WO2019071785A1 - 一种飞行器的自主定位方法和系统 - Google Patents

一种飞行器的自主定位方法和系统 Download PDF

Info

Publication number
WO2019071785A1
WO2019071785A1 PCT/CN2017/115515 CN2017115515W WO2019071785A1 WO 2019071785 A1 WO2019071785 A1 WO 2019071785A1 CN 2017115515 W CN2017115515 W CN 2017115515W WO 2019071785 A1 WO2019071785 A1 WO 2019071785A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
external force
autonomous positioning
module
preset position
Prior art date
Application number
PCT/CN2017/115515
Other languages
English (en)
French (fr)
Inventor
刘丰
Original Assignee
深圳市富斯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市富斯科技有限公司 filed Critical 深圳市富斯科技有限公司
Publication of WO2019071785A1 publication Critical patent/WO2019071785A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions

Definitions

  • the present application relates to the field of aircraft control technology, and in particular, to an autonomous positioning method and system for a self-timer aircraft
  • the control of the aircraft generally uses a wireless remote controller of the peripheral device, or after using the mobile terminal to wirelessly connect the aircraft, the flight control of the aircraft or the initial position of the aircraft is controlled by the control of the wireless remote controller or the mobile terminal, but This has a relatively high control requirement for the adjustment of the small distance of the aircraft, and requires the controller to achieve an accurate distance shift through a complicated manipulation process;
  • patent application CN106527479A discloses a control method and device for the unmanned aerial vehicle. It discloses that when the non-disturbing force is determined by the trend of the linear acceleration, the hovering operation is performed when the non-interfering force is used, which solves the control of the initial position of the aircraft to some extent, but it is difficult to distinguish the speed detection. It is the disturbance force such as wind or the non-interference force manually controlled by the user, which makes the system easy to misjudge, and the accuracy of the aircraft cannot be guaranteed very well.
  • the present application proposes a technical solution for judging the external force type of the aircraft to distinguish whether the external force received by the aircraft is interference, improving the accuracy of the aircraft to determine whether the interference force is accurate, and the aircraft can be easily controlled and kept accurate. control.
  • the application proposes an autonomous positioning method for an aircraft, comprising:
  • the method for autonomous positioning of an aircraft wherein the step of real-time acquiring an external force type sensed by the aircraft at the preset position further comprises: determining coordinates and motion state information of the aircraft, and the coordinates and the motion The status information is fed back to the controller of the aircraft in real time.
  • the method for autonomous positioning of an aircraft wherein the external force type comprises: a user's active external force and interference force.
  • the method for autonomous positioning of an aircraft wherein the analyzing and determining the external force type comprises: sensing a pressure of a preset position on the aircraft, the preset position having at least two regions, when the two regions are simultaneously sensed When the pressure exceeds the first threshold, it is determined that the user is actively externally, otherwise, the external force type is determined to be the interference force.
  • the method for autonomous positioning of an aircraft wherein the analyzing and determining the external force type comprises: sensing a pressure of a preset position on the aircraft through a pressure sensor, and sensing a person activity of the preset position by using the infrared sensor, when determining the location When the pressure exceeds the second threshold and the pressure of the human activity is sensed, it is determined that the user is actively externally.
  • the method for autonomous positioning of an aircraft wherein the analyzing and determining the external force type comprises: sensing a pressure of a preset position on the aircraft through a pressure sensor, and detecting fingerprint information by using a fingerprint sensor, when determining that the pressure exceeds the second When the threshold value is sensed and the preset fingerprint information is sensed, it is determined that the user is actively externally.
  • the autonomous positioning method of the aircraft wherein the preset position is located on a lower side of the aircraft or a side of the aircraft.
  • the autonomous positioning method of the aircraft wherein the generating the control instruction of the at least one aircraft according to the result of the analysis of the external force type comprises: generating an active positioning control command when the determination result is a user external force
  • the aircraft performs corresponding actions along the direction of the external force, performs autonomous positioning at the last position, and feeds the coordinates of the autonomous positioning to the controller; when the judgment result is the interference force, an anti-interference force control command is generated, and the aircraft returns The original position before the disturbance is disturbed or the flight torque of the same magnitude and direction is generated.
  • the autonomous positioning method of the aircraft wherein the active positioning control command comprises: stopping the flight power of the aircraft, and monitoring the coordinate position of the aircraft in real time.
  • An autonomous positioning system for an aircraft comprising:
  • the detecting module acquires the type of external force sensed by the aircraft at the preset position in real time
  • Judging module analyzing and judging the external force type
  • a control module based on the result of the judging module analyzing the judgment, generating a control instruction of the at least one aircraft; and controlling the aircraft to perform a flight or autonomous positioning action according to the control instruction of the at least one aircraft.
  • the autonomous positioning system of the aircraft wherein the external force type includes: a user's active external force and interference force.
  • the autonomous positioning system of the aircraft further comprising a sensing module, the sensing module being disposed at the preset position of the aircraft for sensing a pressure received by a preset position on the aircraft, the preset position There are at least two regions, and at least two sensing modules are disposed on each region. When the two regions simultaneously sense that the pressure exceeds the first threshold, the user is determined to be an active external force. Otherwise, the external force type is determined as the interference force.
