WO2019069734A1 - 水素水生成装置 - Google Patents

水素水生成装置 Download PDF

Info

Publication number
WO2019069734A1
WO2019069734A1 PCT/JP2018/035270 JP2018035270W WO2019069734A1 WO 2019069734 A1 WO2019069734 A1 WO 2019069734A1 JP 2018035270 W JP2018035270 W JP 2018035270W WO 2019069734 A1 WO2019069734 A1 WO 2019069734A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
electrode plates
electrode plate
hydrogen
electrolytic cell
Prior art date
Application number
PCT/JP2018/035270
Other languages
English (en)
French (fr)
Inventor
深沢 三夫
Original Assignee
株式会社コスモスエンタープライズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コスモスエンタープライズ filed Critical 株式会社コスモスエンタープライズ
Priority to CN201880058004.1A priority Critical patent/CN111051248A/zh
Publication of WO2019069734A1 publication Critical patent/WO2019069734A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis

Definitions

  • the present invention relates to a hydrogen water generating device that generates hydrogen water by electrolysis of water.
  • the electrolyzed water generating apparatus described in Patent Document 1 includes an electrolytic unit that electrolyzes water, and a power supply unit that supplies power to the electrolytic unit, and the electrolytic units include electrolytic cells connected in parallel to each other. Therefore, even when a large amount of electrolytic reduction water is required as in vegetable cultivation, a large amount of electrolytic reduction water can be produced inexpensively using an electrolytic water generation apparatus provided with a plurality of general-purpose electrolytic cells. It is.
  • the hydrogen water producing device described in Document 2 generates a water and oxygen generating device by electrolyzing water to generate hydrogen and oxygen, and nano bubbles of hydrogen and oxygen in the electrolytic water generated by the electrolysis.
  • a nanobubble generator comprising: a liquid reservoir formed of a pressure-tight container for storing and sealing electrolytic water, and a gas generated by the electrolysis in the electrolytic water in the liquid reservoir. And the like are provided with gas releasing means etc. for releasing at high pressure.
  • the electrolyzed water production apparatus of the above-mentioned patent documents 1 provides a plurality (here three) electrolyzers in an electrolysis part, and decides to produce a large amount of electrolyzed reduced water, it gets more electrolyzed water In order to achieve this, it is necessary to further increase the number of electrolytic cells, which results in a problem of upsizing of the apparatus and lack of expandability, versatility and the like due to securing of a place and the like.
  • the hydrogen water producing apparatus of Patent Document 2 includes a water electrolysis apparatus and a nanobubble generating apparatus, and the use of a pressure container etc. causes the apparatus to be complicated and lacks in economic efficiency.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a hydrogen water generating device that efficiently generates a large amount of hydrogen water and is also excellent in functionality and economy.
  • the hydrogen water generating apparatus faces the mesh-like electrode plate 6 and the electrode plate 6 three or more at a predetermined interval.
  • a voltage is applied to an electrolytic cell 4 provided with a water inlet 30 on one side of the electrode plates 6 and a water outlet 32 on the other side, and the respective electrode plates 6
  • a power supply circuit unit 11 for supplying an electric current between the adjacent electrode plates 6 and between the electrode plates 6 with the other electrode plates 6 interposed therebetween to carry out electrolysis; and the injection port 30 of the electrolytic cell 4. Water is injected from the inlet 30 side to move the water from the inlet 30 side to the outlet 32 side, the moving water is electrolyzed by the electrode plate 6 to produce an aqueous solution containing hydrogen in water, Are discharged from the discharge port 32.
  • generation apparatus which concerns on this invention is the structure which made the number of the said electrode plates 6 the range of 4 or more and 16 or less sheets.
  • the power supply circuit unit 11 of the hydrogen water generating apparatus applies an alternating voltage between specific electrode plates 6 of the electrode plates 6 and applies to the electrode plates 6 other than the specific electrode plate 6.
  • a direct current voltage is applied to cause electrolysis.
  • the power supply circuit unit 11 of the hydrogen water generating apparatus applies an AC voltage between specific electrode plates 6 among the electrode plates 6 with another electrode plate 6 interposed, and the specific electrode A direct current voltage is applied to the electrode plates 6 other than the plate 6, and the polarity of the direct current voltage is periodically switched to perform electrolysis.
  • the power supply circuit unit 11 of the hydrogen water generating apparatus makes the electrode plate 6 a set of four continuous plates and interposes the other electrode plate 6 among the electrode plates 6 of each pair.
  • An alternating voltage is applied between the specific electrode plates 6, and a direct voltage is applied to the electrode plates 6 (including the other electrode plates 6) other than the specific electrode plate 6 to cause electrolysis. It is.
  • a low DC voltage ground
  • a specific electrode plate to which a potential (V +) at a point of time when the AC voltage is high is applied to the (all) electrode plate 6. Let current (direct current) flow from 6.
  • the injection port 30 is provided in the vicinity of the lower portion of the electrolytic cell 4 to inject water, while the discharge port 32 is provided in the vicinity of the upper portion of the electrolytic cell 4
  • the water is moved from the inlet 30 toward the outlet 32 and from the bottom to the upper, and the moving water is electrolyzed by the electrode plates 6 and discharged from the outlet 32.
  • the hydrogen water generating apparatus is provided with a switching valve in communication with the discharge port 32, and a flow path of the aqueous solution discharged from the discharge port 32 through the filter 12 and a flow not passing through the filter 12 It is possible to switch the route.
  • the storage tank 16 for storing the aqueous solution discharged from the discharge port 32 of the electrolytic cell 4 and the aqueous solution in the storage tank 16 are sucked and circulated to the electrolytic cell 4
  • the pump 14 supplies the aqueous solution electrolyzed in the electrolytic cell 4 to the storage tank 16 by the pump 14, and sucks the aqueous solution in the storage tank 16 and sends it to the electrolytic cell 4.
  • the circulation flow path 62 which electrolyzes this again is driven to increase the hydrogen concentration in the aqueous solution.
  • a control unit 10 for managing the operating condition of the hydrogen water generating apparatus is provided, and the control unit 10 registers the time for circulating the circulation passage by operating the pump 14 as the circulation time of the circulation passage 62 Thus, the hydrogen concentration can be adjusted by this circulation time.
  • an electrolytic cell in which three or more mesh electrode plates are disposed to face each other and an inlet is provided on one side and a discharge port is provided on the other side, and adjacent electrode plates Since it has a power supply circuit unit that carries out electrolysis by passing an electric current between the electrodes etc., and water that moves in the electrolytic cell is electrolyzed by the electrode plate to generate an aqueous solution containing hydrogen, it is efficient A large amount of an aqueous solution containing hydrogen (hydrogen water) can be obtained, and the apparatus can be miniaturized, which is economically advantageous.
  • the power supply circuit unit adopts a configuration in which the electrolysis is performed by applying an AC voltage between specific electrode plates and a DC voltage to the other electrode plates. Electrolysis can be efficiently performed between the electrode plates, so that the devices such as the electrolytic cell can be miniaturized, and there is an effect that a hydrogen water generating device which is functionally excellent can be obtained.
  • the power supply circuit unit applies an AC voltage between specific electrode plates interposing another electrode plate, and applies a DC voltage to the other electrode plates, Since the polarity of the voltage is periodically switched and electrolysis is performed, electrolysis can be efficiently performed between all the electrode plates, so that the devices such as the electrolytic cell can be miniaturized, and the electrode plates Adherents (inorganic substances and the like) are also removed, and there is an effect that a functionally superior hydrogen water generator can be obtained.
  • an alternating voltage is applied between specific electrode plates 6 in which another electrode plate is interposed, and a direct current voltage is applied to the other electrode plates. Is applied to conduct electrolysis, so that current (direct current) can flow between all adjacent electrode plates, and electrolysis can be performed efficiently.
  • the application of alternating voltage and the application of direct current voltage alternate between the electrode plates, and current is flowed between the pair of electrode plates 6 to perform electrolysis. It is efficient and efficient.
  • the inlet is provided near the lower portion of the electrolytic cell, while the outlet is provided near the upper portion of the electrolytic cell, and water injected and moved upward from below is electrically Since the structure to be disassembled is adopted, the movement of water in the electrolytic cell can be carried out evenly and evenly, and the electrolysis can be favorably performed, and the retention of water can also be prevented.
  • the switching valve in communication with the discharge port is provided, and the flow path passing through the filter and the flow path not passing through the filter can be switched. It has the effect of being able to remove chlorine-based substances and the like by
  • the pump supplies the aqueous solution electrolyzed in the electrolytic cell to the storage tank, while the aqueous solution in the storage tank is sucked and sent to the electrolytic cell to electrolyze it again Since the configuration for driving the circulation flow path is adopted, it is possible to easily obtain a high concentration aqueous solution (hydrogen water) and to easily manage the hydrogen concentration in the aqueous solution.
  • the hydrogen water generating device 2 includes an electrolytic cell 4, an electrode plate 6 disposed in the electrolytic cell 4 to electrolyze water, a control panel 8, a filter 12, a pump 14, a storage tank 16 and the like. Further, as shown in FIG. 3, the control panel 8 is provided with an operation panel 9, and a control unit 10 for performing control of the apparatus and operation management, a power supply circuit unit 11 for supplying electricity to the electrode plate 6, etc. It is built-in.
  • the other electrolytic bath 4 except the storage tank 16, the electrode plate 6, the filter 12, the pump 14 and the like are housed in a housing 18, and the control panel 8 is a housing It is attached to the 18 front part.
  • Water such as tap water, well water, and natural water is used for the above-mentioned electrolysis.
  • an aqueous solution containing hydrogen or the like and dissolved is hydrogen water or electrolysis. It is called water.
  • the case 18 is box-shaped, the control panel 8 is attached to the front of the case 18, and at the upper right of the front of the case 18, a water inlet 20 and a water outlet 22 are provided. It is provided. Further, the housing 18 is provided with a drainage cock 26 for draining unnecessary water in the electrolytic cell 4 and a drainage cock 28 for draining unnecessary water in the pump 14. Normally, when the apparatus is not in operation, both the cocks are open and closed during operation.
  • the electrolytic cell 4 is a rectangular parallelepiped container made of stainless steel or synthetic resin.
  • the flat surface of the electrolytic cell 4 is rectangular (or rectangular), and the injection port 30 is provided on one side (front side) of the facing wall portion of the electrolytic cell 4 and the other side (rear side)
  • the outlet 32 is provided.
  • the inlet 30 of the electrolytic cell 4 is connected to the inlet 20 of the housing 18 via a flow path such as a pipe and the pump 14.
  • the inlet 30 is provided in the vicinity of the bottom portion 34 of the electrolytic cell 4, and the outlet 32 is provided in the vicinity of the upper portion 36 of the electrolytic cell 4. Therefore, the outlet 32 is obliquely upward from the inlet 30.
  • a lid member 38 is attached to the upper side of the electrolytic cell 4, and eight electrode plates 6 are attached to the lower side of the lid member 38. The upper portion of the electrolytic cell 4 is sealed and closed by the lid member 38.
  • the electrode plate 6 is a plate made of a mesh formed of a metal material in a mesh shape (vertical and horizontal shape or diagonal cross shape), and the whole is rectangular or rectangular (for example, 260 mm long and 54.5 mm wide).
  • a metal material of the electrode plate 6 stainless steel, titanium, aluminum, copper or the like can be used.
  • stainless steel, titanium and the like are excellent in corrosion resistance and durability.
  • stainless steel is used for the electrode plate 6, and a mesh-like lath material whose eye is a rhombus (punching metal) is used.
  • a mesh plate plated with platinum or gold is used as the electrode plate 6, a mesh plate plated with platinum or gold is used.
  • the reason why the electrode plate 6 is a net is to improve the flow of water and to increase the surface area to enhance the reaction effect of the electrolysis.
  • the electrode plate 6 is made of stainless steel (for example, SUS316 or the like) because it is excellent in corrosion resistance and pitting corrosion resistance.
  • platinum plating or gold plating to the mesh of the electrode plate 6, the reaction is high because the conductivity is high in all cases, and it is hard to be combined with other substances, which is good.
  • the electrode plate 6 has eight sheets facing each other at predetermined intervals, and the faces are arranged in parallel.
  • the interval (electrode pitch) between adjacent electrode plates 6 is set to a constant 7 mm.
  • the interval is, depending on the applied voltage, in the range of 3 to 10 mm, preferably 5 to 8 mm, for good electrolysis efficiency.
  • the upper portions of the respective electrode plates 6 are attached upward from the lower surface portion of the lid member 38, and the terminals 7 of the respective electrode plates 6 are provided on the upper surface portion of the lid member 38.
  • the number of electrode plates 6 is preferably three or more so that electrolysis can be effectively performed between alternating voltage and direct current voltage application modes and between adjacent electrode plates 6. Further, in order to efficiently carry out a larger amount of electrolysis, the number of electrode plates 6 is preferably 4 or more, or 8 or more. From the viewpoint of the amount of electricity supplied from the power supply circuit unit 11 or the management of the electrode plates 6, the number of the electrode plates 6 is practically at most 16 at most.
  • the number of electrode plates 6 can be freely increased. Therefore, when designing for obtaining a large amount of hydrogen water and hydrogen concentration as desired, the number or area of the electrode plates 6 should be It can respond easily by changing. Further, since all (eight in this case) electrode plates 6 are accommodated in one electrolytic cell 4, the size of the device such as the electrolytic cell 4 can be reduced and the function is also excellent.
  • a lid member 38 to which eight electrode plates 6 are attached at the lower side is disposed at the upper part of the electrolytic cell 4.
  • the upper surface portion of the electrolytic cell 4 is covered with the cover member 38, and when the cover member 38 is fixed to the edge of the electrolytic cell 4 with a screw or the like, the electrolytic cell 4 is sealed by the cover member 38.
  • the eight electrode plates 6 are disposed facing each other, and the injection port 30 is provided in the vicinity of one side of the row of the electrode plates 6. Also, the discharge port 32 is provided on the other side.
