WO2019071758A1 - Goa电路 - Google Patents

Goa电路 Download PDF

Info

Publication number
WO2019071758A1
WO2019071758A1 PCT/CN2017/113475 CN2017113475W WO2019071758A1 WO 2019071758 A1 WO2019071758 A1 WO 2019071758A1 CN 2017113475 W CN2017113475 W CN 2017113475W WO 2019071758 A1 WO2019071758 A1 WO 2019071758A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
thin film
film transistor
node
clock signal
Prior art date
Application number
PCT/CN2017/113475
Other languages
English (en)
French (fr)
Inventor
吕晓文
周依芳
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US15/742,041 priority Critical patent/US10510314B2/en
Publication of WO2019071758A1 publication Critical patent/WO2019071758A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a GOA circuit.
  • LCD Liquid crystal display
  • PDAs personal digital assistants
  • digital cameras computer screens or laptop screens, etc.
  • liquid crystal displays which include a liquid crystal display panel and a backlight module.
  • the working principle of the liquid crystal display panel is to fill liquid crystal molecules between a Thin Film Transistor Array Substrate (TFT Array Substrate) and a Color Filter (CF) substrate, and apply driving on the two substrates.
  • TFT Array Substrate Thin Film Transistor Array Substrate
  • CF Color Filter
  • each pixel is electrically connected to a thin film transistor (TFT), a gate of a thin film transistor is connected to a horizontal scan line, a source is connected to a vertical data line, and a drain (Drain) ) is connected to the pixel electrode.
  • TFT thin film transistor
  • Drain drain
  • Applying a sufficient voltage on the horizontal scanning line causes all the TFTs electrically connected to the horizontal scanning line to be turned on, so that the signal voltage on the data line can be written into the pixel, and the transmittance of different liquid crystals is controlled to control the color.
  • the driving of the horizontal scanning line of the active liquid crystal display panel is mainly completed by an external integrated circuit (IC), and the external IC can control the stepwise charging and discharging of the horizontal scanning lines of each level.
  • IC external integrated circuit
  • the GOA technology is an array substrate row driving technology, which is a driving method in which a gate driving circuit can be fabricated on a TFT array substrate by using an array process of a liquid crystal display panel to realize a gate-by-row scanning.
  • GOA technology can reduce the bonding process of external ICs, have the opportunity to increase production capacity and reduce product cost, and can make LCD panels more suitable for making narrow-frame or borderless display products.
  • the GOA circuit includes a multi-level GOA unit, and each level of the GOA unit includes a pull-up control module 100 ′, an output module 200 ′, and a pull-down module 300 ′.
  • pull-down maintaining module 400' let N be a positive integer, except for the first to fourth-level GOA units and the last-to-fourth to last-level GOA units, in the Nth-level GOA unit
  • the pull-up control module 100' includes an eleventh thin film transistor T11', and the gate of the eleventh thin film transistor T11' is connected to the graded signal ST of the fourth-stage N-4th GOA unit.
  • the source is connected to the high potential signal VDD, and the drain is electrically connected to the first node Q(N)';
  • the output module 200' includes the 21st thin film transistor T21' and the 22nd thin film transistor T22', and a first capacitor C1', the gate of the 21st thin film transistor T21' is electrically connected to the first node Q(N)', the source is connected to the clock signal CK', and the drain is outputting the scan signal G (N)', the gate of the twenty-second thin film transistor T22' is electrically connected to the first node Q(N)', the source is connected to the clock signal CK', and the drain output is transmitted to the signal ST(N)'
  • the first capacitor C1' is electrically connected to the first node Q(N)', and the other end is electrically connected to the drain of the 21st thin film transistor T21'.
  • the pull-down module 300' includes the forty-first thin film transistor T41. '
  • the gate of the forty-th thin film transistor T41' is electrically connected to the output terminal G(N+4)' of the fourth-stage N+4th GOA circuit, and the source is connected to the low-potential signal. No. VSS, the drain is electrically connected to the first node Q(N)';
  • the pull-down maintaining module 400' includes a thirty-second thin film transistor T32', a forty-second thin film transistor T42', and a fifty-first thin film transistor T51.
  • the gate of the thirty-second thin film transistor T32' is electrically connected to the second node P(N)', the source is connected to the low potential signal VSS, and the drain is electrically Connecting the other end of the first capacitor C1', the gate of the forty-second thin film transistor T42' is connected to the second node P(N)', the source is connected to the low potential signal VSS, and the drain is electrically connected to the first a node Q(N)', the gate and the source of the fifty-first thin film transistor T51' are both connected to the control signal LC', and the drain is electrically connected to the second node P(N)', the fiftyth The gate of the second thin film transistor T52' is connected to the first node Q(N)', the source is connected to the low potential signal VSS, and the drain is electrically connected to the second node P(N)'.
  • the working process of the GOA circuit is as follows: when the level signal ST(N-4)' of the N-4th GOA unit is high, the eleventh thin film transistor T11' is turned on to write the high potential signal VDD to the first node.
  • Q(N)' controlling the twenty-first thin film transistor T21' and the twenty-second thin film transistor T22' respectively output a scan signal G(N)' corresponding to the clock signal CK' and a level signal ST(N)', Thereafter, when the scan signal G(N+4)' of the N+4th GOA unit is at a high potential, the 41st thin film transistor T41' is turned on to pull the first node Q(N)' low to a low level signal.
  • the potential of VSS causes the fifty-second thin film transistor T52' to be turned off, and the control signal LC' turns on the thirty-second and forty-second thin film transistors T32', T42' to turn on the scanning signal G(N)' and the first
  • the potential of the node Q(N)' is maintained at the potential of the low potential signal VSS, but when the scanning signal G(N+4)' of the N+4th GOA unit changes from a high potential to a low potential, its low potential and low
  • the potential of the potential signal VSS is uniform, that is, the gate-source voltage difference Vgs of the forty-first thin film transistor T41' is 0 at this time.
  • an amorphous silicon thin film crystal is often used in the prior art.
  • the gate-to-source voltage difference of 0 is not the point at which the thin film transistor has the smallest leakage, which causes leakage of the forty-first thin film transistor T41', affecting the potential of the first node Q(N)'.
  • the current method is to set two Different low-potential signals make the gate-source of the thin-film transistor have a negative voltage, which makes the leakage of the thin-film transistor smaller.
  • using this method requires adding a signal line, which increases the fan-out layout space, which is not conducive to achieving a narrow bezel. It also increases the number of signals and increases product costs.
  • the object of the present invention is to provide a GOA circuit, which can effectively reduce the leakage current of the thin film transistor in the pull-down module, prevent the leakage current from affecting the potential of the first node, improve the stability of the circuit, and eliminate the need to add additional signal lines. Helps reduce product costs and achieve a narrow border.
  • the present invention provides a GOA circuit comprising: a multi-level GOA unit, each stage GOA unit comprising: a pull-up control module, an output module, a pull-down module, and a pull-down maintenance module;
  • N be a positive integer, in addition to the first to fourth level GOA units and the last to fourth level GOA units, in the Nth level GOA unit:
  • the pull-up control module accesses the level-transmitted signal and the high-potential signal of the upper four-level N-4th GOA unit, and is electrically connected to the first node for transmitting on the level-transmitted signal of the N-4th-level GOA unit.
  • the output module is connected to the clock signal and electrically connected to the first node, and is configured to output a scan signal and a level transmission signal under the potential control of the first node;
  • the pull-down module includes a forty-one thin film transistor, the gate of the forty-th thin film transistor is connected to the scan signal of the fourth level N+4 stage GOA unit, the source is connected to the circuit start signal, and the drain is electrically connected to the first node;
  • the pull-down maintaining module accesses the scan signal and the low potential signal, and is electrically connected to the first node, and is configured to maintain the potential of the scan signal and the first node at a potential of the low potential signal after the pull-down module pulls down the potential of the first node. ;
  • the circuit enable signal is a pulse signal, and the low potential of the circuit enable signal is less than or equal to 0 and greater than the potential of the low potential signal.
  • the clock signal includes: a first clock signal, a second clock signal, a third clock signal, a fourth clock signal, a fifth clock signal, a sixth clock signal, a seventh clock signal, and an eighth clock signal that are sequentially output,
  • X be a non-negative integer, a 1+8X-level GOA unit, a 2+8X-level GOA unit, a 3+8X-level GOA unit, a 4+8X-level GOA unit, a 5+8X-level GOA unit, and a 6+th
  • the clock signals connected in the 8X-level GOA unit, the 7+8X-level GOA unit, and the 8+8X-level GOA unit are the first clock signal, the second clock signal, the third clock signal, the fourth clock signal, and the fifth a clock signal, a sixth clock signal, a seventh clock signal, and an eighth clock signal;
  • the time interval between rising edges of two clock signals of adjacent outputs is one eighth of one cycle of the clock signal, and the duty ratio of the clock signal is 0.4;
