WO2019071884A1 - 一种海上拉伸阳极系统及其安装方法 - Google Patents

一种海上拉伸阳极系统及其安装方法 Download PDF

Info

Publication number
WO2019071884A1
WO2019071884A1 PCT/CN2018/075192 CN2018075192W WO2019071884A1 WO 2019071884 A1 WO2019071884 A1 WO 2019071884A1 CN 2018075192 W CN2018075192 W CN 2018075192W WO 2019071884 A1 WO2019071884 A1 WO 2019071884A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite cable
gravity
gravity block
cable
end plate
Prior art date
Application number
PCT/CN2018/075192
Other languages
English (en)
French (fr)
Inventor
宋世德
刘磊
Original Assignee
大连科迈尔防腐科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连科迈尔防腐科技有限公司 filed Critical 大连科迈尔防腐科技有限公司
Priority to EP18866085.6A priority Critical patent/EP3683336B1/en
Priority to US16/755,508 priority patent/US11505869B2/en
Publication of WO2019071884A1 publication Critical patent/WO2019071884A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/18Means for supporting electrodes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/02Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto
    • E02B17/027Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto steel structures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2213/00Aspects of inhibiting corrosion of metals by anodic or cathodic protection
    • C23F2213/30Anodic or cathodic protection specially adapted for a specific object
    • C23F2213/31Immersed structures, e.g. submarine structures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0056Platforms with supporting legs
    • E02B2017/0069Gravity structures

