WO2019071554A1 - 一种智能终端的温度检测装置及具有该装置的智能终端 - Google Patents

一种智能终端的温度检测装置及具有该装置的智能终端 Download PDF

Info

Publication number
WO2019071554A1
WO2019071554A1 PCT/CN2017/105986 CN2017105986W WO2019071554A1 WO 2019071554 A1 WO2019071554 A1 WO 2019071554A1 CN 2017105986 W CN2017105986 W CN 2017105986W WO 2019071554 A1 WO2019071554 A1 WO 2019071554A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
detecting device
temperature detecting
thermocouple
processor
Prior art date
Application number
PCT/CN2017/105986
Other languages
English (en)
French (fr)
Inventor
徐家林
Original Assignee
深圳传音通讯有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳传音通讯有限公司 filed Critical 深圳传音通讯有限公司
Priority to PCT/CN2017/105986 priority Critical patent/WO2019071554A1/zh
Publication of WO2019071554A1 publication Critical patent/WO2019071554A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples

Definitions

  • the present invention relates to the field of intelligent terminals, and in particular, to a temperature detecting device for an intelligent terminal and an intelligent terminal having the same.
  • smart terminal devices such as smart phones, tablet computers, and multimedia players are often used in daily life and work, facilitating people to connect with external, file browsing, entertainment and other functions.
  • the intelligent terminal is provided with a battery, a power management unit, a CPU and the like.
  • the above components are prone to heat during operation, and the temperature rises. When the temperature is too high, the components may be damaged, affecting the service life, and even causing fire or explosion. Therefore, the temperature should be tested on the working area where the components that are prone to heat are located. When the temperature is too high, measures should be taken to cool down.
  • the solution to the above problem in the prior art is to provide a temperature sensor around the relevant component, which is mainly a thermistor, and the thermistor is changed by the temperature, and the resistance value changes by detecting the resistance of the thermistor.
  • the value can be used to know the change in temperature.
  • the thermistor is divided into a positive temperature coefficient thermistor (PTC) and a negative temperature coefficient thermistor (NTC) according to the temperature coefficient.
  • Typical characteristics of thermistors are temperature sensitive and exhibit different resistance values at different temperatures.
  • the positive temperature coefficient thermistor (PTC) has a higher resistance value at higher temperatures, and the lower the resistance value of the negative temperature coefficient thermistor (NTC) at higher temperatures, they belong to the semiconductor device.
  • the processor in the smart terminal samples the resistance value of the thermistor, the temperature value is calculated by the pre-stored conversion relationship between the resistance value and the temperature.
  • the prior art still has the following problems:
  • the temperature detection accuracy is low
  • the thermistor must be used under power-on conditions.
  • the layout and wiring connections have limitations. It is difficult to detect the temperature of components with remote locations.
  • an object of the present invention is to provide a temperature detecting device for an intelligent terminal and an intelligent terminal having the same, by arranging a thermocouple in the smart terminal and cooperating with another temperature sensor to cool the thermocouple The temperature is detected at the end to achieve the technical effect of high-precision temperature detection.
  • the first aspect of the present application discloses a temperature detecting device for a smart terminal, including a sampling circuit and a processor disposed on the smart terminal main board, and the temperature detecting device further includes:
  • thermocouple disposed in the smart terminal, connected to the sampling circuit, comprising a hot end and a cold end, wherein the hot end is disposed in a working area of the smart terminal for detecting a temperature, and the cold end is disposed in the On the smart terminal board; the hot end and the cold end generate a temperature difference, the temperature difference generates a thermoelectromotive force, the sampling circuit detects the thermoelectromotive force and converts it into an electrical signal and sends the signal to the processor, and the processor is pre-stored according to the The correspondence between the electrical signal and the temperature difference acquires the temperature of the hot end.
  • the sampling circuit comprises:
  • thermocouple An amplifier coupled to the thermocouple to amplify the thermoelectromotive force into an analog electrical signal
  • An analog to digital converter coupled to the amplifier and the processor to convert the analog electrical signal to a digital signal for transmission to the processor.
  • the temperature detecting device further comprises:
  • a low pass filter is connected in series between the amplifier and the analog to digital converter to eliminate signal noise.
  • the amplifier has a high input impedance.
  • the temperature detecting device further comprises:
  • a temperature sensor is disposed adjacent the cold end of the thermocouple and coupled to the processor to transmit the detected temperature of the cold end to the processor.
  • the temperature detecting device further comprises:
  • thermocouple a connector disposed on the smart terminal motherboard to connect the thermocouple and the sampling circuit.
  • a shielding layer is wrapped between the hot end and the cold end of the thermocouple.
  • the material of the thermocouple is platinum rhodium and platinum.
  • an intelligent terminal including the above temperature detecting device.
  • the working area where the hot end is located includes any one of a battery, a power management unit, and a CPU.
  • FIG. 1 is a block diagram showing the structure of a temperature detecting device of a smart terminal in accordance with a preferred embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a temperature detecting device of a smart terminal according to a preferred embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a temperature detecting device of a smart terminal according to still another preferred embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a temperature detecting device of a smart terminal according to another preferred embodiment of the present invention.
  • FIG. 5 is a schematic view showing the structure of a thermocouple in accordance with a preferred embodiment of the present invention.
  • 10-temperature detecting device 11-thermocouple, 12-sampling circuit, 13-processor, 14-connector, 15-temperature sensor, 111-hot end, 112-cold end, 113-positive material, 114-negative material , 121-amplifier, 122-analog-to-digital converter, 123-low-pass filter.
  • the term “if” may be interpreted to mean “when” or “once” or “in response to determining” or “in response to detecting” depending on the context.
  • the phrase “if determined” or “if a condition or event is stated” is optionally interpreted as meaning “once determined” or “in response to determining” or “once detected” The stated condition or event] or “in response to the detection of [stated condition or event]”.
  • the temperature detecting device 10 includes:
  • the sampling circuit 12 is disposed on the smart terminal main board, and samples an electrical signal sent by the sensor and is conditioned to a state identifiable by the processor 13. Depending on the type of sensor, the selected sampling circuit 12 is also different. Some sampling circuits can sample the resistance value, and some sampling circuits can sample the voltage value or current value; the sampling circuit 12 can also be used for the electrical signal. The amplitude is enlarged or reduced. When the sampling circuit 12 samples the resistance value, an indirect measurement method is often used, and a current is applied across the measured component to detect the current, and the resistance value is obtained by Ohm's law.
  • the sampling circuit 12 samples the voltage value or the current value
  • the analog voltage can be sampled by the analog sampling unit, and the sampling of the current value can be connected in series with the sampling resistor in the current loop, and then the two ends of the sampling resistor are The voltage can be sampled.