  • the inlet 30 is formed in the vicinity of the upper portion of the bottom portion 34 of the electrolytic cell 4, while a slight gap is provided between the lower portion of each electrode plate 6 and the bottom portion 34 of the electrolytic cell 4. Water injected from the inlet 30 can move through the gap.
  • the injected water moves around the electrode plate 6, and electrolysis can be performed with this movement.
  • the movement of water in the electrolytic cell 4 from the lower inlet 30 to the upper outlet 32
  • the rising movement of the bubble-like particles (nano bubbles) generated by electrolysis due to the relationship of specific gravity
  • the electrolysis of water can be evenly and uniformly performed with the movement of the water, so that a relatively large amount of water can be moved. Coupled with the structure of the electrolytic cell 4 (the movement form of water, etc.), it is possible to produce hydrogen water as a large amount of electrolytic water by increasing the number of electrode plates 6 or the like.
  • the eight electrode plates 6 are collectively arranged near the central portion of the electrolytic cell 4. Therefore, the opening (usually closed by the lid member 38) of the electrolytic cell 4 can be disposed at the center, maintenance and replacement of the electrode plate 6 are easy, and maintenance is easy. Further, depending on the arrangement of the electrode plate 6, the front wall portion of the electrolytic cell 4 provided with the injection port 30 and the electrode plate 6 (foremost portion), and the rear wall portion provided with the discharge port 32. A gap is formed between the electrode plate 6 and the electrode plate 6 (last part).
  • control panel 8 an electronic circuit board and the like configured mainly with a microcomputer (CPU) is incorporated, and in this board, the control unit 10, the power supply circuit unit 11, and the like are incorporated.
  • operation panel 9 of the control panel 8 an operation button, an LED display, a display lamp and the like are attached.
  • the control unit 10 mainly performs setting management of the operation time and the like of the apparatus, management of the driving situation, and the like. Further, the control unit 10 and the power supply circuit unit 11 are provided with a high frequency transmission unit and a modulation unit, and the modulation and the like are realized by software. In this case, for example, frequency modulation (FM) with a fluctuation width of 2 to 8 kHz, preferably 3 to 5 kHz, is performed on a base frequency of a high frequency of about 25 kHz. Then, the high frequency signal generated by the control unit 10 is output to the power supply circuit unit 11 to generate power for electrolysis.
  • FM frequency modulation
  • the above-mentioned base (central) frequency of the high frequency is herein a high frequency of 25 kHz, but as this frequency, the range of 15 kHz to 35 kHz, preferably 20 kHz to 30 kHz is appropriate.
  • a large amount of hydrogen bubble-containing (nano bubble) aqueous solution hydrogen water
  • the aqueous solution also contains oxygen water in the form of bubbles (nano bubbles) containing oxygen.
  • the power supply circuit unit 11 can amplify this signal based on the high frequency signals (SG1 and SG2) from the control unit 10 to electrolyze water. Generate power. Wiring from the power supply circuit unit 11 is connected to each of the terminals 7 of the eight electrode plates 6 (first to eighth) in the electrolytic cell 4, and each electrode plate (first AC power and DC power are applied to (8) to (8).
  • the power supply circuit unit 11 is composed of a first output circuit 44 and a second output circuit 46, each of which is formed of a transistor circuit or the like.
  • the reason for providing the first and second two output circuits is to secure sufficient power and to output and supply power necessary for electrolysis to all the electrode plates 6 (first to eighth). . Therefore, the first output circuit 44 supplies electricity to the first to fourth electrode plates 6, and the second output circuit supplies electricity to the fifth to eighth electrode plates 6.
  • the power supply circuit unit 11 outputs electric power of alternating current (alternate directional flow of pulse waveform) and direct current (unidirectional flow) necessary for electrolysis.
  • the first output circuit 44 outputs pulsed electric signals AC1 and AC2, and the second output circuit 46 outputs pulsed electric signals AC3 and AC4.
  • a voltage of GND (ground) or a positive potential (V +) is added to the electric signal OUT. This positive potential (V +) is the same potential as AC1 to AC4 (V +).
  • the high frequency signals are signals having a pulse-like waveform.
  • the signal AC1 (the potential of GND to V +) is a pulsed signal
  • the signal AC2 (the potential of V + to GND) is also a pulsed signal.
  • the signals AC1 to AC2 (potentials of V + to V-) are high-frequency alternating current having a pulse-like waveform.
  • AC1 is connected to the first electrode plate 6
  • AC2 is connected (applied) to the third electrode plate 6
  • AC3 is connected to the fifth electrode plate 6
  • AC4 is connected to the seventh electrode plate 6.
  • an OUT signal is connected (applied) to the second, fourth, sixth and eighth electrode plates 6.
  • the OUT signal has a potential of GND (ground) level and a potential of the same potential as V + (positive potential), and the OUT signal is switched to GND and V + in a predetermined cycle.
  • This cycle is preferably several minutes, for example, about 1 minute to 3 minutes, and is 2 minutes here.
  • the polarity of the electrode plate 6 is changed to switch the flow of electricity, and inorganic substances (calcium, magnesium) and the like attached to the electrode plate 6 can be removed.
  • signals AC1 to AC4 amplified (by the power supply circuit unit 11) to the same potential as V + based on SG1 and SG2 are applied to the first, third, fifth and seventh electrode plates 6, respectively.
  • a signal from the power supply circuit unit 11 has a reference frequency of about 25 kHz, and frequency modulation is randomly added to this as a reference frequency. This frequency modulation is performed by software (program) in the control unit 10.
  • the first output circuit 44 and the second output circuit 46 are equivalent circuits, and the connection form to the electrode plate 6 is the same, so here the first output circuit 44 and the first to fourth electrodes
  • the connection form with the plate 6 will be described, and the description regarding the second output circuit will be omitted.
  • the basic characteristics (waveforms) of the signals AC1 and AC2 are as shown in the time chart of FIG. As for these AC1 and AC2, ON (V +) and OFF (GND) are inverted. Further, between AC1 and AC2, control is performed so as to have an alternating current (high frequency) waveform.
  • FIGS. 6 (a) and 6 (b) show the flow of electricity (AC, DC) applied to the first to fourth electrode plates 6 when the OUT signal is GND.
  • AC electricity
  • DC DC
  • first electrode plate 6 and the third electrode plate 6 an alternating current (high frequency) in which the direction of the current always changes is obtained.
  • current flows as a direct current (pulse-like waveform) having a constant current direction to the second and fourth electrode plates 6.
  • the first electrode plate 6 and the third electrode plate 6 function as an anode
  • the second electrode plate 6 and the fourth electrode plate 6 each function as a cathode.
  • FIGS. 7C and 7D show the flow of electricity (AC, DC) applied to the first to fourth electrode plates 6 when the OUT signal is V +.
  • AC AC
  • DC DC
  • the fourth electrode plate 6 and the fifth across the both output circuits between the fourth electrode plate 6 according to the first output circuit 44 and the fifth electrode plate 6 according to the second output circuit 46 The flow of electricity between the electrode plates 6 will be described.
  • the OUT signal is applied to the fourth electrode plate 6, and AC ⁇ b> 3 is applied to the fifth electrode plate 6 from the second output circuit 46. Further, the OUT signal of the first output circuit 44, and the second output circuit 46 and the OUT signal are integrated (connected).
  • the fourth electrode plate 6 is equivalent (connected) to the sixth electrode plate 6, so that when the OUT signal is GND, the fifth electrode plate 6 to the fourth A direct current flows to the electrode plate 6, and a direct current flows from the fourth electrode plate 6 to the fifth electrode plate 6 when the OUT signal is V +. Therefore, in the first to eighth electrode plates 6, current flows between all the adjacent electrode plates 6, and electrolysis is performed.
  • the electrolysis between the electrode plates 6 generates hydrogen (gas) at the cathode and oxygen (gas) at the anode. It is considered that this hydrogen (gas) is partially dissolved in water in the molecular state (H 2 ) or the other in the atomic state (H). The oxygen (gas) is partially dissolved in water and released to the atmosphere when saturated. Further, it is considered that the oxidation reduction potential is lowered to be a reduction potential because hydrogen is increased as compared with oxygen.
  • the AC voltage is applied between the first electrode plate 6 and the third electrode plate 6, and the electrode plate 6 (first or third) to which the AC voltage is applied and this A current is applied to the electrode plate 6 (second or fourth) other than the electrode plate 6 to perform electrolysis.
  • an alternating voltage may be applied between the second electrode plate 6 and the fourth electrode plate 6, and in this case, the electrode plate 6 (second or fourth electrode plate 6 to which the alternating voltage is applied) And the other electrode plates 6 (first or third) are supplied with current to conduct electrolysis.
  • each set four consecutive electrode plates 6 (first to fourth electrode plates 6) form one set, and the other electrode plates 6 (e.g. An alternating voltage is applied between a specific electrode plate 6 (for example, between the first and third electrode plates 6) in which the second electrode plate 6 is interposed, and an electrode plate 6 other than the specific electrode plate 6 A DC voltage is applied to the second and fourth electrode plates 6). And between the specific electrode plate 6 and the other electrode plates 6 (for example, between the first and second electrode plates 6, between the first and fourth electrode plates 6, between the third and second electrode plates 6, A direct current is applied between the third and fourth electrode plates to cause electrolysis.
  • the application form of the alternating current voltage, the direct current voltage, etc. to the electrode plates of each set may be the same.
  • the number of electrode plates 6 is three, electrolysis is performed by the wiring connection of the first to third electrode plates, and similarly, electrolysis is performed by the wiring connection according to the wiring according to the number of the electrode plates 6 Just do it. Further, in consideration of the efficiency of electrolysis and the power supply capability of the power supply circuit unit 11, the number of electrode plates 6 is four, eight, twelve or sixteen, etc. as the number according to this embodiment. It may be a multiple of
  • the above-mentioned filter 12 arranges cylindrical cylinder 50 concentrically in the inside of cylindrical container 48 which has a bottom, and forms annular space 52 between this container 48 and cylinder 50. doing.
  • the cylindrical body 50 is provided with a plurality of holes 51 around the lower part thereof.
  • An inlet 54 for electrolytic water is provided in the vicinity of the upper portion of the container 48, and a lid is disposed on the upper portion of the container 48, and the space 52 is closed.
  • a filtering material such as a carbon filter is disposed in the space 52, and an outflow hole 55 is provided in the upper portion of the cylindrical body 50. For this reason, the aqueous solution which has flowed in from the inflow hole 54 of the filter 12 moves downward in the space 52. At this time, the filtration is performed by the carbon filter, and mainly chlorine based substances such as hypochlorous acid and chlorine are contained. It is removed. Furthermore, the aqueous solution passes from the space 52 through the hole 51 and moves into the interior of the cylindrical body 50, and further ascends the inside of the cylindrical body 50 and is discharged from the outflow hole 55.
  • FIG. 8 shows a circulation flow path 62 in which the storage tank 16 is added to the flow path of the hydrogen water generating device 2 and the aqueous solution electrolyzed in the electrolytic cell 4 is sent again to the electrolytic cell 4 via the storage tank 16 It is a thing. Then, by driving the pump 14, the aqueous solution in the storage tank 16 is sucked and sent to the electrolytic cell 4, and the aqueous solution electrolyzed here is supplied to the storage tank 16 and sent to the electrolytic cell 4 again for electrolysis. . As described above, the electrolytic aqueous solution is circulated in the circulation flow channel 62 to increase the hydrogen concentration in the aqueous solution.
  • the flow path branched to two directions is connected to the discharge port 32 of the electrolytic vessel 4, and the 1st switching valve 56 and the 2nd switching valve 58 are attached to each flow path.
  • the tip of the first switching valve 56 is connected to the inflow hole 54 of the filter 12, and the tip of the outflow hole 55 is connected to the discharge port 22 of the housing 18 via a flow path.
  • the tip of the second switching valve 58 is connected to the discharge port 22 of the housing 18 as it is via a flow path. For this reason, the flow path of the aqueous solution from the electrolytic cell 4 can be selected as the flow path for passing the filter 12 and the bypass flow path for bypassing the flow path by the operation of the first and second switching valves. .
  • hypochlorous acid, chlorine and the like are contained in the electrolyzed water electrolyzed in the electrolytic cell 4, and these chlorine-based substances are removed by the filter 12.
  • chlorine-based substances have a bactericidal action, chlorine-based substances are used for sterilization when sterilization is required in soil of plants and the like.
  • the switching valve which consists of another three-way valve as a 1st and 2nd switching valve, and, thereby, switching with the flow path which passes filter 12 and the flow path which bypasses this. Make two choices.
  • the storage tank 16 is a container for storing an aqueous solution containing hydrogen and the like, and in this case, has a capacity of 500 liters.
  • a hose or the like is attached to the discharge port 22 of the housing 18 to form a flow path, and the electrolyzed aqueous solution is supplied to the storage tank 16.
  • the storage tank 16 is made of synthetic resin here, but other metals such as stainless steel are used, and the whole is a rectangular parallelepiped or spherical container.
  • a lid member is attached to the top of the storage tank 16 so that the inside can be sealed.
  • the storage tank 16 is a water source of water to be sent to the electrolytic cell 4 and is used to once store an aqueous solution (such as hydrogen water) from the electrolytic cell 4 and to send it again to the electrolytic cell 4. It also serves as a water source for supplying hydrogen water and the like to plants and the like.
  • an aqueous solution such as hydrogen water
  • the pump 14 is disposed between the suction port 20 of the housing 18 and the inlet 30 of the electrolytic cell 4 and drives the circulation flow path 62 to inject water drawn from the suction port 20 into the electrolytic cell 4. Distribute toward 30.
  • the pump 14 sucks in water from the outside such as the storage tank 16 and supplies it to the electrolytic cell 4, and when the electrolytic cell 4 is sufficiently filled with water, the aqueous solution from the electrolytic cell 4 is It is sent to the discharge port 22 of the filter 12 or the housing 18 and is circulated from the discharge port 22 to the storage tank 16.
  • the aqueous solution (hydrogen water or the like) in the storage tank 16 is sent to the electrolytic cell 4 and electrolysis is performed again to increase the concentration of the hydrogen water.
  • the aqueous solution in the storage tank 16 can be supplied as it is to agricultural products and the like.