Definitions

  • the invention belongs to the technical field of offshore platform engineering equipment, and particularly relates to an offshore tensile anode system and a mounting method thereof.
  • the drawn anode impressed current cathodic protection system is applied in the field of anti-corrosion of marine underwater structures.
  • the auxiliary anode and the reference electrode are integrated on the composite cable, and the composite cable is placed near the predetermined underwater protection structure, and the composite cable is stretched by the tension system on the upper part of the platform and the gravity foundation placed on the seabed;
  • the whole process from the hoisting of the ship to the installation of the lower cable is extremely complicated.
  • the connection and cooperation requirements of each link are very high, and it is easy to control and easily cause installation failure. Therefore, a safe and reliable stretching system and its installation have been developed. The meaning of the method is particularly important.
  • the invention provides an offshore anode drawing anode system and a mounting method thereof for the above problems, and the system has the advantages of simple structure, convenient operation, and convenient lifting and assembly of the device.
  • An offshore tensile anode system comprising: a tensioning platform, a composite cable tensioning device, a composite cable, a gravity foundation; the composite cable is integrated with an auxiliary anode and a reference electrode, and the composite cable tensioning device is installed at the On the tensioning platform, one end of the composite cable is connected to the tensioning platform through the composite cable tensioning device, and the other end of the composite cable is sunk into the sea floor through the gravity foundation;
  • the gravity foundation includes upper gravity a block and a lower gravity block, the upper gravity block and the lower gravity block being a split structure, the lower gravity block having a main lifting lug, the upper gravity block having a center hole, the upper gravity block passing The main center hole is sleeved on the main lifting lug and placed on the lower gravity block, and the upper surface of the upper gravity block has a secondary lifting lug;
  • the composite cable tensioning device comprises a tie rod device and a locking device
  • the drawbar device comprises a tensioning jack
  • the pull rod device is connected at one end to the composite cable, and the other end is connected to the composite jack by the tensioning jack
  • the composite cable is tensioned
  • the locking device is used for locking and fixing the composite cable pulled by the rod device to the tension platform;
  • the upper gravity block comprises an upper end plate I, a lower end plate I, an outer annular side wall I, an inner annular side wall I and a weight I, the upper end plate I, the lower end plate I, the outer annular side wall I and The inner annular side wall I is welded to form a circular cavity I, the weight I is placed in the annular cavity I, the upper end plate I has a secondary lifting lug; and the lower gravity piece includes an upper end Plate II, lower end plate II, outer annular side wall II, annular skirt, tapered cavity plate, filler, counterweight II and main lifting lug, said upper end plate II, lower end plate II and outer annular side wall II are welded Forming a cavity II, the weight II is placed in the cavity II, and the tapered cavity plate is welded to the lower surface of the lower end plate II to form a tapered cavity with the lower end plate II, the cone The filling chamber is filled with the filler, the edge of the lower end plate II is welded with the annular skirt, and the lower gravity block further
  • a method for installing a marine tensile anode system comprising the steps of: (1) lifting a composite cable and a gravity foundation to a mounting platform: a cable winch of a composite cable having an integrated auxiliary anode and a reference electrode wound by a lifting machine Lifting to the installation platform separately from the gravity foundation; (2) submarine assembly of gravity foundation: connecting the main lifting lugs of the gravity block through the steel cable of the winch and lowering the lower gravity block to the bottom of the sea, the gravity foundation circled by the sandbag is in place Zone, then reclaim the steel cable, connect the auxiliary lugs of the gravity block with the steel cable of the winch, and place the gravity block on the main gravity hole of the upper gravity block to complete the upper gravity block and the lower gravity block.
  • the gravity foundation is lifted to the installation platform by the lifting machine, including the upper end plate I, the lower end plate I, the outer annular side wall I, and the inner annular side of the gravity block formed by the lifting machine.
  • Wall I and the upper end plate II of the weight I and the lower gravity block, the lower end plate II, the outer annular side wall II, the annular apron, the conical cavity plate, the filling, the weight II, the remote unmanned submersible operating arm And the main lifting ears are respectively lifted to the installation platform, and the components of the upper gravity block are welded and assembled into the upper gravity block on the installation platform, and the components of the lower gravity block are welded and assembled into the lower gravity block;
  • step (2) the gravitational system is accurately positioned by the sonar system when the gravity is lowered into the seabed, and the assembly process of the upper gravity block and the lower gravity block is detected by the remote unmanned submersible;
  • the installation process of the composite cable further includes real-time tracking and positioning of the composite cable through the remote unmanned submersible in the process of placing the composite cable under the gravity base, and remotely controlling by the remote control.
  • the submersible will be lowered to the gravity base to separate the composite cable from the heavy ball and then connected to the gravity foundation.
  • the offshore anode system of the present invention has the following beneficial effects: 1.
  • the gravity foundation of the device adopts a split structure, which reduces the weight of each gravity base portion, is convenient for transportation and installation, and can be adopted at the same time. Lifting machinery with less lifting capacity saves installation cost; 2.
  • Gravity foundation is welded and assembled by each module assembly, which facilitates welding and assembly on the installation platform; 3.
  • the offshore anode system installation method has clear steps, safety and reliability.
  • Figure 1 is a structural view of the offshore tensile anode system of the present invention
  • Figure 2 is a diagram showing the gravity foundation structure of the offshore tensile anode system of the present invention
  • Figure 3 is a schematic view of the gravity based seating area
  • Figure 4 is a schematic view showing the lifting of the upper gravity block
  • Figure 5 is a schematic view of the composite cable tensioning device of the composite cable tensioning device.
  • an offshore tensile anode system includes an offshore platform 1 composed of a steel frame (the dotted line in FIG. 1 schematically represents an offshore platform), Composite cable 2, composite cable tensioning device 3 and gravity foundation 4; offshore platform 1 includes a mounting platform closest to the surface for construction and a tensioning platform for mounting the composite cable tensioning device, and the tensioning platform is placed on the mounting platform
  • the composite cable 2 is integrated with a plurality of sets of auxiliary anodes 21 and reference electrodes 22, the composite cable tensioning device 3 is mounted on the tensioning platform, and one end of the composite cable 2 is pulled through the composite cable
  • the device 3 is coupled to the tensioning platform, and the other end of the composite cable 2 sinks into the sea floor through the gravity foundation 4;
  • the gravity foundation 4 includes an upper gravity block 41 and a lower gravity block 42, the upper gravity block 41 And the lower gravity block 42 is a split structure, the lower gravity block 42 has a main lifting lug 44, and the
