WO2019066568A1 - Method for manufacturing coil unit - Google Patents

Method for manufacturing coil unit Download PDF

Info

Publication number
WO2019066568A1
WO2019066568A1 PCT/KR2018/011554 KR2018011554W WO2019066568A1 WO 2019066568 A1 WO2019066568 A1 WO 2019066568A1 KR 2018011554 W KR2018011554 W KR 2018011554W WO 2019066568 A1 WO2019066568 A1 WO 2019066568A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
slit
block
machining
coil block
Prior art date
Application number
PCT/KR2018/011554
Other languages
French (fr)
Korean (ko)
Inventor
이의천
권순오
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2019066568A1 publication Critical patent/WO2019066568A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a method of manufacturing a coil unit, and more particularly, to a method of manufacturing a coil unit that increases productivity and mass production cost.
  • the present invention has been conceived to solve the problems of the conventional art described above, and it is an object of the present invention to provide a stator and a rotor which can be easily assembled, have a high dot ratio as compared with a conventional circular coil, And has a purpose of providing a coil unit having low heat generation and high efficiency because the electric resistance per coil of each coil is uniform.
  • a method of manufacturing a coil unit comprising: forming a coil block as a raw material for manufacturing the coil unit; A slit machining step of forming a plurality of coil layers by machining a slit portion continuous in a spiral shape from an upper portion to a lower portion of the coil block around the outer side surface of the coil block through a block forming step and a cutting process, A hollow portion machining step and a slit machining step for machining a hollow portion penetrating the upper and lower surfaces and a compressing step for compressing the coil block through the hollow portion machining step in the up and down direction to reduce the gap between the plurality of coil layers do.
  • the slit forming step may include cutting the exposed surface of the coil block in a state that the coil block is inserted and fixed in a fixing jig having at least one fixing groove formed in a shape corresponding to one of the surfaces of the coil block, Processing can be performed.
  • the slit forming step is performed such that the first angle formed by the outer surface of the coil layer with respect to the horizontal plane is smaller than the second angle formed by the mutually extending surface of the outer surface of the coil layer with respect to the horizontal plane, And the outer surface of the coil layer can be processed.
  • the coil block can be compressed in the vertical direction.
  • the hollow machining step may be performed before the slit machining step.
  • the hollow machining step may be performed after the slit machining step.
  • the coil block is inserted and fixed in a fixing jig having at least one fixing groove formed in a shape corresponding to one of the respective surfaces of the coil block, A cutting process can be performed.
  • the hollow portion machining step may be performed while performing the block forming step.
  • a method of manufacturing a coil unit comprising the steps of: forming a coil block, which is a raw material, so as to form a hollow portion penetrating the upper and lower surfaces of the coil block; and cutting the block around the outer surface of the coil block And a slit machining step of forming a plurality of coil layers by machining continuous slit portions in a spiral shape.
  • the block forming step may be performed by drawing a base material having a hollow inside and cutting a predetermined length of the base material to form the coil block.
  • the block forming step may include a slope slit processing step of forming a sloped sloped slit on the 1-1 side of the coil block, a plane slit processing step of forming a plane slit on a pair of facing second side faces of the coil block, And a connecting slit processing step of forming a connecting slit for connecting the plane slits formed on the second side face to the first-second side face of the coil block formed on the opposite side of the 1-1 side face have.
  • the slope slit machining process may process the slope slits together with a part of the plane slits formed on both sides of the slope slit.
  • a hollow portion expanding step may be further included to expand the hollow portion by machining the hollow portion of the coil block.
  • the method of manufacturing a coil unit of the present invention for solving the above problems has the following effects.
  • a motor and a generator can be produced by a simple assembling process without a separate winding operation in the manufacture of the motor and the generator through the coil unit provided in a block form so as to be fitted to the coupling portion provided in the rotor and the stator.
  • stator and the rotor have a relatively higher drop ratio than the conventional structure, the motor and the generator can be produced with high efficiency.
  • FIG. 1 is a view showing a coil block formed in a method of manufacturing a coil unit according to an embodiment of the present invention
  • FIG. 2 is a view showing a fixing jig for applying a method of manufacturing a coil unit according to an embodiment of the present invention
  • FIGS. 3 to 6 are views illustrating a process of performing a slitting process in a method of manufacturing a coil unit according to an embodiment of the present invention
  • FIG. 7 is a view illustrating a process of manufacturing a hollow unit according to an embodiment of the present invention.
  • FIGS. 8 and 9 are views showing a process of performing a compression step in a method of manufacturing a coil unit according to an embodiment of the present invention.
  • FIG. 10 is a view showing a coil unit manufactured through a method of manufacturing a coil unit according to an embodiment of the present invention.
  • FIG. 11 is a graph showing changes in machining quality according to process conditions in a method of manufacturing a coil unit according to an embodiment of the present invention.
  • FIG. 12 is a view showing a state in which a base material is drawn out in a method of manufacturing a coil unit according to another embodiment of the present invention.
  • FIG. 13 is a view illustrating a coil block formed in a method of manufacturing a coil unit according to another embodiment of the present invention.
  • FIGS. 14 and 15 are views showing a method of manufacturing a coil unit according to another embodiment of the present invention, in which a plurality of slopes are formed on a second side of a coil block; FIG.
  • 16 is a view illustrating a method of forming a slope slit on a 1-1 side of a coil block in a method of manufacturing a coil unit according to another embodiment of the present invention
  • FIG. 17 is a view illustrating a method of manufacturing a coil unit according to another embodiment of the present invention, in which a plane slit is formed on a second side surface of a coil block;
  • FIG. 18 is a view showing a method of manufacturing a coil unit according to another embodiment of the present invention, in which a connecting slit is formed on a first-second side of a coil block;
  • FIG. 19 is a view illustrating a method of manufacturing a coil unit according to another embodiment of the present invention, in which a hollow portion of a coil block is expanded;
  • FIG. 20 is a view showing a coil unit manufactured through a method of manufacturing a coil unit according to another embodiment of the present invention.
  • the present invention is a method for manufacturing a new type of coil having a special shape structure for minimizing waste of slot space provided inside a stator or a rotor.
  • the coil manufactured according to the present invention is a special flat coil type and has a relatively high drop ratio compared to the conventional structure of a stator and a rotor as compared with a conventional circular coil, so that it is possible to produce a high efficiency motor and a generator.
  • the present invention has been made keeping in mind the above problems occurring in the prior art, and it is an object of the present invention to provide a high-specific-rate special flat coil type coil having no joint portion between a start end and an end end of a coil, A manufacturing method capable of mass production is provided, which will be described in detail below.
  • FIG. 1 is a view showing a state in which a coil block 10 is molded in a method of manufacturing a coil unit according to an embodiment of the present invention.
  • a block molding step of molding a coil block 10, which is a raw material for manufacturing the coil unit, is performed.
  • the coil block 10 is formed by using a casting method such as die casting or a forging method such as pressing.
  • the productivity can be assured because it is superior in terms of the production speed, and when the forging method is used, the production rate can be lower than that of the casting method, As the structure of the coil unit becomes finer, the performance of the coil unit becomes better as the coil unit becomes more denser. Therefore, there is an advantage that a relatively high quality coil unit can be produced.
  • the coil block 10 manufactured by this step is formed to have a hexahedral shape as a whole.
  • a surface exposed on the upper side of the coil block 10 is referred to as an upper surface A ⁇ and a surface positioned below is referred to as a lower surface A3.
  • Four surfaces positioned between the lower surface A4 and the lower surface A3 are referred to as outer surfaces A1 and A2.
  • the four outer surfaces A1 and A2 are formed so that the opposite surfaces of the outer surfaces A1 and A2 have the same width, and the pair of outer surfaces having a relatively small width are defined as the first side A1 And a pair of outer side surfaces having a relatively large width are defined as a second side surface A2.
  • the coil block 10 manufactured by this step has the rectangular shape of the upper surface A4 and the lower surface A3 and the lower surface A3 is formed to have a wider area than the upper surface A4 .
  • the widths of the four outer surfaces A1 and A2 gradually increase from the upper portion to the lower portion and are formed to have a generally inclined shape. That is, each of the four outer surfaces A1 and A2 has a trapezoidal shape.
  • a machining groove forming step of forming an inclined machining groove 11 on the upper surface A4 of the coil block 10 may be performed.
  • the machining groove 11 is for machining the slit portion, and forms the starting point of the helical coil layer.
  • the fixing jig 100 shown in Fig. 2 can be used for machining the slit portion thereafter.
  • the fixing jig 100 is for fixing the coil block 10 so that the coil block 10 can be easily cut thereafter.
  • the fixing block 100 includes at least one fixing groove formed in a shape corresponding to one of the surfaces of the coil block 10, (101, 102, 103).
  • the fixing jig 100 includes a first fixing groove 101 corresponding to the first side A1 of the coil block 10 and a second side surface A2 of the coil block 10, And a third fixing groove 103 corresponding to the upper surface A4 of the coil block 10.
  • the second fixing groove 102 corresponds to the upper surface A4 of the coil block 10,
  • the surface located on the opposite side is inserted into the fixing grooves 101, 102, 103 so as to face the bottom surfaces of the fixing grooves 101, 102, A cutting process can be performed on the exposed surface on the opposite side of the coil block 10.
  • the depth of the fixing grooves 101, 102, and 103 may be such that the coil block 10 is at least partially protruded in a state where the coil block 10 is inserted.
  • a slit machining step is performed as shown in Figs. 3 to 6.
  • the slit machining step includes a step of forming a plurality of coil layers by machining a continuous slit portion in a spiral shape from the upper portion to the lower portion of the coil block 10 around the outer surface of the coil block 10 through cutting to be.
  • a water jet method or other machining method may be applied as a cutting method used for machining the slit part.
  • a cutting process is performed using a water jet.
  • the slit processing step may include a slope slit processing step for processing the first side surface A1 and a plane slit processing step for processing the second side surface A2.
  • one of the pair of first side surfaces A1 of the coil block 10 is inserted into the first fixing groove 101 of the fixing jig 100 , A water jet is sprayed in an oblique direction on the opposite side first side A1 to form the slope slit 12.
  • the slope slit 12 is formed to have a smaller width than the entire width of the first side surface A1, and the angle of the slope slit 12 is formed to be equal to the slope of the processing groove 11 It will be possible.
  • the first side surface A1 on the opposite side can be further processed to complete the slope slit machining process.
  • one of the pair of second side surfaces A2 of the coil block 10 is fixed to the second fixing groove (not shown) of the fixing jig 100 102, a water jet is sprayed in a horizontal direction on the second side surface A2 on the opposite side to form the plain slit 13.
  • the plane slit 13 can be formed over the entire width of the second side surface A2, and the processing depth can be adjusted to adjust the planar slit 13 in the first side surface A1 without forming the slope slit 12 So that both ends of the slope slit 12 and both ends of the plane slit 13 can be connected to each other.
  • the second side surface A2 on the opposite side can be further processed to complete the plane slit machining process.
  • the hollow portion machining step is a process of machining the hollow portion 14 passing through the upper surface A4 and the lower surface A3 of the coil block 10, The engaging portion can be inserted.
  • the upper surface A4 of the coil block 10 is inserted into the third fixing groove 103 of the fixing jig 100.
  • a hollow portion 14 is formed by injecting a water jet while being inserted.
  • the water jet can be moved along the rim of the region where the hollow portion 14 is to be formed, and the slit portion is already formed by the entire process, so that the central region completely falls off by the above- (14) is formed at the center of the body (10).
  • burrs generated inside the coil block 10 by the slit machining step described above can be removed through the hollow machining step, and therefore, It is possible to process a beautiful surface.
  • the hollow portion machining step may be performed before the slit machining step. That is, before the slit-forming step is performed, the upper surface A4 of the coil block 10 is inserted into the third fixing groove 103 of the fixing jig 100, May be preferentially formed.
  • the hollow machining step may be performed together during the above-described block forming step. That is, the hollow portion 14 may be formed in the process of forming the coil block 10 by using a casting process such as die casting or a forging process such as pressing. In such a case, There is no need to increase productivity.
  • the coil block 10 is formed with a continuous slit portion spirally extending from the upper portion to the lower portion, and a plurality of coil layers are alternately formed with the slit portion.
  • the gap between the plurality of coil layers L is reduced by vertically compressing the coil block 10 that has undergone the slit machining step and the hollow machining step A compression step is performed.
  • the reason for carrying out this step is that when the slit processing step is performed through the cutting process, the height of the slit portion formed between the coil layers L is relatively high, So as to improve the drop rate of the coil unit and to have a dense density.
  • the outer surface of the coil block 10 is formed to be flat and efficiency can be further increased.
  • the first angle [theta] 1 formed by the outer surface of the coil layer L with respect to the horizontal surface is smaller than the angle [
  • the outer surface of the slit portion and the outer surface of the coil layer L can be processed such that the outer surface of the slit portion and the outer surface of the coil layer L are smaller than the second angle?
  • the outer surface of the coil block 10 can be formed flat by the compressing step.
  • the outer surface of the coil layer L may be processed in the slitting step as in the present embodiment.
  • the cutting process using the water jet is utilized, and the processing quality of the coil unit can be changed according to the process conditions.
  • FIG. 11 is a graph showing a change in machining quality (surface polishing degree, burr amount, etc.) according to processing conditions in the method of manufacturing a coil unit according to an embodiment of the present invention.
  • the vertical axis of the graph represents the machining quality and the horizontal axis represents the amount of change in the process conditions.
  • the numbers shown below the abscissa indicate the injection pressure (bar), the diameter of the orifice ( ⁇ ) and the amount of abrasive (g) per unit volume of water (g), respectively.
  • the diameter of the orifice is 0.30 ⁇ m
  • the amount of abrasive admixture per 1 liter of water is 450 g, which indicates the highest process quality.
  • FIGS. 12 to 20 are views showing a method of manufacturing a coil unit according to another embodiment of the present invention.
  • the method of manufacturing a coil unit according to another embodiment of the present invention shown in FIGS. 12 to 20 may include a block molding step, a slope forming step, a slit processing step, and a hollow part expanding step as a whole. Each of these steps will be described in detail below.
  • the block forming step includes forming a coil block 10 as a raw material for manufacturing the coil unit and a hollow portion 14 penetrating the upper surface A4 and the lower surface A3 of the coil block 10 .
  • the block forming step includes a step of forming a hollow H inward as shown in FIG.
  • the formed base material 1 is pulled out and cut by a predetermined length of the base material 1 to form the coil block 10 as shown in FIG.
  • the coil block 10 of the present embodiment has the first side faces A1-1 and A1-2, the pair of second side faces A2, the upper face A4 and the lower face A2 as in the above- A3).
  • the first side faces A1-1 and A1-2 are formed into different shapes, Will be referred to as the first-first side A1-1 and the first-second side A1-2.
  • the coil block 10 includes a main body 10a forming a main body of a coil unit to be machined, and an end winding connection portion to which an end winding for connecting the coil unit to another coil unit is formed And an end winding forming portion 10b for forming an end winding. The processing of these will be described later.
  • a plurality of inclined surfaces 22 and a plurality of inclined surfaces 22 are alternately formed on the second pair of opposing side surfaces A2 of the coil block 10, A slope forming step of forming a slope 23 is performed.
  • the sloped surface 22 formed by this step forms the outer surface of each coil layer of the coil unit to be machined, and the vertical surface 23 forms an area where the plane slit 13 (see FIG. 17) do.
  • the inclined surface 22 and the vertical surface 23 can be formed by a pressing process by a pair of presses 200.
  • the pair of presses 200 are formed to face each other, and an insertion groove 210 into which a part of the coil block 10 and a remaining part of the coil block 10 can be respectively inserted is formed on the opposing surfaces.
  • the insertion groove 210 is formed with a bent portion 212 for forming the plurality of inclined surfaces 22 and the vertical surface 23 so that the pair of presses 200 are inserted into the coil block 10,
  • the deformation of the coil block 10 is caused by pressing the second side surface A2 of the tapered surface 22 and the shape of the inclined surface 22 and the vertical surface 23 is formed.
  • the block forming step includes a slope slit machining step of forming a sloped slope 12 on the first-side surface A1-1 of the coil block 10 as shown in Fig. 16, 17, the plane slit 13 is formed on a pair of opposing second side surfaces A2 of the coil block 10 as shown in FIG. 17, (12a) connecting the plane slits (13) formed on the second side surface (A2) to the first side surface (A1-2) of the coil block formed on the opposite side of the coil block Slit processing.
  • the coil block 10 is cut by rotation to form a plurality of slits And a processing machine 400 including a processing tool 410 is used.
  • the plurality of processing tools 410 are spaced from each other by a predetermined distance, and can process each slit.
  • the whole of the plurality of machining tools 410 is divided into the slope slit
  • the slit slit 12 can be machined in a state of being inclined so as to correspond to the inclination angle? 3 of the slit slit 12, and the distance d1, May correspond to the height (d1) of the coil layer.
  • the slope slit machining process can process a part of the plane slit 13 formed on both sides of the slope slit 12 together with the machining of the slope slit 12.
  • the inclination angle of the plurality of processing tools 410 may be adjusted to perform the processing in a horizontal state.
  • an end winding connection portion forming process for forming the end winding connection portion 30 by processing the end winding formation portion 10b of the coil block 10 may be performed.
  • the coil unit which is completed as described above and is coupled to the coupling portion provided in the stator or the rotor, may be connected to an end winding for coupling with another coil unit, thereby processing the end winding connection portion 30 in this process.
  • a plane slit process is performed to form a plane slit 13 on a pair of opposing second side surfaces A2 of the coil block 10 as shown in FIG.
  • the slope slitting process is performed by machining the pair of second side surfaces A2 through a pair of processing machines 400, And a horizontal plane slit 13 is formed on the two side surfaces A2.
  • the first side (A1-2) of the coil block formed on the side opposite to the first side (A1-1) A connecting slit forming process is performed to form connecting slits 12a connecting the plane slits 13 formed on the substrate A2 with each other.
  • the connecting slit process is performed by cutting the remaining slit of the coil block 10 remaining on the first-second side A1-2 after machining the plane slit 13 to form the connecting slit 12a
  • a slit portion continuous in a spiral shape is formed around the coil block 10 from the upper portion to the lower portion of the coil block 10, and a plurality of coil layers are formed.
  • a hollow portion expansion step of expanding the hollow portion 14 by machining the periphery 24 of the hollow portion 14 of the coil block 10 may be performed.
  • the size of the hollow portion 14 is precisely matched with the engaging portion provided in the stator or the rotor, and the area of the hollow portion 14 is equal to the cross sectional area of the teeth of the core provided in the stator or rotor .
  • the hollow portion expansion step may be performed in a state in which the coil block 10 is fixed using a pair of fixing devices 500 for fixing one side and the other side coil layer of the coil block 10,
  • the periphery 24 of the hollow portion 14 of the coil block 10 is processed by using a water jet W or the like.
  • the fixing device 500 includes a fixing part 510 having a plurality of fixing grooves 512 for fixing the respective coil layers L of the coil block 10 in the vertical direction, And a moving unit 520 for moving the moving unit 510 forward and backward.
  • the pair of fixing devices 500 facing each other move in a direction approaching each other with the coil block 10 interposed therebetween to fix the coil block 10, and in this state, The lower surface A3 and the upper surface A4 of the base 10 may be exposed between the pair of fixing devices 500.
  • the water jet W can expand the hollow portion 14 by processing the periphery 24 of the hollow portion 14 of the coil block 10.
  • the water jet W is used to process the periphery 24 of the hollow portion 14.
  • the present invention is not limited to this embodiment, and various processing devices can be used.
  • the slit portion including the slope slit 12, the plain slit 13, and the connection slit 12a is formed in the coil block 10, and the slit portion including the slit slit 12, Is completed.