  • the sampling circuit 12 amplifies or reduces the amplitude of the electrical signal, it can be realized by an operational amplifier, and the adjustment of the amplification factor is realized by a parameter of a feedback resistor provided in combination with the operational amplifier.
  • the processor 13 is disposed on the smart terminal main board and connected to the sampling circuit 12 to receive an electrical signal sent by the sampling circuit.
  • the processor 13, that is, the CPU may be a microprocessor such as a single chip microcomputer or a DSP, and has an input/output interface, and can receive an external signal and perform arithmetic processing.
  • the processor 13 has a built-in memory that stores parameters or software programs required for the arithmetic functions.
  • the thermocouple 11 is disposed in the smart terminal, and is connected to the sampling circuit 12, and includes a hot end 111 and a cold end 112.
  • the hot end 111 is disposed in a working area of the smart terminal for detecting temperature.
  • the cold end 112 is disposed on the smart terminal motherboard.
  • the hot end 111 and the cold end 112 When the temperature detecting device 10 is in operation, the hot end 111 and the cold end 112 generate a temperature difference, the temperature difference generates a thermoelectromotive force, and the sampling circuit 12 detects the thermoelectromotive force and converts it into an electrical signal and sends the signal to the processor. 13, The processor 13 obtains the temperature of the hot end according to the correspondence between the pre-stored electrical signal and the temperature difference.
  • thermoelectromotive force generated by the thermocouple 11 is related to the temperature difference between the hot end 111 and the cold end 112, and the correspondence between the pre-stored electric signal and the temperature difference in the processor 13 is
  • the processor 13 obtains the electrical signal corresponding to the thermoelectromotive force from the sampling circuit 12, the corresponding temperature difference data is found from the corresponding relationship, that is, the hot end 111 and the cold end in the detection result.
  • the operating temperature of the cold end 112 sums the operating temperature of the cold end 112 and the temperature difference to obtain the temperature of the hot end 111, that is, the temperature of the tested working area.
  • the operating temperature of the cold end 112 may be preset with an empirical parameter value, and real-time temperature detection may be performed by another sensor.
  • the sampling circuit 12 includes:
  • the amplifier 121 is connected to the thermocouple 11 to amplify the thermoelectromotive force into an analog electrical signal.
  • the amplifier 121 that is, an operational amplifier, is a circuit unit having a magnification factor, and generally combines with a feedback network to form a certain functional module, and the output signal thereof may be a result of mathematical operations such as input signal addition, subtraction or differentiation, integration, and the like.
  • the amplifier 121 is a circuit unit named from a functional point of view, and can be implemented by a discrete device or in a semiconductor chip. With the development of semiconductor technology, most of the op amps exist in the form of a single chip.
  • the voltage value of the thermoelectromotive force generated by the thermocouple 11 is usually in the order of millivolts, which is difficult to be accurately recognized by the processor 13, and needs to be scaled up and then recognized by the processor 13.
  • an amplifier in a chip package form is adopted.
  • the amplifier 121 has two input terminals and one output terminal; the two input terminals are respectively an inverting input terminal and a non-inverting input terminal, which are also referred to as a backward input terminal and a non-inverted input terminal and an output terminal, respectively.
  • the amplifier 121 amplifies the voltage difference between the two inputs and outputs it by the output.
  • the cold terminals 112 of the thermocouples 11 are respectively connected to the two input terminals of the amplifier 121, and the output terminals of the amplifiers 121 output the amplified analog voltage signals.
  • the analog to digital converter 122 is coupled to the amplifier 121 and the processor 13, and converts the analog electrical signal into a digital signal for transmission to the processor 13.
  • the analog to digital converter 122 or A/D converter, or simply ADC, generally refers to an electronic component that converts an analog signal into a digital signal.
  • the analog-to-digital converter 122 is a digital signal that converts an input voltage signal into an output. Since the digital signal itself has no practical meaning, it merely represents A relative size, so any analog-to-digital converter requires a reference analog quantity as the conversion standard. The more common reference standard is the maximum convertible signal size, and the output digital quantity represents the size of the input signal relative to the reference signal. .
  • analog-to-digital conversion The function of analog-to-digital conversion is to convert time-continuous, continuous-amplitude analog quantities into time-discrete, amplitude-discrete digital signals. Therefore, analog-to-digital conversion generally undergoes four processes of sampling, holding, quantization, and encoding. In actual circuits, some of these processes are combined, for example, sampling and holding, and quantization and encoding are often implemented simultaneously in the conversion process.
  • the resolution of the analog to digital converter 122 means that for an analog signal within the allowable range, it can output the number of discrete digital signal values, which are usually stored in binary numbers, so the resolution is often in bits. And the number of these discrete values is a power exponent of 2.
  • the resolution can also be described in terms of electrical properties, using unit volts such that the difference in the minimum input voltage required to produce a change in the discrete signal is referred to as the Least Significant Bit (LSB) voltage.
  • LSB Least Significant Bit
  • an 8-bit precision analog-to-digital converter 122 is selected.
  • the output end of the analog-to-digital converter 122 is composed of 8 lines, and is connected with 8 IO ports on the processor 13 to realize digital transmission. .
  • the temperature detecting device 10 further includes:
  • the connector 14 is disposed on the smart terminal motherboard and connects the thermocouple 11 and the sampling circuit 12.
  • the connector 14 is a structural functional component, and the cold end 112 of the thermocouple 11 to be connected to the sampling circuit 12 must be realized through an intermediate connection point, that is, through the connector 14.
  • the connector 14 is disposed on the smart terminal main board and has two connection points, one side of the connection point is respectively connected to the positive pole and the negative pole of the cold end 112, and the other side of the connection point is connected to the Sampling circuit 12.
  • the connector 14 can be pressed against the cold end 112 by means of a crimping groove, or can be connected to the cold end 112 and the sampling circuit by soldering.
  • the connector 14 facilitates the disassembly and replacement of the thermocouple 11 to avoid affecting the sampling circuit 12 during the replacement installation.
  • the amplifier 121 has a high input impedance. Since the input impedance of the amplifier 121 and the thermocouple 11 form a voltage dividing circuit structure, if the input impedance of the amplifier 121 is higher, the thermoelectromotive force generated by the thermocouple 11 will be consumed by less voltage division. , thereby reducing detection errors.
  • This principle is similar to the voltmeter. The voltmeter is connected in parallel at both ends of the circuit under test. If the internal resistance of the voltmeter is higher, the current flowing to the voltmeter is smaller, and the current consumed by the detection itself is smaller. The detection error becomes small.
  • FIG. 3 is a schematic structural diagram of a temperature detecting device 10 of a smart terminal according to still another preferred embodiment of the present invention.
  • the temperature detecting device 10 further includes:
  • the low pass filter 123 is connected in series between the amplifier 121 and the analog to digital converter 122 to eliminate signal noise.