  • the duration of the high potential of the circuit enable signal is equal to three quarters of a period of the clock signal
  • the rising edge of the circuit enable signal is earlier than the rising edge of the first clock signal, and the time interval between the two is one quarter of one cycle of the clock signal.
  • the difference between the low potential of the circuit enable signal and the potential of the low potential signal is 1.5-2.5V.
  • the low level of the circuit enable signal is -4V, and the potential of the low potential signal is -6V.
  • the pull-up control module includes an eleventh thin film transistor; and the gate of the eleventh thin film transistor is connected to the fourth level N
  • the level-transmitting signal of the -4 level GOA unit, the source is connected to the high potential signal, and the drain is electrically connected to the first node.
  • the output module includes a 21st thin film transistor, a 22nd thin film transistor, and a first capacitor; a gate of the 21st thin film transistor is electrically connected to the first node, and the source is connected to the clock signal, and the drain a second output of the scan signal; the gate of the twenty-second thin film transistor is electrically connected to the first node, the source is connected to the clock signal, and the drain output is transmitted by the signal; and one end of the first capacitor is electrically connected to the first node The other end is electrically connected to the drain of the twenty-first thin film transistor.
  • the pull-down maintaining module includes a thirty-second thin film transistor, a forty-second thin film transistor, a fifty-first thin film transistor, and a fifty-second thin film transistor; and a gate electrical connection of the thirty-second thin film transistor a second node, the source is connected to the low potential signal, and the drain is electrically connected to the drain of the 21st thin film transistor; the gate of the forty-second thin film transistor is electrically connected to the second node, and the source is connected to the low potential a signal, a drain electrically connected to the first node; a gate and a source of the 51st thin film transistor are respectively connected to a control signal, and a drain is electrically connected to the second node; a gate of the fifty-second thin film transistor The first node is electrically connected, the source is connected to the low potential signal, and the drain is electrically connected to the second node.
  • the control signal remains high during operation of the GOA circuit.
  • the pull-up control module includes an eleventh thin film transistor; the eleventh thin film transistor has a gate access circuit enable signal, and the source is connected to a high potential signal, and the drain The first node is electrically connected.
  • the pull-down module includes a forty-th thin film transistor, a gate of the forty-th thin film transistor is activated by a circuit, and a source is connected to a low potential signal. The drain is electrically connected to the first node.
  • the present invention also provides a GOA circuit comprising: a multi-level GOA unit, each stage GOA unit comprising: a pull-up control module, an output module, a pull-down module, and a pull-down maintenance module;
  • N be a positive integer, in addition to the first to fourth level GOA units and the last to fourth level GOA units, in the Nth level GOA unit:
  • the pull-up control module accesses the level transmission signal and the high potential of the upper four-stage N-4th GOA unit
  • the signal is electrically connected to the first node, and is configured to pull up the potential of the first node to the high potential signal according to the level transmission signal of the N-4th GOA unit; the output module accesses the clock signal and is electrically connected to the first node.
  • the pull-down module For outputting a scan signal and a level transfer signal under the potential control of the first node;
  • the pull-down module includes a forty-th thin film transistor, and the gate of the forty-first thin film transistor is connected to the next four-stage N+ a scan signal of the 4-level GOA unit, a source access circuit start signal, and a drain electrically connected to the first node;
  • the pull-down maintenance module accesses the scan signal and the low potential signal, and is electrically connected to the first node for Pulling down the potential of the first node after pulling down the module to maintain the potential of the scan signal and the first node at the potential of the low potential signal;
  • the circuit enable signal is a pulse signal, and the low potential of the circuit enable signal is less than or equal to 0 and greater than the potential of the low potential signal;
  • the clock signal includes: a first clock signal, a second clock signal, a third clock signal, a fourth clock signal, a fifth clock signal, a sixth clock signal, a seventh clock signal, and an eighth clock that are sequentially output.
  • the clock signals connected in the 6+8X-level GOA unit, the 7+8X-level GOA unit, and the 8+8X-level GOA unit are the first clock signal, the second clock signal, the third clock signal, and the fourth clock signal, respectively.
  • a fifth clock signal, a sixth clock signal, a seventh clock signal, and an eighth clock signal are the first clock signal, the second clock signal, the third clock signal, and the fourth clock signal, respectively.
  • the time interval between rising edges of two clock signals of adjacent outputs is one eighth of one cycle of the clock signal, and the duty ratio of the clock signal is 0.4;
  • the duration of the high potential of the circuit enable signal is equal to three quarters of a period of the clock signal
  • the rising edge of the circuit enable signal is earlier than the rising edge of the first clock signal, and the time interval between the two is one quarter of a cycle of the clock signal;
  • the pull-up control module includes an eleventh thin film transistor; and the gate of the eleventh thin film transistor is connected to the fourth level The level-transmitting signal of the N-4th GOA unit, the source is connected to the high-potential signal, and the drain is electrically connected to the first node;
  • the output module includes a 21st thin film transistor, a 22nd thin film transistor, and a first capacitor; a gate of the 21st thin film transistor is electrically connected to the first node, and the source is connected to the clock signal. a drain output scan signal; a gate of the twenty-second thin film transistor is electrically connected to the first node, a source is connected to the clock signal, and a drain output is a level-transmitting signal; and one end of the first capacitor is electrically connected One node, the other end is electrically connected to the drain of the twenty-first thin film transistor;
  • the pull-down maintaining module includes a thirty-second thin film transistor, a forty-second thin film transistor, a fifty-first thin film transistor, and a fifty-second thin film transistor; the thirty-second thin film
  • the gate of the transistor is electrically connected to the second node, the source is connected to the low potential signal, and the drain is electrically connected to the drain of the 21st thin film transistor;
  • the gate of the forty-second thin film transistor is electrically connected to the second a node, the source is connected to the low potential signal, and the drain is electrically connected to the first node;
  • the gate and the source of the 51st thin film transistor are both connected to the control signal, and the drain is electrically connected to the second node;
  • the gate of the fifty-second thin film transistor is electrically connected to the first node, the source is connected to the low potential signal, and the drain is electrically connected to the second node;
  • control signal remains high during operation of the GOA circuit.
  • a GOA circuit provided by the present invention includes a multi-level GOA unit, each of which includes a pull-up control module, an output module, a pull-down module, and a pull-down maintenance module; and an N-th stage GOA unit
  • the gate of the forty-th thin film transistor in the pull-down module is connected to the scan signal of the N+4th GOA unit, the source is connected to the circuit start signal, the drain is electrically connected to the first node, and the circuit starts signal
  • the potential at which the low potential is less than or equal to 0 and greater than the low potential signal causes the gate-to-source voltage difference of the forty-first thin film transistor after the scanning signal of the N+4th GOA unit changes from the high potential to the low potential signal potential.
  • Negative value can effectively reduce the leakage current of the 41st thin film transistor, avoid leakage current affecting the potential of the first node, improve the stability of the circuit, and eliminate the need to add additional signal lines, which is beneficial to reduce product cost and achieve Narrow
  • 1 is a circuit diagram of a conventional GOA circuit
  • FIG. 2 is a circuit diagram of a GOA circuit of the present invention
  • FIG. 3 is a circuit diagram of a first to fourth stage GOA unit in the GOA circuit of the present invention.
  • FIG. 4 is a circuit diagram of a fourth to last stage GOA unit in the GOA circuit of the present invention.
  • Figure 5 is a timing chart showing the operation of the GOA circuit of the present invention.
  • the present invention provides a GOA circuit including: a multi-level GOA unit, each The primary GOA units each include: a pull-up control module 100, an output module 200, a pull-down module 300, and a pull-down maintenance module 400;
  • N be a positive integer, in addition to the first to fourth level GOA units and the last to fourth level GOA units, in the Nth level GOA unit:
  • the pull-up control module 100 accesses the level signal ST(N-4) of the upper four-stage N-4th GOA unit and the high-potential signal VDD, and is electrically connected to the first node Q(N) for The level signal ST(N-4) of the N-4th stage GOA unit pulls up the potential of the first node Q(N) to the high potential signal VDD.
  • the pull-up control module 100 includes an eleventh thin film transistor T11; the gate of the eleventh thin film transistor T11 is connected to the level signal ST (N-4) of the fourth-stage N-4th GOA unit.
