WO2019073657A1 - マッハ-ツェンダー型原子干渉に基づくジャイロスコープ - Google Patents
マッハ-ツェンダー型原子干渉に基づくジャイロスコープ Download PDFInfo
- Publication number
- WO2019073657A1 WO2019073657A1 PCT/JP2018/027827 JP2018027827W WO2019073657A1 WO 2019073657 A1 WO2019073657 A1 WO 2019073657A1 JP 2018027827 W JP2018027827 W JP 2018027827W WO 2019073657 A1 WO2019073657 A1 WO 2019073657A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- atomic
- traveling light
- standing wave
- light standing
- state
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/58—Turn-sensitive devices without moving masses
- G01C19/64—Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
- G01C19/72—Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
- G01C19/721—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/093—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by photoelectric pick-up
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/58—Turn-sensitive devices without moving masses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/58—Turn-sensitive devices without moving masses
- G01C19/64—Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
- G01C19/66—Ring laser gyrometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/58—Turn-sensitive devices without moving masses
- G01C19/64—Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
- G01C19/66—Ring laser gyrometers
- G01C19/661—Ring laser gyrometers details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
Definitions
- the present invention relates to a gyroscope based on Mach-Zehnder type atomic interference.
- a Mach-Zehnder type atomic interferometer is known as one of atomic interferometers.
- the conventional Mach-Zehnder type atomic interferometer 900 shown in FIG. 1 includes an atomic beam source 100, an interference unit 200, a traveling light standing wave generation unit 300, and an observation unit 400.
- the atomic beam source 100 generates an atomic beam 100a.
- the atomic line 100a is a thermal atomic line, a cooled atomic line (an atomic line having a velocity slower than that of the thermal atomic line), a Bose-Einstein condensate, and the like.
- the thermal atomic beam is generated, for example, by heating an element of high purity in an oven.
- the cooled atomic beam is generated, for example, by laser cooling a thermal atomic beam.
- Bose-Einstein condensates are produced by cooling Bose particles to near absolute zero.
- the individual atoms included in the atomic line 100a are set to the same energy level (for example,
- the atom beam 100a passes through three traveling light standing waves 200a, 200b, and 200c.
- a traveling light standing wave is generated by facing lasers having different frequencies, and drifts at a sufficiently slower speed than the speed of light.
- two-level transitions of atoms due to light irradiation are used. Therefore, in order to avoid spontaneous emission decoherence, generally, a long-lived two-level transition is used.
- the atomic line is an alkali metal atomic line
- a stimulated Raman transition between two levels included in the ground state hyperfine structure is used. In the hyperfine structure, the lowest energy level is
- Stimulated Raman transition between two levels is generally realized by a traveling light standing wave formed by opposing irradiation of two laser beams whose difference frequency is approximately equal to the resonance frequency of
- the optical configuration of the traveling light standing wave generation unit 300 that generates the three traveling light standing waves 200a, 200b, and 200c is known and is not related to the main point of the present invention, and thus the description thereof will be omitted (FIG. 1).
- a laser light source, a lens, a mirror, an acousto-optic modulator (AOM (Acousto-Optic Modulator)) and the like are schematically illustrated.
- AOM Acoustic-Optic Modulator
- g> is in the overlapping state of
- e> is 1: 1.
- the atom gains momentum for two photons in transition from
- e> deviates from the direction of movement of atoms in state
- the first traveling light standing wave 200a is referred to as a ⁇ / 2 pulse and has a function as an atomic beam splitter.
- e> pass through the second traveling light standing wave 200b.
- the transit time of the second traveling light standing wave 200b that is, the interaction time between the traveling light standing wave and the atom
- the second traveling light standing wave 200b is set to 2 ⁇ t
- the second traveling light standing wave 200b is passed.
- g> is inverted to the atomic line consisting of atoms in state
- e> is in the state
- e> deviates from the movement direction of the atom in the state
- e> after passing through the second traveling light standing wave 200b is the atom of the state
- the atom loses the same momentum as the momentum obtained from two photons when transitioning from
- g> after passing through the second traveling light standing wave 200b is the atom of the state
- the second traveling light standing wave 200 b is called a ⁇ pulse and has a function as a mirror of an atomic beam.