  • the temperature detecting device 10 is inevitably subjected to external interference during operation, generating signal noise, and the amplifier 121 simultaneously amplifies the signal noise of the sampling signal, causing interference to the detection result, so the sampling signal needs to be filtered to eliminate Signal noise. Since the temperature change is not very fast, it is a relatively slow process, so the sampling frequency of the temperature detecting device 10 is low, and the corresponding switching frequency of the analog-to-digital converter 122 is also very low, sampling several times per second. Therefore, the low pass filter 123 can be used for filtering, which is compatible with the operating frequency of the sampling circuit 12.
  • the low-pass filter 123 filters the analog electrical signal, and then outputs the filtered signal to the The analog to digital converter 122 performs analog to digital conversion.
  • the low pass filter 123 can be a passive filter circuit such as an RC or LC circuit.
  • the temperature detecting device 10 further includes:
  • the temperature sensor 15 is disposed near the cold end 112 of the thermocouple 111, and is connected to the processor 13 to transmit the detected temperature of the cold end 112 to the processor 13.
  • the temperature sensor 15 may be a thermistor attached to the surface of the cold end 112 to detect the temperature of the cold end 112. In some cases, it may be that the structure of the cold end 112 does not support direct attachment of the temperature sensor 15, and it is also conceivable to attach the temperature sensor 15 to the connector 14 to achieve an equivalent cold end. 112 temperature detection effect.
  • the temperature sensor 15 transmits the temperature of the collected cold end 112 to the processor 13, and the processor 13 combines the hot end 111 collected by the sampling circuit 12 based on the temperature of the cold end 112.
  • the temperature of the cold end 112 is calculated by summing the temperature of the cold end 112 with the temperature difference to calculate the temperature of the hot end 111.
  • the temperature sensor 15 can realize real-time detection of the temperature of the cold end 112, so that the detection result of the temperature detecting device 10 is more accurate, and is not affected by the temperature of the working environment of the smart terminal, regardless of the cold end. Accurate detection of the temperature of the position of the hot end 111 can be achieved by what temperature environment 112 is in.
  • thermocouple 11 is connected by two different conductors or semiconductor electrode materials, and includes:
  • the positive electrode material 113 flows from the hot end 111 to the cold end 112 during operation, and forms a positive electrode of thermoelectromotive force at the cold end 112.
  • the negative electrode material 114 flows from the cold end 112 to the hot end 111 during operation, and forms a negative electrode of thermoelectromotive force at the cold end 112.
  • the two ends of the positive electrode material 113 and the negative electrode material 114 are respectively connected to form two connection points, which together constitute a loop.
  • the connection point of the work area where the temperature is detected is called the hot end 111
  • the connection point of the non-detection temperature area is called the cold end 112.
  • the thermoelectromotive force is obtained by detecting the voltages of the positive electrode material 113 and the negative electrode material 114 at the cold end 112.
  • a current flows through the loop, and a thermocouple indexing table is formed according to a thermoelectromotive force as a function of temperature; the indexing table is a cold end.
  • thermocouples have different index tables.
  • An index table of the thermocouple 11 selected by the smart terminal may be pre-stored in the processor 13 for temperature value calculation.
  • the positive electrode material 113 and the negative electrode material 114 may be used in combination with different materials.
  • thermocouple 11 can be divided into two major categories: standard thermocouples and non-standard thermocouples.
  • standard thermocouple refers to a thermocouple whose national standard specifies the relationship between its thermoelectric potential and temperature, the allowable error, and a uniform standard index table. It has a display instrument that is compatible with it.
  • Non-standardized thermocouples are inferior to standardized thermocouples in terms of application range or magnitude, and generally do not have a uniform indexing table, which is mainly used for measurement in some special occasions.
  • thermocouples and thermal resistors have all been produced in accordance with IEC international standards, and seven standardized thermocouples, S, B, E, K, R, J, and T, have been designated as China's unified design.
  • Thermocouples are detailed in the table below:
  • Galvanic couples generally for electrode materials for thermocouples, the basic requirements are:
  • thermoelectric properties are stable, do not change with time, have sufficient physical and chemical stability, and are not easily oxidized or corroded;
  • the temperature coefficient of resistance is small, the conductivity is high, and the specific heat is small;
  • thermoelectric potential generated in the temperature measurement is large, and the linear potential or the linear relationship between the thermoelectric potential and the temperature is a single-valued function relationship;
  • thermocouple 11 uses a combination of platinum rhodium and platinum as the positive electrode material 113 and the negative electrode material 114.
  • thermocouple 11 also has an extendable technical feature.
  • the positive electrode material 113 and the negative electrode material 114 of the thermocouple 11 are typically terminated near the hot end 111; the cold end 112 utilizes a suitable thermocouple extension line. It is transferred to a controlled environment where the temperature is relatively stable, which can save the cost of the positive electrode material 113 and the negative electrode material 114. Since the thermocouple 11 can be extended, temperature detection can be performed on components within the smart terminal that are further away from the sampling circuit 12.
  • the negative electrode material 114 of the positive electrode material may be formed as an electrode at the cold end 112 to be connected to the sampling circuit 12.
  • the electrode can be fixed on the smart terminal board through the connector 14, and the connection between the thermocouple and the components on the main board is realized.
  • thermocouple 11 As a further improvement of the thermocouple 11, a shield layer is wrapped between the hot end 111 and the cold end 112 of the thermocouple 11.
  • the electrode material of the thermocouple 11 can also be formed into an elongated shape depending on the application. In order to ensure that current is not disturbed by external signals in the thermocouple 11, the hot end 111 and the cold end 112 are also wrapped.
  • the shielding layer may be composed of a metal layer and a common layer of copper or aluminum, and the insulating layer may be a plastic, rubber or rubber related polymer. The shielding layer can improve the reliability and accuracy of the detection result of the temperature detecting device 10.
  • an intelligent terminal including the temperature detecting device 10 described above.
  • the sampling circuit 12 is disposed at an edge position of the smart terminal main board, and the main board can be slotted so that the thermocouple 11 passes through the main board to reach a working area for detecting temperature.
  • the working area where the hot end 111 is located includes any one of a battery, a power management unit, and a CPU.
  • the battery, the power management unit, and the CPU are all work components that are prone to heat generation. Therefore, it is necessary to strengthen the temperature detection of the above components, so as to take measures when the temperature is too high, for example, scheduling tasks, reducing task operation, and turning off some hardware. Parts that reduce current thermal effects.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种智能终端的温度检测装置(10)及具有该装置(10)的智能终端,所述温度检测装置(10)包括设于所述智能终端主板上的采样电路(12)及处理器(13);热电偶(11),设于所述智能终端内,与所述采样电路(12)连接,包括热端(111)和冷端(112),所述热端(111)设于所述智能终端内需检测温度的工作区域,所述冷端(112)设于所述智能终端主板上;所述热端(111)和冷端(112)产生一温差,所述温差产生热电动势,所述采样电路(12)检测所述热电动势并转换为电信号发送给所述处理器(13),所述处理器(13)根据预存的电信号与温差的对应关系获取所述热端(111)的温度。该发明实现高精度温度检测;同时减小环境对检测结果的影响。还公开了具有该装置(10)的智能终端。