  • the upper gravity block 41 includes an upper end plate I411, a lower end plate I412, an outer annular side wall I413, an inner annular side wall I414, and a weight block I415, the upper end plate I411, the lower end plate I412, and the outer annular side wall I413.
  • the inner annular side wall I414 is welded to form a circular cavity, the weight I11 is placed in the annular cavity, and the upper end plate I411 has a secondary lifting lug 45.
  • the lower gravity block 42 includes an upper end plate II421, a lower end plate II422, an outer annular side wall II423, an annular skirt 424, a tapered cavity plate 425, a filler 426, a weight II 427, and a main lifting lug 44, the upper end plate The II421, the lower end plate II422 and the outer annular side wall II423 are welded to form a circular cavity, the weight II27 is placed in the annular cavity, and the tapered cavity plate 425 is welded to the lower surface of the lower end plate II422.
  • the filler cavity 426 is injected into the tapered cavity, and the annular skirt 424 is welded to the edge of the lower end plate II422, and the lower gravity block 42 further has
  • the remote unmanned submersible operating arm 428 is remotely controlled.
  • the composite cable tensioning device 3 includes a tie rod device 31 and a locking device 32.
  • One end of the tie rod device 31 is connected to the composite cable 2, and the other end is connected to the composite cable 2 through a tensioning jack on the tie rod device 31.
  • the locking device 32 is used for locking and fixing the composite cable 2 pulled by the rod device 31 on the tensioning platform.
  • a method of installing an offshore tensile anode system comprising the steps of:
  • the lifting process of the composite cable generally comprises two steps. One is to lift the cable winch around the composite cable from the ship to the temporary storage place of the installation platform. This process is a conventional lifting method; the second is to take the cable winch from the temporary storage place. Lifting to the platform installation (temporary deck) requires the cooperation of platform cranes, pneumatic winches and manual hoists suspended at the deck, where protection is required.
  • the gravity-based lifting process is similar to the lifting process of the composite cable.
  • the gravity-based lifting is to lift the components that constitute the gravity foundation to the installation platform by using a lifting mechanism such as a platform crane, a pneumatic winch, and a manual hoist.
  • the components constituting the gravity foundation include an upper end plate I, a lower end plate I, an outer annular side wall I, an inner annular side wall I, and a weight I and a lower end plate II and a lower end plate II constituting the lower gravity block. , outer annular side wall II, annular skirt, tapered cavity plate, filler, weight block II and main lifting lugs.
  • this step also includes welding and assembling the components of the gravity foundation on the mounting platform.
  • the specific content includes welding the lower end plate I of the upper gravity block, the outer annular side wall I and the inner annular side wall I to form an annular cavity I having an opening at one end, and then placing the weight I in the annular cavity I,
  • the upper end plate I is then welded to form an upper gravity block; it further includes a lower end plate II, an outer annular side wall II, an annular apron, a conical cavity plate, a remote unmanned submersible operating arm, and a main body that will constitute a lower gravity block.
  • the lifting lugs are welded according to the drawings in sequence, forming a lower gravity block with an upper end opening, the lower end plate II of the lower gravity block and the outer annular side wall II forming a cavity II, and the tapered cavity plate and the lower end plate II are welded to form a tapered cavity, in the cavity
  • the inner lower end plate II has a through hole, and the filling hole is filled into the conical cavity through the through hole on the lower end plate II, and then the weight piece II is placed in the cavity II, and the upper end plate II is welded and fixed to form the lower gravity block. overall.
  • the remotely-controlled unmanned submersible is firstly positioned by using the sonar device, and the sandbag 5 is placed around the identification float ball 6 to circle the gravity-based seating area, and the in-position area is circled to float the flag inside the circle.
  • the ball 6 is moved outside the seating area to keep the bottom surface of the seating area flat.
  • the remote unmanned submersible can be used to guide and assist the positioning in the lower gravity block decentralization process.
  • the remotely operated unmanned submersible operating arm on the basis of gravity can be guided and assisted to position it so that its positioning accuracy is no more than 10 cm.
  • the steel cable of the winch is connected to the auxiliary lifting lug of the gravity block, and the gravity block is lowered under the action of the winch, and the remote unmanned submersible device guides and assists the positioning, and the gravity gravity reaches the lower gravity quickly.
  • the position of the block is adjusted, the position of the upper gravity block is adjusted so that the main center hole of the upper gravity block corresponds to the position of the main lifting lug of the lower gravity block, and the position of the upper gravity block is slowly adjusted so that the main center hole is nested in the lower gravity block.
  • the underwater assembly of the upper gravity block and the lower gravity block is completed, and then the cable of the winch is released and recovered to the surface of the water.
  • the gravity foundation is connected to the winch steel cable through the movable pulley to facilitate the operation of the winch and reduce The tension of the steel cable on the small winch.
  • the movable pulley block can be directly fixed on the I-shaped steel frame of the tensioning platform immediately above the installation platform, and the winch is placed on the installation platform, and the steel cable of the winch is connected to the gravity foundation by the fixed pulley, so that the gravity foundation is at the bottom of the sea.
  • the gravity base is directly above the seating area.
  • one end of the composite cable hoisted to the cable winch on the installation platform is connected to the heavy ball, and the composite cable is connected with the steel cable of the winch, and the cable winch is activated to rotate the cable winch to release the composite cable, the composite cable Due to the plumb impact of the heavy ball and the traction of the cable of the winch, one end is lowered to the vicinity of the gravity foundation, and the auxiliary cable can also be assisted in positioning and position adjustment by the remote unmanned submersible during the lowering of the composite cable, and finally The composite cable is lowered to the vicinity of the gravity base, and then the composite cable is separated from the heavy ball and the winch cable by a remote unmanned submersible, and the composite cable is connected to the gravity base.
  • the composite cable tensioning device needs to be pulled by the composite cable tensioning device mounted on the tensioning platform.
  • the tensioning platform is placed above the installation platform, and the composite cable tensioning device comprises a pull rod device and a locking device. One end of the pull rod device is connected to the end of the composite cable, and the other end is stretched by pulling the jack to adjust the tension of the composite cable. status. After the tensioning state of the composite cable is adjusted by the tie rod device, the composite cable is locked and fixed on the tensioning platform by the locking device, and the composite cable is tensioned and fixed.
  • the composite cable tensioning device can be placed in the platform equipment room. If it needs to be stretched, it can be installed and adjusted at any time.
  • the positioning probe can also be used to monitor and locate the gravity foundation and the composite cable in real time, thereby completing the installation of the overall structure.
  • the use of a positioning probe structure allows for a simpler construction and cost savings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Revetment (AREA)
  • Foundations (AREA)