  • the flow rate of water from the pump 14 is, eg, 9 L (liter) / min to 12 L / min.
  • water of 9 L / min to 12 L / min is injected from the inlet 30 of the electrolytic cell 4, this amount of water is electrolyzed, and the same amount of water is discharged from the outlet 32 of the electrolytic cell 4. .
  • the hydrogen water generating apparatus 2 operates the operation buttons and the like in advance from the operation panel 9 provided on the control panel 8 and registers operation management information such as operation content and operation time. These operation contents are controlled by the control unit 10 to operate the pump 14 and the like.
  • the management information can be registered and set in the control unit 10, and the operation time of the pump 14 (the electrolysis time) for driving the circulation of the circulation channel 62 can be set as the circulation time of the water circulation channel 62.
  • the first switching valve 56 on the filter 12 side is opened and the second switching valve 58 is closed.
  • the aqueous solution from the electrolytic cell 4 passes through the filter 12 and is filtered.
  • the first switching valve 56 is closed and the second switching valve 58 is opened.
  • the drainage cock 26 and the drainage cock 28 provided in the housing 18 are closed.
  • a circulation channel passing through the storage tank 16 is configured.
  • the storage tank 16 and the suction port 20 of the housing 18 are communicated by the flow pipe to form a flow path.
  • the discharge port 22 of the housing 18 and the storage tank 16 are communicated with each other by a flow pipe to form a flow path, and a water circulation flow path 62 through the storage tank 16 is formed.
  • a predetermined amount of water to be electrolyzed is replenished and filled in the storage tank 16 in advance.
  • the storage tank When water stored in another storage tank or the like other than the storage tank 16 is used, the storage tank is communicated with the suction port 20 of the housing 18 using a flow pipe, and the electrolytic tank 4 is used. It may be electrolyzed.
  • the aqueous solution (such as hydrogen water) from the electrolytic cell 4 may be stored once in the storage tank 16 from the discharge port 22 through the distribution pipe, and this aqueous solution is supplied directly to the crops etc. from the discharge port 22. May be
  • the pump 14 is started and electrolysis in the electrolytic cell 4 is started. Then, water is sucked from the storage tank 16 and supplied from the suction port 20 of the housing 18 to the injection port 30 of the electrolytic cell 4 via the pump 14. The water injected from the inlet 30 of the electrolytic cell 4 moves upward from the lower part of each of the eight electrode plates 6 from the lower part of the electrolytic cell 4 and eventually hydrogen and the like are contained by electrolysis by each electrode plate 6 An aqueous solution (electrolyzed water) is produced.
  • This aqueous solution is produced by electrolysis and contains hydrogen water containing hydrogen in water.
  • This hydrogen water contains hydrogen (gas) dissolved in water, and traps nanobubbled bubbles (hydrogen) in water. So-called nano bubble hydrogen water is included.
  • the above-mentioned aqueous solution contains oxygen water which is produced by electrolysis and contains oxygen (gas) in the aqueous solution, and also contains chlorine-based substances and the like.
  • Water in the electrolytic cell 4 is injected from the inlet 30 in the vicinity of the lower front of the electrolytic cell 4 and moves on the lower side of the electrolytic cell 4 and eventually rises toward the outlet 32 in the vicinity of the upper rear side of the electrolytic cell 4 Further, it moves to the rear of the electrolytic cell 4 and is discharged from the discharge port 32.
  • the water injected from the inlet 30 of the electrolytic cell 4 moves and flows toward the discharge port 32 in the electrolytic cell 4, and a part of the water passes through the mesh-like electrode plate 6 and moves.
  • the electrolysis of the electrolytic cell 4 is performed by the eight electrode plates 6 when the water is moved. Water is also electrolyzed when passing through the electrode plate 6 of the mesh.
  • Electrode plates 6 are disposed closer to the center, and a gap (space portion) sufficient for water circulation is provided between the electrode plate 6 and the front and rear, right and left wall surfaces of the electrolytic cell 4. Also, a gap (space portion) sufficient for the flow of water is provided between the bottom portion 34 of the electrolytic cell 4 and the electrode plate 6. These gaps form a flow path for the flow movement of water in the electrolytic cell 4, so that the retention of water in the electrolytic cell 4 is prevented, and the water in the electrolytic cell 4 is uniformly electrolyzed uniformly. .
  • the water injected from the inlet 30 provided in the vicinity of the lower part of the electrolytic cell 4 flows in the direction of the outlet 32 on the opposite side, and electrolysis is performed by the respective electrode plates 6 with the movement of the water. It is discharged from the discharge port 32 provided in the vicinity of the upper part of 4.
  • the inside of the electrolytic cell 4 is sealed by a lid member. Therefore, the amount of water supplied from the inlet 30 (suction port 20) of the electrolytic cell 4 by the operation of the pump 14 is the same as the amount of water discharged from the discharge port 32 (discharge port 22) of the electrolytic cell 4 The water supplied to the inside of the electrolytic cell 4 is pushed out and discharged by the water supplied.
  • the pump 14 is operating, new water is supplied into the electrolytic cell 4 from the inlet 30, and the same amount of water (aqueous solution) is also supplied. It is discharged from the discharge port 32 of the electrolytic cell 4.
  • the aqueous solution is sent to the filter 12 via the first switching valve 56 by the operation of the switching valve.
  • the filter 12 the chlorine-based substance and the like are removed by filtration, and the aqueous solution flowing out from the outlet hole 55 of the filter 12 is sent to the discharge port 22 of the housing 18, and a hose or the like connected to the discharge port 22. It is delivered to the storage tank 16 and stored there.
  • the storage tank 16 is returned to the storage tank 16 again via the flow path through the pump 14, the electrolytic cell 4 (electrode plate 6), the first and second switching valves, and the filter 12 (with bypass).
  • the flow path is a circulation flow path 62 of the aqueous solution (electrolytic water). While the apparatus is in operation, the aqueous solution continuously flows through the circulation flow channel 62 by driving the pump 14, and the electrolysis in the electrolytic cell 4 and the filtration in the filter 12 are repeated. As described above, by repeatedly circulating the circulation channel 62 and repeating the electrolysis, the concentration of hydrogen contained in water is increased, and high concentration hydrogen water can be obtained.
  • the discharge flow rate (flow rate discharged from the discharge port 22) at the time of operation of the hydrogen water generating device 2 is, for example, 5 to 20 L (liters) / minute, preferably 9 to 12 liters (liters) It is a minute.
  • the capacity of the storage tank is 500 L (liter)
  • the operating time of the apparatus is, for example, about 3 to 6 hours.
  • FIG. 9 is a graph showing transition of the amount of hydrogen according to the conductivity of water used for electrolysis as Test 1.
  • the graph of test 1-1 shows an electrode pitch of 7 mm, a power supply voltage of 24 V, a discharge flow rate of 10 L / min
  • the graph of test 1-2 shows an electrode pitch of 7 mm, a power supply voltage of 18 V, a discharge flow rate of 10 L / min
  • the graph of test 1-3 shows an electrode pitch of 7 mm, a power supply voltage of 24 V, a discharge flow rate of 18 L / min, The test was conducted under the following conditions.
  • the “electrode pitch” is the distance between the facing electrode plates 6.
  • the “power supply voltage” is a voltage (V +) with respect to GND according to AC1 to AC4.
  • the discharge flow rate is a flow rate (L liter) discharged from the discharge port 22.
  • conductivity was changed by adding salt (sodium chloride) in water. Test 1 shows the amount of hydrogen after 6 hours from the discharge port.
  • the rate of increase in the amount of hydrogen is particularly high up to a conductivity of 25 mS / m, and becomes moderate when it exceeds 50 mS / m. Also, in any of the tests, when the conductivity is low (25 mS / m or less), it is shown that the increase ratio of the amount of hydrogen to the increase of the conductivity is high. Further, the increase in the amount of hydrogen due to the height of the power supply voltage is reversed depending on the level of conductivity, and a sufficient amount of hydrogen can be obtained even if the power supply voltage is lowered (18 V).
  • FIG. 10 shows the change with time of the amount of hydrogen of the aqueous solution (hydrogen water) discharged from the apparatus as Test 2.
  • the graph of test 2-1 shows an electrode pitch of 5 mm, an operating time of 24 hours, a conductivity of 30 mS / m, a power supply voltage of 24 V, a discharge flow rate of 10 L / min
  • the graph of test 2-2 shows an electrode pitch of 7 mm, an operating time of 8 hours, a conductivity of 10 mS / m, a power supply voltage of 24 V, a discharge flow rate of 10 L / min
  • the graph of test 2-3 shows an electrode pitch of 7 mm, an operating time of 8 hours, a conductivity of 200 mS / m, a power supply voltage of 18 V, and a discharge flow rate of 10 L / min.
  • the graph of test 2-4 shows an electrode pitch of 7 mm, an operating time of 8 hours, a conductivity of 200 mS / m, a power supply voltage of 18 V, a discharge flow rate of 10 L / min, The test was conducted under the following conditions.
  • tests 2-1 to 3 were stored in a bucket (open), and in test 2-4, stored in a tank (a closed container with a lid).
  • the operating time is the operating time of the device, and if this operating time is long, the number of electrolysis cycles by recirculation will also increase.
  • the other conditions are the same as described above.
  • FIG. 11 shows, as Test 3, a change (over time) in the amount of hydrogen depending on the flow rate discharged from the apparatus.
  • the electrode pitch is 7 mm
  • the conductivity is 30 mS / m
  • the power supply voltage is 24 V
  • the discharge flow rate is 18 L / min
  • the electrode pitch is 7 mm
  • the conductivity is 30 mS / m
  • the power supply voltage is 24 V
  • the discharge flow rate is 10 L / min
  • the graph of test 3-3 shows an electrode pitch of 7 mm, a conductivity of 100 mS / m, a power supply voltage of 18 V, and a discharge flow rate of 10 L / min.
  • the graph of test 3-4 has an electrode pitch of 7 mm, a conductivity of 100 mS / m, a power supply voltage of 18 V, and a discharge flow rate of 18 L / min.
  • Test 3 when the conductivity is high (Tests 3 and 4), the rate of increase of the amount of hydrogen with respect to the operation time is higher than when the conductivity is low (Tests 3-1, 2, and 5). Further, when a filter is used (Test 3-5), the rate of increase in the amount of hydrogen is lower than when the filter is not used under the same conditions (Test 3-2). In addition, even when the discharge flow rate is increased 1.8 times as in Test 3-4 relative to Test 3-3, the amount of hydrogen is reduced by more than 10%, which can be obtained by slightly increasing or decreasing the discharge amount. It was shown that there was no significant change in the amount of hydrogen.
  • a power supply voltage of 18 V is preferable.
  • the conductivity is less than 30 mS / m, an increase in the amount of hydrogen can be expected by adding additives such as salt and fertilizer to increase the conductivity.
  • it is less than 100 ppb in about 3 days by storage with a bucket from time-dependent change of the amount of hydrogen, the reduction of the amount of hydrogen can be prevented and it can be saved for a long time by storing in large quantities with a tank.
  • the discharge flow rate is superior to 18 L / min by 10 L / min. -If a filter is used, the amount of hydrogen slightly decreases.
  • FIG. 12 is a graph showing the particle concentration (vertical axis: E7) of the aqueous solution (hydrogen water) generated by the hydrogen water generating device 2 and the particle diameter (horizontal axis: nm) of bubbles (bubbles).
  • the large mountain graph (a) is a graph relating to the aqueous solution (hydrogen water) generated by the hydrogen water generating device 2
  • the small mountain graph (b) is a graph relating to general tap water.
  • grains which concern on tap water are fine dusts, and are different from air bubbles.
  • Graph (b) is shown for reference.
  • the generation of nano-sized particles can be seen over the particle size of the particles (bubbles) of 50 nm to 250 nm.
  • the particle diameter is in the range of 70 nm to 130 nm, many particles of high particle concentration (number of particles) and nanosize particles are generated.
  • the particles (bubbles) generated by the hydrogen water generating apparatus 2 had a number of particles in 1 mL of 2.19 ⁇ 10 9 (about 2.190 million) / mL as a concentration (Concentration).
  • the number of particles in 1 mL of tap water was 7.05 ⁇ 10 7 (about 70 million) / mL.
  • foliar application of plants such as agricultural products and flowers is performed using an automatic sprayer or an injector for spraying hydrogen water.
  • This is mainly performed for the purpose of repellent control of pests such as mites, aphids and slips, and inhibition of hatching of eggs such as pests.
  • hydrogen water especially nano bubble hydrogen water
  • it is possible to reduce the number of times of use of pesticides without causing disease resistance and harmful effects.
  • eggs of pests are hatched by oxidation, but since nanobubble hydrogen water has a high reduction reaction, it has the function of preventing the oxidation of eggs and inhibiting hatching.
  • hydrogen water is circulated from the storage tank 16 via a supply pump or the like to supply hydrogen water to roots of plants and the like.
  • hydrogen water may go around the field (farm) over a day or so.
  • the hydrogen concentration of hydrogen water is preferably about 3 days. According to the test, the growth of a plant, for example, a leaf or the like is largely grown by the watering of hydrogen water and the like, which contributes to the growth promotion of the plant.
  • generation apparatus 2 is mixed and used for the drinking water and livestock feed of livestock (pig, a cow, a chicken etc.).
  • livestock pig, a cow, a chicken etc.
  • the health of livestock is maintained (the occurrence of diseases is reduced), the amount of feces is reduced (because of good digestion and absorption), and the odor of feces is reduced.
  • the hydrogen water by the hydrogen water generation device 2 contains a large amount of fine particulate nano bubble hydrogen water, and it is possible to make the hydrogen concentration remain for about 3 days.
  • generated by the electrolytic cell 4 directly to a plant as it is.
  • water is directly supplied from a water supply or a water source to the suction port 20 of the housing 18, and the aqueous solution discharged from the discharge port 22 of the housing 18 is allowed to pass through the electrolytic cell 4 and the filter 12 Supply to agricultural products through the flow path.
  • the storage tank 16 is not particularly required, for example, it is also possible to use the storage tank 16 as a buffer (buffer means).
  • the aqueous solution generated in the electrolytic cell 4 is once stored in the storage tank 16 and supplied to plants.
  • a large amount of aqueous solution containing hydrogen can be efficiently obtained, and miniaturization of the apparatus such as an electrolytic cell can be achieved. , Functional and economical.
  • electrolysis can be carried out with movement of water, which is efficient, movement of water can be carried out evenly without any problems, good electrolysis can be carried out, retention of water is prevented, and in addition, circulation channels
  • circulation channels By passing the solution through the electrolytic cell repeatedly, it is possible to easily obtain high concentration hydrogen water, and it is easy to manage the hydrogen concentration in the aqueous solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

