WO2019071807A1 - 基于路由器的物联网设备的配置方法及双频无线路由器 - Google Patents

基于路由器的物联网设备的配置方法及双频无线路由器 Download PDF

Info

Publication number
WO2019071807A1
WO2019071807A1 PCT/CN2017/116422 CN2017116422W WO2019071807A1 WO 2019071807 A1 WO2019071807 A1 WO 2019071807A1 CN 2017116422 W CN2017116422 W CN 2017116422W WO 2019071807 A1 WO2019071807 A1 WO 2019071807A1
Authority
WO
WIPO (PCT)
Prior art keywords
router
dual
internet
distribution network
data packet
Prior art date
Application number
PCT/CN2017/116422
Other languages
English (en)
French (fr)
Inventor
张志强
Original Assignee
上海斐讯数据通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海斐讯数据通信技术有限公司 filed Critical 上海斐讯数据通信技术有限公司
Publication of WO2019071807A1 publication Critical patent/WO2019071807A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a router-based configuration method of an Internet of Things device and a dual-band wireless router.
  • Multi-frequency routers are now almost standard on wireless routers. More and more mid-range and high-end wireless routers are set to default for dual-band integration.
  • the so-called dual-frequency integration function is to use the same wireless SSID for multiple frequency bands, and the current dual-band solution of mainstream wireless chip manufacturers is that the terminal preferentially associates with the 5G frequency band.
  • the mainstream mobile phones in the market basically support multi-frequency, so when the router is associated, the 5G channel of the multi-frequency router is generally preferentially associated, but at present, the WIFI module of many IoT devices only supports the single-frequency 2.4G frequency band, such as electronic scale, air.
  • Cats, blood pressure monitors, etc. generally only support 2.4G single frequency, but in the case of the router to open dual screen, the mobile phone will generally be connected to 5G WIFI, and the Internet of Things device can only connect to 2.4G WIFI, then use mobile phone
  • the APP distributes the network to the IoT device, the two devices are associated with different WIFI bands, which will inevitably lead to failure of the distribution network.
  • the invention provides a method, a device and a wireless router for configuring a device-based IoT device, which solves the technical problem that the IoT device fails to be distributed when the IoT device and the IoT device are not in the same frequency band in the prior art.
  • the invention discloses a router-based configuration method of an Internet of Things device, comprising:
  • S100 receives a distribution network data packet sent by a WIFI terminal that controls the Internet of Things device;
  • step S200 determines whether the Internet of Things device supports the dual-frequency wireless transceiver function, and if yes, proceeds to step S400; if not, proceeds to the next step;
  • the S300 turns off the dual-frequency function of the router itself, so that the terminals accessing the router network all work in the first frequency band, and the process proceeds to step S400;
  • the S400 forwards the distribution network data packet sent by the WIFI terminal that controls the Internet of Things device, so that the IoT device can connect to the network after receiving the distribution network data packet.
  • step S400 includes:
  • step S410 determines whether the WIFI terminal that controls the Internet of Things device operates in the first frequency band, and if so, proceeds to step S420, otherwise proceeds to step S430;
  • the S420 forwards, in the first frequency band, the distribution network data packet sent by the WIFI terminal of the IoT device, so that the IoT device can connect to the network after receiving the distribution network data packet;
  • the S430 forwards the distribution network data packet sent by the WIFI terminal of the IoT device in the second frequency band, so that the IoT device can connect to the network after receiving the distribution network data packet.
  • the method further includes: S250 determining whether the frequency band in which the WIFI terminal controlling the Internet of Things device operates is a frequency band supported by the Internet of Things device, and if yes, proceeding to step S400, otherwise proceeding to step S300.
  • step S200 includes:
  • the S210 scans the association request of the IoT device in the first frequency band and the second frequency band, respectively, to determine whether the association request of the IoT device can be scanned in the first frequency band and the second frequency band, and if yes, go to step S220. Otherwise proceed to step S230;
  • step S220 determines that the Internet of Things device supports dual-band wireless transceiver function, proceeds to step S400;
  • S230 determines that the Internet of Things device does not support the dual-frequency wireless transceiver function, and proceeds to the next step.
  • the method for configuring the Internet of Things device of the present invention further includes:
  • step S500 After the S500 preset period of time, detecting whether the Internet of Things device is successfully networked, if yes, proceeding to step S700, otherwise, proceeding to step S600;
  • step S700 determines whether the dual-frequency function of the router is in an open state, and if not, proceeds to step S800;
  • the S800 enables the dual-band function of the router.
  • the present invention also discloses a dual-band wireless router, comprising: a receiving module, configured to receive a distribution network data packet sent by a WIFI terminal that controls the Internet of Things device; and an operation module, configured to shut down the router itself under the control of the control module a dual-frequency function; the relay module is configured to forward the distribution network data packet, so that the IoT device can connect to the network after receiving the distribution network data packet; and the control module is configured to determine whether the Internet of Things device supports Dual frequency, if yes, controlling the relay module to forward the distribution network data packet received by the receiving module, so that the IoT device can connect to the network after receiving the distribution network data packet; otherwise, the operation is controlled.
  • the module turns off the dual frequency function of the router, so that accessing the The terminals of the router network work in the first frequency band, and then forward the distribution network data packet sent by the WIFI terminal of the IoT device received by the receiving module through the relay module; facilitating the IoT device to receive the configuration Connect to the network after the network packet.
  • the relay module includes: a first middle rotor module, configured to forward, in the first frequency band, a distribution network data packet sent by the WIFI terminal of the IoT device received by the receiving module, to facilitate the receiving of the Internet of Things device After the network packet is described, the network is connected to the network; the second middle rotor module is configured to forward, in the second frequency band, the network data packet sent by the WIFI terminal of the IoT device received by the receiving module, so as to facilitate the receiving of the Internet of Things device. After the network packet is described, the network is connected;
  • the control module includes: determining whether the WIFI terminal that controls the IoT device operates in a first frequency band, and if yes, forwarding the network data packet by using the first middle rotor module; The second middle rotor module forwards the distribution network data packet.
  • control module is further configured to: after determining that the Internet of Things device does not support the dual-frequency wireless transceiver function, further determining whether the frequency band in which the WIFI terminal that controls the Internet of Things device works is supported by the Internet of Things device a frequency band, if yes, controlling the relay module to forward the network packet received by the receiving module; otherwise, controlling the operation module to disable the dual-frequency function of the router, so that the terminals accessing the router network work The first frequency band.
  • the determining, by the control module, whether the IoT device supports the dual-frequency wireless transceiver function comprises: the control module separately scanning the association request of the Internet of Things device in the first frequency band and the second frequency band, and determining whether the Both the first frequency band and the second frequency band can scan the association request of the Internet of Things device, and if so, determine that the Internet of Things device supports the dual-frequency wireless transceiver function; otherwise, it is determined that the Internet of Things device does not support the dual-frequency wireless transceiver function.
  • the dual-band wireless router of the present invention further includes a detecting module, configured to detect whether the Internet of Things device is successfully networked, and if yes, further detecting whether the dual-frequency function of the router is in an open state; otherwise, The WIFI terminal feeds back the IoT device distribution network fails, and requests to resend the distribution network data packet; the control module is further configured to: when the detection module detects that the Internet of Things device distribution network is successful and When the dual-frequency function of the router is not in the on state, the operating module is controlled to enable the dual-band function of the router.
  • a detecting module configured to detect whether the Internet of Things device is successfully networked, and if yes, further detecting whether the dual-frequency function of the router is in an open state; otherwise, The WIFI terminal feeds back the IoT device distribution network fails, and requests to resend the distribution network data packet; the control module is further configured to: when the detection module detects that the Internet of Things device distribution network is successful and When the dual-frequency function of the router
  • the invention improves the distribution network success rate according to whether the Internet of Things device supports dual frequency, intelligently turns off and retains the dual frequency combination function of the router.
  • the whole user has no perception, which improves the operability and user experience of the device.
  • FIG. 1 is a flowchart of an embodiment of a router-based IoT device configuration method according to the present invention
  • FIG. 2 is a flowchart of another embodiment of a method for configuring a router-based Internet of Things device according to the present invention
  • FIG. 3 is a flowchart of another embodiment of a method for configuring a router-based Internet of Things device according to the present invention.
  • FIG. 4 is a flowchart of another embodiment of a method for configuring a router-based Internet of Things device according to the present invention.
  • FIG. 5 is a schematic flowchart of another embodiment of a method for configuring a router-based IoT device according to the present invention.
  • FIG. 6 is a block diagram of an embodiment of a dual band wireless router of the present invention.
  • FIG. 7 is a block diagram of another embodiment of a dual band wireless router of the present invention.
  • the invention discloses a configuration method of a router-based IoT device.
  • the implementation is as shown in FIG. 1 and includes:
  • S100 receives a distribution network data packet sent by a WIFI terminal that controls the Internet of Things device;
  • step S200 determines whether the Internet of Things device supports the dual-frequency wireless transceiver function, and if yes, proceeds to step S400; if not, proceeds to the next step;
  • the S300 turns off the dual-frequency function of the router itself, so that the terminals accessing the router network all work in the first frequency band, and the process proceeds to step S400;
  • the S400 forwards the distribution network data packet sent by the WIFI terminal that controls the Internet of Things device, so that the IoT device can connect to the network after receiving the distribution network data packet.