  • the autonomous positioning system of the aircraft wherein the type of the area setting comprises a planar structure, a finger-shaped arc-shaped concave structure or a pressing switch; when the area is set to a planar structure, the at least two sensing The modules are arranged in a horizontal or vertical straight line; when the area is set to be a finger-shaped arc-shaped concave structure, the at least two sensing modules include a sensing mode at which the bottom end of the concave structure is disposed a block and a sensing module for providing a concave side wall; when the area is set as a pressing switch, a photoelectric switch is arranged on both sides of the switch or a travel switch is arranged at the bottom of the switch, and when the switch is pressed, the photoelectric switch or the stroke The switch emits a pulse signal.
  • the autonomous positioning system of the aircraft further includes a sensing module, the sensing module is disposed at the preset position of the aircraft, and the sensing module includes a pressure sensor and an infrared sensor.
  • the autonomous positioning system of the aircraft further includes a sensing module, the sensing module is disposed at the preset position of the aircraft, and the sensing module includes a pressure sensor and a fingerprint sensor.
  • the autonomous positioning system of the aircraft wherein the control module includes an instruction generation module, an action control module, and a feedback information module; and the instruction generation module generates an active positioning control command when the determination result is a user active external force,
  • the motion control module controls the aircraft to perform corresponding actions along the direction of the external force action, performs autonomous positioning at the last position, and acquires coordinates that will be autonomously positioned by the feedback information module; when the command generation module determines that the interference power is
  • the motion control module generates an anti-interference force control command, and the aircraft returns an original position before the disturbance is interfered with or generates a flight torque that is equal in magnitude and opposite to the interference force, and the feedback information module acquires the anti-interference force. Coordinate information.
  • the present application accurately judges the external force type in various ways, and judges the external force type of the preset position to prevent the aircraft from misjudged the external force. At the same time, it can simply control the flight behavior of the aircraft and reduce the control difficulty of the aircraft, especially in In the process of controlling the accurate positioning of the aircraft during the self-timer, it is possible to quickly control the aircraft to the desired position.
  • the control of the aircraft is made simpler, the application is more common, the user adapts to a wider range of people, and the viscosity of the user is improved, especially when the self-photographing is taken, the positioning can be quickly maintained and the photographing angle is maintained.
  • 1 is a schematic diagram of an autonomous positioning method of an aircraft of the present application.
  • FIG. 2 is a schematic diagram of an autonomous positioning system of the aircraft of the present application.
  • FIG. 1 a schematic diagram of an autonomous positioning method for an aircraft is provided for the present application, including:
  • the method for autonomous positioning of an aircraft wherein the step of real-time acquiring an external force type sensed by the aircraft at the preset position further comprises: determining coordinates and motion state information of the aircraft, and the coordinates and the motion The status information is fed back to the controller of the aircraft in real time.
  • the method for autonomous positioning of an aircraft wherein the external force type comprises: a user's active external force and interference force.
  • the method for autonomous positioning of an aircraft wherein the analyzing and determining the external force type comprises: mode 1: sensing a pressure of a preset position on the aircraft, the preset position having at least two regions, when the two regions are simultaneously When it is sensed that the pressure exceeds the first threshold, it is determined that the user is actively externally, otherwise, the external force type is determined to be the interference force.
  • mode 1 sensing a pressure of a preset position on the aircraft, the preset position having at least two regions, when the two regions are simultaneously
  • the external force type is determined to be the interference force.
  • the at least two regions are located on opposite sides.
  • the method for autonomous positioning of an aircraft wherein the analyzing and determining the external force type comprises: mode 2: sensing a pressure of a preset position on the aircraft by using a pressure sensor, and sensing a person activity at the preset position by using the infrared sensor, When it is judged that the pressure exceeds the second threshold and the pressure of the human activity is sensed, it is determined that the user is actively externally.
  • the method for autonomous positioning of an aircraft wherein the analyzing and determining the external force type comprises: sensing a pressure of a preset position on the aircraft through a pressure sensor, and detecting fingerprint information by using a fingerprint sensor, when determining that the pressure exceeds the second When the threshold value is sensed and the preset fingerprint information is sensed, it is determined that the user is actively externally.
  • the user When the user first uses the fingerprint information of the individual, he or she can choose to capture the fingerprint of the custom finger of the aircraft, such as the thumb and index finger of the right hand, and the fingerprint of the fingerprint detected by the fingerprint sensor, and then determine the correct user force. Other external forces are judged as interference forces, so that the aircraft can be better recognized by the user.
  • the autonomous positioning method of the aircraft wherein the preset position is located on a lower side of the aircraft or a side of the aircraft.