- e> pass the third traveling light standing wave 200c.
- the transit time of the third traveling light standing wave 200c (that is, the interaction time between the traveling light standing wave and the atom) is appropriately set (specifically, the third traveling light standing wave)
- the transit time of the wave 200c is set to the above ⁇ t),
- An atomic line 100b is obtained according to the state of superposition with e>.
- the atomic beam 100 b is an output of the interference unit 200.
- the third traveling light standing wave 200c is called a ⁇ / 2 pulse and has a function as a combiner of atomic beams.
- the observation unit 400 detects the angular velocity or the acceleration by observing the atomic beam 100 b from the interference unit 200. For example, the observation unit 400 irradiates the atomic beam 100 b from the interference unit 200 with the probe light 408, and detects fluorescence from an atom in the state
- Non-Patent Document 1 is a reference for the Mach-Zehnder type atomic interferometer using the two-photon Raman process by the above-mentioned traveling light standing wave.
- the phase sensitivity of the gyroscope is proportional to A / v, where A is an area surrounded by two paths of atomic lines and v is an atomic velocity.
- A is an area surrounded by two paths of atomic lines and v is an atomic velocity.
- an increase in the area A and / or a reduction in the velocity v are effective in improving the phase sensitivity.
- the distance between the first traveling light standing wave and the third traveling light standing wave may be increased (in the two-photon Raman process, the momentum that atoms can receive) Is limited to two photons, so the distance between the two paths can not be increased).
- such gyroscopes are large and not practical.
- the present invention aims to provide a high sensitivity practical gyroscope based on Mach-Zehnder type atomic interference.
- the gyroscope of the present invention is a gyroscope based on Mach-Zehnder type atomic interference, and includes an atomic beam source, a traveling light standing wave generation unit, an interference unit, and an observation unit.
- An atomic beam source continuously generates atomic beams in which individual atoms are in the same state.
- the traveling light standing wave generation unit generates three or more traveling light standing waves. Each traveling light standing wave satisfies the n-th Bragg condition, where n is a positive integer of 2 or more.
- the interference part obtains an atomic beam as a result of interaction between the atomic beam and three or more traveling light standing waves.
- the observation unit detects angular velocity or acceleration by observing the atomic beam from the interference unit.
- a gyroscope based on Mach-Zehnder type atomic interference utilizes n-order (where n is a predetermined positive integer of 2 or more) Bragg diffraction.
- a gyroscope 500 of the embodiment shown in FIG. 2 includes an atomic beam source 101, an interference unit 201, a traveling light standing wave generation unit 301, and an observation unit 400.
- the atomic beam source 101, the interference unit 201, and the observation unit 400 are accommodated in a vacuum chamber (not shown).
- the atomic beam source 101 continuously generates atomic lines 101a in which individual atoms are in the same state.
- techniques are known which continuously produce thermal atomic lines (for example -100 m / s) or cooling atomic lines (for example -10 m / s).
- the thermal atomic beam is generated, for example, by passing a high-speed atomic gas obtained by sublimation of a high purity element in the oven 111 through the collimator 113.
- a cooled atomic beam is generated, for example, by passing a high-speed atomic gas through a Zeeman Slower or a two-dimensional cooling device (not shown). See Reference 1 for low-speed atomic beam sources using a two-dimensional cooling system. (Reference 1) J. Schoser et al., “Intense source of cold atoms from a pure two-dimensional magneto-optical trap,” Phys. Rev. A 66, 023410-Published 26 August 2002.
- the traveling light standing wave generation unit 301 includes three traveling light standing waves (first traveling light standing wave 201a, second traveling light standing wave 201b, and third traveling light) that satisfy the n-th Bragg condition.
- a standing wave 201c) is generated.
- the first traveling light standing wave 201a functions as the above-described splitter
- the second traveling light standing wave 201b functions as the above-described mirror
- the third traveling light standing wave 201c is the above-described It also satisfies the condition that each has a function as a combiner.