Description

一种智能终端的温度检测装置及具有该装置的智能终端 技术领域
本发明涉及智能终端领域,尤其涉及一种智能终端的温度检测装置及具有该装置的智能终端。
背景技术
目前,智能手机、平板电脑、多媒体播放器等智能终端设备常用于日常生活、工作中,方便人们实现联系外部、文件浏览、娱乐等功能。所述智能终端内设有电池、电源管理单元、CPU等部件,上述部件在工作时容易发热,温度升高,当温度过高时会对部件造成损害,影响使用寿命,甚至引发着火或爆炸。因此应当对容易发热的部件所在的工作区域进行温度检测,当温度过高时及时采取措施降温。
现有技术对于上述问题的解决方式是在相关部件周边设置温度传感器,以热敏电阻为主,所述热敏电阻受温度的影响其电阻值会发生变化,通过检测所述热敏电阻的电阻值即可获知温度的变化。所述热敏电阻按照温度系数不同分为正温度系数热敏电阻(PTC)和负温度系数热敏电阻(NTC)。热敏电阻的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。正温度系数热敏电阻(PTC)在温度越高时电阻值越大,负温度系数热敏电阻(NTC)在温度越高时电阻值越低,它们同属于半导体器件。所述智能终端内的处理器对所述热敏电阻进行电阻值采样后,通过预存的电阻值与温度的换算关系计算得出温度值。然而,现有技术存仍在以下问题:
1、温度检测精度较低;
2、热敏电阻须在通电情况下使用,其布设及线路连接存在局限性,对于位置分布较偏远的部件很难进行温度检测。
因此,需要一种对所述智能终端内发热部件进行高精度温度检测的技术手段,同时能够克服所述智能终端内的空间狭小的工作环境。
发明内容
为了克服上述技术缺陷,本发明的目的在于提供一种智能终端的温度检测装置及具有该装置的智能终端,通过在所述智能终端内布设热电偶,并配合另一温度传感器对热电偶的冷端进行温度检测,实现高精度温度检测的技术效果。
本申请的第一方面,公开了一种智能终端的温度检测装置,包括设于所述智能终端主板上的采样电路及处理器,所述温度检测装置还包括:
热电偶,设于所述智能终端内,与所述采样电路连接,包括热端和冷端,所述热端设于所述智能终端内需检测温度的工作区域,所述冷端设于所述智能终端主板上;所述热端和冷端产生一温差,所述温差产生热电动势,所述采样电路检测所述热电动势并转换为电信号发送给所述处理器,所述处理器根据预存的电信号与温差的对应关系获取所述热端的温度。
优选地,所述采样电路包括:
放大器,与所述热电偶连接,将所述热电动势放大为模拟电信号;
模数转换器,与所述放大器及所述处理器连接,将所述模拟电信号转换为数字信号发送给所述处理器。
优选地,所述温度检测装置还包括:
低通滤波器,串接于所述放大器与模数转换器之间,消除信号噪声。
优选地,所述放大器具有高输入阻抗。
优选地,所述温度检测装置还包括:
温度传感器,设于所述热电偶的冷端附近,与所述处理器连接,将检测到的所述冷端的温度发送给所述处理器。
优选地,所述温度检测装置还包括:
连接器,设于所述智能终端主板上,连接所述热电偶及所述采样电路。
优选地,所述热电偶的热端和冷端之间包裹有屏蔽层。
优选地,所述热电偶的材料为铂铑和铂。
本申请的第二方面,公开了一种智能终端,包括上述温度检测装置。
优选地,所述热端所在的工作区域包括电池、电能管理单元和CPU中的任一位置。
采用了上述技术方案后,与现有技术相比,具有以下有益效果:
1.实现高精度温度检测;
2.减小环境对检测结果的影响。
附图说明
图1为符合本发明一优选实施例中智能终端的温度检测装置的结构框图;
图2为符合本发明一优选实施例中智能终端的温度检测装置的结构示意图;
图3为符合本发明再一优选实施例中智能终端的温度检测装置的结构示意图;
图4为符合本发明另一优选实施例中智能终端的温度检测装置的结构示意图;
图5为符合本发明一优选实施例中热电偶的结构示意图。
附图标记:
10-温度检测装置、11-热电偶、12-采样电路、13-处理器、14-连接器、15-温度传感器、111-热端、112-冷端、113-正极材料、114-负极材料、121-放大器、122-模数转换器、123-低通滤波器。
具体实施方式
以下由特定的具体实施例说明本申请的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本申请的其他优点及功效。
在下述描述中,参考附图,附图描述了本申请的若干实施例。应当理解,还可使用其他实施例,并且可以在不背离本公开的精神和范围的情况下进行机械组成、结构、电气以及操作上的改变.下面的详细描述不应该被认为是限制性的,并且本申请的实施例的范围仅由公布的专利的权利要求书所限定.这里使用的术语仅是为了描述特定实施例,而并非旨在限制本申请。空间相关的术语,例如“上”、“下”、“左”、“右”、“下面”、“下方”、“下部”、“上方”、“上部”等,可在文中使用以便于说明图中所示的一个元件或特征与另一元件或特征的关系。
虽然在一些实例中术语第一、第二等在本文中用来描述各种元件,但是这些元件不应当被这些术语限制。这些术语仅用来将一个元件与另一个元件进行区分。
再者,如同在本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文中有相反的指示.应当进一步理解,术语“包含”、“包括”表明存在所述的特征、步骤、操作、元件、组件、项目、种类、和/或组,但不排除一个或多个其他特征、步骤、操作、元件、组件、项目、种类、和/或组的存在、出现或添加.此处使用的术语“或”和“和/或”被解释为包括性的,或意味着任一个或任何组合.因此,“A、B或C”或者“A、B和/或C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A、B和C”.仅当元件、功能、步骤或操作的组合在某些方式下内在地互相排斥时,才 会出现该定义的例外。