  • the WIFI terminal that controls the Internet of Things device may be a terminal device such as a mobile phone, an IPAD, or a computer. Because most IoT devices don’t have a display or input buttons, There is no touch screen. Therefore, the distribution network information packet is generally sent through the APP (Application) of the WIFI terminal, so that the WIFI terminal can access the corresponding AP according to the distribution network data packet.
  • the distribution network data packet carries the distribution network information, such as the network name and password, so that the IoT device can be associated with the corresponding network.
  • the distribution network packet includes a source MAC (Media Access Control) address, a router MAC address, a destination MAC address, and the like.
  • the distribution network information may be encrypted data (datalength) carrying a wireless SSID (Service Set Identifier) and a password.
  • SSID Service Set Identifier
  • the dual-frequency network name and password of the router in the present invention are the same, that is, the network name and password of the 2.4G network (working in the first frequency band) and the network of the 5G network (working in the second frequency band).
  • the name and password are the same.
  • routers are dual-band wireless routers capable of supporting both 2.4G and 5G networks. If a mobile terminal accesses an AP (router) and randomly accesses any of the 2.4G network AP or the 5G network AP, the mobile The terminal is a dual-band wireless transceiver function that supports the router. However, most IoT devices only support 2.4G networks and cannot receive 5G signals. Therefore, the IoT devices do not support dual-band functions. When the mobile terminal accesses the AP of the 5G network, the distribution network information of the AP sent by the mobile terminal APP cannot be received by the Internet of Things device because it is a 5G signal, which may cause the WiFi device to fail to access the network.
  • the dual frequency function of the router itself needs to be turned off, and only the first frequency band is reserved as the working frequency band.
  • the first frequency band is a 2.4G working frequency band.
  • the terminal that is in the 5G working frequency band is transferred to the 2.4G working frequency band, and each terminal of the access router network works in the first frequency band (ie, the 2.4G working frequency band).
  • the WIFI terminal controlling the Internet of Things device also works in the first frequency band.
  • the network data packet is broadcasted and forwarded in the first frequency band, because
  • the IoT device also supports the first frequency band (does not support dual frequency, only supports single frequency - first frequency band), therefore, the Internet of Things device can receive the distribution network data packet broadcast by the router, thereby the data packet of the distribution network Analyze and obtain the wireless SSID and password to access the corresponding network and successfully distribute the network.
  • the IoT device supports the dual-band function, then the router does not need to turn off the dual-band function of the router itself, for example, receiving the distribution network packet of the 5G signal (second frequency band) sent by the mobile APP, then the router can configure the network.
  • the data packet is broadcasted and forwarded in the 5G frequency band. Since the Internet of Things device supports dual frequency, the Internet of Things device can also receive the distribution network data packet broadcasted in the 5G frequency band, thereby associating the network of the router according to the distribution network data packet.
  • the determining step S250 is added before the step S300 of the foregoing embodiment.
  • the method includes:
  • S100 receives a distribution network data packet sent by a WIFI terminal that controls the Internet of Things device;
  • step S200 determines whether the Internet of Things device supports the dual-frequency wireless transceiver function, and if yes, proceeds to step S410; if not, proceeds to the next step;
  • step S250 determines whether the frequency band in which the WIFI terminal of the IoT device operates is a frequency band supported by the IoT device, and if yes, proceeds to step S410, otherwise proceeds to step S300.
  • the S300 turns off the dual-band function of the router itself, so that the terminals accessing the router network work in the first frequency band;
  • step S410 determines whether the WIFI terminal that controls the Internet of Things device operates in the first frequency band, and if so, proceeds to step S420, otherwise proceeds to step S430;
  • the S420 forwards, in the first frequency band, the distribution network data packet sent by the WIFI terminal of the IoT device, so that the IoT device can connect to the network after receiving the distribution network data packet;
  • the S430 forwards the distribution network data packet sent by the WIFI terminal of the IoT device in the second frequency band, so that the IoT device can connect to the network after receiving the distribution network data packet.
  • the determining step of whether the working frequency band of the WIFI terminal is supported by the Internet of Things device is added. If the WIFI terminal itself is working in the first frequency band (2.4G working frequency band), even if the IoT device does not support dual frequency, There is also no need to turn off the dual-band function of the router itself.
  • the router can directly transmit the 2.4G signal distribution network packet sent by the WIFI terminal in the first frequency band (2.4G working frequency band); the Internet of Things device can also receive in the first frequency band. Go to the broadcast distribution network packet, and then analyze the access network to complete the distribution network.
  • the event of turning off the dual-band function of the router is further eliminated, and the impact of turning off the dual-frequency of the router to other devices (devices operating in the second frequency band) is reduced as much as possible.
  • whether the IoT device supports the wireless dual-frequency transceiver function in the step S200 can be separately scanned in the first frequency band and the second frequency band to see whether the two frequency bands can scan the object. If the two bands have received the report of the IoT device, the IoT device supports the dual-band function. If only the first frequency band (2.4G single frequency) is received, The message to the IoT device indicates that the IoT device does not support dual-band, and only supports the wireless transmission and reception function of the first frequency band (2.4G single frequency).
  • another embodiment of the present invention includes:
  • S100 receives a distribution network data packet sent by a WIFI terminal that controls the Internet of Things device;
  • the S210 scans the association request of the IoT device in the first frequency band and the second frequency band, respectively, to determine whether the association request of the IoT device can be scanned in the first frequency band and the second frequency band, and if yes, go to step S220. Otherwise proceed to step S230;
  • step S220 determines that the Internet of Things device supports dual-band wireless transceiver function, proceeds to step S400;
  • S230 determines that the Internet of Things device does not support the dual-frequency wireless transceiver function, and proceeds to the next step;
  • the S300 turns off the dual-frequency function of the router itself, so that the terminals accessing the router network all work in the first frequency band, and the process proceeds to step S400;
  • the S400 forwards the distribution network data packet sent by the WIFI terminal that controls the Internet of Things device, so that the IoT device can connect to the network after receiving the distribution network data packet.
  • Another embodiment of the present invention further comprising the step of whether the distribution network of the Internet of Things device is successful, and specifically, as shown in FIG. 4, includes:
  • S100 receives a distribution network data packet sent by a WIFI terminal that controls the Internet of Things device;
  • step S200 determines whether the Internet of Things device supports the dual-frequency wireless transceiver function, and if yes, proceeds to step S400; if not, proceeds to the next step;
  • the S300 turns off the dual-frequency function of the router itself, so that the terminals accessing the router network all work in the first frequency band, and the process proceeds to step S400;
  • S400 forwards the distribution network data packet sent by the WIFI terminal that controls the Internet of Things device; and facilitates the Internet of Things device to connect to the network after receiving the distribution network data packet;
  • step S500 After the S500 preset period of time, detecting whether the Internet of Things device is successfully networked, if yes, proceeding to step S700, otherwise, proceeding to step S600;
  • step S700 determines whether the dual-frequency function of the router is in an open state, and if not, proceeds to step S800;
  • the S800 enables the dual-band function of the router.
  • the Internet of Things device parses the distribution network data packet to obtain the wireless SSID and the password, thereby accessing the network, and the distribution network is successful.
  • the embodiment detects whether the Internet of Things device successfully accesses the network of the router (ie, detects whether the Internet of Things device is successfully deployed), if the IoT device successfully accesses the network of the router, and the dual-frequency function of the router is still closed.
  • the dual-band function of the startup router can be controlled, so that each terminal device of the access router independently selects the most suitable working frequency band according to its own situation.
  • step S700 after the network of the IoT device is successfully deployed, the dual-frequency function of the router is enabled after the preset time period, so that the IoT device can successfully access the network, and then the dual-band function is enabled after the network is stable. .
  • the dual-frequency wireless router automatically detects the associated terminal.
  • the router directly automatically turns off the dual-frequency integration function, so that the terminal device is more easily configured.
  • the network improves the feasibility of the distribution network of the wireless terminal and improves the user experience. Specifically, the process diagram is shown in Figure 5:
  • a router that supports dual-band integration, the dual-band function is enabled by default;
  • the wireless terminal goes to the associated router
  • the router detects whether all associated devices support dual-band. If the associated device does not support, the router turns off the dual-frequency combination function, and the value is reserved for single-frequency 2.4G.
  • the router detects whether all associated devices support dual-band. If the associated devices support dual-band, keep the router default configuration.
  • the terminal associates the router according to the wireless association process.
  • the router starts the dual-frequency monitoring module, and monitors the parameters of the Probe Request message of all the terminals. If the router monitors that the message reported by the wireless terminal has only 2.4G single-frequency information, then The router sets the module through the software, turns off the dual-band function, and closes the router 5G WIFI module through the router software setting module, leaving only the 2.4G WIFI module open.
  • the wireless terminal that has been associated with the 5G WIFI module is transferred to the 2.4G upper frequency band through the software background operation.
  • the method for configuring an Internet of Things device based on the dual-band wireless router disclosed in this embodiment can use the method to automatically disable the dual-frequency integration function when the current associated terminal does not support the dual-frequency function, thereby making the terminal device easier.