- the three traveling light standing waves (the first traveling light standing wave 201a, the second traveling light standing wave 201b, and the third traveling light standing wave 201c) that satisfy such various conditions are respectively Gaussian. It is realized by appropriately setting the beam waist of the beam (Gaussian Beam), the wavelength, the light intensity, and the difference frequency between the opposing lasers. Note that the beam waist of the Gaussian beam can be set optically (for example, the laser beam is condensed by a lens), and the light intensity of the Gaussian beam can be set electrically (for example, the output of the Gaussian beam is adjusted).
- the generation parameter of the traveling light standing wave is different from that of the conventional generation parameter, and the configuration of the traveling light standing wave generation unit 301 that generates these three traveling light standing waves is the conventional traveling light standing wave
- the description of the configuration of the traveling light standing wave generator 301 is omitted because it is not different from the configuration of the generator 300 (FIG. 1) (FIG. 2 schematically shows a laser light source, a lens, a mirror, an AOM, etc. ).
- the atom beam 101a passes through three traveling light standing waves 201a, 201b, and 201c.
- g, p 1 > in the same internal state is used.
- g, p 0 > are
- g, p 1 > immediately after passing through the standing wave 201 a is 1: 1.
- g, p 1 > is the direction based on the n-th order Bragg condition.
- g, p 0 > without Bragg diffraction) and the direction based on the nth Bragg condition is the angle of the zeroth light It is n times the angle formed by the direction and the direction based on the first-order Bragg condition.
- g, p 1 > Can also be enlarged.
- g, p 1 > pass the second traveling light standing wave 201 b.
- the interaction between the second traveling light standing wave 201 b and the atom is appropriately set (the beam waist, the wavelength, the light intensity, and the difference frequency between the opposing lasers are appropriately set)
- the second traveling light standing wave 201b By passing the traveling light standing wave 201b, an atomic line composed of atoms in the state
- the atomic line consisting of atoms of p 1 > reverses to the atomic line consisting of atoms of state
- g, p 1 > is deviated from the movement direction of the atom in the state
- g, p 1 > after passing through the second traveling light standing wave 201 b is the state
- p 1 > is parallel to the traveling direction of the atomic line consisting of atoms.
- the atom has momentum obtained from 2n photons when transitioning from
- g, p 0 > after passing through the second traveling light standing wave 201 b is the state
- g, p 1 > pass the third traveling light standing wave 201 c.
- g, p 1 > cross each other.
- the traveling direction of the atomic beam 101b obtained after passing through the third traveling light standing wave 201c is either one or both of the direction of the 0th-order light and the direction based on the n-th Bragg condition. .
- the observation unit 400 detects the angular velocity or the acceleration by observing the atom beam 101b from the interference unit 201 (that is, the atom beam 101b obtained after passing through the third traveling light standing wave 201c). For example, the observation unit 400 irradiates the atomic beam 101 b from the interference unit 201 with the probe light 408, and detects fluorescence from an atom in the state
- the light detector 409 a photomultiplier tube, a fluorescence photodetector, etc. can be exemplified.
- the spatial resolution is improved, that is, two paths after passing through the third traveling light standing wave (atom line consisting of atoms of state
- a channeltron is used as the light detector 409, one of the two paths after passing the third traveling light standing wave is ionized by a laser or the like instead of the probe light, and the channel The ion may be detected by a tron.
- the phase sensitivity of the form gyroscope 500 is greater than the phase sensitivity of the conventional gyroscope 900 having the same spacing as the spacing between the first traveling light standing wave and the third traveling light standing wave in the gyroscope 500 .
- the total length of the gyroscope 500 of the present embodiment (the length in the emission direction of the atomic beam) is that of the conventional gyroscope 900. Less than full length.
- the phase sensitivity of the gyroscope is improved, the bias stability of the gyroscope is also improved.
- the phase sensitivity is such that A is an area surrounded by two paths of atomic lines and v is an atomic velocity It is known to be proportional to A / v. That is, in the gyroscope 500 shown in FIG. 2, from the interaction position of the atomic beam 101 a and the first traveling light standing wave 201 a to the interaction position of the atomic beam 101 a and the second traveling light standing wave 201 b When the distance is L, the phase sensitivity is proportional to L 2 / v.
