WO2019069810A1 - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
WO2019069810A1
WO2019069810A1 PCT/JP2018/036286 JP2018036286W WO2019069810A1 WO 2019069810 A1 WO2019069810 A1 WO 2019069810A1 JP 2018036286 W JP2018036286 W JP 2018036286W WO 2019069810 A1 WO2019069810 A1 WO 2019069810A1
Authority
WO
WIPO (PCT)
Prior art keywords
upstream
pipe
downstream
partition plate
exhaust gas
Prior art date
Application number
PCT/JP2018/036286
Other languages
English (en)
French (fr)
Inventor
朝幸 伊藤
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201880064380.1A priority Critical patent/CN111183275B/zh
Publication of WO2019069810A1 publication Critical patent/WO2019069810A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus

Definitions

  • the present disclosure relates to an exhaust purification system for an internal combustion engine, and more particularly to an exhaust purification system mainly applied to a diesel engine.
  • a selective reduction type NOx catalyst which reduces and removes NOx (nitrogen oxide) in the exhaust gas.
  • An injection valve for injecting urea water is provided upstream of the NOx catalyst.
  • the NOx catalyst causes ammonia NH 3 obtained by hydrolyzing urea water to react with NOx to reduce NOx in the exhaust to nitrogen N 2 .
  • the present disclosure has been made in view of such circumstances, and an object thereof is to provide an exhaust gas purification apparatus for an internal combustion engine capable of promoting mixing of injected urea water and exhaust gas.
  • the upstream side pipe and the downstream side pipe project into a space between the upstream side partition plate and the downstream side partition plate.
  • the outlet of the upstream pipe and the inlet of the downstream pipe overlap each other in the upstream and downstream directions.
  • the upstream pipe and the downstream pipe are in contact with each other.
  • At least one of the upstream side partition plate and the downstream side partition plate is inclined with respect to a direction perpendicular to the central axis of the exhaust passage.
  • mixing of the injected urea water and the exhaust gas can be promoted.
  • FIG. 1 is a longitudinal side view showing the entire structure of an exhaust purification system according to a first embodiment of the present disclosure.
  • FIG. 2 is a longitudinal rear elevation view of the exhaust gas purification apparatus, and is a cross-sectional view taken along the line II-II of FIG.
  • FIG. 3 is a longitudinal front view of the exhaust gas purification apparatus, and is a sectional view taken along the line III-III of FIG.
  • FIG. 4 is a longitudinal side view showing the internal configuration of the second passage.
  • FIG. 5 is a cross-sectional view taken along the line V-V of FIG.
  • FIG. 6 is a longitudinal side view showing the internal configuration of the second passage in the second embodiment.
  • 7 is a cross-sectional view taken along the line VII-VII of FIG.
  • FIG. 8 is a longitudinal side view showing an internal configuration of a second passage in the third embodiment.
  • FIG. 9 is a cross-sectional view taken along the line IX-IX of FIG.
  • First Embodiment 1 to 3 show the overall structure of an exhaust purification system according to a first embodiment of the present disclosure.
  • 1 is a vertical cross-sectional side view (II cross-sectional view of FIG. 2)
  • FIG. 2 is a longitudinal rear rear view (II-II cross-sectional view of FIG. 1)
  • FIG. 3 is a vertical cross-sectional front view (III-III cross-sectional view of FIG. 1)
  • each direction of orthogonal three axes that is, each direction of front, rear, left, right, upper and lower is defined as shown. However, it should be noted that these directions are merely defined for the convenience of description with respect to the illustrated arrangement.
  • An internal combustion engine (not shown, also referred to as an engine) to which an exhaust gas purification device is applied is a diesel engine mounted on a vehicle.
  • the vehicle (not shown) is a large vehicle such as a truck.
  • the type and application of the vehicle and the internal combustion engine are not limited.
  • the vehicle may be a small vehicle such as a passenger car, and the engine may be a gasoline engine.
  • the exhaust gas purification device 1 includes a closed box type casing 2 that compactly holds a plurality of members (such as a catalyst) to be described later in a canning state.
  • the casing 2 of the present embodiment has a rectangular parallelepiped shape.
  • a device inlet pipe 3 for introducing exhaust gas G of the engine into the casing 2 and a device outlet pipe 4 for discharging exhaust gas G from the interior of the casing 2 are attached to the rear end wall 2R of the casing 2 ing.
  • the installation positions of the apparatus inlet pipe 3 and the apparatus outlet pipe 4 can be set arbitrarily.
  • exhaust passage 5 refers to any space through which the exhaust gas G flows, and its shape is arbitrary. It may be tubular or chamber-like.
  • the exhaust passage 5 is configured to return the exhaust gas G back and forth a plurality of times.
  • a front partition plate 6 and a rear partition plate 7 which divide the inside of the casing 2 back and forth.
  • a front end chamber 8F is defined between the front partition plate 6 and the front end wall 2F of the casing 2.
  • a rear end chamber 8R is defined between the rear partition wall 7 and the rear end wall 2R of the casing 2.
  • An intermediate chamber 8M is defined between the front partition plate 6 and the rear partition plate 7.
  • the exhaust gas having flowed forward in the apparatus inlet pipe 3 goes straight in the first passage 9 disposed at the lower left in the casing 2 and extending in the front-rear direction as it is. At this time, the first oxidation catalyst 21 and the filter 22 are sequentially pass. Thereafter, the exhaust gas passes through the feed passage 19 in the feed pipe 19P disposed in the front end chamber 8F, and enters the second passage 10 as a mixing passage disposed in the central portion inside the casing 2. At this time, the exhaust gas is folded back from the forward direction. Then, the exhaust gas flows from the front to the rear in the second passage 10 and then enters the rear end chamber 8R, where it is branched in two directions as shown in FIG. And the fourth passage 12 disposed at the upper left in the casing 2. At this time, the exhaust gas is turned from the rear to the front.
  • the exhaust gas flows from the rear to the front in the third and fourth passages 11 and 12, and at this time, passes through the NOx catalyst 23 and the second oxidation catalyst 24 in this order. Thereafter, the exhaust gas enters the front end chamber 8F and is concentrated to the fifth passage 13 disposed at the upper right in the casing 2 as shown in FIG. At this time, the exhaust gas is folded back from the forward direction. Thereafter, the exhaust gas flows from the front to the rear in the fifth passage 13 and travels straight to the apparatus outlet pipe 4 and is discharged.
  • the exhaust passage 5 includes the first passage 9, the second passage 10, the third passage 11, the fourth passage 12, the fifth passage 13, the feed passage 19, the front end chamber 8F and the rear end chamber 8R.
  • an injection valve 14 for injecting urea water as a reducing agent is provided at the position of the upstream end of the second passage 10.
  • the injection valve 10 is disposed rearwardly and coaxially with the second passage 10, and injects urea water in the form of a spray toward the axial direction rearward of the second passage 10.
  • the injection valve 14 is disposed upstream of the selective reduction NOx catalyst 23, which is an object to be supplied with urea water.
  • the second passage 10 located downstream of the injection valve 14 and upstream of the NOx catalyst 23 serves as a mixing passage for mixing urea water injected from the injection valve 10 with the exhaust gas.
  • a first oxidation catalyst 21, a filter 22, a selective reduction type NOx catalyst 23, and a second oxidation catalyst 24 are provided in series sequentially from the upstream side.
  • the first oxidation catalyst 21 oxidizes and purifies the unburned components (hydrocarbon HC and carbon monoxide CO) in the exhaust gas, and heats and heats the exhaust gas with the reaction heat at this time.
  • the filter 22 is a so-called diesel particulate filter (DPF) or a catalyzed soot filter (CSF), and is a continuous regeneration filter supporting a catalyst.
  • the filter 22 is of a wall flow type and collects particulate matter (hereinafter referred to as PM: Particulate Matter) contained in the exhaust, and continuously oxidizes and burns and removes the collected PM by catalytic reaction.
  • PM particulate Matter
  • the Selective Catalytic Reduction (SCR) 23 reacts ammonia NH 3 obtained by hydrolyzing urea water with NOx, and reduces NOx in the exhaust to nitrogen N 2 .
  • the second oxidation catalyst 24 also referred to as an ammonia slip oxidation catalyst, oxidizes and removes excess ammonia discharged (slipped) from the NOx catalyst 23.
  • a total of two combinations of the NOx catalyst 23 and the second oxidation catalyst 24 are provided in parallel with each other in the third passage 11 and the fourth passage 12. Further, as shown in FIG. 1, in each combination, the NOx catalyst 23 is formed on the entire upstream carrier 23A and on the upstream portion of the downstream carrier 23B, and the second oxidation catalyst 24 is downstream of the downstream carrier 23B. The portion is formed by zone coating. However, the carriers of both catalysts may be separate.
  • the first to fifth passages 9 to 13 and the feed passage 19 are defined by first to fifth passage pipes 9P to 13P and a feed passage pipe 19P.
