer has an inclined layer portion whose hardness increases continuously or stepwise from the mixed layer side on a side adjacent to the mixed layer.
  4.  前記鉄系材料が、高炭素クロム軸受鋼、炭素鋼、工具鋼、マルテンサイト系ステンレス鋼からなる群から選択される1つである、請求項1~3のいずれか1項に記載の転がり軸受。 The rolling bearing according to any one of claims 1 to 3, wherein the iron-based material is one selected from the group consisting of high-carbon chromium bearing steel, carbon steel, tool steel, and martensitic stainless steel. .
  5.  請求項1に記載の転がり軸受の製造方法であって、
     前記内輪と前記外輪と前記転動体とを準備する工程と、
     前記内輪、前記外輪、および前記転動体からなる群から選択される少なくとも一つの表面に硬質膜を形成する工程とを備え、
     前記硬質膜を形成する工程では、スパッタリングガスとしてアルゴンガスを用いたアンバランスド・マグネトロン・スパッタリング装置を使用し、炭素供給源として黒鉛ターゲットと炭化水素系ガスとを併用し、前記アルゴンガスの前記装置内への導入量100に対する前記炭化水素系ガスの導入量の割合を1以上10以下とし、前記炭素供給源から生じる炭素原子を、前記混合層上に堆積させて前記表面層が成膜される、転がり軸受の製造方法。
    It is a manufacturing method of the rolling bearing according to claim 1,
    Preparing the inner ring, the outer ring, and the rolling element;
    Forming a hard film on at least one surface selected from the group consisting of the inner ring, the outer ring, and the rolling elements,
    In the step of forming the hard film, an unbalanced magnetron sputtering apparatus using argon gas as a sputtering gas is used, and a graphite target and a hydrocarbon-based gas are used in combination as a carbon supply source. The ratio of the introduction amount of the hydrocarbon gas to the introduction amount 100 in the apparatus is set to 1 to 10, and carbon atoms generated from the carbon supply source are deposited on the mixed layer to form the surface layer. A method for manufacturing a rolling bearing.
  6.  前記炭化水素系ガスがメタンガスである、請求項5に記載の転がり軸受の製造方法。 The method for manufacturing a rolling bearing according to claim 5, wherein the hydrocarbon-based gas is methane gas.
  7.  前記表面層は、前記混合層との隣接側に、前記混合層側から硬度が連続的または段階的に高くなる傾斜層部分を有し、
     前記硬質膜を形成する工程では、前記表面を含む前記内輪、前記外輪、および前記転動体からなる群から選択される少なくとも一つに印加するバイアス電圧を連続的または段階的に上げながら、前記傾斜層部分が成膜される、請求項5または6に記載の転がり軸受の製造方法。
    The surface layer has an inclined layer portion whose hardness increases continuously or stepwise from the mixed layer side on the side adjacent to the mixed layer,
    In the step of forming the hard film, the inclination is applied while continuously or stepwise increasing a bias voltage applied to at least one selected from the group consisting of the inner ring, the outer ring, and the rolling element including the surface. The manufacturing method of the rolling bearing of Claim 5 or 6 with which a layer part is formed into a film.
  8.  前記硬質膜を形成する工程では、スパッタリングガスとしてアルゴンガスを用いた前記アンバランスド・マグネトロン・スパッタリング装置を使用して、前記下地層および前記混合層が成膜され、さらに、
     前記硬質膜を形成する工程では、連続的または段階的に、炭素供給源となる黒鉛ターゲットに印加するスパッタ電力を上げながら、かつ、タングステンカーバイトターゲットに印加する電力を下げながら、前記混合層が成膜される、請求項5~7のいずれか1項に記載の転がり軸受の製造方法。
    In the step of forming the hard film, the underlayer and the mixed layer are formed using the unbalanced magnetron sputtering apparatus using argon gas as a sputtering gas.
    In the step of forming the hard film, the mixed layer is formed continuously or stepwise while increasing the sputtering power applied to the graphite target serving as the carbon supply source and lowering the power applied to the tungsten carbide target. The method for manufacturing a rolling bearing according to any one of claims 5 to 7, wherein a film is formed.
PCT/JP2018/008623 2017-03-07 2018-03-06 Rolling bearing and method for producing same WO2018164139A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/492,090 US20200408261A1 (en) 2017-03-07 2018-03-06 Rolling bearing and method of manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-042576 2017-03-07
JP2017042576 2017-03-07
JP2017218848A JP2018146108A (en) 2017-03-07 2017-11-14 Rolling bearing and its manufacturing method
JP2017-218848 2017-11-14

Publications (1)

Publication Number Publication Date
WO2018164139A1 true WO2018164139A1 (en) 2018-09-13

Family

ID=63448622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008623 WO2018164139A1 (en) 2017-03-07 2018-03-06 Rolling bearing and method for producing same

Country Status (1)

Country Link
WO (1) WO2018164139A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220010836A1 (en) * 2019-04-05 2022-01-13 Ntn Corporation Self-aligning roller bearing
US11542985B2 (en) 2018-09-26 2023-01-03 Ntn Corporation Rolling bearing and wind power generation rotor shaft support device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122662A1 (en) * 2010-03-30 2011-10-06 Ntn株式会社 Anti-friction bearing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122662A1 (en) * 2010-03-30 2011-10-06 Ntn株式会社 Anti-friction bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11542985B2 (en) 2018-09-26 2023-01-03 Ntn Corporation Rolling bearing and wind power generation rotor shaft support device
US20220010836A1 (en) * 2019-04-05 2022-01-13 Ntn Corporation Self-aligning roller bearing
US11773901B2 (en) * 2019-04-05 2023-10-03 Ntn Corporation Self-aligning roller bearing

Similar Documents

Publication Publication Date Title
JP2018146108A (en) Rolling bearing and its manufacturing method
WO2013042765A1 (en) Hard film, hard film formed body, and rolling bearing
JP5993680B2 (en) Rolling bearing and manufacturing method thereof
JP2019116669A (en) Sliding member and piston ring
JP4178826B2 (en) Rolling device
WO2018164139A1 (en) Rolling bearing and method for producing same
JP5938321B2 (en) Hard film and film forming method thereof, hard film forming body and manufacturing method thereof
US20210317877A1 (en) Rolling bearing, wheel support device, and wind power generation rotor shaft support device
JP7373341B2 (en) Rolling bearings and main shaft support devices for wind power generation
JP5592626B2 (en) Hard film forming method and hard film
JP7079175B2 (en) Multi-row self-aligning roller bearings and spindle support devices for wind power generation equipped with them
JP5379734B2 (en) Rolling bearing
JP2019027476A (en) Cage for rolling bearing and rolling bearing
JP2007327631A (en) Rolling sliding member and rolling device
WO2020067334A1 (en) Rolling bearing, and main shaft support device for wind power generation
JP6875880B2 (en) Rolling bearing and hard film film formation method
JP5620860B2 (en) Rolling bearing
JP2021001639A (en) Double-row thrust needle roller bearing
JP2012208073A (en) Dimension measuring jig
WO2019073861A1 (en) Wheel support device
JP2008151264A (en) Cage for roller bearing
JP2006097871A (en) Rolling sliding member and rolling device
JP2024014629A (en) rolling bearing
JP2007100179A (en) Combination sliding member
JP2008082427A (en) Rolling sliding member and rolling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763813

Country of ref document: EP

Kind code of ref document: A1