- L may be made small, but if L is made small simply, the phase sensitivity will also be reduced. Therefore, in order not to reduce the phase sensitivity, the atomic velocity may be reduced. From this point of view, it is preferable to use a cooling atomic beam. For example, if the atomic velocity is reduced to 1/100 of the thermal atomic velocity, the size of the gyroscope 500 can be reduced to 1/10 of the original size without changing the phase sensitivity.
- the present invention is not limited to the above-mentioned embodiment, and can be suitably changed in the range which does not deviate from the meaning of the present invention.
- Mach-Zehnder type atomic interference is used in which one traveling split, one inversion and one mixing is performed using three traveling light standing waves.
- the present invention is not limited to such an embodiment, and the present invention can also be practiced as an embodiment using multistage Mach-Zehnder type atomic interference, for example, in which multiple divisions, multiple inversions, and multiple mixings are performed. See Reference 2 for such multistage Mach-Zehnder type atomic interference.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Lasers (AREA)
- Gyroscopes (AREA)
Abstract
Description
原子線源は、個々の原子が同じ状態にある原子線を連続生成する。
進行光定在波生成部は、3個以上の進行光定在波を生成する。各進行光定在波は、nを2以上の正整数として、n次Bragg条件を満たす。
干渉部は、原子線と3個以上の進行光定在波とが相互作用した結果の原子線を得る。
観測部は、干渉部からの原子線を観測することによって角速度または加速度を検出する。
(参考文献1)J. Schoser et al., “Intense source of cold Rb atoms from a pure two-dimensional magneto-optical trap,” Phys. Rev. A 66, 023410 - Published 26 August 2002.
ジャイロスコープの位相感度が向上するとジャイロスコープのバイアス安定性も向上するが、位相感度は、既述のとおり、Aを原子線の2個の経路で囲まれた面積とし、vを原子速度として、A/vに比例することが知られている。つまり、図2に示すジャイロスコープ500において、原子線101aと第1の進行光定在波201aとの相互作用位置から原子線101aと第2の進行光定在波201bとの相互作用位置までの距離をLとすると、位相感度はL2/vに比例する。小型のジャイロスコープ500を実現するためにはLを小さくすればよいが、単にLを小さくしただけでは位相感度も低下してしまう。したがって、位相感度を低下させないためには原子速度も小さくすればよい。この観点から、冷却原子線を使うことが好ましい。例えば、原子速度を熱的原子速度の1/100にすれば位相感度を変えることなくジャイロスコープ500のサイズを元のサイズの1/10にできる。
(参考文献2)Takatoshi Aoki et al., “High-finesse atomic multiple-beam interferometer comprised of copropagating stimulated Raman-pulse fields,” Phys. Rev. A 63, 063611 (2001) - Published 16 May 2001.
101a 原子線
101b 原子線
111 オーブン
113 コリメーター
201 干渉部
201a 第1の進行光定在波
201b 第2の進行光定在波
201c 第3の進行光定在波
301 進行光定在波生成部
400 観測部
500 ジャイロスコープ
Claims (2)
- マッハ-ツェンダー型原子干渉に基づくジャイロスコープであって、
個々の原子が同じ状態にある原子線を連続生成する原子線源と、
3個以上の進行光定在波を生成する進行光定在波生成部と、
前記原子線と前記3個以上の進行光定在波とが相互作用した結果の原子線を得る干渉部と、
前記干渉部からの前記原子線を観測することによって角速度または加速度を検出する観測部と
を含み、
各前記進行光定在波は、nを2以上の正整数として、n次Bragg条件を満たす
ことを特徴とするジャイロスコープ。 - 請求項1に記載のジャイロスコープにおいて、
前記原子線源は、冷却原子線を生成する
ことを特徴とするジャイロスコープ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019547918A JPWO2019073657A1 (ja) | 2017-10-10 | 2018-07-25 | マッハ−ツェンダー型原子干渉に基づくジャイロスコープ |
US16/753,192 US20200318968A1 (en) | 2017-10-10 | 2018-07-25 | Mach-zehnder type atomic interferometric gyroscope |
AU2018348460A AU2018348460A1 (en) | 2017-10-10 | 2018-07-25 | Mach-zehnder type atomic interferometric gyroscope |
EP18866418.9A EP3680614A4 (en) | 2017-10-10 | 2018-07-25 | GYROSCOPE BASED ON MACH-ZEHNDER ATOMIC INTERFERENCE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017196987 | 2017-10-10 | ||
