WO2019069417A1 - 生体情報処理装置、生体情報処理システム、生体情報処理方法、および記憶媒体 - Google Patents

生体情報処理装置、生体情報処理システム、生体情報処理方法、および記憶媒体 Download PDF

Info

Publication number
WO2019069417A1
WO2019069417A1 PCT/JP2017/036229 JP2017036229W WO2019069417A1 WO 2019069417 A1 WO2019069417 A1 WO 2019069417A1 JP 2017036229 W JP2017036229 W JP 2017036229W WO 2019069417 A1 WO2019069417 A1 WO 2019069417A1
Authority
WO
WIPO (PCT)
Prior art keywords
segment
feature amount
feature
information processing
state
Prior art date
Application number
PCT/JP2017/036229
Other languages
English (en)
French (fr)
Inventor
中島 嘉樹
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2017/036229 priority Critical patent/WO2019069417A1/ja
Priority to JP2019546476A priority patent/JP6943287B2/ja
Publication of WO2019069417A1 publication Critical patent/WO2019069417A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state

Definitions

  • the present disclosure relates to a technology for processing biometric information of a person.
  • Patent Document 1 describes an invention related to a method of evaluating the degree of fatigue from information of pulse waves generated by a heart beat.
  • Non-Patent Document 1 discloses a study on the relationship between electrodermal activity (EDA) and mental state.
  • EDA electrodermal activity
  • the frequency of appearance of EDA peaks obtained from the subject by the wearable sensor was measured every 30 seconds.
  • the exercise level of the subject in each period was determined by the accelerometer, and the peak appearance frequency of EDA was counted for each exercise level. The study showed that the higher the exercise level, the higher the EDA amplitude and the EDA peak frequency.
  • Non-Patent Document 2 also discloses a study of measuring hand acceleration (ACC) together with biological information such as skin temperature (ST) and skin conductance (SC) of a subject. .
  • Patent Document 2 a technique for calculating “physical strength age” from a pulse after performing exercise is described in Patent Document 2.
  • the technique disclosed in Patent Document 2 does not include the process of estimating the motion state, because it is premised that the subject performs a determined exercise. Therefore, the technique disclosed in Patent Document 2 can not estimate the degree of stress of a subject who acts freely.
  • Patent Document 3 discloses a technique for estimating a motion frequency at predetermined time intervals from an acceleration sensor worn by a person, and extracting a scene (group of the same operation content) based on a change in the motion frequency. ing.
  • the technology disclosed in Patent Document 3 is not a technology for measuring the physical and mental state of a person.
  • patent document 3 describes that body temperature is measured, body temperature is only used to calculate an average value of body temperature at predetermined time intervals.
  • index value based on biological information (hereinafter referred to as “feature amount”) used for stress estimation are detected with a feature amount detected with higher accuracy as measurement data is longer, or with sufficient accuracy. There is a feature that requires measurement data of sufficient length.
  • HF High Frequency
  • LF Low Frequency
  • the HF component and the LF component are waves with a relatively long period that appear in time-series data of heart rate variability. These components are more accurately detected as the time series data used for analysis is longer.
  • the LF component is a component whose frequency is in the range of about 0.05 Hz to 0.15 Hz, it is difficult to detect it from time-series data of about 30 seconds.
  • a correlation dimension in time series data of heart rate variability is also one of the feature quantities requiring relatively long time series data in order to be detected with sufficient accuracy.
  • Non Patent Literatures 1 and 2 in which biological information is divided every 30 seconds and each feature is detected from the divided part (segment), the above feature is accurately detected.
  • the longer the time-series data segment for detecting the feature value the better.
  • the first disadvantage becomes larger as the length is smaller, and the second disadvantage becomes larger as the length is longer.
  • An object of the present invention is to provide an apparatus, a method, and the like that perform analysis with a feature value derived for each segment with higher accuracy.
  • the biological information processing apparatus is a part of the time-series data based on an exercise state of the subject during a period when the biological information is acquired from time-series data of biological information of the subject.
  • Segment generation means for generating a segment
  • feature amount derivation means for deriving a feature amount from the segment
  • output means for outputting.
  • the biological information processing method is a part of the time-series data based on an exercise state of the subject during a period in which the biological information is acquired from time-series data of biological information of the subject. And generating a feature quantity from the segment, and outputting at least one of the feature quantity and information on the state of the subject based on the feature quantity.
  • a program according to an aspect of the present invention is a segment that is a portion of the time-series data based on an exercise state of the subject during a period in which the biological information is acquired from time-series data of biometric information of the subject.
  • Generating at least one of segment generation processing, feature quantity derivation processing for deriving a feature quantity from the segment, the feature quantity, and information on the state of the subject based on the feature quantity Execute the processing.
  • the above program is stored, for example, by a computer readable non-transitory storage medium.
  • analysis using feature quantities derived for each segment can be performed with higher accuracy.
  • FIG. 1 is a block diagram showing the configuration of the biological information processing system 1 according to the first embodiment.
  • the biological information processing system 1 includes a biological information processing apparatus 11, a biological information acquisition unit 5, and a motion information acquisition unit 6.
  • the biological information processing apparatus 11 includes a control unit 110, a storage unit 119, an exercise state identification unit 111, a segment generation unit 112, a feature quantity derivation unit 113, an integration unit 114, a stress estimation unit 115, and information output. And a unit 116.
  • the biological information processing apparatus 11 is communicably connected to the biological information acquisition unit 5 and the motion information acquisition unit 6.
  • the biological information processing apparatus 11 receives the information acquired by the biological information acquisition unit 5 and the motion information acquisition unit 6.
  • Communication between the biological information processing apparatus 11 and the biological information acquisition unit 5 and communication between the biological information processing apparatus 11 and the motion information acquisition unit 6 may be performed by wire or wirelessly. It is also good.
  • the biometric information processing apparatus 11 is, for example, a server connected to the Internet.
  • the biological information processing apparatus 11 may receive the information acquired by the biological information acquisition unit 5 and the motion information acquisition unit 6 via the Internet.
  • the biological information processing apparatus 11 may be an information processing apparatus such as a portable information terminal or a PC (Personal Computer) possessed by a subject.
  • the biological information processing apparatus 11 may receive information from the biological information acquisition unit 5 and the motion information acquisition unit 6 through, for example, a cable or communication using an electromagnetic wave, a sound wave, or the like.
  • Some or all of the biological information processing apparatus 11, the biological information acquisition unit 5, and the motion information acquisition unit 6 may be the same apparatus.
  • biological information acquired by the biological information acquisition unit 5 examples include pulse wave (heart rate), body temperature, brain waves, electromyography, blood flow, blood components, state of breathing, appearance of blinking, degree of sweating, etc. It can be mentioned.
  • the biological information acquired by the biological information acquisition unit 5 may be anything as long as the biological information indicates the mental state or the degree of fatigue of the user.
  • a heartbeat is assumed as the acquired biological information, the heartbeat is merely an example of biological information processed by the biological information processing apparatus 11.
  • the biological information acquisition unit 5 is, for example, a wearable sensing device such as a wristwatch type, a sticking type, or a winding type.
  • the biological information acquisition unit 5 is brought into contact with a human body, such as a photoelectric plethysmograph that acquires pulse waves by PPG (Photoplethysmography), or an electrocardiograph that measures heart beats by measuring myoelectric potentials of myocardium, for example. It may be a sensor that acquires biological information.
  • the biological information acquisition unit 5 may be a device that estimates the pulse wave or the heartbeat without contact using a camera or the like.
  • the biological information acquisition unit 5 transmits the acquired biological information to the biological information processing apparatus 11 together with time information.
  • the biological information acquired by the biological information acquisition unit 5 is stored in the storage unit 119 as time series data by the control unit 110, for example.
  • the movement information can also be said to be an index indicating the intensity of movement, an index indicating the degree of physical load, or an index indicating energy consumption.
  • the motion information acquisition unit 6 may acquire information that can influence the biological information acquired by the biological information acquisition unit 5 and can identify the state of physical activity.
  • the motion information acquisition unit 6 is an acceleration sensor attached to a human body.
  • the motion information acquisition unit 6 may be a combination of a camera and an image processing apparatus for tracking the movement of a person photographed by the camera, or a change in depth sensor for acquiring a distance to an object and the distance It may be a set with an analyzer to be analyzed.
  • the motion information acquisition unit 6 constantly (for example, 8 per second) of accelerations (AcX, AcY, and AcZ) in the X direction, Y direction, and Z direction of the specific part of the subject as motion information. Get it at the frequency of The X direction, the Y direction, and the Z direction are directions defined in the motion information acquisition unit 6.
  • the motion information acquisition unit 6 may acquire the measurement value itself as motion information.
  • the movement information acquisition unit 6 When the movement information acquisition unit 6 is a combination of a camera and an image processing apparatus that tracks the movement of a person captured by the camera, the movement information acquisition unit 6 performs image processing on the acceleration of a specific part of the subject. It may be calculated by
  • the motion information acquisition unit 6 determines the acceleration of the specific part of the subject. , And may be calculated based on the variation of the distance between the depth sensor and the part thereof.
  • the motion information may be information indicating only the time at which the acceleration equal to or greater than a predetermined threshold is measured.
  • the motion information acquisition unit 6 may be a device such as a pedometer that detects an acceleration equal to or higher than a predetermined threshold.
  • the motion information acquisition unit 6 transmits the acquired motion information to the biological information processing apparatus 11 together with time information.
  • the motion information acquired by the motion information acquisition unit 6 is recorded in, for example, the storage unit 119 by the control unit 110, and used for identification (described later) of the exercise state by the exercise state identification unit 111.
  • the biological information acquisition unit 5 and the motion information acquisition unit 6 do not have a clocking function, the biological information acquisition unit 5 and the motion information acquisition unit 6 transmit the acquired values to the biological information processing apparatus 11 as needed.
  • the control unit 110 may add time information to the value.
  • control unit 110 the motion state identification unit 111, the segment generation unit 112, the feature quantity derivation unit 113, the integration unit 114, the stress estimation unit 115, and the information output unit 116 execute an instruction based on a program, for example.
  • the computer may be configured by including one or more processors and a memory.
  • the control unit 110 also controls the flow of data handled by the biological information processing apparatus 11. For example, the control unit 110 receives the information acquired by the biological information acquisition unit 5 and the motion information acquisition unit 6, and records the received information in the storage unit 119.
  • the storage unit 119 is a so-called working memory.
  • the storage unit 119 may be a non-volatile storage medium.
  • Other components included in the biological information processing apparatus 11 can freely read and write data from and to the storage unit 119.
  • the types of exercise states are, for example, three types: "Sitting”, “Walking”, and “Running”. The type and number of exercise states identified are not limited thereto.
  • the type of exercise state may be four types of “sitting” state, “standing” state, “walking” state, and “running” state. There may be five types with the addition of Sleeping state.
  • the exercise state may be a parameter that identifies the exercise intensity of the subject for each stage.
  • Each type of exercise state may not have a specific name such as “sitting”.
  • the type of motion state may be three types of “first motion state”, “second motion state”, and “third motion state”.
  • the exercise state identification unit 111 divides the time range of the entire data to be subjected to the information processing into a period (period) for each time Ts, and identifies the exercise state of the person to be measured in each period.
  • the maximum value of n is k.
  • the section may be a closed section, an open section, or a half open section.
  • the value of the section length Ts may be set in advance, or may be set appropriately according to the data length. Specific values of Ts are, for example, 1 second, 10 seconds, 30 seconds, or 1 minute.
  • the section length Ts should be as short as possible in order to identify the exercise state more precisely. However, if the exercise state changes frequently, the segments described later become short.
  • a suitable value of Ts may be set appropriately by a designer or a user of the biological information processing apparatus 11 because it changes depending on the condition of the subject.
  • the sections may be set so that the sections overlap with each other.
  • the section N 1 [0, Ts + W]
  • section N 2 [Ts, 2Ts + W]
  • Section N n [(n ⁇ 1) Ts, using “W” as the overlapping degree.
  • N ⁇ Ts + W] may be set.
  • the motion state of the subject in the section is also referred to as "the motion state of the section”.
  • the method of identifying the movement state of the section may be a generally known method.
  • An example of the method of identifying the exercise state of the section is shown below.
  • the exercise state identification unit 111 may derive an index value indicating the intensity of exercise for each term (term) shorter than the length of the section, and may identify the exercise state based on the index value.
  • an index value indicating the strength of exercise is “AM”.
  • AM is an abbreviation of "Activity Magnitude”.
  • the exercise state identification unit 111 derives AM of each period [0, T 1 ],..., [T L ⁇ 1 , T L ].
  • the term (term) may be a closed section, an open section or a half open section.
  • Let i 1, 2,..., m, let t i be the time at which acceleration is obtained, and let the acceleration in the X direction, Y direction, and Z direction obtained at time t i be AcX i , respectively.
  • the value of P is, for example, five.
  • the function H of equation (4) is a Heaviside function. That is, the value of H (x) is 1 when x exceeds 0 and 0 when x is 0 or less.
  • the threshold Th in the equation (4) may be a value set by a designer.
  • the threshold Th may be derived by machine learning or the like using a decision tree.
  • the exercise state identification unit 111 compares, for example, AM with each of the number of boundary values one less than the type of exercise state. If there are three types of motion states, two boundary values are used.
  • the motion state is “Sitting” ⁇
  • the motion state is "Walking” ⁇
  • the exercise state is “Running”
  • determinable motion It may be designed to prioritize and set any one of the exercise states.
  • the above boundary values may be values set by the designer.
  • the boundary value may be derived by machine learning or the like using a decision tree.
  • Examples of the method of determining the motion state by comparing each AM with a predetermined threshold value include the following examples other than the above.
  • the exercise state identification unit 111 assigns the “Running” state, and in other cases, the number of AMs with WS ⁇ AM is If it is equal to or higher than the second threshold value, it may be assigned the "Walking” state, and otherwise it may be assigned the "Sitting” state.
  • the motion state identification unit 111 prepares the coefficients ⁇ 1 , ⁇ 2 and ⁇ 3 such that ⁇ 1 ⁇ 2 ⁇ 3 , and sets the first coefficient ⁇ 1 to the number of AMs where AM ⁇ WS. multiplying the second coefficient alpha 2 over the number of AM is WS ⁇ AM ⁇ RW, and RW ⁇ multiplying a third coefficient alpha 3 in the number of AM is AM, to calculate the sum of these products It is also good.
  • the above sum is larger as the number of AMs larger than WS is larger, and further as the number of AMs larger than RW is larger.
  • the exercise state identification unit 111 may determine the exercise state by comparing the calculated sum with a predetermined threshold.
  • the exercise state identification unit 111 assigns a “sitting” state, and the calculated total sum is the fourth threshold (where the fourth threshold is greater than the third threshold). If the threshold value is exceeded, the "Running” state may be given, and otherwise the "Walking” state may be given.
  • the motion state identification unit 111 may determine the motion state by comparing the sum of AM in each of the periods included in the section Nx with a predetermined threshold. For example, when the sum of AM is less than or equal to the fifth threshold, the “Sitting” state is provided, and when the sum of AM exceeds the sixth threshold (where the sixth threshold> the fifth threshold), “Running” A state may be given, otherwise "Walking” may be given.
  • the exercise state identification unit 111 identifies the exercise state of the subject in each section.
  • the exercise state identification unit 111 sends, to the segment generation unit 112, information in which the identified exercise state is associated with each section.
  • the exercise state identification unit 111 may record, in the storage unit 119, information in which the identified exercise state is associated with each section.
  • the segment generation unit 112 generates a plurality of segments from time series data so that each of the segments consists of one section or a series of consecutive sections in which the motion state is the same. .
  • the segment generation unit 112 divides the continuous sections belonging to the same segment in the same motion state and the continuous sections belonging to the different segments in the movement state belong to different segments Sn and Sn + 1. .
  • the segment generation unit 112 examines the motion state of each section in time sequence, and for a section where the motion state does not change from the motion state of the immediately preceding section, the section is the same as the immediately preceding section. Set as a section that belongs to a segment. For a section where the motion state changes from the motion state of the previous section, the segment generation unit 112 sets the section immediately before the motion state changes as the last section of the segment, and immediately after the motion state changes. Set the interval to the first interval of the new segment.
  • the segment generation unit 112 may generate a segment, for example, by performing the process according to the flowchart shown in FIG.
  • the flowchart of FIG. 2 shows a procedure of processing for determining a segment S n to which N i should belong while incrementing “i” by 1 from 1 to k (total number of sections). "N" is the segment number.
  • the initial value of S n for all n is a phi (empty set).
  • Segment generating unit 112 first, the value of n to 1, after setting the value of i to 1 (step S21), and add a section N i in the segment S n (step S22), and namely, the interval N i inclusion range in the scope of the segment S n.
  • step S24 if State i, which is a value representing the motion state of the i-th section, is not equal to State i + 1 (NO in step S24), the segment generation unit 112 increments “n” by 1 (step S25) , “I” is increased by 1 (step S26). If State i is equal to State i + 1 (YES in step S24), the segment generation unit 112 increments “i” by 1 without changing “n” (step S26).
  • step S26 the process of the segment generation unit 112 returns to the process of step S22.
  • an upper limit may be provided to the length of the segment.
  • the segment generation unit 112 divides the segment and the length of each segment after division is the upper limit. It may be set as follows.
  • the segment generation unit 112 may generate each segment so that the length of the segment does not exceed the upper limit in the process of generating the segment.
  • the segment generation unit 112 gives each of the generated segments a label indicating the type of segment. Labels are used to distinguish processing methods for segments.
  • the segment generation unit 112 assigns a label based on the motion state of the section that constitutes the segment. For example, the segment generation unit 112 assigns a label indicating the “Sitting” state to a segment including a section in the “Sitting” state. Similarly, the segment generation unit 112 may give each segment a label indicating any of the “Sitting” state, the “Walking” state, or the “Running” state.
  • the label attached to the segment is also referred to as “segment label”.
  • the segment generation unit 112 sends, to the feature quantity derivation unit 113, the information of the generated segment (that is, the information indicating the set of the range or the section and the attached label).
  • the segment generation unit 112 may record the generated information of the segment in the storage unit 119.
  • the feature quantity derivation unit 113 analyzes the biological information acquired by the biological information acquisition unit 5 for each segment set by the segment generation unit 112, and derives a feature quantity from the biological information of each segment.
  • FIG. 3 is a diagram showing a concept of deriving a feature quantity for each segment by the feature quantity deriving unit 113.
  • the feature quantity deriving unit 113 calculates the same number (one in the example shown in FIG. 3) feature quantities (C 1 to C n ) from the time series data of each segment. Derive).
  • the feature amount may be, for example, a representative value (maximum value, minimum value, median value, mode value, average value, etc.) of data values, or a value obtained by performing predetermined calculations on time series data. Good.
  • the feature quantity deriving unit 113 may derive a plurality of feature quantities per one segment.
  • the feature quantity derivation unit 113 may derive the value of the HF component and the value of the LF component as the feature quantity.
  • the values of the HF component and the LF component can be obtained by converting time-series data of heart rate variability into frequency components.
  • the value of LF / HF which is a value obtained by dividing the value of the LF component by the value of the HF component, is often used for stress estimation.
  • the feature quantity deriving unit 113 may derive the value of LF / HF as a feature quantity.
  • the feature quantity derivation unit 113 sends the feature quantities from each segment to the integration unit 114.
  • the feature quantity deriving unit 113 may record, in the storage unit 119, information in which each segment and the feature quantity are associated.
  • the representative feature amount is a feature amount representing a feature amount obtained over the entire data to be subjected to the information processing. Typical feature quantities are used for stress estimation described later.
  • the integration unit 114 derives representative feature quantities for each label. That is, the integration unit 114 integrates feature amounts for each segment to which the same label is given, and derives a representative feature amount.
  • FIG. 4 is a diagram showing a concept of derivation of a representative feature amount.
  • the example illustrated in FIG. 4 is an example in which integration is performed on all three types of feature amounts derived one by one from each segment by the feature amount deriving unit 113.
  • three representative feature quantities (C_sitting, C_walking, and C_running) are derived by integration.
  • a representative feature quantity may be derived for each type of feature quantity.
  • label-by-label feature quantities representative feature quantities obtained as a result of being integrated by label. Since the label is applied based on the motion state, the label-specific feature can also be referred to as a motion state-specific feature.
  • the integration unit 114 adds each of the feature quantities derived from the segment to which the specific label is given, after weighting according to the length of the segment from which the feature quantity is derived. , And derive a label-by-label feature amount relating to the specific label.
  • the integration unit 114 Using the lengths La, Lb and Lc of one segment as weighting factors, (La ⁇ Ra + Lb ⁇ Rb + Lc ⁇ Rc) / (La + Lb + Lc) The value derived by the above is taken as a representative feature quantity.
  • the relationship between the weighting factor used for weighting and the length of the segment does not have to be a linear relationship.
  • a long-period component such as an HF component or an LF component
  • the weighting factor may be set such that the weight of the feature value derived from the longer segment is larger than that of the length.
  • C 1 , C 2 ,..., C Q are derived as feature quantities from Q segments S 1 , S 2 ,.
  • the integration unit 114 sends, to the stress estimation unit 115, representative feature quantities by label derived by integration.
  • the stress estimation unit 115 has, for example, a stress estimation model generated in advance by learning using a training data set. Then, the stress estimation unit 115 applies a stress estimation model to a representative feature amount, and derives information indicating the degree of stress as an output.
  • the stress estimation model has at least one label-based feature value as an input.
  • the stress estimation model may be a model that uses a set of motion states and label-by-label features as input.
  • the stress estimation model may be a model that uses a set of a plurality of motion states and label-specific feature values associated with each of the plurality of motion states as an input.
  • the information indicating the degree of stress may be, for example, a binary value of “no problem” or “with a problem”, or information represented by a numerical value such as “the degree of stress is xx%”.
  • the training data set is, for example, a data set of label features obtained from a person whose degree of stress is known.
  • a method of knowing the degree of stress of a person in order to prepare a training data set for example, a method of obtaining the degree of stress from information other than biological information, such as survey of the degree of stress by a questionnaire, may be adopted.
  • the information output unit 116 causes the display device to display the information by outputting the information to the display device.
  • the information output unit 116 may transmit information to devices other than the biological information processing device 11.
  • the information output unit 116 may transmit information to the biological information acquisition unit 5.
  • the biological information acquisition unit 5 may display the received information. According to such a configuration, it is possible for the subject to know the result of processing by the biological information processing apparatus 11.
  • the information output unit 116 may store information in the storage device by outputting the information to the storage device.
  • the storage device may be, for example, a non-transitory storage device such as a hard disk drive (HDD) or a solid state drive (SSD), or may be a temporary storage device such as a random access memory (RAM). If a person such as a person to be measured accesses the information stored in the storage device, the person can know the result of the process by the biological information processing apparatus 11.
  • the information output by the information output unit 116 is, for example, information indicating the degree of stress. It can be said that the information indicating the degree of stress is information on the condition of the subject.
  • the information output unit 116 may output the feature quantity derived from each segment, the representative feature quantity, the entire feature quantity, and the like.
  • control unit 110 of the biological information processing apparatus 11 receives biological information and motion information (step S110).
  • the control unit 110 may record the biological information and the motion information in the storage unit 119.
  • the exercise state identification unit 111 identifies the exercise state of each section based on the movement information acquired by the movement information acquisition unit 6 (step S111).
  • the segment generation unit 112 generates a segment of data based on the motion state of each section (step S112).
  • the feature quantity derivation unit 113 derives a feature quantity from each segment (step S113).
  • the integration unit 114 integrates the feature quantities by label and derives the label-by-label feature quantity (step S114).
  • the stress estimation unit 115 determines the degree of stress of the person to be measured (step S115).
  • the information output unit 116 outputs the result of the information processing by the biological information processing apparatus 11 (step S116). That is, the information output unit 116 outputs, for example, information indicating the degree of stress of the subject.
  • the biological information processing apparatus 11 According to the biological information processing apparatus 11 according to the first embodiment, it is possible to process biological information and perform stress estimation with high accuracy while considering the influence of the exercise state on the biological information.
  • the reason is that a representative feature quantity is derived for each label (by movement state) by the feature quantity derivation unit 113 and the integration unit 114, and the stress estimation unit 115 generates a stress based on the representative feature quantity and the stress model. It is because it estimates.