【課題】 本発明は、水の電気分解により水素水を生成する水素水生成装置に関し、効率的に大量の水素水を生成し、また機能性、経済性にも優れた水素水生成装置を提供することを目的とする。 【解決手段】 網状の電極板6と、上記電極板6を、所定間隔をおいて3枚以上互いに向い合せに配置し、これら電極板6の並びの一方側に水の注入口30を、また他方側に水の排出口32をそれぞれ設けた電解槽4と、上記各電極板6に電圧を印加し、隣り合う電極板間及び他の電極板を介在させた電極板6間に電流を流して電気分解を行わせる電源回路部11と、を有し、上記電解槽4の上記注入口30から水を注入し、この水を上記注入口30側から上記排出口32側に移動させ、この移動する水を上記電極板6により電気分解し、水中に水素を含有する水溶液を生成し、これを上記排出口32から排出する構成である。

Description

水素水生成装置
 本発明は、水の電気分解により水素水を生成する水素水生成装置に関する。
 電解槽の水中に電極を配置し、電気分解により水素を含有する水素水を生成する装置が知られている。例えば特許文献1に記載の電解水生成装置は、水を電気分解する電解部と、この電解部に電力を供給する電源部とを備え、電解部は互いに並列に接続された電解槽を含むことから、野菜栽培等のように大量の電解還元水が必要な場合であっても、汎用の電解槽を複数備えた電解水生成装置を利用して安価に大量の電解還元水を生成できるというものである。
 また、文献2に記載の水素水製造装置は、水を電気分解して水素と酸素とを発生させる水電気分解装置と、電気分解により生成された電気分解水中に水素及び酸素のナノバブルを発生させるナノバブル発生装置と、を備え、このナノバブル発生装置は、電気分解水を貯留するとともに密閉された耐圧容器で形成された液体貯留槽と、電気分解により発生した気体を液体貯留槽内の電気分解水中に高圧で放出する気体放出手段等、を備えるというものである。
特開2016-131963号公報 特開2015-150512号公報
 さて、上記特許文献1の電解水生成装置は、電解部に複数(ここでは3つ)の電解槽を設けて、大量の電解還元水を生成することとしているが、より多くの電解水を得るためにはさらに電解槽の数を増やす必要があり、このため装置が大型化し、また場所の確保などで拡張性、汎用性等に欠けるという問題がある。
 また、特許文献2の水素水製造装置は、水電気分解装置とナノバブル発生装置とを備え、また耐圧容器等を用いること等から装置が複雑化し、また経済性にも欠けるという問題がある。
 本発明は上記問題点に鑑みてなされたものであり、効率的に大量の水素水を生成し、また機能性、経済性にも優れた水素水生成装置を提供することを目的とする。
 以上の技術的課題を解決するため、本発明に係る水素水生成装置は図1等に示すように、網状の電極板6と、上記電極板6を、所定間隔をおいて3枚以上互いに向い合せに配置し、これら電極板6の並びの一方側に水の注入口30を、また他方側に水の排出口32をそれぞれ設けた電解槽4と、上記各電極板6に電圧を印加し、隣り合う電極板6間及び他の電極板6を介在させた電極板6間に電流を流して電気分解を行わせる電源回路部11と、を有し、上記電解槽4の上記注入口30から水を注入し、この水を上記注入口30側から上記排出口32側に移動させ、この移動する水を上記電極板6により電気分解し、水中に水素を含有する水溶液を生成し、これを上記排出口32から排出する構成である。
 本発明に係る水素水生成装置は、上記電極板6の数を、4枚以上16枚以下の範囲とした構成である。
 本発明に係る水素水生成装置の上記電源回路部11は、上記電極板6の内の特定の電極板6間に交流電圧を印加し、且つ当該特定の電極板6以外の電極板6には直流電圧を印加し、電気分解を行わせる構成である。
 本発明に係る水素水生成装置の上記電源回路部11は、上記電極板6の内、他の電極板6を介在させた特定の電極板6間に交流電圧を印加し、且つ当該特定の電極板6以外の電極板6には直流電圧を印加し、この直流電圧の極性を定期的に切り替え、電気分解を行わせる構成である。
 本発明に係る水素水生成装置の上記電源回路部11は、上記電極板6を、連続する4枚を一組とし、各一組の上記電極板6の内、他の電極板6を介在させた特定の電極板6間に交流電圧を印加し、且つ当該特定の電極板6以外の電極板6(上記他の電極板6を含む)には直流電圧を印加し、電気分解を行わせる構成である。
 ここで、例えば、低い直流電圧(グラウンド)を電極板6に印加した場合、この(全ての)電極板6に向けて、交流電圧の高い時点の電位(V+)が印加された特定の電極板6から電流(直流)を流すようにする。
 また、例えば直流電圧の極性を切り替え、高い直流電圧(V+)を電極板6に印加した場合、この(全ての)電極板から、交流電圧の低い電位(グラウンド)が印加された時点の特定の電極板に向けて電流(直流)を流すようにする。
 本発明に係る水素水生成装置は、上記注入口30を上記電解槽4の下部近傍に設けて水を注入する一方、上記排出口32を上記電解槽4の上部近傍に設けて、上記注入された水を注入口30から排出口32方向へ移動させるとともに、下方から上方へと移動させ、この移動する水を上記各電極板6により電気分解し、上記排出口32から排出する構成である。
 本発明に係る水素水生成装置は、上記排出口32と連通する切替弁を設け、上記排出口32から排出された水溶液の濾過器12を通過する流路と、この濾過器12を通過しない流路とを切り換え可能とした構成である。
 本発明に係る水素水生成装置は、上記電解槽4の排出口32から排出された水溶液を溜める貯留タンク16と、この貯留タンク16内の水溶液を吸引し、これを上記電解槽4へ流通させるポンプ14と、を有し、上記ポンプ14により、上記電解槽4で電気分解された水溶液を上記貯留タンク16へ供給する一方、上記貯留タンク16内の水溶液を吸引して上記電解槽4に送り、これを再度電気分解する循環流路62を駆動させ、水溶液中の水素濃度を高める構成である。
 ここで、水素水生成装置の運転状況を管理する制御部10を設け、この制御部10に上記循環流路62の循環時間として、ポンプ14を稼働させて循環流路を流通させる時間を登録することで、この循環時間により水素濃度の調節を行うことができる。
 本発明に係る水素水生成装置によれば、網状の電極板を3枚以上互いに向い合せに配置し、一方側に注入口を他方側に排出口をそれぞれ設けた電解槽、及び隣り合う電極板間等に電流を流して電気分解を行わせる電源回路部を有し、電解槽を移動する水を電極板により電気分解し、水素を含有する水溶液を生成する構成を採用したから、効率的に水素を含有する水溶液(水素水)を大量に得ることができ、また装置の小型化が図れ、経済的にも優れるという効果を奏する。
 本発明に係る水素水生成装置によれば、電源回路部は、特定の電極板間に交流電圧を、これ以外の電極板には直流電圧を印加し、電気分解を行わせる構成を採用したから、電極板間で効率的に電気分解が行なえて、電解槽等の装置の小型化が図れ、機能的にも優れた水素水生成装置が得られるという効果がある。
 本発明に係る水素水生成装置によれば、電源回路部は、他の電極板を介在させた特定の電極板間に交流電圧を、これ以外の電極板には直流電圧を印加し、この直流電圧の極性を定期的に切り替え、電気分解を行わせる構成としたから、全ての電極板間で効率的に電気分解が行えることから、電解槽等の装置の小型化が図れ、また電極板の付着物(無機物質等)も除去され、機能的にも優れた水素水生成装置が得られるという効果がある。
 本発明に係る水素水生成装置によれば、4枚一組の電極板の内、他の電極板を介在させた特定の電極板6間に交流電圧を、これ以外の電極板には直流電圧を印加し、電気分解を行わせる構成としたから、隣り合う全ての電極板間で電流(直流)を流すことができ、効率よく電気分解が行える。また4枚一組の組み合わせでは、電極板間で交流電圧の印加と直流電圧の印加とが交互となり、他の組の電極板6との組同士間でも電流を流して電気分解を行うことが出来て効率がよい。
 本発明に係る水素水生成装置によれば、注入口を電解槽の下部近傍に設ける一方、排出口を電解槽の上部近傍に設け、注入され下方から上方へ移動する水を各電極板により電気分解する構成を採用したから、電解槽内の水の移動が淀みなく満遍なく行えて良好に電気分解が行なえ、また水の滞留も防止できるという効果がある。
 本発明に係る水素水生成装置によれば、排出口と連通する切替弁を設け、濾過器を通過する流路と通過しない流路とを切り替え可能としたから、必要に応じ選択的に濾過器による塩素系物質等の除去が行えるという効果がある。
 本発明に係る水素水生成装置によれば、ポンプにより、電解槽で電気分解された水溶液を貯留タンクへ供給する一方、貯留タンク内の水溶液を吸引して電解槽に送り、これを再度電気分解する循環流路を駆動させる構成を採用したから、容易に高濃度の水溶液(水素水)を得ることができ、また水溶液中の水素濃度の管理が容易であるという効果がある。
実施の形態に係り、水素水生成装置の内部構造を正面からみた説明図である。 実施の形態に係り、水素水生成装置の内部構造を上からみた説明図である。 実施の形態に係り、水素水生成装置の筐体を正面からみた外観図である。 水素水生成装置の電源回路部の一部回路図及び電極板との接続形態を示す図である。 電源回路部の各部における電圧の波形を示す図である。 電源回路部と電極板(8枚中の4枚(一組))との接続及び電流(直流、交流)の流れを示す第一の図である。 電源回路部と電極板(8枚中の4枚(一組))との接続及び電流(直流、交流)の流れを示す第二の図である。 実施の形態に係り、水素水生成装置に貯留タンクを加えた循環流路の構成を示す図である。 水素水生成装置を用いて行なった試験1の結果を示す図(グラフ)である。 水素水生成装置を用いて行なった試験2の結果を示す図(グラフ)である。 水素水生成装置を用いて行なった試験3の結果を示す図(グラフ)である。 水素水生成装置により生成された水溶液中の粒子(気泡)径及び粒子濃度を示す図(グラフ)である。
 以下、本発明に係る水素水生成装置の実施の形態を説明する。
 図1,2は、実施の形態に係る水素水生成装置2を示すものである。
 この水素水生成装置2は、電解槽4、この電解槽4内に配置され水を電気分解する電極板6、制御盤8、濾過器12、ポンプ14、及び貯留タンク16等を有する。
 また、図3に示すように制御盤8には、操作パネル9が設けられ、装置の制御及び運転管理等を行う制御部10、及び上記電極板6に電気を供給する電源回路部11等が内蔵されている。
 この水素水生成装置2は、上記貯留タンク16を除いた他の電解槽4、電極板6、濾過器12、ポンプ14等の器具は筐体18内に収納され、また制御盤8は筐体18の正面部に取り付けられている。上記電気分解には、水道水、井戸水、及び自然水等の水が用いられる。
 ここでは、単に水といった場合には、電気分解前の水、及び電気分解後の水の何れかをさし、また電気分解後の、水素等を含みまた溶存させた水溶液を、水素水又は電解水という。
 上記筐体18は箱型であり、筐体18の正面部には制御盤8が取り付けられ、筐体18の正面部の右上部には、水の吸入口20、及び水の吐出口22が設けられている。
 また、筐体18には、電解槽4内の不要な水を排水する排水コック26、及びポンプ14内の不要な水を抜く水抜コック28が設けられている。通常、装置の運転を行わないときには、上記両コックは開けておき、運転時には閉めておく。
 上記電解槽4は、ステンレス鋼製或いは合成樹脂製等からなる直方体状の容器である。この電解槽4は、平面が矩形状(又は長方形状)であり、電解槽4の向い合う壁面部の一方側(正面側)には注入口30が設けられ、また他方側(背面側)には排出口32が設けられている。この電解槽4の注入口30は、パイプ等の流路及びポンプ14を介して筐体18の吸入口20と連結されている。