  • Distribution network improve the feasibility of distribution network of wireless terminals, improve users Experience.
  • the router automatically scans whether the associated device in the environment has a single-frequency device. If yes, the router automatically turns off the dual-frequency function of the router, so that the associated devices are automatically associated with the same frequency band. When distributing the network, it will not fail. In addition, the router automatically completes the process of scanning off, and the user has no perception, which improves the operability and user experience of the device.
  • the present invention also discloses a dual-band wireless router, which can adopt the method embodiment of the present invention.
  • the method includes: a receiving module 10, configured to receive and control an Internet of Things device.
  • the operation module 20 is configured to disable the dual-frequency function of the router itself under the control of the control module 40;
  • the relay module 30 is configured to forward the distribution network data packet received by the receiving module 10.
  • the control device 40 is configured to determine whether the IoT device supports dual frequency, and if so, control the transit module 30 to control the receiving module 10
  • the received network packet is forwarded, so that the IoT device can connect to the network after receiving the network packet; otherwise, the operating module 20 is controlled to disable the dual-band function of the router, so as to access the
  • the terminals of the router network are all operated in the first frequency band, and then forwarded by the WIFI terminal of the IoT device received by the receiving module 10 through the relay module 30.
  • a dual-band wireless router refers to a wireless router that operates in both the 2.4 GHz and 5 GHz bands. Compared to a single-band wireless router, it has a higher wireless transmission rate, is more resistant to interference, and has stronger wireless signals and stability. Higher, not easy to drop, dual-band wireless router has become the mainstream development trend of wireless products. Wireless routers, like other wireless products, are subject to radio frequency (RF) systems and need to work within a certain frequency range to communicate with other devices. We call this frequency range the working frequency band of the wireless router. However, different products use different network standards, so the working frequency band is not the same.
  • the frequency band in which the wireless router works is generally divided into two bands of 2.4GHZ and 5GHZ.
  • 2.4GHZ is a commonly used frequency band for early wireless routers. It has continued to the present; now 5GHZ is also widely used, and combined with 2.4GHZ to form a dual-band wireless router.
  • the receiving module 10 receives the distribution network data packet sent by the WIFI terminal of the IoT device; the control module 40 determines whether the Internet of Things device supports the dual-frequency wireless transceiver function, and if so, broadcasts the forwarding receiving module 10 through the relay module 30.
  • the received distribution network data packet is convenient for the IoT device to connect to the network after receiving the distribution network data packet; otherwise, the control operation module 20 turns off the dual frequency function of the router itself, so that each terminal of the access router network works in the first frequency band.
  • the receiving module 10 broadcasts the distribution network data packet, and after receiving the data packet, the Internet of Things device analyzes and obtains the wireless SSID and the password, thereby obtaining the wireless SSID and the password. Access to the network.
  • the above-mentioned distribution network data packet carries a wireless SSID and a password, of course, the wireless SSID and password are in the form of cipher text. For delivery, for example, the wireless SSID and password are carried by the data length. Therefore, the IoT device needs to be parsed after receiving the distribution network data packet.
  • the distribution network information in the distribution network packet includes the SSID (Service Set Identifier) and password of the target AP.
  • the distribution network data packet is generally a UDP data packet, and the data structure of the valid information is as follows:
  • the source MAC indicates the MAC address of the network card used by the terminal that sends the UDP packet; the destination MAC indicates the MAC address of the device that receives the data end, and the MAC address is [FFFFFFFFFF] when the UDP is broadcast; the data length indicates the data length, and the Internet of Things device
  • the data transmitted by the data length is parsed to obtain the distribution network information of the router network, thereby accessing the network.
  • the relay module 30 includes: a first middle rotor module 31, configured to forward the receiving module 10 in a first frequency band. Receiving a distribution network packet sent by the WIFI terminal of the IoT device, the IoT device is connected to the network after receiving the network packet, and the second rotor module 32 is configured to forward the reception in the second frequency band.
  • the distribution network data packet sent by the WIFI terminal of the IoT device is received by the module 10, and the IoT device is connected to the network after receiving the network data packet;
  • the control module 40 includes: Whether the WIFI terminal of the networked device operates in the first frequency band, and if so, forwards the distribution network data packet through the first middle rotor module 31, otherwise, the distribution network data packet is forwarded by the second middle rotor module 32 .
  • the corresponding middle rotor module is selected to forward the distribution network data packet; if the Internet of Things device supports dual frequency, then no matter which frequency band the WIFI terminal works in After the corresponding middle rotor module forwards the distribution network data packet, the Internet of Things device can receive the distribution network data packet in the corresponding frequency band, thereby accessing the network according to the distribution network data packet. For example, if the WIFI terminal works in the second frequency band, then the second middle rotor module 32 forwards the distribution network data packet sent by the WIFI terminal in the second frequency band.
  • the Internet of Things device can also The second frequency band acquires the distribution network data packet to perform the distribution network.
  • the IoT device does not support dual-band and only supports single-frequency (only supports the first frequency band)
  • the WIFI terminal also works in the first frequency band, and then the WIFI terminal also transmits the distribution network data packet in the first frequency band.
  • the first middle rotor module 31 distributes the distribution network in the first frequency band. The data packet is forwarded, and the IoT device can receive the distribution network data packet in the first frequency band to perform the distribution network.
  • the control module determines that the Internet of Things device does not support the dual-frequency wireless transceiver function
  • the control module further determines the WIFI terminal that controls the Internet of Things device.
  • the working frequency band is the frequency band supported by the IoT device is actually equivalent to judging whether the WIFI terminal controlling the IoT device works in the first frequency band, because the IoT device only supports the single frequency (the first frequency band), if If the WIFI terminal works in the first frequency band (2.4G working frequency band), then the dual-band function of the router does not need to be closed, and only the distribution network packet sent by the WIFI terminal can be forwarded through the transit module 30, and the Internet of Things device can receive the Distribution network packets, thereby accessing the network according to the distribution network data packet.
  • the WIFI terminal controlling the IoT device works in the second frequency band (5G working frequency band)
  • the dual-frequency function of the router itself needs to be turned off by the operation module, so that the terminals accessing the router network work first.
  • the frequency band is then forwarded by the subsequent distribution network data packet.
  • the control module determines whether the IoT device supports the dual-frequency transceiver function, and the control module scans the first frequency band and the second frequency band separately to see whether the object can be scanned.
  • the association request of the networked device if the association request of the IoT device can be scanned in the first frequency band and the second frequency band, determining that the Internet of Things device supports the wireless transmission and reception function of the first frequency band and the second frequency band That is to say, the IoT device supports dual frequency. If the association request of the IoT device can only be scanned in the first frequency band, it is determined that the IoT device does not support dual frequency.
  • the determining, by the control module, whether the IoT device supports the dual-frequency wireless transceiver function comprises: the control module scanning the IoT device in the first frequency band and the second frequency band, respectively Correlating the request, determining whether the association request of the IoT device can be scanned in the first frequency band and the second frequency band, and if so, determining that the Internet of Things device supports the dual-frequency wireless transceiver function; otherwise, determining the Internet of Things device Dual-band wireless transceiver is not supported.
  • the dual-band wireless router of the present invention further includes: a detecting module 50, configured to detect whether the Internet of Things device is If the network is successful, if it is, it is further detected whether the dual-frequency function of the router is in an open state; otherwise, the network communication device fails to feed back to the WIFI terminal, requesting to resend the distribution network data packet;
  • the control module 40 is further configured to: when the detecting module 50 detects that the Internet of Things device distribution network is successful and the dual-frequency function of the router is not in an open state, control the operation module 20 to enable dual-frequency switching of the router.
  • the detection module 50 is added. After the relay module 30 forwards the distribution network data packet sent by the WIFI terminal of the IoT device, the detection module 50 is expected to receive the IoT device after a preset time period. After the network packet is distributed, it takes time to access the network. Start testing and see if the IoT device has successfully accessed the network. That is, if the distribution network is successful, if the distribution network is successful, then enter one. Step detection checks whether the dual-frequency function of the router is in an open state. If not, the control module 40 controls the operation module 20 to turn on the dual-frequency function of the router.
  • the detection module 50 detects that the Internet of Things device distribution network is unsuccessful after the preset time period, the information about the failure of the distribution network is fed back to the WIFI terminal, and the WIFI terminal is requested to resend the distribution network data packet to perform the network distribution operation again.
  • the device embodiment of the present invention corresponds to the method embodiment of the present invention, and therefore, the technical details of the method embodiment of the present invention are equally applicable to the device embodiment of the present invention. In order to reduce the repetition, the present invention will not be described again.