  • the first to fourth passages 9 to 12 are straight and circular in cross section
  • the feed passage 19 is straight and oval in cross section.
  • the fifth passage 13 is formed in a straight line at the upper right corner of the casing 2 as shown in FIG.
  • Each tube corresponding to each passage is also the same shape. However, the shape of each passage and each pipe can be changed appropriately.
  • the first passage pipe 9P extends from the rear end wall 2R to the front end wall 2F
  • the second passage pipe 10P extends from the front end wall 2F to the rear partition plate 7, and the third passage pipe 11P and the fourth
  • the passage pipe 12P extends from the rear partition plate 7 to the front partition plate 6, and the fifth passage pipe 13P extends from the front partition plate 6 to the rear end wall 2R.
  • the inside of the front end chamber 8F is divided into the portion of the first passage 9, the portion of the second passage 10, the portion of the feed passage 19, and the other portion.
  • the inside of the rear end chamber 8R is divided into a portion of the first passage 9, a portion of the fifth passage 13, and a portion other than that.
  • the injection valve 14 that injects the urea water U rearward is provided at the upstream end of the second passage 10.
  • a feed passage 19 is connected to the lower left side of the second passage 10 located in the front end chamber 8F, and the exhaust gas G is introduced into the second passage 10 from here.
  • the urea water spray and the exhaust gas G are gradually mixed in the second passage 10 as they proceed rearward and downstream.
  • the following configuration is adopted.
  • an upstream side partition plate 31A and a downstream side partition plate 31B provided separately from each other in the upstream and downstream directions, an upstream side pipe 32A provided to the upstream side partition plate 31A, and a downstream side A downstream pipe 32B provided on the partition plate 31B is disposed.
  • An upstream side through hole 33A and a downstream side through hole 33B are provided in the upstream side partition plate 31A and the downstream side partition plate 31B, respectively, and the upstream side pipe 32A and the downstream side pipe 32B are respectively provided with the upstream side through hole 33A and the downstream side through hole It is connected in communication with 33B.
  • the outlet portion 34 of the upstream pipe 32A and the inlet portion 35 of the downstream pipe 31B are disposed non-coaxially with each other.
  • the central axis of the outlet 34 of the upstream pipe 32A is indicated by C1
  • the central axis of the inlet 35 of the downstream pipe 31B is indicated by C2.
  • the upstream side partition plate 31A and the downstream side partition plate 31B respectively divide the inside of the second passage 10 back and forth, that is, the upstream and downstream sides.
  • the upstream side partition plate 31A and the downstream side partition plate 31B are formed of plate members and fixed to the inner peripheral surface of the second passage pipe 10P by welding or the like.
  • the upstream side partition plate 31A and the downstream side partition plate 31B are inclined in the same direction at inclination angles ⁇ 1 and ⁇ 2 with respect to the direction perpendicular to the central axis C of the second passage 10.
  • the upstream partition plate 31A is inclined such that the upper side on which the upstream through hole 33A and the upstream pipe 32A are provided is positioned rearward with respect to the lower side.
  • the downstream side partition plate 31B is inclined so that the lower side where the downstream side through hole 33B and the downstream side pipe 32B are provided is positioned forward with respect to the upper side.
  • ⁇ 1 ⁇ 2
  • the upstream side partition plate 31A and the downstream side partition plate 31B are parallel to each other.
  • ⁇ 1 and ⁇ 2 may not be equal, and the upstream side partition plate 31A and the downstream side partition plate 31B may not be parallel.
  • at least one of the upstream side partition plate 31A and the downstream side partition plate 31B may not be inclined.
  • the upstream side through hole 33A and the downstream side through hole 33B are formed by penetrating the upstream side partition plate 31A and the downstream side partition plate 31B in the plate thickness direction.
  • the upstream through hole 33A and the downstream through hole 33B are parallel to the central axis C of the second passage 10, that is, with an inclination angle ⁇ 1 with respect to the direction perpendicular to the plate surfaces of the upstream partition 31A and the downstream partition 31B. , ⁇ 2 are inclined by an angle equal to ⁇ 2.
  • the upstream through holes 33A and the downstream through holes 33B are offset from the central axis C of the second passage 10 by equal distances L1 and L2 in the vertical direction.
  • the upstream through holes 33A and the downstream through holes 33B may not be vertically aligned as described above, but may be aligned in any direction, for example, may be aligned horizontally.
  • the offset distances L1 and L2 may not necessarily be equal to each other, and may be different from each other.
  • the upstream side pipe 32A and the downstream side pipe 32B are both formed of a pipe having a circular cross section and a straight tubular shape in this embodiment, and are disposed so as to protrude into the space 36 between the upstream side partition plate 31A and the downstream side partition plate 31B. ing.
  • the upstream pipe 32A and the downstream pipe 32B are coaxially connected to the upstream through hole 33A and the downstream through hole 33B. Accordingly, the upstream side pipe 32A and the downstream side pipe 32B are also disposed parallel to the central axis C of the second passage 10 and offset from the central axis C of the second passage 10 by equal distances L1 and L2 in the vertical direction. Be placed.
  • the upstream side pipe 32A and the downstream side pipe 32B can also be aligned in any direction, and the offset distance can also be set arbitrarily.
  • the inner and outer diameters of the upstream pipe 32A and the downstream pipe 32B are constant.
  • the inner diameters thereof are equal to the diameter of the upstream through hole 33A and the downstream through hole 33B so that no level difference occurs at the joint between the pipe and the through hole.
  • the inlet end of the upstream side pipe 32A and the outlet end of the downstream side pipe 32B are obliquely cut and fixed to surfaces in the space 36 of the upstream side partition plate 31A and the downstream side partition plate 31B by welding or the like. Accordingly, the upstream side pipe 32A and the downstream side pipe 32B extend only into the space 36 so as to face each other from the upstream side partition plate 31A and the downstream side partition plate 31B.
  • the upstream side pipe 32A extends rearward from the upstream side partition plate 31A, and the downstream side pipe 32B extends forward from the downstream side partition plate 31B.
  • a part of at least one of the upstream pipe 32A and the downstream pipe 32B may extend out of the space 36.
  • the outlet 34 of the upstream pipe 32A and the inlet 35 of the downstream pipe 32B overlap each other in the front-rear direction, that is, in the up-down direction.
  • the overlap length is indicated by L.
  • such an overlap may not be provided.
  • the straight-pipe upstream pipe 32A and the downstream pipe 32B extend from the upstream partition plate 31A and the downstream partition plate 31B so as to face each other in a parallel and non-coaxial state. .
  • the flow of the exhaust gas G in the second passage 10 is as follows. As indicated by an arrow in FIG. 4, the exhaust gas G introduced into the second passage 10 from the feed passage 19 enters the upstream pipe 32A through the upstream through hole 33A. At this time, since the upstream side partition plate 31A is inclined so that the upstream side through hole 33A is positioned at the rear, the exhaust gas G flows along the front surface of the upstream side partition plate 31A and is smoothed in the upstream side through hole 33A. Can be guided to.
  • the exhaust gas G flows through the upstream pipe 32A and is then discharged backward along the direction of the outlet 34. Then, it turns back toward the front and goes to the inlet 35 of the downstream side pipe 32B. When entering the inlet portion 35 of the downstream side pipe 32B, the exhaust gas G folds back toward the rear, and then enters the inlet portion 35 backward along the direction of the inlet portion 35. Thus, the exhaust gas G is turned back twice during the time it exits the outlet 34 and enters the inlet 35.
  • the exhaust gas G flows through the downstream pipe 32B, and then is discharged from the downstream pipe 32B and the downstream through hole 33B in a backward direction along the direction of the outlet 38. Thereafter, it flows in the second passage 10 and enters the rear end chamber 8R. Since the downstream side partition plate 31B is inclined so that the downstream side through hole 33B is positioned forward, the exhaust gas G immediately after being discharged from the downstream side through hole 33B is also along the rear surface portion of the downstream side partition plate 31B. It is possible to smoothly carry out the discharge from the downstream side through hole 33B.