  • the autonomous positioning method of the aircraft wherein the generating the control instruction of the at least one aircraft according to the result of the analysis of the external force type comprises: generating an active positioning control command when the determination result is a user external force
  • the aircraft performs corresponding actions along the direction of the external force, performs autonomous positioning at the last position, and feeds the coordinates of the autonomous positioning to the controller; when the judgment result is the interference force, an anti-interference force control command is generated, and the aircraft returns The original position before the disturbance is disturbed or the flight torque of the same magnitude and direction is generated.
  • the autonomous positioning method of the aircraft wherein the active positioning control command comprises: stopping the flight power of the aircraft, and monitoring the coordinate position of the aircraft in real time.
  • the first threshold is greater than the second threshold.
  • ultrasonic, infrared, optical, voice, and the like can also be used to control the user's active external force or interference force, such as in the corresponding position of the aircraft (up, down, left, right, front, back, etc.)
  • ultrasonic, infrared, and light sensor When the sensor detects the signal of each bit, it performs the judgment whether it is the user's active control. If it is actively controlled by the user, it stays at the last position of the user's active control; otherwise, it returns to the original position.
  • the autonomous positioning control is performed by voice.
  • the aircraft receives the voice command of the operator, the aircraft performs flight positioning according to the voice. For example, after the aircraft receives the voice signal of the designated user, the voice is included in the voice of the user. Moving 20 cm to the left, the aircraft moves 20 cm to the left. If there is no prescribed distance, such as moving to the left, the aircraft moves to the left by a fixed distance.
  • the voice information needs to be debugged in advance to verify the voice identity of the user.
  • FIG. 2 is a schematic diagram of an autonomous positioning system for an aircraft according to the present application, which includes:
  • the detecting module acquires the type of external force sensed by the aircraft at the preset position in real time
  • Judging module analyzing and judging the external force type
  • a control module based on the result of the judging module analyzing the judgment, generating a control instruction of the at least one aircraft; and controlling the aircraft to perform a flight or autonomous positioning action according to the control instruction of the at least one aircraft.
  • the autonomous positioning system of the aircraft wherein the external force type includes: a user's active external force and interference force.
  • the autonomous positioning system of the aircraft further comprising a sensing module, the sensing module being disposed at the preset position of the aircraft for sensing a pressure received by a preset position on the aircraft, the preset position There are at least two regions, and at least two sensing modules are disposed on each region. When the two regions simultaneously sense that the pressure exceeds the first threshold, the user is determined to be an active external force. Otherwise, the external force type is determined as the interference force.
  • the autonomous positioning system of the aircraft wherein the type of the area setting comprises a planar structure, a finger-shaped arc-shaped concave structure or a pressing switch; when the area is set to a planar structure, the at least two sensing The module is arranged in a horizontal or vertical straight line; when the area is set to be a finger-shaped arc-shaped concave structure, the at least two sensing modules comprise a sensing module provided with a bottom end of the concave structure and a sensing provided with the concave side wall Module; when the area is set as a push switch, a photoelectric switch is arranged on both sides of the switch or a travel switch is arranged at the bottom of the switch, and when the switch is pressed, the photoelectric switch or the travel switch emits a pulse signal.
  • the autonomous positioning system of the aircraft further includes a sensing module, the sensing module is disposed at the preset position of the aircraft, and the sensing module includes a pressure sensor and an infrared sensor.
  • the autonomous positioning system of the aircraft further includes a sensing module, the sensing module is disposed at the preset position of the aircraft, and the sensing module includes a pressure sensor and a fingerprint sensor.
  • the autonomous positioning system of the aircraft wherein the control module includes an instruction generation module, an action control module, and a feedback information module; and the instruction generation module generates an active positioning control command when the determination result is a user active external force,
  • the motion control module controls the aircraft to perform corresponding actions along the direction of the external force, performs autonomous positioning at the last position, and passes the feedback signal.
  • the information module acquires coordinates that will be autonomously positioned; when the judgment result is a disturbance force, the motion control module generates an anti-interference force control command, and the aircraft returns to the original position before the disturbance is interfered or generates and The flight torque of the same magnitude and opposite direction of the interference force, the feedback information module obtains the coordinate information after the anti-interference force.
  • the present application accurately judges the external force type in various ways, and judges the external force type of the preset position to prevent the aircraft from misjudged the external force. At the same time, it can simply control the flight behavior of the aircraft and reduce the control difficulty of the aircraft, especially in In the process of controlling the accurate positioning of the aircraft during the self-timer, it is possible to quickly control the aircraft to the desired position.
  • the control of the aircraft is made simpler, the application is more common, the user adapts to a wider range of people, and the viscosity of the user is improved, especially when the self-photographing is taken, the positioning can be quickly maintained and the photographing angle is maintained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