 上記注入口30は電解槽4の底面部34近傍に設けられ、また上記排出口32は電解槽4の上部36近傍に設けられており、このため排出口32は注入口30からは斜め上方に位置する。また、電解槽4の上側には、蓋部材38が取り付けられ、この蓋部材38の下部側には8枚の電極板6が取り付けられている。蓋部材38により、電解槽4の上部が密閉、閉塞されている。
 上記電極板6は、金属材料を網目状(縦横形状或いは斜め交差形状)に形成した網体からなり、全体が矩形状又は長方形状(例えば縦260mm・横54.5mm)の板材である。
 この電極板6の金属材料としては、ステンレス、チタン、アルミニウム、或いは銅等を用いることができる。特に、ステンレス、チタン等は耐食性、耐久性に優れて良好である。
 ここでは、電極板6はステンレス鋼を使用し、目が菱形(パンチングメタル)の網状のラス材を用いている。また、電極板6には、網体に白金、或いは金メッキを施したものを使用している。
 電極板6を網体としたのは、水の流通を良くし、また表面積を大きくして電気分解の反応効果を高めるためである。電極板6をステンレス(例えばSUS316等)としたのは、耐食性、耐孔食性に優れるからである。
 また、電極板6の網体に白金メッキ或いは金メッキを施すことで、何れも導電率が高いため電気分解の反応が良く、また他の物質と化合し難く良好である。
 上記電極板6は、所定の間隔をおいて8枚を互いに向い合せ、かつ面同士を平行に配置している。ここでは、隣り合う電極板6同士の間隔(電極ピッチ)を一定の7mmとしている。この間隔は、印加電圧にもよるが3~10mm、好ましくは5~8mmの範囲が電気分解の効率がよい。
 各電極板6は、その上部が上記蓋部材38の下面部から上向きに取り付けられ、この蓋部材38の上面部には各電極板6の端子7が設けられている。
 なお、電極板6の数は、交流及び直流の電圧印加形態、及び隣り合う電極板6同士で効果的に電気分解を行わせるため3枚以上が良い。また、より多量の電気分解を効率的に行わせるためには、電極板6の数は4枚以上、或いは8枚以上とするのが好ましい。なお、電源回路部11の電気供給量或いは電極板6の管理等の点から、電極板6の数は多くても16枚程度が実用的である。
 このように、電極板6の数は自由に増加することができ、このため、所望する大量の水素水量及び水素濃度を得るための設計を行う場合には、電極板6の枚数或いは面積等を変えることにより容易に対応できる。
 また一つの電解槽4内に、全て(ここでは8枚)の電極板6を収容する形態であるため、電解槽4等、装置の小型化が図れ、また機能的にも優れる。
 電解槽4の上部に、下部側に8枚の電極板6を取り付けた蓋部材38を配置する。この状態で、電解槽4の上面部が蓋部材38で被われ、ネジ等で蓋部材38を電解槽4の縁部に固定すると、蓋部材38により電解槽4は密閉される。
 また、各電極板6を電解槽4の内部に収納すると、8枚の電極板6は互いに向い合せの状態で配置され、これら電極板6の並びの一方側の近傍に注入口30が設けられ、また他方側に排出口32が設けられた状態となる。この注入口30は、電解槽4の底面部34の上部近傍に形成されており、一方、各電極板6の下部と電解槽4の底面部34との間には少し隙間が設けられ、この隙間を注入口30から注入された水が移動可能である。
 このため、注入された水が電極板6の周辺を移動し、この移動とともに電気分解が行なえる。また、電解槽4内の水の移動(下方の注入口30から上方の排出口32)に伴って、電気分解で生成された気泡状の粒子(ナノバブル)の上昇移動(比重の関係による)も発生し、このため上方の排出口32への移動が淀みなく良好に行え、また水の滞留も防止できる。また、上記水の移動とともに満遍なく均一に水の電気分解が行なえ、このため比較的大量の水の移動が可能となる。このような電解槽4の構造(水の移動形態等)と相まって、電極板6の数の増設等により、大量の電解水として水素水を生産することが可能となる。
 上記電極板6は、全8枚を電解槽4の中央部寄りにまとめて配置している。このため、電解槽4の開口部(通常は蓋部材38で閉塞)を中央に配置でき、電極板6の手入れ及び交換が容易でメンテナンスがし易い。
 また、上記電極板6の配置により、注入口30が設けられた電解槽4の前側の壁部と電極板6(最前部)との間、及び排出口32が設けられた後側の壁部と電極板6(最後部)との間、にそれぞれ隙間が形成される。
 このため、電解槽4の中央部に配置された電極板6と電解槽4の周囲の壁面との間には、水の流通が可能な隙間(空間部)が形成され、水の自由な流通が可能となって水の移動が良好に行われ、滞留等の防止にもなる。
 上記制御盤8内には、マイクロコンピューター(CPU)を中心に構成された電子回路基板等が内蔵され、この基板には、制御部10及び電源回路部11などが組み込まれている。また、制御盤8の操作パネル9には、操作ボタン、LED表示器、表示ランプ等が取り付けられている。
 上記制御部10は、主に、装置の運転時刻等の設定管理、及び運転状況の管理等を行う。また、制御部10及び電源回路部11には、高周波発信部及び変調部が設けられ、ソフトウエアにより変調等を実現している。この場合、例えば高周波の発信周波数約25kHzの基礎周波数に、変動幅・2~8kHz、好ましくは・3~5kHzの周波数変調(FM)を行なう。そして、制御部10で生成された高周波信号が電源回路部11に出力され電気分解用の電力を発生させる。
 上記高周波の基礎(中心)周波数は、ここでは25kHzの高周波を使用しているが、他にこの周波数としては、15kHzから35kHz、好ましくは20kHzから30kHzの範囲が適当である。このような高周波の周波数の範囲において、水素を含有する気泡状(ナノバブル)の水溶液(水素水)が多く得られる。また、この水溶液には、同時に酸素を含有する気泡状(ナノバブル)の酸素水も含まれる。
 図4の電源回路部11に関する電気接続形態に示すように、電源回路部11では、制御部10からの高周波信号(SG1及びSG2)に基づき、この信号を増幅して水の電気分解が可能な電力を発生させる。
 そして、電解槽4内の8枚の電極板6(第1~第8)の各端子7には、電源回路部11からの配線が接続され、電源回路部11から、各電極板(第1~第8)に交流及び直流の電気が印加される。
 上記電源回路部11は、トランジスター回路等で構成された第1出力回路44及び第2出力回路46からなり、これら両出力回路の構成は同じである(第2出力回路の詳細は省略)。
 上記第1及び第2の2つの出力回路を設けたのは、十分な電力を確保し、電気分解に必要な電力を全電極板6(第1~第8)に出力し供給するためである。このため、第1出力回路44は第1~第4の電極板6に電気を供給し、第2出力回路は第5~第8の電極板6に電気を供給する。
 電源回路部11では、電気分解に必要な交流(パルス状波形の交互方向流)、及び直流(一方向流)の電力を出力する。
 そして上記第1出力回路44からは、パルス状の電気信号AC1及びAC2が出力され、上記第2出力回路46からは、パルス状の電気信号AC3及びAC4が出力される。また、直流電源として、電気信号OUTには、GND(グラウンド)又は正電位(V+)の電圧が加えられている。この正電位(V+)は、AC1~AC4(V+)と同電位である。
 図5に示すように、上記高周波信号(SG1及びSG2)はパルス状波形を有する信号である。信号AC1(GND~V+の電位)は、パルス状の信号であり、信号AC2(V+~GNDの電位)についても、パルス状の信号である。また、信号AC1-AC2(V+~V-の電位)は、パルス状波形の高周波交流である。
 ここで、図4に基づき、電源回路部11から電極板6に印加される電気の接続形態について説明する。
 第1の電極板6にはAC1が、また第3の電極板6にはAC2がそれぞれ接続(印加)され、また第5の電極板6にはAC3が、第7の電極板6にはAC4がそれぞれ接続される。一方、第2、第4、第6及び第8の電極板6には、OUT信号が接続(印加)される。
 このOUT信号は、GND(グラウンド)レベルの電位の時と、V+(正電位)と同電位の時とがあり、一定周期ごとにOUT信号はGNDとV+に切替えられる。この周期は、数分、例えば1分~3分程度がよく、ここでは2分としている。この周期の切り替えにより、電極板6の極性が変化して電気の流れが切り替わり、電極板6に付着する無機物資(カルシウム、マグネシウム)等を除去することができる。
 そして、第1、第3、第5及び第7の各電極板6には、SG1、SG2に基づきV+と同電位に増幅(電源回路部11により)された信号AC1~AC4が印加される。
 電源回路部11からの信号は、ここでは25kHz程度を基準の周波数とし、これにランダムに周波数が変化する周波数変調が加えられている。この周波数変調は、制御部10においてソフトウエア(プログラム)により行なわれる。
 なお、第1出力回路44と第2出力回路46とは同等の回路であり、また電極板6への接続形態も同じであるため、ここでは第1出力回路44と第1~第4の電極板6との接続形態について説明し、第2出力回路に関するものは説明を省略する。
 ここで、上記AC1とAC2との信号の基本特性(波形)は図5のタイムチャートのようになる。これらAC1とAC2とは、ON(V+)、OFF(GND)が反転する。また、AC1-AC2間においては、交流(高周波)波形となるよう制御されている。
 図6(a)(b)は、OUT信号がGNDの場合の、第1~第4の電極板6に印加される電気(交流、直流)の流れを示したものである。
 ここで、OUT信号がGNDと同電位の信号を出力しており、AC1がON(V+)、AC2がOFF(GND)の時は同図(a)のように電流が流れる。また、OUT信号がGNDと同電位であり、AC1がOFF(GND)、AC2がON(V+)の時は同図(b)のように電流が流れる。
 即ち、第1の電極板6と第3の電極板6との間は、電流の方向が常に変わる交流(高周波)となる。また、第1の電極板6と第3の電極板6は、第2及び第4の電極板6に対しては、電流の方向が一定の直流(パルス状波形)としての電流が流れる。
 このように、第1の電極板6と第3の電極板6とは陽極として、第2の電極板6及び第4の電極板6は陰極としてそれぞれ機能する。
 図7(c)(d)は、OUT信号がV+の場合の、第1~第4の電極板6に印加される電気(交流、直流)の流れを示したものである。
 ここで、OUT信号がV+と同電位の信号を出力しており、AC1がON(V+)、AC2がOFF(GND)の時は、同図(c)のように電流が流れる。また、OUT信号がV+と同電位であり、AC1がOFF(GND)、AC2がON(V+)の時は、同図(d)のように電流が流れる。
 即ち、第1の電極板6と第3の電極板6との間は、上記のOUT信号がGNDの時と同様に、電流の方向が常に変わる交流となる。また、第2の電極板6及び第4の電極板6からは、第1の電極板6と第3の電極板6に対して、電流の方向が一定の直流の電流が流れる。
 このように、第1の電極板6と第3の電極板6は陰極として、第2の電極板6及び第4の電極板6は陽極としてそれぞれ機能する。
 したがって、図6(a)(b)の状態から図7(c)(d)の状態へと電気の流れが切り替わるときは、直流電源の極性の切り替えにより逆方向に電流が流れる。この極性(直流)の切り替えにより、全ての(4枚)の電極板6について、陽極と陰極との切り替えが交互に行われる。このように、電極板6に印加する直流の極性を交互に切り替えるのは、電極板6に付着する無機化合物等を除去するためである。
 また上記のように、第1の電極板6には交流、第2の電極板6には直流、第3の電極板6には交流、また第4の電極板6には直流と、交互に交流と直流を入れ変えた接続の配線としたのは、バランス良く、且つ効率的に直流を流して、各電極板6で良好に電気分解を行なわせるためである。
 次に、第1出力回路44に係る第4の電極板6と、第2出力回路46に係る第5の電極板6との間の、両出力回路に跨る第4の電極板6と第5の電極板6間の電気の流れについて説明する。
 ここで、第4の電極板6にはOUT信号が印加され、第5の電極板6は第2出力回路46からAC3が印加されている。また、第1出力回路44のOUT信号と、第2出力回路46とOUT信号とは、一体化(接続)されている。
