WO2019065903A1 - 伝送線、コネクタ付き伝送線、及び中継器 - Google Patents

伝送線、コネクタ付き伝送線、及び中継器 Download PDF

Info

Publication number
WO2019065903A1
WO2019065903A1 PCT/JP2018/036084 JP2018036084W WO2019065903A1 WO 2019065903 A1 WO2019065903 A1 WO 2019065903A1 JP 2018036084 W JP2018036084 W JP 2018036084W WO 2019065903 A1 WO2019065903 A1 WO 2019065903A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
field communication
connector
voltage
wire
Prior art date
Application number
PCT/JP2018/036084
Other languages
English (en)
French (fr)
Inventor
川上 斉徳
康裕 長田
邦寛 田中
中村 俊昭
北村 浩一
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Priority to JP2019545642A priority Critical patent/JP7169281B2/ja
Priority to CN201880061994.4A priority patent/CN111149307B/zh
Publication of WO2019065903A1 publication Critical patent/WO2019065903A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines

Definitions

  • the present invention relates to a transmission line, a transmission line with a connector, and a repeater.
  • wires and cables are used in various facilities and devices to transmit and receive control signals and to supply power.
  • the disconnection information of the transmission line detected by the disconnection detection sensor is sent to the relay device through the signal line.
  • a signal line such as a signal line provided separately from the power transmission line, wired communication that transmits a signal along the power transmission line is possible.
  • wireless communication that transmits and receives signals using radio waves is known as a communication technology that does not use wires or cables. Such wireless communication does not require a wire or the like, but may cause a problem that radio waves used for communication affect other devices or parts as noise.
  • the present invention eliminates the need to separately provide a signal line used for transmission and reception of a signal when transmitting and receiving a signal along an electric wire or a cable, and reduces the influence on other devices and components.
  • the purpose is
  • the present invention is a transmission line including an insulator forming a surface, and a conducting wire disposed inward of the insulator, wherein the first end and the second end of the conducting wire And each of the pair of electric field communication modules performing electric field communication using the insulator as a communication medium, and one of the electric field communication modules, the information received by the electric field communication or the processing result of the received information And an output unit for outputting
  • a first measurement unit that measures the voltage at the first end
  • a second measurement unit that measures the voltage at the second end
  • a voltage at the first end and a voltage at the second end A determination unit that determines the state of the conducting wire based on a potential difference between the voltage at the first end and the voltage at the second end, the determination unit determining an electric field by the pair of electric field communication modules
  • the voltage of the second end may be acquired by communication.
  • the first measurement unit has a first filter that extracts a signal in a specific frequency band generated from the first end, and measures the voltage of the first end based on the extracted signal.
  • the second measurement unit has a second filter that extracts a signal in a specific frequency band generated from the second end, and measures the voltage of the second end based on the extracted signal.
  • a transmission line with a connector according to the present invention includes the above-described transmission line, and a connector which incorporates one of the electric field communication module and the output unit.
  • a relay according to the present invention is a relay for relaying a connector provided at a first end of an electric wire or cable having an insulator forming a surface and a connector of an apparatus, wherein the insulation at the first end is insulated.
  • the electric field communication module capacitively coupled to the body, the electric field communication module performs electric field communication with the electric wire or the electric field communication module provided on the second end side of the cable using the insulator as a communication medium.
  • the transmission line according to the present invention, the transmission line with a connector, and the relay perform the electric field communication in which the electric field communication modules use the insulator as a communication medium, so that the information received by the electric field communication or the processing result of the information Can be output to
  • the electric field communication modules use the insulator as a communication medium
  • the power used for electric field communication is weak, it is possible to reduce the influence on other devices and parts.
  • the connector-equipped transmission line 10 of the present embodiment supplies DC power from the main control circuit 2 to the peripheral circuit 4, and is used as the electric wire 12 used as a power supply line and a ground line.
  • the electric wire 14 is provided.
  • Each of the electric wires 12 and 14 is a single wire or conductor wire 12a, 14a (FIG. 2), such as a single wire or a stranded wire, in which a conductor composed mainly of copper or aluminum alloy is formed in a wire, and an insulator covering the wires 12a, 14a 12b and 14b (FIG. 2).