Abstract

A method for manufacturing a coil unit, according to the present invention, which is connected to a connection portion provided on a stator or a rotor comprises: a block molding step for molding a coil block which is a raw material for manufacturing a coil unit; a slit processing step for forming a plurality of coil layers by processing a slit portion, which spirally continues from the upper part to the lower part of the coil block, on the periphery of the outer lateral surface of the coil block by means of cutting; a hollow portion processing step for processing a hollow portion passing through the upper surface and the lower surface of the coil block; and a compressing step for vertically compressing the coil block, for which the slit processing step and the hollow portion processing step have been performed, and thus reducing the gaps between the plurality of coil layers.

Description

코일유닛의 제조방법Manufacturing method of coil unit
본 발명은 코일유닛의 제조방법에 관한 것으로서, 보다 상세하게는 대량생산을 통해 생산성을 높이고 제조단가를 절감할 수 있도록 하는 코일유닛의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a coil unit, and more particularly, to a method of manufacturing a coil unit that increases productivity and mass production cost.
전동기의 효율 증대를 위한 연구가 활발하게 진행되고 있는 최근에는 전기자동차 및 발전설비에 사용되는 전동기 및 발전기의 효율 개선은 매우 큰 경제적 효과를 유발할 수 있다.In recent years, studies for increasing the efficiency of motors have been actively carried out. Recently, improvement of the efficiency of electric motors and generators used in electric vehicles and power generation facilities can cause a great economic effect.
이에 따라 전동기의 효율을 향상시키기 위한 방법의 일환으로, 전동기 및 발전기의 로터 또는 스테이터에 감기는 코일의 점적율(占積率, coil space factor 또는 conductor occupying ratio)을 향상시키기 위한 다양한 방법들이 연구되고 있다.Accordingly, as a method for improving the efficiency of the electric motor, various methods for improving the coil rate (coil space factor or conductor occupying ratio) wound on the rotor or the stator of the electric motor and the generator have been studied have.
이러한 코일의 점적율을 향상시키기 일반적인 방법으로는, 스테이터 또는 로터에 감기는 코일의 직경을 증가시키거나 감기는 횟수를 늘리는 방법이 주로 이용되고 있다.As a general method for improving the drop rate of such a coil, a method of increasing the diameter of the coil wound around the stator or the rotor or increasing the number of windings is mainly used.
그러나, 종래의 코일의 경우 주로 수직단면이 원형의 형태를 갖는 구리 와이어가 통상적으로 사용되고 있으며, 이러한 원형코일의 직경을 증가시키게 되면 원형의 단면으로 인해 감겨진 코일층 사이에 낭비되는 공간(waste space)이 발생하게 되므로 코일의 점적율이 저하된다는 근본적인 문제점이 존재한다.However, in the case of a conventional coil, a copper wire having a circular shape in the vertical section is usually used, and if the diameter of the circular coil is increased, a waste space between the coil layers due to the circular cross- There is a fundamental problem that the drop rate of the coil is lowered.
반면, 너무 작은 직경을 갖는 코일을 감을 경우에는 동일 면적 대비 권선횟수가 증가되므로, 상대적인 전기저항의 증가로 인해 효율저하 및 발열문제가 야기될 수 있다는 문제점이 존재한다.On the other hand, in the case of winding a coil having a too small diameter, the number of turns relative to the same area is increased, so that there is a problem that the efficiency and the heat generation problem may be caused due to an increase in relative electrical resistance.
또한 코일의 점적률을 높일 수 있도록 권선 횟수를 증가시킬 경우에는 제조 시간이 오래 소요되는 것은 물론 작업단가가 높아 생산성이 떨어진다는 문제점이 있었다.In addition, when the number of windings is increased to increase the drop rate of the coil, it takes a long time to manufacture, and the productivity is low due to a high operation cost.
따라서 종래 방전가공 등 전통적인 기계 절삭 방식 대비 높은 생산 속도를 가질 수 있을 뿐만 아니라, 모터 완제품의 생산속도까지 향상 시킬 수 있는 전동기 및 발전기의 전기자 코일 제작 기술과 모터 생산 기술의 개발이 필요한 실정이다.Therefore, it is necessary to develop motor and armature coil fabrication technology and motor production technology which can not only achieve high production speed compared to the conventional mechanical cutting method such as discharge machining but also improve the production speed of the motor end product.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위하여 안출된 발명으로서, 스테이터 또는 로터에 간단하게 조립될 수 있을 뿐만 아니라 종래 원형코일 대비 높은 점적율을 가지며, 코일층을 형성하는 코일의 각 턴당 수직단면적이 모두 동일하기 때문에 코일의 각 턴 당 전기저항이 균일하여 저발열 및 고효율을 갖는 코일유닛을 제공하기 위한 목적을 가진다.SUMMARY OF THE INVENTION The present invention has been conceived to solve the problems of the conventional art described above, and it is an object of the present invention to provide a stator and a rotor which can be easily assembled, have a high dot ratio as compared with a conventional circular coil, And has a purpose of providing a coil unit having low heat generation and high efficiency because the electric resistance per coil of each coil is uniform.
또한 일반적인 방법으로 생산하기 어려운 코일유닛에 대한 고유한 제조방법을 제공하여 대량생산화할 수 있도록 하기 위한 목적을 가진다.It is also an object of the present invention to provide a unique manufacturing method for a coil unit which is difficult to produce by a general method so that mass production can be achieved.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problems of the present invention are not limited to the above-mentioned problems, and other problems not mentioned can be clearly understood by those skilled in the art from the following description.
상기한 목적을 달성하기 위한 본 발명의 코일유닛의 제조방법은, 스테이터 또는 로터에 구비된 결합부에 결합되는 코일유닛의 제조방법에 있어서, 상기 코일유닛을 제조하기 위한 원재료인 코일블록을 성형하는 블록성형단계, 절삭가공을 통해 상기 코일블록의 외측면 둘레에, 상기 코일블록의 상부에서 하부에 걸쳐 나선 형태로 연속된 슬릿부를 가공하여 복수 개의 코일층을 형성하는 슬릿가공단계, 상기 코일블록의 상면 및 하면을 관통하는 중공부를 가공하는 중공부가공단계 및 슬릿가공단계 및 상기 중공부가공단계를 거친 상기 코일블록을 상하 방향으로 압축시켜 상기 복수 개의 코일층 사이의 간극을 축소시키는 압축단계를 포함한다.According to another aspect of the present invention, there is provided a method of manufacturing a coil unit, the coil unit being coupled to a stator or a coupling portion of the rotor, the method comprising: forming a coil block as a raw material for manufacturing the coil unit; A slit machining step of forming a plurality of coil layers by machining a slit portion continuous in a spiral shape from an upper portion to a lower portion of the coil block around the outer side surface of the coil block through a block forming step and a cutting process, A hollow portion machining step and a slit machining step for machining a hollow portion penetrating the upper and lower surfaces and a compressing step for compressing the coil block through the hollow portion machining step in the up and down direction to reduce the gap between the plurality of coil layers do.
그리고 상기 블록성형단계 및 상기 슬릿가공단계 사이에는, 상기 코일블록의 상면에 상기 슬릿부를 가공하기 위한 경사진 가공홈을 형성하는 가공홈형성단계가 더 포함될 수 있다.And forming a sloped machining groove for machining the slit portion on the upper surface of the coil block, between the block forming step and the slit machining step.
또한 상기 슬릿가공단계는, 상기 코일블록의 각 면 중 어느 하나에 대응되는 형상으로 함몰 형성된 하나 이상의 고정홈을 가지는 고정지그에 상기 코일블록을 삽입 고정시킨 상태에서, 상기 코일블록의 노출면에 절삭가공을 수행할 수 있다.The slit forming step may include cutting the exposed surface of the coil block in a state that the coil block is inserted and fixed in a fixing jig having at least one fixing groove formed in a shape corresponding to one of the surfaces of the coil block, Processing can be performed.
그리고 상기 슬릿가공단계는, 상기 코일층의 외측면이 수평면에 대해 형성하는 제1각도가, 각 코일층의 외측면 상단을 서로 이은 연장면이 수평면에 대해 형성하는 제2각도보다 작도록 상기 슬릿부 및 상기 코일층의 외측면을 가공할 수 있다.And the slit forming step is performed such that the first angle formed by the outer surface of the coil layer with respect to the horizontal plane is smaller than the second angle formed by the mutually extending surface of the outer surface of the coil layer with respect to the horizontal plane, And the outer surface of the coil layer can be processed.
또한 상기 압축단계는, 상기 코일층의 외측면이 수평면에 대해 형성하는 제1각도와, 각 코일층의 외측면 상단을 서로 이은 연장면이 수평면에 대해 형성하는 제2각도가 서로 동일해지도록 상기 코일블록을 상하 방향으로 압축시킬 수 있다.And compressing the coil layer so that the first angle formed by the outer surface of the coil layer with respect to the horizontal plane and the second angle formed by the extension surface of the coil layer with respect to the horizontal plane are equal to each other, The coil block can be compressed in the vertical direction.
그리고 상기 중공부가공단계는 상기 슬릿가공단계보다 먼저 수행될 수 있다.And the hollow machining step may be performed before the slit machining step.
또한 상기 중공부가공단계는 상기 슬릿가공단계 이후에 수행될 수 있다.The hollow machining step may be performed after the slit machining step.
그리고 상기 중공부가공단계는, 상기 코일블록의 각 면 중 어느 하나에 대응되는 형상으로 함몰 형성된 하나 이상의 고정홈을 가지는 고정지그에 상기 코일블록을 삽입 고정시킨 상태에서, 상기 코일블록의 노출면에 절삭가공을 수행할 수 있다.In the hollow portion machining step, the coil block is inserted and fixed in a fixing jig having at least one fixing groove formed in a shape corresponding to one of the respective surfaces of the coil block, A cutting process can be performed.
또한 상기 중공부가공단계는 상기 블록성형단계를 수행하는 도중 함께 수행될 수 있다.Further, the hollow portion machining step may be performed while performing the block forming step.
그리고 상기한 목적을 달성하기 위한 본 발명의 또 다른 실시예에 따른 코일유닛의 제조방법은, 스테이터 또는 로터에 구비된 결합부에 결합되는 코일유닛의 제조방법에 있어서, 상기 코일유닛을 제조하기 위한 원재료인 코일블록을 성형하되, 상기 코일블록의 상면 및 하면을 관통하는 중공부가 형성되도록 성형하는 블록성형단계 및 절삭가공을 통해 상기 코일블록의 외측면 둘레에, 상기 코일블록의 상부에서 하부에 걸쳐 나선 형태로 연속된 슬릿부를 가공하여 복수 개의 코일층을 형성하는 슬릿가공단계를 포함한다.According to another aspect of the present invention, there is provided a method of manufacturing a coil unit, the coil unit being coupled to a coupling portion of a stator or a rotor, A method of manufacturing a coil block, comprising the steps of: forming a coil block, which is a raw material, so as to form a hollow portion penetrating the upper and lower surfaces of the coil block; and cutting the block around the outer surface of the coil block And a slit machining step of forming a plurality of coil layers by machining continuous slit portions in a spiral shape.
또한 상기 블록성형단계는, 내측에 중공이 형성된 모재를 인발한 뒤 상기 모재의 소정 길이만큼을 커팅하여 상기 코일블록을 성형할 수 있다.In addition, the block forming step may be performed by drawing a base material having a hollow inside and cutting a predetermined length of the base material to form the coil block.