一种飞行器的自主定位方法和系统,包括:实时获取飞行器在预设位置所感测的外力类型,对外力类型进行分析判断;基于对外力类型分析判断的结果,生成至少一条飞行器的控制指令;根据至少一条飞行器的控制指令,控制飞行器执行飞行或自主定位动作。能够准确的对外力类型进行判断,通过对预设位置的外力类型进行判断,防止飞行器对外力进行误判断,同时,能够简单控制飞行器飞行动作,降低了飞行器的控制难度,尤其是在控制飞行器自拍过程中的准确定位过程中,能够快速进行控制飞行器到理想的位置。

Description

一种飞行器的自主定位方法和系统 技术领域
本申请涉及飞行器控制技术领域,特别涉及一种自拍飞行器的自主定位方法和系统
背景技术
现有技术中,对于飞行器的控制一般使用外设的无线遥控器,或者使用移动终端进行无线连接飞行器后,通过无线遥控器或移动终端的控制,控制飞行器的飞行动作或者飞行器的初始位置,但是,这对于飞行器的微小距离的调整的控制要求比较高,需要操控者通过复杂的操控过程才能够达到准确的距离偏移;
为了解决上述问题,现有的改进是通过用户直接手动控制直接将飞行器移动到想要的位置,飞行器保持用户手动的最后位置,如专利申请CN106527479A公开了一种无人机的控制方法及装置,其公开了通过线加速度的变化趋势判断是否为非干扰力时,当为非干扰力时进行悬停操作,其在一定程度上解决了飞行器初始位置的控制,但是,对于速度的检测很难区分是风力等干扰力还是用户手动控制的非干扰力,造成系统容易误判断,飞行器的精度无法得到很好的保证。
申请内容
为解决上述技术问题:本申请提出一种对飞行器进行外力类型判断以区分飞行器承受的外力是否为干扰的技术方案,提高了飞行器判断是否为干扰力的精度,飞行器能够简单控制,并且保持准确的控制。
本申请提出一种飞行器的自主定位方法,包括:
实时获取飞行器在预设位置所感测的外力类型,对外力类型进行分析判断;
基于对所述外力类型分析判断的结果,生成至少一条飞行器的控制指令;
根据所述至少一条飞行器的控制指令,控制所述飞行器执行飞行或自主定位动作。
所述的飞行器的自主定位方法,其中,所述实时获取飞行器在预设位置所感测的外力类型的步骤之前,还包括:确定所述飞行器的坐标、运动状态信息,并将所述坐标、运动状态信息实时反馈给飞行器的控制器。
所述的飞行器的自主定位方法,其中,所述外力类型包括:用户主动外力、干扰力。
所述的飞行器的自主定位方法,其中,所述对外力类型进行分析判断包括:感测飞行器上预设位置的压力,所述预设位置具有至少两个区域,当两个区域同时感测到压力超过第一阈值时,则判断为用户主动外力,否则,则判断外力类型为干扰力。
所述的飞行器的自主定位方法,其中,所述至少两个区域位于对侧面。
所述的飞行器的自主定位方法,其中,所述对外力类型进行分析判断包括:通过压力传感器感测飞行器上预设位置的压力,并通过红外传感器感测预设位置的人活动,当判断所述压力超过第二阈值并且感测的是人活动的压力时,则判断为用户主动外力。
所述的飞行器的自主定位方法,其中,所述对外力类型进行分析判断包括:通过压力传感器感测飞行器上预设位置的压力,并通过指纹传感器检测指纹信息,当判断所述压力超过第二阈值并且感测的是预设的指纹信息时,则判断为用户主动外力。
所述的飞行器的自主定位方法,其中,所述预设位置位于飞行器下侧或飞行器的一侧面。
所述的飞行器的自主定位方法,其中,所述根据所述外力类型进分析判断的结果,生成至少一条飞行器的控制指令具体包括:当判断结果为用户主动外力时,生成主动定位控制指令,所述飞行器沿外力作用方向进行相应的动作,在最后的位置进行自主定位,并将自主定位的坐标反馈给控制器;当判断结果为干扰力时,则生成抗干扰力控制指令,所述飞行器返回受干扰力干扰之前的原始位置或者生成与干扰力大小相等、方向相反的飞行力矩。
所述的飞行器的自主定位方法,其中,所述主动定位控制指令包括:停止飞行器的飞行动力,实时监测飞行器的坐标位置。
一种飞行器的自主定位系统,其中,包括:
检测模块,实时获取飞行器在预设位置所感测的外力类型;
判断模块,对外力类型进行分析判断;
控制模块,基于所述判断模块分析判断的结果,生成至少一条飞行器的控制指令;根据所述至少一条飞行器的控制指令,控制所述飞行器执行飞行或自主定位动作。