  • the outlet 34 of the upstream pipe 32A and the inlet 35 of the downstream pipe 31B are arranged in a non-coaxial state with each other, the exhaust discharged from the outlet 34 of the upstream pipe 32A It is possible to prevent the flow of the gas G from entering the inlet portion 35 of the downstream pipe 31B straight. Then, a curve can be given to the flow of the exhaust gas G between the outlet 34 of the upstream pipe 32A and the inlet 35 of the downstream pipe 31B. It can promote mixing. This also promotes the heating of the aqueous urea solution by the exhaust gas, promotes the hydrolysis of the aqueous urea solution, increases the ammonia generation efficiency, and enables the NOx catalyst to operate with high efficiency. And exhaust purification performance can be improved.
  • the exhaust gas G in this narrow space 36 Flow can be relatively complicated, and the mixing of urea water and exhaust gas G can be further promoted.
  • the outlet 34 of the upstream pipe 32A and the inlet 35 of the downstream pipe 32B overlap each other in the upstream and downstream directions, the above-described two-reflow can be reliably realized.
  • the mixing of water and exhaust gas G can be further promoted.
  • the substantial passage length can be expanded within the limited front and rear length range (space 36), and the mixing passage length of the urea water and the exhaust gas G can be substantially expanded. Therefore, effective use of space can be achieved.
  • the upstream side partition plate 31A and the downstream side partition plate 31B are inclined as described above, the exhaust gas G is smoothly guided to the upstream side through hole 33A, and the exhaust from the downstream side through hole 33B Gas G can be discharged smoothly. Moreover, the retention of urea water on the surface of the partition plate can be suppressed, and the formation of deposits resulting from the retention can be suppressed.
  • a heat storage body for storing heat of exhaust gas is stored. It also works as Since urea water (or a mixture of urea water and exhaust gas) comes in contact with these heat storage bodies that have accumulated heat and become high temperature, the urea water can be heated to promote its hydrolysis.
  • the surface area of the heat storage body and the heat storage body and the urea water are better than in the case where only the upstream side partition plate 31A and the downstream side partition plate 31B are provided.
  • the contact area can be increased to promote heating and hydrolysis of aqueous urea.
  • the exhaust passage 5 is formed in the closed box type casing 2 so as to be folded back, and a plurality of post-processing members (such as catalysts) are disposed in the exhaust passage 5. It also functions as a silencer). Therefore, it is not necessary to separately provide a muffler, and the manufacturing cost can be reduced.
  • the present embodiment is different from the first embodiment in the configuration of the outlet 34 of the upstream pipe 32A. That is, in the first embodiment, the entire upstream pipe 32A is straight and the outlet 34 is also straight. On the other hand, in the present embodiment, the portion other than the outlet portion 34 of the upstream side pipe 32A is straight tubular, but the outlet portion 34 is curved and has a bent tubular shape. As a result, the outlet 34 of the upstream pipe 32A and the inlet 35 of the downstream pipe 31B are arranged non-parallel and non-coaxial with each other.
  • the outlet portion 34 is curved so as to avoid the downstream side pipe 31B, and is curved so as to be directed rearward and leftward and downward.
  • the direction is not limited to this.
  • the outlet 34 is curved outward in the radial direction with respect to the central axis C3 of the inlet 37.
  • the angle formed by the central axis C3 of the inlet portion 37 and the central axis C2 of the outlet portion 34, that is, the bending angle ⁇ 3, is preferably an obtuse angle as in this embodiment. As a result, the bending becomes loose and the resistance to the flow of the exhaust gas G can be reduced.
  • the central axis C2 of the outlet portion 34 is defined by the central axis at the position of the outlet end (pipe end) of the outlet portion 34.
  • the flow of the exhaust gas G in the present embodiment is as follows. As indicated by arrows in FIGS. 6 and 7, the exhaust gas G discharged from the outlet portion 34 of the upstream side pipe 32A rearward and obliquely downward to the left, swirls along the inner circumferential surface of the second passage pipe 10P, It turns back toward the front, then turns back toward the rear, and enters the inlet 35 of the downstream pipe 32B.
  • a flow in the swirling direction can be added, and the mixing of the urea water and the exhaust gas G can be further promoted. And heating and hydrolysis of urea water can be promoted further.
  • the inlet 35 of the downstream side pipe 32B can also be curved to form a bent tubular shape.
  • the inclination direction of the downstream side partition plate 31B, the direction of the upstream side pipe 32A, and the installation position and the direction of the downstream side pipe 32B are the same as those in the first embodiment. It is different.
  • downstream partition plate 31B is inclined in the opposite direction to that of the first embodiment, and the downstream partition plate 31B and the downstream pipe 32B are provided such that the upper side thereof is positioned forward with respect to the lower side. 31B is inclined.
  • the size of the inclination angle is ⁇ 2 as in the first embodiment.
  • the upstream side partition plate 31A and the downstream side partition plate 31B are arranged in mirror symmetry as shown in FIG.
  • An upstream through hole 33A and a downstream through hole 33B are provided on the upper side and at the same height position of the upstream side partition plate 31A and the downstream side partition plate 31B, and the straight upstream pipe 32A and the downstream side pipe 32B are formed there. Is attached.
  • the upstream side pipe 32A is disposed at a slight inclination so that the outlet 34 thereof is directed to the rear lower left so that the pipes do not interfere with each other, and the downstream side pipe 32B is such that the inlet 35 thereof is directed to the front oblique lower right It is arranged slightly inclined. Accordingly, the outlet 34 of the upstream pipe 32A and the inlet 35 of the downstream pipe 31B are disposed nonparallel and non-coaxial with each other.
  • the outlet 34 of the upstream pipe 32A and the inlet 35 of the downstream pipe 32B are in contact with each other at the overlapping portion.
  • the contacts are welded and the contact area is substantially increased.
  • the directions of the upstream through hole 33A and the downstream through hole 33B are slightly changed from the first embodiment so that they are coaxial with the inlet 37 of the upstream pipe 32A and the outlet 38 of the downstream pipe 32B. There is.
  • the flow of the exhaust gas G in the present embodiment is as follows. As indicated by arrows in FIGS. 8 and 9, the exhaust gas G discharged from the outlet portion 34 of the upstream side pipe 32A rearward and obliquely downward to the left, swirls along the inner circumferential surface of the second passage pipe 10P, It turns back toward the front, then turns back toward the rear, and enters the inlet 35 of the downstream pipe 32B.
  • the flow in the swirling direction can be added, and the mixing of the urea water and the exhaust gas G can be further promoted. And heating and hydrolysis of urea water can be promoted further.
  • the urea water and the exhaust gas G are mixed using the relatively wide space 36 below the upstream side pipe 32A and the downstream side pipe 32B while leaving the outlet portion 34 and entering the inlet portion 35. This can also facilitate mixing.
  • the upstream side pipe 32A and the downstream side pipe 32B are in contact with each other, the exposed surface area of the pipe surface into the space 36 is reduced to suppress the heat radiation from the pipe into the space 36. Heat storage effect can be enhanced.
  • a modification is possible in which the upstream pipe 32A and the downstream pipe 32B are in contact with each other.
  • the present disclosure is applicable not only to the exhaust gas purification device having the above-described closed box type casing, but also to a general exhaust gas purification device.
  • the catalyst may not necessarily be the NOx catalyst, and may not be the selective reduction type NOx catalyst.
  • the reducing agent supplied to the catalyst can also be changed according to the type of catalyst.
  • the upstream pipe and the downstream pipe have arbitrary cross-sectional shapes, and the inner and outer diameters may not be constant, and may be changed.
  • the number of combinations of partition plates and pipes is two in the above embodiment, but may be three or more. In this case, the present disclosure is applicable to any two combinations adjacent on the upstream and downstream sides.
  • the upstream pipe and the downstream pipe may not extend to face each other.
  • the upstream pipe may extend rearward from the upstream partition plate, and the downstream pipe may extend rearward from the downstream partition plate.
  • the outlet portion of the upstream side pipe and the inlet portion of the downstream side pipe are non-coaxial, a curve can be given to the flow of the exhaust gas from the former to the latter. Also in this way, the heat storage effect and the urea water heating effect by both pipes can still be secured.
  • the present disclosure has the effect of promoting the mixing of the injected urea water and the exhaust gas, and is useful in that the NOx catalyst provided in the exhaust passage of the diesel engine can be operated with high efficiency.
  • exhaust gas purification device 5 exhaust passage 10 second passage 14 injection valve 23 NOx catalyst 31A upstream side partition plate 31B downstream side partition plate 33A upstream side through hole 33B downstream side through hole 32A upstream side pipe 32B downstream side pipe 34 outlet portion 35 inlet Part 36 Space