  • the source is connected to the high potential signal VDD, and the drain is electrically connected to the first node Q(N).
  • the output module 200 is connected to the clock signal CK and electrically connected to the first node Q(N) for outputting the scan signal G(N) and the level transmission signal ST(N) under the potential control of the first node Q(N). ).
  • the output module 200 includes a 21st thin film transistor T21, a 22nd thin film transistor T22, and a first capacitor C1.
  • the gate of the 21st thin film transistor T21 is electrically connected to the first node Q. (N), the source is connected to the clock signal CK, and the drain is outputting the scan signal G(N); the gate of the 22nd thin film transistor T22 is electrically connected to the first node Q(N), and the source is connected to the clock.
  • the signal CK, the drain output stage transmits a signal ST(N); one end of the first capacitor C1 is electrically connected to the first node Q(N), and the other end is electrically connected to the drain of the 21st thin film transistor T21.
  • the pull-down module 300 includes a forty-first thin film transistor T41, and the gate of the forty-th thin film transistor T41 is connected to the scan signal G(N+4) of the lower four-stage N+4th GOA unit, the source
  • the circuit start signal STV, the drain is electrically connected to the first node Q(N);
  • the circuit enable signal STV is a pulse signal, and the low potential of the circuit start signal STV is less than or equal to 0 and greater than the low potential signal Vss
  • the potential of the pull-down module 300 is used to pull down the potential of the first node Q(N) to the low potential of the circuit enable signal STV according to the scan signal G(N+4) of the N+4th GOA unit.
  • the difference between the low potential of the circuit enable signal STV and the potential of the low potential signal Vss is 1.5-2.5V.
  • the low potential of the circuit enable signal STV is -4V
  • the potential of the low potential signal Vss is -6V.
  • the pull-down maintaining module 400 accesses the scan signal G(N) and the low potential signal Vss, and is electrically connected to the first node Q(N) for pulling down the potential of the first node Q(N) after the pull-down module 300 pulls down The potential of the scan signal G(N) and the first node Q(N) is maintained at the potential of the low potential signal Vss.
  • the pull-down maintaining module 400 includes a thirty-second thin film transistor T32 and a fortieth The second thin film transistor T42, the fifty-first thin film transistor T51, and the fifty-second thin film transistor T52; the gate of the thirty-second thin film transistor T32 is electrically connected to the second node P(N), and the source is low.
  • the potential signal Vss the drain is electrically connected to the drain of the 21st thin film transistor T21; the gate of the forty-second thin film transistor T42 is electrically connected to the second node P(N), and the source is connected to the low potential signal Vss, the drain is electrically connected to the first node Q (N); the gate and source of the 51st thin film transistor T51 are connected to the control signal LC, and the drain is electrically connected to the second node P (N); The gate of the fifty-second thin film transistor T52 is electrically connected to the first node Q(N), the source is connected to the low potential signal Vss, and the drain is electrically connected to the second node P(N).
  • control signal LC remains high during operation of the GOA circuit.
  • the clock signal CK includes: a first clock signal CK1, a second clock signal CK2, a third clock signal CK3, a fourth clock signal CK4, a fifth clock signal CK5, and a sixth output.
  • the clock signals CK connected in the +8X-level GOA unit, the 5+8X-level GOA unit, the 6+8X-level GOA unit, the 7+8X-level GOA unit, and the 8+8X-level GOA unit are respectively the first clock signal.
  • the time interval between the rising edges of the clock signal CK is one eighth of one cycle of the clock signal CK, the duty ratio of the clock signal CK is 0.4; the duration of the high potential of the circuit enable signal STV is equal to the clock signal CK Three quarters of a cycle; the rising edge of the circuit enable signal STV is earlier than the first clock The rising edge of the signal CK1, and the time interval between the two is one quarter of one cycle of the clock signal CK.
  • the pull-up control module 100 includes an eleventh thin film transistor T11; the gate access circuit of the eleventh thin film transistor T11 is activated. Signal STV, the source is connected to the high potential signal VDD, and the drain is electrically connected to the first node Q(N); please refer to FIG. 4, in the fourth to last stage GOA unit: the pull-down module 300 includes Forty-one thin film transistor T41, the gate of the forty-th thin film transistor T41 is connected to the circuit start signal STV, the source is connected to the low potential signal Vss, and the drain is electrically connected to the first node Q(N).
  • the working process of the GOA circuit of the present invention is: first, the circuit enable signal STV provides a high potential, and the eleventh thin film transistor T11 of the first to fourth stage GOA units is turned on, the first stage is The potential of the first node in the fourth-stage GOA cell rises to a high potential, and the twenty-first thin film transistor T21 and the twenty-second thin film crystal in the first- to fourth-stage GOA unit
  • the tube T22 is turned on, then the first clock signal CK1 outputs a high potential, the first stage GOA unit outputs a scan signal and a level transmission signal, then the second clock signal CK2 outputs a high potential, and the second stage GOA unit outputs a scan signal and a level transmission signal.
  • the third clock signal CK3 outputs a high potential
  • the third-stage GOA unit outputs a scan signal and a level-transmitted signal
  • the fourth clock signal CK4 outputs a high potential
  • the fourth-stage GOA unit outputs a scan signal and a level-transmitted signal
  • the The level-transmitted signals of the first-level GOA unit, the second-level GOA unit, the third-level GOA unit, and the fourth-level GOA unit are respectively transmitted to the fifth-level GOA unit, the sixth-level GOA unit, the seventh-level GOA unit, and the eighth-level
  • the pull-up control module 100 of the GOA unit receives the corresponding level-transmitted signal, and the eleventh thin film transistor T11 of the fifth-level GOA unit, the sixth-level GOA unit, the seventh-level GOA unit, and the eighth-level GOA unit Turning on sequentially, the fifth clock signal CK5, the sixth clock signal CK6, the seventh clock signal CK7, and the eighth clock signal CK8 sequentially
  • the eight-stage GOA unit outputs a scan signal and a level-transmitted signal during the high potential of the fifth clock signal CK5, the sixth clock signal CK6, the seventh clock signal CK7, and the eighth clock signal CK8, respectively, the first stage GOA unit, the second stage
  • the pull-down module 300 of the GOA unit, the third-level GOA unit, and the fourth-level GOA unit respectively receives the scan signals of the fifth-level GOA unit, the sixth-level GOA unit, the seventh-level GOA unit, and the eighth-level GOA unit, respectively.
  • the pulldown maintenance module 400 maintains the first node and the scan signal At the potential of the low potential signal Vss, and so on, until the fourth-order GOA unit, the third-order GOA unit, the second-order GOA unit, and the last-level GOA unit sequentially output the scan signal and the level-transmitted signal, and then the circuit starts.
  • the signal STV again provides a high potential to the fourth-order GOA unit, the third-order GOA unit, the second-order GOA unit, the pull-down module 300 of the last-level GOA unit, and the fourth-order GOA single
  • the third node of the third-order GOA unit, the second-order GOA unit, and the first-stage GOA unit are pulled down to the potential of the low-potential signal Vss, and the pull-down maintaining module 400 maintains the first node and the scan signal at a low potential signal.
  • the potential of Vss The potential of Vss.
  • the potential of the gate of the forty-first thin film transistor T41 of the pull-down module 300 of the Nth stage GOA unit is the potential of the low potential signal Vss, and this
  • the potential of the source of the forty-first thin film transistor T41 is the low potential of the circuit enable signal STV
  • the low potential of the circuit enable signal STV is set to be larger than the potential of the low potential signal Vss, the forty-th thin film transistor T41 is at this time.
  • the gate-to-source voltage difference Vgs is a negative value, which can effectively reduce the leakage current of the forty-first thin film transistor T41 and avoid leakage current to the first
  • the potential of the node Q(N) has an influence, the stability of the circuit is improved, and the circuit start signal STV is an existing signal in the existing GOA circuit, and no additional signal line is needed, which is advantageous for reducing the product cost and achieving a narrow bezel.
  • the GOA circuit of the present invention includes a multi-level GOA unit, and each level of the GOA unit includes a pull-up control module, an output module, a pull-down module, and a pull-down maintenance module; in the Nth-level GOA unit, the pull-down module
  • the gate of the forty-th thin film transistor is connected to the scan signal of the N+4th GOA unit, the source is connected to the circuit enable signal, the drain is electrically connected to the first node, and the low potential of the circuit enable signal is less than or a potential equal to 0 and greater than the low potential signal, so that when the scanning signal of the N+4th GOA unit changes from a high potential to a low potential signal, the gate-to-source voltage difference of the forty-first thin film transistor is a negative value.
  • the utility model can effectively reduce the leakage current of the forty-first thin film transistor, avoid the influence of the leakage current on the potential of the first node, improve the stability of the circuit, and eliminate the need for adding additional signal lines, thereby reducing the product cost and achieving a narrow bezel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