所述的飞行器的自主定位系统,其中,所述外力类型包括:用户主动外力、干扰力。
所述的飞行器的自主定位系统,其中,还包括感测模块,所述感测模块设置在飞行器的所述预设位置,用于感测飞行器上预设位置承受的压力,所述预设位置具有至少两个区域,每个区域上设置至少两个感测模块,当两个区域同时感测到压力超过第一阈值时,则判断为用户主动外力,否则,则判断外力类型为干扰力。
所述的飞行器的自主定位系统,其中,所述区域设置的类型包括平面状结构、呈手指状圆弧凹状结构或按压状开关;当区域设置为平面状结构时,所述至少两个感测模块呈横向或纵向直线排列;当区域设置为呈手指状圆弧凹状结构时,所述至少两个感测模块包括设置凹状结构的最底端的一感测模 块以及设置凹状侧壁的一感测模块;当区域设置为按压状开关时,在开关两侧设置光电开关或在在开关底部设置行程开关,在所述开关按下时,则光电开关或行程开关发出脉冲信号。
所述的飞行器的自主定位系统,其中,还包括感测模块,所述感测模块设置在飞行器的所述预设位置,所述感测模块包括压力传感器器、红外传感器。
所述的飞行器的自主定位系统,其中,还包括感测模块,所述感测模块设置在飞行器的所述预设位置,所述感测模块包括压力传感器器、指纹传感器。
所述的飞行器的自主定位系统,其中,所述控制模块包括指令生成模块、动作控制模块、反馈信息模块;所述指令生成模块当判断结果为用户主动外力时,生成主动定位控制指令,所述动作控制模块控制所述飞行器沿外力作用方向进行相应的动作,在最后的位置进行自主定位,并通过所述反馈信息模块获取将自主定位的坐标;所述指令生成模块当判断结果为干扰力时,所述动作控制模块则生成抗干扰力控制指令,所述飞行器返回受干扰力干扰之前的原始位置或者生成与干扰力大小相等、方向相反的飞行力矩,所述反馈信息模块获取抗干扰力后的坐标信息。
本申请通过多种方式外力类型进行准确判断,通过对预设位置的外力类型进行判断,防止飞行器对外力进行误判断,同时,能够简单控制飞行器飞行动作,降低了飞行器的控制难度,尤其是在控制飞行器自拍过程中的准确定位过程中,能够快速进行控制飞行器到理想的位置。使飞行器的控制更加简单,使其应用更加普遍,用户的适应人群更加广泛,提高了用户的粘度,尤其是在自拍时,能够快速定位,保持拍照角度。
附图说明
图1为本申请飞行器的自主定位方法的示意图。
图2为本申请飞行器的自主定位系统的示意图。
具体实施方式
下面结合附图对本申请作进一步详细描述,有必要在此指出的是,以下具体实施方式只用于对本申请进行进一步的说明,不能理解为对本申请保护范围的限制,该领域的技术人员可以根据上述申请内容对本申请作出一些非本质的改进和调整。
如图1所示,为本申请提出一种飞行器的自主定位方法的示意图,包括:
实时获取飞行器在预设位置所感测的外力类型,对外力类型进行分析判断;
基于对所述外力类型分析判断的结果,生成至少一条飞行器的控制指令;
根据所述至少一条飞行器的控制指令,控制所述飞行器执行飞行或自主定位动作。
所述的飞行器的自主定位方法,其中,所述实时获取飞行器在预设位置所感测的外力类型的步骤之前,还包括:确定所述飞行器的坐标、运动状态信息,并将所述坐标、运动状态信息实时反馈给飞行器的控制器。
所述的飞行器的自主定位方法,其中,所述外力类型包括:用户主动外力、干扰力。
所述的飞行器的自主定位方法,其中,所述对外力类型进行分析判断包括:方式一:感测飞行器上预设位置的压力,所述预设位置具有至少两个区域,当两个区域同时感测到压力超过第一阈值时,则判断为用户主动外力,否则,则判断外力类型为干扰力。所述至少两个区域位于对侧面。
所述的飞行器的自主定位方法,其中,所述对外力类型进行分析判断包括:方式二:通过压力传感器感测飞行器上预设位置的压力,并通过红外传感器感测预设位置的人活动,当判断所述压力超过第二阈值并且感测的是人活动的压力时,则判断为用户主动外力。
所述的飞行器的自主定位方法,其中,所述对外力类型进行分析判断包括:通过压力传感器感测飞行器上预设位置的压力,并通过指纹传感器检测指纹信息,当判断所述压力超过第二阈值并且感测的是预设的指纹信息时,则判断为用户主动外力。
用户在初次使用时,录入个人特定的指纹信息,可以选择自己抓取飞行器的习惯手指的指纹,如右手的大拇指和食指,指纹传感器检测的所录入的指纹时,才确定是正确的用户外力,其他的外力则都判断为干扰力,这样对于飞行器能够对用户有更好的辨识度。