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

内燃機関の排気浄化装置は、内燃機関の排気ガスが流される排気通路と、排気通路に配置された触媒と、触媒の上流側に設けられ、排気通路内に還元剤を噴射する噴射弁14と、噴射弁の下流側かつ触媒の上流側に位置する排気通路10の内部に互いに離間して設けられた上流側仕切板31Aおよび下流側仕切板31Bと、仕切板31A,31Bにそれぞれ設けられた上流側貫通孔33Aおよび下流側貫通孔33Bと、上流側貫通孔に連通して上流側仕切板に設けられた上流側パイプ32Aと、下流側貫通孔に連通して下流側仕切板に設けられた下流側パイプ32Bとを備える。上流側パイプの出口部34と下流側パイプの入口部35とは、互いに非同軸の状態で配置されている。

Description

内燃機関の排気浄化装置
 本開示は内燃機関の排気浄化装置に係り、特に、ディーゼルエンジンに主に適用される排気浄化装置に関する。
 ディーゼルエンジンの排気通路には、排気中のNOx(窒素酸化物)を還元除去する選択還元型NOx触媒が設けられる。NOx触媒の上流側には尿素水を噴射する噴射弁が設けられる。NOx触媒は、尿素水を加水分解して得られるアンモニアNH3とNOxを反応させ、排気中のNOxを窒素N2に還元する。
国際公開第2010/053033号 日本国特開2008-144644号公報 日本国特開2006-77576号公報
 NOx触媒を高効率で作動させるには、尿素水の加水分解を促進し、尿素水の単位容量当たりのアンモニア生成量すなわちアンモニア生成効率をできるだけ高い水準に維持することが望ましい。そして尿素水の加水分解を促進するためには、排気通路内に噴射された尿素水と排気ガスの混合を可能な限り促進することが好ましい。
 そこで本開示は、かかる事情に鑑みて創案され、その目的は、噴射された尿素水と排気ガスの混合を促進できる内燃機関の排気浄化装置を提供することにある。
 本開示の一の態様によれば、
 内燃機関の排気ガスが流される排気通路と、
 前記排気通路に配置された触媒と、
 前記触媒の上流側に設けられ、前記排気通路内に還元剤を噴射する噴射弁と、
 前記噴射弁の下流側かつ前記触媒の上流側に位置する前記排気通路の内部に互いに離間して設けられた上流側仕切板および下流側仕切板と、
 前記上流側仕切板および前記下流側仕切板にそれぞれ設けられた上流側貫通孔および下流側貫通孔と、
 前記上流側貫通孔に連通して前記上流側仕切板に設けられた上流側パイプと、
 前記下流側貫通孔に連通して前記下流側仕切板に設けられた下流側パイプと、
 を備え、
 前記上流側パイプの出口部と前記下流側パイプの入口部とは、互いに非同軸の状態で配置されている
 ことを特徴とする内燃機関の排気浄化装置が提供される。
 好ましくは、前記上流側パイプと前記下流側パイプは、前記上流側仕切板と前記下流側仕切板の間の空間内に突出されている。
 好ましくは、前記上流側パイプの出口部と前記下流側パイプの入口部とは、上下流方向に互いにオーバーラップされている。
 好ましくは、前記上流側パイプと前記下流側パイプは互いに接触されている。
 好ましくは、前記上流側仕切板および前記下流側仕切板の少なくとも一方は、前記排気通路の中心軸に垂直な方向に対し傾斜されている。
 本開示によれば、噴射された尿素水と排気ガスの混合を促進できる。
図1は、本開示の第1実施形態に係る排気浄化装置の全体構造を示す縦断側面図である。 図2は、排気浄化装置の縦断後面図であり、図1のII-II断面図である。 図3は、排気浄化装置の縦断前面図であり、図1のIII-III断面図である。 図4は、第2通路の内部の構成を示す縦断側面図である。 図5は、図4のV-V断面図である。 図6は、第2実施形態における第2通路の内部の構成を示す縦断側面図である。 図7は、図6のVII-VII断面図である。 図8は、第3実施形態における第2通路の内部の構成を示す縦断側面図である。 図9は、図8のIX-IX断面図である。
 以下、添付図面を参照して本開示の実施形態を説明する。なお本開示は以下の実施形態に限定されない点に留意されたい。
 [第1実施形態]
 図1~図3に、本開示の第1実施形態に係る排気浄化装置の全体構造を示す。図1は縦断側面図(図2のI-I断面図)、図2は縦断後面図(図1のII-II断面図)、図3は縦断前面図(図1のIII-III断面図)である。便宜上、直交三軸の各方向、すなわち前後左右上下の各方向を図示の如く定める。但しこれら各方向が図示の配置に関して説明の便宜上定められたものに過ぎない点に留意されたい。
 排気浄化装置が適用される内燃機関(図示せず、エンジンともいう)は、車両に搭載されるディーゼルエンジンである。車両(図示せず)はトラック等の大型車両である。但し車両および内燃機関の種類、用途等に限定はなく、例えば車両は乗用車等の小型車両であってもよいし、エンジンはガソリンエンジンであってもよい。
 図示するように、排気浄化装置1は、後述する複数の部材(触媒等)をコンパクトに纏めてキャニング(canning)状態で収容する密閉箱型のケーシング2を備える。本実施形態のケーシング2は直方体形状とされる。ケーシング2の後端壁2Rには、ケーシング2内にエンジンの排気ガスGを導入するための装置入口管3と、ケーシング2内から排気ガスGを排出するための装置出口管4とが取り付けられている。但し装置入口管3と装置出口管4の設置位置は任意に設定できる。
 ケーシング2内では、金属製(本実施形態ではステンレス製)の複数の管および板が溶接等で取り付けられることにより、適宜空間が仕切られ、これにより排気ガスGが流される排気通路5が画成されている。ここで「排気通路」とは、排気ガスGが流される任意の空間をいい、その形状は任意である。管状であってもよいしチャンバ状であってもよい。排気通路5は排気ガスGを前後方向に複数回折り返すように構成されている。
 ケーシング2内には、ケーシング2内を前後に仕切る前側隔壁板6と後側隔壁板7とが設けられている。前側隔壁板6とケーシング2の前端壁2Fとの間に前端チャンバ8Fが画成されている。後側隔壁板7とケーシング2の後端壁2Rとの間に後端チャンバ8Rが画成されている。前側隔壁板6と後側隔壁板7の間に中間チャンバ8Mが画成されている。
 以下、ケーシング2内における排気ガスGのメインの流れを概略説明する。このメインの流れは図1~図3に矢示する通りである。
 装置入口管3内を前方に流れてきた排気ガスは、そのまま、ケーシング2内左下に配置され前後方向に延びる第1通路9内を直進し、このときに第1酸化触媒21とフィルタ22を順に通過する。その後排気ガスは、前端チャンバ8F内に配置された送り管19P内の送り通路19を通じて、ケーシング2内中心部に配置された混合通路としての第2通路10内に入る。このときに排気ガスは前向きから後向きへ折り返される。そして排気ガスは、第2通路10内を前方から後方に流れた後、後端チャンバ8R内に入り、ここで図2に示すように二方向に分岐して、ケーシング2内右下に配置された第3通路11と、ケーシング2内左上に配置された第4通路12とに入る。このときに排気ガスは後向きから前向きへ折り返される。