 また、第5の電極板6からみれば、第4の電極板6は第6の電極板6と等価(接続)であるため、OUT信号がGNDの時には第5の電極板6から第4の電極板6へと直流が流れ、OUT信号がV+の時には第4の電極板6から第5の電極板6へと直流が流れる。
 このため、第1~第8の電極板6について、隣接するすべての電極板6間には電流が流れ、電気分解が行われることになる。
 上記電極板6間での電気分解により、陰極では水素(ガス)、また陽極では酸素(ガス)が発生する。この水素(ガス)は、一部が分子状態(H2)又他が原子状態(H)で水中に溶け込んでいるものと考えられる。上記酸素(ガス)は、一部が水中に溶け込み、飽和状態になれば大気中に放出される。また、酸素に比べて水素が増加すること等から、酸化還元電位が低下し、還元電位になるものと考えられる。
 さらに、交流として、上記基準周波数に周波数変調を加えたことから、周波数の変動がもたらされ、この変動が急激な変動点に達したときに衝撃波が発生し、この時に電気分解により発生した水素(ガス)及び酸素(ガス)の気泡が微小化され、気泡の径が微細となりナノ単位のナノバブルにまで小さくなると考えている。水素の気泡が、ナノバブル程度に小さくなると水中での滞留時間が長くなる。
 このように、電解槽4では、電極板6(第1~第8)を用いた水の電気分解により、水素(ガス)及び酸素(ガス)等を含有し溶存する水溶液として、所謂、水素水(ナノバブル水素水)が生成される。
 また、電気信号OUTの切り替えにより、直流の極性を反転させることで、電極板6に付着する無機物質等を除去することができ、電極板の機能が持続し耐久性にも優れる。
 上記のように、ここでは第1の電極板6と第3の電極板6との間に交流電圧を印加することとし、上記交流電圧を印加した電極板6(第1又は第3)とこれ以外の電極板6(第2又は第4)に、電流を流して電気分解を行う。
 なお、他に、第2の電極板6と第4の電極板6との間に交流電圧を印加することとしてもよく、この場合、上記交流電圧を印加した電極板6(第2又は第4)と、これ以外の電極板6(第1又は第3)に、電流を流して電気分解を行う。
 このように、特にここでは、電極板6を連続する4枚(第1~第4の電極板6)を一組とし、各一組の上記電極板6の内、他の電極板6(例えば第2の電極板6)を介在させた特定の電極板6間(例えば第1と第3の電極板6間)に交流電圧を印加し、且つ当該特定の電極板6以外の電極板6(第2と第4の電極板6)には直流電圧を印加する。
 そして、特定の電極板6とこれ以外の電極板6間(例えば第1と第2の電極板6間、第1と第4の電極板6間、第3と第2の電極板6間、第3と第4の電極板間)には直流電流を流し、電気分解を行わせる。この場合、各組の電極板に対する交流電圧、及び直流電圧等の印加形態は、何れの組も同一形態としてもよい。
 上記電極板6が4枚一組の組み合せでは、上記のように隣り合う全ての電極板6間で電流(直流)を流すことができ、効率よく電気分解が行える。また、上記4枚一組の組み合わせでは、交流電圧の印加と直流電圧の印加とが交互となり、他の組の電極板6との組同士間でも電流を流して電気分解を行うことが出来て効率がよい。上記組の数は一組でもよいが、二組以上とするとより効率化が図れる。
 要は、各電極板6に交流電圧の印加と直流電圧の印加をバランス良く行い、全ての電極板6において効率的に電気分解が行われるような接続形態を採用する。そして、少なくとも隣り合う電極板6間では電気分解が行えるよう配線を行なうことで、電気分解の効率化が図れる。
 なお、ここでは電極板6を8枚用いたが、これは3枚以上であれば何枚でも可能である。例えば電極板6が3枚の場合は、上記第1~第3の電極板の配線接続により電気分解を行い、これと同様に、電極板6の数により上記配線に準じた配線接続により電気分解を行なえばよい。
 また、電気分解の効率及び電源回路部11の電力供給能力を考慮した場合、電極板6の数は、この実施の形態に準じた枚数として4枚、8枚、12枚或いは16枚等と4の倍数としてもよい。
 上記濾過器12は、底面を有する円筒状の容器48の内部に、円筒状の筒体50を同心円状に配置し、この容器48と筒体50との間に円環状の空間部52を形成している。そして、筒体50には下部寄りの周囲に複数の孔部51が設けられている。
 上記容器48の上部近傍には、電解水の流入孔54が設けられており、また容器48の上部には蓋体が配置され空間部52は閉塞されている。
 上記空間部52には、カーボンフィルター等の濾過材が配置されており、筒体50の上部には流出孔55が設けられている。
 このため、濾過器12の流入孔54から流入した水溶液は、空間部52を下方に移動するが、このときカーボンフルターにより濾過が行われ、主に次亜塩素酸、塩素等の塩素系物質が除去される。さらに水溶液は、空間部52から孔部51を通過して筒体50の内部へと移動し、さらに筒体50内を上昇して流出孔55から排出される。
 図8は、水素水生成装置2の流路に貯留タンク16を加え、電解槽4で電気分解された水溶液を、貯留タンク16を経由して再度電解槽4に送る循環流路62を示したものである。そして、ポンプ14の駆動により、貯留タンク16内の水溶液を吸引して電解槽4に送り、ここで電気分解された水溶液を貯留タンク16へ供給し、これを再度電解槽4に送り電気分解させる。このように、循環流路62に電気分解された水溶液を流通させることで、水溶液中の水素濃度を高める。
 また、電解槽4の排出口32には、二方向に枝分れした流路が接続され、それぞれの流路には第1の切替弁56及び第2の切替弁58が取り付けられている。
 この第1の切替弁56の先は濾過器12の流入孔54に接続され、その流出孔55の先は流路を介して筐体18の吐出口22に接続されている。また、第2の切替弁58の先は流路を介し、そのまま筐体18の吐出口22に接続されている。
 このため、第1及び第2の切替弁の操作により、電解槽4からの水溶液の流路について、濾過器12を通過させる流路と、これを迂回するバイパス流路とを選択することができる。
 通常、電解槽4で電気分解された電解水には、次亜塩素酸、塩素等が含まれており、これら塩素系物質は濾過器12により除去する。しかし、塩素系物質には殺菌作用があるため、植物の土壌等において殺菌が必要な場合には、塩素系物質を殺菌に用いる。このため、第1及び第2の切替弁の操作により、殺菌の必要がある場合には濾過器12を通過させない迂回流路を選択する。
 なお、第1及び第2の切替弁として、他に三方弁からなる切替弁を用いることも可能であり、これにより濾過器12を通過する流路と、これを迂回する流路との切り替えを二者択一的に行う。
 上記貯留タンク16は、水素等を含有する水溶液を保管する容器であり、ここでは容量を500リットルとしている。筐体18の吐出口22に、ホース等を取り付けて流路を形成し、電気分解された水溶液を貯留タンク16へ供給する。
 貯留タンク16は、ここでは合成樹脂製であるが、他にステンレス等の金属が用いられ、全体は直方体状或いは球状の容器である。貯留タンク16は、上部に蓋部材が取り付けられ内部を密閉することが可能である。
 この貯留タンク16は、電解槽4へ送る水の水源であり、また電解槽4からの水溶液(水素水等)を一度溜めておき、再び電解槽4へ送るために用いる。また、植物などへ水素水等を供給する水源となる。
 上記ポンプ14は、筐体18の吸入口20と電解槽4の注入口30との間に配置し、循環流路62を駆動して、吸入口20から吸引した水を電解槽4の注入口30へ向けて流通させる。
 このポンプ14は、貯留タンク16等、外部から水を吸引し、これを電解槽4へ供給し、また電解槽4内に水が十分に充填されると、これを電解槽4からの水溶液を濾過器12或いは筐体18の吐出口22へ送出し、この吐出口22から貯留タンク16へと流通させる。
 このように、貯留タンク16内の水溶液(水素水等)を電解槽4に送り、再度電気分解を行なうことで水素水の濃度を高める。貯留タンク16内の水溶液は、そのまま農作物等へ供給することができる。
 ポンプ14による水の流量は、例えば9L(リットル)/分~12L/分とする。この場合、電解槽4の注入口30から9L/分~12L/分の水が注入され、この量の水が電気分解され、また同量の水が電解槽4の排出口32から排出される。
 次に、水素水生成装置2の運転動作について説明する。この水素水生成装置2は、制御盤8に設けた操作パネル9より予め操作ボタン等を操作し、運転内容、運転時間等の運転管理情報を登録しておく。これら運転内容は、制御部10によりコントロールされポンプ14等を稼働させる。
 このように、制御部10には管理情報を登録設定することができ、水の循環流路62の循環時間として、循環流路62の流通を駆動させるポンプ14の稼働時間(電気分解の時間も同期)を登録し、或いは再循環回数(貯留タンク内の水量及び循環水量から試算)を登録し、装置を運転させることにより、所望する濃度の水素水を得ることが容易に行える。
 運転の準備として、濾過器12を使用する場合には、濾過器12側の第1の切替弁56を開け、第2の切替弁58を閉める。この場合、電解槽4からの水溶液は濾過器12を通過して濾過される。逆に、濾過器12を迂回させる場合には、第1の切替弁56を閉め、第2の切替弁58を開ける。
 また、装置の運転時には、筐体18に設けた排水コック26、及び水抜コック28は閉めておく。
 通常、装置の運転では、貯留タンク16を経由する循環流路を構成する。この場合、流路を形成するホース等の流通管を用いて、貯留タンク16と筐体18の吸入口20とを流通管で連通し流路を形成する。また、筐体18の吐出口22と貯留タンク16とを流通管で連通して流路を形成し、貯留タンク16を介した水の循環流路62を形成する。
 また、貯留タンク16には、予め電気分解するための所定量の水を補充し充填しておく。
 なお、貯留タンク16以外の、他の貯留槽等に貯留された水を使用する場合には、流通管を用いてこの貯留槽と筐体18の吸入口20とを連通し、電解槽4で電気分解することとしてもよい。
 この場合、電解槽4からの水溶液(水素水等)を吐出口22から流通管を介して一度貯留タンク16に溜めても良く、またこの水溶液を吐出口22から直接農作物等に供給するようにしてもよい。
 さて、上記循環流路62を形成し、制御部10に登録された運転管理情報に基づき運転が開始されると、ポンプ14が始動し電解槽4での電気分解が開始される。そして、貯留タンク16から水が吸引され、これが筐体18の吸入口20からポンプ14を経由して電解槽4の注入口30へ供給される。
 電解槽4の注入口30から注入された水は、電解槽4の下部から8枚の各電極板6の下部から上方に移動し、やがて各電極板6による電気分解により水素等が含有された水溶液(電解水)が生成される。
 この水溶液は、電気分解により生成され、水中に水素を含有した水素水が含まれ、この水素水は、水素(ガス)が水に溶け込んだもの、また水中にナノバブル化した気泡(水素)を閉じ込めた所謂ナノバブル水素水が含まれている。
 また、上記水溶液には、電気分解により生成され、水溶液中に酸素(ガス)を含有した酸素水も含まれ、塩素系物質等も含まれている。
 電解槽4内の水は、電解槽4の前側下部近傍の注入口30から注入されて電解槽4の下部側を移動し、やがて電解槽4の後側上部近傍の排出口32に向けて上昇し、さらに電解槽4の後部へ移動し排出口32から排出される。このように、電解槽4の注入口30から注入された水は、電解槽4内で排出口32に向かって移動流通し、また一部は網状の電極板6を通過し移動流通する。
 電解槽4の電気分解は、上記水の移動の際に8枚の電極板6によって行われる。また、水は、網体の電極板6を通過する際にも電気分解が行われる。
 また、電解槽4内では、8枚の電極板6を中央寄りに配置し、電極板6と電解槽4の前後左右の壁面との間に水の流通に十分な隙間(空間部)を設けてあり、また電解槽4の底面部34と電極板6との間にも、水の流通に十分な隙間(空間部)を設けている。