Abstract

一种海上拉伸阳极系统,包括,张拉平台、复合缆张拉装置(3)、复合缆(2)、重力基础(4);复合缆(2)上集成有辅助阳极(21)和参比电极(22),复合缆张拉装置(3)安装在张拉平台上,复合缆(2)一端通过复合缆张拉装置(3)连接在张拉平台上,复合缆(2)另一端通过重力基础(4)沉入海底;重力基础(4)包括上重力块(41)和下重力块(42),上重力块(41)和下重力块(42)为分体结构,下重力块(42)上具有主吊耳(44),上重力块(41)中心具有主中心孔(43),上重力块(41)通过主中心孔(43)套入主吊耳(44)上并置于下重力块(42)上,上重力块(41)的上表面具有副吊耳(45)。还公开了一种海上拉伸阳极系统的安装方法。

Description

一种海上拉伸阳极系统及其安装方法 技术领域
本发明属于海洋平台工程装备技术领域,具体涉及海上拉伸阳极系统及其安装方法。
背景技术
拉伸阳极外加电流阴极保护系统,应用在海洋水下结构物防腐蚀领域。其中辅助阳极和参比电极等均集成在复合缆上,通过复合缆置于预定的水下保护结构物附近,复合缆依靠平台上部的张拉系统和置于海床上的重力基础进行张拉;复合缆从船上吊装开始到下缆安装就位的整个过程,异常复杂,各个环节的衔接配合要求很高,不易掌控极易造成安装失败,因此开发出一种安全、可靠的拉伸系统及其安装方法意义显得尤为重要。
发明内容
本发明针对以上问题提出一种海上阳极拉伸阳极系统及其安装方法,该系统结构简单,操作方便,并且方便进行该装置的吊运和组装。
本发明采用的技术手段如下:
一种海上拉伸阳极系统,包括,张拉平台、复合缆张拉装置、复合缆、重力基础;所述复合缆上集成有辅助阳极和参比电极,所述复合缆张拉装置安装在所述张拉平台上,所述复合缆一端通过所述复合缆张拉装置连接在所述张拉平台上,所述复合缆另一端通过所述重力基础沉入海底;所述重力基础包括上重力块和下重力块,所述上重力块和所述下重力块为分体结构,所述下重力块上具有主吊耳,所述上重力块中心具有主中心孔,所述上重力块通过所述主中心孔套入所述主吊耳上并置于所述下重力块上,所述上重力块的上表面具有副吊耳;
进一步地,所述复合缆张拉装置包括拉杆装置和锁紧装置,所述拉杆装置包括张拉千斤顶,所述拉杆装置一端与所述复合缆连接,另一端通过所述张拉千斤顶对所述复合缆进行张拉,所述锁紧装置用于将经过所述拉杆装置张拉的所述复合缆锁紧固定在所述张拉平台上;
进一步地,所述上重力块包括上端板Ⅰ、下端板Ⅰ、外环形侧壁Ⅰ、内环形侧壁Ⅰ以及配重块Ⅰ,所述上端板Ⅰ、下端板Ⅰ、外环形侧壁Ⅰ和所述内环形侧壁Ⅰ焊接形成圆环腔体Ⅰ,所述配重块Ⅰ置于所述圆环腔体Ⅰ内,所述上 端板Ⅰ上具有副吊耳;所述下重力块包括上端板Ⅱ、下端板Ⅱ、外环形侧壁Ⅱ、环形裙板、锥形腔板、填充物、配重块Ⅱ以及主吊耳,所述上端板Ⅱ、下端板Ⅱ和外环形侧壁Ⅱ焊接形成腔体Ⅱ,所述配重块Ⅱ置于所述腔体Ⅱ内,所述锥形腔板焊接在所述下端板Ⅱ的下表面与所述下端板Ⅱ形成锥形腔,所述锥形腔内注入有所述填充物,所述下端板Ⅱ的边沿焊接有所述环形裙板,所述下重力块上还具有遥控无人潜水器操作臂;
一种海上拉伸阳极系统的安装方法,包括以下步骤:(1)将复合缆和重力基础吊运至安装平台:通过吊运机械将缠绕有集成辅助阳极和参比电极的复合缆的电缆绞盘和重力基础分别吊运至安装平台;(2)重力基础的海底组装:通过绞车的钢缆连接下重力块的主吊耳并将下重力块下放至海底中由沙袋圈出的重力基础就位区,然后回收钢缆,用绞车的钢缆连接上重力块的副吊耳,下放上重力块使上重力块的主中心孔套入在下重力块的主吊耳上,完成上重力块和下重力块的组装,然后回收钢缆;(3)复合缆的安装:将缠绕在电缆绞盘上的复合缆的一端连接重球,并将复合缆与绞车的钢缆连接,启动电缆绞盘使电缆绞盘转动以释放复合缆,复合缆由于重球的铅坠作用和绞车的钢缆的牵引作用使其一端下放至重力基础附近,并通过遥控无人潜水器将所述复合缆连接到重力基础上;(4)复合缆的张拉调节及锁紧固定:在张拉平台上将复合缆的另一端连接到复合缆张拉装置的拉杆装置上,通过拉杆装置对复合缆进行张拉以调节复合缆在水中的张力,并通过复合缆张拉装置的锁紧装置将调节完张力的复合缆锁紧固定在张拉平台上。
进一步地,在步骤(1)中,通过吊运机械将重力基础吊运至安装平台包括通过吊运机械将组成上重力块的上端板Ⅰ、下端板Ⅰ、外环形侧壁Ⅰ、内环形侧壁Ⅰ以及配重块Ⅰ和下重力块的上端板Ⅱ、下端板Ⅱ、外环形侧壁Ⅱ、环形裙板、锥形腔板、填充物、配重块Ⅱ、遥控无人潜水器操作臂以及主吊耳分别吊运至安装平台,并在安装平台上将上重力块的各部件焊接和组装成上重力块,将下重力块的各部件焊接和组装成下重力块;
进一步地,在步骤(2)中,重力基础下放至海底过程中由声呐系统进行精确定位,上重力块和下重力块的组装过程由遥控无人潜水器进行检测;