本发明提供一种GOA电路。该GOA电路包括多级GOA单元,每一级GOA单元均包括上拉控制模块100、输出模块200、下拉模块300、和下拉维持模块400;在第N级GOA单元中,下拉模块中的第四十一薄膜晶体管T41的栅极接入第N+4级GOA单元的扫描信号G(N+4),源极接入电路启动信号STV,漏极电性连接第一节点Q(N),且电路启动信号STV的低电位小于或等于0且大于低电位信号的电位VSS,使当第N+4级GOA单元的扫描信号G(N+4)由高电位变为低电位信号的电位后,第四十一薄膜晶体管T41的栅源极电压差为负值,能够有效降低第四十一薄膜晶体管T41的漏电流,避免漏电流对第一节点Q(N)的电位产生影响,提高电路的稳定性,且无需增加额外的信号线,有利于降低产品成本并实现窄边框。

Description

GOA电路 技术领域
本发明涉及显示技术领域,尤其涉及一种GOA电路。
背景技术
液晶显示器(Liquid Crystal Display,LCD)具有机身薄、省电、无辐射等众多优点,得到了广泛的应用。如:液晶电视、移动电话、个人数字助理(PDA)、数字相机、计算机屏幕或笔记本电脑屏幕等,在平板显示领域中占主导地位。
现有市场上的液晶显示器大部分为背光型液晶显示器,其包括液晶显示面板及背光模组(backlight module)。液晶显示面板的工作原理是在薄膜晶体管阵列基板(Thin Film Transistor Array Substrate,TFT Array Substrate)与彩色滤光片(Color Filter,CF)基板之间灌入液晶分子,并在两片基板上施加驱动电压来控制液晶分子的旋转方向,以将背光模组的光线折射出来产生画面。
主动式液晶显示器中,每个像素电性连接一个薄膜晶体管(TFT),薄膜晶体管的栅极(Gate)连接至水平扫描线,源极(Source)连接至垂直方向的数据线,漏极(Drain)则连接至像素电极。在水平扫描线上施加足够的电压,会使得电性连接至该条水平扫描线上的所有TFT打开,从而数据线上的信号电压能够写入像素,控制不同液晶的透光度进而达到控制色彩与亮度的效果。目前主动式液晶显示面板水平扫描线的驱动主要由外接的集成电路板(Integrated Circuit,IC)来完成,外接的IC可以控制各级水平扫描线的逐级充电和放电。
而GOA技术(Gate Driver on Array)即阵列基板行驱动技术,是可以运用液晶显示面板的阵列制程将栅极驱动电路制作在TFT阵列基板上,实现对栅极逐行扫描的驱动方式。GOA技术能减少外接IC的焊接(bonding)工序,有机会提升产能并降低产品成本,而且可以使液晶显示面板更适合制作窄边框或无边框的显示产品。
如图1所示,为现有的一种GOA电路的电路图,该GOA电路包括多级GOA单元,每一级GOA单元均包括上拉控制模块100’、输出模块200’、下拉模块300’、和下拉维持模块400’,设N为正整数,除了第一至第四级GOA单元以及倒数第四级至最后一级GOA单元外,在第N级GOA单元 中:所述上拉控制模块100’包括第十一薄膜晶体管T11’,所述第十一薄膜晶体管T11’的栅极接入上四级第N-4级GOA单元的级传信号ST(N-4)’,源极接入高电位信号VDD,漏极电性连接第一节点Q(N)’;所述输出模块200’包括第二十一薄膜晶体管T21’、第二十二薄膜晶体管T22’、及第一电容C1’,所述第二十一薄膜晶体管T21’的栅极电性连接第一节点Q(N)’,源极接入时钟信号CK’,漏极输出扫描信号G(N)’,所述第二十二薄膜晶体管T22’的栅极电性连接第一节点Q(N)’,源极接入时钟信号CK’,漏极输出级传信号ST(N)’,第一电容C1’一端电性连接第一节点Q(N)’,另一端电性连接第二十一薄膜晶体管T21’的漏极;所述下拉模块300’包括第四十一薄膜晶体管T41’,所述第四十一薄膜晶体管T41’的栅极电性连接下四级第N+4级GOA电路的输出端G(N+4)’,源极接入低电位信号VSS,漏极电性连接第一节点Q(N)’;所述下拉维持模块400’包括第三十二薄膜晶体管T32’、第四十二薄膜晶体管T42’、第五十一薄膜晶体管T51’、及第五十二薄膜晶体管T52’,所述第三十二薄膜晶体管T32’的栅极电性连接第二节点P(N)’,源极接入低电位信号VSS,漏极电性连接第一电容C1’的另一端,所述第四十二薄膜晶体管T42’的栅极接入第二节点P(N)’,源极接入低电位信号VSS,漏极电性连接第一节点Q(N)’,所述第五十一薄膜晶体管T51’的栅极及源极均接入控制信号LC’,漏极电性连接第二节点P(N)’,所述第五十二薄膜晶体管T52’的栅极接入第一节点Q(N)’,源极接入低电位信号VSS,漏极电性连接第二节点P(N)’。该GOA电路的工作过程如下:当第N-4级GOA单元的级传信号ST(N-4)’为高电位时,第十一薄膜晶体管T11’打开使高电位信号VDD写入第一节点Q(N)’,控制第二十一薄膜晶体管T21’及第二十二薄膜晶体管T22’分别输出与时钟信号CK’对应的扫描信号G(N)’及级传信号ST(N)’,之后,当第N+4级GOA单元的扫描信号G(N+4)’为高电位时,第四十一薄膜晶体管T41’打开将第一节点Q(N)’拉低至低电平信号VSS的电位,使第五十二薄膜晶体管T52’关闭,控制信号LC’使第三十二、第四十二薄膜晶体管T32’、T42’导通,将扫描信号G(N)’及第一节点Q(N)’的电位维持在低电位信号VSS的电位,但当第N+4级GOA单元的扫描信号G(N+4)’由高电位变为低电位时,其低电位与低电位信号VSS的电位是一致的,也即此时第四十一薄膜晶体管T41’的栅源极电压差Vgs为0,然而在现有常采用非晶硅薄膜晶体管制作GOA电路的情况下,栅源极电压差为0并不是薄膜晶体管漏电最小的点,这会使第四十一薄膜晶体管T41’产生漏电,影响第一节点Q(N)’的电位,为提升GOA电路的性能,目前的方法是设置两个电 位不同的低电位信号来使薄膜晶体管的栅源极为负电压使薄膜晶体管的漏电更小,但使用此方法需要增设信号线,会增加扇出走线(Layout)空间,不利于实现窄边框,同时也会增加信号数量,增加产品成本。
发明内容
本发明的目的在于提供一种GOA电路,能够有效降低下拉模块中薄膜晶体管的漏电流,避免漏电流对第一节点的电位产生影响,提高电路的稳定性,且无需增加额外的信号线,有利于降低产品成本并实现窄边框。
为实现上述目的,本发明提供一种GOA电路,包括:多级GOA单元,每一级GOA单元均包括:上拉控制模块、输出模块、下拉模块、和下拉维持模块;
设N为正整数,除第一级至第四级GOA单元和倒数第四级至最后一级GOA单元外,在第N级GOA单元中:
所述上拉控制模块接入上四级第N-4级GOA单元的级传信号和高电位信号,并电性连接第一节点,用于根据第N-4级GOA单元的级传信号上拉第一节点的电位至高电位信号;所述输出模块接入时钟信号并电性连接第一节点,用于在第一节点的电位控制下输出扫描信号和级传信号;所述下拉模块包括第四十一薄膜晶体管,所述第四十一薄膜晶体管的栅极接入下四级第N+4级GOA单元的扫描信号,源极接入电路启动信号,漏极电性连接第一节点;所述下拉维持模块接入扫描信号以及低电位信号,并电性连接第一节点,用于在下拉模块下拉第一节点的电位后将扫描信号和第一节点的电位维持在低电位信号的电位;
所述电路启动信号为一脉冲信号,且该电路启动信号的低电位小于或等于0且大于低电位信号的电位。
所述时钟信号包括:依次输出的第一时钟信号、第二时钟信号、第三时钟信号、第四时钟信号、第五时钟信号、第六时钟信号、第七时钟信号、及第八时钟信号,设X为非负整数,第1+8X级GOA单元、第2+8X级GOA单元、第3+8X级GOA单元、第4+8X级GOA单元、第5+8X级GOA单元、第6+8X级GOA单元、第7+8X级GOA单元、第8+8X级GOA单元中接入的时钟信号分别为第一时钟信号、第二时钟信号、第三时钟信号、第四时钟信号、第五时钟信号、第六时钟信号、第七时钟信号、第八时钟信号;