Abstract

本发明公开了一种基于路由器的物联网设备的配置方法,包括:接收控制物联网设备的WIFI终端发送的配网数据包;判断物联网设备是否支持双频无线收发功能,若否,关闭路由器自身的双频功能,使得接入路由器网络的终端均工作在第一频段;转发控制物联网设备的WIFI终端发送的配网数据包,便于物联网设备接收到配网数据包后连接网络。此外,本发明还公开了一种双频无线路由器及双频无线路由器,通过本发明,可以实现在检测到当前关联物联设备在不支持双频功能时,路由器直接自动关闭双频合一功能,使得所有终端都会统一关联到2.4G频段上,让用户给设备更简单的配网,提高无线终端的配网可行性,提高用户体验。

Description

基于路由器的物联网设备的配置方法及双频无线路由器 技术领域
本发明涉及无线通讯技术领域,尤其涉及一种基于路由器的物联网设备的配置方法及双频无线路由器。
背景技术
如今多频路由器几乎成为了无线路由器的标配。越来越多的中高端无线路由器默认出场设置为双频合一功能启用。所谓双频合一功能就是多个频段使用同一个无线SSID,而目前主流无线芯片厂家双频合一的解决方案为,终端优先关联5G频段。目前市场的主流手机基本支持多频,所以在关联路由器时候,一般都会优先关联到多频路由器的5G频道,但是目前很多物联网设备的WIFI模块只支持单频2.4G频段,例如电子称,空气猫,血压仪等等,一般只支持2.4G单频,但是在路由器开启双屏合一的情况下,手机一般会连接到5G WIFI,而物联网设备只能连接到2.4G WIFI,那么用手机APP给物联网设备配网时,由于两个设备关联在不同的WIFI频段,必然会导致配网失败。
由于目前商用的物联网设备大部分都是只支持单频2.4G的WIFI,而手机基本都是双频,这样手机和物联网设备在关联双频合一路由器的时候,可能会默认关联到不同的频段上,从而导致手机APP给物联网设备配网失败,必须登入路由器管理页面手动去关闭双频合一功能,操作繁琐,影响了用户的体验。
发明内容
本发明提供一种基于路由器的物联网设备的配置方法、装置及无线路由器,解决了现有技术中物联网设备与控制物联网设备不在同一频段时,物联网设备配网失败的技术问题。
本发明公开了一种基于路由器的物联网设备的配置方法,包括:
S100接收控制物联网设备的WIFI终端发送的配网数据包;
S200判断所述物联网设备是否支持双频无线收发功能,若是,进入步骤S400;若否,进入下一步骤;
S300关闭路由器自身的双频功能,使得接入所述路由器网络的终端均工作在第一频段,进入步骤S400;
S400转发所述控制物联网设备的WIFI终端发送的配网数据包,便于所述物联网设备接收到所述配网数据包后连接网络。
进一步地,所述步骤S400包括:
S410判断所述控制物联网设备的WIFI终端是否工作在第一频段,若是,进入步骤S420,否则进入步骤S430;
S420在第一频段转发控制物联网设备的WIFI终端发送的配网数据包,便于所述物联网设备接收到所述配网数据包后连接网络;
S430在第二频段转发控制物联网设备的WIFI终端发送的配网数据包,便于所述物联网设备接收到所述配网数据包后连接网络。
进一步地,在所述步骤S300之前还包括:S250判断所述控制物联网设备的WIFI终端工作的频段是否为所述物联网设备支持的频段,若是,进入步骤S400,否则进入步骤S300。
进一步地,所述步骤S200包括:
S210在第一频段、第二频段分别扫描所述物联网设备的关联请求,判断是否能在第一频段、第二频段均能扫描到所述物联网设备的关联请求,若是,进入步骤S220,否则进入步骤S230;
S220判断所述物联网设备支持双频无线收发功能,进入步骤S400;
S230判断所述物联网设备不支持双频无线收发功能,进入下一步骤。
进一步地,本发明的物联网设备的配置方法还包括:
S500预设时间段后,检测所述物联网设备是否配网成功,若是,进入步骤S700,否则,进入步骤S600;
S600向所述WIFI终端反馈配网失败,请求重新发送所述配网数据包,返回步骤S100;
S700判断所述路由器的双频功能是否处于开启状态,若否,进入步骤S800;
S800开启所述路由器的双频功能。
此外,本发明还公开一种双频无线路由器,包括:接收模块,用于接收控制物联网设备的WIFI终端发送的配网数据包;操作模块,用于在控制模块的控制下关闭路由器自身的双频功能;中转模块,用于转发所述配网数据包,便于所述物联网设备接收到所述配网数据包后连接网络;所述控制模块,用于判断所述物联网设备是否支持双频,若是,则控制所述中转模块将所述接收模块接收的所述配网数据包进行转发,便于所述物联网设备接收到所述配网数据包后连接网络;否则控制所述操作模块关闭所述路由器的双频功能,使得接入所述 路由器网络的终端均工作在第一频段,然后再通过所述中转模块转发所述接收模块接收的控制物联网设备的WIFI终端发送的配网数据包;便于所述物联网设备接收到所述配网数据包后连接网络。
进一步地,所述中转模块包括:第一中转子模块,用于在第一频段转发所述接收模块接收的控制物联网设备的WIFI终端发送的配网数据包,便于所述物联网设备接收所述配网数据包后连接网络;第二中转子模块,用于在第二频段转发所述接收模块接收的控制物联网设备的WIFI终端发送的配网数据包,便于所述物联网设备接收所述配网数据包后连接网络;
所述控制模块包括:还用于判断所述控制物联网设备的WIFI终端是否工作在第一频段,若是,则通过所述第一中转子模块转发所述配网数据包,否则,通过所述第二中转子模块转发所述配网数据包。
进一步地,所述控制模块,还用于当判断所述物联网设备不支持双频无线收发功能后,进一步判断所述控制物联网设备的WIFI终端工作的频段是否为所述物联网设备支持的频段,若是,则控制所述中转模块转发所述接收模块接收的配网数据包,否则,控制所述操作模块关闭所述路由器的双频功能,使得接入所述路由器网络的终端均工作在第一频段。
进一步地,所述控制模块判断所述物联网设备是否支持双频无线收发功能包括:所述控制模块在第一频段、第二频段分别扫描所述物联网设备的关联请求,判断是否能在第一频段、第二频段均能扫描到所述物联网设备的关联请求,若是,判断所述物联网设备支持双频无线收发功能;否则,判断所述物联网设备不支持双频无线收发功能。
进一步地,本发明所述的双频无线路由器还包括检测模块,用于检测所述物联网设备是否配网成功,若是,则进一步检测所述路由器的双频功能是否处于开启状态,否则,向所述WIFI终端反馈所述物联网设备配网失败,请求重新发送所述配网数据包;所述控制模块,还用于当所述检测模块检测到所述物联网设备配网成功且所述路由器的双频功能不处于开启状态时,控制所述操作模块开启所述路由器的双频功能。
本发明根据物联网设备是否支持双频,智能关闭和保留路由器的双频合一功能,提高配网的成功率。此外,本发明的实施过程中,全程用户无感知,提高了设备的可操作性和用户体验。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一种基于路由器的物联网设备的配置方法实施例的流程图;
图2为本发明一种基于路由器的物联网设备的配置方法另一实施例的流程图;
图3为本发明一种基于路由器的物联网设备的配置方法另一实施例的流程图;
图4为本发明一种基于路由器的物联网设备的配置方法另一实施例的流程图;
图5为本发明一种基于路由器的物联网设备的配置方法另一实施例的流程示意图;
图6为本发明一种双频无线路由器实施例的框图;
图7为本发明一种双频无线路由器另一实施例的框图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明公开了一种基于路由器的物联网设备的配置方法,实施例如图1所示,包括:
S100接收控制物联网设备的WIFI终端发送的配网数据包;
S200判断所述物联网设备是否支持双频无线收发功能,若是,进入步骤S400;若否,进入下一步骤;
S300关闭路由器自身的双频功能,使得接入所述路由器网络的终端均工作在第一频段,进入步骤S400;
S400转发所述控制物联网设备的WIFI终端发送的配网数据包,便于所述物联网设备接收到所述配网数据包后连接网络。
具体的,步骤S100中,作为控制物联网设备的WIFI终端,可以是手机、IPAD、电脑等终端设备。由于物联网设备大部分没有显示屏也没有输入按键、 更没有触摸屏,因此,一般都是通过WIFI终端的APP(Application,应用程序)发送配网信息数据包,便于WIFI终端根据配网数据包接入相应的AP。配网数据包里携带有配网信息,比如网络名称和密码等信息,便于物联网设备关联相应的网络。配网数据包除了包括配网信息,还包括源MAC(MediaAccessControl,媒体访问控制)地址、路由器MAC地址、目标MAC地址等。配网信息可以为携带有无线SSID(Service Set Identifier,服务集标识))和密码的加密数据(datalength)。值得注意的是,本发明中的路由器的双频的网络名称及密码是一样的,即2.4G网络(工作在第一频段)的网络名称和密码与5G网络(工作在第二频段)的网络名称和密码一致。