그리고 상기 블록성형단계는, 상기 코일블록의 제1-1측면에 경사진 슬로프슬릿을 형성하는 슬로프슬릿가공과정, 상기 코일블록의 마주보는 한 쌍의 제2측면에 플레인슬릿을 형성하는 플레인슬릿가공과정 및 상기 제1-1측면의 반대 측에 형성되는 상기 코일블록의 제1-2측면에, 상기 제2측면에 형성된 플레인슬릿을 서로 연결하는 연결슬릿을 형성하는 연결슬릿가공과정을 포함할 수 있다.The block forming step may include a slope slit processing step of forming a sloped sloped slit on the 1-1 side of the coil block, a plane slit processing step of forming a plane slit on a pair of facing second side faces of the coil block, And a connecting slit processing step of forming a connecting slit for connecting the plane slits formed on the second side face to the first-second side face of the coil block formed on the opposite side of the 1-1 side face have.
또한 상기 슬로프슬릿가공과정은, 상기 슬로프슬릿의 가공과 함께 상기 슬로프슬릿의 양측에 형성되는 상기 플레인슬릿의 일부 영역을 함께 가공할 수 있다.Also, the slope slit machining process may process the slope slits together with a part of the plane slits formed on both sides of the slope slit.
그리고 상기 블록성형단계 및 상기 슬릿가공단계 사이에는, 상기 코일블록의 마주보는 한 쌍의 제2측면에 복수의 경사면을 형성하는 경사면형성단계가 더 포함될 수 있다.And forming a plurality of inclined surfaces on a pair of opposing second side surfaces of the coil block between the block forming step and the slit processing step.
또한 상기 슬릿가공단계 이후에는, 상기 코일블록의 중공부 둘레를 가공하여 상기 중공부를 확장시키는 중공부확장단계가 더 포함될 수 있다.Further, after the slitting step, a hollow portion expanding step may be further included to expand the hollow portion by machining the hollow portion of the coil block.
상기한 과제를 해결하기 위한 본 발명의 코일유닛의 제조방법은 다음과 같은 효과가 있다.The method of manufacturing a coil unit of the present invention for solving the above problems has the following effects.
첫째, 로터 및 스테이터에 마련된 결합부에 끼워져 조립 가능하도록 블록 형태로 마련된 코일유닛을 통해, 전동기 및 발전기의 제조 시 별도의 권선작업 없이 간단한 조립과정만으로 전동기 및 발전기의 생산이 가능하다는 장점이 있다.First, there is an advantage that a motor and a generator can be produced by a simple assembling process without a separate winding operation in the manufacture of the motor and the generator through the coil unit provided in a block form so as to be fitted to the coupling portion provided in the rotor and the stator.
둘째, 종래 원형코일에 비해 스테이터 및 로터의 동일 구조 대비 상대적으로 높은 점적율을 가지므로 고효율의 전동기 및 발전기의 생산이 가능하다는 장점이 있다.Second, since the stator and the rotor have a relatively higher drop ratio than the conventional structure, the motor and the generator can be produced with high efficiency.
셋째, 제조 공정에 소요되는 시간을 최소화할 수 있어 생산성을 극대화시킬 수 있는 장점이 있다.Third, since the time required for the manufacturing process can be minimized, the productivity can be maximized.
넷째, 일반적인 가공 방법으로 생산하기 어려운 상기 코일유닛의 고유한 제조방법을 제공할 수 있는 장점이 있다.Fourth, there is an advantage that a unique manufacturing method of the coil unit, which is difficult to produce by a general processing method, can be provided.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned can be clearly understood by those skilled in the art from the description of the claims.
도 1은 본 발명의 일 실시예에 따른 코일유닛의 제조방법에 있어서, 코일블록을 성형한 모습을 나타낸 도면;BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a coil block formed in a method of manufacturing a coil unit according to an embodiment of the present invention; FIG.
도 2는 본 발명의 일 실시예에 따른 코일유닛의 제조방법을 적용하기 위한 고정지그의 모습을 나타낸 도면;FIG. 2 is a view showing a fixing jig for applying a method of manufacturing a coil unit according to an embodiment of the present invention; FIG.
도 3 내지 도 6은 본 발명의 일 실시예에 따른 코일유닛의 제조방법에 있어서, 슬릿가공단계를 수행하는 과정을 나타낸 도면;FIGS. 3 to 6 are views illustrating a process of performing a slitting process in a method of manufacturing a coil unit according to an embodiment of the present invention; FIG.
도 7은 본 발명의 일 실시예에 따른 코일유닛의 제조방법에 있어서, 중공부가공단계를 수행하는 과정을 나타낸 도면;7 is a view illustrating a process of manufacturing a hollow unit according to an embodiment of the present invention.
도 8 및 도 9는 본 발명의 일 실시예에 따른 코일유닛의 제조방법에 있어서, 압축단계를 수행하는 과정을 나타낸 도면;8 and 9 are views showing a process of performing a compression step in a method of manufacturing a coil unit according to an embodiment of the present invention;
도 10은 본 발명의 일 실시예에 따른 코일유닛의 제조방법을 통해 제조된 코일유닛의 모습을 나타낸 도면;10 is a view showing a coil unit manufactured through a method of manufacturing a coil unit according to an embodiment of the present invention;
도 11은 본 발명의 일 실시예에 따른 코일유닛의 제조방법에 있어서, 공정 조건에 따른 가공품질 변화를 나타낸 그래프;FIG. 11 is a graph showing changes in machining quality according to process conditions in a method of manufacturing a coil unit according to an embodiment of the present invention; FIG.
도 12는 본 발명의 다른 실시예에 따른 코일유닛의 제조방법에 있어서, 모재를 인발한 모습을 나타낸 도면;12 is a view showing a state in which a base material is drawn out in a method of manufacturing a coil unit according to another embodiment of the present invention;
도 13은 본 발명의 다른 실시예에 따른 코일유닛의 제조방법에 있어서, 코일블록을 성형한 모습을 나타낸 도면;13 is a view illustrating a coil block formed in a method of manufacturing a coil unit according to another embodiment of the present invention;
도 14 및 도 15는 본 발명의 다른 실시예에 따른 코일유닛의 제조방법에 있어서, 코일블록의 제2측면에 복수의 경사면을 형성한 모습을 나타낸 도면;FIGS. 14 and 15 are views showing a method of manufacturing a coil unit according to another embodiment of the present invention, in which a plurality of slopes are formed on a second side of a coil block; FIG.
도 16은 본 발명의 다른 실시예에 따른 코일유닛의 제조방법에 있어서, 코일블록의 제1-1측면에 슬로프슬릿을 형성하는 모습을 나타낸 도면;16 is a view illustrating a method of forming a slope slit on a 1-1 side of a coil block in a method of manufacturing a coil unit according to another embodiment of the present invention;
도 17은 본 발명의 다른 실시예에 따른 코일유닛의 제조방법에 있어서, 코일블록의 제2측면에 플레인슬릿을 형성하는 모습을 나타낸 도면;17 is a view illustrating a method of manufacturing a coil unit according to another embodiment of the present invention, in which a plane slit is formed on a second side surface of a coil block;
도 18은 본 발명의 다른 실시예에 따른 코일유닛의 제조방법에 있어서, 코일블록의 제1-2측면에 연결슬릿을 형성하는 모습을 나타낸 도면;FIG. 18 is a view showing a method of manufacturing a coil unit according to another embodiment of the present invention, in which a connecting slit is formed on a first-second side of a coil block; FIG.
도 19는 본 발명의 다른 실시예에 따른 코일유닛의 제조방법에 있어서, 코일블록의 중공부를 확장시키는 모습을 나타낸 도면; 및19 is a view illustrating a method of manufacturing a coil unit according to another embodiment of the present invention, in which a hollow portion of a coil block is expanded; And
도 20은 본 발명의 다른 실시예에 따른 코일유닛의 제조방법을 통해 제조된 코일유닛의 모습을 나타낸 도면이다.20 is a view showing a coil unit manufactured through a method of manufacturing a coil unit according to another embodiment of the present invention.
이하 본 발명의 목적이 구체적으로 실현될 수 있는 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 본 실시예를 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일 부호가 사용되며 이에 따른 부가적인 설명은 생략하기로 한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In describing the present embodiment, the same designations and the same reference numerals are used for the same components, and further description thereof will be omitted.
본 발명은 스테이터 또는 로터 내부에 구비되는 슬롯 공간의 낭비를 최소화 하기 위한 특수한 형상 구조를 가지는 새로운 방식의 코일을 제조하기 위한 방법이다.The present invention is a method for manufacturing a new type of coil having a special shape structure for minimizing waste of slot space provided inside a stator or a rotor.
본 발명에 의해 제조되는 코일은 특수 평각형 코일로서, 종래 원형코일에 비해 스테이터 및 로터의 동일 구조 대비 상대적으로 높은 점적율을 가지므로 고효율의 전동기 및 발전기의 생산이 가능하다는 장점이 있다.The coil manufactured according to the present invention is a special flat coil type and has a relatively high drop ratio compared to the conventional structure of a stator and a rotor as compared with a conventional circular coil, so that it is possible to produce a high efficiency motor and a generator.
다만, 이와 같은 특수 평각형 코일은 그 단면 형상 및 코일의 전체 형태가 일정하지 않기 때문에 기존 기술로 대량생산하기 힘든 어려움이 있다.However, such a special flat-plate type coil has difficulty in mass production by the existing technology because its cross-sectional shape and the overall shape of the coil are not constant.
따라서 본 발명은 이와 같은 문제를 해결하기 위해 도출한 것으로서, 절삭가공 기술을 활용하여 코일의 시작단과 끝단 사이에 접합 부위가 존재하지 않는 동시에, 코일 턴마다 형상이 변하는 고 점적율 특수 평각형 코일의 대량생산이 가능한 제조방법을 제공하며, 이하에서는 이에 대해 자세히 설명하도록 한다.SUMMARY OF THE INVENTION Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and it is an object of the present invention to provide a high-specific-rate special flat coil type coil having no joint portion between a start end and an end end of a coil, A manufacturing method capable of mass production is provided, which will be described in detail below.
도 1은 본 발명의 일 실시예에 따른 코일유닛의 제조방법에 있어서, 코일블록(10)을 성형한 모습을 나타낸 도면이다.1 is a view showing a state in which a coil block 10 is molded in a method of manufacturing a coil unit according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 먼저 상기 코일유닛을 제조하기 위한 원재료인 코일블록(10)을 성형하는 블록성형단계가 수행된다. 본 단계에서는 다이캐스팅과 같은 주조공법 또는 프레싱과 같은 단조공법을 이용하여 코일블록(10)을 성형하게 된다.As shown in Fig. 1, first, a block molding step of molding a coil block 10, which is a raw material for manufacturing the coil unit, is performed. In this step, the coil block 10 is formed by using a casting method such as die casting or a forging method such as pressing.
이때 주조공법을 이용하여 상기 코일블록(10)을 생산할 경우, 생산속도 측면에서 우수하기 때문에 생산성을 보장받을 수 있으며, 단조공법을 이용할 경우, 생산속도 측면에서는 주조공법에 비해 상대적으로 떨어질 수 있으나, 코일유닛의 특성 상 코일유닛을 구성하는 조직이 치밀하면 치밀할수록 그 성능이 우수해지기 때문에, 상대적으로 질 높은 코일유닛을 생산할 수 있다는 장점이 있다.In this case, when the coil block 10 is produced by using the casting method, the productivity can be assured because it is superior in terms of the production speed, and when the forging method is used, the production rate can be lower than that of the casting method, As the structure of the coil unit becomes finer, the performance of the coil unit becomes better as the coil unit becomes more denser. Therefore, there is an advantage that a relatively high quality coil unit can be produced.