  • the biological information processing apparatus 11 can sufficiently increase the length of the segment while flexibly detecting a change in the movement state, it is possible to perform stress estimation with high accuracy.
  • the change in motion state can be detected flexibly because the length of the section (Ts) can be set to an arbitrary value (for example, one second) regardless of the length of the segment.
  • the reason that the length of the segment can be made sufficiently long is that the segment generation unit 112 does not generate the section as a segment, but continuous sections to which the same motion state is given belong to the same segment. , To generate segments.
  • the biological information processing apparatus 11 has the effect of being able to perform analysis using the feature quantities derived for each segment with higher accuracy.
  • the feature quantity is information that is detected more accurately as the segment is longer, such as the values of the HF component and the LF component, the above-described effect is large.
  • the segment generation unit 112 sets, as a range of one segment, a point from Y 1 seconds after the change of the movement state to a point Y 2 seconds after the change of the movement state next time.
  • Y Y 1 , Y 2 etc. above
  • the value of Y depends on the pattern of change of exercise state (such as a change from the “Sitting” state to the “Walking” state, a change from the “Walking” state to the “Sitting” state, etc.) It may be a different value.
  • the value of Y may or may not be an integral multiple of the length of the section.
  • the segment generation unit 112 may generate a segment so as not to include a period of Y seconds from the time when the movement state changes. That is, the segment generation unit 112 may set, as a range of one segment, a period from a point Y seconds after the change of the exercise state to a point of change of the exercise state next.
  • the segment generation unit 112 first generates a provisional segment according to the flowchart shown in FIG. 2, and then, from the provisional segment, a period obtained by removing the period of Y seconds from the time the movement state changes is a true segment ( That is, it may be generated as a segment to be processed by the feature quantity derivation unit 113.
  • the biological information and the exercise state are more accurately associated.
  • a point after a predetermined time after the transition of the exercise state as the start point of the segment, it is possible to prevent deterioration of the accuracy of stress estimation by using biological information immediately after the transition of the exercise state.
  • the integration unit 114 integrates all segments included in the entire range of data to be subjected to information processing, and derives the entire feature amount. It is also good. For example, the integration unit 114 may derive the entire feature amount by integrating label-based feature amounts derived for each label.
  • the stress estimation unit 115 may estimate the degree of stress from the entire feature amount using a stress estimation model obtained by learning the relationship between the entire feature amount and the stress.
  • the integration unit 114 may perform at least one of correction or weighting depending on the label on each of the label-based feature amounts.
  • the integration unit 114 reduces the label-by-label feature relating to the “Walking” state by V 1 to the “Walking” state labels feature quantities may be performed V 2 reduces correction according.
  • V 1 and V 2 are values determined according to the exercise state represented by the label. V 1 and V 2 may be appropriately set based on knowledge on the relationship between the movement state and the change in the feature value.
  • the integration unit 114 performs weighting according to the accuracy and then derives the entire feature quantity. It is also good.
  • the biological information is considered to mainly depend on the mental state.
  • the biological information is considered to be strongly affected by the exercise state. From such a thing, it is thought that the accuracy as a value used for stress estimation worsens, so that the strength of exercise is strong.
  • the integration unit 114 performs weighting such that the weight of the segment identified as the “Sitting” state is larger than the weight of the segments identified as the “Walking” state and the “Running” state. Then, the entire feature amount may be derived. By doing so, the overall feature quantity is derived, with more reliable feature quantities being more heavily weighted.
  • the weighting factor used for weighting is, for example, a real number in the range of 0 to 1. The larger the numerical value, the larger the weight.
  • the weighting factor may set the weight of the segment labeled "Sitting” to 1 and the weight of the segment labeled "Walking” or "Running” to 0. In this case, only the feature quantities obtained from the segment to which the label indicating the “sitting” state is given are reflected in the entire feature quantities. As described above, more accurate stress estimation can be performed by using only the feature value in a period in which the exercise strength is relatively low for stress estimation.
  • the overall feature quantity derived as described above is derived after being at least either corrected or weighted according to the motion state, and therefore more accurate based on the overall feature quantity. Stress estimation can be performed.
  • the segment generation unit 112 may give each segment a degree of reliability instead of the label indicating the motion state.
  • the degree of reliability given to a segment indicates the degree of reliability that the feature value derived from the segment is useful as information for high-accuracy stress estimation.
  • the reliability association unit 128 associates higher reliability with segments having higher reliability.
  • the above-described weighting factor is an example of the degree of reliability.
  • the integration unit 114 weights the feature quantities derived from each segment so that the weight of the feature quantities derived from the segment with higher reliability is greater, and then derives the entire feature quantity. Just do it. Thereby, the feature quantities derived from the segment with higher reliability contribute more to the overall feature quantities.
  • the segment generation unit 112 may determine the reliability of each segment based on the motion state of the subject in the segment. For example, the segment generation unit 112 gives a lower degree of reliability to the segment when the subject is in a stronger exercise state.
  • the motion state of the to-be-measured person in a segment is a motion state of the area which comprises a segment.
  • the motion state of the section constituting the segment is not one
  • the motion state of the subject in the segment is the dominant motion state among the motion states given to each of the sections constituting the segment.
  • the dominant movement state may be, for example, the movement state having the largest number of movement states of the segments constituting the segment, and includes a representative time point of the segment (for example, a central time point, an end time point, etc.) It may be an exercise state of the section.
  • the segment generation unit 112 may omit the process of determining the motion state of each segment.
  • the segment generation unit 112 may determine the reliability of each segment based on AM of a period affecting the feature value derived from the segment. For example, when AM in a certain period affects the feature value after Y seconds, the period affecting the feature value derived from the segment is a period included in a range obtained by shifting the range of the segment Y seconds before.
  • the segment generation unit 112 for example, has a lower representative value (maximum value, minimum value, median value, mode value, average value, etc.) of AM in a period affecting the feature value derived from the segment. Confidence may be assigned to the segment. Alternatively, the segment generation unit 112 may assign lower reliability to a segment having lower reliability based on the distribution of AM, the number of AMs exceeding the predetermined value, or the like.
  • the feature quantity derivation unit 113 may not derive the feature quantity from the segment to which 0 is given as the reliability.
  • the storage unit 119 may not store time-series data of the range of the segment to which 0 is given as the reliability. Thereby, the load applied to the biological information processing apparatus 11 can be reduced.
  • the segment generation unit 112 may exclude segments less than a predetermined length from segments from which feature quantities are derived.
  • the feature quantity deriving unit 113 may derive the feature quantity only from the segment having a predetermined length or more without deriving the feature quantity from the segment having a length less than the predetermined length.
  • the biological information processing apparatus 11 may perform processing on biological information and motion information while receiving biological information and motion information.
  • the motion state identification unit 111 identifies the motion state of the section as needed when biological information and motion information of the section having a predetermined length are acquired.
  • the segment generation unit 112 determines whether or not to switch the segment in a section where a motion state is sequentially identified. The segment generation unit 112 does not switch the segments when the motion state of the section does not change from the motion state of the immediately preceding section. The segment generation unit 112 switches the segment when the motion state of the section changes from the motion state of the immediately preceding section. That is, the segment generation unit 112 sets the time when the movement state changes as the end point of the current segment and the start point of the new segment.
  • the segment generation unit 112 may give the generated segment a degree of reliability when the segment is generated. Then, the segment generation unit 112 may delete the time series data of the segment to which “0” is given as the reliability. That is, if there is a portion of the time-series data that is determined not to be used for the derivation of the feature amount by the feature amount derivation unit 113, the segment generation unit 112 may delete the time-series data of that portion.
  • the feature quantity deriving unit 113 may derive the feature quantity from the generated segment. Then, the feature quantity derivation unit 113 may delete time series data of the segment from which the feature quantity has been derived.
  • stress estimation may be performed without the process of integrating feature quantities by the integrating unit 114.
  • FIG. 6 is a block diagram showing the configuration of the biological information processing system 2 according to the second embodiment.
  • the biological information processing apparatus 12 includes a feature amount allocation unit 124 instead of the integration unit 114, and a stress estimation unit 125 instead of the stress estimation unit 115.
  • Components other than the feature allocation unit 124 and the stress estimation unit 125 may be the same as the components of the first embodiment.
  • the feature amount assigning unit 124 assigns a feature amount to each section based on the feature amount derived by the feature amount deriving unit 113.
  • representative feature quantities are determined for each motion state by integration
  • feature quantities are determined for each section by assignment.
  • the feature to be determined is a feature based on the feature derived from the segment.
  • the feature amount deriving unit 113 derives a value Cx of LF / HF as a feature amount from the segment including the sections Na, Nb, and Nc.
  • the feature amount assigning unit 124 may determine the feature amount Cx as the feature amount to be assigned to the section Na, the section Nb, and the section Nc.
  • FIG. 7 is a conceptual diagram showing feature quantities assigned to each section when the feature quantities are derived from the respective segments as shown in FIG. For example, the interval N 1 ⁇ N 4 contained in the segment S 1, respectively, the feature amount C 1 which is derived from the segment S 1 is assigned.
  • the feature quantity allocation unit 124 configures the segment from which the feature quantity is derived without changing the feature quantity. It should be assigned to the section to
  • the feature quantity allocation unit 124 derives the feature quantity for the feature quantity.
  • the value divided by the number of sections constituting the segment may be allocated to the section constituting the segment from which the feature quantity is derived.
  • the feature amount allocated in this way is based on the feature amount derived from the time-series data of the segment length, the accuracy is better than when derived from only one section (such as Na) There is expected.
  • the feature amount assigning unit 124 may record the assigned feature amount in the storage unit 119, for example. As a result, in the storage unit 119, a set of a section to which an exercise state is given and a feature amount is stored. When the feature amount assigning unit 124 assigns the feature amounts to all the sections included in the entire range of the measurement data, data indicating the transition of the set of the feature amount and the motion state for each section is generated.
  • the stress estimation unit 125 estimates the stress using the feature amount of each section allocated by the feature amount allocation unit 124.
  • the stress estimation unit 125 has, for example, a stress estimation model generated in advance by learning using a training data set. Then, the stress estimation unit 125 applies a stress estimation model to the feature amounts of each section determined by the feature amount assignment unit 124, and derives information indicating the degree of stress as an output.
  • the information indicating the degree of stress may be the same as the information described in the description of the first embodiment.
  • the stress estimation model uses, for example, a set of a motion state of a section and a feature amount as an input.
  • the stress estimation model may be a model that takes as input the transition of a set of feature quantities and motion states for each section. It is expected that more accurate stress estimation can be performed because the transition of the combination of feature quantity and movement state for each section has more information than the combination of typical feature quantity and movement state generated by integration of feature quantities. Be done.
  • FIG. 8 is a flowchart showing the flow of the operation of the biological information processing apparatus 12 according to the second embodiment.
  • the process of step S110 to step S113 and the process of step S116 may be the same as the process of the same symbol described in the first embodiment.
  • the processing of the biological information processing apparatus 12 includes the processing of steps S124 and S125 instead of the processing of steps S114 and S115.
  • step S124 the feature amount assigning unit 124 assigns a feature amount to each section based on the feature amount derived by the process of step S113.
  • step S125 the stress estimation unit 125 estimates the stress using the feature amounts of each section allocated by the feature amount allocation unit 124.
  • FIG. 9 is a block diagram showing the configuration of the biological information processing apparatus 13.
  • the biometric information processing apparatus 13 includes a segment generation unit 101, a feature quantity derivation unit 102, and an output unit 103.
  • the segment generation unit 101 generates a segment, which is a portion of time-series data, from time-series data of biological information of the person to be measured based on the motion state of the subject during a period when the biological information is acquired.
  • the segment generation unit 112 in each of the above embodiments is an example of the segment generation unit 101.
  • the motion state is, for example, several types of parameters.
  • the segment generation unit 101 may set part or all of a period in which the exercise state is the same (that is, a period in which the same exercise state continues) as the segment period.
  • the feature quantity deriving unit 102 derives a feature quantity from the segment.
  • the feature quantity deriving unit 113 of each of the above embodiments is an example of the feature quantity deriving unit 102.
  • the output unit 103 outputs at least one of the feature amount and information on the state of the subject based on the feature amount.
  • the information output unit 116 in each of the above embodiments is an example of the output unit 103.
  • FIG. 10 is a flowchart showing the flow of the operation of the biological information processing apparatus 13.
  • step S101 the segment generation unit 101 generates a segment from time-series data based on the motion state of the subject.
  • step S102 the feature quantity deriving unit 102 derives a feature quantity from the segment.
  • step S103 the output unit 103 outputs at least one of the feature amount and information on the state of the subject based on the feature amount.
  • the biological information processing apparatus 13 it is possible to perform analysis using the feature quantity derived for each segment with higher accuracy.
  • the reason is that the segment generation unit 101 generates segments based on the motion state of the subject, so that the motion state can be accurately identified, and the accuracy of the detected feature can be guaranteed. .
  • the reason why the accuracy of the detected feature amount can be guaranteed is that there is no restriction that the length of the segment is the same as the unit for identifying the motion state.
  • each component of each device indicates a block of function units.
  • the processing of each component may be realized by, for example, a computer system reading and executing a program stored in a computer readable storage medium that causes the computer system to execute the processing.
  • the “computer-readable storage medium” is, for example, a portable medium such as an optical disc, a magnetic disc, a magneto-optical disc, and a nonvolatile semiconductor memory, and a ROM (Read Only Memory) and a hard disc incorporated in a computer system. It is a storage device.
  • the “computer readable storage medium” is one that holds a program dynamically for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • the program may be for realizing a part of the functions described above, and may be capable of realizing the functions described above in combination with a program already stored in a computer system.
  • the “computer system” is, as an example, a system including a computer 900 as shown in FIG.
  • the computer 900 includes the following configuration. ⁇ One or more CPUs (Central Processing Unit) 901 ROM 902 ⁇ RAM 903 ⁇ Program 904A loaded into RAM 903 and stored information 904B A storage device 905 for storing the program 904A and the stored information 904B . Drive device 907 for reading and writing the storage medium 906 Communication interface 908 connected to communication network 909 ⁇ Input / output interface 910 for data input / output .Bus 911 connecting each component
  • each component of each device in each embodiment is realized by the CPU 901 loading and executing a program 904A that implements the function of the component in the RAM 903.
  • a program 904A for realizing the function of each component of each device is stored in advance in, for example, the storage device 905 or the ROM 902. Then, the CPU 901 reads the program 904A as necessary.
  • the storage device 905 is, for example, a hard disk.
  • the program 904A may be supplied to the CPU 901 via the communication network 909, may be stored in advance in the storage medium 906, may be read by the drive device 907, and may be supplied to the CPU 901.
  • the storage medium 906 is, for example, a portable medium such as an optical disk, a magnetic disk, a magneto-optical disk, and a nonvolatile semiconductor memory.
  • each device may be realized by possible combination of separate computer 900 and program for each component.
  • a plurality of components included in each device may be realized by a possible combination of one computer 900 and a program.
  • each component of each device may be realized by another general purpose or dedicated circuit, a computer or the like, or a combination thereof. These may be configured by a single chip or may be configured by a plurality of chips connected via a bus.
  • each component of each device When a part or all of each component of each device is realized by a plurality of computers, circuits, etc., the plurality of computers, circuits, etc. may be centralized or distributed.
  • a computer, a circuit, etc. may be realized as a form in which each is connected via a communication network, such as a client and server system, a cloud computing system, and the like.
  • Segment generation means for generating a segment which is a portion of the time-series data from time-series data of biological information of the person to be measured based on an exercise state of the person during the period when the biological information is acquired;
  • Feature quantity deriving means for deriving a feature quantity from the segment;
  • An output unit that outputs at least one of the feature amount and information on a state of the subject based on the feature amount;
  • Biological information processing apparatus provided with [Supplementary Note 2]
  • the segment generation unit sets a part or all of the period in which the motion state is the same as the period of the segment.
  • the biometric information processing apparatus according to appendix 1.
  • the segment generation means sets a point in time after a predetermined time after the transition of the motion state as a start point of the segment.
  • the biometric information processing device according to Appendix 1 or 2.
  • the feature quantity deriving means does not derive the feature quantity from the segment having a length less than a predetermined length.
  • the biometric information processing apparatus according to any one of appendices 1 to 3.
  • the segment generation unit gives a plurality of the segments a label based on the motion state in the segments.
  • the biological information processing apparatus includes integration means for deriving a representative feature quantity by integrating the feature quantities derived from a plurality of the segments having the same label.
  • the output means outputs at least one of the representative feature amount and information on the state of the subject based on the representative feature amount.
  • the biological information processing apparatus according to any one of appendices 1 to 4.
  • the integration means is configured to derive a first feature derived from a first segment of a first length and a second feature derived from a second segment of a second length longer than the first segment.
  • the ratio of the contribution ratio of the second feature amount to the representative feature amount is the second length and the second feature amount.
  • a weight is given to the first feature amount and the second feature amount so as to be larger than a ratio to a length of 1, and the first feature amount and the second feature amount are based on the weight.
  • the system further comprises stress estimation means for estimating the degree of stress of the person to be measured based on a stress estimation model generated by learning the relationship between the representative feature amount and stress.
  • the output means outputs the degree of stress as information on the state of the subject.
  • the biometric information processing apparatus according to Appendix 5 or 6.
  • the segment generation means is configured to increase reliability of the feature quantity derived from the segment based on at least one of the motion state of the segment and the length of the segment in each of the plurality of segments.
  • the biological information processing apparatus includes integration means for deriving an overall feature amount by integrating the feature amounts derived from each of the plurality of segments after performing weighting according to the reliability.
  • the output means outputs at least one of the entire feature amount and information on the state of the subject based on the entire feature amount.
  • the biometric information processing apparatus according to appendix 1. [Supplementary Note 9] The biological information processing apparatus according to claim 8, wherein the segment generation unit gives the lowest degree of reliability to the segments less than a predetermined length.
  • the segment includes one or more sets of sections to which the exercise state is assigned,
  • the biological information processing apparatus is Feature amount assigning means for assigning a value based on the feature amount derived from the segment to each of the sections constituting the segment; Stress estimation means for estimating the degree of stress of the person to be measured using a stress estimation model that receives as input the set of fluctuations of the feature amount and the exercise state assigned to the section;
  • the biological information processing apparatus according to claim 1, further comprising: [Supplementary Note 11] The biological information processing apparatus according to any one of appendices 1 to 10, Biological information acquisition means for acquiring the biological information; Motion information acquisition means for acquiring motion information representing the motion of the subject;
  • the biological information processing apparatus includes exercise state identification means for identifying the exercise state based on information representing the movement.
  • Biological information processing system From the time-series data of the biological information of the subject, a segment which is a part of the time-series data is generated based on the motion state of the subject during the period when the biological information is acquired, Derive features from the segments, Outputting at least one of the feature amount and information on a state of the subject based on the feature amount; Biological information processing method.
  • a segment which is a part of the time-series data is generated based on the motion state of the subject during the period when the biological information is acquired, Derive features from the segments, Outputting at least one of the feature amount and information on a state of the subject based on the feature amount; Biological information processing method.
  • the biometric information processing method according to appendix 12.
  • the ratio of the contribution of the second feature to the contribution of the first feature to the representative feature is the ratio of the second length to the first length.
  • Weight is given to the first feature amount and the second feature amount so as to be larger than a ratio, and the first feature amount and the second feature amount are integrated based on the weight;
  • each of the plurality of segments is highly reliable with respect to the accuracy of the feature value derived from the segment based on at least one of the motion state of the segment and the length of the segment. Give confidence to indicate The feature quantities derived from each of the plurality of segments are weighted according to the reliability and then integrated to derive an overall feature quantity.
  • 20 The biological information processing method according to appendix 19, wherein the lowest degree of reliability is given to the segments less than a predetermined length.
  • the segment includes one or more sets of sections to which the exercise state is assigned, Assigning a value based on the feature value derived from the segment to each of the sections constituting the segment;
  • the stress estimation model is used to estimate the degree of stress of the person to be measured using as input a variation of a set of the feature amount and the motion state assigned to the section.
  • the segment generation process sets a part or all of the period in which the motion state is the same as the period of the segment. 24.
  • a computer readable non-transitory storage medium according to appendix 22 A computer readable non-transitory storage medium according to appendix 22.
  • the segment generation process sets, as a start point of the segment, a point after a predetermined time after the transition of the motion state. 24.
  • the feature quantity derivation process does not derive the feature quantity from the segments less than a predetermined length. 24.
  • the segment generation process gives a plurality of the segments a label based on the motion state in the segments
  • the program causes the computer to execute an integration process for deriving a representative feature amount by integrating the feature amounts derived from a plurality of segments having the same label.
  • the output processing outputs at least one of the representative feature amount and information on the state of the subject based on the representative feature amount.
  • 24 A computer readable non-transitory storage medium according to any one of appendices 22-25.
  • the integration process includes a first feature value derived from a first segment of a first length and a second feature derived from a second segment of a second length longer than the first segment.
  • the ratio of the contribution ratio of the second feature amount to the representative feature amount is the second length and the second feature amount.
  • a weight is given to the first feature amount and the second feature amount so as to be larger than a ratio to a length of 1, and the first feature amount and the second feature amount are based on the weight.
  • Integrate, 24. A computer readable non-transitory storage medium according to appendix 26. [Supplementary Note 28]
  • the program causes the computer to further execute a stress estimation process for estimating the degree of stress of the subject based on a stress estimation model generated by learning the relationship between the representative feature amount and stress.
  • the output processing outputs the degree of stress as information on the state of the subject. 24.
  • a computer readable non-transitory storage medium according to appendix 26 or 27.
  • the reliability with respect to the accuracy of the feature value derived from the segment is calculated based on at least one of the motion state of the segment and the length of the segment in each of the plurality of segments. Give confidence to indicate
  • the program executes, on the computer, an integration process of deriving an overall feature amount by integrating the feature amounts derived from each of the plurality of segments after performing weighting according to the reliability. Let The output processing outputs at least one of the entire feature amount and information on a state of the subject based on the entire feature amount.
  • a computer readable non-transitory storage medium according to appendix 22. [Supplementary Note 30] 30.
  • the computer readable non-transitory storage medium according to paragraph 29, wherein the segment generation process gives the lowest confidence for the segments less than a predetermined length.
  • the segment includes one or more sets of sections to which the exercise state is assigned,
  • the program is A feature amount assignment process of assigning a value based on the feature amount derived from the segment to each of the sections forming the segment; Stress estimation processing for estimating the degree of stress of the person to be measured using a stress estimation model that receives as input a set of fluctuations of the feature amount and the motion state assigned to the section; 22.
  • a non-transitory computer readable storage medium according to clause 22, causing the computer to execute.