目前,许多路由器是能够同时支持2.4G与5G网络的双频无线路由器,如果某移动终端接入AP(路由器)时会随机接入2.4G网络AP或5G网络AP中的任意一个,那么该移动终端是支持路由器的双频无线收发功能。不过大多数物联网设备只支持2.4G网络,无法接收5G信号,那么该物联网设备是不支持双频功能的。当移动终端接入5G网络的AP时,移动终端APP发送的AP的配网信息因是5G信号而无法被物联网设备所接收,会造成WiFi设备无法入网的问题。因此,在转发WIFI终端发送的配网数据包之前,需要判断该物联网设备是否支持双频,如果不支持的话,那么就需要关闭路由器自身的双频功能,仅保留第一频段作为工作频段,具体的,该第一频段为2.4G工作频段。关闭了路由器的双频功能后,之前处于5G工作频段的终端转移到2.4G工作频段,接入路由器网络的各个终端均工作在第一频段(即2.4G工作频段)。那么此时,控制物联网设备的WIFI终端肯定也工作在第一频段,因此,在第一频段接收到WIFI终端发送的配网数据包后,在第一频段广播转发该配网数据包,由于物联网设备也是支持第一频段的(不支持双频,仅支持单频--第一频段),因此,物联网设备可以接收到路由器广播的该配网数据包,从而对该配网数据包进行解析,获取无线SSID及密码,从而接入对应的网络,成功配网。当然,如果该物联网设备支持双频功能,那么,无需关闭路由器自身的双频功能,比如接收到手机APP发送的5G信号(第二频段)的配网数据包,那么路由器可以将该配网数据包在5G频段广播转发出去,由于物联网设备支持双频,那么物联网设备也可以接收到5G频段广播的配网数据包,从而根据该配网数据包关联该路由器的网络。
本发明的另一实施例,在上述实施例的步骤S300之前增加了判断步骤S250,具体的,如图2所示,包括:
S100接收控制物联网设备的WIFI终端发送的配网数据包;
S200判断所述物联网设备是否支持双频无线收发功能,若是,进入步骤S410;若否,进入下一步骤;
S250判断所述控制物联网设备的WIFI终端工作的频段是否为所述物联网设备支持的频段,若是,进入步骤S410,否则进入步骤S300。
S300关闭路由器自身的双频功能,使得接入所述路由器网络的终端均工作在第一频段;
S410判断所述控制物联网设备的WIFI终端是否工作在第一频段,若是,进入步骤S420,否则进入步骤S430;
S420在第一频段转发控制物联网设备的WIFI终端发送的配网数据包,便于所述物联网设备接收到所述配网数据包后连接网络;
S430在第二频段转发控制物联网设备的WIFI终端发送的配网数据包,便于所述物联网设备接收到所述配网数据包后连接网络。
上述实施例中,增加了WIFI终端的工作频段是否被物联网设备支持的判断步骤,如果WIFI终端本身便是工作在第一频段(2.4G工作频段),那么即使物联网设备不支持双频,也无需关闭路由器自身的双频功能,路由器可直接将WIFI终端发送的2.4G信号的配网数据包,在第一频段(2.4G工作频段)广播发送;物联网设备也可在第一频段接收到广播的配网数据包,进而解析接入网络,完成配网。本实施例,进一步排除了关闭路由器双频功能的事件,尽可能的减少关闭路由器的双频给其它设备(工作在第二频段的设备)带来的影响。
上述任一方法实施例中,对步骤S200中物联网设备是否支持无线双频收发功能的判断,可以通过在第一频段、第二频段分别扫描,看是否在这两个频段均能扫描到物联网设备的上报报文,如果这两个频段都有收到物联网设备的上报报文的话,则说明该物联网设备支持双频功能,如果只在第一频段(2.4G单频)中收到该物联网设备的报文的话,则说明该物联网设备不支持双频,仅支持第一频段的无线收发功能(2.4G单频)。具体的,本发明的另一实施例,如图3所示,包括:
S100接收控制物联网设备的WIFI终端发送的配网数据包;
S210在第一频段、第二频段分别扫描所述物联网设备的关联请求,判断是否能在第一频段、第二频段均能扫描到所述物联网设备的关联请求,若是,进入步骤S220,否则进入步骤S230;
S220判断所述物联网设备支持双频无线收发功能,进入步骤S400;
S230判断所述物联网设备不支持双频无线收发功能,进入下一步骤;
S300关闭路由器自身的双频功能,使得接入所述路由器网络的终端均工作在第一频段,进入步骤S400;
S400转发所述控制物联网设备的WIFI终端发送的配网数据包,便于所述物联网设备接收到所述配网数据包后连接网络。
本发明的另一实施例,在上述任一实施例的基础上,还包括物联网设备的配网是否成功的步骤,具体的,如图4所示,包括:
S100接收控制物联网设备的WIFI终端发送的配网数据包;
S200判断所述物联网设备是否支持双频无线收发功能,若是,进入步骤S400;若否,进入下一步骤;
S300关闭路由器自身的双频功能,使得接入所述路由器网络的终端均工作在第一频段,进入步骤S400;
S400转发所述控制物联网设备的WIFI终端发送的配网数据包;便于所述物联网设备接收到所述配网数据包后连接网络;
S500预设时间段后,检测所述物联网设备是否配网成功,若是,进入步骤S700,否则,进入步骤S600;
S600向所述WIFI终端反馈配网失败,请求重新发送所述配网数据包,返回步骤S100;
S700判断所述路由器的双频功能是否处于开启状态,若否,进入步骤S800;
S800开启所述路由器的双频功能。
本发明实施例,在上述任一实施例的基础上,物联网设备在接收到配网数据包后,解析该配网数据包获取无线SSID和密码,从而接入网络,配网成功。本实施例检测物联网设备是否成功接入路由器的网络(即检测物联网设备是否配网成功),如果物联网设备成功接入了路由器的网络的网络,且路由器的双频功能仍处于关闭状态的话,那么就可以控制启动路由器的双频功能,从而使得接入路由器的各终端设备根据自身情况自主选择最适合的工作频段。较佳的,步骤S700中,在物联网设备配网成功后预设时间段后再开启路由器的双频功能,这样可以让物联网设备成功接入网络后,让网络稳定后再开启双频功能。
本发明的另一方法实施例,通过双频合一无线路由器自动检测关联终端,在检测到当前关联终端不支持双频功能时,路由器直接自动关闭双频合一功能,使得终端设备更容易配网,提高无线终端的配网可行性,提高了用户体验。具体的,流程示意图如图5所示:
支持双频合一功能的路由器,默认启动双频合一功能;
无线终端去关联路由器;
路由器检测所有关联设备是否都支持双频,如果有关联设备不支持,那么路由器关闭双频合一功能,值保留单频2.4G;
路由器检测所有关联设备是否都支持双频,如果有关联设备都支持双频,那么保持路由器默认配置;
终端按无线关联流程去关联路由器。
上述实施例,详细阐述如下:
(1)一般情况下,WIFI正常关联(各终端关联路由器网络)过程如下:
STA------------>Probe Request---------------->AP//广播自身数据
STA<------------Probe Response<-------------AP
STA------------>Authentication Request-------->AP//认证Auth类型,OpenSystem,Shared Key等
STA------------>Authentication Response------>AP
STA------------->Association Request------------>AP//请求与AP建立关联,从而可以进行数据交互
STA------------->Association Response----------->AP
Data Communication
(2)路由器开机后,默认会开启双频合一功能。
(3)各无线终端开始去关联路由器。
(4)路由器在无线终端关联的过程中,开启双频监控模块,通过对所有终端Probe Request报文的参数监控,如果路由器监控到无线终端上报的报文里面只有2.4G单频的信息,那么路由器通过软件设置模块,关闭双频合一的功能,通过路由器软件设置模块,关闭路由器5G WIFI模块,只保留2.4G WIFI模块的开启。
(5)对原来已经关联在5G WIFI模块上的无线终端,通过软件后台操作转移到2.4G上频段。