그리고 도 1에 도시된 바와 같이, 본 단계에 의해 제조된 코일블록(10)은 전체적으로 육면체 형상을 가지도록 형성된다.As shown in FIG. 1, the coil block 10 manufactured by this step is formed to have a hexahedral shape as a whole.
이하 설명의 편의를 위해, 도 1을 기준으로 하여 상기 코일블록(10)의 상부에 노출된 면을 상면(A¬4)이라 하며, 하부에 위치된 면을 하면(A3)이라 하고, 상기 상면(A4) 및 상기 하면(A3) 사이에 위치된 네 면을 외측면(A1, A2)이라 칭한다. 특히 상기 4개의 외측면(A1, A2)은 각각 서로 반대 측에 위치된 면끼리 서로 동일한 넓이를 가지도록 형성되며, 이에 상대적으로 작은 넓이를 가지는 한 쌍의 외측면을 제1측면(A1)이라 하며, 상대적으로 큰 넓이를 가지는 한 쌍의 외측면을 제2측면(A2)이라 구분하도록 한다.1, a surface exposed on the upper side of the coil block 10 is referred to as an upper surface A 占 and a surface positioned below is referred to as a lower surface A3. Four surfaces positioned between the lower surface A4 and the lower surface A3 are referred to as outer surfaces A1 and A2. Particularly, the four outer surfaces A1 and A2 are formed so that the opposite surfaces of the outer surfaces A1 and A2 have the same width, and the pair of outer surfaces having a relatively small width are defined as the first side A1 And a pair of outer side surfaces having a relatively large width are defined as a second side surface A2.
다만, 이는 본 발명의 설명의 편의를 위해 정의된 방향이므로, 이에 의해 본 발명의 권리범위가 제한되지 않음은 물론이다.It should be understood, however, that the scope of the present invention is not limited thereto, as it is a defined direction for convenience of description of the present invention.
본 단계에 의해 제조된 코일블록(10)은 상기 상면(A4) 및 상기 하면(A3)이 사각형 형태를 가지며, 상기 하면(A3)이 상기 상면(A4)에 비해 보다 넓은 면적을 가지도록 형성된다. 이에 따라 상기 4개의 외측면(A1, A2)은 상부에서 하부로 갈수록 폭이 증가되고, 전체적으로 경사진 형태를 가지도록 형성된다. 즉 상기 4개의 외측면(A1, A2)은 각각 사다리꼴 형태를 가지도록 형성된다.The coil block 10 manufactured by this step has the rectangular shape of the upper surface A4 and the lower surface A3 and the lower surface A3 is formed to have a wider area than the upper surface A4 . As a result, the widths of the four outer surfaces A1 and A2 gradually increase from the upper portion to the lower portion and are formed to have a generally inclined shape. That is, each of the four outer surfaces A1 and A2 has a trapezoidal shape.
한편 상기 블록성형단계 이후에는, 상기 코일블록(10)의 상면(A4)에 경사진 형태의 가공홈(11)을 형성하는 가공홈형성단계가 수행될 수 있다. 상기 가공홈(11)은 이후 슬릿부를 가공하기 위한 것으로, 나선 형태의 코일층의 시작점을 형성하게 된다.On the other hand, after the block molding step, a machining groove forming step of forming an inclined machining groove 11 on the upper surface A4 of the coil block 10 may be performed. The machining groove 11 is for machining the slit portion, and forms the starting point of the helical coil layer.
한편 이후 슬릿부를 가공하기 위해, 도 2에 도시된 고정지그(100)가 사용될 수 있다. 상기 고정지그(100)는 이후 절삭 가공을 수행하기 용이하도록 상기 코일블록(10)을 고정시키기 위한 것으로, 상기 코일블록(10)의 각 면 중 어느 하나에 대응되는 형상으로 함몰 형성된 하나 이상의 고정홈(101, 102, 103)을 포함할 수 있다.On the other hand, the fixing jig 100 shown in Fig. 2 can be used for machining the slit portion thereafter. The fixing jig 100 is for fixing the coil block 10 so that the coil block 10 can be easily cut thereafter. The fixing block 100 includes at least one fixing groove formed in a shape corresponding to one of the surfaces of the coil block 10, (101, 102, 103).
본 실시예의 경우, 상기 고정지그(100)는 상기 코일블록(10)의 제1측면(A1)에 대응되는 제1고정홈(101)과, 상기 코일블록(10)의 제2측면(A2)에 대응되는 제2고정홈(102)과, 상기 코일블록(10)의 상면(A4)에 대응되는 제3고정홈(103)을 포함하는 것으로 하였다.The fixing jig 100 includes a first fixing groove 101 corresponding to the first side A1 of the coil block 10 and a second side surface A2 of the coil block 10, And a third fixing groove 103 corresponding to the upper surface A4 of the coil block 10. The second fixing groove 102 corresponds to the upper surface A4 of the coil block 10,
이에 따라 어느 하나의 면을 가공하기 위해서는, 반대 측에 위치되는 면을 상기 고정홈(101, 102, 103)의 바닥면을 향하도록 상기 고정홈(101, 102, 103)에 삽입하여 고정시킨 상태에서, 상기 코일블록(10)의 반대 측 노출면에 절삭가공을 수행할 수 있다.Accordingly, in order to process any one of the surfaces, the surface located on the opposite side is inserted into the fixing grooves 101, 102, 103 so as to face the bottom surfaces of the fixing grooves 101, 102, A cutting process can be performed on the exposed surface on the opposite side of the coil block 10.
또한 이를 위해, 상기 고정홈(101, 102, 103)의 깊이는 상기 코일블록(10)을 삽입한 상태에서 적어도 일부가 돌출될 정도의 깊이로 형성될 수 있다.In addition, the depth of the fixing grooves 101, 102, and 103 may be such that the coil block 10 is at least partially protruded in a state where the coil block 10 is inserted.
다음으로 도 3 내지 도 6에 도시된 바와 같이 슬릿가공단계가 수행된다.Next, a slit machining step is performed as shown in Figs. 3 to 6.
상기 슬릿가공단계는 절삭가공을 통해 상기 코일블록(10)의 외측면 둘레에, 상기 코일블록(10)의 상부에서 하부에 걸쳐 나선 형태로 연속된 슬릿부를 가공하여 복수 개의 코일층을 형성하는 과정이다.The slit machining step includes a step of forming a plurality of coil layers by machining a continuous slit portion in a spiral shape from the upper portion to the lower portion of the coil block 10 around the outer surface of the coil block 10 through cutting to be.
또한 상기 슬릿부를 가공하기 위해 사용되는 절삭가공방법으로는 워터젯(Water Jet)을 이용한 가공방법이 적용될 수도 있으며, 기타 기계가공을 통한 가공방법이 적용될 수도 있다. 본 실시예에서는 워터젯을 이용하여 절삭가공을 수행하는 것으로 하였다.As a cutting method used for machining the slit part, a water jet method or other machining method may be applied. In this embodiment, a cutting process is performed using a water jet.
워터젯을 이용한 절삭가공방법의 경우, 버(Bur)를 최소화할 수 있을 뿐 아니라, 물을 고압으로 분사하는 노즐을 복수 개 구비하여 동시에 여러 개의 코일블록(10)을 가공함에 따라 생산성을 증대시킬 수도 있을 것이다.In the case of a cutting method using a water jet, it is possible not only to minimize burrs but also to increase the productivity by processing a plurality of coil blocks 10 simultaneously with a plurality of nozzles for spraying water at a high pressure There will be.
또한 상기 슬릿가공단계는 제1측면(A1)을 가공하기 위한 슬로프슬릿가공과정과, 제2측면(A2)을 가공하기 위한 플레인슬릿가공과정을 포함할 수 있다.Also, the slit processing step may include a slope slit processing step for processing the first side surface A1 and a plane slit processing step for processing the second side surface A2.
상기 슬로프슬릿가공과정은 도 3 및 도 4에 도시된 바와 같이, 상기 코일블록(10)의 한 쌍의 제1측면(A1) 중 어느 한 면을 고정지그(100)의 제1고정홈(101)에 삽입한 상태에서, 반대 측의 제1측면(A1)에 경사진 방향으로 워터젯을 분사하여 슬로프슬릿(12)을 형성시킨다.3 and 4, one of the pair of first side surfaces A1 of the coil block 10 is inserted into the first fixing groove 101 of the fixing jig 100 , A water jet is sprayed in an oblique direction on the opposite side first side A1 to form the slope slit 12.
이때 상기 슬로프슬릿(12)은 상기 제1측면(A1)의 전체 폭보다 작은 폭을 가지도록 형성하며, 또한 상기 슬로프슬릿(12)의 각도는 상기 가공홈(11)의 경사와 동일하게 형성될 수 있을 것이다.At this time, the slope slit 12 is formed to have a smaller width than the entire width of the first side surface A1, and the angle of the slope slit 12 is formed to be equal to the slope of the processing groove 11 It will be possible.
이와 같이 하나의 제1측면(A1)을 가공한 후에는 반대 측의 제1측면(A1)을 마저 가공하여 슬로프슬릿가공과정을 완료할 수 있다.After machining one first side surface A1, the first side surface A1 on the opposite side can be further processed to complete the slope slit machining process.
그리고 상기 플레인슬릿가공과정은 도 5 및 도 6에 도시된 바와 같이, 상기 코일블록(10)의 한 쌍의 제2측면(A2) 중 어느 한 면을 고정지그(100)의 제2고정홈(102)에 삽입한 상태에서, 반대 측의 제2측면(A2)에 수평한 방향으로 워터젯을 분사하여 플레인슬릿(13)을 형성시킨다.5 and 6, one of the pair of second side surfaces A2 of the coil block 10 is fixed to the second fixing groove (not shown) of the fixing jig 100 102, a water jet is sprayed in a horizontal direction on the second side surface A2 on the opposite side to form the plain slit 13.
이때 상기 플레인슬릿(13)은 상기 제2측면(A2)의 전체 폭에 걸쳐 형성할 수 있으며, 또한 가공 깊이를 조절하여 상기 제1측면(A1) 중 상기 슬로프슬릿(12)이 형성되지 않은 나머지 영역까지 가공되도록 하여 상기 슬로프슬릿(12)의 양단과 상기 플레인슬릿(13)의 양단이 서로 연결되도록 할 수 있다.At this time, the plane slit 13 can be formed over the entire width of the second side surface A2, and the processing depth can be adjusted to adjust the planar slit 13 in the first side surface A1 without forming the slope slit 12 So that both ends of the slope slit 12 and both ends of the plane slit 13 can be connected to each other.
이와 같이 하나의 제2측면(A2)을 가공한 후에는 반대 측의 제2측면(A2)을 마저 가공하여 플레인슬릿가공과정을 완료할 수 있다.After machining one second side surface A2, the second side surface A2 on the opposite side can be further processed to complete the plane slit machining process.
다음으로, 도 7에 도시된 바와 같이 중공부가공단계가 수행될 수 있다.Next, a hollow machining step can be performed as shown in FIG.
상기 중공부가공단계는 상기 코일블록(10)의 상면(A4) 및 하면(A3)을 관통하는 중공부(14)를 가공하는 과정으로, 상기 중공부(14)에는 이후 스테이터 또는 로터에 구비된 결합부가 삽입될 수 있다.The hollow portion machining step is a process of machining the hollow portion 14 passing through the upper surface A4 and the lower surface A3 of the coil block 10, The engaging portion can be inserted.
또한 본 실시예의 경우 상기 중공부가공단계는 슬릿가공단계 이후에 수행되는 것으로 하였으며, 구체적으로 상기 코일블록(10)의 상면(A4)을 상기 고정지그(100)의 제3고정홈(103)에 삽입한 상태에서 워터젯을 분사하여 중공부(14)를 형성하는 방법을 사용하였다.The upper surface A4 of the coil block 10 is inserted into the third fixing groove 103 of the fixing jig 100. In this case, And a hollow portion 14 is formed by injecting a water jet while being inserted.
이때 상기 워터젯을 상기 중공부(14)가 형성될 영역의 테두리를 따라 이동하며 분사할 수 있으며, 이미 전 과정에 의해 슬릿부가 형성된 상태이므로 이와 같은 가공에 의해 중심부 영역이 완전히 떨어져 나가게 되어 상기 코일블록(10)의 중심부에 중공부(14)가 형성된다.At this time, the water jet can be moved along the rim of the region where the hollow portion 14 is to be formed, and the slit portion is already formed by the entire process, so that the central region completely falls off by the above- (14) is formed at the center of the body (10).
본 실시예와 같은 방법을 이용할 경우, 전술한 슬릿가공단계에 의해 상기 코일블록(10) 내측에 발생한 버(Bur)가 중공부가공단계를 거치며 제거될 수 있으므로, 별도의 후처리과정을 거치지 않고도 미려한 표면을 가공할 수 있게 된다.When the same method as in the present embodiment is used, burrs generated inside the coil block 10 by the slit machining step described above can be removed through the hollow machining step, and therefore, It is possible to process a beautiful surface.