所述的飞行器的自主定位方法,其中,所述预设位置位于飞行器下侧或飞行器的一侧面。
所述的飞行器的自主定位方法,其中,所述根据所述外力类型进分析判断的结果,生成至少一条飞行器的控制指令具体包括:当判断结果为用户主动外力时,生成主动定位控制指令,所述飞行器沿外力作用方向进行相应的动作,在最后的位置进行自主定位,并将自主定位的坐标反馈给控制器;当判断结果为干扰力时,则生成抗干扰力控制指令,所述飞行器返回受干扰力干扰之前的原始位置或者生成与干扰力大小相等、方向相反的飞行力矩。
所述的飞行器的自主定位方法,其中,所述主动定位控制指令包括:停止飞行器的飞行动力,实时监测飞行器的坐标位置。
其中,所述第一阈值大于所述第二阈值,当使用方式一按压时,用户需要使用更大的力气进行按压所述预设位置的区域,以使飞行器能够检测到外力,避免飞行器进行误判断。
作为优选的实施例,还可以采用超声波、红外、光感、语音等技术进行用户主动外力控制或干扰力进行控制,如在飞行器的相应方位(上、下、左、右、前、后等)按照超声、红外、光感波传感器, 当传感器检测到各方位的信号后执行判断是否为用户主动控制,如果为用户主动控制,则停留在用户主动控制的最后位置,否则,则返回原始位置。
作为优选的实施例,通过语音进行自主定位控制,当飞行器接收到操作者的语音指令时,飞行器根据语音进行飞行定位,如飞行器接收到当指定的用户的语音信号后,当用户语音中包含了向左移动20cm,则飞行器向左移动20cm,如果没有规定距离,如向左移动,则飞行器向左移动设定的固定距离。所述语音信息需要预先进行音频调试,验证用户的语音身份。
如图2所示为本申请一种飞行器的自主定位系统的示意图,其中,包括:
检测模块,实时获取飞行器在预设位置所感测的外力类型;
判断模块,对外力类型进行分析判断;
控制模块,基于所述判断模块分析判断的结果,生成至少一条飞行器的控制指令;根据所述至少一条飞行器的控制指令,控制所述飞行器执行飞行或自主定位动作。
所述的飞行器的自主定位系统,其中,所述外力类型包括:用户主动外力、干扰力。
所述的飞行器的自主定位系统,其中,还包括感测模块,所述感测模块设置在飞行器的所述预设位置,用于感测飞行器上预设位置承受的压力,所述预设位置具有至少两个区域,每个区域上设置至少两个感测模块,当两个区域同时感测到压力超过第一阈值时,则判断为用户主动外力,否则,则判断外力类型为干扰力。
所述的飞行器的自主定位系统,其中,所述区域设置的类型包括平面状结构、呈手指状圆弧凹状结构或按压状开关;当区域设置为平面状结构时,所述至少两个感测模块呈横向或纵向直线排列;当区域设置为呈手指状圆弧凹状结构时,所述至少两个感测模块包括设置凹状结构的最底端的一感测模块以及设置凹状侧壁的一感测模块;当区域设置为按压状开关时,在开关两侧设置光电开关或在在开关底部设置行程开关,在所述开关按下时,则光电开关或行程开关发出脉冲信号。
所述的飞行器的自主定位系统,其中,还包括感测模块,所述感测模块设置在飞行器的所述预设位置,所述感测模块包括压力传感器器、红外传感器。
所述的飞行器的自主定位系统,其中,还包括感测模块,所述感测模块设置在飞行器的所述预设位置,所述感测模块包括压力传感器器、指纹传感器。
所述的飞行器的自主定位系统,其中,所述控制模块包括指令生成模块、动作控制模块、反馈信息模块;所述指令生成模块当判断结果为用户主动外力时,生成主动定位控制指令,所述动作控制模块控制所述飞行器沿外力作用方向进行相应的动作,在最后的位置进行自主定位,并通过所述反馈信 息模块获取将自主定位的坐标;所述指令生成模块当判断结果为干扰力时,所述动作控制模块则生成抗干扰力控制指令,所述飞行器返回受干扰力干扰之前的原始位置或者生成与干扰力大小相等、方向相反的飞行力矩,所述反馈信息模块获取抗干扰力后的坐标信息。
本申请通过多种方式外力类型进行准确判断,通过对预设位置的外力类型进行判断,防止飞行器对外力进行误判断,同时,能够简单控制飞行器飞行动作,降低了飞行器的控制难度,尤其是在控制飞行器自拍过程中的准确定位过程中,能够快速进行控制飞行器到理想的位置。使飞行器的控制更加简单,使其应用更加普遍,用户的适应人群更加广泛,提高了用户的粘度,尤其是在自拍时,能够快速定位,保持拍照角度。