  • the connector-equipped transmission line 10 includes a first connector 16 disposed at a first end of the wires 12 and 14 and a second connector 18 disposed at a second end of the wires 12 and 14. There is.
  • the first connector 16 is connected to the connector 2 a of the main control circuit 2, and the second connector 18 is connected to the connector 4 a of the peripheral circuit 4.
  • the first connector 16 and the second connector 18 have housings to be fitted into the connectors 2a and 4a, and in the housings, connection terminals (not shown) electrically connected to the respective conducting wires 12a and 14a are provided. .
  • the peripheral circuit 4 described above is provided in a peripheral device (not shown) that repeatedly operates with respect to a main control device (not shown) incorporating the main control circuit 2.
  • An inspection device 20 (FIG. 2) for inspecting the deterioration state of the electric wires 12 and 14 due to bending is provided in the connector-equipped transmission line 10.
  • the deteriorated state of the electric wires 12 and 14 is a state in which a crack or the like is generated in a part of the conducting wires 12 a and 14 a and the conducting wires 12 a and 14 a are about to be broken.
  • the inspection device 20 includes a first unit 22 provided in the first connector 16 (FIG. 1) and a second unit 24 provided in the second connector 18 (FIG. 1). Is equipped.
  • the first unit 22 and the second unit 24 respectively include differential amplifier circuits 26 and 28, analog-to-digital converters (hereinafter referred to as "ADC") 30 and 32, and microcomputers (hereinafter referred to as "MCU") 34, Electronic devices such as 36 and electric field communication modules 38, 40 are mounted on a substrate. A constant power supply is supplied to these electronic devices from a constant voltage circuit (not shown) using the above power supply line as an input power supply.
  • the electronic devices of the first unit 22 are represented by the first differential amplifier circuit 26, the first ADC 30, the first MCU 34, and the first.
  • the electronic devices of the second unit 24 are referred to as a second differential amplifier circuit 28, a second ADC 32, a second MCU 36, and a second electric field communication module 40, respectively.
  • the first differential amplifier circuit 26 has one input connected to the first end of the conducting wire 12a and the other input connected to the first end of the conducting wire 14a. The difference between these input voltages is output from the first differential amplifier circuit 26.
  • the amplification factor is predetermined so that the output is at a level slightly lower than the power supply voltage supplied by the constant voltage circuit. Therefore, the first differential amplifier circuit 26 outputs an analog signal indicative of the voltage between the conducting wires 12a and 14a at the first end.
  • the second differential amplifier circuit 28 has the same circuit configuration as the first differential amplifier circuit 26, and outputs an analog signal indicating the voltage between the conducting wires 12a and 14a at the second end.
  • the signals output from the differential amplifier circuits 26 and 28 are input to the ADCs 30 and 32 connected corresponding to the differential amplifier circuits 26 and 28, respectively.
  • the outputs of the ADCs 30 and 32 are connected to the MCUs 34 and 36, and the digital signals converted by the ADCs 30 and 32 are input to the MCUs 34 and 36.
  • Electric field communication modules 38 and 40 are connected to each of the MCUs 34 and 36 in addition to the ADCs 30 and 32 described above.
  • Each of the electric field communication modules 38 and 40 is a module for performing electric field communication for transmitting a signal by an electric field generated on the surface of the insulators 12b and 14b, and the electrodes 42 and 44 wound around the insulators 12b and 14b.
  • the first end portion and the second end portion are capacitively coupled to the insulators 12b and 14b.
  • the insulators 12b and 14b forming the surfaces of the wires 12 and 14 in this manner are communication media for electric field communication.
  • the first MCU 34 acquires the voltage between the conducting wires 12 a and 14 a at the first end by the execution of the program stored in the memory by the CPU.
  • the first MCU 34, the electrode 42, the first differential amplifier circuit 26, and the first ADC 30 measure the voltage between the conducting wires 12a and 14a at the first end of the wire 12 (FIG. 3).
  • the second MCU 36 acquires the voltage between the conducting wires 12 a and 14 a at the second end by the CPU executing a program stored in the memory.
  • the second MCU and the electrode 44, the second differential amplifier circuit 28, and the second ADC 32 measure the voltage between the conducting wires 12a and 14a at the second end of the electric wire 12 (FIG. 3). Act as.