Abstract

セグメントごとに導出される特徴量を用いた分析を、より高精度に行う装置および方法等を提供する。一実施形態に係る生体情報処理装置は、被測定者の生体情報の時系列データから、前記生体情報が取得された期間における前記被測定者の運動状態に基づいて前記時系列データの部分であるセグメントを生成する、セグメント生成部と、前記セグメントから特徴量を導出する特徴量導出部と、前記特徴量、および前記特徴量に基づく前記被測定者の状態に関する情報の、少なくともいずれかを出力する出力部と、を備える。

Description

生体情報処理装置、生体情報処理システム、生体情報処理方法、および記憶媒体
 本開示は、人物の生体情報を処理する技術に関する。
 従業員の職場におけるストレスによる離職・休職と、それによる企業の負担の増加が問題になっている。この問題を解決する為、心拍・発汗・体温等の生体情報(生体信号とも呼ばれる)を測定することで被測定者のストレスの度合いを推定する技術および研究がある。
 生体情報の中でも、心拍の情報は、ストレスに関係が深く、ストレスの度合いの推定(以下、「ストレス推定」とも表記)において有用な情報である。心拍により生じる脈波の情報から疲労度を評価する方法に関する発明が、例えば、特許文献1に記載されている。
 しかしながら、単に生体情報を用いるだけでは、精度の高いストレス推定は難しい。なぜなら、生体情報は、ストレス以外の要因、例えば、被測定者の運動の程度(以下、「運動レベル」、「運動状態」とも表記)によっても、変動するからである。
 そこで、生体情報を分析すると同時に、生体情報が得られた時点における被測定者の運動状態を推定する研究がある。例えば、非特許文献1は、皮膚電気活動(Electrodermal Activity;EDA)と精神状態との関係に関する研究を開示している。この研究では、30秒の期間ごとの、ウェアラブルセンサにより被験者から取得されたEDAのピークの出現回数(すなわち、EDAのピーク出現頻度)が計測された。また、各期間における被験者の運動レベル(座っている状態、歩いている状態等)が、加速度計によって判定され、EDAのピーク出現頻度は運動レベルごとに集計された。この研究により、運動レベルが高いほど、EDA振幅およびEDAピーク出現頻度は大きな値となることが示された。
 非特許文献2も、被験者の皮膚温度(Skin Temperature;ST)および皮膚コンダクタンス(Skin Conductance;SC)等の生体情報と同時に、手の加速度(Accelerometer data;ACC)も測定する研究を開示している。
 他に、運動と生体情報とに関して情報処理を行う技術として、運動を行った後の脈拍から「体力年齢」を算出する技術が、特許文献2に記載されている。ただし、特許文献2に開示される技術は、被測定者は決められた運動をすることが前提であるため、運動状態を推定する処理を含まない。それゆえ、自由に行動する被測定者のストレスの度合いを推定することは、特許文献2に開示される技術ではできない。
 また、人に装着された加速度センサから所定の時間間隔ごとの運動頻度を推定し、運動頻度の変化に基づいて、シーン(同じ動作内容のまとまり)を抽出する技術が、特許文献3に開示されている。ただし、特許文献3に開示される技術は、人の心身の状態を測定する技術ではない。特許文献3には体温が測定されることが記載されているが、体温は所定の時間間隔ごとの体温の平均値の算出に用いられるのみである。
国際公開第2005/000119号 特開2011-161079号公報 国際公開第2010/032579号
A. Sano, "Measuring College Students’ Sleep, Stress, Mental Health and Wellbeing with Wearable Sensors and Mobile Phones," Massachusetts Institute of Technology, 2015, pp.87-106. A. Sano et al., "Recognizing academic performance, sleep quality, stress level, and mental health using personality traits, wearable sensors and mobile phones," 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), 2015, pp.1-6.
 ストレス推定に用いられる、生体情報に基づく指標値(以下、「特徴量」と表記)の中には、測定データが長いほどより精度よく検出される特徴量や、十分な精度で検出されるために十分な長さの測定データを必要とする特徴量がある。
 例えば、心拍に関する特徴量として、HF(High Frequency)成分、およびLF(Low Frequency)成分と呼ばれる特徴量が知られている。HF成分およびLF成分は、心拍変動の時系列データにおいて現れる、周期が比較的長い波である。これらの成分は、分析に使用される時系列データが長いほど、より精度よく検出される。特に、LF成分は、周波数が0.05Hzから0.15Hz程度の範囲の成分であるため、30秒程度の時系列データからは検出され難い。
 他にも、心拍変動の時系列データにおける相関次元(Correlation Dimension)も、十分な精度で検出されるために比較的長い時系列データを必要とする特徴量の1つである。
 非特許文献1および2に開示されるような、生体情報を30秒ごとに区切って、区切られた部分(セグメント)からそれぞれ特徴量を検出する方法では、上述のような特徴量が精度よく検出できない。つまり、時系列データをより細かく(すなわち、短いセグメントに)分割するほど、有用な情報が欠落し、ストレス推定の精度が下がるという、第1のデメリットがある。換言すれば、長周期成分に基づいた精度の高いストレス推定を行うには、特徴量を検出するための、時系列データのセグメントは、長いほど良い。
 しかし、時系列データの区切り(セグメンテーション)の単位を長く設定すると、運動状態が正確に判定されない可能性が高くなるという、第2のデメリットがある。1つのセグメントの中に2種類以上の運動状態が含まれてしまう可能性が大きくなるからである。セグメントごとに運動状態が判定されるので、セグメントが長いほど、実際の運動状態が頻繁に切り替わる場合に運動状態の遷移を検出できなくなるおそれがある。
 つまり、生体情報と運動状態とを分析する単位であるセグメントの長さは、短いほど第1のデメリットが大きくなり、長いほど第2のデメリットが大きくなる。
 本発明は、セグメントごとに導出される特徴量を用いた分析を、より高精度に行う装置および方法等を提供することを目的の1つとする。
 本発明の一態様に係る生体情報処理装置は、被測定者の生体情報の時系列データから、前記生体情報が取得された期間における前記被測定者の運動状態に基づいて前記時系列データの部分であるセグメントを生成する、セグメント生成手段と、前記セグメントから特徴量を導出する特徴量導出手段と、前記特徴量、および前記特徴量に基づく前記被測定者の状態に関する情報の、少なくともいずれかを出力する出力手段と、を備える。
 本発明の一態様に係る生体情報処理方法は、被測定者の生体情報の時系列データから、前記生体情報が取得された期間における前記被測定者の運動状態に基づいて前記時系列データの部分であるセグメントを生成し、前記セグメントから特徴量を導出し、前記特徴量、および前記特徴量に基づく前記被測定者の状態に関する情報の、少なくともいずれかを出力する。
 本発明の一態様に係るプログラムは、被測定者の生体情報の時系列データから、前記生体情報が取得された期間における前記被測定者の運動状態に基づいて前記時系列データの部分であるセグメントを生成する、セグメント生成処理と、前記セグメントから特徴量を導出する特徴量導出処理と、前記特徴量、および前記特徴量に基づく前記被測定者の状態に関する情報の、少なくともいずれかを出力する出力処理と、を実行させる。上記のプログラムは、例えば、コンピュータ読み取り可能な非一時的な記憶媒体により記憶される。
 本発明によれば、セグメントごとに導出される特徴量を用いた分析を、より高精度に行うことができる。
本発明の第1の実施形態に係る生体情報処理システムの構成を示すブロック図である。 セグメントの生成処理の流れの具体例を示すフローチャートである。 特徴量の導出の概念を示す図である。 特徴量の統合の概念を示す図である。 第1の実施形態に係る生体情報処理装置の動作の流れを示すフローチャートである。 本発明の第2の実施形態に係る生体情報処理システムの構成を示すブロック図である。 特徴量の割り当ての概念を示す図である。 第2の実施形態に係る生体情報処理装置の動作の流れを示すフローチャートである。 本発明の第3の実施形態に係る生体情報処理システムの構成を示すブロック図である。 第3の実施形態に係る生体情報処理装置の動作の流れを示すフローチャートである。 本発明の各実施形態の各部を構成するハードウェアの例を示すブロック図である。
 以下、図面を参照しながら、本発明の実施形態を詳細に説明する。なお、本開示の計算式において用いられる、演算子「・」は、乗算の演算子であり、演算子「/」は、除算の演算子である。
 <<第1の実施形態>>
 まず、本発明の第1の実施形態について説明する。
 <構成>
 図1は、第1の実施形態に係る生体情報処理システム1の構成を示すブロック図である。生体情報処理システム1は、生体情報処理装置11と、生体情報取得部5と、動き情報取得部6と、を含む。
 生体情報処理装置11は、制御部110と、記憶部119と、運動状態識別部111と、セグメント生成部112と、特徴量導出部113と、統合部114と、ストレス推定部115と、情報出力部116と、を備える。
 生体情報処理装置11は、生体情報取得部5および動き情報取得部6に、通信可能に接続される。生体情報処理装置11は、生体情報取得部5および動き情報取得部6により取得された情報を受け取る。生体情報処理装置11と生体情報取得部5との間の通信、および生体情報処理装置11と動き情報取得部6との間の通信は、有線によって行われてもよいし、無線によって行われてもよい。
 生体情報処理装置11は、例えば、インターネットに接続されたサーバである。この場合、生体情報処理装置11は、インターネットを介して生体情報取得部5および動き情報取得部6により取得された情報を受け取ってもよい。生体情報処理装置11は、被測定者が所持する、携帯情報端末またはPC(Personal Computer)等の情報処理装置でもよい。その場合、生体情報処理装置11は、例えば、ケーブルを介して、または電磁波や音波等を用いた通信によって、生体情報取得部5および動き情報取得部6から情報を受け取ってもよい。生体情報処理装置11、生体情報取得部5、および動き情報取得部6の一部または全部が同一の装置であってもよい。
 ===生体情報取得部5===
 生体情報取得部5は、生体情報を取得する。
 生体情報取得部5により取得される生体情報の例としては、脈波(心拍)、体温、脳波、筋電位、血流、血中成分、呼吸の様子、まばたきの様子、および発汗の程度等が挙げられる。生体情報取得部5により取得される生体情報は、ユーザの精神状態または疲労度等がわかる生体情報であれば何でもよい。以下の説明においては、取得される生体情報として心拍を想定するが、心拍はあくまで生体情報処理装置11が処理する生体情報の一例である。
 生体情報取得部5は、例えば、腕時計型、貼り付け型、又は巻きつけ型等のウェアラブルセンシングデバイスである。生体情報取得部5は、例えば、PPG(Photoplethysmography)によって脈波を取得する光電式容積脈波計、または心筋の筋電を計測することによって心拍を測定する心電計等の、人体に接触させて生体情報を取得するセンサでもよい。あるいは、生体情報取得部5は、カメラ等を用いて非接触で脈波又は心拍を推定する装置でもよい。
 生体情報取得部5は、取得された生体情報を、時刻情報とともに生体情報処理装置11に送信する。生体情報取得部5により取得された生体情報は、例えば、制御部110によって時系列データとして記憶部119に記憶される。
 ===動き情報取得部6===
 動き情報取得部6は、被測定者が行っている運動の強さの指標となる情報である動き情報を取得する。動き情報は、動きの激しさを示す指標、身体的な負荷の程度を示す指標、あるいは、エネルギーの消費量を示す指標とも言える。動き情報取得部6は、生体情報取得部5により取得される生体情報に影響を与える、身体的な活動の様子を特定可能な情報を取得すればよい。
 例えば、動き情報取得部6は、人体に取り付けられる加速度センサである。あるいは、例えば、動き情報取得部6は、カメラと、カメラにより撮影された人物の動きを追跡する画像処理装置との組でもよいし、対象までの距離を取得する深度センサとその距離の変化を分析する分析装置との組でもよい。
 動き情報取得部6は、例えば、動き情報として、被測定者の特定の部位のX方向、Y方向、およびZ方向の加速度(AcX、AcY、およびAcZ)を、常時(例えば、1秒あたり8回の頻度で)取得する。なお、X方向、Y方向、およびZ方向は、動き情報取得部6において定義されている方向である。
 動き情報取得部6が、被験者に取り付けられた加速度センサである場合は、動き情報取得部6は計測値それ自体を、動き情報として取得すればよい。
 動き情報取得部6がカメラと、カメラにより撮影された人物の動きを追跡する画像処理装置との組である場合、動き情報取得部6は、被測定者の特定の部位の加速度を、画像処理によって算出すればよい。
 動き情報取得部6が対象までの距離を取得する深度センサとその距離の変化を分析する分析装置との組である場合も、動き情報取得部6は、被測定者の特定の部位の加速度を、深度センサとその部位との間の距離の変動に基づいて算出すればよい。
 動き情報は、所定の閾値以上の加速度が計測された時刻だけを示す情報でもよい。例えば、動き情報取得部6は、歩数計のように、所定の閾値以上の加速度を検出するデバイスであってもよい。
 動き情報取得部6は、取得された動き情報を、時刻情報とともに生体情報処理装置11に送信する。動き情報取得部6により取得された動き情報は、例えば、制御部110によって記憶部119に記録され、運動状態識別部111による運動状態の識別(後述)に用いられる。
 なお、生体情報取得部5および動き情報取得部6が計時機能を持たない場合は、生体情報取得部5および動き情報取得部6は、取得された値を随時、生体情報処理装置11に送出し、生体情報処理装置11にて制御部110がその値に時刻情報を付与してもよい。
 以下、生体情報処理装置11に含まれる構成要素のそれぞれの機能について説明する。後述するが、制御部110、運動状態識別部111、セグメント生成部112、特徴量導出部113、統合部114、ストレス推定部115、および情報出力部116は、例えば、プログラムに基づいて命令を実行する1つまたは複数のプロセッサとメモリとを含むコンピュータによって構成されてもよい。
 なお、本実施形態において、生体情報処理装置11が処理する対象である生体情報が取得された期間(スパン)を、t=0からt=tmaxまでの期間(スパン)であると定義する。
 ===制御部110===
 制御部110は、生体情報処理装置11に含まれる他の構成要素の動作を制御する。
 また、制御部110は、生体情報処理装置11が扱うデータの流れを制御する。例えば、制御部110は、生体情報取得部5および動き情報取得部6により取得された情報を受け取り、受け取った情報を記憶部119に記録する。
 ===記憶部119===
 記憶部119は、生体情報処理装置11が扱うデータを一時的に、または非一時的に、記憶する。記憶部119は、いわば、ワーキングメモリである。記憶部119は、不揮発性の記憶媒体でもよい。記憶部119に対して、生体情報処理装置11に含まれる他の構成要素は自由にデータを読み書き可能である。
 ===運動状態識別部111===
 運動状態識別部111は、測定期間(スパン)に含まれる、時刻の小単位の各々における、被測定者の運動状態を識別する。言い換えれば、運動状態識別部111は、時刻の小単位の各々における運動状態を数種類の運動状態に分類する。運動状態の種類は、例えば、“Sitting”(座)状態、“Walking”(歩)状態、および“Running”(走)状態の3種類である。識別される運動状態の種類および数はこれには限られない。例えば、運動状態の種類は、“Sitting”(座)状態、“Standing”(立)状態、“Walking”(歩)状態、および“Running”状態の4種類でもよいし、この4種類にさらに“Sleeping”(寝)状態が加わった5種類でもよい。運動状態は、被測定者の運動の強さを、段階毎に識別するパラメータであればよい。
 運動状態の各種類は、“Sitting”等の具体的な名称を持たなくてもよい。例えば、運動状態の種類は、「第1の運動状態」と「第2の運動状態」と「第3の運動状態」との3種類でもよい。
 運動状態識別部111は、情報処理の対象となるデータ全体の時間の範囲を、時間Tsごとの区間(period)に分け、各区間における被測定者の運動状態を識別する。区間は、例えば、区間N=[0,Ts],区間N=[Ts,2Ts],・・・,区間N=[(n-1)Ts,n・Ts]のように設定される。区間の数がk個生成可能であるとき、上記のnの値の最大値はkである。なお、区間は、閉区間でも、開区間でも、半開区間でもよい。
 区間の長さTsの値は予め設定されていてもよいし、データの長さに応じて適宜設定されてもよい。Tsの具体的な値は、例えば、1秒、10秒、30秒、または1分である。より細かく運動状態を識別するためには、区間の長さTsは短い方がよい。ただし、運動状態が頻繁に切り替わると後述するセグメントが短くなる。好適なTsの値は、被測定者の状況等によって変化するため、生体情報処理装置11の設計者または利用者により、適宜設定されるとよい。
 区間は、区間どうしが重なるよう設定されてもよい。例えば、区間は、重なり度として“W”を用いて、区間N=[0,Ts+W],区間N=[Ts,2Ts+W],・・・,区間N=[(n-1)Ts,n・Ts+W]のように設定されてもよい。
 以下、区間における被測定者の運動状態を「区間の運動状態」とも表記する。