 排気ガスは、第3および第4通路11,12内を後方から前方に流れ、このときにNOx触媒23と第2酸化触媒24を順に通過する。その後排気ガスは、前端チャンバ8F内に入り、図3に示すように、ケーシング2内右上に配置された第5通路13へと集約される。このときに排気ガスは前向きから後向きへ折り返される。その後排気ガスは、第5通路13内を前方から後方に流れ、そのまま装置出口管4へと直進して排出される。
 このように排気通路5は、第1通路9、第2通路10、第3通路11、第4通路12、第5通路13、送り通路19、前端チャンバ8Fおよび後端チャンバ8Rを含む。
 第2通路10の上流端の位置には、還元剤としての尿素水を噴射する噴射弁14が設けられている。噴射弁10は、第2通路10と同軸に後向きに配置され、第2通路10の軸方向後方に向かって尿素水を噴霧状に噴射する。
 噴射弁14は、尿素水の供給対象物である選択還元型NOx触媒23の上流側に配置される。そして噴射弁14の下流側かつNOx触媒23の上流側に位置する第2通路10は、噴射弁10から噴射された尿素水を排気ガスと混合させる混合通路としての役割を果たす。
 排気通路5には4種類の後処理部材、すなわち第1酸化触媒21、フィルタ22、選択還元型NOx触媒23および第2酸化触媒24が、上流側から順に直列に設けられている。
 第1酸化触媒21は、排気ガス中の未燃成分(炭化水素HCおよび一酸化炭素CO)を酸化して浄化すると共に、このときの反応熱で排気ガスを加熱昇温する。
 フィルタ22は、所謂ディーゼルパティキュレートフィルタ(DPF: Diesel Particulate Filter)または触媒付煤フィルタ(CSF: Caterized Soot Filter)と称されるもので、触媒を担持した連続再生式フィルタである。フィルタ22は、ウォールフロー型とされ、排気中に含まれる粒子状物質(以下PM: Particulate Matterという)を捕集すると共に、捕集したPMを触媒反応により連続的に酸化して燃焼除去する。
 選択還元型NOx触媒(SCR: Selective Catalytic Reduction)23は、尿素水を加水分解して得られるアンモニアNH3とNOxを反応させ、排気中のNOxを窒素N2に還元する。
 第2酸化触媒24は、アンモニアスリップ酸化触媒とも称され、NOx触媒23から排出された(スリップした)余剰アンモニアを酸化除去する。
 本実施形態において、NOx触媒23および第2酸化触媒24の組み合わせは、第3通路11と第4通路12に互いに並列して計二つ設けられる。また図1に示すように、各組み合わせにおいて、NOx触媒23は上流側担体23Aの全体と、下流側担体23Bの上流側部分とに形成され、第2酸化触媒24は下流側担体23Bの下流側部分にゾーンコートにより形成されている。但し両触媒の担体を個別にしても構わない。
 第1~第5通路9~13および送り通路19は、第1~第5通路管9P~13Pおよび送り通路管19Pにより画成されている。本実施形態において、第1~第4通路9~12は直線状かつ断面円形、送り通路19は直線状かつ断面長円形とされている。また第5通路13は例えば図2に示すように、ケーシング2の右上コーナー部に直線状に形成されている。各通路に対応する各管も同じ形状である。しかしながら各通路および各管の形状は適宜変更可能である。
 排気流れ方向に沿って、第1通路管9Pは後端壁2Rから前端壁2Fまで延び、第2通路管10Pは前端壁2Fから後側隔壁板7まで延び、第3通路管11Pおよび第4通路管12Pは後側隔壁板7から前側隔壁板6まで延び、第5通路管13Pは前側隔壁板6から後端壁2Rまで延びている。従って、前端チャンバ8F内は、第1通路9の部分と、第2通路10の部分と、送り通路19の部分と、それ以外の部分とに仕切られる。また後端チャンバ8R内は、第1通路9の部分と、第5通路13の部分と、それ以外の部分とに仕切られる。
 次に、図4を参照して、第2通路10の内部の構成を説明する。
 前述したように、第2通路10の上流端には後方に向かって尿素水Uを噴射する噴射弁14が設けられている。そして前端チャンバ8F内に位置する第2通路10の左下側面部には送り通路19が接続され、ここから第2通路10内に排気ガスGが導入される。
 尿素水噴霧と排気ガスGは第2通路10内を後方下流側に進むにつれて次第に混合されていく。本実施形態ではこうした混合を促進するため、次の構成が採用されている。
 第2通路10の内部には、上下流方向に互いに離間して設けられた上流側仕切板31Aおよび下流側仕切板31Bと、上流側仕切板31Aに設けられた上流側パイプ32Aと、下流側仕切板31Bに設けられた下流側パイプ32Bとが配置される。上流側仕切板31Aおよび下流側仕切板31Bにはそれぞれ上流側貫通孔33Aおよび下流側貫通孔33Bが設けられ、上流側パイプ32Aおよび下流側パイプ32Bはそれぞれ上流側貫通孔33Aおよび下流側貫通孔33Bに連通接続されている。特に、上流側パイプ32Aの出口部34と下流側パイプ31Bの入口部35とは、互いに非同軸の状態で配置されている。図中、上流側パイプ32Aの出口部34の中心軸をC1で示し、下流側パイプ31Bの入口部35の中心軸をC2で示す。
 上流側仕切板31Aおよび下流側仕切板31Bは、それぞれ第2通路10の内部を前後すなわち上下流側に仕切るものである。上流側仕切板31Aおよび下流側仕切板31Bは、板材により形成され第2通路管10Pの内周面に溶接等で固定されている。本実施形態の場合、上流側仕切板31Aおよび下流側仕切板31Bは、第2通路10の中心軸Cに垂直な方向に対し、傾斜角α1,α2で同一方向に傾斜されている。
 上流側仕切板31Aは、上流側貫通孔33Aおよび上流側パイプ32Aが設けられる上側が下側に対し後方に位置するように傾斜されている。下流側仕切板31Bは、下流側貫通孔33Bおよび下流側パイプ32Bが設けられる下側が上側に対し前方に位置するように傾斜されている。本実施形態ではα1=α2であり、上流側仕切板31Aおよび下流側仕切板31Bは互いに平行とされる。但しα1とα2は等しくなくてもよく、上流側仕切板31Aおよび下流側仕切板31Bは平行でなくてもよい。また上流側仕切板31Aおよび下流側仕切板31Bの少なくとも一方は傾斜されていなくてもよい。
 上流側貫通孔33Aおよび下流側貫通孔33Bは、上流側仕切板31Aおよび下流側仕切板31Bを板厚方向に貫通して形成される。上流側貫通孔33Aおよび下流側貫通孔33Bは、第2通路10の中心軸Cに平行とされ、すなわち上流側仕切板31Aおよび下流側仕切板31Bの板面に垂直な方向に対し傾斜角α1,α2に等しい角度だけ傾斜されている。図5に示すように、上流側貫通孔33Aおよび下流側貫通孔33Bは、第2通路10の中心軸Cに対し、上下方向に等しい距離L1,L2だけオフセットされている。但し上流側貫通孔33Aおよび下流側貫通孔33Bは、このように上下に整列していなくてもよく、任意の方向に整列可能で、例えば左右に整列していてもよい。またオフセット距離L1,L2も、必ずしも等しくなくてもよく、互いに異なっていてもよい。