(6)如果路由器在无线终端关联的过程中,一直没有监控到环境中存在单频终端,那么双频合一功能一直保持开启。
(7)保留其它正常的设备认证配网流程。
本实施例公开的基于双频无线路由器的物联网设备配置方法,通过使用该方法可以在检测到当前关联终端不支持双频功能时,路由器直接自动关闭双频合一功能,使得终端设备更容易配网,提高无线终端的配网可行性,提高用户 体验。本实施例的方法,通过路由器自动化扫描环境里面的关联设备是否存在单频设备,如果存在,路由器会自动关闭路由器的双频合一的功能,从而使关联设备都自动关联到同一频段,这样设备在配网时,不会失败。此外,路由器自动完成扫描关闭的过程,用户无感知,提高了设备的可操作性和用户体验。
基于相同的技术构思,本发明还公开一种双频无线路由器,该装置可采用本发明的方法实施例,具体的,如图6所示,包括:接收模块10,用于接收控制物联网设备的WIFI终端发送的配网数据包;操作模块20,用于在控制模块40的控制下关闭路由器自身的双频功能;中转模块30,用于转发所述接收模块10接收的配网数据包,便于所述物联网设备接收到所述配网数据包后连接网络;控制模块40,用于判断所述物联网设备是否支持双频,若是,则控制所述中转模块30将所述接收模块10接收的所述配网数据包进行转发,便于所述物联网设备接收到所述配网数据包后连接网络;否则控制所述操作模块20关闭所述路由器的双频功能,使得接入所述路由器网络的终端均工作在第一频段,然后再通过所述中转模块30转发所述接收模块10接收的控制物联网设备的WIFI终端发送的配网数据包;便于所述物联网设备接收到所述配网数据包后连接网络。
双频无线路由器是指同时工作在2.4GHZ和5GHZ频段的无线路由器,相比于单频段无线路由器,它具有更高的无线传输速率,具备更强的抗干扰性,无线信号更强,稳定性更高,不容易掉线,双频无线路由器已经成为无线产品的主流发展趋势。无线路由器也像其他无线产品一样屈于射频(RF)系统,需要工作在一定的频率范围之内,才能够与其他设备相互通讯,我们把这个频率范围叫做无线路由器的工作频段。但不同的产品由于采用不同的网络标准,故采用的工作频段也不太一样,无线路由器工作的频段一般分为2.4GHZ和5GHZ两个频段。2.4GHZ是早期无线路由器普遍采用的频段,一直延续到现在;现在5GHZ也开始得到广泛应用,与2.4GHZ相结合就组成了双频无线路由器。
具体的,接收模块10接收控制物联网设备的WIFI终端发送的配网数据包;控制模块40判断物联网设备是否支持双频无线收发功能,若是,则通过所述中转模块30广播转发接收模块10接收的配网数据包,便于物联网设备接收到该配网数据包后连接网络;否则,控制操作模块20关闭路由器自身的双频功能,使得接入路由器网络的各终端均工作在第一频段,然后,接收模块10接收到WIFI终端发送的配网数据包后,将该配网数据包中转广播出去,物联网设备接收到该配网数据包后,进行解析,获取无线SSID及密码,从而接入网络。上述的配网数据包中携带了无线SSID和密码,当然该无线SSID和密码是以密文的形式 进行传递的,譬如通过数据长度进行无线SSID和密码的携带传递。所以物联网设备在接收到配网数据包后需进行解析。
配网数据包中的配网信息包括目标AP的SSID(ServiceSet Identifier,服务集标识)、密码。配网数据包一般为UDP数据包,其中的有效信息的数据结构如下:
【源MAC】【路由器MAC】【目标MAC】【datalength】
其中,源MAC表示发送UDP数据包的终端所使用的网卡的MAC地址;目标MAC表示接收数据端设备的MAC地址,UDP在广播时该MAC地址为【FFFFFFFFFFFF】;datalength表示数据长度,物联网设备根据datalength解析传输的数据获取路由器网络的配网信息,从而接入网络。
本发明装置的另一实施例,如图7所示,在上述装置实施例的基础上,所述中转模块30包括:第一中转子模块31,用于在第一频段转发所述接收模块10接收的控制物联网设备的WIFI终端发送的配网数据包,便于所述物联网设备接收所述配网数据包后连接网络;第二中转子模块32,用于在第二频段转发所述接收模块10接收的控制物联网设备的WIFI终端发送的配网数据包,便于所述物联网设备接收所述配网数据包后连接网络;所述控制模块40包括:还用于判断所述控制物联网设备的WIFI终端是否工作在第一频段,若是,则通过所述第一中转子模块31转发所述配网数据包,否则,通过所述第二中转子模块32转发所述配网数据包。
本装置实施例中,根据控制物联网设备的WIFI终端的工作频段来选择相应的中转子模块将配网数据包进行转发;如果物联网设备支持双频,那么,无论WIFI终端工作在哪一个频段,相应的中转子模块转发该配网数据包后,物联网设备均可在相应的频段接收到该配网数据包,从而根据该配网数据包接入网络。比如,WIFI终端工作在第二频段,那么第二中转子模块32便将WIFI终端发送的配网数据包在第二频段进行转发,由于物联网设备支持双频,那么物联网设备便也可在第二频段获取到该配网数据包,从而进行配网。当然,如果物联网设备不支持双频,仅支持单频(只支持第一频段)的话,那么,就需要通过操作模块20来关闭路由器自身的双频功能,让接入路由器的所有终端都工作在第一频段,由此,WIFI终端也同样工作在第一频段,然后WIFI终端也在第一频段发送该配网数据包,相应的,第一中转子模块31在第一频段将该配网数据包进行转发,物联网设备便可在第一频段接收到该配网数据包,从而进行配网。
较佳的,在上述任一实施例的基础上,当所述控制模块判断所述物联网设备不支持双频无线收发功能后,所述控制模块还进一步判断所述控制物联网设备的WIFI终端工作的频段是否为所述物联网设备支持的频段,其实也就相当于判断控制物联网设备的WIFI终端是否工作在第一频段,因为物联网设备只支持单频(第一频段)的话,如果WIFI终端工作在第一频段(2.4G工作频段)的话,那么路由器的双频功能无需关闭,只需要通过中转模块30转发WIFI终端发送的配网数据包即可,物联网设备便可接收到该配网数据包,从而根据该配网数据包接入网络。当然,如果控制物联网设备的WIFI终端工作在第二频段(5G工作频段)的话,则还是需要通过操作模块关闭路由器自身的双频功能,使得接入所述路由器网络的终端均工作在第一频段,再进行后续配网数据包的转发。
较佳的,在上述任一实施例的基础上,控制模块判断物联网设备是否支持双频收发功能包括:控制模块在第一频段、第二频段分别扫描,看是否均能扫描到所述物联网设备的关联请求,如果在第一频段、第二频段均能扫描到所述物联网设备的关联请求,那么就判断该物联网设备是支持第一频段、及第二频段的无线收发功能的,也就是说该物联网设备支持双频,如果只能在第一频段扫描到该物联网设备的关联请求,那么判断该物联网设备不支持双频。
较佳的,上述任一实施例中,所述控制模块判断所述物联网设备是否支持双频无线收发功能包括:所述控制模块在第一频段、第二频段分别扫描所述物联网设备的关联请求,判断是否能在第一频段、第二频段均能扫描到所述物联网设备的关联请求,若是,判断所述物联网设备支持双频无线收发功能;否则,判断所述物联网设备不支持双频无线收发功能。
本发明的另一实施例,如图7所示,在上述任一装置实施例的基础上,本发明所述的双频无线路由器还包括:检测模块50,用于检测所述物联网设备是否配网成功,若是,则进一步检测所述路由器的双频功能是否处于开启状态,否则,向所述WIFI终端反馈所述物联网设备配网失败,请求重新发送所述配网数据包;所述控制模块40,还用于当所述检测模块50检测到所述物联网设备配网成功且所述路由器的双频功能不处于开启状态时,控制所述操作模块20开启所述路由器的双频功能。
本发明的装置实施例,增加了检测模块50,检测模块50在中转模块30转发了控制物联网设备的WIFI终端发送的配网数据包后,在预设的时间段后(预计物联网设备接收到配网数据包后需要时间接入网络)开始进行检测,看物联网设备是否已成功接入网络了,即是否配网成功了,如果配网成功,那么就进一 步检测看路由器的双频功能是否处于开启状态,若未开启,则控制模块40控制操作模块20开启路由器的双频功能。当然,如果检测模块50在预设时间段后检测到物联网设备配网没有成功,那么就向WIFI终端反馈配网失败的信息,请求WIFI终端重新发送配网数据包,重新进行配网操作。
本发明的装置实施例与本发明的方法实施例对应,因此,本发明的方法实施例的技术细节也同样适用于本发明的装置实施例。为减少重复,本发明不再赘述。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