相邻输出的两个时钟信号的上升沿之间的时间间隔为时钟信号一个周期的八分之一,所述时钟信号的占空比为0.4;
所述电路启动信号的高电位的时长等于时钟信号一个周期的四分之三;
所述电路启动信号的上升沿早于第一时钟信号的上升沿,且两者之间的时间间隔为时钟信号一个周期的四分之一。
所述电路启动信号的低电位与低电位信号的电位的差值为1.5-2.5V。
所述电路启动信号的低电位为-4V,低电位信号的电位为-6V。
除第一级至第四级GOA单元外,在第N级GOA单元中:所述上拉控制模块包括第十一薄膜晶体管;所述第十一薄膜晶体管的栅极接入上四级第N-4级GOA单元的级传信号,源极接入高电位信号,漏极电性连接第一节点。
所述输出模块包括第二十一薄膜晶体管、第二十二薄膜晶体管、及第一电容;所述第二十一薄膜晶体管的栅极电性连接第一节点,源极接入时钟信号,漏极输出扫描信号;所述第二十二薄膜晶体管的栅极电性连接第一节点,源极接入时钟信号,漏极输出级传信号;所述第一电容的一端电性连接第一节点,另一端电性连接第二十一薄膜晶体管的漏极。
所述下拉维持模块包括第三十二薄膜晶体管、第四十二薄膜晶体管、第五十一薄膜晶体管、及第五十二薄膜晶体管;所述第三十二薄膜晶体管的栅极电性连接第二节点,源极接入低电位信号,漏极电性连接第二十一薄膜晶体管的漏极;所述第四十二薄膜晶体管的栅极电性连接第二节点,源极接入低电位信号,漏极电性连接第一节点;所述第五十一薄膜晶体管的栅极及源极均接入控制信号,漏极电性连接第二节点;所述第五十二薄膜晶体管的栅极电性连接第一节点,源极接入低电位信号,漏极电性连接第二节点。
所述控制信号在GOA电路工作时保持高电位。
在第一级至第四级GOA单元中:所述上拉控制模块包括第十一薄膜晶体管;所述第十一薄膜晶体管的栅极接入电路启动信号,源极接入高电位信号,漏极电性连接第一节点。
在倒数第四级至最后一级GOA单元中:所述下拉模块包括第四十一薄膜晶体管,所述第四十一薄膜晶体管的栅极接入电路启动信号,源极接入低电位信号,漏极电性连接第一节点。
本发明还提供一种GOA电路,包括:多级GOA单元,每一级GOA单元均包括:上拉控制模块、输出模块、下拉模块、和下拉维持模块;
设N为正整数,除第一级至第四级GOA单元和倒数第四级至最后一级GOA单元外,在第N级GOA单元中:
所述上拉控制模块接入上四级第N-4级GOA单元的级传信号和高电位 信号,并电性连接第一节点,用于根据第N-4级GOA单元的级传信号上拉第一节点的电位至高电位信号;所述输出模块接入时钟信号并电性连接第一节点,用于在第一节点的电位控制下输出扫描信号和级传信号;所述下拉模块包括第四十一薄膜晶体管,所述第四十一薄膜晶体管的栅极接入下四级第N+4级GOA单元的扫描信号,源极接入电路启动信号,漏极电性连接第一节点;所述下拉维持模块接入扫描信号以及低电位信号,并电性连接第一节点,用于在下拉模块下拉第一节点的电位后将扫描信号和第一节点的电位维持在低电位信号的电位;
所述电路启动信号为一脉冲信号,且该电路启动信号的低电位小于或等于0且大于低电位信号的电位;
其中,所述时钟信号包括:依次输出的第一时钟信号、第二时钟信号、第三时钟信号、第四时钟信号、第五时钟信号、第六时钟信号、第七时钟信号、及第八时钟信号,设X为非负整数,第1+8X级GOA单元、第2+8X级GOA单元、第3+8X级GOA单元、第4+8X级GOA单元、第5+8X级GOA单元、第6+8X级GOA单元、第7+8X级GOA单元、第8+8X级GOA单元中接入的时钟信号分别为第一时钟信号、第二时钟信号、第三时钟信号、第四时钟信号、第五时钟信号、第六时钟信号、第七时钟信号、第八时钟信号;
相邻输出的两个时钟信号的上升沿之间的时间间隔为时钟信号一个周期的八分之一,所述时钟信号的占空比为0.4;
所述电路启动信号的高电位的时长等于时钟信号一个周期的四分之三;
所述电路启动信号的上升沿早于第一时钟信号的上升沿,且两者之间的时间间隔为时钟信号一个周期的四分之一;
其中,除第一级至第四级GOA单元外,在第N级GOA单元中:所述上拉控制模块包括第十一薄膜晶体管;所述第十一薄膜晶体管的栅极接入上四级第N-4级GOA单元的级传信号,源极接入高电位信号,漏极电性连接第一节点;
其中,所述输出模块包括第二十一薄膜晶体管、第二十二薄膜晶体管、及第一电容;所述第二十一薄膜晶体管的栅极电性连接第一节点,源极接入时钟信号,漏极输出扫描信号;所述第二十二薄膜晶体管的栅极电性连接第一节点,源极接入时钟信号,漏极输出级传信号;所述第一电容的一端电性连接第一节点,另一端电性连接第二十一薄膜晶体管的漏极;
其中,所述下拉维持模块包括第三十二薄膜晶体管、第四十二薄膜晶体管、第五十一薄膜晶体管、及第五十二薄膜晶体管;所述第三十二薄膜 晶体管的栅极电性连接第二节点,源极接入低电位信号,漏极电性连接第二十一薄膜晶体管的漏极;所述第四十二薄膜晶体管的栅极电性连接第二节点,源极接入低电位信号,漏极电性连接第一节点;所述第五十一薄膜晶体管的栅极及源极均接入控制信号,漏极电性连接第二节点;所述第五十二薄膜晶体管的栅极电性连接第一节点,源极接入低电位信号,漏极电性连接第二节点;
其中,所述控制信号在GOA电路工作时保持高电位。
本发明的有益效果:本发明提供的一种GOA电路,包括多级GOA单元,每一级GOA单元均包括上拉控制模块、输出模块、下拉模块、和下拉维持模块;在第N级GOA单元中:下拉模块中的第四十一薄膜晶体管的栅极接入第N+4级GOA单元的扫描信号,源极接入电路启动信号,漏极电性连接第一节点,且电路启动信号的低电位小于或等于0且大于低电位信号的电位,使当第N+4级GOA单元的扫描信号由高电位变为低电位信号的电位后,第四十一薄膜晶体管的栅源极电压差为负值,能够有效降低第四十一薄膜晶体管的漏电流,避免漏电流对第一节点的电位产生影响,提高电路的稳定性,且无需增加额外的信号线,有利于降低产品成本并实现窄边框。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为现有的一种GOA电路的电路图;
图2为本发明的GOA电路的电路图;
图3为本发明的GOA电路中第一级至第四级GOA单元的电路图;
图4为本发明的GOA电路中倒数第四级至最后一级GOA单元的电路图;
图5为本发明的GOA电路的工作时序图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图2,本发明提供一种GOA电路,包括:多级GOA单元,每 一级GOA单元均包括:上拉控制模块100、输出模块200、下拉模块300、和下拉维持模块400;
设N为正整数,除第一级至第四级GOA单元和倒数第四级至最后一级GOA单元外,在第N级GOA单元中:
所述上拉控制模块100接入上四级第N-4级GOA单元的级传信号ST(N-4)和高电位信号VDD,并电性连接第一节点Q(N),用于根据第N-4级GOA单元的级传信号ST(N-4)上拉第一节点Q(N)的电位至高电位信号VDD。
具体地,所述上拉控制模块100包括第十一薄膜晶体管T11;所述第十一薄膜晶体管T11的栅极接入上四级第N-4级GOA单元的级传信号ST(N-4),源极接入高电位信号VDD,漏极电性连接第一节点Q(N)。
所述输出模块200接入时钟信号CK并电性连接第一节点Q(N),用于在第一节点Q(N)的电位控制下输出扫描信号G(N)和级传信号ST(N)。