  • the first MCU 34 determines the deterioration state of the conducting wires 12a and 14a based on the potential difference between the voltage received from the second MCU 36 and the measured voltage (FIG. Act as In addition, the first MCU 34 functions as an output unit 52 (FIG. 3) that outputs the determination result.
  • the power of the main control circuit 2 is constant voltage through the conducting wire 12a. It is supplied to the circuit and power is supplied from the constant voltage circuit to the electronic device. As a result, each of the MCUs 34 and 36 is activated to start the processing defined in the program.
  • each of the MCUs 34 and 36 executes a synchronization process (s101, s201) for executing a measurement process (s102, s202) described later in timing. .
  • the first MCU 34 controls the first electric field communication module 38 to transmit a trigger indicating the start of synchronization from the first electric field communication module 38 to the second electric field communication module 40.
  • the second MCU 36 controls the second electric field communication module 40 to repeatedly check the reception state of the trigger. Then, when the reception of the trigger is confirmed, the second MCU 36 executes a measurement process (s202). After transmitting the trigger, the first MCU 34 executes a measurement process (s102).
  • a measurement process is a process which measures the voltage between conducting wire 12a, 14a.
  • the first MCU 34 controls the first ADC 30 to convert an analog signal input from the first differential amplifier circuit 26 into a digital signal. Then, based on the digital signal, the first MCU 34 acquires a voltage value (hereinafter, referred to as a “first voltage value”) that indicates the voltage between the conducting wires 12 a and 14 a at the first end.
  • the second MCU 36 similarly executes processing (s202), and acquires a voltage value (hereinafter, “second voltage value”) indicative of the voltage between the conducting wires 12a and 14a at the second end.
  • Each of the MCUs 34 and 36 executes the communication process (s103, s203) after executing the measurement process.
  • the first MCU 34 controls the first electric field communication module 38 to request the transmission of the second voltage value from the first electric field communication module 38 to the second electric field communication module 40.
  • Send In the communication process (s203), the second MCU 36 controls the second electric field communication module 40 to confirm the reception status of the transmission request. Then, when the reception of the transmission request is confirmed, the second MCU 36 controls the second electric field communication module 40 to transmit the second voltage value acquired in the measurement process (s202) to the first electric field communication module 38.
  • the first MCU 34 controls the first electric field communication module 38 to check the presence or absence of the second voltage value, and executes the determination process when the second voltage value is received.
  • the determination process is a process of determining the deterioration state of the conducting wires 12a and 14a based on the first voltage value and the second voltage value, and the first MCU 34 performs a subtraction process (s104), a first comparison process (s105), a first comparison process 2 Comparison processing (s106) and signal output processing (s107a, s107b) are sequentially performed.
  • the second voltage value is subtracted from the first voltage value, and the potential difference between the first end and the second end is obtained.
  • the potential difference increases as the conductor resistance increases due to the progress of the deterioration of the conductors 12a and 14a. That is, the potential difference obtained by the subtraction process (s104) indicates the deterioration state of the conductors 12a and 14a.
  • the upper limit value (first threshold value) of the potential difference to be judged that the deterioration of the conducting wires 12a and 14a is small is compared with the potential difference obtained in the subtraction process (s104).
  • the processing is ended.
  • the second comparison process (s106) is performed.
  • the lower limit value (second threshold value) of the potential difference to be judged that deterioration of the conducting wires 12a and 14a is large is compared with the potential difference obtained in the subtraction process (s104).
  • a warning signal indicating that deterioration is in progress is output from the output terminal (s 107 a).
  • the potential difference obtained by the subtraction processing is larger than the second threshold, a deterioration signal indicating that there is much deterioration is output from the output terminal (s 107 b).
  • the warning signal and the deterioration signal are transmitted to the main control device via the first connector 16. When the main control device receives the warning signal or the deterioration signal, it notifies the user or the administrator to that effect.
  • the inspection device 20 executes the above-described process to inspect the deterioration state of the conductors 12a and 14a. Note that these processes are not limited to the start of the main control device, and may be performed periodically while the main control device is operating.
  • the connector-equipped transmission line 10 of the present embodiment it is possible to notify the user or the administrator of an indication for replacing the electric wires 12 and 14.
  • the voltage at both ends is measured in synchronization without separately providing a communication wire (signal line). And the voltage at the second end can be obtained at the first end.