  1. 一种基于路由器的物联网设备的配置方法,其特征在于,包括:
    S100接收控制物联网设备的WIFI终端发送的配网数据包;
    S200判断所述物联网设备是否支持双频无线收发功能,若是,进入步骤S400;若否,进入下一步骤;
    S300关闭路由器自身的双频功能,使得接入所述路由器网络的终端均工作在第一频段,进入步骤S400;
    S400转发所述控制物联网设备的WIFI终端发送的配网数据包,便于所述物联网设备接收到所述配网数据包后连接网络。
  2. 根据权利要求1所述的一种基于路由器的物联网设备的配置方法,其特征在于,所述步骤S400包括:
    S410判断所述控制物联网设备的WIFI终端是否工作在第一频段,若是,进入步骤S420,否则进入步骤S430;
    S420在第一频段转发控制物联网设备的WIFI终端发送的配网数据包,便于所述物联网设备接收到所述配网数据包后连接网络;
    S430在第二频段转发控制物联网设备的WIFI终端发送的配网数据包,便于所述物联网设备接收到所述配网数据包后连接网络。
  3. 根据权利要求1所述的一种基于路由器的物联网设备的配置方法,其特征在于,在所述步骤S300之前还包括:
    S250判断所述控制物联网设备的WIFI终端工作的频段是否为所述物联网设备支持的频段,若是,进入步骤S400,否则进入步骤S300。
  4. 根据权利要求1所述的一种基于路由器的物联网设备的配置方法,其特征在于,所述步骤S200包括:
    S210在第一频段、第二频段分别扫描所述物联网设备的关联请求,判断是否能在第一频段、第二频段均能扫描到所述物联网设备的关联请求,若是,进入步骤S220,否则进入步骤S230;
    S220判断所述物联网设备支持双频无线收发功能,进入步骤S400;
    S230判断所述物联网设备不支持双频无线收发功能,进入下一步骤。
  5. 根据权利要求1-4任一项所述的一种基于路由器的物联网设备的配置方法,其特征在于,还包括:
    S500预设时间段后,检测所述物联网设备是否配网成功,若是,进入步骤S700,否则,进入步骤S600;
    S600向所述WIFI终端反馈配网失败,请求重新发送所述配网数据包,返回步骤S100;
    S700判断所述路由器的双频功能是否处于开启状态,若否,进入步骤S800;
    S800开启所述路由器的双频功能。
  6. 一种双频无线路由器,其特征在于,包括:
    接收模块,用于接收控制物联网设备的WIFI终端发送的配网数据包;
    操作模块,用于在控制模块的控制下关闭路由器自身的双频功能;
    中转模块,用于转发所述配网数据包,便于所述物联网设备接收到所述配网数据包后连接网络;
    所述控制模块,用于判断所述物联网设备是否支持双频无线收发功能,若是,则控制所述中转模块将所述接收模块接收的所述配网数据包进行转发,便于所述物联网设备接收到所述配网数据包后连接网络;否则控制所述操作模块关闭所述路由器自身的双频功能,使得接入所述路由器网络的终端均工作在第一频段,然后再通过所述中转模块转发所述接收模块接收的控制物联网设备的 WIFI终端发送的配网数据包;便于所述物联网设备接收到所述配网数据包后连接网络。
  7. 根据权利要求6所述的一种双频无线路由器,其特征在于,
    所述中转模块包括:
    第一中转子模块,用于在第一频段转发所述接收模块接收的控制物联网设备的WIFI终端发送的配网数据包,便于所述物联网设备接收所述配网数据包后连接网络;
    第二中转子模块,用于在第二频段转发所述接收模块接收的控制物联网设备的WIFI终端发送的配网数据包,便于所述物联网设备接收所述配网数据包后连接网络;
    所述控制模块包括:
    还用于判断所述控制物联网设备的WIFI终端是否工作在第一频段,若是,则通过所述第一中转子模块转发所述配网数据包,否则,通过所述第二中转子模块转发所述配网数据包。
  8. 根据权利要求6所述的一种双频无线路由器,其特征在于,所述控制模块,还用于当判断所述物联网设备不支持双频无线收发功能后,进一步判断所述控制物联网设备的WIFI终端工作的频段是否为所述物联网设备支持的频段,若是,则控制所述中转模块转发所述接收模块接收的配网数据包,否则,控制所述操作模块关闭所述路由器的双频功能,使得接入所述路由器网络的终端均工作在第一频段。
  9. 根据权利要求6所述的一种双频无线路由器,其特征在于,所述控制模块判断所述物联网设备是否支持双频无线收发功能包括:所述控制模块在第一频段、第二频段分别扫描所述物联网设备的关联请求,判断是否能在第一频段、 第二频段均能扫描到所述物联网设备的关联请求,若是,判断所述物联网设备支持双频无线收发功能;否则,判断所述物联网设备不支持双频无线收发功能。
  10. 根据权利要求6-9任一项所述的一种双频无线路由器,其特征在于,还包括:
    检测模块,用于检测所述物联网设备是否配网成功,若是,则进一步检测所述路由器的双频功能是否处于开启状态,否则,向所述WIFI终端反馈所述物联网设备配网失败,请求重新发送所述配网数据包;
    所述控制模块,还用于当所述检测模块检测到所述物联网设备配网成功且所述路由器的双频功能不处于开启状态时,控制所述操作模块开启所述路由器的双频功能。
PCT/CN2017/116422 2017-10-11 2017-12-15 基于路由器的物联网设备的配置方法及双频无线路由器 WO2019071807A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710941426.0A CN107613530B (zh) 2017-10-11 2017-10-11 基于路由器的物联网设备的配置方法及双频无线路由器
CN201710941426.0 2017-10-11