进一步地,在步骤(3)中,复合缆的安装过程还包括在复合缆下放至重力基础附近的过程中通过遥控无人潜水器对复合缆的进行实时跟踪查看和定位,并通过遥控无人潜水器将下放至重力基础附近的复合缆与重球分离后连接到重 力基础。
与现有技术比较,本发明所述的海上阳极系统具有以下有益效果:1、该装置的重力基础采用分体结构,减小了每个重力基础部分的重量,便于调运和安装,同时可以采用吊运能力较小的吊运机械,节省安装成本;2、重力基础由各模块组件焊接和组装,方便在安装平台现场进行焊接和组装;3、该海上阳极系统安装方法具有步骤清晰、安全可靠,方便快捷等优点;4、在海上阳极系统安装过程中采用遥控无人潜水器对重力基础和复合缆进行实时的监测、观察保证了定位精度,同时通过遥控无人潜水器将复合缆进行脱钩并与重力基础连接,该方法简单易操作且连接强度高。
附图说明
图1为本发明的海上拉伸阳极系统的结构图;
图2为本发明的海上拉伸阳极系统的重力基础结构图;
图3为重力基础就位区示意图;
图4为上重力块吊装示意图;
图5为复合缆张拉装置张拉固定复合缆示意图。
图中:1、安装平台,2、复合缆,3、复合缆张拉装置,4、重力基础,5、沙袋,6、标志浮球,7、绞车,21、辅助阳极,22、参比电极,31、拉杆装置,32、锁紧装置,41、上重力块,42、下重力块,43、主中心孔,44、主吊耳,45、副吊耳,411、上端板Ⅰ,412、下端板Ⅰ,413、外环形侧壁Ⅰ,414、内环形侧壁Ⅰ,415、配重块Ⅰ,421、上端板Ⅱ,422、下端板Ⅱ,423、外环形侧壁Ⅱ,424、环形裙板,425、锥形腔板,426、填充物,427、配重块Ⅱ,428、遥控无人潜水器操作臂。
具体实施方式
如图1、图2、图3、图4和图5所示,一种海上拉伸阳极系统,包括,由钢构架组成的海上平台1(图1中虚线框示意性的表示海上平台)、复合缆2、复合缆张拉装置3以及重力基础4;海上平台1包括最接近水面用于施工的安装平台和用于安装复合缆张拉装置的张拉平台,张拉平台置于安装平台上面;所述复合缆2上集成有多组辅助阳极21和参比电极22,所述复合缆张拉装置3安 装在所述张拉平台上,所述复合缆2一端通过所述复合缆张拉装置3连接在所述张拉平台上,所述复合缆2另一端通过所述重力基础4沉入海底;所述重力基础4包括上重力块41和下重力块42,所述上重力块41和所述下重力块42为分体结构,所述下重力块42上具有主吊耳44,所述上重力块41中心具有主中心孔43,所述上重力块41通过所述主中心孔43套入所述主吊耳44上并置于所述下重力块42的上,所述上重力块41的上表面具有副吊耳45。具体地,所述上重力块41包括上端板Ⅰ411、下端板Ⅰ412、外环形侧壁Ⅰ413、内环形侧壁Ⅰ414以及配重块Ⅰ415,所述上端板Ⅰ411、下端板Ⅰ412、外环形侧壁Ⅰ413和所述内环形侧壁Ⅰ414焊接形成圆环腔体,所述配重块Ⅰ415置于所述圆环腔体内,所述上端板Ⅰ411上具有副吊耳45。所述下重力块42包括上端板Ⅱ421、下端板Ⅱ422、外环形侧壁Ⅱ423、环形裙板424、锥形腔板425、填充物426、配重块Ⅱ427以及主吊耳44,所述上端板Ⅱ421、下端板Ⅱ422和外环形侧壁Ⅱ423焊接形成圆环腔体,所述配重块Ⅱ427置于所述圆环腔体内,所述锥形腔板425焊接在所述下端板Ⅱ422的下表面与所述下端板Ⅱ422形成锥形腔,所述锥形腔内注入有所述填充物426,所述下端板Ⅱ422的边沿焊接有所述环形裙板424,所述下重力块42上还具有遥控无人潜水器操作臂428。
所述复合缆张拉装置3包括拉杆装置31和锁紧装置32,所述拉杆装置31一端与所述复合缆2连接,另一端通过拉杆装置31上的张拉千斤顶对所述复合缆2进行张拉,所述锁紧装置32用于将经过所述拉杆装置31张拉的所述复合缆2锁紧固定在所述张拉平台上。
一种海上拉伸阳极系统的安装方法,包括以下步骤:
(1)将复合缆和重力基础吊运至安装平台:通过吊运机械将缠绕有集成辅助阳极和参比电极的复合缆的电缆绞盘和重力基础分别吊运至安装平台。
复合缆的吊运过程一般包括两个步骤,一是从船上将绕有复合缆的电缆绞盘吊运至安装平台临时存放处,此过程为常规吊运方法;二是将电缆绞盘从临时存放处吊运至平台安装处(临时甲板),在此过程中需要平台吊车、气动绞车以及悬挂在甲板处的手动葫芦的配合完成,该处需要进行保护。
从临时存放处将电缆绞盘吊运至平台安装处时,需要在海上平台的钢构架支撑杆处或运输电缆绞盘的船舶外侧固定橡胶制品(例如轮胎),以防止吊运过程中电缆绞盘磕碰平台。在平台吊车、气动绞车以及悬挂在甲板处的手动葫芦的配合吊运时,作为转折点(诸如定滑轮),手动葫芦所使用的梁卡,可以直 接利用安装平台的结构工字钢,无需进行焊接操作。