  • the power used for electric field communication is weak, the influence on the main control circuit 2 and the peripheral circuit 4 can be reduced.
  • the synchronization processing in the above operation flow is not an essential processing, and may be a flow in which the synchronization processing is omitted.
  • the output of the voltage divider circuit may be input to the ADCs 30 and 32 using a voltage divider circuit that divides the voltage of the power supply line.
  • the determination result is output to the main control circuit 2 in the above embodiment
  • the first connector 16 is provided with the light emitting portion of the multicolor LED exposed, and the determination result is output by the user You may notify the administrator.
  • the multicolor LED emits light yellow if the potential difference is smaller than the second threshold, and emits red light if the potential difference is larger than the second threshold.
  • the connector-equipped transmission line 10 of the above embodiment includes the electric wire 12 used as a power supply line for supplying power from the main control circuit 2 to the peripheral circuit 4 and the electric wire 14 used as a ground line. Furthermore, the main control circuit 2 may be provided with another electric wire used as a control line for controlling the peripheral circuit 4.
  • a third differential amplification circuit for measuring a voltage between the lead 14a at the first end and the other lead is provided in the first unit 22 at the second end.
  • a fourth differential amplifier circuit is provided in the second unit 24 to measure the voltage between the lead 14 a and the other lead.
  • ADC of the first unit 22 a multi-channel ADC that switches between the output signal of the first differential amplifier circuit 26 and the output signal of the third differential amplifier circuit and performs AD conversion is used.
  • a multi-channel ADC that switches between the output signal of the second differential amplifier circuit 28 and the output signal of the fourth differential amplifier circuit for AD conversion is used.
  • a measurement process (s102) is performed for each channel of the ADC.
  • the first MCU 34 obtains a first voltage value corresponding to the output of the first differential amplifier circuit 26 and a third voltage value corresponding to the output of the third differential amplifier circuit.
  • the measurement process (s202) is performed for each channel of the ADC, and corresponds to the second voltage value corresponding to the output of the second differential amplifier circuit 28 and the output of the fourth differential amplifier circuit And a fourth voltage value to be acquired.
  • the second voltage value and the fourth voltage value are transmitted to the first MCU 34 by electric field communication. Further, the deterioration state of the conducting wire 12a is determined based on the potential difference between the first voltage value and the second voltage value by the subtraction process (s104) and the comparison process (s105, s106) by the first MCU 34, and the third voltage value and the fourth voltage value are determined. The deterioration state of the other conductor is determined based on the potential difference of the voltage value.
  • the transmission line with a connector may have a mode in which the electric wires 12 and 14 are covered by a sheath 64 (FIG. 5) which is an insulator. That is, the connectorized transmission line may include a cable.
  • an electrode is wound around each of the first end and the second end of the sheath 64, and the electric field communication modules 38 and 40 are capacitively coupled to the sheath 64 via each electrode.
  • electric field communication which transmits a signal by electric field generated on the surface of sheath 64 is performed. That is, in the connector-equipped transmission line including the cable, the sheath 64 is a communication medium for electric field communication.
  • the transmission line with connector may determine the deterioration state by grouping the wire group 112 including the power wires 12 and 14 and the signal wire 54 together.
  • strip electrodes 56, 58 wound around the insulators 12b, 14b, 54b at each end of the wire group 112, and a first of which the input is electrically connected to the strip electrodes 56, 58.
  • the first MCU 30 and the second MCU 32 that controllably electrically connect the respective ADCs 30 and 32, and the first ADC 30 and the second ADC 32 whose inputs are electrically connected to the outputs of the respective filters 60 and 62
  • the 2MCU 36 is provided in the first unit 22 and the second unit 24.
  • the strip electrodes 56 and 58 are, for example, copper foil tapes in which copper, which is a conductor, is formed in a tape shape, and an adhesive layer is formed on the attachment surface to the insulators 12b, 14b and 54b.
  • the strip electrodes 56, 58 are wound so as to bundle the insulators 12b, 14b, 54b.
  • the band-shaped electrodes 56 and 58 receive the radio waves from the wire group 112 by winding the band-shaped electrodes 56 and 58 in this manner.
  • radio waves received by the strip electrodes 56 and 58 before operating the peripheral device are as shown in FIG.