如本文所使用的,术语“如果”取决于上下文可以被解释为意味着“当…时”或者“一旦…则”或者“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或者“如果检测到[陈述的条件或事件]”取决于上下文可选地被解释为意味着“一旦确定,则”或者“响应于确定”或者“一旦检测到[陈述的条件或事件]”或者“响应于检测到[陈述的条件或事件]”。
参阅图1,为符合本发明一优选实施例中智能终端的温度检测装置10的结构框图,所述温度检测装置10包括:
-采样电路12
所述采样电路12设于所述智能终端主板上,对传感器发出的电信号进行采样,并调理为所述处理器13可识别的状态。根据传感器的类型不同,选用的采样电路12也不同,有的采样电路可对电阻值进行采样,有的采样电路可对电压值或电流值进行采样;所述采样电路12还可对电信号的幅度进行放大或缩小。所述采样电路12对电阻值进行采样时,常采用间接测量法,通过在被测部件两端施加电压,检测其电流,通过欧姆定律求得其电阻值。所述采样电路12对电压值或电流值进行采样时,可通过模拟量采样单元对模拟电压进行采样,对电流值的采样可在电流回路中串接采样电阻,而后对所述采样电阻两端的电压进行采样即可。所述采样电路12对电信号的幅度进行放大或缩小时,可通过运算放大器实现,并通过设置于所述运算放大器搭配使用的反馈电阻的参数实现对放大倍数的调整。
-处理器13
所述处理器13设于所述智能终端主板上,与所述采样电路12连接,接收所述采样电路发出的电信号。所述处理器13即CPU,可以是单片机、DSP等微处理器,具备输入输出接口,可接收外部信号并进行运算处理。所述处理器13具有内置的存储器,可存储运算功能所需的参数或软件程序。
-热电偶11
所述热电偶11设于所述智能终端内,与所述采样电路12连接,包括热端111和冷端112,所述热端111设于所述智能终端内需检测温度的工作区域,所述冷端112设于所述智能终端主板上。
所述温度检测装置10工作时,所述热端111和冷端112产生一温差,所述温差产生热电动势,所述采样电路12检测所述热电动势并转换为电信号发送给所述处理器13,所 述处理器13根据预存的电信号与温差的对应关系获取所述热端的温度。根据热电偶11的工作原理,其产生的热电动势与所述热端111和冷端112之间的温差有关,所述处理器13内预存电信号与所述温差之间的对应关系,当所述处理器13从所述采样电路12获取到所述热电动势对应的电信号时,从所述对应关系中找出相应的温差数据,即为本次检测结果中所述热端111与冷端112的温差。也就是说,所述处理器通过所述电信号仅能得到所述热端111与冷端112的温差,而不是所述热端111处的温度值,因此所述处理器13内还需预存所述冷端112的工作温度,将所述冷端112的工作温度与所述温差求和得到所述热端111的温度,也就是被测工作区域的温度。所述冷端112的工作温度可预设一经验参数值,也可通过另外的传感器进行实时温度检测。
参阅图2,为符合本发明一优选实施例中智能终端的温度检测装置10的结构示意图,所述采样电路12包括:
-放大器121
所述放大器121与所述热电偶11连接,将所述热电动势放大为模拟电信号。所述放大器121即运算放大器,是具有放大倍数的电路单元,通常结合反馈网络共同组成某种功能模块,其输出信号可以是输入信号加、减或微分、积分等数学运算的结果。所述放大器121是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。随着半导体技术的发展,大部分的运放是以单芯片的形式存在。本实施例中,所述热电偶11产生的热电动势的电压值通常为毫伏级,难以被所述处理器13精确识别,需要按比例放大后再由所述处理器13识别。考虑所述智能终端内空间较为紧张,为充分利用所述智能终端主板空间资源,采用芯片封装形式的放大器。
所述放大器121有两个输入端和一个输出端;两个输入端分别为反相输入端和同相输入端,也分别被称为倒向输入端非倒向输入端和输出端。所述放大器121将两个输入端之间的电压差放大后由所述输出端输出。从图2中可以看出,所述热电偶11的冷端112分别接入所述放大器121的两个输入端,所述放大器121的输出端输出放大后的模拟电压信号。
-模数转换器122
所述模数转换器122与所述放大器121及所述处理器13连接,将所述模拟电信号转换为数字信号发送给所述处理器13。所述模数转换器122即A/D转换器,或简称ADC,通常是指一个将模拟信号转变为数字信号的电子元件。所述模数转换器122是将一个输入电压信号转换为一个输出的数字信号,由于数字信号本身不具有实际意义,仅仅表示 一个相对大小,故任何一个模数转换器都需要一个参考模拟量作为转换的标准,比较常见的参考标准为最大的可转换信号大小,而输出的数字量则表示输入信号相对于参考信号的大小。模数转换的作用是将时间连续、幅值也连续的模拟量转换为时间离散、幅值也离散的数字信号,因此,模数转换一般要经过取样、保持、量化及编码4个过程。在实际电路中,这些过程有的是合并进行的,例如,取样和保持,量化和编码往往都是在转换过程中同时实现的。模数转换器122的分辨率是指,对于允许范围内的模拟信号,它能输出离散数字信号值的个数,这些数字信号值通常用二进制数来存储,因此分辨率经常用比特作为单位,且这些离散值的个数是2的幂指数。例如,一个具有8位分辨率的模数转换器可以将模拟信号编码成256个不同的离散值(因为2^8=256),从0到255(即无符号整数)或从-128到127(即带符号整数),至于使用哪一种,则取决于具体的应用。所述分辨率同时可以用电气性质来描述,使用单位伏特,使得输出离散信号产生一个变化所需的最小输入电压的差值被称作最低有效位(Least significant bit,LSB)电压。这样,模数转换器122的分辨率等于LSB电压,其电压分辨率等于它总的电压测量范围除以离散电压间隔数。