重力基础的吊运过程与复合缆的吊运过程类似,优选地,重力基础的吊运为采用平台吊车、气动绞车以及手动葫芦等吊运机械将构成重力基础的各个部件分别吊运至安装平台,组成重力基础的各部件包括构成上重力块的上端板Ⅰ、下端板Ⅰ、外环形侧壁Ⅰ、内环形侧壁Ⅰ以及配重块Ⅰ和构成下重力块的上端板Ⅱ、下端板Ⅱ、外环形侧壁Ⅱ、环形裙板、锥形腔板、填充物、配重块Ⅱ以及主吊耳。将这些部件分别吊运至安装平台上,可以实现较小的吊运能力的吊运机械实现大型物品的吊装作业。
在该步骤中,还包括在安装平台上对重力基础的各部件进行焊接和组装。其具体内容包括对上重力块的下端板Ⅰ、外环形侧壁Ⅰ和内环形侧壁Ⅰ焊接形成一端开口的圆环腔体Ⅰ,然后将配重块Ⅰ置于圆环腔体Ⅰ内,之后将上端板Ⅰ焊接的形成上重力块整体;其还包括将构成下重力块的下端板Ⅱ、外环形侧壁Ⅱ、环形裙板、锥形腔板、遥控无人潜水器操作臂以及主吊耳依次按图纸焊接,形成上端开口的下重力块,下重力块的下端板Ⅱ和外环形侧壁Ⅱ形成腔体Ⅱ,锥形腔板与下端板Ⅱ焊接形成锥形腔,在腔体Ⅱ内下端板Ⅱ上具有通孔,通过下端板Ⅱ上的通孔向锥形腔内注满填充物,然后将配重块Ⅱ置于腔体Ⅱ后将上端板Ⅱ焊接固定形成下重力块整体。
(2)重力基础的海底组装:通过绞车的钢缆连接下重力块的主吊耳并将下重力块下放至如图3所示的在海底中由沙袋5圈出的重力基础就位区,然后回收钢缆,用绞车的钢缆连接上重力块的副吊耳,下放上重力块使上重力块的主中心孔套入下重力块的主吊耳上,完成上重力块和下重力块的组装,然后回收钢缆。
在该步骤中,首先遥控无人潜水器通过使用声呐装置辅助定位,用沙袋5围绕标识浮球6铺设以圈出重力基础的就位区,圈出就位区后将沙袋包围圈内的标志浮球6移至就位区外,保持就位区的底面平整。
然后,如图4所示,通过绞车7的钢缆连接下重力块的主吊耳,并通过绞车下放下重力块。为了保证下重力块的下放过程以及绞车钢缆水下收放装置的可靠性和精确度,在下重力块下放过程中可以采用遥控无人潜水器对其进行导引和辅助定位,遥控无人潜水器可以操作重力基础上的遥控无人潜水器操作臂对其进行导引和辅助定位使得其定位精度不大于10厘米。下重力块到达海底后,释放绞车的钢缆,并将其回收至水面,完成下重力块的下放工作。
之后,将绞车的钢缆连接上重力块的副吊耳,并在绞车的作用下下放上重力块,同时遥控无人潜水器对其进行导引和辅助定位,当上重力块快达到下重力块的位置时,调整上重力块的位置使上重力块的主中心孔与下重力块的主吊耳位置相对应,并慢慢调整上上重力块位置使得主中心孔套入下重力块的主吊耳上,完成上重力块和下重力块的水下组装,之后释放绞车的钢缆,并将其回收至水面。
如图4所示,在使用绞车对重力基础下方和组装过程中,需要使用定滑轮组改变绞车钢缆的施力方向,重力基础则通过动滑轮与绞车钢缆连接,以便于对绞车进行操作并减小绞车上钢缆的拉力。其中动滑轮组可以直接固定在紧挨在安装平台上方的张拉平台的工字型钢架上,绞车置于安装平台上,绞车的钢缆绕过定滑轮与重力基础连接,使得重力基础处于海底重力基础就位区的正上方。
(3)复合缆的安装:将缠绕在电缆绞盘上的复合缆的一端连接重球,并将复合缆与绞车的钢缆连接,启动电缆绞盘使电缆绞盘转动以释放复合缆,复合缆由于重球的铅坠作用和绞车的钢缆的牵引作用使其一端下放至重力基础附近,并通过遥控无人潜水器将所述复合缆连接到重力基础上。
在该步骤中,将吊运至安装平台上的电缆绞盘上的复合缆一端连接上重球,并将复合缆与绞车的钢缆连接,启动电缆绞盘使电缆绞盘转动以释放复合缆,复合缆由于重球的铅坠作用和绞车的钢缆的牵引作用使其一端下放至重力基础附近,在复合缆的下放过程中也可以通过遥控无人潜水器对其进行辅助定位和位置调整,并最终将复合缆下放至重力基础附近,然后通过遥控无人潜水器将复合缆与重球和绞车的钢缆分离,并将复合缆连接到重力基础上。
(4)复合缆的张拉调节及锁紧固定:在张拉平台上将复合缆的另一端连接到复合缆张拉装置的拉杆装置上,通过拉杆装置对复合缆进行张拉以调节复合缆在水中的张力,并通过复合缆张拉装置的锁紧装置将调节完张力是复合缆锁紧固定在张拉平台上。
复合缆下放至海底并于重力基础连接后,需要对复合缆进行张拉以使其处于张紧状态,此时需要通过安装在张拉平台上的复合缆张拉装置进行复合缆的张拉,张拉平台置于安装平台上方,复合缆张拉装置包括拉杆装置和锁紧装置,拉杆装置一端连接复合缆的端部,另一端通过张拉千斤顶对其进行拉伸以调整复合缆的张紧状态。通过拉杆装置调整好复合缆的张紧状态后,利用锁紧装置 将复合缆锁紧固定在张拉平台上,完成复合缆的张拉锁紧固定。
为确保复合缆在整个生命周期内始终保持张紧状态,可以将复合缆张拉装置放置在平台设备间内,如需拉张,随时安装就位进行张拉调整。
在重力基础和复合缆的水中下放和安装过程中,也可以采用定位探头对重力基础和复合缆进行实时监测和定位,进而完成整体结构的安装。采用定位探头结构可以具有更简单的结构并且节省成本。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (7)