 上流側パイプ32Aおよび下流側パイプ32Bは、本実施形態ではいずれも断面円形かつ直管状のパイプにより形成され、上流側仕切板31Aおよび下流側仕切板31Bの間の空間36内に突出して配置されている。上流側パイプ32Aおよび下流側パイプ32Bは、上流側貫通孔33Aおよび下流側貫通孔33Bに同軸で連結される。従って上流側パイプ32Aおよび下流側パイプ32Bも、第2通路10の中心軸Cに平行に配置され、かつ、第2通路10の中心軸Cに対し上下方向に等しい距離L1,L2だけオフセットして配置される。但し前記同様、上流側パイプ32Aおよび下流側パイプ32Bも任意の方向に整列可能であり、またオフセット距離も任意に設定可能である。
 上流側パイプ32Aおよび下流側パイプ32Bの内外径は一定とされる。それらの内径は、上流側貫通孔33Aおよび下流側貫通孔33Bの孔径と等しくされ、パイプと貫通孔の継ぎ目で段差が生じないようになっている。上流側パイプ32Aの入口端および下流側パイプ32Bの出口端が斜めにカットされ、上流側仕切板31Aおよび下流側仕切板31Bの空間36内の表面に溶接等で固着される。従って上流側パイプ32Aおよび下流側パイプ32Bは、上流側仕切板31Aおよび下流側仕切板31Bから互いに向かい合うよう、空間36内にのみ延びる。上流側パイプ32Aは上流側仕切板31Aから後方下流側に向かって延び、下流側パイプ32Bは下流側仕切板31Bから前方上流側に向かって延びる。但し変形例として、上流側パイプ32Aおよび下流側パイプ32Bの少なくとも一方の一部が空間36外に延びてもよい。
 本実施形態の場合、上流側パイプ32Aの出口部34と下流側パイプ32Bの入口部35とが、前後方向すなわち上下流方向に互いにオーバーラップされている。オーバーラップ長をLで示す。但しこうしたオーバーラップは設けなくてもよい。
 このように本実施形態では、直管状の上流側パイプ32Aおよび下流側パイプ32Bが、互いに平行かつ非同軸の状態で、上流側仕切板31Aおよび下流側仕切板31Bから互いに向かい合うように延びている。
 第2通路10内における排気ガスGの流れは次の如きである。図4に矢示するように、送り通路19から第2通路10に導入された排気ガスGは、上流側貫通孔33Aを通じて上流側パイプ32Aの中に入っていく。このとき、上流側貫通孔33Aが後方に位置するよう上流側仕切板31Aが傾斜されているので、排気ガスGを上流側仕切板31Aの前面部に沿って流し、上流側貫通孔33Aにスムーズに案内することができる。
 排気ガスGは、上流側パイプ32Aの中を流れた後、出口部34の向きに沿って後向きに排出される。その後、前方に向かって折り返し、下流側パイプ32Bの入口部35に向かう。下流側パイプ32Bの入口部35に入るとき、排気ガスGは後方に向かって折り返し、その後、入口部35の向きに沿って後向きに入口部35内に浸入する。このように、出口部34から出て入口部35に入るまでの間に、排気ガスGは2回折り返される。
 排気ガスGは、下流側パイプ32Bの中を流れた後、出口部38の向きに沿って後向きに下流側パイプ32Bおよび下流側貫通孔33Bから排出される。その後、第2通路10内を流れ、後端チャンバ8R内に入る。下流側貫通孔33Bが前方に位置するよう下流側仕切板31Bが傾斜されているので、下流側貫通孔33Bから排出された直後の排気ガスGを、下流側仕切板31Bの後面部にも沿って流し、下流側貫通孔33Bからの排出をスムーズに行うことができる。
 このように本実施形態では、上流側パイプ32Aの出口部34と下流側パイプ31Bの入口部35とを互いに非同軸の状態で配置したので、上流側パイプ32Aの出口部34から排出された排気ガスGの流れが真っ直ぐに下流側パイプ31Bの入口部35に入ることを回避できる。そして上流側パイプ32Aの出口部34から下流側パイプ31Bの入口部35までの間で、排気ガスGの流れに曲がりを与えることができ、この曲がりにより、噴射された尿素水と排気ガスGの混合を促進することができる。またこれにより、排気ガスによる尿素水の加熱を促進し、尿素水の加水分解を促進し、アンモニア生成効率を高め、NOx触媒を高効率で作動させることが可能となる。そして排気浄化性能を高めることができる。
 また本実施形態では、上流側パイプ32Aと下流側パイプ32Bが、上流側仕切板31Aと下流側仕切板31Bの間の空間36内に突出されているので、この狭い空間36内で排気ガスGの流れを比較的複雑に曲げることができ、尿素水と排気ガスGの混合を一層促進できる。
 また本実施形態では、上流側パイプ32Aの出口部34と下流側パイプ32Bの入口部35とが上下流方向に互いにオーバーラップされているので、上述の2回折り返す流れを確実に実現でき、尿素水と排気ガスGの混合を一層促進できる。また限られた前後長範囲(空間36)内で実質的な通路長を拡大し、尿素水と排気ガスGの混合通路長を実質的に拡大できる。従ってスペースの有効利用を図れる。
 また本実施形態では、上流側仕切板31Aおよび下流側仕切板31Bが上述の如く傾斜されているので、排気ガスGを上流側貫通孔33Aにスムーズに案内し、下流側貫通孔33Bからの排気ガスGの排出をスムーズに行うことができる。また仕切板表面上での尿素水の滞留を抑制し、その滞留に起因する堆積物の生成を抑制できる。
 加えて、上流側仕切板31Aおよび下流側仕切板31Bと、上流側パイプ32Aおよび下流側パイプ32Bとは、高温の排気ガス中に常時曝されているので、排気ガスの熱を蓄熱する蓄熱体としても機能する。蓄熱して高温となったこれら蓄熱体に尿素水(または尿素水と排気ガスの混合気)が接触するので、尿素水を加熱し、その加水分解を促進することができる。
 特に本実施形態では、上流側パイプ32Aおよび下流側パイプ32Bを設けたので、上流側仕切板31Aおよび下流側仕切板31Bだけを設けた場合よりも、蓄熱体の表面積ならびに蓄熱体と尿素水の接触面積を増やし、尿素水の加熱および加水分解を促進することができる。
 本実施形態の排気浄化装置1は、密閉箱型のケーシング2内に複数回折り返す排気通路5を形成し、その排気通路5内に複数の後処理部材(触媒等)を配置したので、マフラー(消音器)としても機能する。よって別途マフラーを設けずに済み、製造コストを低減できる。
 [第2実施形態]
 次に、本開示の第2実施形態を説明する。なお第1実施形態と同様の部分には図中同一符号を付して説明を割愛し、以下、第1実施形態との相違点を主に説明する。
 図6および図7に示すように、本実施形態は上流側パイプ32Aの出口部34の構成が第1実施形態と相違する。すなわち、第1実施形態では上流側パイプ32Aの全体が直管状であり、その出口部34も直管状であった。これに対し本実施形態では、上流側パイプ32Aの出口部34以外は直管状であるが、出口部34は湾曲され、曲がり管状とされている。これにより、上流側パイプ32Aの出口部34と下流側パイプ31Bの入口部35とは、互いに非平行かつ非同軸の状態で配置される。