具体地,所述输出模块200包括第二十一薄膜晶体管T21、第二十二薄膜晶体管T22、及第一电容C1;所述第二十一薄膜晶体管T21的栅极电性连接第一节点Q(N),源极接入时钟信号CK,漏极输出扫描信号G(N);所述第二十二薄膜晶体管T22的栅极电性连接第一节点Q(N),源极接入时钟信号CK,漏极输出级传信号ST(N);所述第一电容C1的一端电性连接第一节点Q(N),另一端电性连接第二十一薄膜晶体管T21的漏极。
所述下拉模块300包括第四十一薄膜晶体管T41,所述第四十一薄膜晶体管T41的栅极接入下四级第N+4级GOA单元的扫描信号G(N+4),源极接入电路启动信号STV,漏极电性连接第一节点Q(N);所述电路启动信号STV为一脉冲信号,且该电路启动信号STV的低电位小于或等于0且大于低电位信号Vss的电位,进而,所述下拉模块300用于根据第N+4级GOA单元的扫描信号G(N+4)下拉第一节点Q(N)的电位至电路启动信号STV的低电位。
具体地,所述电路启动信号STV的低电位与低电位信号Vss的电位的差值为1.5-2.5V。
优选地,所述电路启动信号STV的低电位为-4V,低电位信号Vss的电位为-6V。
所述下拉维持模块400接入扫描信号G(N)以及低电位信号Vss,并电性连接第一节点Q(N),用于在下拉模块300下拉第一节点Q(N)的电位后将扫描信号G(N)和第一节点Q(N)的电位维持在低电位信号Vss的电位。
具体地,所述下拉维持模块400包括第三十二薄膜晶体管T32、第四十 二薄膜晶体管T42、第五十一薄膜晶体管T51、及第五十二薄膜晶体管T52;所述第三十二薄膜晶体管T32的栅极电性连接第二节点P(N),源极接入低电位信号Vss,漏极电性连接第二十一薄膜晶体管T21的漏极;所述第四十二薄膜晶体管T42的栅极电性连接第二节点P(N),源极接入低电位信号Vss,漏极电性连接第一节点Q(N);所述第五十一薄膜晶体管T51的栅极及源极均接入控制信号LC,漏极电性连接第二节点P(N);所述第五十二薄膜晶体管T52的栅极电性连接第一节点Q(N),源极接入低电位信号Vss,漏极电性连接第二节点P(N)。
进一步地,所述控制信号LC在GOA电路工作时保持高电位。
具体地,请参阅图5,所述时钟信号CK包括:依次输出的第一时钟信号CK1、第二时钟信号CK2、第三时钟信号CK3、第四时钟信号CK4、第五时钟信号CK5、第六时钟信号CK6、第七时钟信号CK7、及第八时钟信号CK8,设X为非负整数,第1+8X级GOA单元、第2+8X级GOA单元、第3+8X级GOA单元、第4+8X级GOA单元、第5+8X级GOA单元、第6+8X级GOA单元、第7+8X级GOA单元、第8+8X级GOA单元中接入的时钟信号CK分别为第一时钟信号CK1、第二时钟信号CK2、第三时钟信号CK3、第四时钟信号CK4、第五时钟信号CK5、第六时钟信号CK6、第七时钟信号CK7、第八时钟信号CK8;相邻输出的两个时钟信号CK的上升沿之间的时间间隔为时钟信号CK一个周期的八分之一,所述时钟信号CK的占空比为0.4;所述电路启动信号STV的高电位的时长等于时钟信号CK一个周期的四分之三;所述电路启动信号STV的上升沿早于第一时钟信号CK1的上升沿,且两者之间的时间间隔为时钟信号CK一个周期的四分之一。
特别地,请参阅图3,在第一级至第四级GOA单元中:所述上拉控制模块100包括第十一薄膜晶体管T11;所述第十一薄膜晶体管T11的栅极接入电路启动信号STV,源极接入高电位信号VDD,漏极电性连接第一节点Q(N);请参阅图4,在倒数第四级至最后一级GOA单元中:所述下拉模块300包括第四十一薄膜晶体管T41,所述第四十一薄膜晶体管T41的栅极接入电路启动信号STV,源极接入低电位信号Vss,漏极电性连接第一节点Q(N)。
结合图2至图5,本发明的GOA电路的工作过程为:首先电路启动信号STV提供高电位,第一级至第四级GOA单元中的第十一薄膜晶体管T11均打开,第一级至第四级GOA单元中的第一节点的电位上升至高电位,第一级至第四级GOA单元中的第二十一薄膜晶体管T21和第二十二薄膜晶体 管T22均打开,接着第一时钟信号CK1输出高电位,第一级GOA单元输出扫描信号和级传信号,接着第二时钟信号CK2输出高电位,第二级GOA单元输出扫描信号和级传信号,接着第三时钟信号CK3输出高电位,第三级GOA单元输出扫描信号和级传信号,接着第四时钟信号CK4输出高电位,第四级GOA单元输出扫描信号和级传信号,所述第一级GOA单元、第二级GOA单元、第三级GOA单元、第四级GOA单元的级传信号分别传递给第五级GOA单元、第六级GOA单元、第七级GOA单元、第八级GOA单元的上拉控制模块100,接收到相应的级传信号后,所述第五级GOA单元、第六级GOA单元、第七级GOA单元、第八级GOA单元的第十一薄膜晶体管T11依次打开,第五时钟信号CK5、第六时钟信号CK6、第七时钟信号CK7、第八时钟信号CK8依次开始提供高电位,所述第五级GOA单元、第六级GOA单元、第七级GOA单元、第八级GOA单元分别在第五时钟信号CK5、第六时钟信号CK6、第七时钟信号CK7、第八时钟信号CK8的高电位期间输出扫描信号和级传信号,第一级GOA单元、第二级GOA单元、第三级GOA单元、第四级GOA单元的下拉模块300先后分别接收到第五级GOA单元、第六级GOA单元、第七级GOA单元、第八级GOA单元的扫描信号,相应先后下拉第一级GOA单元、第二级GOA单元、第三级GOA单元、第四级GOA单元的第一节点至低电位信号Vss的电位,而后下拉维持模块400将第一节点和扫描信号维持在低电位信号Vss的电位,依次类推,直至倒数第四级GOA单元、倒数第三级GOA单元、倒数第二级GOA单元、最后一级GOA单元依次输出扫描信号和级传信号,而后电路启动信号STV再次提供高电位至倒数第四级GOA单元、倒数第三级GOA单元、倒数第二级GOA单元、最后一级GOA单元的下拉模块300,将倒数第四级GOA单元、倒数第三级GOA单元、倒数第二级GOA单元、最后一级GOA单元的第一节点下拉至低电位信号Vss的电位,而后下拉维持模块400将第一节点和扫描信号维持在低电位信号Vss的电位。
需要说明的是,在除倒数第四级至最后一级的GOA单元外的第N级GOA单元中,当第N+4级GOA单元的扫描信号G(N+4)经第N+4级GOA单元的下拉维持模块400维持在低电位信号Vss的电位后,该第N级GOA单元的下拉模块300的第四十一薄膜晶体管T41的栅极的电位为低电位信号Vss的电位,而此时第四十一薄膜晶体管T41的源极的电位为电路启动信号STV的低电位,由于设置了电路启动信号STV的低电位大于低电位信号Vss的电位,使此时第四十一薄膜晶体管T41的栅源极电压差Vgs为负值,能够有效降低第四十一薄膜晶体管T41的漏电流,避免漏电流对第一 节点Q(N)的电位产生影响,提高电路的稳定性,且电路启动信号STV是现有的GOA电路中已有的信号,无需增加额外的信号线,有利于降低产品成本并实现窄边框。
综上所述,本发明的GOA电路,包括多级GOA单元,每一级GOA单元均包括上拉控制模块、输出模块、下拉模块、和下拉维持模块;在第N级GOA单元中,下拉模块中的第四十一薄膜晶体管的栅极接入第N+4级GOA单元的扫描信号,源极接入电路启动信号,漏极电性连接第一节点,且电路启动信号的低电位小于或等于0且大于低电位信号的电位,使当第N+4级GOA单元的扫描信号由高电位变为低电位信号的电位后,第四十一薄膜晶体管的栅源极电压差为负值,能够有效降低第四十一薄膜晶体管的漏电流,避免漏电流对第一节点的电位产生影响,提高电路的稳定性,且无需增加额外的信号线,有利于降低产品成本并实现窄边框。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (15)