Claims (17)

  1. 一种飞行器的自主定位方法,其特征在于,包括:
    实时获取飞行器在预设位置所感测的外力类型,对外力类型进行分析判断;
    基于对所述外力类型分析判断的结果,生成至少一条飞行器的控制指令;
    根据所述至少一条飞行器的控制指令,控制所述飞行器执行飞行或自主定位动作。
  2. 如权利要求1所述的飞行器的自主定位方法,其特征在于,所述实时获取飞行器在预设位置所感测的外力类型的步骤之前,还包括:确定所述飞行器的坐标、运动状态信息,并将所述坐标、运动状态信息实时反馈给飞行器的控制器。
  3. 如权利要求1所述的飞行器的自主定位方法,其特征在于,所述外力类型包括:用户主动外力、干扰力。
  4. 如权利要求3所述的飞行器的自主定位方法,其特征在于,所述对外力类型进行分析判断包括:感测飞行器上预设位置的压力,所述预设位置具有至少两个区域,当两个区域同时感测到压力超过第一阈值时,则判断为用户主动外力,否则,则判断外力类型为干扰力。
  5. 如权利要求4所述的飞行器的自主定位方法,其特征在于,所述至少两个区域位于对侧面。
  6. 如权利要求3所述的飞行器的自主定位方法,其特征在于,所述对外力类型进行分析判断包括:通过压力传感器感测飞行器上预设位置的压力,并通过红外传感器感测预设位置的人活动,当判断所述压力超过第二阈值并且感测的是人活动的压力时,则判断为用户主动外力。
  7. 如权利要求3所述的飞行器的自主定位方法,其特征在于,所述对外力类型进行分析判断包括:通过压力传感器感测飞行器上预设位置的压力,并通过指纹传感器检测指纹信息,当判断所述压力超过第二阈值并且感测的是预设的指纹信息时,则判断为用户主动外力。
  8. 如权利要求6或7所述的飞行器的自主定位方法,其特征在于,所述预设位置位于飞行器下侧或飞行器的一侧面。
  9. 如权利要求3所述的飞行器的自主定位方法,其特征在于,所述根据所述外力类型进分析判断的结果,生成至少一条飞行器的控制指令具体包括:当判断结果为用户主动外力时,生成主动定位控制指令,所述飞行器沿外力作用方向进行相应的动作,在最后的位置进行自主定位,并将自主定位的坐标反馈给控制器;当判断结果为干扰力时,则生成抗干扰力控制指令,所述飞行器返回受干扰力干扰之前的原始位置或者生成与干扰力大小相等、方向相反的飞行力矩。
  10. 如权利要求9所述的飞行器的自主定位方法,其特征在于,所述主动定位控制指令包括:停止飞行器的飞行动力,实时监测飞行器的坐标位置。
  11. 一种飞行器的自主定位系统,其特征在于,包括:
    检测模块,实时获取飞行器在预设位置所感测的外力类型;
    判断模块,对外力类型进行分析判断;
    控制模块,基于所述判断模块分析判断的结果,生成至少一条飞行器的控制指令;根据所述至少一条飞行器的控制指令,控制所述飞行器执行飞行或自主定位动作。
  12. 如权利要求11所述的飞行器的自主定位系统,其特征在于,所述外力类型包括:用户主动外力、干扰力。
  13. 如权利要求12所述的飞行器的自主定位系统,其特征在于,还包括感测模块,所述感测模块设置在飞行器的所述预设位置,用于感测飞行器上预设位置承受的压力,所述预设位置具有至少两个区域,每个区域上设置至少两个感测模块,当两个区域同时感测到压力超过第一阈值时,则判断为用户主动外力,否则,则判断外力类型为干扰力。
  14. 如权利要求13所述的飞行器的自主定位系统,其特征在于,所述区域设置的类型包括平面状结构、呈手指状圆弧凹状结构或按压状开关;当区域设置为平面状结构时,所述至少两个感测模块呈横向或纵向直线排列;当区域设置为呈手指状圆弧凹状结构时,所述至少两个感测模块包括设置凹状结构的最底端的一感测模块以及设置凹状侧壁的一感测模块;当区域设置为按压状开关时,在开关两侧设置光电开关或在在开关底部设置行程开关,在所述开关按下时,则光电开关或行程开关发出脉冲信号。
  15. 如权利要求11所述的飞行器的自主定位系统,其特征在于,还包括感测模块,所述感测模块设置在飞行器的所述预设位置,所述感测模块包括压力传感器器、红外传感器。
  16. 如权利要求11所述的飞行器的自主定位系统,其特征在于,还包括感测模块,所述感测模块设置在飞行器的所述预设位置,所述感测模块包括压力传感器器、指纹传感器。
  17. 如权利要求11所述的飞行器的自主定位系统,其特征在于,所述控制模块包括指令生成模块、动作控制模块、反馈信息模块;所述指令生成模块当判断结果为用户主动外力时,生成主动定位控制指令,所述动作控制模块控制所述飞行器沿外力作用方向进行相应的动作,在最后的位置进行自主定位,并通过所述反馈信息模块获取将自主定位的坐标;所述指令生成模块当判断结果为干扰力时,所述动作控制模块则生成抗干扰力控制指令,所述飞行器返回受干扰力干扰之前的原始位置或者生成与干扰力大小相等、方向相反的飞行力矩,所述反馈信息模块获取抗干扰力后的坐标信息。
PCT/CN2017/115515 2017-10-13 2017-12-11 一种飞行器的自主定位方法和系统 WO2019071785A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710952404.4 2017-10-13
CN201710952404.4A CN107544546B (zh) 2017-10-13 2017-10-13 一种飞行器的自主定位方法和系统

Publications (1)

Publication Number Publication Date
WO2019071785A1 true WO2019071785A1 (zh) 2019-04-18