JP2017-196987 | 2017-10-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019073657A1 true WO2019073657A1 (ja) | 2019-04-18 |
Family
ID=66101438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/027827 WO2019073657A1 (ja) | 2017-10-10 | 2018-07-25 | マッハ-ツェンダー型原子干渉に基づくジャイロスコープ |
Country Status (5)
Country | Link |
---|---|
US (1) | US20200318968A1 (ja) |
EP (1) | EP3680614A4 (ja) |
JP (1) | JPWO2019073657A1 (ja) |
AU (1) | AU2018348460A1 (ja) |
WO (1) | WO2019073657A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020091239A (ja) * | 2018-12-07 | 2020-06-11 | 日本航空電子工業株式会社 | 原子線コリメーション方法、原子線コリメーター、原子干渉計、原子ジャイロスコープ |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6600778B1 (ja) | 2018-07-24 | 2019-11-06 | 日本航空電子工業株式会社 | ジオイド測定方法、ジオイド測定装置、ジオイド推定装置、ジオイド計算用データ収集装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008544284A (ja) * | 2005-06-22 | 2008-12-04 | ノースロップ グラマン ガイダンス アンド エレクトロニクス カンパニー,インコーポレーテッド | 航法装置における連続的、不連続的慣性計器測定値の積分装置と方法 |
JP2017015685A (ja) * | 2015-01-23 | 2017-01-19 | ハネウェル・インターナショナル・インコーポレーテッド | 分岐導波路原子ジャイロスコープ |
US20170370840A1 (en) * | 2016-06-22 | 2017-12-28 | The Charles Stark Draper Laboratory, Inc. | Separated Parallel Beam Generation for Atom Interferometry |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4992656A (en) * | 1987-10-26 | 1991-02-12 | Clauser John F | Rotation, acceleration, and gravity sensors using quantum-mechanical matter-wave interferometry with neutral atoms and molecules |
-
2018
- 2018-07-25 JP JP2019547918A patent/JPWO2019073657A1/ja active Pending
- 2018-07-25 US US16/753,192 patent/US20200318968A1/en not_active Abandoned
- 2018-07-25 EP EP18866418.9A patent/EP3680614A4/en not_active Withdrawn
- 2018-07-25 WO PCT/JP2018/027827 patent/WO2019073657A1/ja unknown
- 2018-07-25 AU AU2018348460A patent/AU2018348460A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008544284A (ja) * | 2005-06-22 | 2008-12-04 | ノースロップ グラマン ガイダンス アンド エレクトロニクス カンパニー,インコーポレーテッド | 航法装置における連続的、不連続的慣性計器測定値の積分装置と方法 |
JP2017015685A (ja) * | 2015-01-23 | 2017-01-19 | ハネウェル・インターナショナル・インコーポレーテッド | 分岐導波路原子ジャイロスコープ |
US20170370840A1 (en) * | 2016-06-22 | 2017-12-28 | The Charles Stark Draper Laboratory, Inc. | Separated Parallel Beam Generation for Atom Interferometry |
Non-Patent Citations (7)
Title |
---|
DELHUILLE, R. ET AL.: "High contrast Mach-Zehnder lithium atom interferometer in the Bragg regime", APPLIED PHYSICS B LASERS AND OPTICS, vol. 74, no. 6, March 2002 (2002-03-01), pages 489 - 493, XP055593513 * |
HU , QINGQING ET AL.: "A theoretical analysis and determination of the technical requirements for a Bragg diffraction-based cold atom interferometry gravimeter", INTERNATIONAL JOURNAL FOR LIGHT AND ELECTRON OPTICS, vol. 2016, 2016, pages 1 - 9, XP081234231 * |
J. SCHOSER ET AL.: "Intense source of cold Rb atoms from a pure two-dimensional magneto-optical trap", PHYS. REV. A, vol. 66, 26 August 2002 (2002-08-26), pages 023410 |
MORINAGA, ATSUO: "Atom Interferometry with Cold Atoms for Precise Measurement", JAPANESE JOURNAL OF OPTICS, vol. 37, no. 7, 10 July 2008 (2008-07-10), pages 376 (16) - 382 (22), XP009519975, ISSN: 0389-6625 * |
See also references of EP3680614A4 |