  1. 一种海上拉伸阳极系统,其特征在于:包括,张拉平台、复合缆张拉装置、复合缆、重力基础;
    所述复合缆上集成有辅助阳极和参比电极,所述复合缆张拉装置安装在所述张拉平台上,所述复合缆一端通过所述复合缆张拉装置连接在所述张拉平台上,所述复合缆另一端通过所述重力基础沉入海底;
    所述重力基础包括上重力块和下重力块,所述上重力块和所述下重力块为分体结构,所述下重力块上具有主吊耳,所述上重力块中心具有主中心孔,所述上重力块通过所述主中心孔套入所述主吊耳上并置于所述下重力块上,所述上重力块的上表面具有副吊耳。
  2. 根据权利要求1所述的海上拉伸阳极系统,其特征在于:所述复合缆张拉装置包括拉杆装置和锁紧装置,所述拉杆装置包括张拉千斤顶,所述拉杆装置一端与所述复合缆连接,另一端通过所述张拉千斤顶对所述复合缆进行张拉,所述锁紧装置用于将经过所述拉杆装置张拉的所述复合缆锁紧固定在所述张拉平台上。
  3. 根据权利要求1所述的海上拉伸阳极系统,其特征在于:所述上重力块包括上端板Ⅰ、下端板Ⅰ、外环形侧壁Ⅰ、内环形侧壁Ⅰ以及配重块Ⅰ,所述上端板Ⅰ、下端板Ⅰ、外环形侧壁Ⅰ和所述内环形侧壁Ⅰ焊接形成圆环腔体Ⅰ,所述配重块Ⅰ置于所述圆环腔体Ⅰ内,所述上端板Ⅰ上具有副吊耳;
    所述下重力块包括上端板Ⅱ、下端板Ⅱ、外环形侧壁Ⅱ、环形裙板、锥形腔板、填充物、配重块Ⅱ以及主吊耳,所述上端板Ⅱ、下端板Ⅱ和外环形侧壁Ⅱ焊接形成腔体Ⅱ,所述配重块Ⅱ置于所述腔体Ⅱ内,所述锥形腔板焊接在所述下端板Ⅱ的下表面与所述下端板Ⅱ形成锥形腔,所述锥形腔内注入有所述填充物,所述下端板Ⅱ的边沿焊接有所述环形裙板,所述下重力块上还具有遥控无人潜水器操作臂。
  4. 一种海上拉伸阳极系统的安装方法,其特征在于包括以下步骤:
    (1)将复合缆和重力基础吊运至安装平台:通过吊运机械将缠绕有集成辅助阳极和参比电极的复合缆的电缆绞盘和重力基础分别吊运至安装平台;
    (2)重力基础的海底组装:通过绞车的钢缆连接下重力块的主吊耳并将下重力块下放至海底中由沙袋圈出的重力基础就位区,然后回收钢缆,用绞车的钢缆连接上重力块的副吊耳,下放上重力块使上重力块的主中心孔套入在下重力块的主吊耳上,完成上重力块和下重力块的组装,然后回收钢缆;
    (3)复合缆的安装:将缠绕在电缆绞盘上的复合缆的一端连接重球,并将复合缆与绞车的钢缆连接,启动电缆绞盘使电缆绞盘转动以释放复合缆,复合缆由于重球的铅坠作用和绞车的钢缆的牵引作用使其一端下放至重力基础附近,并通过遥控无人潜水器将所述复合缆连接到重力基础上;
    (4)复合缆的张拉调节及锁紧固定:在张拉平台上将复合缆的另一端连接到复合缆张拉装置的拉杆装置上,通过拉杆装置对复合缆进行张拉以调节复合缆在水中的张力,并通过复合缆张拉装置的锁紧装置将调节完张力的复合缆锁紧固定在张拉平台上。
  5. 根据权利要求4所述的海上拉伸阳极系统的安装方法,其特征在于:在步骤(1)中,通过吊运机械将重力基础吊运至安装平台包括通过吊运机械将组成上重力块的上端板Ⅰ、下端板Ⅰ、外环形侧壁Ⅰ、内环形侧壁Ⅰ以及配重块Ⅰ和下重力块的上端板Ⅱ、下端板Ⅱ、外环形侧壁Ⅱ、环形裙板、锥形腔板、填充物、配重块Ⅱ、遥控无人潜水器操作臂以及主吊耳分别吊运至安装平台,并在安装平台上将上重力块的各部件焊接和组装成上重力块,将下重力块的各部件焊接和组装成下重力块。
  6. 根据权利要求4所述的海上拉伸阳极系统的安装方法,其特征在于:在步骤(2)中,重力基础下放至海底过程中由声呐系统进行精确定位,上重力块和下重力块的组装过程由遥控无人潜水器进行检测。
  7. 根据权利要求4所述的海上拉伸阳极系统的方法,其特征在于:在步骤(3)中,复合缆的安装过程还包括在复合缆下放至重力基础附近的过程中通过遥控无人潜水器对复合缆的进行实时跟踪查看和定位,并通过遥控无人潜水器将下放至重力基础附近的复合缆与重球分离后连接到重力基础。
PCT/CN2018/075192 2017-10-13 2018-02-04 一种海上拉伸阳极系统及其安装方法 WO2019071884A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18866085.6A EP3683336B1 (en) 2017-10-13 2018-02-04 Marine tensile anode system and installation method thereof
US16/755,508 US11505869B2 (en) 2017-10-13 2018-02-04 Offshore tension anode system and installation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710951168.4 2017-10-13
CN201710951168.4A CN107541732B (zh) 2017-10-13 2017-10-13 一种海上拉伸阳极系统及其安装方法