 区間の運動状態を識別する方法は、一般に知られている方法でよい。区間の運動状態を識別する方法の例を、以下に示す。
 例として、運動状態識別部111は、ある区間Nx=[X1,X2]における運動状態を識別するとする。
 運動状態識別部111は、区間の長さよりも短い期間(term)ごとの運動の強さを示す指標値を導出し、その指標値に基づいて運動状態を識別してもよい。本開示では、運動の強さを示す指標値を“AM”とする。“AM”は、“Activity Magnitude”の略である。
 例えば、運動状態識別部111は、区間Nx=[X1,X2]をL個(Lは任意の整数)の期間(term)に等分割し、T=X1、T=X2、分割点をT、T、・・・、TL-1とする。運動状態識別部111は、各期間[0,T]、・・・、[TL-1,T]のAMを導出する。なお、期間(term)は、閉区間でも、開区間でも、半開区間でもよい。
 [AMの導出方法の例]
 ある期間をDx=[Ta,Tb]とする。期間DxにおけるAMの導出方法の例を以下に示す。
 例えば、動き情報として、X方向、Y方向、およびZ方向の加速度が、期間Dx=[Ta,Tb]の間にm回取得されるとする。i=1,2,・・・,mとして、加速度が取得される時刻をtとし、時刻tで取得された、X方向、Y方向、およびZ方向の加速度を、それぞれ、AcX、AcY、およびAcZとする。
 この場合、運動状態識別部111は、期間Dx=[Ta,Tb]におけるAMを、例えば、下記の数式に基づいて算出する。
Figure JPOXMLDOC01-appb-M000001
 RmX、RmY、RmZは、それぞれ、AcX、AcY、AcZの、区間Nx=[X1,X2]の直前のP秒間(Pの値は任意)の移動平均である。Pの値は、例えば、5である。
 AMの定義の別の例を式(2)から(4)に示す。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 式(4)の関数HはHeaviside関数である。すなわち、H(x)の値は、xが0を超える場合に1、xが0以下である場合に0である。式(4)により導出されるAMは、区間Dx=[Ta,Tb]に含まれる複数の時点t(i=1,2,・・・,m)のうち、加速度が閾値Th以上であった時点の個数を示す。
 式(4)における閾値Thは、設計者により設定された値でもよい。閾値Thは、決定木を用いた機械学習等によって導出されてもよい。
 動き情報が、所定の閾値以上の加速度が計測された時刻である場合、運動状態識別部111は、期間Dx=[Ta,Tb]において所定の閾値以上の加速度が検出された回数を、Dx=[Ta,Tb]におけるAMとしてもよい。
 [AMを用いた運動状態の識別方法の例]
 次に、AMを用いて区間Nx=[X1,X2]の運動状態を識別する方法の例を説明する。
 運動状態識別部111は、例えば、AMを、運動状態の種類よりも1少ない数の境界値のそれぞれと比較する。運動状態の種類が3種類である場合は、2つの境界値が用いられる。
 一例として、運動状態識別部111は、区間Nx=[X1,X2]に含まれる期間D=[Ti-1,T](i=1,・・・,L)の各々におけるAMを、2つの境界値“WS”および“RW”と比較する。そして、運動状態識別部111は、各々のAMのうち、AM≦WSであるAMの数、WS≦AM≦RWであるAMの数、およびRW≦AMであるAMの数を、計上する。そして、運動状態識別部111は、下記の手順により、区間Nx=[X1,X2]における運動状態を決定する。
・AM≦WSであるAMの数が最も多い場合、運動状態は“Sitting”
・WS≦AM<RWであるAMの数が最も多い場合、運動状態は“Walking”
・RW<AMであるAMの数が最も多い場合、運動状態は“Running”
 ただし、AM≦WSであるAMの数、WS≦AM≦RWであるAMの数、およびRW≦AMであるAMの数のうち、最大である数が2以上存在する場合は、決定可能な運動状態のうちいずれか1つの運動状態を優先させて設定するよう設計されればよい。
 上記手順は、例えば下記の式(5)および(6)に示される計算によっても実現され得る。すなわち、区間Nx=[X1,X2]に含まれる各期間の指標値をAM(j=1,・・・,L)として、式(5)により定義される変数MaxCountを用いることで、区間Nx=[X1,X2]の運動状態を表す変数“State”の値が、式(6)により決定されてもよい。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 なお、上記の境界値(RW、WS)は、設計者により設定された値でもよい。境界値は、決定木を用いた機械学習等によって導出されてもよい。
 [AMを用いた運動状態の識別方法の別の例]
 各々のAMと所定の閾値との比較により運動状態を決定する方法の例は、上記以外にも次のような例がある。
 例えば、運動状態識別部111は、RW≦AMであるAMの数が第1の閾値以上である場合は“Running”状態を付与し、それ以外の場合で、WS≦AMであるAMの数が第2の閾値以上である場合は“Walking”状態を付与し、それ以外の場合は “Sitting”状態を付与してもよい。
 また、例えば、運動状態識別部111は、α<α<αなる係数α、α、およびαを用意し、AM≦WSであるAMの数に第1の係数αをかけ、WS<AM≦RWであるAMの数に第2の係数αをかけ、およびRW<AMであるAMの数に第3の係数αをかけ、これらの積の総和を算出してもよい。上記の総和は、WSよりも大きいAMの数が多いほど、大きくなり、さらにRWよりも大きいAMの数が多いほど、大きくなる。運動状態識別部111は、算出された総和を、所定の閾値と比較することによって運動状態を決定してもよい。例えば、運動状態識別部111は、算出された総和が第3の閾値以下である場合は“Sitting”状態を付与し、算出された総和が第4の閾値(ただし第4の閾値>第3の閾値)を超える場合は“Running”状態を付与し、それ以外の場合は“Walking”状態を付与してもよい。
 また、例えば、運動状態識別部111は、区間Nxに含まれる期間の各々におけるAMの総和を、所定の閾値と比較することによって運動状態を決定してもよい。例えば、AMの総和が第5の閾値以下である場合は“Sitting”状態を付与し、AMの総和が第6の閾値(ただし第6の閾値>第5の閾値)を超える場合は“Running”状態を付与し、それ以外の場合は“Walking”状態を付与してもよい。
 以上のようにして、運動状態識別部111は、各区間における被測定者の運動状態を識別する。
 運動状態識別部111は、各区間に、識別された運動状態を関連づけた情報を、セグメント生成部112に送出する。運動状態識別部111は、各区間に、識別された運動状態を関連づけた情報を、記憶部119に記録してもよい。
 ===セグメント生成部112===
 セグメント生成部112は、運動状態識別部111により識別された各区間の運動状態に基づいて、生体情報の時系列データからセグメントを生成する。
 セグメント生成部112は、時系列データから、セグメントの各々が、1つの区間から成るか、又は運動状態が同一である連続した区間から成るかのいずれかであるように、複数のセグメントを生成する。
 例えば、セグメント生成部112は、運動状態が同一である、連続する区間が、同一のセグメントに属し、運動状態が異なる、連続する区間が、異なるセグメントSおよびSn+1に属するように、分割する。
 具体的には、例えば、セグメント生成部112は、各区間の運動状態を時間順に調べ、運動状態が直前の区間の運動状態から変化しない区間に対しては、その区間を直前の区間と同一のセグメントに属する区間であると設定する。運動状態が直前の区間の運動状態から変化する区間に対しては、セグメント生成部112は、運動状態が変化する直前の区間をそのセグメントの最後の区間に設定し、運動状態が変化した直後の区間を新しいセグメントの最初の区間に設定する。
 セグメント生成部112は、例えば、図2に示されるフローチャートに従った処理を行うことによって、セグメントの生成を行ってもよい。図2のフローチャートは、“i”を、1からk(区間の総数)まで1ずつ増やしながら、Nが属するべきセグメントSを決定する処理の手順を示す。“n”はセグメントの番号である。全てのnについてSの初期値はφ(空集合)とする。セグメント生成部112は、まず、nの値を1に、iの値を1に設定した後(ステップS21)、セグメントSに区間Nを追加する(ステップS22)、すなわち、区間Nの範囲をセグメントSの範囲に包含させる。その後、セグメント生成部112は、i=kでなければ(ステップS23においてNO)ステップS24の判定処理を行い、i=kであれば(ステップS23においてYES)処理を終了する。ステップS24において、セグメント生成部112は、i番目の区間の運動状態を表す値であるStateがStatei+1に等しくない場合(ステップS24においてNO)、“n”を1増やした後(ステップS25)、“i”を1増やす(ステップS26)。StateがStatei+1に等しい場合(ステップS24においてYES)、セグメント生成部112は、“n”を変化させずに“i”を1増やす(ステップS26)。こうすることで、運動状態が同一である連続する区間は、同一のセグメントSに属し、運動状態が異なる連続する区間は、異なるセグメント(SまたはSn+1)に属することとなる。ステップS26の後は、セグメント生成部112の処理は、ステップS22の処理に戻る。
 図2のフローチャートの処理が終了した時点で、n個のセグメントSの生成が完了する。
 なお、セグメントが長くなりすぎると、そのセグメントから特徴量を導出するのに膨大な時間がかかるという問題が生じる場合がある。そこで、セグメントの長さに上限が設けられていてもよい。
 例えば、全てのセグメントが生成された後、長さが上限(例えば、600秒)を超えるセグメントがある場合、セグメント生成部112は、そのセグメントを分割し、分割後の各セグメントの長さが上限以下になるようにしてもよい。
 あるいは、セグメント生成部112は、セグメントを生成する過程で、セグメントの長さが上限を超えないように各セグメントを生成してもよい。
 セグメント生成部112は、生成されたセグメントの各々に、セグメントの種類を示すラベルを付与する。ラベルは、セグメントに対する処理方法を区別するために用いられる。セグメント生成部112は、ラベルを、そのセグメントを構成する区間の運動状態に基づき付与する。例えば、“Sitting”状態である区間からなるセグメントに対しては、セグメント生成部112は“Sitting”状態を示すラベルを付与する。同様に、セグメント生成部112は、セグメントに、それぞれ“Sitting”状態、“Walking”状態、または“Running”状態のいずれかを示すラベルを付与してもよい。以下、セグメントに付与されたラベルを、「セグメントのラベル」とも表記する。
 セグメント生成部112は、生成されたセグメントの情報(すなわち、範囲または区間の組、および付与されたラベルを示す情報)を特徴量導出部113に対して送出する。セグメント生成部112は、生成されたセグメントの情報を記憶部119に記録してもよい。
 ===特徴量導出部113===
 特徴量導出部113は、生体情報取得部5により取得された生体情報を、セグメント生成部112により設定されたセグメントごとに分析し、各セグメントの生体情報から特徴量を導出する。
 図3は、特徴量導出部113によりセグメントごとの特徴量を導出する概念を表す図である。図3に示される例では、生体情報が取得されたt=0からt=tmaxまでの期間が、“Sitting”等のラベルが付与されたセグメントに分けられている。n個のセグメントの長さは不均一であるが、特徴量導出部113は、それぞれのセグメントの時系列データから同数の(図3に示される例では1つの)特徴量(CからC)を導出する。
 特徴量は、例えば、データ値の代表値(最大値、最小値、中央値、最頻値、平均値等)でもよいし、時系列データに対して所定の計算を行うことにより得られる値でもよい。特徴量導出部113は、1つのセグメントあたり複数個の特徴量を導出してもよい。
 例えば、時系列データが心拍変動の時系列データである場合、特徴量導出部113は、特徴量として、HF成分の値、およびLF成分の値を導出してもよい。HF成分およびLF成分の値は、心拍変動の時系列データを周波数成分に変換することで得られる。また、LF成分の値をHF成分の値で除した値であるLF/HFの値も、ストレス推定によく用いられる。特徴量導出部113は、LF/HFの値を特徴量として導出してもよい。
 特徴量導出部113は、各セグメントからの特徴量を統合部114に送出する。特徴量導出部113は、各セグメントと特徴量とが関係づけられた情報を記憶部119に記録してもよい。
 ===統合部114===
 統合部114は、各セグメントから導出された特徴量を統合して、代表的な特徴量を導出する。代表的な特徴量とは、情報処理の対象となるデータの全体にわたって得られた特徴量を代表する特徴量である。代表的な特徴量が、後述のストレス推定に用いられる。
 統合部114は、代表的な特徴量を、ラベル別に導出する。すなわち、統合部114は、同一のラベルが付与されたセグメントごとに特徴量を統合し、代表的な特徴量を導出する。
 図4は、代表的な特徴量の導出の概念を示す図である。図4に示される例は、特徴量導出部113により各々のセグメントから1つずつ導出された、全3種類の特徴量に対して統合を行う例である。この例では、統合により3つの代表的な特徴量(C_sitting、C_walking、およびC_running)が導出される。なお、1つのセグメントから複数の種類の特徴量が導出される場合は、代表的な特徴量は特徴量の種類ごとに導出されてよい。
 以下、ラベル別に統合される結果得られる代表的な特徴量を「ラベル別特徴量」と称する。ラベルは運動状態に基づき付与されるので、ラベル別特徴量は、運動状態別の特徴量ということもできる。
 特定のラベルに係るラベル別特徴量(すなわち、特定のラベルが付与されたセグメントから導出される特徴量を統合することにより得られる代表的な特徴量)の導出方法の例を、以下で説明する。
 統合部114は、例えば、特定のラベルが付与されたセグメントから導出された特徴量のそれぞれを、その特徴量が導出されたセグメントの長さに応じて重みづけを行った上で足し合わせることで、その特定のラベルに係るラベル別特徴量を導出する。
 例えば、“Sitting”状態を示すラベルが付与された3つのセグメントSa,Sb,Scから、それぞれ特徴量として心拍数の平均値Ra,Rb,Rcが導出された場合、統合部114は、上記3つのセグメントの長さLa,Lb,Lcを重み係数として用いて、
(La・Ra+Lb・Rb+Lc・Rc)/(La+Lb+Lc)
により導出される値を、代表的な特徴量とする。
 重みづけに用いられる重み係数とセグメントの長さとの関係は、必ずしも線形の関係でなくてもよい。HF成分やLF成分等の長周期成分が特徴量に用いられる場合等は、セグメントの長さが長いほど特徴量の信頼性が高くなると考えられる。そのような場合は、長さが長いセグメントから導出される特徴量ほど、重みが長さ分よりも大きくなるように、重み係数が設定されてもよい。
 例えば、同じラベルが付与されたQ個のセグメントS,S,・・・,Sから、それぞれ特徴量としてC,C,・・・,Cが導出されたとする。セグメントS(i=1,・・・,Q)の長さをLとすると、セグメント生成部112は、ラベル別特徴量を、任意の正の実数x、x(x<x)についてf(x)/x<f(x)/xが成立するような関数fを用いて、
(Σi=1..Q・f(L))/(Σi=1..Qf(L))
により導出してもよい。f(x)=xα(αは任意の1以上の実数)が、関数fの一例である。
 このような計算によれば、異なる長さ(第1の長さと第2の長さ)のセグメントから導出された特徴量(第1の特徴量と第2の特徴量)について、代表的な特徴量に対する、第2の特徴量の寄与率と第1の特徴量の寄与率との比は、第2の長さと第1の長さとの比よりも大きくなる。
 統合部114は、統合によって導出された、ラベル別の代表的な特徴量を、ストレス推定部115に対して送出する。
 ===ストレス推定部115===
 ストレス推定部115は、統合部114により導出された代表的な特徴量から、被測定者のストレスの度合い(ストレスの強さ、またはレベルと言い換えられてもよい)を判定する。
 ストレス推定部115は、例えば、予め訓練データセットを用いた学習により生成されたストレス推定モデルを有する。そして、ストレス推定部115は、代表的な特徴量にストレス推定モデルを適用し、出力としてストレスの度合いを示す情報を導出する。
 ストレス推定モデルは、少なくとも1つのラベル別特徴量を入力とする。ストレス推定モデルは、運動状態とラベル別特徴量の組を入力とするモデルでもよい。ストレス推定モデルは、複数の運動状態と、当該複数の運動状態のそれぞれに係るラベル別特徴量との組を入力とするモデルでもよい。ストレスの度合いを示す情報は、例えば、「問題なし」または「問題あり」の二値でもよいし、「ストレスの度合いはxx%」のように、数値で表される情報でもよい。
 訓練データセットは、例えば、ストレスの度合いが既知である人物から得られたラベル別特徴量のデータセットである。訓練データセットを用意するために人物のストレスの度合いを知る方法としては、例えば、アンケートによるストレスの度合いの調査等、ストレスの度合いを生体情報以外の情報から得る方法が採用されればよい。
 ===情報出力部116===
 情報出力部116は、生体情報処理装置11による処理の結果を示す情報を出力する。
 例えば、情報出力部116は、情報を、表示装置に出力することで、情報を表示装置に表示させる。
 情報出力部116は、生体情報処理装置11以外の装置に情報を送信してもよい。例えば、情報出力部116は生体情報取得部5に情報を送信してもよい。生体情報取得部5が情報を表示する機能を有している場合、生体情報取得部5は受信した情報を表示してもよい。このような構成によれば、被測定者は生体情報処理装置11による処理の結果を知ることが可能となる。
 情報出力部116は、記憶装置に情報を出力することで、情報を記憶装置に記憶させてもよい。記憶装置は、例えば、HDD(Hard Disk Drive)やSSD(Solid State Drive)等の非一時的な記憶装置でもよいし、RAM(Random Access Memory)等の一時的な記憶装置でもよい。被測定者等の人物が、当該記憶装置に記憶された情報にアクセスすれば、その人物は生体情報処理装置11による処理の結果を知ることが可能となる。