 これら隙間は、電解槽4内の水の流通移動の流路を形成することから、電解槽4内部における水の滞留を防止し、併せて電解槽4内の水が満遍なく均一に電気分解される。
 そして、電解槽4の下部近傍に設けた注入口30から注入された水は、反対側の排出口32方向へ流通し、この水の移動とともに各電極板6により電気分解が行われ、電解槽4の上部近傍に設けた排出口32から排出される。
 電解槽4は蓋部材により内部が密閉されている。このため、ポンプ14の稼働により電解槽4の注入口30(吸入口20)から給水される水量は、電解槽4の排出口32(吐出口22)から排出される水の量と同じであり、給水される水により電解槽4内部の水が押し出され排出される。
 上記電解槽4内で電気分解が行われている間も、ポンプ14は稼働しており、電解槽4内には注入口30から新たな水が供給され、また同量の水(水溶液)が電解槽4の排出口32から排出される。この水溶液は、切替弁の操作により、第1の切替弁56を経由して濾過器12に送られる。
 濾過器12では、濾過により塩素系物質等が除去され、濾過器12の流出孔55から流出した水溶液は、筐体18の吐出口22に送られ、この吐出口22に接続されたホース等により貯留タンク16へと送出され、ここに貯留される。
 上記貯留タンク16から、流路を介してポンプ14、電解槽4(電極板6)、第1及び第2の切替弁、及び濾過器12(迂回有り)を経て、再度貯留タンク16に戻される流路が、水溶液(電解水)の循環流路62となる。
 装置が稼働している間は、ポンプ14の駆動により、上記循環流路62は水溶液が絶え間なく流通し、電解槽4での電気分解及び濾過器12での濾過が繰り返し行われる。このように、上記循環流路62を繰り返し循環させ、電気分解を繰り返し行うことで、水中に含有する水素の濃度が高まり、高濃度の水素水が得られる。
 水素水生成装置2の運転時の吐出流量(吐出口22から吐出される流量)は、濾過器12を使用する場合、例えば5~20L(リットル)/分、好ましくは9~12L(リットル)/分である。また、貯留タンクの容量が500L(リットル)の場合、装置の運転時間は例えば3~6時間程度とする。
 続いて、上記水素水生成装置2を用いて生成された水溶液(水素水)の水素量(濃度)等の試験結果について説明する。
 図9は、試験1として、電気分解に使用した水の導電率による水素量の推移を示したグラフである。
 ここで、
 試験1-1のグラフは、電極ピッチ7mm、電源電圧24V、吐出流量10L/分、
 試験1-2のグラフは、電極ピッチ7mm、電源電圧18V、吐出流量10L/分、
 試験1-3のグラフは、電極ピッチ7mm、電源電圧24V、吐出流量18L/分、
の条件で試験を行なったものである。
 尚、上記「電極ピッチ」は、対向する電極板6同士の間隔である。「電源電圧」は、AC1~4に係るGNDに対する電圧(V+)である。吐出流量は、吐出口22から吐出される流量(Lリットル)である。また、「導電率」は、水中に塩(塩化ナトリウム)を加えて変化させた。試験1は、吐出口からさらに6時間経過後の水素量を示したものである。
 試験1より、特に導電率25mS/mまでは水素量の増加割合が高く、50mS/mを超えると緩やかとなる。また、何れの試験においても、導電率が低い(25mS/m以下)場合には、導電率の増加に対する水素量の増加割合が高いことが示されている。
 また、電源電圧の高さによる水素量の増加は、導電率の高さによっては逆転し、電源電圧を低く(18V)しても十分な水素量が得られる。
 このため、電気分解用の水については、水道水、自然水等、その水質に応じて、循環流路62の循環の回数を制御することが好ましい。また、水中に予め塩、液肥等を加えて導電率を高めておくことも有効である。
 図10は、試験2として、装置から吐出された水溶液(水素水)の水素量の経時変化を示したものである。
 ここで、
 試験2-1のグラフは、電極ピッチ5mm、稼働時間24時間、導電率30mS/m、電源電圧24V、吐出流量10L/分、
 試験2-2のグラフは、電極ピッチ7mm、稼働時間8時間、導電率10mS/m、電源電圧24V、吐出流量10L/分、
 試験2-3のグラフは、電極ピッチ7mm、稼働時間8時間、導電率200mS/m、電源電圧18V、吐出流量10L/分、
 試験2-4のグラフは、電極ピッチ7mm、稼働時間8時間、導電率200mS/m、電源電圧18V、吐出流量10L/分、
の条件で試験を行なったものである。
 吐出された水溶液の保存について、試験2-1~3はバケツ(開放)で保存し、また試験2-4ではタンク(蓋付の密閉容器)で保存した。稼働時間は、装置の運転時間であり、この稼働時間が長いと再循環による電気分解の繰り返しの回数も多くなる。
 その他の条件については、上述したものと同じである。
 試験2より、試験2-1と試験2-3からして、電気分解を行う水の導電率が低い場合(試験2-1)であっても、装置の稼働時間を長く(再循環回数を多く)することにより比較的高い水素量が得られることが示されている。
 また、試験2-4(タンク保存)では、特に経過時間が十数時間(h)までは、水素量の経時低下が僅かであり、また他の試験2-1~3と比べて水素量の経時低下の変化が小さい。一方、試験2-1~3(バケツ保存)は、経過時間が二十数時間(h)までは、水素量の経時低下が急であり、それ以降は経時低下が緩やかである。
 上記より、装置の稼働時間を長くすることで高い濃度の水素水が得られ、また水素水の保存は蓋付の容器で保存する方が、水素量が高く保持され長持ちすることが確認できた。
 図11は、試験3として、装置から吐出される流量による水素量の変化(経時)を示したものである。
 ここで、
 試験3-1のグラフは、電極ピッチ7mm、導電率30mS/m、電源電圧24V、吐出流量18L/分、
 試験3-2のグラフは、電極ピッチ7mm、導電率30mS/m、電源電圧24V、吐出流量10L/分、
 試験3-3のグラフは、電極ピッチ7mm、導電率100mS/m、電源電圧18V、吐出流量10L/分、
 試験3-4のグラフは、電極ピッチ7mm、導電率100mS/m、電源電圧18V、吐出流量18L/分、
 試験3-5のグラフは、電極ピッチ7mm、導電率30mS/m、電源電圧24V、吐出流量10L/分、濾過器使用、
の条件で試験を行なったものである。
 試験3より、導電率が高い場合(試験3-3,4)は、導電率が低い場合(試験3-1,2,5)と比べて、稼働時間に対する水素量の増加割合が高い。
 また、濾過器を使用した場合(試験3-5)は、同条件で濾過器を使用しない場合(試験3-2)と比べて、水素量の増加割合が低い。
 また、試験3-3に対する試験3-4のように吐出流量を1.8倍にした場合であっても、水素量は十数%低下する程度であり、吐出量を多少増減したところで得られる水素量に大きな変化はないことが示された。
 以上、上記試験1~3から、以下のことが考察される。
 ・幅広い導電率をカバーするためには、電源電圧18Vとするのが好ましい。
 ・導電率が30mS/mを下回る場合には、塩、肥料等の添加物を加えて導電率を高めることで、水素量の増大が望める。
 ・水素量の経時変化から、バケツでの保存では3日程度で100ppbを下回ることから、タンク等で大量に密閉保存することで、水素量の低下が防げて長く保存できる。
 ・吐出流量は、18L/分より、10L/分の方が優位である。
 ・濾過器を使用した場合には、水素量が少し低下する。
 図12は、上記水素水生成装置2で生成した水溶液(水素水)の粒子濃度(縦軸:E7)及び気泡(バブル)の粒子径(横軸:nm)を示したグラフである。ここで、大きな山のグラフ(a)は上記水素水生成装置2で生成した水溶液(水素水)に係るグラフであり、小さい山のグラフ(b)は、一般の水道水に係るグラフである。なお、水道水に係る粒子は微細な塵であり気泡とは異なる。グラフ(b)は、参考までに示した。
 上記グラフ(a)から、粒子(気泡)の粒子径が50nm~250nmにわたって、ナノサイズの粒子の生成が見られる。特に、粒子径が70nm~130nmの範囲では、粒子濃度(粒子数)が高くナノサイズの粒子が多く生成されている。
 また、水素水生成装置2により生成された粒子(気泡)は、濃度(Concentration)として1mL中の粒子数が2.19・109個(約21億9千万個)/mLであった。ここで、参考までに水道水の1mL中の粒子数は7.05・107個(約7千万個)/mLであった。これを差し引くと、水素水生成装置2により粒子(気泡)が約21億個生成されたことになる。
 上記粒子(気泡)内の物質については、具体的な測定を行っていないが、上記試験1~3等の水素量から、水素ガスが含有されているものと推測される。これから、水素水生成装置2により、ナノサイズの気泡(ナノバブル水素水)が大量に生成されていると考えられる。
 次に、上記水素水生成装置2によって生成した水素水の、植物(農作物の栽培、園芸等)及び畜産(家畜の飼育等)への利用形態について説明する。植物への利用は、主に、葉面散布、潅水及び水耕栽培等が挙げられる。この場合、貯留タンク16から水素水を供給し、植物への散布、潅水等を行う。
 葉面散布では、例えば、水素水の噴霧用の自動噴霧器或いは動噴器等を用いて、農作物、花等の植物の葉面散布を行う。これは主に、ダニ、アブラムシ、スリップス等の害虫忌避駆除、害虫等の卵の孵化阻害の目的で行なう。
 植物への水素水(特にナノバブル水素水)の供給により、病害虫の耐性及び薬害等も無く、農薬の使用回数を減らすことができる。また、害虫の卵は酸化で孵化するが、ナノバブル水素水は還元反応が高いため卵の酸化を防ぎ、孵化を阻害する働きがある。
 また、潅水及び水耕栽培では、供給ポンプ等を介して貯留タンク16から水素水を流通させ、植物の根等に水素水を供給する。この場合、例えば、一日程度かけて水素水が畑(農園)を一巡するようにしてもよい。なお、水素水の水素濃度は3日程度残存することが好ましい。
 試験によれば、水素水の潅水等により、植物の生育例えば葉などが大きく成長し、植物の生長促進に寄与する。
 また、上記水素水生成装置2によって生成した水素水を、家畜(豚、牛、鶏等)の飲料水及び家畜餌に混ぜて使用する。これにより、家畜の健康が維持(病気の発生が減少)され、また糞の量が減り(消化吸収が良いため)、糞の臭気も軽減される等の効果がある。
 また、上記水素水生成装置2による水素水は、微小な粒子状のナノバブル水素水が多く含まれており、水素濃度を3日程度残存させることは可能である。なお、水素水の貯留タンク16は密閉保存することが好ましく、これにより長期の保存が可能となる。
 なお、電解槽4で生成された水素水は、そのまま直接植物へ供給することも可能である。
 この場合、例えば、水道或いは水源から直接筐体18の吸入口20に水を供給し、更に電解槽4及び濾過器12を通過させて筐体18の吐出口22から吐出される水溶液を、そのまま流路を介して農作物等に供給する。
 このとき、貯留タンク16は特に必要としないが、例えば、貯留タンク16をバッファー(緩衝手段)としても用いることも可能である。この場合、電解槽4で生成される水溶液を一度貯留タンク16に蓄えておき、これを植物に供給する。これにより、電解槽4で生成される水素水の量に左右されることなく、常に農作物に必要な量の水素水が供給できる。
 以上説明したように、この実施例に係る水素水生成装置によれば、効率的に水素を含有する水溶液(水素水)を大量に得ることができ、また電解槽等の装置の小型化が図れ、機能的で経済性にも優れる。また、電解槽内では、水の移動とともに電気分解が行なえて効率的であり、水の移動が淀みなく満遍に行え、良好に電気分解が行なえ水の滞留も防止され、加えて循環流路により繰り返し電解槽を通過させることで、容易に高濃度の水素水を得ることができ、水溶液中の水素濃度の管理も容易である。
 2 水素水生成装置
 4 電解槽
 6 電極板
 10 制御部
 11 電源回路部
 12 濾過器
 14 ポンプ
 16 貯留タンク
 30 注入口
 32 排出口
 62 循環流路