Publications (1)

Publication Number Publication Date
WO2019071884A1 true WO2019071884A1 (zh) 2019-04-18

Family

ID=60967717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075192 WO2019071884A1 (zh) 2017-10-13 2018-02-04 一种海上拉伸阳极系统及其安装方法

Country Status (4)

Country Link
US (1) US11505869B2 (zh)
EP (1) EP3683336B1 (zh)
CN (1) CN107541732B (zh)
WO (1) WO2019071884A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107541732B (zh) * 2017-10-13 2019-07-12 大连科迈尔防腐科技有限公司 一种海上拉伸阳极系统及其安装方法
CN108286249A (zh) * 2018-01-09 2018-07-17 大连科迈尔防腐科技有限公司 一种张紧式外加电流阴极保护系统及其安装布置方法
CN111749222B (zh) * 2020-03-27 2022-03-04 中国海洋石油集团有限公司 一种锚固器拉伸缆快速张紧的安装方法
CN111893493A (zh) * 2020-08-31 2020-11-06 大连科迈尔防腐科技有限公司 一种海上风电阴极保护用张紧式牺牲阳极系统
CN111893491B (zh) * 2020-08-31 2023-10-13 大连科迈尔海洋科技有限公司 一种导管架张紧式防腐系统及安装方法
CN112281164A (zh) * 2020-11-17 2021-01-29 青岛钢研纳克检测防护技术有限公司 拉伸式外加电流阴极保护装置及其使用方法
CN114784708B (zh) * 2022-04-18 2022-11-08 大连科迈尔防腐科技有限公司 一种新建导管架的复合电缆安装方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201722427U (zh) * 2010-04-09 2011-01-26 中国海洋石油总公司 导管架外加电流阴极保护装置
CN103060816A (zh) * 2012-12-24 2013-04-24 钢铁研究总院青岛海洋腐蚀研究所 一种自升式平台的外加电流阴极保护装置及其保护方法
CN203096180U (zh) * 2012-12-24 2013-07-31 青岛钢研纳克检测防护技术有限公司 拉伸式牺牲阳极串
CN204298462U (zh) * 2014-12-05 2015-04-29 青岛钢研纳克检测防护技术有限公司 拉伸式辅助阳极
CN205473997U (zh) * 2016-01-14 2016-08-17 中石化石油工程技术服务有限公司 可调式自升平台桩腿外加电流保护系统
CN107326367A (zh) * 2017-07-10 2017-11-07 中海石油(中国)有限公司 在役海上平台张紧式外加电流阴极保护与监测装置及方法
CN107541732A (zh) * 2017-10-13 2018-01-05 大连科迈尔防腐科技有限公司 一种海上拉伸阳极系统及其安装方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3855102A (en) * 1973-09-06 1974-12-17 J Palmer Water tank anode suspension
US4056446A (en) * 1977-01-03 1977-11-01 Continental Oil Company Diverless cathodic protection data acquisition
US4226555A (en) * 1978-12-08 1980-10-07 Conoco, Inc. Mooring system for tension leg platform
GB2046789B (en) * 1979-01-19 1983-01-26 Imi Marston Ltd Impressed current systems for cathodic protection
US4351258A (en) * 1979-11-20 1982-09-28 The Offshore Company Method and apparatus for tension mooring a floating platform
US4484840A (en) * 1983-09-28 1984-11-27 Shell Offshore Inc. Method and apparatus for installing anodes on steel platforms at offshore locations
US4619557A (en) * 1984-05-02 1986-10-28 Conoco Inc. Corrosion protection for mooring and riser elements of a tension leg platform
US4614461A (en) * 1984-09-07 1986-09-30 Nippon Steel Corporation Tendon of TLP and electrical corrosion protecting method of the same
US4690587A (en) * 1985-10-21 1987-09-01 Texaco Inc. Corrosion detection for marine structure
US4941775A (en) * 1988-02-26 1990-07-17 Benedict Risque L Cathodic protection of critical offshore marine structure critical components by making the critical component noble (passive) to the balance of the platform
US5480521A (en) * 1994-12-16 1996-01-02 Shell Oil Company Tendon foundation guide cone assembly and anode
US6422316B1 (en) * 2000-12-08 2002-07-23 Rti Energy Systems, Inc. Mounting system for offshore structural members subjected to dynamic loadings
US7540692B2 (en) * 2006-06-16 2009-06-02 Vetco Gray Inc. System, method, and apparatus for locking down tendon or riser moorings
CN102277578A (zh) * 2010-06-12 2011-12-14 中国海洋石油总公司 张力腿式平台外加电流阴极保护方法
US9447506B2 (en) * 2012-07-30 2016-09-20 David Whitmore Cathodic protection of a concrete structure
FR3011856B1 (fr) * 2013-10-11 2016-05-13 Soletanche Freyssinet Procede d'installation d'une fondation sous-marine pour dispositif offshore et ensemble d'installation correspondant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201722427U (zh) * 2010-04-09 2011-01-26 中国海洋石油总公司 导管架外加电流阴极保护装置
CN103060816A (zh) * 2012-12-24 2013-04-24 钢铁研究总院青岛海洋腐蚀研究所 一种自升式平台的外加电流阴极保护装置及其保护方法
CN203096180U (zh) * 2012-12-24 2013-07-31 青岛钢研纳克检测防护技术有限公司 拉伸式牺牲阳极串
CN204298462U (zh) * 2014-12-05 2015-04-29 青岛钢研纳克检测防护技术有限公司 拉伸式辅助阳极
CN205473997U (zh) * 2016-01-14 2016-08-17 中石化石油工程技术服务有限公司 可调式自升平台桩腿外加电流保护系统
CN107326367A (zh) * 2017-07-10 2017-11-07 中海石油(中国)有限公司 在役海上平台张紧式外加电流阴极保护与监测装置及方法
CN107541732A (zh) * 2017-10-13 2018-01-05 大连科迈尔防腐科技有限公司 一种海上拉伸阳极系统及其安装方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3683336A4 *

Also Published As

Publication number Publication date
US20210180195A1 (en) 2021-06-17
US11505869B2 (en) 2022-11-22
CN107541732B (zh) 2019-07-12
EP3683336B1 (en) 2022-01-26
CN107541732A (zh) 2018-01-05
EP3683336A1 (en) 2020-07-22
EP3683336A4 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
WO2019071884A1 (zh) 一种海上拉伸阳极系统及其安装方法
CN109629568A (zh) 海上风电导管架基础钢管桩用浮式稳桩平台的沉桩工艺
US8911178B2 (en) Device and method for erecting at sea a large slender body, such as the monopile of a wind turbine
JP2018526260A (ja) 自己昇降式潜水形水中作業台船及びその使用方法
US20160339277A1 (en) Method for inspecting an inside room of a ship and/or performing works therein
CN206826891U (zh) 一种基于甲板驳改造的海上风机单桩沉桩作业驳
CN105366005B (zh) 一种系泊锚腿的更换方法
BE1025697B1 (nl) Inrichting en werkwijze voor het aanbrengen van een secundaire constructie aan een offshore primaire constructie
CN107600326B (zh) 一种用于深海浮标的可释放式重力锚系统
JP2016508920A (ja) 海上輸送船と建造物若しくは船舶との間で対象体を転移するための改良した装置及び方法
CN110761315B (zh) 一种利用钻探船施工吸力锚的方法
US4041711A (en) Method and apparatus for quickly erecting off-shore platforms
CN115783143A (zh) 一种新型船用机械臂止荡设备
US10330072B2 (en) Power generating systems
CN110185057B (zh) 一种用于海上风电单桩基础钢管桩起吊立桩的工装及施工方法
JP6914411B1 (ja) 杭の施工方法
CN112340620B (zh) 一种半潜式起重拆解平台吊机安装方法
CN104198179A (zh) 用于自升式平台的套管张紧器的负荷试验方法
CN113981961A (zh) 深水裸岩的驳船式植桩方法
WO2023082524A1 (zh) 利用浮式船舶进行海上风机安装的机舱吊装及对接方法
NO328258B1 (no) Anordning og fremgangsmåte ved en vinsj for inntrekking av et stigerør til en fast eller flytende installasjon til havs
KR101808290B1 (ko) 인양장치를 구비한 선박 및 그의 인양방법
US20230070015A1 (en) Method and Hoisting Yoke for Taking Up an Elongate Object
CN210439272U (zh) 强夯门架升降装置
CN209317867U (zh) 一种地下破碎溜井料位计固定及提升装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018866085

Country of ref document: EP

Effective date: 20200417