本实施例中选用8位精度的模数转换器122,所述模数转换器122的输出端由8根线路组成,与所述处理器13上的8个IO口连接,实现数字量的传输。
作为所述温度检测装置10的进一步改进,所述温度检测装置10还包括:
-连接器14
所述连接器14设于所述智能终端主板上,连接所述热电偶11及所述采样电路12。所述连接器14为结构功能部件,所述热电偶11的冷端112若要与所述采样电路12连接,须通过一中间连接点,即通过连接器14来实现。所述连接器14设于所述智能终端主板上,具有两个连接点,所述连接点的一侧分别连接所述冷端112的正极和负极,所述连接点的另一侧连接所述采样电路12。所述连接器14可通过压线槽的方式压紧所述冷端112,也可以通过焊接的方式与所述冷端112及采样电路连接。所述连接器14方便所述热电偶11进行拆卸更换,避免在更换安装过程中对采样电路12造成影响。
作为所述温度检测装置10的进一步改进,所述放大器121具有高输入阻抗。由于所述放大器121的输入阻抗和所述热电偶11形成一个分压电路结构,若所述放大器121的输入阻抗越高,所述热电偶11产生的热电动势将会被更少地分压消耗,从而减少检测误差。这一原理与电压表相似,电压表并联在被测电路两端,若电压表的内阻越高,则流向所述电压表的电流越小,检测本身消耗的电流也就越小,从而使得检测误差变小。
参阅图3,为符合本发明再一优选实施例中智能终端的温度检测装置10的结构示意图,所述温度检测装置10还包括:
-低通滤波器123
所述低通滤波器123串接于所述放大器121与模数转换器122之间,消除信号噪声。所述温度检测装置10在工作中不可避免地受到外部的干扰,产生信号噪声,且所述放大器121会同时放大采样信号的信号噪声,对检测结果造成干扰,因此需要对采样信号进行滤波,消除信号噪声。由于温度变化不会非常快,是一个较为缓慢的过程,因此所述温度检测装置10的采样频率较低,相应的所述模数转换器122的转换频率也非常低,每秒采样几次,因此可采用低通滤波器123进行滤波,与所述采样电路12的工作频率相适应。
本实施例中,所述放大器121将所述热电偶11的热电动势放大为一模拟电信号后,所述低通滤波器123对所述模拟电信号进行滤波,再将滤波后的信号输出给所述模数转换器122进行模数转换。所述低通滤波器123可以是无源滤波电路,例如RC或LC电路。
参阅图4,为符合本发明另一优选实施例中智能终端的温度检测装置10的结构示意图,所述温度检测装置10还包括:
-温度传感器15
所述温度传感器15设于所述热电偶111的冷端112附近,与所述处理器13连接,将检测到的所述冷端112的温度发送给所述处理器13。所述温度传感器15可以是热敏电阻,贴附在所述冷端112的表面,检测所述冷端112的温度。在某些情况下,可能所述冷端112的结构并不支持直接贴附所述温度传感器15,也可考虑在所述连接器14上贴附所述温度传感器15,以实现等同的冷端112的温度检测效果。所述温度传感器15将采集到的冷端112的温度传输给所述处理器13,所述处理器13基于所述冷端112的温度,结合所述采样电路12采集的所述热端111和冷端112的温差,将冷端112的温度与所述温差求和即可计算得出所述热端111的温度。采用所述温度传感器15可实现对所述冷端112的温度的实时检测,使得所述温度检测装置10的检测结果更加准确,不受所述智能终端工作环境的温度影响,无论所述冷端112处于什么样的温度环境,都能实现对所述热端111的位置的温度的精确检测。
参阅图5,为符合本发明一优选实施例中热电偶11的结构示意图,所述热电偶11由两种不同的导体或半导体电极材料连接而成回路,包括:
-正极材料113
所述正极材料113在工作中电流从所述热端111流向冷端112,在冷端112形成热电动势的正极。
-负极材料114
所述负极材料114在工作中电流从所述冷端112流向热端111,在冷端112形成热电动势的负极。
所述正极材料113和负极材料114的两端分别连接,形成两个连接点,共同组成了一个回路。设于检测温度的工作区域的连接点被称为热端111,设于非检测温度区域的连接点被称为冷端112。于所述冷端112处对所述正极材料113和负极材料114的电压进行检测即可得到所述热电动势。当所述热端111和冷端112的温度不同时,所述回路中就会有电流通过,根据热电动势与温度的函数关系,制成热电偶分度表;所述分度表是冷端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。所述处理器13内可预存该智能终端所选用的热电偶11的分度表,以便进行温度值计算。所述正极材料113和负极材料114可选用不同的材料搭配使用。
在工业应用中,所述热电偶11可分为标准热电偶和非标准热电偶两大类。所谓标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶中国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为中国统一设计型热电偶,详见下表:
Figure PCTCN2017105986-appb-000001
为了保证工程技术中的可靠性,以及足够的测量精度,并不是所有材料都能组成热 电偶,一般对热电偶的电极材料,基本要求是:
1、在测温范围内,热电性质稳定,不随时间而变化,有足够的物理化学稳定性,不易氧化或腐蚀;
2、电阻温度系数小,导电率高,比热小;
3、测温中产生热电势要大,并且热电势与温度之间呈线性或接近线性的单值函数关系;
4、材料复制性好,机械强度高,制造工艺简单,价格便宜。
在本申请的部分实施例中,所述热电偶11选用铂铑和铂的组合作为正极材料113和负极材料114。
所述热电偶11还具备可延长的技术特点,在常规工业应用中,热电偶11的正极材料113和负极材料114一般端接在热端111附近;冷端112则利用适当的热电偶延伸线来转接到温度比较稳定的被控环境中,这样可以节约正极材料113和负极材料114的成本。由于所述热电偶11可延长,因此可对所述智能终端内距离所述采样电路12较远的部件进行温度检测。
所述正极材料113个负极材料114在冷端112处可做成电极,以便与所述采样电路12连接。所述电极可通过所述连接器14固定在所述智能终端主板上,实现热电偶与主板上的元器件之间的连接。
作为所述热电偶11的进一步改进,所述热电偶11的热端111和冷端112之间包裹有屏蔽层。所述热电偶11的电极材料根据应用场合不同还可做成细长的形状,为了保证电流在所述热电偶11中不被外部信号干扰,所述热端111和冷端112之间还包裹了屏蔽层。所述屏蔽层可由金属层和绝缘层组成,所述金属层常用铜或铝,所述绝缘层可以是塑料、橡胶或橡胶相关的聚合物。所述屏蔽层可以提升所述温度检测装置10的检测结果可靠性和准确性。
本申请的第二方面,公开了一种智能终端,包括上述温度检测装置10。所述采样电路12设于所述智能终端主板的边缘位置,所述主板上可开槽,以便所述热电偶11穿过主板到达检测温度的工作区域。
作为所述智能终端的进一步改进,所述热端111所在的工作区域包括电池、电能管理单元和CPU中的任一位置。所述电池、电能管理单元、CPU均为容易发热的工作部件,因此有必要对上述部件加强温度检测,以便在温度过高时采取措施,例如进行任务调度,减少任务运行,还可以关闭部分硬件部件,减少电流热效应。
应当注意的是,本发明的实施例有较佳的实施性,且并非对本发明作任何形式的限制,任何熟悉该领域的技术人员可能利用上述揭示的技术内容变更或修饰为等同的有效实施例,但凡未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改或等同变化及修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种智能终端的温度检测装置,包括设于所述智能终端主板上的采样电路及处理器,其特征在于,所述温度检测装置还包括:
    热电偶,设于所述智能终端内,与所述采样电路连接,包括热端和冷端,所述热端设于所述智能终端内需检测温度的工作区域,所述冷端设于所述智能终端主板上;
    所述热端和冷端产生一温差,所述温差产生热电动势,所述采样电路检测所述热电动势并转换为电信号发送给所述处理器,所述处理器根据预存的电信号与温差的对应关系获取所述热端的温度。
  2. 如权利要求1所述的温度检测装置,其特征在于,
    所述采样电路包括:
    放大器,与所述热电偶连接,将所述热电动势放大为模拟电信号;
    模数转换器,与所述放大器及所述处理器连接,将所述模拟电信号转换为数字信号发送给所述处理器。
  3. 如权利要求2所述的温度检测装置,其特征在于,
    所述温度检测装置还包括:
    低通滤波器,串接于所述放大器与模数转换器之间,消除信号噪声。
  4. 如权利要求2所述的温度检测装置,其特征在于,
    所述放大器具有高输入阻抗。
  5. 如权利要求1-4任一项所述的温度检测装置,其特征在于,
    所述温度检测装置还包括:
    温度传感器,设于所述热电偶的冷端附近,与所述处理器连接,将检测到的所述冷端的温度发送给所述处理器。
  6. 如权利要求1-4任一项所述的温度检测装置,其特征在于,
    所述温度检测装置还包括:
    连接器,设于所述智能终端主板上,连接所述热电偶及所述采样电路。
  7. 如权利要求1-4任一项所述的温度检测装置,其特征在于,
    所述热电偶的热端和冷端之间包裹有屏蔽层。
  8. 如权利要求1-4任一项所述的温度检测装置,其特征在于,
    所述热电偶的材料为铂铑和铂。
  9. 一种智能终端,其特征在于,
    所述智能终端包括如权利要求1所述的温度检测装置。
  10. 如权利要求9所述的智能终端,其特征在于,
    所述热端所在的工作区域包括电池、电能管理单元和CPU中的任一位置。
PCT/CN2017/105986 2017-10-13 2017-10-13 一种智能终端的温度检测装置及具有该装置的智能终端 WO2019071554A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/105986 WO2019071554A1 (zh) 2017-10-13 2017-10-13 一种智能终端的温度检测装置及具有该装置的智能终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/105986 WO2019071554A1 (zh) 2017-10-13 2017-10-13 一种智能终端的温度检测装置及具有该装置的智能终端