  1. 一种GOA电路,包括:多级GOA单元,每一级GOA单元均包括:上拉控制模块、输出模块、下拉模块、和下拉维持模块;
    设N为正整数,除第一级至第四级GOA单元和倒数第四级至最后一级GOA单元外,在第N级GOA单元中:
    所述上拉控制模块接入上四级第N-4级GOA单元的级传信号和高电位信号,并电性连接第一节点,用于根据第N-4级GOA单元的级传信号上拉第一节点的电位至高电位信号;所述输出模块接入时钟信号并电性连接第一节点,用于在第一节点的电位控制下输出扫描信号和级传信号;所述下拉模块包括第四十一薄膜晶体管,所述第四十一薄膜晶体管的栅极接入下四级第N+4级GOA单元的扫描信号,源极接入电路启动信号,漏极电性连接第一节点;所述下拉维持模块接入扫描信号以及低电位信号,并电性连接第一节点,用于在下拉模块下拉第一节点的电位后将扫描信号和第一节点的电位维持在低电位信号的电位;
    所述电路启动信号为一脉冲信号,且该电路启动信号的低电位小于或等于0且大于低电位信号的电位。
  2. 如权利要求1所述的GOA电路,其中,所述时钟信号包括:依次输出的第一时钟信号、第二时钟信号、第三时钟信号、第四时钟信号、第五时钟信号、第六时钟信号、第七时钟信号、及第八时钟信号,设X为非负整数,第1+8X级GOA单元、第2+8X级GOA单元、第3+8X级GOA单元、第4+8X级GOA单元、第5+8X级GOA单元、第6+8X级GOA单元、第7+8X级GOA单元、第8+8X级GOA单元中接入的时钟信号分别为第一时钟信号、第二时钟信号、第三时钟信号、第四时钟信号、第五时钟信号、第六时钟信号、第七时钟信号、第八时钟信号;
    相邻输出的两个时钟信号的上升沿之间的时间间隔为时钟信号一个周期的八分之一,所述时钟信号的占空比为0.4;
    所述电路启动信号的高电位的时长等于时钟信号一个周期的四分之三;
    所述电路启动信号的上升沿早于第一时钟信号的上升沿,且两者之间的时间间隔为时钟信号一个周期的四分之一。
  3. 如权利要求1所述的GOA电路,其中,所述电路启动信号的低电位与低电位信号的电位的差值为1.5-2.5V。
  4. 如权利要求3所述的GOA电路,其中,所述电路启动信号的低电 位为-4V,低电位信号的电位为-6V。
  5. 如权利要求1所述的GOA电路,其中,除第一级至第四级GOA单元外,在第N级GOA单元中:所述上拉控制模块包括第十一薄膜晶体管;所述第十一薄膜晶体管的栅极接入上四级第N-4级GOA单元的级传信号,源极接入高电位信号,漏极电性连接第一节点。
  6. 如权利要求1所述的GOA电路,其中,所述输出模块包括第二十一薄膜晶体管、第二十二薄膜晶体管、及第一电容;所述第二十一薄膜晶体管的栅极电性连接第一节点,源极接入时钟信号,漏极输出扫描信号;所述第二十二薄膜晶体管的栅极电性连接第一节点,源极接入时钟信号,漏极输出级传信号;所述第一电容的一端电性连接第一节点,另一端电性连接第二十一薄膜晶体管的漏极。
  7. 如权利要求6所述的GOA电路,其中,所述下拉维持模块包括第三十二薄膜晶体管、第四十二薄膜晶体管、第五十一薄膜晶体管、及第五十二薄膜晶体管;所述第三十二薄膜晶体管的栅极电性连接第二节点,源极接入低电位信号,漏极电性连接第二十一薄膜晶体管的漏极;所述第四十二薄膜晶体管的栅极电性连接第二节点,源极接入低电位信号,漏极电性连接第一节点;所述第五十一薄膜晶体管的栅极及源极均接入控制信号,漏极电性连接第二节点;所述第五十二薄膜晶体管的栅极电性连接第一节点,源极接入低电位信号,漏极电性连接第二节点。
  8. 如权利要求7所述的GOA电路,其中,所述控制信号在GOA电路工作时保持高电位。
  9. 如权利要求1所述的GOA电路,其中,在第一级至第四级GOA单元中:所述上拉控制模块包括第十一薄膜晶体管;所述第十一薄膜晶体管的栅极接入电路启动信号,源极接入高电位信号,漏极电性连接第一节点。
  10. 如权利要求1所述的GOA电路,其中,在倒数第四级至最后一级GOA单元中:所述下拉模块包括第四十一薄膜晶体管,所述第四十一薄膜晶体管的栅极接入电路启动信号,源极接入低电位信号,漏极电性连接第一节点。
  11. 一种GOA电路,包括:多级GOA单元,每一级GOA单元均包括:上拉控制模块、输出模块、下拉模块、和下拉维持模块;
    设N为正整数,除第一级至第四级GOA单元和倒数第四级至最后一级GOA单元外,在第N级GOA单元中:
    所述上拉控制模块接入上四级第N-4级GOA单元的级传信号和高电位信号,并电性连接第一节点,用于根据第N-4级GOA单元的级传信号上拉 第一节点的电位至高电位信号;所述输出模块接入时钟信号并电性连接第一节点,用于在第一节点的电位控制下输出扫描信号和级传信号;所述下拉模块包括第四十一薄膜晶体管,所述第四十一薄膜晶体管的栅极接入下四级第N+4级GOA单元的扫描信号,源极接入电路启动信号,漏极电性连接第一节点;所述下拉维持模块接入扫描信号以及低电位信号,并电性连接第一节点,用于在下拉模块下拉第一节点的电位后将扫描信号和第一节点的电位维持在低电位信号的电位;
    所述电路启动信号为一脉冲信号,且该电路启动信号的低电位小于或等于0且大于低电位信号的电位;
    其中,所述时钟信号包括:依次输出的第一时钟信号、第二时钟信号、第三时钟信号、第四时钟信号、第五时钟信号、第六时钟信号、第七时钟信号、及第八时钟信号,设X为非负整数,第1+8X级GOA单元、第2+8X级GOA单元、第3+8X级GOA单元、第4+8X级GOA单元、第5+8X级GOA单元、第6+8X级GOA单元、第7+8X级GOA单元、第8+8X级GOA单元中接入的时钟信号分别为第一时钟信号、第二时钟信号、第三时钟信号、第四时钟信号、第五时钟信号、第六时钟信号、第七时钟信号、第八时钟信号;
    相邻输出的两个时钟信号的上升沿之间的时间间隔为时钟信号一个周期的八分之一,所述时钟信号的占空比为0.4;
    所述电路启动信号的高电位的时长等于时钟信号一个周期的四分之三;
    所述电路启动信号的上升沿早于第一时钟信号的上升沿,且两者之间的时间间隔为时钟信号一个周期的四分之一;
    其中,除第一级至第四级GOA单元外,在第N级GOA单元中:所述上拉控制模块包括第十一薄膜晶体管;所述第十一薄膜晶体管的栅极接入上四级第N-4级GOA单元的级传信号,源极接入高电位信号,漏极电性连接第一节点;
    其中,所述输出模块包括第二十一薄膜晶体管、第二十二薄膜晶体管、及第一电容;所述第二十一薄膜晶体管的栅极电性连接第一节点,源极接入时钟信号,漏极输出扫描信号;所述第二十二薄膜晶体管的栅极电性连接第一节点,源极接入时钟信号,漏极输出级传信号;所述第一电容的一端电性连接第一节点,另一端电性连接第二十一薄膜晶体管的漏极;
    其中,所述下拉维持模块包括第三十二薄膜晶体管、第四十二薄膜晶体管、第五十一薄膜晶体管、及第五十二薄膜晶体管;所述第三十二薄膜晶体管的栅极电性连接第二节点,源极接入低电位信号,漏极电性连接第 二十一薄膜晶体管的漏极;所述第四十二薄膜晶体管的栅极电性连接第二节点,源极接入低电位信号,漏极电性连接第一节点;所述第五十一薄膜晶体管的栅极及源极均接入控制信号,漏极电性连接第二节点;所述第五十二薄膜晶体管的栅极电性连接第一节点,源极接入低电位信号,漏极电性连接第二节点;
    其中,所述控制信号在GOA电路工作时保持高电位。
  12. 如权利要求11所述的GOA电路,其中,所述电路启动信号的低电位与低电位信号的电位的差值为1.5-2.5V。
  13. 如权利要求12所述的GOA电路,其中,所述电路启动信号的低电位为-4V,低电位信号的电位为-6V。
  14. 如权利要求11所述的GOA电路,其中,在第一级至第四级GOA单元中:所述上拉控制模块包括第十一薄膜晶体管;所述第十一薄膜晶体管的栅极接入电路启动信号,源极接入高电位信号,漏极电性连接第一节点。
  15. 如权利要求11所述的GOA电路,其中,在倒数第四级至最后一级GOA单元中:所述下拉模块包括第四十一薄膜晶体管,所述第四十一薄膜晶体管的栅极接入电路启动信号,源极接入低电位信号,漏极电性连接第一节点。
PCT/CN2017/113475 2017-10-11 2017-11-29 Goa电路 WO2019071758A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/742,041 US10510314B2 (en) 2017-10-11 2017-11-29 GOA circuit having negative gate-source voltage difference of TFT of pull down module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710943843.9A CN107689221B (zh) 2017-10-11 2017-10-11 Goa电路
CN201710943843.9 2017-10-11