다만, 본 실시예와 달리 상기 중공부가공단계는 상기 슬릿가공단계 이전에 수행될 수도 있다. 즉 상기 슬릿가공단계를 수행하기 이전에 상기 코일블록(10)의 상면(A4)을 상기 고정지그(100)의 제3고정홈(103)에 삽입한 상태에서 워터젯을 분사하여 중공부(14)를 우선적으로 형성할 수도 있을 것이다.However, unlike the present embodiment, the hollow portion machining step may be performed before the slit machining step. That is, before the slit-forming step is performed, the upper surface A4 of the coil block 10 is inserted into the third fixing groove 103 of the fixing jig 100, May be preferentially formed.
또는 상기 중공부가공단계는 전술한 블록성형단계를 수행하는 도중에 함께 수행될 수도 있다. 즉 다이캐스팅과 같은 주조공법 또는 프레싱과 같은 단조공법을 이용하여 코일블록(10)을 성형하는 과정에서 상기 중공부(14)를 함께 형성할 수도 있으며, 이와 같은 경우에는 중공부가공단계를 별도로 수행할 필요가 없어 생산성을 보다 높일 수 있을 것이다.Or the hollow machining step may be performed together during the above-described block forming step. That is, the hollow portion 14 may be formed in the process of forming the coil block 10 by using a casting process such as die casting or a forging process such as pressing. In such a case, There is no need to increase productivity.
이상의 과정에 의해, 상기 코일블록(10)에는 상부에서 하부에 걸쳐 나선 형태로 연속된 슬릿부가 가공되며, 또한 상기 슬릿부와 교대로 복수 개의 코일층이 형성된다.According to the above process, the coil block 10 is formed with a continuous slit portion spirally extending from the upper portion to the lower portion, and a plurality of coil layers are alternately formed with the slit portion.
다음으로, 도 8 및 도 9에 도시된 바와 같이 슬릿가공단계 및 상기 중공부가공단계를 거친 상기 코일블록(10)을 상하 방향으로 압축시켜 상기 복수 개의 코일층(L) 사이의 간극을 축소시키는 압축단계가 수행된다.Next, as shown in FIGS. 8 and 9, the gap between the plurality of coil layers L is reduced by vertically compressing the coil block 10 that has undergone the slit machining step and the hollow machining step A compression step is performed.
본 단계를 수행하는 이유는 절삭가공을 통해 슬릿가공단계를 수행할 경우, 각 코일층(L) 사이에 형성된 슬릿부의 높이가 비교적 높게 가공되기 때문이며, 이에 따라 압축을 통해 복수 개의 코일층(L) 사이의 간극을 축소시켜 코일유닛의 점적률을 향상시키고 치밀한 밀도를 가질 수 있도록 하기 위한 것이다.The reason for carrying out this step is that when the slit processing step is performed through the cutting process, the height of the slit portion formed between the coil layers L is relatively high, So as to improve the drop rate of the coil unit and to have a dense density.
또한 도 9에 도시된 바와 같이 압축단계를 거친 이후 상기 코일층(L)의 외측면이 수평면에 대해 형성하는 제1각도(θ1)와, 각 코일층(L)의 외측면 상단을 서로 이은 연장면이 수평면에 대해 형성하는 제2각도(θ2)가 서로 동일해지도록 할 필요가 있다. 이와 같은 경우 상기 코일블록(10)의 외측면이 평탄하게 형성되어 효율을 보다 증대시킬 수 있기 때문이다.9, a first angle? 1 formed by the outer surface of the coil layer L with respect to the horizontal plane after the compression step and an outer surface of the outer surface of each coil layer L, It is necessary that the second angles? 2 formed on the horizontal plane are equal to each other. In this case, the outer surface of the coil block 10 is formed to be flat and efficiency can be further increased.
따라서 상기 압축단계 이전에 수행되는 상기 슬릿가공단계에서는, 도 8에 도시된 바와 같이 상기 코일층(L)의 외측면이 수평면에 대해 형성하는 제1각도(θ1)가, 각 코일층(L)의 외측면 상단을 서로 이은 연장면이 수평면에 대해 형성하는 제2각도(θ2)보다 작도록 상기 슬릿부 및 상기 코일층(L)의 외측면을 가공할 수 있다. 이와 같이 할 경우 상기 압축단계에 의해 상기 코일블록(10)의 외측면이 평탄하게 형성될 수 있기 때문이다.Therefore, in the slit machining step performed before the compression step, as shown in Fig. 8, the first angle [theta] 1 formed by the outer surface of the coil layer L with respect to the horizontal surface is smaller than the angle [ The outer surface of the slit portion and the outer surface of the coil layer L can be processed such that the outer surface of the slit portion and the outer surface of the coil layer L are smaller than the second angle? In this case, the outer surface of the coil block 10 can be formed flat by the compressing step.
이때 본 실시예와 같이 상기 코일층(L)의 외측면을 상기 슬릿가공단계에서 가공할 수도 있으나, 전술한 블록성형단계에서 미리 코일블록(10)의 제1측면(A1) 및 제2측면(A2)에 대응되는 굴곡을 형성할 수도 있을 것이다.At this time, the outer surface of the coil layer L may be processed in the slitting step as in the present embodiment. In the above-described block forming step, the first side surface A1 and the second side surface A2.
이상과 같은 각 단계를 거쳐, 도 10에 도시된 바와 같이 코일블록(10)에 슬로프슬릿(12) 및 플레인슬릿(13)을 포함하는 슬릿부와, 중공부(14)를 가지는 코일유닛의 제조가 완료된다.10, a slit portion including the slope slit 12 and the plain slit 13 in the coil block 10, and a slit portion including the slit portion 13 and the hollow portion 14, Is completed.
한편 본 실시예의 경우 전술한 바와 같이, 워터젯을 이용한 절삭가공을 활용하였으며, 이때 그 공정 조건에 따라 상기 코일유닛의 가공품질이 변화될 수 있다.In the case of this embodiment, as described above, the cutting process using the water jet is utilized, and the processing quality of the coil unit can be changed according to the process conditions.
도 11은 본 발명의 일 실시예에 따른 코일유닛의 제조방법에 있어서, 공정 조건에 따른 가공품질 변화(표면 연마도, 버(bur)의 발생량 등)를 나타낸 그래프이다. 본 그래프의 세로축은 가공품질을 나타내며, 가로축은 공정조건의 변화량을 나타낸다.11 is a graph showing a change in machining quality (surface polishing degree, burr amount, etc.) according to processing conditions in the method of manufacturing a coil unit according to an embodiment of the present invention. The vertical axis of the graph represents the machining quality and the horizontal axis represents the amount of change in the process conditions.
가로축 하부에 기재된 숫자는 상에서 하 순서로 각각 분사압력(bar), 오리피스의 구경(㎛), 물의 단위부피(1L) 당 연마재의 혼합량(g)을 나타낸 것으로, 그래프에 나타난 바와 같이 분사압력이 3500bar, 오리피스의 구경 0.30㎛, 물 1L당 연마재 혼합량 450g인 경우 가장 높은 공정뭎질을 나타내며, 이를 중심으로 한 공정조건의 변화는 전체적으로 표준분포를 나타내는 것을 확인할 수 있다.The numbers shown below the abscissa indicate the injection pressure (bar), the diameter of the orifice (탆) and the amount of abrasive (g) per unit volume of water (g), respectively. , The diameter of the orifice is 0.30 μm, and the amount of abrasive admixture per 1 liter of water is 450 g, which indicates the highest process quality.
이상으로 본 발명의 일 실시예에 따른 코일유닛의 제조방법에 대해 설명하였으며, 이하에서는 본 발명의 다른 실시예에 따른 코일유닛의 제조방법에 대해 설명하도록 한다. 도 12 내지 도 20은, 본 발명의 다른 실시예에 따른 코일유닛의 제조방법에 대해 도시된 도면들이다.Hereinafter, a method of manufacturing a coil unit according to an embodiment of the present invention is described. Hereinafter, a method of manufacturing a coil unit according to another embodiment of the present invention will be described. 12 to 20 are views showing a method of manufacturing a coil unit according to another embodiment of the present invention.
도 12 내지 도 20에 도시된 본 발명의 다른 실시예에 따른 코일유닛 제조방법은, 전체적으로 블록성형단계와, 경사면형성단계와, 슬릿가공단계와, 중공부확장단계를 포함할 수 있다. 이하에서는 이들 각 단계에 대해 자세히 설명하도록 한다.The method of manufacturing a coil unit according to another embodiment of the present invention shown in FIGS. 12 to 20 may include a block molding step, a slope forming step, a slit processing step, and a hollow part expanding step as a whole. Each of these steps will be described in detail below.
먼저, 상기 블록성형단계는 상기 코일유닛을 제조하기 위한 원재료인 코일블록(10)을 성형하되, 상기 코일블록(10)의 상면(A4) 및 하면(A3)을 관통하는 중공부(14)가 형성되도록 성형하게 된다.The block forming step includes forming a coil block 10 as a raw material for manufacturing the coil unit and a hollow portion 14 penetrating the upper surface A4 and the lower surface A3 of the coil block 10 .
즉 본 단계는 상기 코일블록(10)을 성형하는 과정에서 내측의 중공부(14)가 함께 형성되도록 하며, 본 실시예의 경우 상기 블록성형단계는 도 12에 도시된 바와 같이 내측에 중공(H)이 형성된 모재(1)를 인발한 뒤 상기 모재(1)의 소정 길이만큼을 커팅하여 도 13과 같은 코일블록(10)을 성형하게 된다.That is, in this step, the inner hollow portion 14 is formed together in the process of forming the coil block 10, and in this embodiment, the block forming step includes a step of forming a hollow H inward as shown in FIG. The formed base material 1 is pulled out and cut by a predetermined length of the base material 1 to form the coil block 10 as shown in FIG.
이때 본 실시예의 상기 코일블록(10)은 전술한 일 실시예와 같이 제1측면(A1-1, A1-2)과, 한 쌍의 제2측면(A2)과, 상면(A4) 및 하면(A3)을 포함하는 형태를 가진다. 다만, 후술할 본 실시예에서는 상기 제1측면(A1-1, A1-2)을 서로 다른 형태로 가공하게 되며, 이에 따라 설명의 편의를 위해 상기 제1측면(A1-1, A1-2)을 제1-1측면(A1-1) 및 제1-2측면(A1-2)으로 구분하여 칭하도록 한다.At this time, the coil block 10 of the present embodiment has the first side faces A1-1 and A1-2, the pair of second side faces A2, the upper face A4 and the lower face A2 as in the above- A3). However, in the present embodiment to be described later, the first side faces A1-1 and A1-2 are formed into different shapes, Will be referred to as the first-first side A1-1 and the first-second side A1-2.
또한 본 실시예에서 상기 코일블록(10)은, 가공될 코일유닛의 본체를 형성하는 본체부(10a)와, 상기 코일유닛을 다른 코일유닛과 연결하기 위한 엔드와인딩이 연결되는 엔드와인딩 연결부를 형성하기 위한 엔드와인딩형성부(10b)를 포함하는 형태를 가진다. 이들의 가공 과정에 대해서는 후술하도록 한다.Also, in this embodiment, the coil block 10 includes a main body 10a forming a main body of a coil unit to be machined, and an end winding connection portion to which an end winding for connecting the coil unit to another coil unit is formed And an end winding forming portion 10b for forming an end winding. The processing of these will be described later.
다음으로, 도 14 및 도 15에 도시된 바와 같이 상기 코일블록(10)의 마주보는 한 쌍의 제2측면(A2)에 복수의 경사면(22)과, 상기 경사면(22)과 번갈아 형성되는 수직면(23)을 형성하는 경사면형성단계가 수행된다.Next, as shown in Figs. 14 and 15, a plurality of inclined surfaces 22 and a plurality of inclined surfaces 22 are alternately formed on the second pair of opposing side surfaces A2 of the coil block 10, A slope forming step of forming a slope 23 is performed.
본 단계에 의해 형성되는 상기 경사면(22)은 가공될 코일유닛의 각 코일층 외측면을 형성하게 되며, 상기 수직면(23)은 이후 플레인슬릿(13, 도 17 참조)이 형성될 영역을 형성하게 된다.The sloped surface 22 formed by this step forms the outer surface of each coil layer of the coil unit to be machined, and the vertical surface 23 forms an area where the plane slit 13 (see FIG. 17) do.
특히 본 실시예에서 상기 경사면(22) 및 상기 수직면(23)은, 한 쌍의 프레스(200)에 의한 프레스 과정에 의해 형성될 수 있다. 구체적으로 상기 한 쌍의 프레스(200)는 서로 대향되도록 형성되며, 서로의 대향면에는 상기 코일블록(10)의 일부 및 나머지 일부가 각각 삽입될 수 있는 삽입홈(210)이 형성된다.Particularly, in the present embodiment, the inclined surface 22 and the vertical surface 23 can be formed by a pressing process by a pair of presses 200. Specifically, the pair of presses 200 are formed to face each other, and an insertion groove 210 into which a part of the coil block 10 and a remaining part of the coil block 10 can be respectively inserted is formed on the opposing surfaces.