Claims (8)

  1.  網状の電極板と、
     上記電極板を、所定間隔をおいて3枚以上互いに向い合せに配置し、これら電極板の並びの一方側に水の注入口を、また他方側に水の排出口をそれぞれ設けた電解槽と、
     上記各電極板に電圧を印加し、隣り合う電極板間及び他の電極板を介在させた電極板間に電流を流して電気分解を行わせる電源回路部と、を有し、
     上記電解槽の上記注入口から水を注入し、この水を上記注入口側から上記排出口側に移動させ、この移動する水を上記電極板により電気分解し、水中に水素を含有する水溶液を生成し、これを上記排出口から排出することを特徴とする水素水生成装置。
  2.  上記電極板の数を、4枚以上16枚以下の範囲としたことを特徴とする請求項1に記載の水素水生成装置。
  3.  上記電源回路部は、上記電極板の内の特定の電極板間に交流電圧を印加し、且つ当該特定の電極板以外の電極板には直流電圧を印加し、電気分解を行わせることを特徴とする請求項1又は2記載の水素水生成装置。
  4.  上記電源回路部は、上記電極板の内、他の電極板を介在させた特定の電極板間に交流電圧を印加し、且つ当該特定の電極板以外の電極板には直流電圧を印加し、この直流電圧の極性を定期的に切り替え、電気分解を行わせることを特徴とする請求項1又は2記載の水素水生成装置。
  5.  上記電極板を、連続する4枚を一組とし、上記電源回路部は、各一組の上記電極板の内、他の電極板を介在させた特定の電極板間に交流電圧を印加し、且つ当該特定の電極板以外の電極板には直流電圧を印加し、電気分解を行わせることを特徴とする請求項1又は2に記載の水素水生成装置。
  6.  上記注入口を上記電解槽の下部近傍に設けて水を注入する一方、上記排出口を上記電解槽の上部近傍に設けて、上記注入された水を注入口から排出口方向へ移動させるとともに、下方から上方へと移動させ、この移動する水を上記各電極板により電気分解し、上記排出口から排出することを特徴とする請求項1乃至5の何れかに記載の水素水生成装置。
  7.  上記排出口と連通する切替弁を設け、上記排出口から排出された水溶液の濾過器を通過する流路と、この濾過器を通過しない流路とを切り替え可能としたことを特徴とする請求項1乃至6の何れかに記載の水素水生成装置。
  8.  上記電解槽の排出口から排出された水溶液を溜める貯留タンクと、この貯留タンク内の水溶液を吸引し、これを上記電解槽へ流通させるポンプと、を有し、
     上記ポンプにより、上記電解槽で電気分解された水溶液を上記貯留タンクへ供給する一方、上記貯留タンク内の水溶液を吸引して上記電解槽に送り、これを再度電気分解する循環流路を駆動させ、水溶液中の水素濃度を高めることを特徴とする請求項1乃至7の何れかに記載の水素水生成装置。
PCT/JP2018/035270 2017-10-06 2018-09-25 水素水生成装置 WO2019069734A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880058004.1A CN111051248A (zh) 2017-10-06 2018-09-25 氢水生成装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-196157 2017-10-06
JP2017196157A JP2019069413A (ja) 2017-10-06 2017-10-06 水素水生成装置

Publications (1)

Publication Number Publication Date
WO2019069734A1 true WO2019069734A1 (ja) 2019-04-11

Family

ID=65994664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035270 WO2019069734A1 (ja) 2017-10-06 2018-09-25 水素水生成装置

Country Status (3)

Country Link
JP (1) JP2019069413A (ja)
CN (1) CN111051248A (ja)
WO (1) WO2019069734A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110279923A (zh) * 2019-07-15 2019-09-27 许昌百昌纳米科技有限公司 一种防倾倒智能氢气呼吸机

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6906255B1 (ja) * 2020-04-15 2021-07-21 株式会社コスモスエンタープライズ 水素水生成装置
JP7462272B2 (ja) 2020-07-17 2024-04-05 有限会社 アクアサイエンス 水素供給加湿器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003220389A (ja) * 2002-01-30 2003-08-05 Kosumosu Enterp:Kk 還元水生成装置
JP2003236543A (ja) * 2002-02-14 2003-08-26 Hideo Hayakawa 液体の交流電気分解方法及びその装置
JP2004033963A (ja) * 2002-07-05 2004-02-05 Kyushu Hitachi Maxell Ltd 水処理装置
JP2007307517A (ja) * 2006-05-22 2007-11-29 Hideo Hayakawa 液体の交流電気分解方法及びその装置
US20160355417A1 (en) * 2015-06-08 2016-12-08 Doncreve Co., Ltd. Alternating current electrolysis method for liquid
WO2017077992A1 (ja) * 2015-11-05 2017-05-11 株式会社日本トリム 水素水サーバー

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137165A (ja) * 2008-12-11 2010-06-24 Panasonic Electric Works Co Ltd 電解水生成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003220389A (ja) * 2002-01-30 2003-08-05 Kosumosu Enterp:Kk 還元水生成装置
JP2003236543A (ja) * 2002-02-14 2003-08-26 Hideo Hayakawa 液体の交流電気分解方法及びその装置
JP2004033963A (ja) * 2002-07-05 2004-02-05 Kyushu Hitachi Maxell Ltd 水処理装置
JP2007307517A (ja) * 2006-05-22 2007-11-29 Hideo Hayakawa 液体の交流電気分解方法及びその装置
US20160355417A1 (en) * 2015-06-08 2016-12-08 Doncreve Co., Ltd. Alternating current electrolysis method for liquid
WO2017077992A1 (ja) * 2015-11-05 2017-05-11 株式会社日本トリム 水素水サーバー

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110279923A (zh) * 2019-07-15 2019-09-27 许昌百昌纳米科技有限公司 一种防倾倒智能氢气呼吸机

Also Published As

Publication number Publication date
JP2019069413A (ja) 2019-05-09
CN111051248A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
USRE47665E1 (en) Flow-through oxygenator
WO2019069734A1 (ja) 水素水生成装置
CN102630629B (zh) 水体增氧装置与水体增氧过滤装置
CN201212061Y (zh) 畜禽场消毒用电解水生成器
JP6994780B2 (ja) 水素水生成装置
RU2628782C1 (ru) Устройство для электроактивации воды
JP2014039487A (ja) ナノバブルを含むアルカリ性電解水を用いた植物の育成方法およびナノバブルを含むアルカリ性電解水の製造装置
US20120037512A1 (en) Electrodes for electrolysis of water
JP2002361256A (ja) 金属イオンによる液体の殺菌殺藻装置
KR101368491B1 (ko) 선박장착용 전기분해장치 및 이를 이용한 적조현상을 제거하는 방법
JP2007038090A (ja) 果菜用電解イオン水の生成装置
USRE47092E1 (en) Flow-through oxygenator
KR100332921B1 (ko) 적조제거방법 및 적조제거장치
JP2002058387A (ja) 水棲生物飼育装置
JP3913580B2 (ja) 電解式汚水処理装置及びこれを用いた汚水処理施設
JP3928980B2 (ja) 土壌の殺菌および肥沃化方法
CN206901835U (zh) 一种电解水杀菌灭藻水循环装置
CN209178173U (zh) 富氢生物功能水机
US11964886B2 (en) Water management system
JP3167226U (ja) 水改質用バブリング装置
CN107151044A (zh) 一种电解水杀菌灭藻水循环装置
CN110036965A (zh) 一种离子净化养殖系统
KR20000018274A (ko) 대용량 전해수 제조 및 살포장치
CN103141430A (zh) 三极双循环海水净化增氧器
CN112939268A (zh) 一种水产养殖无害水净化处理设备及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863975

Country of ref document: EP

Kind code of ref document: A1