 情報出力部116が出力する情報は、例えば、ストレスの度合いを示す情報である。ストレスの度合いを示す情報は、被測定者の状態に関する情報であるとも言える。情報出力部116は、各セグメントから導出された特徴量、代表的な特徴量、および全体の特徴量等を出力してもよい。
 <動作>
 次に、図5のフローチャートを参照しながら生体情報処理装置11の動作の流れを説明する。
 まず、生体情報処理装置11の制御部110が、生体情報と動き情報とを受け取る(ステップS110)。制御部110は、生体情報と動き情報とを記憶部119に記録してもよい。
 次に、運動状態識別部111が、動き情報取得部6により取得された動き情報に基づき、各区間の運動状態を識別する(ステップS111)。
 次に、セグメント生成部112が、各区間の運動状態に基づき、データのセグメントの生成を行う(ステップS112)。
 次に、特徴量導出部113が、各セグメントから特徴量を導出する(ステップS113)。
 次に、統合部114が、ラベル別に特徴量を統合し、ラベル別特徴量を導出する(ステップS114)。
 次に、ストレス推定部115が、被測定者のストレスの度合いを判定する(ステップS115)。
 そして、情報出力部116が、生体情報処理装置11による情報処理の結果を出力する(ステップS116)。すなわち、情報出力部116は、例えば、被測定者のストレスの度合いを示す情報を出力する。
 <効果>
 第1の実施形態に係る生体情報処理装置11によれば、運動状態による生体情報への影響を考慮しながら、生体情報を処理し、精度の良いストレス推定を行うことができる。
 その理由は、特徴量導出部113および統合部114によりラベル別(運動状態別)に代表的な特徴量が導出され、ストレス推定部115がその代表的な特徴量とストレスモデルとに基づいてストレス推定を行うからである。
 また、生体情報処理装置11は、運動状態の変化を柔軟に検出しながら、セグメントの長さを十分に長くすることができるため、精度のよいストレス推定を行うことができる。
 運動状態の変化を柔軟に検出できる理由は、区間の長さ(Ts)が、セグメントの長さとは無関係に、任意の値(例えば1秒等)に設定可能であるからである。
 セグメントの長さを十分に長くすることができる理由は、セグメント生成部112が、区間をセグメントとして生成するのではなく、同一の運動状態が付与された連続した区間が同一のセグメントに属するように、セグメントを生成するからである。
 以上のように、本実施形態に係る生体情報処理装置11は、セグメントごとに導出される特徴量を用いた分析を、より高精度に行うことができる、という効果がある。
 特に、特徴量が、HF成分およびLF成分の値のように、セグメントが長いほど精度よく検出される情報であれば、上述の効果は大きい。
 <<変形例>>
 [変形例1]運動が生体情報に反映される時間の考慮
 生体情報の中には、心拍や発汗等、運動状態が変化してからある程度の期間が経ってから運動状態の影響が反映される生体情報がある。そのような生体情報がストレス推定に用いられる一つの実施形態では、セグメント生成部112は、運動状態が変化する区間からY秒(Yは非負の実数)後の時点をセグメントの境界に設定してもよい。
 言い換えれば、セグメント生成部112は、運動状態が変化した時点からY秒後の時点から、次に運動状態が変化した時点からY秒後の時点までを、1つのセグメントの範囲として設定してもよい。それぞれのY(上記のY、Y等)の値は、等しくなくてもよい。例えば、Yの値は、運動状態の変化のパターン(“Sitting”状態から“Walking”状態への変化であるか、“Walking”状態から“Sitting”状態への変化であるか、等)に応じて異なる値でもよい。
 なお、Yの値は、区間の長さの整数倍でもよいし、そうでなくてもよい。
 あるいは、セグメント生成部112は、運動状態が変化した時点からY秒間の期間を含まないように、セグメントを生成してもよい。すなわち、セグメント生成部112は、運動状態が変化した時点からY秒後の時点から、次に運動状態が変化する時点までの期間を、1つのセグメントの範囲として設定してもよい。
 セグメント生成部112は、まず、図2に示されるフローチャートに従って仮のセグメントを生成した後、その仮のセグメントから、運動状態が変化した時点からY秒間の期間を除いた期間を、真のセグメント(すなわち、特徴量導出部113による処理の対象となるセグメント)として生成してもよい。
 運動状態が変化した時点から所定の時間の経過後までの期間を考慮してセグメントを設定することで、より正確に生体情報と運動状態とが関連づけられる。これにより、運動状態の変化の影響を受けるまでに時間がかかる生体情報を用いたストレス推定の精度を、向上させることができる。特に、運動状態が遷移する時点から所定の時間後の時点をセグメントの始点として設定することで、運動状態が遷移した直後の生体情報を用いることによるストレス推定の精度の悪化を防ぐことができる。
 [変形例2]全体の特徴量の導出
 一つの実施形態では、統合部114は、情報処理の対象となるデータの全範囲に含まれるすべてのセグメントを統合し、全体の特徴量を導出してもよい。例えば、統合部114は、ラベルごとに導出されたラベル別特徴量を統合することで、全体の特徴量を導出してもよい。
 そして、ストレス推定部115は、全体の特徴量とストレスとの関係を学習することによって得られたストレス推定モデルを用いて、全体の特徴量からストレスの度合いを推定してもよい。
 統合部114は、全体の特徴量を導出する際、ラベル別特徴量のそれぞれに対して、ラベルに応じた補正または重みづけの少なくともいずれかを行ってもよい。
 例えば、特徴量が、平均体温等、運動の強さと相関がある特徴量であるような場合、統合部114は、“Walking”状態に係るラベル別特徴量をV減じ、“Walking”状態に係るラベル別特徴量をV減じる補正を行ってもよい。VおよびVは、ラベルが表す運動状態に応じて定められる値である。VおよびVは、運動状態と特徴量の変化との関係に関する知見に基づいて適切に設定されればよい。
 また、特徴量が、その精度が運動の強さと相関があるような特徴量である場合、統合部114は、その精度に応じた重みづけを行った上で、全体の特徴量を導出してもよい。
 例えば、運動量が少ない場合に付与される運動状態(例えば“Sitting”状態)では、生体情報は、主に精神的な状態に依存すると考えられる。運動量が多い場合に付与される運動状態(例えば“Running”状態)では、生体情報は運動状態の影響を強く受けると考えられる。このようなことから、運動の強さが強い時の特徴量ほど、ストレス推定に用いる値としての精度は悪くなると考えられる。
 そこで、統合部114は、例えば、“Sitting”状態と識別されたセグメントの重みが、“Walking”状態および“Running”状態と識別されたセグメントの重みよりも大きくなるような重みづけを行った上で、全体の特徴量を導出してもよい。そうすることで、より信頼性の高い特徴量がより大きく重みづけられた、全体の特徴量が導出される。
 重みづけに用いられる重み係数は、例えば、0から1の範囲の実数である。数値が大きいほど、重みが大きくなるとする。重み係数は、“Sitting”状態を示すラベルが付与されたセグメントの重みを1、“Walking”または“Running”状態を示すラベルが付与されたセグメントの重みを0、としてもよい。この場合、“Sitting”状態を示すラベルが付与されたセグメントから得られる特徴量のみが全体の特徴量に反映される。このように、運動の強さが比較的低い期間の特徴量のみをストレス推定に用いれば、より正確なストレス推定を行うことができる。
 以上のようにして導出される全体の特徴量は、運動状態に応じて補正または重みづけの少なくともいずれかがされた上で導出されるため、この全体の特徴量に基づいて、より精度のよいストレス推定が行える。
 (変形例2の更なる変形例)
 上記のように、統合部114が全体の特徴量を導出する場合、セグメント生成部112が、各セグメントに対し、運動状態を示すラベルの代わりに、信頼度を付与してもよい。セグメントに付与される信頼度は、そのセグメントから導出される特徴量が高精度なストレス推定のための情報として有用であることの信頼性の高さを示す。信頼度関連づけ部128は、信頼性がより高いセグメントに、より高い信頼度を関連づける。上述の重み係数は、信頼度の一例である。
 そして、統合部114は、信頼度がより大きいセグメントから導出された特徴量の重みがより大きくなるように、各セグメントから導出される特徴量を重みづけした上で、全体の特徴量を導出すればよい。これにより、信頼性がより高いセグメントから導出される特徴量が、全体の特徴量により大きく寄与する。
 セグメント生成部112は、各セグメントの信頼度を、当該セグメントにおける被測定者の運動状態に基づき決定してもよい。例えば、セグメント生成部112は、被測定者がより強い運動状態にあるときのセグメントに対しては、より小さい信頼度を付与する。
 なお、セグメントにおける被測定者の運動状態は、セグメントを構成する区間の運動状態である。セグメントを構成する区間の運動状態が一つでない場合は、セグメントにおける被測定者の運動状態は、セグメントを構成する区間のそれぞれに付与された運動状態のうち、支配的な運動状態である。支配的な運動状態とは、例えば、セグメントを構成する区間の運動状態のうち数が最も多い運動状態でもよいし、セグメントの代表的な時点(例えば、中央の時点、または終了時点等)を含む区間の運動状態でもよい。
 セグメント生成部112が各セグメントに対し信頼度を付与する実施形態では、セグメント生成部112は、各セグメントの運動状態を決定する処理を省略してもよい。セグメント生成部112は、各セグメントの信頼度を、当該セグメントから導出される特徴量に影響を与える期間のAMに基づき決定してもよい。セグメントから導出される特徴量に影響を与える期間とは、例えばある期間におけるAMがY秒後に特徴量に影響する場合、セグメントの範囲をY秒前にずらした範囲に含まれる期間である。
 セグメント生成部112は、例えば、セグメントから導出される特徴量に影響を与える期間のAMの代表値(最大値、最小値、中央値、最頻値、平均値等)が、大きいほど、より低い信頼度を、当該セグメントに付与してもよい。セグメント生成部112は、他にも、AMの分布や、所定値を超えるAMの個数等に基づいて、信頼性がより低いセグメントにより低い信頼度を付与してもよい。
 セグメント生成部112が各セグメントに対し信頼度を付与する実施形態では、特徴量導出部113は、信頼度として0が付与されたセグメントからは特徴量を導出しなくてもよい。記憶部119は、信頼度として0が付与されたセグメントの範囲の時系列データを記憶しなくてもよい。これにより、生体情報処理装置11にかかる負荷を軽減することができる。
 [変形例3]セグメントの取捨
 一つの実施形態では、セグメント生成部112は、所定の長さに満たないセグメントを、特徴量が導出されるセグメントから除外してもよい。言い換えれば、特徴量導出部113は、所定の長さ未満のセグメントからは特徴量を導出せず、所定の長さ以上のセグメントのみから特徴量を導出してもよい。
 これにより、より長いデータから導出されるほど精度よく検出される特徴量が、一定の精度で検出されることが保証される。
 [変形例4]情報の取得と情報処理の並行
 一つの実施形態では、生体情報処理装置11は、生体情報および動き情報を受け取りながら、生体情報および動き情報に対する処理を行ってもよい。
 そのような実施形態では、例えば、運動状態識別部111は、一定の長さの区間の生体情報および動き情報が取得されたら、随時、当該区間の運動状態を識別する。セグメント生成部112は、順次運動状態が識別される区間に対して、当該区間においてセグメントを切り替えるか否かを判定する。セグメント生成部112は、当該区間の運動状態が、直前の区間の運動状態から変化していない場合は、セグメントを切り替えない。セグメント生成部112は、当該区間の運動状態が、直前の区間の運動状態から変化している場合は、セグメントを切り替える。すなわち、セグメント生成部112は、運動状態が変化した時点を現行のセグメントの終了点、および、新たなセグメントの開始点とする。
 このような実施形態と上記変形例3の構成との組み合わせにより、セグメント生成部112は、セグメントが生成されたら、生成されたセグメントに信頼度を付与してもよい。そして、セグメント生成部112は、信頼度として“0”が付与されたセグメントの時系列データを消去してもよい。すなわち、セグメント生成部112は、時系列データのうち、特徴量導出部113による特徴量の導出に使用されないと判断された部分があれば、その部分の時系列データを消去してもよい。
 特徴量導出部113は、セグメントが生成されたら、生成されたセグメントから特徴量を導出してもよい。そして、特徴量導出部113は、特徴量が導出されたセグメントの時系列データを消去してもよい。
 このようにリアルタイムで情報処理を行うことにより、使用済みのデータまたは不要なデータを全範囲の測定が完了するまで保持しておく必要が無く、生体情報処理装置11の負荷を少なくすることができる。
 <<第2の実施形態>>
 一つの実施形態では、統合部114による特徴量の統合の処理を経ずに、ストレス推定が行われてもよい。
 図6は、第2の実施形態に係る生体情報処理システム2の構成を示すブロック図である。第2の実施形態では、生体情報処理装置12は、統合部114の代わりに特徴量割当部124を、およびストレス推定部115の代わりにストレス推定部125を、備える。特徴量割当部124およびストレス推定部125以外の構成要素は、第1の実施形態の構成要素と同じでよい。
 特徴量割当部124は、特徴量導出部113により導出された特徴量に基づき、各区間に特徴量を割り当てる。第1の実施形態では統合によって運動状態ごとに代表的な特徴量が決定されるのに対し、第2の実施形態では割り当てによって区間ごとに特徴量が決定される。ただし、決定される特徴量は、セグメントから導出された特徴量に基づく特徴量である。
 以下、具体例を挙げながら、特徴量の割り当て方法を説明する。例えば、特徴量導出部113により、区間Na,Nb,Ncからなるセグメントから、特徴量としてLF/HFの値Cxが導出されたとする。この場合、特徴量割当部124は、特徴量Cxを、区間Na、区間Nb、および、区間Ncに割り当てられる特徴量として、決定すればよい。
 図7は、図3に示されるように各セグメントから特徴量が導出された場合の、各区間に割り当てられる特徴量を示す概念図である。例えば、セグメントSに含まれる区間N~Nには、それぞれ、セグメントSから導出された特徴量Cが割り当てられる。
 このように、導出される特徴量が、その値がセグメントの長さに依存しない特徴量であれば、特徴量割当部124は、その特徴量をそのまま、その特徴量が導出されたセグメントを構成する区間に割り当てればよい。
 導出される特徴量が、その値がセグメントの長さに比例する特徴量(特徴的な信号の累積値等)であれば、特徴量割当部124は、その特徴量を、特徴量が導出されたセグメントを構成する区間の数で除した値を、その特徴量が導出されたセグメントを構成する区間に割り当てればよい。
 このようにして割り当てられた特徴量は、セグメントの長さの時系列データから導出された特徴量に基づくため、一つの区間(Na等)のみから導出される場合に比べて、精度が良いことが期待される。
 特徴量割当部124は、割り当てられた特徴量を、例えば、記憶部119に記録してもよい。これにより、記憶部119には、運動状態が付与された区間と特徴量との組が記憶される。特徴量割当部124が計測データの全範囲に含まれる区間の全てに対して特徴量を割り当てれば、区間ごとの特徴量と運動状態との組の変遷を示すデータが生成される。
 ストレス推定部125は、特徴量割当部124により割り当てられた各区間の特徴量を用いて、ストレスを推定する。
 ストレス推定部125は、例えば、予め訓練データセットを用いた学習により生成されたストレス推定モデルを有する。そして、ストレス推定部125は、特徴量割当部124により決定された各区間の特徴量にストレス推定モデルを適用し、出力としてストレスの度合いを示す情報を導出する。ストレスの度合いを示す情報は第1の実施形態の説明で説明された情報と同様でよい。
 ストレス推定モデルは、例えば、区間の運動状態と特徴量との組を入力とする。ストレス推定モデルは、区間ごとの特徴量と運動状態との組の変遷を入力とするモデルでもよい。区間ごとの特徴量と運動状態との組の変遷は、特徴量の統合により生成する代表的な特徴量と運動状態の組に比べ情報量が多いため、より精度のよいストレス推定ができることが期待される。
 図8は、第2の実施形態に係る生体情報処理装置12の動作の流れを示すフローチャートである。ステップS110からステップS113の処理、およびステップS116の処理は、第1の実施形態で説明された同符号の処理と同様でよい。生体情報処理装置12の処理は、生体情報処理装置11の処理に比べると、ステップS114およびステップS115の処理の代わりに、ステップS124およびステップS125の処理を含む。
 ステップS124では、特徴量割当部124が、ステップS113の処理により導出された特徴量に基づき、各区間に特徴量を割り当てる。
 ステップS125では、ストレス推定部125が、特徴量割当部124により割り当てられた各区間の特徴量を用いて、ストレスを推定する。
 第2の実施形態によれば、より精度のよいストレス推定ができる。その理由は、既に述べた通りである。
 <<第3の実施形態>>
 一つの実施形態に係る生体情報処理装置13について説明する。
 図9は、生体情報処理装置13の構成を示すブロック図である。生体情報処理装置13は、セグメント生成部101と、特徴量導出部102と、出力部103とを含む。
 セグメント生成部101は、被測定者の生体情報の時系列データから、生体情報が取得された期間における被測定者の運動状態に基づいて、時系列データの部分であるセグメントを生成する。上記各実施形態のセグメント生成部112は、セグメント生成部101の一例である。