T. L. GUSTAVSONP. BOUYERM. A. KASEVICH: "Precision Rotation Measurements with an Atom Interferometer Gyroscope", PHYS. REV. LETT., vol. 78, 17 March 1997 (1997-03-17), pages 2046 - 2049, XP055254680, DOI: 10.1103/PhysRevLett.78.2046 |
TAKATOSHI AOKI ET AL.: "High-finesse atomic multiple-beam interferometer comprised of copropagating stimulated Raman-pulse fields", PHYS. REV. A, vol. 63, 16 May 2001 (2001-05-16), pages 063611 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020091239A (ja) * | 2018-12-07 | 2020-06-11 | 日本航空電子工業株式会社 | 原子線コリメーション方法、原子線コリメーター、原子干渉計、原子ジャイロスコープ |
WO2020116019A1 (ja) * | 2018-12-07 | 2020-06-11 | 日本航空電子工業株式会社 | 原子線コリメーション方法、原子線コリメーター、原子干渉計、原子ジャイロスコープ |
US11614318B2 (en) | 2018-12-07 | 2023-03-28 | Japan Aviation Electronics Industry, Limited | Method of collimating atomic beam, apparatus for collimating atomic beam, atomic interferometer, and atomic gyroscope |
Also Published As
Publication number | Publication date |
---|---|
US20200318968A1 (en) | 2020-10-08 |
EP3680614A4 (en) | 2020-12-09 |
JPWO2019073657A1 (ja) | 2020-11-05 |
EP3680614A1 (en) | 2020-07-15 |
AU2018348460A1 (en) | 2020-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019073655A1 (ja) | マッハ-ツェンダー型原子干渉に基づくジャイロスコープ | |
JP6860154B2 (ja) | 原子干渉に基づくジャイロスコープ | |
JP6650647B2 (ja) | 冷却原子線生成方法、冷却原子線生成装置、原子干渉計 | |
EP3203184B1 (en) | Systems and methods for eliminating multi-path errors from atomic inertial sensors | |
WO2019073657A1 (ja) | マッハ-ツェンダー型原子干渉に基づくジャイロスコープ | |
EP4083573B1 (en) | Atomic gyroscope and atomic interferometer | |
JP2020091239A (ja) | 原子線コリメーション方法、原子線コリメーター、原子干渉計、原子ジャイロスコープ | |
WO2022074891A1 (ja) | 慣性センサ、原子干渉計、原子の速さを調整する方法、原子の速さを調整する装置 | |
US20230332893A1 (en) | Inertial sensor, atomic interferometer, method for adjusting speed and course of atomic beam, and apparatus for adjusting speed and course of atomic beam | |
JP7201172B2 (ja) | 原子干渉計の回折像検出方法、原子干渉計、原子ジャイロスコープ | |
Voronov et al. | Gyroscope on de Broglie waves: Intricate things in simple words | |
Nemitz | Production and spectroscopy of ultracold YbRb* molecules | |
Bolkart et al. | Dark resonances with variable Doppler sensitivity | |
US20230392928A1 (en) | Phase-space filtering in thermal beam inertial sensors | |
Robert | Toward an experiment of matter-wave interferometry based on strontium | |
Balykin | Atom optics and its applications | |
OVERSTREET et al. | Chapter Contents | |
McIntyre et al. | Ted’s Stanford Days | |
Burlakov et al. | Interference between spontaneous two-photon radiation from two macroscopic regions | |
Gregory | Phase and intensity control of lasers for atom interferometry | |
Martienssen et al. | 6.1 Coherence: 6 Coherence and superradiance | |
Martienssen et al. | 6.1 Coherence | |
Nemitz | Production and spectroscopy of ultracold YbRb {sup*} molecules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18866418 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019547918 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018348460 Country of ref document: AU Date of ref document: 20180725 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018866418 Country of ref document: EP Effective date: 20200407 |