그리고 상기 삽입홈(210)에는 상기 복수의 경사면(22) 및 상기 수직면(23)을 형성하기 위한 굴곡부(212)가 형성되며, 이에 따라 상기 한 쌍의 프레스(200)가 상기 코일블록(10)의 제2측면(A2)을 가압함으로써 상기 코일블록(10)에 변형이 발생하며, 상기 경사면(22) 및 상기 수직면(23)의 형태가 형성된다.The insertion groove 210 is formed with a bent portion 212 for forming the plurality of inclined surfaces 22 and the vertical surface 23 so that the pair of presses 200 are inserted into the coil block 10, The deformation of the coil block 10 is caused by pressing the second side surface A2 of the tapered surface 22 and the shape of the inclined surface 22 and the vertical surface 23 is formed.
다음으로, 절삭가공을 통해 상기 코일블록(10)의 외측면 둘레에, 상기 코일블록(10)의 상부에서 하부에 걸쳐 나선 형태로 연속된 슬릿부를 가공하여 복수 개의 코일층을 형성하는 슬릿가공단계가 수행되며, 그 과정은 도 16 내지 도 18에 도시된다.Next, a slit machining step of forming a plurality of coil layers by machining a slit portion continuous in a spiral shape from the upper portion to the lower portion of the coil block 10 around the outer side surface of the coil block 10 through cutting processing Is performed, and the process is shown in Figs.
특히 본 실시예에서 상기 블록성형단계는, 도 16과 같이 상기 코일블록(10)의 제1-1측면(A1-1)에 경사진 슬로프슬릿(12)을 형성하는 슬로프슬릿가공과정과, 도 17과 같이 상기 코일블록(10)의 마주보는 한 쌍의 제2측면(A2)에 플레인슬릿(13)을 형성하는 플레인슬릿가공과정과, 도 18과 같이 상기 제1-1측면(A1-1)의 반대 측에 형성되는 상기 코일블록의 제1-2측면(A1-2)에, 상기 제2측면(A2)에 형성된 플레인슬릿(13)을 서로 연결하는 연결슬릿(12a)을 형성하는 연결슬릿가공과정을 포함한다.Particularly, in the present embodiment, the block forming step includes a slope slit machining step of forming a sloped slope 12 on the first-side surface A1-1 of the coil block 10 as shown in Fig. 16, 17, the plane slit 13 is formed on a pair of opposing second side surfaces A2 of the coil block 10 as shown in FIG. 17, (12a) connecting the plane slits (13) formed on the second side surface (A2) to the first side surface (A1-2) of the coil block formed on the opposite side of the coil block Slit processing.
이때 본 실시예의 경우, 상기 슬로프슬릿(12), 상기 플레인슬릿(13) 및 상기 연결슬릿(12a)의 가공 과정에서, 회전에 의해 상기 코일블록(10)을 절삭하여 각 슬릿을 형성하는 복수의 가공툴(410)을 포함하는 가공머신(400)을 이용하는 것으로 하였으며, 상기 복수의 가공툴(410)은 서로 소정의 이격거리를 이루며 각 슬릿의 가공을 수행할 수 있다.At this time, in the process of the slope slit 12, the plane slit 13, and the connection slit 12a, the coil block 10 is cut by rotation to form a plurality of slits And a processing machine 400 including a processing tool 410 is used. The plurality of processing tools 410 are spaced from each other by a predetermined distance, and can process each slit.
그리고 상기 코일블록(10)의 제1-1측면(A1-1)에 경사진 슬로프슬릿(12)을 형성하는 슬로프슬릿가공과정의 경우, 상기 복수의 가공툴(410) 전체를 상기 슬로프슬릿(12)의 경사각(θ3)에 대응되도록 기울인 상태로 상기 슬로프슬릿(12)을 가공할 수 있으며, 상기 복수의 가공툴(410)이 서로 이격된 거리(d1)는 상기 슬로프슬릿(12) 사이의 코일층의 높이(d1)에 대응될 수 있다.In the case of a slope slit machining process in which a slope slit 12 is slanted on the first-side surface A1-1 of the coil block 10, the whole of the plurality of machining tools 410 is divided into the slope slit The slit slit 12 can be machined in a state of being inclined so as to correspond to the inclination angle? 3 of the slit slit 12, and the distance d1, May correspond to the height (d1) of the coil layer.
또한 본 실시예에서 상기 슬로프슬릿가공과정은, 상기 슬로프슬릿(12)의 가공과 함께 상기 슬로프슬릿(12)의 양측에 형성되는 상기 플레인슬릿(13)의 일부 영역을 함께 가공할 수 있다. 상기 플레인슬릿(13)의 일부 영역을 가공하는 과정에서는, 상기 복수의 가공툴(410)의 경사각을 재조절하여 수평을 이룬 상태로 가공을 수행할 수 있을 것이다.Also, in the present embodiment, the slope slit machining process can process a part of the plane slit 13 formed on both sides of the slope slit 12 together with the machining of the slope slit 12. In the process of machining a part of the area of the plane slit 13, the inclination angle of the plurality of processing tools 410 may be adjusted to perform the processing in a horizontal state.
한편 상기 슬로프슬릿의 가공을 수행하기 이전에는, 상기 코일블록(10)의 엔드와인딩형성부(10b)를 가공하여 엔드와인딩 연결부(30)를 형성하는 엔드와인딩연결부형성과정이 수행될 수 있다. 전술한 바와 같이 완성되어 스테이터 또는 로터에 구비된 결합부에 결합되는 코일유닛은 다른 코일유닛과 연결하기 위한 엔드와인딩이 연결될 수 있으며, 이에 따라 본 과정에서는 엔드와인딩 연결부(30)를 가공하게 된다.Meanwhile, before the slope slit is formed, an end winding connection portion forming process for forming the end winding connection portion 30 by processing the end winding formation portion 10b of the coil block 10 may be performed. The coil unit, which is completed as described above and is coupled to the coupling portion provided in the stator or the rotor, may be connected to an end winding for coupling with another coil unit, thereby processing the end winding connection portion 30 in this process.
상기와 같은 슬로프슬릿가공과정 이후, 도 17과 같이 상기 코일블록(10)의 마주보는 한 쌍의 제2측면(A2)에 플레인슬릿(13)을 형성하는 플레인슬릿가공과정이 수행된다.After the slope slit process as described above, a plane slit process is performed to form a plane slit 13 on a pair of opposing second side surfaces A2 of the coil block 10 as shown in FIG.
본 실시예에서 상기 슬로프슬릿가공과정은 한 쌍의 가공머신(400)을 통해 상기 한 쌍의 제2측면(A2)을 함께 가공하게 되며, 복수의 가공툴(410)에 의해 상기 한 쌍의 제2측면(A2)에 수평한 플레인슬릿(13)이 형성된다.In the present embodiment, the slope slitting process is performed by machining the pair of second side surfaces A2 through a pair of processing machines 400, And a horizontal plane slit 13 is formed on the two side surfaces A2.
그리고 상기 플레인슬릿가공과정 이후에는, 도 18과 같이 상기 제1-1측면(A1-1)의 반대 측에 형성되는 상기 코일블록의 제1-2측면(A1-2)에, 상기 제2측면(A2)에 형성된 플레인슬릿(13)을 서로 연결하는 연결슬릿(12a)을 형성하는 연결슬릿가공과정이 수행된다.After the plane slit process, the first side (A1-2) of the coil block formed on the side opposite to the first side (A1-1) A connecting slit forming process is performed to form connecting slits 12a connecting the plane slits 13 formed on the substrate A2 with each other.
본 실시예에서 상기 연결슬릿가공과정은 상기 플레인슬릿(13) 가공 이후 상기 제1-2측면(A1-2)에 남아 있는 코일블록(10)의 슬릿 잔여분을 절삭하여 연결슬릿(12a)을 형성하는 것으로 이루어지며, 이에 따라 상기 코일블록(10)의 외측면 둘레에는 상기 코일블록(10)의 상부에서 하부에 걸쳐 나선 형태로 연속된 슬릿부가 가공되고, 복수 개의 코일층이 형성된다.In the present embodiment, the connecting slit process is performed by cutting the remaining slit of the coil block 10 remaining on the first-second side A1-2 after machining the plane slit 13 to form the connecting slit 12a A slit portion continuous in a spiral shape is formed around the coil block 10 from the upper portion to the lower portion of the coil block 10, and a plurality of coil layers are formed.
다음으로, 도 19에 도시된 바와 같이 상기 코일블록(10)의 중공부(14) 둘레(24)를 가공하여 상기 중공부(14)를 확장시키는 중공부확장단계가 수행될 수 있다. 본 단계는 상기 중공부(14)의 규격을 스테이터 또는 로터에 구비된 결합부와 정밀하게 일치시키기 위한 것으로, 상기 중공부(14)의 면적을 상기 스테이터 또는 로터에 구비되는 코어의 치 단면적과 같도록 가공하게 된다.Next, as shown in FIG. 19, a hollow portion expansion step of expanding the hollow portion 14 by machining the periphery 24 of the hollow portion 14 of the coil block 10 may be performed. In this step, the size of the hollow portion 14 is precisely matched with the engaging portion provided in the stator or the rotor, and the area of the hollow portion 14 is equal to the cross sectional area of the teeth of the core provided in the stator or rotor .
본 실시예에서 상기 중공부확장단계는, 상기 코일블록(10)의 일측 및 타측 코일층을 각각 고정시키는 한 쌍의 고정장치(500)를 이용하여 상기 코일블록(10)을 고정시킨 상태에서, 워터젯(W) 등을 이용하여 상기 코일블록(10)의 중공부(14) 둘레(24)를 가공하게 된다.In the present embodiment, the hollow portion expansion step may be performed in a state in which the coil block 10 is fixed using a pair of fixing devices 500 for fixing one side and the other side coil layer of the coil block 10, The periphery 24 of the hollow portion 14 of the coil block 10 is processed by using a water jet W or the like.
구체적으로 상기 고정장치(500)는 상기 코일블록(10)의 각 코일층(L)을 고정시키기 위한 복수의 고정홈(512)이 상하 방향을 따라 형성된 고정부(510)와, 상기 고정부(510)를 전후 이동시키는 이동부(520)를 포함하는 형태를 가진다.Specifically, the fixing device 500 includes a fixing part 510 having a plurality of fixing grooves 512 for fixing the respective coil layers L of the coil block 10 in the vertical direction, And a moving unit 520 for moving the moving unit 510 forward and backward.
이에 따라 서로 대향되는 한 쌍의 고정장치(500)는 상기 코일블록(10)을 사이에 두고 서로 가까워지는 방향으로 이동하여 상기 코일블록(10)을 고정시키게 되며, 이와 같은 상태에서 상기 코일블록(10)의 하면(A3) 및 상면(A4)은 상기 한 쌍의 고정장치(500) 사이로 노출될 수 있다. 이와 같은 상태에서 상기 워터젯(W)은 상기 코일블록(10)의 중공부(14) 둘레(24)를 가공하여 상기 중공부(14)를 확장시킬 수 있다.As a result, the pair of fixing devices 500 facing each other move in a direction approaching each other with the coil block 10 interposed therebetween to fix the coil block 10, and in this state, The lower surface A3 and the upper surface A4 of the base 10 may be exposed between the pair of fixing devices 500. [ In this state, the water jet W can expand the hollow portion 14 by processing the periphery 24 of the hollow portion 14 of the coil block 10.
본 실시예의 경우 상기 중공부(14) 둘레(24)를 가공하기 위해 워터젯(W)을 이용하는 것으로 하였으나, 이는 본 실시예에 의해 제한되지 않고 다양한 가공장치가 사용될 수 있음은 물론이다.In this embodiment, the water jet W is used to process the periphery 24 of the hollow portion 14. However, it is needless to say that the present invention is not limited to this embodiment, and various processing devices can be used.
이상과 같은 각 단계를 거쳐, 도 20에 도시된 바와 같이 코일블록(10)에 슬로프슬릿(12), 플레인슬릿(13) 및 연결슬릿(12a)을 포함하는 슬릿부와, 중공부(14)를 가지는 코일유닛의 제조가 완료된다.20, the slit portion including the slope slit 12, the plain slit 13, and the connection slit 12a is formed in the coil block 10, and the slit portion including the slit slit 12, Is completed.
이상과 같이 본 발명에 따른 바람직한 실시예를 살펴보았으며, 앞서 설명된 실시예 이외에도 본 발명이 그 취지나 범주에서 벗어남이 없이 다른 특정 형태로 구체화될 수 있다는 사실은 해당 기술에 통상의 지식을 가진 이들에게는 자명한 것이다. 그러므로, 상술된 실시예는 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고 첨부된 청구항의 범주 및 그 동등 범위 내에서 변경될 수도 있다.It will be apparent to those skilled in the art that the present invention can be embodied in other specific forms without departing from the spirit or scope of the invention as defined in the appended claims. It is obvious to them. Therefore, the above-described embodiments are to be considered as illustrative rather than restrictive, and the present invention is not limited to the above description, but may be modified within the scope of the appended claims and equivalents thereof.