 運動状態は、例えば、数種類のパラメータである。セグメント生成部101は、運動状態が同じである期間(すなわち、同じ運動状態が継続する期間)の一部または全部を、セグメントの期間として設定してもよい。
 特徴量導出部102は、セグメントから特徴量を導出する。上記各実施形態の特徴量導出部113は、特徴量導出部102の一例である。
 出力部103は、特徴量、および特徴量に基づく被測定者の状態に関する情報の、少なくともいずれかを出力する。上記各実施形態の情報出力部116は、出力部103の一例である。
 図10は、生体情報処理装置13の動作の流れを示すフローチャートである。
 ステップS101において、セグメント生成部101が、被験者の運動状態に基づいて、時系列データからセグメントを生成する。
 ステップS102において、特徴量導出部102が、セグメントから特徴量を導出する。
 ステップS103において、出力部103が、特徴量、および特徴量に基づく被測定者の状態に関する情報の、少なくともいずれかを出力する。
 生体情報処理装置13によれば、セグメントごとに導出される特徴量を用いた分析を、より高精度に行うことができる。その理由は、セグメント生成部101が、被験者の運動状態に基づいてセグメントを生成することで、正確に運動状態が識別され、かつ、検出される特徴量の精度を保証することができるからである。検出される特徴量の精度を保証することができる理由は、セグメントの長さが運動状態を識別する単位と同一であるという制限がないからである。
 <実施形態の各部を実現するハードウェアの構成>
 以上、説明した本発明の各実施形態において、各装置の各構成要素は、機能単位のブロックを示している。
 各構成要素の処理は、例えば、コンピュータシステムが、コンピュータ読み取り可能な記憶媒体により記憶された、その処理をコンピュータシステムに実行させるプログラムを、読み込み、実行することによって、実現されてもよい。「コンピュータ読み取り可能な記憶媒体」は、例えば、光ディスク、磁気ディスク、光磁気ディスク、および不揮発性半導体メモリ等の可搬媒体、ならびに、コンピュータシステムに内蔵されるROM(Read Only Memory)およびハードディスク等の記憶装置である。「コンピュータ読み取り可能な記憶媒体」は、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントにあたるコンピュータシステム内部の揮発性メモリのように、プログラムを一時的に保持しているものも含む。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、更に前述した機能をコンピュータシステムにすでに記憶されているプログラムとの組み合わせで実現できるものであってもよい。
 「コンピュータシステム」とは、一例として、図11に示されるようなコンピュータ900を含むシステムである。コンピュータ900は、以下のような構成を含む。
・1つまたは複数のCPU(Central Processing Unit)901
・ROM902
・RAM903
・RAM903へロードされるプログラム904Aおよび記憶情報904B
・プログラム904Aおよび記憶情報904Bを格納する記憶装置905
・記憶媒体906の読み書きを行うドライブ装置907
・通信ネットワーク909と接続する通信インタフェース908
・データの入出力を行う入出力インタフェース910
・各構成要素を接続するバス911
 例えば、各実施形態における各装置の各構成要素は、その構成要素の機能を実現するプログラム904AをCPU901がRAM903にロードして実行することで実現される。各装置の各構成要素の機能を実現するプログラム904Aは、例えば、予め、記憶装置905やROM902に格納される。そして、必要に応じてCPU901がプログラム904Aを読み出す。記憶装置905は、例えば、ハードディスクである。プログラム904Aは、通信ネットワーク909を介してCPU901に供給されてもよいし、予め記憶媒体906に格納されており、ドライブ装置907に読み出され、CPU901に供給されてもよい。なお、記憶媒体906は、例えば、光ディスク、磁気ディスク、光磁気ディスク、および不揮発性半導体メモリ等の、可搬媒体である。
 各装置の実現方法には、様々な変形例がある。例えば、各装置は、構成要素毎にそれぞれ別個のコンピュータ900とプログラムとの可能な組み合わせにより実現されてもよい。また、各装置が備える複数の構成要素が、一つのコンピュータ900とプログラムとの可能な組み合わせにより実現されてもよい。
 また、各装置の各構成要素の一部または全部は、その他の汎用または専用の回路、コンピュータ等やこれらの組み合わせによって実現されてもよい。これらは、単一のチップによって構成されてもよいし、バスを介して接続される複数のチップによって構成されてもよい。
 各装置の各構成要素の一部または全部が複数のコンピュータや回路等により実現される場合には、複数のコンピュータや回路等は、集中配置されてもよいし、分散配置されてもよい。例えば、コンピュータや回路等は、クライアントアンドサーバシステム、クラウドコンピューティングシステム等、各々が通信ネットワークを介して接続される形態として実現されてもよい。
 上記実施形態の一部または全部は以下の付記のようにも記載され得るが、以下には限られない。
 <<付記>>
[付記1]
 被測定者の生体情報の時系列データから、前記生体情報が取得された期間における前記被測定者の運動状態に基づいて前記時系列データの部分であるセグメントを生成する、セグメント生成手段と、
 前記セグメントから特徴量を導出する特徴量導出手段と、
 前記特徴量、および前記特徴量に基づく前記被測定者の状態に関する情報の、少なくともいずれかを出力する出力手段と、
 を備える生体情報処理装置。
[付記2]
 前記セグメント生成手段は、前記運動状態が同じである期間の一部または全部を前記セグメントの期間として設定する、
 付記1に記載の生体情報処理装置。
[付記3]
 前記セグメント生成手段は、前記運動状態が遷移する時点から所定の時間後の時点を前記セグメントの始点として設定する、
 付記1または2に記載の生体情報処理装置。
[付記4]
 前記特徴量導出手段は、所定の長さ未満の前記セグメントからは前記特徴量を導出しない、
 付記1から3のいずれか一つに記載の生体情報処理装置。
[付記5]
 前記セグメント生成手段は、複数の前記セグメントに、当該セグメントにおける前記運動状態に基づくラベルを付与し、
 前記生体情報処理装置は、前記ラベルが同一である複数の前記セグメントから導出される前記特徴量を統合することで、代表的な特徴量を導出する統合手段を備え、
 前記出力手段は、前記代表的な特徴量、および前記代表的な特徴量に基づく前記被測定者の状態に関する情報の、少なくともいずれかを出力する、
 付記1から4のいずれか一つに記載の生体情報処理装置。
[付記6]
 前記統合手段は、第1の長さの第1のセグメントから導出される第1の特徴量と、前記第1のセグメントよりも長い第2の長さの第2のセグメントから導出される第2の特徴量とを統合する場合に、前記代表的な特徴量に対する、前記第2の特徴量の寄与率と前記第1の特徴量の寄与率との比が、前記第2の長さと前記第1の長さとの比よりも大きくなるように、前記第1の特徴量および前記第2の特徴量に重みを付与し、前記重みに基づいて前記第1の特徴量と前記第2の特徴量を統合する、
 付記5に記載の生体情報処理装置。
[付記7]
 前記代表的な特徴量とストレスとの関係の学習により生成されたストレス推定モデルに基づき、前記被測定者のストレスの度合いを推定するストレス推定手段をさらに備え、
 前記出力手段は、前記ストレスの度合いを前記被測定者の状態に関する情報として出力する、
 付記5または6に記載の生体情報処理装置。
[付記8]
 前記セグメント生成手段は、複数の前記セグメントのそれぞれに、当該セグメントにおける前記運動状態および当該セグメントの長さの少なくともいずれかに基づく、当該セグメントから導出される前記特徴量の精度に対する信頼性の高さを示す信頼度を付与し、
 前記生体情報処理装置は、前記複数のセグメントの各々から導出される前記特徴量を、前記信頼度に応じた重みづけを行った上で統合することで全体の特徴量を導出する統合手段を備え、
 前記出力手段は、前記全体の特徴量、および前記全体の特徴量に基づく前記被測定者の状態に関する情報の、少なくともいずれかを出力する、
 付記1に記載の生体情報処理装置。
[付記9]
 前記セグメント生成手段は、所定の長さ未満の前記セグメントに対しては最も低い前記信頼度を付与する、付記8に記載の生体情報処理装置。
[付記10]
 前記セグメントは、前記運動状態が割り当てられた区間の1つ以上の組を含み、
 前記生体情報処理装置は、
 前記セグメントから導出された前記特徴量に基づく値を、当該セグメントを構成する前記区間のそれぞれに割り当てる特徴量割当手段と、
 前記区間に割り当てられた前記特徴量と前記運動状態との組の変動を入力とするストレス推定モデルを用いて、前記被測定者のストレスの度合いを推定するストレス推定手段と、
 を備える付記1に記載の生体情報処理装置。
[付記11]
 付記1から10のいずれか一つに記載の生体情報処理装置と、
 前記生体情報を取得する生体情報取得手段と、
 前記被測定者の動きを表す動き情報を取得する動き情報取得手段と、を含み、
 前記生体情報処理装置は、前記動きを表す情報に基づき前記運動状態を識別する運動状態識別手段を備える、
 生体情報処理システム。
[付記12]
 被測定者の生体情報の時系列データから、前記生体情報が取得された期間における前記被測定者の運動状態に基づいて前記時系列データの部分であるセグメントを生成し、
 前記セグメントから特徴量を導出し、
 前記特徴量、および前記特徴量に基づく前記被測定者の状態に関する情報の、少なくともいずれかを出力する、
 生体情報処理方法。
[付記13]
 前記セグメントの生成において、前記運動状態が同じである期間の一部または全部を前記セグメントの期間として設定する、
 付記12に記載の生体情報処理方法。
[付記14]
 前記セグメントの生成において、前記運動状態が遷移する時点から所定の時間後の時点を前記セグメントの始点として設定する、
 付記12または13に記載の生体情報処理方法。
[付記15]
 前記特徴量の導出において、所定の長さ未満の前記セグメントからは前記特徴量を導出しない、
 付記12から14のいずれか一つに記載の生体情報処理方法。
[付記16]
 前記セグメントの生成において、複数の前記セグメントに、当該セグメントにおける前記運動状態に基づくラベルを付与し、
 前記ラベルが同一である複数の前記セグメントから導出される前記特徴量を統合することで、代表的な特徴量を導出し、
 前記代表的な特徴量、および前記代表的な特徴量に基づく前記被測定者の状態に関する情報の、少なくともいずれかを出力する、
 付記12から15のいずれか一つに記載の生体情報処理方法。
[付記17]
 第1の長さの第1のセグメントから導出される第1の特徴量と、前記第1のセグメントよりも長い第2の長さの第2のセグメントから導出される第2の特徴量とを統合する場合に、前記代表的な特徴量に対する、前記第2の特徴量の寄与率と前記第1の特徴量の寄与率との比が、前記第2の長さと前記第1の長さとの比よりも大きくなるように、前記第1の特徴量および前記第2の特徴量に重みを付与し、前記重みに基づいて前記第1の特徴量と前記第2の特徴量を統合する、
 付記16に記載の生体情報処理方法。
[付記18]
 前記代表的な特徴量とストレスとの関係の学習により生成されたストレス推定モデルに基づき、前記被測定者のストレスの度合いを推定し、
 前記ストレスの度合いを前記被測定者の状態に関する情報として出力する、
 付記16または17に記載の生体情報処理方法。
[付記19]
 前記セグメントの生成後、複数の前記セグメントのそれぞれに、当該セグメントにおける前記運動状態および当該セグメントの長さの少なくともいずれかに基づく、当該セグメントから導出される前記特徴量の精度に対する信頼性の高さを示す信頼度を付与し、
 前記複数のセグメントの各々から導出される前記特徴量を、前記信頼度に応じた重みづけを行った上で統合することで全体の特徴量を導出し、
 前記全体の特徴量、および前記全体の特徴量に基づく前記被測定者の状態に関する情報の、少なくともいずれかを出力する、
 付記12に記載の生体情報処理方法。
[付記20]
 所定の長さ未満の前記セグメントに対しては最も低い前記信頼度を付与する、付記19に記載の生体情報処理方法。
[付記21]
 前記セグメントは、前記運動状態が割り当てられた区間の1つ以上の組を含み、
 前記セグメントから導出された前記特徴量に基づく値を、当該セグメントを構成する前記区間のそれぞれに割り当て、
 前記区間に割り当てられた前記特徴量と前記運動状態との組の変動を入力とするストレス推定モデルを用いて、前記被測定者のストレスの度合いを推定する、
 付記12に記載の生体情報処理方法。
[付記22]
 被測定者の生体情報の時系列データから、前記生体情報が取得された期間における前記被測定者の運動状態に基づいて前記時系列データの部分であるセグメントを生成する、セグメント生成処理と、
 前記セグメントから特徴量を導出する特徴量導出処理と、
 前記特徴量、および前記特徴量に基づく前記被測定者の状態に関する情報の、少なくともいずれかを出力する出力処理と、
 をコンピュータに実行させるプログラムを記憶する、コンピュータ読み取り可能な非一時的な記憶媒体。
[付記23]
 前記セグメント生成処理は、前記運動状態が同じである期間の一部または全部を前記セグメントの期間として設定する、
 付記22に記載の、コンピュータ読み取り可能な非一時的な記憶媒体。
[付記24]
 前記セグメント生成処理は、前記運動状態が遷移する時点から所定の時間後の時点を前記セグメントの始点として設定する、
 付記22または23に記載の、コンピュータ読み取り可能な非一時的な記憶媒体。
[付記25]
 前記特徴量導出処理は、所定の長さ未満の前記セグメントからは前記特徴量を導出しない、
 付記22から24のいずれか一つに記載の、コンピュータ読み取り可能な非一時的な記憶媒体。
[付記26]
 前記セグメント生成処理は、複数の前記セグメントに、当該セグメントにおける前記運動状態に基づくラベルを付与し、
 前記プログラムは、前記ラベルが同一である複数の前記セグメントから導出される前記特徴量を統合することで、代表的な特徴量を導出する統合処理を前記コンピュータに実行させ、
 前記出力処理は、前記代表的な特徴量、および前記代表的な特徴量に基づく前記被測定者の状態に関する情報の、少なくともいずれかを出力する、
 付記22から25のいずれか一つに記載の、コンピュータ読み取り可能な非一時的な記憶媒体。
[付記27]
 前記統合処理は、第1の長さの第1のセグメントから導出される第1の特徴量と、前記第1のセグメントよりも長い第2の長さの第2のセグメントから導出される第2の特徴量とを統合する場合に、前記代表的な特徴量に対する、前記第2の特徴量の寄与率と前記第1の特徴量の寄与率との比が、前記第2の長さと前記第1の長さとの比よりも大きくなるように、前記第1の特徴量および前記第2の特徴量に重みを付与し、前記重みに基づいて前記第1の特徴量と前記第2の特徴量を統合する、
 付記26に記載の、コンピュータ読み取り可能な非一時的な記憶媒体。
[付記28]
 前記プログラムは、前記代表的な特徴量とストレスとの関係の学習により生成されたストレス推定モデルに基づき、前記被測定者のストレスの度合いを推定するストレス推定処理を前記コンピュータにさらに実行させ、
 前記出力処理は、前記ストレスの度合いを前記被測定者の状態に関する情報として出力する、
 付記26または27に記載の、コンピュータ読み取り可能な非一時的な記憶媒体。
[付記29]
 前記セグメント生成処理は、複数の前記セグメントのそれぞれに、当該セグメントにおける前記運動状態および当該セグメントの長さの少なくともいずれかに基づく、当該セグメントから導出される前記特徴量の精度に対する信頼性の高さを示す信頼度を付与し、
 前記プログラムは、前記複数のセグメントの各々から導出される前記特徴量を、前記信頼度に応じた重みづけを行った上で統合することで全体の特徴量を導出する統合処理を前記コンピュータに実行させ、
 前記出力処理は、前記全体の特徴量、および前記全体の特徴量に基づく前記被測定者の状態に関する情報の、少なくともいずれかを出力する、
 付記22に記載の、コンピュータ読み取り可能な非一時的な記憶媒体。
[付記30]
 前記セグメント生成処理は、所定の長さ未満の前記セグメントに対しては最も低い前記信頼度を付与する、付記29に記載の、コンピュータ読み取り可能な非一時的な記憶媒体。
[付記31]
 前記セグメントは、前記運動状態が割り当てられた区間の1つ以上の組を含み、
 前記プログラムは、
 前記セグメントから導出された前記特徴量に基づく値を、当該セグメントを構成する前記区間のそれぞれに割り当てる特徴量割当処理と、
 前記区間に割り当てられた前記特徴量と前記運動状態との組の変動を入力とするストレス推定モデルを用いて、前記被測定者のストレスの度合いを推定するストレス推定処理と、
 を前記コンピュータに実行させる、付記22に記載の、コンピュータ読み取り可能な非一時的な記憶媒体。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 1、2  生体情報処理システム
 5  生体情報取得部
 6  動き情報取得部
 11、12、13  生体情報処理装置
 101  セグメント生成部
 102  特徴量導出部
 103  出力部
 110  制御部
 111  運動状態識別部
 112  セグメント生成部
 113  特徴量導出部
 114  統合部
 115  ストレス推定部
 116  情報出力部
 119  記憶部
 124  特徴量割当部
 125  ストレス推定部
 900  コンピュータ
 901  CPU
 902  ROM
 903  RAM
 904A  プログラム
 904B  記憶情報
 905  記憶装置
 906  記憶媒体
 907  ドライブ装置
 908  通信インタフェース
 909  通信ネットワーク
 910  入出力インタフェース
 911  バス