Family

ID=60966988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115515 WO2019071785A1 (zh) 2017-10-13 2017-12-11 一种飞行器的自主定位方法和系统

Country Status (2)

Country Link
CN (1) CN107544546B (zh)
WO (1) WO2019071785A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160081839A (ko) * 2014-12-30 2016-07-08 계명대학교 산학협력단 무인 항공기 제어 장치 및 이를 이용한 무인 항공기 제어 방법
CN205396523U (zh) * 2016-01-13 2016-07-27 深圳一电航空技术有限公司 无人机
CN106020220A (zh) * 2016-05-24 2016-10-12 零度智控(北京)智能科技有限公司 无人机、无人机飞行控制方法及装置
CN106527479A (zh) * 2016-11-29 2017-03-22 广州极飞科技有限公司 一种无人机的控制方法及装置
CN106708083A (zh) * 2015-11-18 2017-05-24 朝阳科技大学 无人飞行器的控制方法及其控制系统
US20170225782A1 (en) * 2015-09-18 2017-08-10 Nixie Labs, Inc. Stowable unmanned aerial vehicles and associated systems and methods

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102221925B (zh) * 2011-04-22 2013-04-17 惠州Tcl移动通信有限公司 移动终端及其触控输入识别方法
CN104598108B (zh) * 2015-01-02 2020-12-22 北京时代沃林科技发展有限公司 一种智能终端触控方式比例遥控被遥控设备的方法
CN105072248A (zh) * 2015-07-06 2015-11-18 努比亚技术有限公司 一种终端设备的控制方法及相应终端设备
CN105539874B (zh) * 2016-01-08 2019-03-15 天津远度科技有限公司 一种无人机手抛起飞方法及系统
CN105739533B (zh) * 2016-03-29 2019-09-03 普宙飞行器科技(深圳)有限公司 一种基于触摸感应交互的无人机控制方法及系统
CN107153425A (zh) * 2017-07-06 2017-09-12 杨顺伟 无人机抗外力干扰方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160081839A (ko) * 2014-12-30 2016-07-08 계명대학교 산학협력단 무인 항공기 제어 장치 및 이를 이용한 무인 항공기 제어 방법
US20170225782A1 (en) * 2015-09-18 2017-08-10 Nixie Labs, Inc. Stowable unmanned aerial vehicles and associated systems and methods
CN106708083A (zh) * 2015-11-18 2017-05-24 朝阳科技大学 无人飞行器的控制方法及其控制系统
CN205396523U (zh) * 2016-01-13 2016-07-27 深圳一电航空技术有限公司 无人机
CN106020220A (zh) * 2016-05-24 2016-10-12 零度智控(北京)智能科技有限公司 无人机、无人机飞行控制方法及装置
CN106527479A (zh) * 2016-11-29 2017-03-22 广州极飞科技有限公司 一种无人机的控制方法及装置

Also Published As

Publication number Publication date
CN107544546B (zh) 2020-04-28
CN107544546A (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
JP5383727B2 (ja) 空気調和機およびこの空気調和機を備えた空気調和システム
CN104991561B (zh) 一种手持无人机回收的方法、装置及无人机
EP3027101B1 (en) Auto-cleaning system, cleaning robot and method of controlling the cleaning robot
TW201339903A (zh) 無人飛行載具控制系統及方法
US10613538B2 (en) Mobile body control system, control method, and storage medium
CN105912120B (zh) 基于人脸识别的移动机器人人机交互控制方法
CN105930775B (zh) 基于灵敏度参数的人脸朝向识别方法
KR20150107597A (ko) 제스처 인식 장치 및 제스처 인식 장치의 제어 방법
JP2020001109A5 (zh)
CN103942524A (zh) 手势辨识模块及手势辨识方法
CN107680351A (zh) 一种快速坐姿矫正提醒及护眼方法
CN210298003U (zh) 一种具有人脸识别功能的自动调节式麦克风架
CN108227729A (zh) 一种体感控制系统及体感控制方法
CN113934307B (zh) 一种根据手势和场景开启电子设备的方法
WO2019071785A1 (zh) 一种飞行器的自主定位方法和系统
KR101191640B1 (ko) 사용자에게 정보를 전달하는 정보전달장치 및 그 방법
CN108089694A (zh) 一种智能控制方法及设备
JP2012223869A (ja) 作業台システム
CN104679294B (zh) 触控操作装置和触控操作防抖方法
US8310547B2 (en) Device for recognizing motion and method of recognizing motion using the same
JPH05298015A (ja) 視線検出システムおよび情報処理システム
KR20180000515A (ko) 손가락 모션 감지를 통한 마우스 기능 구현 시스템
US20180307302A1 (en) Electronic device and method for executing interactive functions
CN109409233A (zh) 动作识别装置、动作识别方法以及无人机
KR102302001B1 (ko) 가상현실 상에서의 시각변조를 이용한 사용자 공간지각능력 및 적응능력 평가 방법 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928783

Country of ref document: EP

Kind code of ref document: A1