 本実施形態において、出口部34は、下流側パイプ31Bを避けた向きに湾曲され、後方斜め左下向きになるよう湾曲されている。但し向きはこれに限らない。出口部34は、入口部37の中心軸C3に対しその半径方向外側に向かうよう湾曲されている。入口部37の中心軸C3と出口部34の中心軸C2とのなす角度すなわち湾曲角α3は、本実施形態のように鈍角とされるのが好ましい。これにより曲がりが緩くなり、排気ガスGの流れに対する抵抗を低減できる。なお、出口部34の中心軸C2は、出口部34の出口端(パイプ端)の位置における中心軸により規定される。
 本実施形態における排気ガスGの流れは次の如きである。図6および図7に矢示するように、上流側パイプ32Aの出口部34から後方斜め左下向きに排出された排気ガスGは、第2通路管10Pの内周面に沿って旋回しつつ、前方に向かって折り返し、その後後方に向かって折り返し、下流側パイプ32Bの入口部35に入る。
 従って、前後方向に2回折り返す流れに加えて、旋回方向の流れを加えることができ、尿素水と排気ガスGの混合を一層促進することができる。そして尿素水の加熱および加水分解を一層促進することができる。
 そのほかの作用効果は第1実施形態と同様である。本実施形態の変形例に関して、下流側パイプ32Bの入口部35も湾曲させて曲がり管状とすることができる。
 [第3実施形態]
 次に、本開示の第3実施形態を説明する。
 図8および図9に示すように、本実施形態は、下流側仕切板31Bの傾斜の向き、上流側パイプ32Aの向き、および下流側パイプ32Bの設置位置および向きが、第1実施形態と主に相違する。
 すなわち、下流側仕切板31Bの傾斜の向きは第1実施形態と逆とされ、下流側貫通孔33Bおよび下流側パイプ32Bが設けられる上側が下側に対し前方に位置するよう、下流側仕切板31Bが傾斜されている。但し傾斜角の大きさは第1実施形態と同じα2である。これにより上流側仕切板31Aと下流側仕切板31Bは、図8に示すように鏡面対称の如く配置される。
 これら上流側仕切板31Aと下流側仕切板31Bの上側かつ同じ高さ位置に、上流側貫通孔33Aおよび下流側貫通孔33Bが設けられ、そこに直管状の上流側パイプ32Aと下流側パイプ32Bが取り付けられている。これらパイプ同士が干渉しないよう、上流側パイプ32Aは、その出口部34が後方斜め左下に向くよう若干傾斜して配置され、下流側パイプ32Bは、その入口部35が前方斜め右下に向くよう若干傾斜して配置されている。従って上流側パイプ32Aの出口部34と下流側パイプ31Bの入口部35とは互いに非平行かつ非同軸の状態で配置される。
 上流側パイプ32Aの出口部34と下流側パイプ32Bの入口部35とは、そのオーバーラップ部分において互いに接触されている。接触部が溶接され、接触面積が実質的に増加されるのが好ましい。
 なお、上流側貫通孔33Aおよび下流側貫通孔33Bの向きが、上流側パイプ32Aの入口部37および下流側パイプ32Bの出口部38に対し同軸となるよう、第1実施形態から若干変更されている。
 本実施形態における排気ガスGの流れは次の如きである。図8および図9に矢示するように、上流側パイプ32Aの出口部34から後方斜め左下向きに排出された排気ガスGは、第2通路管10Pの内周面に沿って旋回しつつ、前方に向かって折り返し、その後後方に向かって折り返し、下流側パイプ32Bの入口部35に入る。
 従って第2実施形態と同様、前後方向に2回折り返す流れに加えて、旋回方向の流れを加えることができ、尿素水と排気ガスGの混合を一層促進することができる。そして尿素水の加熱および加水分解を一層促進することができる。
 また本実施形態では、出口部34から出て入口部35に入るまでの間に、上流側パイプ32Aおよび下流側パイプ32Bの下方の比較的広い空間36を使って尿素水と排気ガスGを混合でき、このことによっても混合を促進できる。
 また本実施形態では、上流側パイプ32Aと下流側パイプ32Bが互いに接触されているので、パイプ表面の空間36内への露出面積を減少し、パイプから空間36内への放熱を抑制し、パイプの蓄熱効果を高めることができる。なお、第1および第2実施形態においても上流側パイプ32Aと下流側パイプ32Bを互いに接触させた変形例が可能である。
 そのほかの作用効果は第1実施形態と同様である。
 以上、本開示の実施形態を詳細に述べたが、本開示の実施形態は他にも様々考えられる。
 (1)本開示は、上述のような密閉箱型ケーシングを有する排気浄化装置のみならず、通常の排気浄化装置にも適用可能である。
 (2)触媒は、必ずしもNOx触媒でなくてもよく、選択還元型NOx触媒でなくてもよい。また触媒に供給する還元剤も、触媒の種類に応じて変更可能である。
 (3)上流側パイプおよび下流側パイプについて、その断面形状は任意であり、その内外径も一定でなくてもよく、変化してもよい。
 (4)仕切板とパイプの組み合わせの数は、上記実施形態では二つであったが、三つ以上としてもよい。この場合、上下流側に隣り合う任意の二つの組み合わせに対して本開示が適用可能である。
 (5)上流側パイプおよび下流側パイプは、互いに向かい合うように延びていなくてもよい。例えば上流側仕切板から後方下流側に上流側パイプが延び、下流側仕切板から後方下流側に下流側パイプが延びていてもよい。こうしても、上流側パイプの出口部と下流側パイプの入口部とが非同軸状態であれば、前者から後者に向かう排気ガスの流れに曲がりを与えることができるからである。またこうしても、両パイプによる蓄熱効果および尿素水加熱効果は相変わらず担保できるからである。
 前述の各実施形態の構成は、特に矛盾が無い限り、部分的にまたは全体的に組み合わせることが可能である。本開示の実施形態は前述の実施形態のみに限らず、特許請求の範囲によって規定される本開示の思想に包含されるあらゆる変形例や応用例、均等物が本開示に含まれる。従って本開示は、限定的に解釈されるべきではなく、本開示の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。
 本出願は、2017年10月02日付で出願された日本国特許出願(特願2017-193020)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示は、噴射された尿素水と排気ガスの混合を促進できるという効果を奏し、ディーゼルエンジンの排気通路に設けられたNOx触媒を高効率で作動させることができるという点において有用である。
1 排気浄化装置
5 排気通路
10 第2通路
14 噴射弁
23 NOx触媒
31A 上流側仕切板
31B 下流側仕切板
33A 上流側貫通孔
33B 下流側貫通孔
32A 上流側パイプ
32B 下流側パイプ
34 出口部
35 入口部
36 空間