Claims (31)

  1.  被測定者の生体情報の時系列データから、前記生体情報が取得された期間における前記被測定者の運動状態に基づいて前記時系列データの部分であるセグメントを生成する、セグメント生成手段と、
     前記セグメントから特徴量を導出する特徴量導出手段と、
     前記特徴量、および前記特徴量に基づく前記被測定者の状態に関する情報の、少なくともいずれかを出力する出力手段と、
     を備える生体情報処理装置。
  2.  前記セグメント生成手段は、前記運動状態が同じである期間の一部または全部を前記セグメントの期間として設定する、
     請求項1に記載の生体情報処理装置。
  3.  前記セグメント生成手段は、前記運動状態が遷移する時点から所定の時間後の時点を前記セグメントの始点として設定する、
     請求項1または2に記載の生体情報処理装置。
  4.  前記特徴量導出手段は、所定の長さ未満の前記セグメントからは前記特徴量を導出しない、
     請求項1から3のいずれか一項に記載の生体情報処理装置。
  5.  前記セグメント生成手段は、複数の前記セグメントに、当該セグメントにおける前記運動状態に基づくラベルを付与し、
     前記生体情報処理装置は、前記ラベルが同一である複数の前記セグメントから導出される前記特徴量を統合することで、代表的な特徴量を導出する統合手段を備え、
     前記出力手段は、前記代表的な特徴量、および前記代表的な特徴量に基づく前記被測定者の状態に関する情報の、少なくともいずれかを出力する、
     請求項1から4のいずれか一項に記載の生体情報処理装置。
  6.  前記統合手段は、第1の長さの第1のセグメントから導出される第1の特徴量と、前記第1のセグメントよりも長い第2の長さの第2のセグメントから導出される第2の特徴量とを統合する場合に、前記代表的な特徴量に対する、前記第2の特徴量の寄与率と前記第1の特徴量の寄与率との比が、前記第2の長さと前記第1の長さとの比よりも大きくなるように、前記第1の特徴量および前記第2の特徴量に重みを付与し、前記重みに基づいて前記第1の特徴量と前記第2の特徴量を統合する、
     請求項5に記載の生体情報処理装置。
  7.  前記代表的な特徴量とストレスとの関係の学習により生成されたストレス推定モデルに基づき、前記被測定者のストレスの度合いを推定するストレス推定手段をさらに備え、
     前記出力手段は、前記ストレスの度合いを前記被測定者の状態に関する情報として出力する、
     請求項5または6に記載の生体情報処理装置。
  8.  前記セグメント生成手段は、複数の前記セグメントのそれぞれに、当該セグメントにおける前記運動状態および当該セグメントの長さの少なくともいずれかに基づく、当該セグメントから導出される前記特徴量の精度に対する信頼性の高さを示す信頼度を付与し、
     前記生体情報処理装置は、前記複数のセグメントの各々から導出される前記特徴量を、前記信頼度に応じた重みづけを行った上で統合することで全体の特徴量を導出する統合手段を備え、
     前記出力手段は、前記全体の特徴量、および前記全体の特徴量に基づく前記被測定者の状態に関する情報の、少なくともいずれかを出力する、
     請求項1に記載の生体情報処理装置。
  9.  前記セグメント生成手段は、所定の長さ未満の前記セグメントに対しては最も低い前記信頼度を付与する、請求項8に記載の生体情報処理装置。
  10.  前記セグメントは、前記運動状態が割り当てられた区間の1つ以上の組を含み、
     前記生体情報処理装置は、
     前記セグメントから導出された前記特徴量に基づく値を、当該セグメントを構成する前記区間のそれぞれに割り当てる特徴量割当手段と、
     前記区間に割り当てられた前記特徴量と前記運動状態との組の変動を入力とするストレス推定モデルを用いて、前記被測定者のストレスの度合いを推定するストレス推定手段と、
     を備える請求項1に記載の生体情報処理装置。
  11.  請求項1から10のいずれか一項に記載の生体情報処理装置と、
     前記生体情報を取得する生体情報取得手段と、
     前記被測定者の動きを表す動き情報を取得する動き情報取得手段と、を含み、
     前記生体情報処理装置は、前記動きを表す情報に基づき前記運動状態を識別する運動状態識別手段を備える、
     生体情報処理システム。
  12.  被測定者の生体情報の時系列データから、前記生体情報が取得された期間における前記被測定者の運動状態に基づいて前記時系列データの部分であるセグメントを生成し、
     前記セグメントから特徴量を導出し、
     前記特徴量、および前記特徴量に基づく前記被測定者の状態に関する情報の、少なくともいずれかを出力する、
     生体情報処理方法。
  13.  前記セグメントの生成において、前記運動状態が同じである期間の一部または全部を前記セグメントの期間として設定する、
     請求項12に記載の生体情報処理方法。
  14.  前記セグメントの生成において、前記運動状態が遷移する時点から所定の時間後の時点を前記セグメントの始点として設定する、
     請求項12または13に記載の生体情報処理方法。
  15.  前記特徴量の導出において、所定の長さ未満の前記セグメントからは前記特徴量を導出しない、
     請求項12から14のいずれか一項に記載の生体情報処理方法。
  16.  前記セグメントの生成において、複数の前記セグメントに、当該セグメントにおける前記運動状態に基づくラベルを付与し、
     前記ラベルが同一である複数の前記セグメントから導出される前記特徴量を統合することで、代表的な特徴量を導出し、
     前記代表的な特徴量、および前記代表的な特徴量に基づく前記被測定者の状態に関する情報の、少なくともいずれかを出力する、
     請求項12から15のいずれか一項に記載の生体情報処理方法。
  17.  第1の長さの第1のセグメントから導出される第1の特徴量と、前記第1のセグメントよりも長い第2の長さの第2のセグメントから導出される第2の特徴量とを統合する場合に、前記代表的な特徴量に対する、前記第2の特徴量の寄与率と前記第1の特徴量の寄与率との比が、前記第2の長さと前記第1の長さとの比よりも大きくなるように、前記第1の特徴量および前記第2の特徴量に重みを付与し、前記重みに基づいて前記第1の特徴量と前記第2の特徴量を統合する、
     請求項16に記載の生体情報処理方法。
  18.  前記代表的な特徴量とストレスとの関係の学習により生成されたストレス推定モデルに基づき、前記被測定者のストレスの度合いを推定し、
     前記ストレスの度合いを前記被測定者の状態に関する情報として出力する、
     請求項16または17に記載の生体情報処理方法。
  19.  前記セグメントの生成後、複数の前記セグメントのそれぞれに、当該セグメントにおける前記運動状態および当該セグメントの長さの少なくともいずれかに基づく、当該セグメントから導出される前記特徴量の精度に対する信頼性の高さを示す信頼度を付与し、
     前記複数のセグメントの各々から導出される前記特徴量を、前記信頼度に応じた重みづけを行った上で統合することで全体の特徴量を導出し、
     前記全体の特徴量、および前記全体の特徴量に基づく前記被測定者の状態に関する情報の、少なくともいずれかを出力する、
     請求項12に記載の生体情報処理方法。
  20.  所定の長さ未満の前記セグメントに対しては最も低い前記信頼度を付与する、請求項19に記載の生体情報処理方法。
  21.  前記セグメントは、前記運動状態が割り当てられた区間の1つ以上の組を含み、
     前記セグメントから導出された前記特徴量に基づく値を、当該セグメントを構成する前記区間のそれぞれに割り当て、
     前記区間に割り当てられた前記特徴量と前記運動状態との組の変動を入力とするストレス推定モデルを用いて、前記被測定者のストレスの度合いを推定する、
     請求項12に記載の生体情報処理方法。
  22.  被測定者の生体情報の時系列データから、前記生体情報が取得された期間における前記被測定者の運動状態に基づいて前記時系列データの部分であるセグメントを生成する、セグメント生成処理と、
     前記セグメントから特徴量を導出する特徴量導出処理と、
     前記特徴量、および前記特徴量に基づく前記被測定者の状態に関する情報の、少なくともいずれかを出力する出力処理と、
     をコンピュータに実行させるプログラムを記憶する、コンピュータ読み取り可能な非一時的な記憶媒体。
  23.  前記セグメント生成処理は、前記運動状態が同じである期間の一部または全部を前記セグメントの期間として設定する、
     請求項22に記載の、コンピュータ読み取り可能な非一時的な記憶媒体。
  24.  前記セグメント生成処理は、前記運動状態が遷移する時点から所定の時間後の時点を前記セグメントの始点として設定する、
     請求項22または23に記載の、コンピュータ読み取り可能な非一時的な記憶媒体。
  25.  前記特徴量導出処理は、所定の長さ未満の前記セグメントからは前記特徴量を導出しない、
     請求項22から24のいずれか一項に記載の、コンピュータ読み取り可能な非一時的な記憶媒体。
  26.  前記セグメント生成処理は、複数の前記セグメントに、当該セグメントにおける前記運動状態に基づくラベルを付与し、
     前記プログラムは、前記ラベルが同一である複数の前記セグメントから導出される前記特徴量を統合することで、代表的な特徴量を導出する統合処理を前記コンピュータに実行させ、
     前記出力処理は、前記代表的な特徴量、および前記代表的な特徴量に基づく前記被測定者の状態に関する情報の、少なくともいずれかを出力する、
     請求項22から25のいずれか一項に記載の、コンピュータ読み取り可能な非一時的な記憶媒体。
  27.  前記統合処理は、第1の長さの第1のセグメントから導出される第1の特徴量と、前記第1のセグメントよりも長い第2の長さの第2のセグメントから導出される第2の特徴量とを統合する場合に、前記代表的な特徴量に対する、前記第2の特徴量の寄与率と前記第1の特徴量の寄与率との比が、前記第2の長さと前記第1の長さとの比よりも大きくなるように、前記第1の特徴量および前記第2の特徴量に重みを付与し、前記重みに基づいて前記第1の特徴量と前記第2の特徴量を統合する、
     請求項26に記載の、コンピュータ読み取り可能な非一時的な記憶媒体。
  28.  前記プログラムは、前記代表的な特徴量とストレスとの関係の学習により生成されたストレス推定モデルに基づき、前記被測定者のストレスの度合いを推定するストレス推定処理を前記コンピュータにさらに実行させ、
     前記出力処理は、前記ストレスの度合いを前記被測定者の状態に関する情報として出力する、
     請求項26または27に記載の、コンピュータ読み取り可能な非一時的な記憶媒体。
  29.  前記セグメント生成処理は、複数の前記セグメントのそれぞれに、当該セグメントにおける前記運動状態および当該セグメントの長さの少なくともいずれかに基づく、当該セグメントから導出される前記特徴量の精度に対する信頼性の高さを示す信頼度を付与し、
     前記プログラムは、前記複数のセグメントの各々から導出される前記特徴量を、前記信頼度に応じた重みづけを行った上で統合することで全体の特徴量を導出する統合処理を前記コンピュータに実行させ、
     前記出力処理は、前記全体の特徴量、および前記全体の特徴量に基づく前記被測定者の状態に関する情報の、少なくともいずれかを出力する、
     請求項22に記載の、コンピュータ読み取り可能な非一時的な記憶媒体。
  30.  前記セグメント生成処理は、所定の長さ未満の前記セグメントに対しては最も低い前記信頼度を付与する、請求項29に記載の、コンピュータ読み取り可能な非一時的な記憶媒体。
  31.  前記セグメントは、前記運動状態が割り当てられた区間の1つ以上の組を含み、
     前記プログラムは、
     前記セグメントから導出された前記特徴量に基づく値を、当該セグメントを構成する前記区間のそれぞれに割り当てる特徴量割当処理と、
     前記区間に割り当てられた前記特徴量と前記運動状態との組の変動を入力とするストレス推定モデルを用いて、前記被測定者のストレスの度合いを推定するストレス推定処理と、
     を前記コンピュータに実行させる、請求項22に記載の、コンピュータ読み取り可能な非一時的な記憶媒体。
PCT/JP2017/036229 2017-10-05 2017-10-05 生体情報処理装置、生体情報処理システム、生体情報処理方法、および記憶媒体 WO2019069417A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/036229 WO2019069417A1 (ja) 2017-10-05 2017-10-05 生体情報処理装置、生体情報処理システム、生体情報処理方法、および記憶媒体
JP2019546476A JP6943287B2 (ja) 2017-10-05 2017-10-05 生体情報処理装置、生体情報処理システム、生体情報処理方法、およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/036229 WO2019069417A1 (ja) 2017-10-05 2017-10-05 生体情報処理装置、生体情報処理システム、生体情報処理方法、および記憶媒体