Publications (1)

Publication Number Publication Date
WO2019071807A1 true WO2019071807A1 (zh) 2019-04-18

Family

ID=61068164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116422 WO2019071807A1 (zh) 2017-10-11 2017-12-15 基于路由器的物联网设备的配置方法及双频无线路由器

Country Status (2)

Country Link
CN (1) CN107613530B (zh)
WO (1) WO2019071807A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021077266A1 (zh) * 2019-10-21 2021-04-29 北京小米移动软件有限公司 网络接入方法、装置、通信设备及存储介质
EP3883299A4 (en) * 2018-12-29 2021-12-01 Huawei Technologies Co., Ltd. PROCESS ALLOWING AN INTELLIGENT HOME APPLIANCE TO ACCESS A NETWORK AND ASSOCIATED DEVICE

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111343055B (zh) * 2018-12-18 2021-08-20 美的集团股份有限公司 网络连接方法、物联网系统和物联网设备
CN109951881B (zh) * 2019-03-26 2021-06-25 维沃移动通信有限公司 一种信道切换方法、终端设备及路由设备
CN111314992B (zh) * 2020-02-11 2022-04-19 浙江大华技术股份有限公司 热点模块的连接方法及装置、热点列表的广播方法及装置
CN112422313B (zh) * 2020-09-29 2023-10-17 漳州立达信光电子科技有限公司 一种基于上位机的配对方法及相关装置
CN113747543B (zh) * 2021-08-03 2022-11-25 荣耀终端有限公司 配网方法、设备、装置及存储介质
CN115150217A (zh) * 2022-06-30 2022-10-04 青岛海信移动通信技术股份有限公司 智能家居设备的配网方法、装置及设备
CN116456408B (zh) * 2023-01-18 2023-11-07 广州鲁邦通物联网科技股份有限公司 提高路由器5g频段利用率的方法和路由器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104640166A (zh) * 2014-10-29 2015-05-20 小米科技有限责任公司 通信方法及装置
US20150257040A1 (en) * 2014-03-04 2015-09-10 International Business Machines Corporation Configurable wireless switched network
CN105163366A (zh) * 2015-09-24 2015-12-16 小米科技有限责任公司 无线网络连接方法和装置
CN105282773A (zh) * 2015-09-14 2016-01-27 深圳市江波龙科技有限公司 WiFi设备的配置方法和系统
CN205377919U (zh) * 2016-01-18 2016-07-06 陈安杰 一种双频无线路由器
CN105873179A (zh) * 2016-05-19 2016-08-17 北京小米移动软件有限公司 无线网络接入方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150257040A1 (en) * 2014-03-04 2015-09-10 International Business Machines Corporation Configurable wireless switched network
CN104640166A (zh) * 2014-10-29 2015-05-20 小米科技有限责任公司 通信方法及装置
CN105282773A (zh) * 2015-09-14 2016-01-27 深圳市江波龙科技有限公司 WiFi设备的配置方法和系统
CN105163366A (zh) * 2015-09-24 2015-12-16 小米科技有限责任公司 无线网络连接方法和装置
CN205377919U (zh) * 2016-01-18 2016-07-06 陈安杰 一种双频无线路由器
CN105873179A (zh) * 2016-05-19 2016-08-17 北京小米移动软件有限公司 无线网络接入方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3883299A4 (en) * 2018-12-29 2021-12-01 Huawei Technologies Co., Ltd. PROCESS ALLOWING AN INTELLIGENT HOME APPLIANCE TO ACCESS A NETWORK AND ASSOCIATED DEVICE
WO2021077266A1 (zh) * 2019-10-21 2021-04-29 北京小米移动软件有限公司 网络接入方法、装置、通信设备及存储介质

Also Published As

Publication number Publication date
CN107613530B (zh) 2020-03-13
CN107613530A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
WO2019071807A1 (zh) 基于路由器的物联网设备的配置方法及双频无线路由器
CA2656445C (en) Managing associations in ad hoc networks
JP6622428B2 (ja) アクセスポイント間のハンドオーバのための方法、及び端末機器
EP2723137B1 (en) Apparatus for setting up network for ip communication in mobile terminal
US10873899B2 (en) Access point initiated neighbor report request
WO2019128906A1 (zh) 一种待配网设备接入网络热点设备的方法、装置和系统
US8131209B1 (en) Repeater configuration and management
KR20130044922A (ko) 휴대단말기에서 WPS(Wi-Fi Protecte d Setup)을 이용한 와이파이 연결 방법 및 장치
WO2015168850A1 (zh) Wi-Fi网络连接方法、Wi-Fi控制器及Wi-Fi设备
JP2007189658A (ja) 無線セキュリティーの設定方法
KR101613170B1 (ko) 휴대용 단말기에서 억세스 포인트 기능을 제공하기 위한 장치 및 방법
KR20120025114A (ko) 무선 통신 시스템에서 와이 파이 연결 확인을 위한 장치 및 방법
CN109923900B (zh) 对通向双频带wi-fi直连自治组所有者的wi-fi直连客户端连接进行频带转向
US10425888B2 (en) Wireless communication apparatus and method of controlling wireless communication apparatus
US9426278B2 (en) Location based mobile communications device auto-configuration
US11496953B2 (en) Distributed access points for wireless networks
CN113905454A (zh) 无线通信装置、无线通信系统和连接无线通信的方法
CN114339903A (zh) 一种无线通信方法及电子设备
WO2011035597A1 (zh) 一种建立传输无线信号的通道的方法、装置和系统
US20140321409A1 (en) Method and apparatus for determining operating mode of device in wireless communication system
US11632716B2 (en) Wireless communication method used in wireless communication device and wireless communication device
CN112055372B (zh) 客户前置设备及客户前置设备工作方法
WO2020048360A1 (zh) 业务标识显示控制方法及装置
US20230164675A1 (en) Access point in mesh network for initiating dynamic frequency selection flow and methods of operating the same
CN114258011B (zh) 信息发送方法、信息接收方法、装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928740

Country of ref document: EP

Kind code of ref document: A1