Claims (5)

  1.  内燃機関の排気ガスが流される排気通路と、
     前記排気通路に配置された触媒と、
     前記触媒の上流側に設けられ、前記排気通路内に還元剤を噴射する噴射弁と、
     前記噴射弁の下流側かつ前記触媒の上流側に位置する前記排気通路の内部に互いに離間して設けられた上流側仕切板および下流側仕切板と、
     前記上流側仕切板および前記下流側仕切板にそれぞれ設けられた上流側貫通孔および下流側貫通孔と、
     前記上流側貫通孔に連通して前記上流側仕切板に設けられた上流側パイプと、
     前記下流側貫通孔に連通して前記下流側仕切板に設けられた下流側パイプと、
     を備え、
     前記上流側パイプの出口部と前記下流側パイプの入口部とは、互いに非同軸の状態で配置されている
     ことを特徴とする内燃機関の排気浄化装置。
  2.  前記上流側パイプと前記下流側パイプは、前記上流側仕切板と前記下流側仕切板の間の空間内に突出されている
     請求項1に記載の内燃機関の排気浄化装置。
  3.  前記上流側パイプの出口部と前記下流側パイプの入口部とは、上下流方向に互いにオーバーラップされている
     請求項2に記載の内燃機関の排気浄化装置。
  4.  前記上流側パイプと前記下流側パイプは互いに接触されている
     請求項2または3に記載の内燃機関の排気浄化装置。
  5.  前記上流側仕切板および前記下流側仕切板の少なくとも一方は、前記排気通路の中心軸に垂直な方向に対し傾斜されている
     請求項1~4のいずれか一項に記載の内燃機関の排気浄化装置。
PCT/JP2018/036286 2017-10-02 2018-09-28 内燃機関の排気浄化装置 WO2019069810A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880064380.1A CN111183275B (zh) 2017-10-02 2018-09-28 内燃机的排气净化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-193020 2017-10-02
JP2017193020A JP6919478B2 (ja) 2017-10-02 2017-10-02 内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
WO2019069810A1 true WO2019069810A1 (ja) 2019-04-11

Family

ID=65994604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036286 WO2019069810A1 (ja) 2017-10-02 2018-09-28 内燃機関の排気浄化装置

Country Status (3)

Country Link
JP (1) JP6919478B2 (ja)
CN (1) CN111183275B (ja)
WO (1) WO2019069810A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213233A (ja) * 2001-01-12 2002-07-31 Komatsu Ltd エンジンの排気浄化構造
JP2009047091A (ja) * 2007-08-21 2009-03-05 Toyota Motor Corp 内燃機関の排気システム
JP2013002398A (ja) * 2011-06-17 2013-01-07 Mitsubishi Motors Corp 排気浄化装置
US20150260070A1 (en) * 2014-03-11 2015-09-17 Johnson Matthey Catalysts (Germany) Gmbh Compact Cylindrical Selective Catalytic Reduction System for Nitrogen Oxide Reduction in the Oxygen-Rich Exhaust of 500 to 4500 kW Internal Combustion Engines

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015108495A1 (de) * 2015-05-29 2016-12-01 Eberspächer Exhaust Technology GmbH & Co. KG Abgasschalldämpfer zum Quereinbau in ein Fahrzeug
CN105386824A (zh) * 2015-11-25 2016-03-09 重庆新卓汇汽车净化器有限公司 汽车尾气净化装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213233A (ja) * 2001-01-12 2002-07-31 Komatsu Ltd エンジンの排気浄化構造
JP2009047091A (ja) * 2007-08-21 2009-03-05 Toyota Motor Corp 内燃機関の排気システム
JP2013002398A (ja) * 2011-06-17 2013-01-07 Mitsubishi Motors Corp 排気浄化装置
US20150260070A1 (en) * 2014-03-11 2015-09-17 Johnson Matthey Catalysts (Germany) Gmbh Compact Cylindrical Selective Catalytic Reduction System for Nitrogen Oxide Reduction in the Oxygen-Rich Exhaust of 500 to 4500 kW Internal Combustion Engines

Also Published As

Publication number Publication date
CN111183275B (zh) 2021-12-28
JP6919478B2 (ja) 2021-08-18
JP2019065783A (ja) 2019-04-25
CN111183275A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
US11465108B2 (en) Dosing and mixing arrangement for use in exhaust aftertreatment
JP5602495B2 (ja) 排気ガス浄化装置
US8991160B2 (en) Reductant aqueous solution mixing device and exhaust aftertreatment device provided with the same
US9062589B2 (en) Reductant aqueous solution mixing device and exhaust aftertreatment device provided with the same
EP3279440B1 (en) Exhaust purification unit
US10138795B2 (en) Plenum chamber for exhaust system
US8850801B2 (en) Catalytic converter and muffler
US20160305296A1 (en) Exhaust purification device
JP2018044528A (ja) エンジンの排気浄化装置
US11788454B2 (en) Flow diverter for high efficiency mixer
US20090064669A1 (en) Additive-agent diffusion plate in exhaust passage, structure of additive-agent diffusion plate, and exhaust system including additive-agent diffusion plate
JP2018105248A (ja) 排気ガス浄化装置
JP2012002085A (ja) 排気流通管の構造
CN111263849B (zh) 内燃机的排气净化装置
KR20180010082A (ko) Scr 믹서 및 이를 포함하는 scr 장치
JP2019065784A (ja) 内燃機関の排気浄化装置
JP6756629B2 (ja) 排気ガス浄化装置
WO2019069810A1 (ja) 内燃機関の排気浄化装置
JP2019065785A (ja) 内燃機関の排気浄化装置
JP2015209799A (ja) 内燃機関の排気浄化装置
WO2020189577A1 (ja) ミキサー部材
JP7314840B2 (ja) 排気構造
JP2019078213A (ja) 内燃機関の排気浄化装置
KR101610061B1 (ko) 차량의 배기 가스 정화장치
JP2009162122A (ja) 排気通路構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18865103

Country of ref document: EP

Kind code of ref document: A1