Publications (1)

Publication Number Publication Date
WO2019069417A1 true WO2019069417A1 (ja) 2019-04-11

Family

ID=65994204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036229 WO2019069417A1 (ja) 2017-10-05 2017-10-05 生体情報処理装置、生体情報処理システム、生体情報処理方法、および記憶媒体

Country Status (2)

Country Link
JP (1) JP6943287B2 (ja)
WO (1) WO2019069417A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020209117A1 (ja) * 2019-04-08 2020-10-15
WO2022201338A1 (ja) * 2021-03-24 2022-09-29 日本電気株式会社 特徴量生成装置、歩容計測システム、特徴量生成方法、および記録媒体
WO2022208874A1 (ja) * 2021-04-02 2022-10-06 日本電気株式会社 学習装置、ストレス推定装置、学習方法、ストレス推定方法及び記憶媒体
WO2023119433A1 (ja) * 2021-12-21 2023-06-29 日本電気株式会社 算出方法、算出装置及び記憶媒体
WO2023119562A1 (ja) * 2021-12-23 2023-06-29 日本電気株式会社 学習装置、ストレス推定装置、学習方法、ストレス推定方法及び記憶媒体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032579A1 (ja) * 2008-09-19 2010-03-25 株式会社日立製作所 行動履歴の生成方法及び行動履歴の生成システム
US20140073486A1 (en) * 2012-09-04 2014-03-13 Bobo Analytics, Inc. Systems, devices and methods for continuous heart rate monitoring and interpretation
JP2016202347A (ja) * 2015-04-17 2016-12-08 セイコーエプソン株式会社 生体情報処理システム、生体情報処理装置及び解析結果情報の生成方法
JP2017127377A (ja) * 2016-01-18 2017-07-27 セイコーエプソン株式会社 携帯型電子機器、携帯型電子機器の表示方法、及び携帯型電子機器の表示プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032579A1 (ja) * 2008-09-19 2010-03-25 株式会社日立製作所 行動履歴の生成方法及び行動履歴の生成システム
US20140073486A1 (en) * 2012-09-04 2014-03-13 Bobo Analytics, Inc. Systems, devices and methods for continuous heart rate monitoring and interpretation
JP2016202347A (ja) * 2015-04-17 2016-12-08 セイコーエプソン株式会社 生体情報処理システム、生体情報処理装置及び解析結果情報の生成方法
JP2017127377A (ja) * 2016-01-18 2017-07-27 セイコーエプソン株式会社 携帯型電子機器、携帯型電子機器の表示方法、及び携帯型電子機器の表示プログラム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020209117A1 (ja) * 2019-04-08 2020-10-15
JP7136341B2 (ja) 2019-04-08 2022-09-13 日本電気株式会社 ストレス推定装置、ストレス推定方法およびプログラム
WO2022201338A1 (ja) * 2021-03-24 2022-09-29 日本電気株式会社 特徴量生成装置、歩容計測システム、特徴量生成方法、および記録媒体
WO2022208874A1 (ja) * 2021-04-02 2022-10-06 日本電気株式会社 学習装置、ストレス推定装置、学習方法、ストレス推定方法及び記憶媒体
WO2023119433A1 (ja) * 2021-12-21 2023-06-29 日本電気株式会社 算出方法、算出装置及び記憶媒体
WO2023119562A1 (ja) * 2021-12-23 2023-06-29 日本電気株式会社 学習装置、ストレス推定装置、学習方法、ストレス推定方法及び記憶媒体

Also Published As

Publication number Publication date
JP6943287B2 (ja) 2021-09-29
JPWO2019069417A1 (ja) 2020-10-15

Similar Documents

Publication Publication Date Title
JP6943287B2 (ja) 生体情報処理装置、生体情報処理システム、生体情報処理方法、およびプログラム
Dey et al. InstaBP: cuff-less blood pressure monitoring on smartphone using single PPG sensor
JP5920364B2 (ja) 情報処理装置、代表波形生成方法および代表波形生成プログラム
EP3410924B1 (en) Machine learnt model to detect rem sleep periods using a spectral analysis of heart rate and motion
US20170215808A1 (en) Machine learnt model to detect rem sleep periods using a spectral analysis of heart rate and motion
US9179862B2 (en) Method and system for assessing locomotive bio-rhythms
US11497450B2 (en) System and methods for adaptive noise quantification in dynamic biosignal analysis
EP2745777A1 (en) Device and method for calculating cardiorespiratory fitness level and energy expenditure of a living being
CN107979986B (zh) 用于产生指示心脏功能失常的信息的方法和装置
RU2719945C2 (ru) Устройство, способ и система для подсчета количества циклов периодического движения субъекта
JP6951516B2 (ja) 人の歩調を検出する方法及びシステム
JP2021514768A (ja) 睡眠段階検出のための方法、コンピューティングデバイス、およびウェアラブルデバイス
EP2845539A1 (en) Device and method for automatically normalizing the physiological signals of a living being
US20170127960A1 (en) Method and apparatus for estimating heart rate based on movement information
JP2023089729A (ja) 計算機システム及び情動推定方法
JP7136341B2 (ja) ストレス推定装置、ストレス推定方法およびプログラム
CN113288133A (zh) 用于预测血糖值的方法、装置、存储介质及处理器
JP2019013659A (ja) 心拍間隔モデリング装置、および異常状態判定方法
CN111407261A (zh) 生物信号的周期信息的测量方法及装置、电子设备
JP7276586B2 (ja) ストレス推定装置、ストレス推定方法、およびプログラム
KR101310500B1 (ko) 피부 특성을 이용한 건강 상태 판단 장치 및 방법, 건강 분류 함수 생성 장치 및 그 방법
Poli et al. Identification issues associated with the use of wearable accelerometers in lifelogging
WO2022157872A1 (ja) 情報処理装置、特徴量選択方法、教師データ生成方法、推定モデル生成方法、ストレス度の推定方法、およびプログラム
Wiktorski et al. Methods for preprocessing time and distance series data from personal monitoring devices
US20240081707A1 (en) Stress level estimation method, training data generation method, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546476

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927990

Country of ref document: EP

Kind code of ref document: A1