Publications (1)

Publication Number Publication Date
WO2019071554A1 true WO2019071554A1 (zh) 2019-04-18

Family

ID=66101154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105986 WO2019071554A1 (zh) 2017-10-13 2017-10-13 一种智能终端的温度检测装置及具有该装置的智能终端

Country Status (1)

Country Link
WO (1) WO2019071554A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279058A (zh) * 2011-06-21 2011-12-14 惠州Tcl移动通信有限公司 移动终端工作温度的测试系统及其测试方法
CN203551127U (zh) * 2013-11-28 2014-04-16 惠州市亿能电子有限公司 一种采用热电偶测温的电池管理系统
CN105633498A (zh) * 2016-03-15 2016-06-01 北京小米移动软件有限公司 电池温度检测方法及装置
CN105912087A (zh) * 2016-04-29 2016-08-31 北京小米移动软件有限公司 一种移动终端
CN106130666A (zh) * 2016-06-30 2016-11-16 大连楼兰科技股份有限公司 提高车联网智能终端温升精确度测试系统及方法
CN106230076A (zh) * 2016-09-21 2016-12-14 维沃移动通信有限公司 一种充电方法及移动终端
CN106918398A (zh) * 2017-04-20 2017-07-04 安徽春辉仪表线缆集团有限公司 一种电脑cpu用测温热电偶结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279058A (zh) * 2011-06-21 2011-12-14 惠州Tcl移动通信有限公司 移动终端工作温度的测试系统及其测试方法
CN203551127U (zh) * 2013-11-28 2014-04-16 惠州市亿能电子有限公司 一种采用热电偶测温的电池管理系统
CN105633498A (zh) * 2016-03-15 2016-06-01 北京小米移动软件有限公司 电池温度检测方法及装置
CN105912087A (zh) * 2016-04-29 2016-08-31 北京小米移动软件有限公司 一种移动终端
CN106130666A (zh) * 2016-06-30 2016-11-16 大连楼兰科技股份有限公司 提高车联网智能终端温升精确度测试系统及方法
CN106230076A (zh) * 2016-09-21 2016-12-14 维沃移动通信有限公司 一种充电方法及移动终端
CN106918398A (zh) * 2017-04-20 2017-07-04 安徽春辉仪表线缆集团有限公司 一种电脑cpu用测温热电偶结构

Similar Documents

Publication Publication Date Title
Duff et al. Two ways to measure temperature using thermocouples feature simplicity, accuracy, and flexibility
TWI516752B (zh) 藉由整合冷接點補償及線性化來熱耦合電動勢電壓至溫度轉換器
CN106092363B (zh) 一种基于Pt100的温度传感器电路及其测温方法
CN202648827U (zh) 测温电路、温度采集系统、变频器及温度变送器
WO2009003395A1 (fr) Dispositif et procédé de mesure de courant et de température en ligne à grande plage et grande précision
US9423430B2 (en) Active current measurement circuit and measurement device
Găşpăresc Development of a low-cost system for temperature monitoring
CN111256864A (zh) 基于多个热敏电阻串接的多点温度测量方法及系统
JP5805145B2 (ja) 温度検出機能を具えたアナログデジタル変換回路及びその電子装置
CN110388993A (zh) 一种低阻抗温度传感器及其温度测量方法
CN204165669U (zh) 一种用于射频功率测量的温度电压转换装置
WO2019071554A1 (zh) 一种智能终端的温度检测装置及具有该装置的智能终端
TWI596890B (zh) 訊號處理電路
CN110907053A (zh) 温度检测电路以及电子设备
TWI691728B (zh) 電流偵測裝置及其設計方法
CN205748693U (zh) 一种高精度数字温度计
CN204228286U (zh) 一种水分仪用温度采集电路
CN208508828U (zh) 采样电路及电机控制系统
CN216283994U (zh) 移动终端usb口的温度检测电路及移动终端
CN206311232U (zh) 一种高精度微型ntc温度传感器
CN215726426U (zh) 一种热电阻和热电偶通用性测温电路
CN104914298A (zh) 一种用于射频量热计的功率测量装置
CN216792298U (zh) 一种交直流恒流型用于电阻和阻抗检测的adc前置电路
Zhuo et al. Design of Calibration System for Multi-Channel Thermostatic Metal Bath
CN214845452U (zh) 一种电阻器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928356

Country of ref document: EP

Kind code of ref document: A1