Publications (1)

Publication Number Publication Date
WO2019071758A1 true WO2019071758A1 (zh) 2019-04-18

Family

ID=61153870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113475 WO2019071758A1 (zh) 2017-10-11 2017-11-29 Goa电路

Country Status (2)

Country Link
CN (1) CN107689221B (zh)
WO (1) WO2019071758A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10998069B2 (en) 2019-03-07 2021-05-04 Au Optronics Corporation Shift register and electronic device having the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109192167A (zh) * 2018-10-12 2019-01-11 深圳市华星光电半导体显示技术有限公司 阵列基板行驱动电路及液晶显示器
CN110415648A (zh) * 2019-07-16 2019-11-05 深圳市华星光电半导体显示技术有限公司 Goa电路
US11361696B2 (en) 2019-08-08 2022-06-14 Hefei Boe Joint Technology Co., Ltd. Shift register and driving method therefor, gate driver circuit, and display device
CN111477190A (zh) * 2020-05-13 2020-07-31 深圳市华星光电半导体显示技术有限公司 Goa器件及栅极驱动电路
CN113658561B (zh) * 2021-08-19 2022-09-23 昆山龙腾光电股份有限公司 栅极驱动电路及显示装置
CN114187873B (zh) * 2021-12-10 2023-05-30 武汉华星光电技术有限公司 栅极驱动电路及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005309284A (ja) * 2004-04-26 2005-11-04 Sony Corp 表示装置
EP2509077A2 (en) * 2011-04-07 2012-10-10 Beijing Boe Optoelectronics Technology Co. Ltd. Shifting register and apparatus for driving gate lines
CN103680386A (zh) * 2013-12-18 2014-03-26 深圳市华星光电技术有限公司 用于平板显示的goa电路及显示装置
CN107146589A (zh) * 2017-07-04 2017-09-08 深圳市华星光电技术有限公司 Goa电路及液晶显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104392701B (zh) * 2014-11-07 2016-09-14 深圳市华星光电技术有限公司 用于氧化物半导体薄膜晶体管的扫描驱动电路
CN105355187B (zh) * 2015-12-22 2018-03-06 武汉华星光电技术有限公司 基于ltps半导体薄膜晶体管的goa电路
CN106448590B (zh) * 2016-10-11 2019-03-22 深圳市华星光电技术有限公司 一种液晶显示面板的goa电路及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005309284A (ja) * 2004-04-26 2005-11-04 Sony Corp 表示装置
EP2509077A2 (en) * 2011-04-07 2012-10-10 Beijing Boe Optoelectronics Technology Co. Ltd. Shifting register and apparatus for driving gate lines
CN103680386A (zh) * 2013-12-18 2014-03-26 深圳市华星光电技术有限公司 用于平板显示的goa电路及显示装置
CN107146589A (zh) * 2017-07-04 2017-09-08 深圳市华星光电技术有限公司 Goa电路及液晶显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10998069B2 (en) 2019-03-07 2021-05-04 Au Optronics Corporation Shift register and electronic device having the same

Also Published As

Publication number Publication date
CN107689221A (zh) 2018-02-13
CN107689221B (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
WO2019071758A1 (zh) Goa电路
WO2019134221A1 (zh) Goa电路
CN107358931B (zh) Goa电路
CN108766380B (zh) Goa电路
WO2019085180A1 (zh) Goa电路
WO2017092116A1 (zh) 降低馈通电压的goa电路
TWI502893B (zh) 移位暫存器電路
US10121442B2 (en) Driving methods and driving devices of gate driver on array (GOA) circuit
TWI398852B (zh) 可降低時脈偶合效應之移位暫存器及移位暫存器單元
WO2017012160A1 (zh) 降低功耗的goa电路
WO2017117849A1 (zh) Goa驱动电路
WO2019095484A1 (zh) Goa电路
CN109509459B (zh) Goa电路及显示装置
WO2020019433A1 (zh) 包括goa电路的液晶面板及其驱动方法
WO2019090875A1 (zh) Goa电路
WO2016161694A1 (zh) 基于p型薄膜晶体管的goa电路
WO2020019426A1 (zh) 包括goa电路的液晶面板及其驱动方法
CN102005196A (zh) 具低功率损耗的移位寄存器
US10510314B2 (en) GOA circuit having negative gate-source voltage difference of TFT of pull down module
WO2019200820A1 (zh) 液晶显示装置及其驱动方法
WO2021203508A1 (zh) Goa电路、显示面板
Lin et al. Hydrogenated amorphous silicon gate driver with low leakage for thin-film transistor liquid crystal display applications
WO2020259574A1 (zh) 阵列基板行驱动电路单元与其驱动电路及液晶显示面板
WO2019033492A1 (zh) Goa电路及液晶显示装置
US10360866B2 (en) GOA circuit and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928503

Country of ref document: EP

Kind code of ref document: A1