Claims (15)

  1. 스테이터 또는 로터에 구비된 결합부에 결합되는 코일유닛의 제조방법에 있어서,A method of manufacturing a coil unit coupled to a coupling portion provided on a stator or a rotor,
    상기 코일유닛을 제조하기 위한 원재료인 코일블록을 성형하는 블록성형단계;A block forming step of forming a coil block as a raw material for manufacturing the coil unit;
    절삭가공을 통해 상기 코일블록의 외측면 둘레에, 상기 코일블록의 상부에서 하부에 걸쳐 나선 형태로 연속된 슬릿부를 가공하여 복수 개의 코일층을 형성하는 슬릿가공단계;A slit machining step of forming a plurality of coil layers by machining a slit portion continuous in a spiral shape from an upper portion to a lower portion of the coil block around an outer side surface of the coil block through a cutting process;
    상기 코일블록의 상면 및 하면을 관통하는 중공부를 가공하는 중공부가공단계; 및A hollow machining step of machining a hollow portion penetrating the upper and lower surfaces of the coil block; And
    슬릿가공단계 및 상기 중공부가공단계를 거친 상기 코일블록을 상하 방향으로 압축시켜 상기 복수 개의 코일층 사이의 간극을 축소시키는 압축단계;A compression step of compressing the coil block through the slit processing step and the hollow part processing step in the vertical direction to reduce a gap between the plurality of coil layers;
    를 포함하는 코일유닛의 제조방법.Wherein the coil unit comprises a coil.
  2. 제1항에 있어서,The method according to claim 1,
    상기 블록성형단계 및 상기 슬릿가공단계 사이에는,Between the block molding step and the slit processing step,
    상기 코일블록의 상면에 상기 슬릿부를 가공하기 위한 경사진 가공홈을 형성하는 가공홈형성단계가 더 포함되는 코일유닛의 제조방법.And forming an inclined machining groove for machining the slit portion on an upper surface of the coil block.
  3. 제1항에 있어서,The method according to claim 1,
    상기 슬릿가공단계는,The slit-
    상기 코일블록의 각 면 중 어느 하나에 대응되는 형상으로 함몰 형성된 하나 이상의 고정홈을 가지는 고정지그에 상기 코일블록을 삽입 고정시킨 상태에서, 상기 코일블록의 노출면에 절삭가공을 수행하는 코일유닛의 제조방법.Wherein the coil block is inserted and fixed in a fixing jig having at least one fixing groove recessed in a shape corresponding to one of the surfaces of the coil block, Gt;
  4. 제1항에 있어서,The method according to claim 1,
    상기 슬릿가공단계는,The slit-
    상기 코일층의 외측면이 수평면에 대해 형성하는 제1각도가, 각 코일층의 외측면 상단을 서로 이은 연장면이 수평면에 대해 형성하는 제2각도보다 작도록 상기 슬릿부 및 상기 코일층의 외측면을 가공하는 코일유닛의 제조방법.Wherein the first angle formed by the outer surface of the coil layer with respect to the horizontal plane is smaller than the second angle formed by the mutually extending surface of the outer surface of the coil layer with respect to the horizontal plane, A method of manufacturing a coil unit for processing a side surface.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 압축단계는,Wherein the compressing step comprises:
    상기 코일층의 외측면이 수평면에 대해 형성하는 제1각도와, 각 코일층의 외측면 상단을 서로 이은 연장면이 수평면에 대해 형성하는 제2각도가 서로 동일해지도록 상기 코일블록을 상하 방향으로 압축시키는 코일유닛의 제조방법.The coil block is moved in the vertical direction so that the first angle formed by the outer surface of the coil layer with respect to the horizontal plane and the second angle formed by the extension surface of the outer surface of the coil layer with respect to the horizontal plane are equal to each other Wherein the coil unit is made of a synthetic resin.
  6. 제1항에 있어서,The method according to claim 1,
    상기 중공부가공단계는 상기 슬릿가공단계보다 먼저 수행되는 코일유닛의 제조방법.Wherein the hollow machining step is performed before the slit machining step.
  7. 제1항에 있어서,The method according to claim 1,
    상기 중공부가공단계는 상기 슬릿가공단계 이후에 수행되는 코일유닛의 제조방법.Wherein the hollow machining step is performed after the slit machining step.
  8. 제6항 및 제7항 중 어느 한 항에 있어서,8. The method according to any one of claims 6 and 7,
    상기 중공부가공단계는,In the hollow portion machining step,
    상기 코일블록의 각 면 중 어느 하나에 대응되는 형상으로 함몰 형성된 하나 이상의 고정홈을 가지는 고정지그에 상기 코일블록을 삽입 고정시킨 상태에서, 상기 코일블록의 노출면에 절삭가공을 수행하는 코일유닛의 제조방법.Wherein the coil block is inserted and fixed in a fixing jig having at least one fixing groove recessed in a shape corresponding to one of the surfaces of the coil block, Gt;
  9. 제6항에 있어서,The method according to claim 6,
    상기 중공부가공단계는 상기 블록성형단계를 수행하는 도중 함께 수행되는 코일유닛의 제조방법.Wherein the hollow machining step is performed together during the block forming step.
  10. 스테이터 또는 로터에 구비된 결합부에 결합되는 코일유닛의 제조방법에 있어서,A method of manufacturing a coil unit coupled to a coupling portion provided on a stator or a rotor,
    상기 코일유닛을 제조하기 위한 원재료인 코일블록을 성형하되, 상기 코일블록의 상면 및 하면을 관통하는 중공부가 형성되도록 성형하는 블록성형단계; 및A block forming step of forming a coil block as a raw material for manufacturing the coil unit so that a hollow portion penetrating the upper and lower surfaces of the coil block is formed; And
    절삭가공을 통해 상기 코일블록의 외측면 둘레에, 상기 코일블록의 상부에서 하부에 걸쳐 나선 형태로 연속된 슬릿부를 가공하여 복수 개의 코일층을 형성하는 슬릿가공단계;A slit machining step of forming a plurality of coil layers by machining a slit portion continuous in a spiral shape from an upper portion to a lower portion of the coil block around an outer side surface of the coil block through a cutting process;
    를 포함하는 코일유닛의 제조방법.Wherein the coil unit comprises a coil.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 블록성형단계는,Wherein the block forming step comprises:
    내측에 중공이 형성된 모재를 인발한 뒤 상기 모재의 소정 길이만큼을 커팅하여 상기 코일블록을 성형하는 코일유닛의 제조방법.Wherein the core block is cut by a predetermined length of the base material to form the coil block.
  12. 제10항에 있어서,11. The method of claim 10,
    상기 블록성형단계는,Wherein the block forming step comprises:
    상기 코일블록의 제1-1측면에 경사진 슬로프슬릿을 형성하는 슬로프슬릿가공과정;A slope slit processing step of forming sloped sloped slits on the 1-1 side of the coil block;
    상기 코일블록의 마주보는 한 쌍의 제2측면에 플레인슬릿을 형성하는 플레인슬릿가공과정; 및A plane slit processing step of forming a plane slit on a pair of opposing second side faces of the coil block; And
    상기 제1-1측면의 반대 측에 형성되는 상기 코일블록의 제1-2측면에, 상기 제2측면에 형성된 플레인슬릿을 서로 연결하는 연결슬릿을 형성하는 연결슬릿가공과정;A connecting slit processing step of forming a connecting slit for connecting the plane slits formed on the second side face to the 1-2 side face of the coil block formed on the opposite side of the 1-1 side face;
    을 포함하는 코일유닛의 제조방법.Wherein the coil unit comprises:
  13. 제12항에 있어서,13. The method of claim 12,
    상기 슬로프슬릿가공과정은,In the slope slit processing,
    상기 슬로프슬릿의 가공과 함께 상기 슬로프슬릿의 양측에 형성되는 상기 플레인슬릿의 일부 영역을 함께 가공하는 코일유닛의 제조방법.And a part of the plane slit formed on both sides of the slope slit together with the machining of the slope slit.
  14. 제10항에 있어서,11. The method of claim 10,
    상기 블록성형단계 및 상기 슬릿가공단계 사이에는,Between the block molding step and the slit processing step,
    상기 코일블록의 마주보는 한 쌍의 제2측면에 복수의 경사면을 형성하는 경사면형성단계가 더 포함되는 코일유닛의 제조방법.And forming a plurality of inclined surfaces on a pair of opposing second side surfaces of the coil block.
  15. 제10항에 있어서,11. The method of claim 10,
    상기 슬릿가공단계 이후에는,After the slit processing step,
    상기 코일블록의 중공부 둘레를 가공하여 상기 중공부를 확장시키는 중공부확장단계가 더 포함되는 코일유닛의 제조방법.Further comprising a hollow portion expanding step of expanding the hollow portion by machining the hollow portion of the coil block.
PCT/KR2018/011554 2017-09-29 2018-09-28 Method for manufacturing coil unit WO2019066568A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0127399 2017-09-29
KR20170127399 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019066568A1 true WO2019066568A1 (en) 2019-04-04

Family

ID=65903047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011554 WO2019066568A1 (en) 2017-09-29 2018-09-28 Method for manufacturing coil unit

Country Status (2)

Country Link
KR (1) KR102176813B1 (en)
WO (1) WO2019066568A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235309A1 (en) * 2018-06-04 2019-12-12 福井県 Method and device for manufacturing electric apparatus coil

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102414606B1 (en) * 2021-07-22 2022-06-30 (주)제일이앤엠 Spiral cutting equipment for MSO coil
KR102411411B1 (en) * 2021-07-22 2022-06-23 (주)제일이앤엠 Spiral cutting equipment for MSO coil
KR102469734B1 (en) * 2022-03-17 2022-11-22 (주)대성하이텍 Manufacturing method of mso coil and manufacturing apparatus using the same
KR102463284B1 (en) * 2022-07-28 2022-11-04 (주)대성하이텍 Manufacturing apparatus of rectangle section type coil by one-chucking

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163100A (en) * 1993-12-07 1995-06-23 Seiko Epson Corp Coil and manufacture of it
US20050174208A1 (en) * 2002-09-30 2005-08-11 Tdk Corporation Inductive element and manufacturing method of the same
KR20080008212A (en) * 2006-07-18 2008-01-23 가부시키가이샤 토스카 Thermoplastic spiral component and manufacturing method for the same
WO2015152452A1 (en) * 2014-04-03 2015-10-08 김형우 Coil spring production method
KR101772047B1 (en) * 2015-10-02 2017-08-29 한국생산기술연구원 Manufacturing method of coil unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197270A (en) * 1997-09-18 1999-04-09 Tdk Corp Flat-type coil and its manufacture
DE102011007405A1 (en) 2011-04-14 2012-10-18 Ing. Erich Pfeiffer Gmbh Cosmetic dispenser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163100A (en) * 1993-12-07 1995-06-23 Seiko Epson Corp Coil and manufacture of it
US20050174208A1 (en) * 2002-09-30 2005-08-11 Tdk Corporation Inductive element and manufacturing method of the same
KR20080008212A (en) * 2006-07-18 2008-01-23 가부시키가이샤 토스카 Thermoplastic spiral component and manufacturing method for the same
WO2015152452A1 (en) * 2014-04-03 2015-10-08 김형우 Coil spring production method
KR101772047B1 (en) * 2015-10-02 2017-08-29 한국생산기술연구원 Manufacturing method of coil unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235309A1 (en) * 2018-06-04 2019-12-12 福井県 Method and device for manufacturing electric apparatus coil
US11676760B2 (en) 2018-06-04 2023-06-13 Fukui Prefectural Government Method and an apparatus for producing a coil for electric apparatus

Also Published As

Publication number Publication date
KR102176813B1 (en) 2020-11-11
KR20190038418A (en) 2019-04-08

Similar Documents

Publication Publication Date Title
WO2019066568A1 (en) Method for manufacturing coil unit
US7726007B2 (en) Method of manufacturing stator winding of rotary electric machine
US8850937B2 (en) Method of manufacturing segmented stator cores
US8141232B2 (en) Method of manufacturing stator for dynamoelectric machine
JPH11252842A (en) Molded coil element, its manufacture, core, its manufacture and dynamoelectric machine
US10594195B2 (en) Manufacturing method for stator winding coil
KR101772047B1 (en) Manufacturing method of coil unit
US6223784B1 (en) Method and device for producing wave windings for a stator of a three-phase generator
KR20190037733A (en) Manufacturing methodes of coil
WO2019066542A2 (en) Distributed straight-angle armature winding, motor comprising same, and method for manufacturing same
JP3695101B2 (en) Motor commutator and method for manufacturing the same
KR100260397B1 (en) Method for manufacturing motor-core
CN117280572A (en) Insulator, stator, rotating electrical machine, method for manufacturing stator, and method for manufacturing rotating electrical machine
KR20160099132A (en) Rotor assembly and manufacturing method by centrifugal casting
WO2016078028A1 (en) Stator manufacturing method and stator
WO2018079920A1 (en) Stator using rectangular copper wire, rotating device, and manufacturing method therefor
JPS631015B2 (en)
JP3777515B2 (en) Aligned winding jig for rotating electric machine and aligned winding method
JPH06506820A (en) Electrical conductor with a longitudinal groove and a slit perpendicular to the longitudinal groove
JP2003009434A (en) Ac power generator
CN218850489U (en) Insulating skeleton of high-voltage brushless motor
SU1233235A1 (en) Method of manufacturing commutator of electric machine
KR890002968B1 (en) Commutator manufacture(the process of manufacturing commutator)
CN211088704U (en) Pure copper mica-free commutator
JP2003304668A (en) Method of manufacturing split stator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862637

Country of ref document: EP

Kind code of ref document: A1