  • radio waves received by the strip electrodes 56, 58 when the peripheral device is operated are as shown in FIG. 6 (b).
  • a difference occurs in the spectrum near 2 kHz before and after operating the peripheral device, and the voltage increases by about 10 dB after operating the peripheral device.
  • the increase at the second end of the wire group 112 decreases (closes to the voltage in the stopped state), and in the present modification, the increase decreases. It is intended to detect the deterioration of the electric wire by detecting the
  • both filters 60 and 62 provided in the first unit 22 and the second unit 24 are set to take out the signal of the above-mentioned frequency component, and have the same frequency band (pass band or stop band) preferable.
  • the frequency component to be extracted is 2 kHz in the peripheral device in the present example as described above, the frequency component to be extracted is appropriately set according to the frequency of the signal input to the peripheral device and the supplied power. Also, since the power frequency is generally lower than the signal frequency, as shown in FIG.
  • LPFs 60a and 62a a low pass filter for extracting frequency components of radio waves emitted from the power wires 12 and 14 in the wire group 112
  • HPFs 60b and 62b high pass filters
  • LPF ADC 30a for converting output signals of LPFs 60a and 62a into digital signals
  • HPF ADCs 30b and 32b for converting the output signals of the HPFs 60b and 62b into digital signals
  • the signals output from both filters 60 and 62 are converted into digital signals by the corresponding ADCs 30 and 32, and are input to the MCUs 34 and 36, and voltage values are acquired by the MCUs 34 and 36, and Become.
  • the flow until the voltage values are acquired by the MCUs 34 and 36 is acquired by the measurement processing (s102) after the synchronization processing (s101) is executed as in the above embodiment.
  • the measurement processing (s102) after the synchronization processing (s101) is executed as in the above embodiment.
  • the voltage value is transmitted from the second unit 24 to the first unit 22 using electric field communication
  • two types of filters LPFs 60a and 62a and HPFs 60b and 62b are used. If it is determined, the power line voltage value measured in the power line measurement process and the signal line voltage value measured in the signal line measurement process are transmitted. Then, in the subtraction process (s104), the power line voltage value of the second unit 24 is subtracted from the power line voltage value of the first unit 22 to obtain the potential difference of the electric wires 12 and 14, and the signal line of the first unit 22 The signal line voltage value of the second unit 24 is subtracted from the voltage value to obtain the potential difference of the signal line 54.
  • the potential difference between the electric wires 12 and 14 determined in the above subtraction process (s104) is compared with the first threshold, and the potential difference between the signal line 54 and the first threshold is To be executed.
  • the first threshold may be set individually for each of the wires 12 and 14 and the signal line 54.
  • the second comparison process is performed. In the second comparison process, comparison of the potential difference of the electric wires 12 and 14 with the second threshold and comparison of the potential difference of the signal line 54 with the second threshold are performed.
  • the second threshold value may be set individually for each of the electric wires 12 and 14 and the signal line 54.
  • the presence or absence of deterioration can be determined in units of the wire group 112. Therefore, it is not necessary to increase or decrease the number of components of the circuit or the number of processing of the MCU according to the number of the wires constituting the wire group 112.
  • even a multi-core cable in which a large number of electric wires are combined can be configured with the same number of parts, so it is possible to prevent the units 22 and 24 from being enlarged and to suppress an increase in product cost.
  • both or one of the LPFs 60a and 62a and the HPFs 60b and 62b may be replaced with band pass filters.
  • the band pass filter may be electrically connected to the MCUs 34 and 36 so that the frequency bands to be taken out can be appropriately set by the MCUs 34 and 36.
  • voltage values output from the band pass filter for all frequency bands are acquired before the operation of the peripheral device, and are temporarily stored in the memory, and the operation of the peripheral device is performed. Later, the voltage values output from the band pass filter are acquired again for all frequencies. Then, for each frequency, the voltage value once stored and the voltage value acquired again are compared with each other to set a band in which the difference is distinguishable (or remarkable) as a frequency band to be taken out from the band pass filter. it can.
  • the transmission line with a connector may be of a branch type as shown in FIG.
  • the connector-equipped transmission line 100 includes a first wire group 112a wired from the main control circuit 2 to the first peripheral circuit 104, and a second wire group 112b wired from the main control circuit 2 to the second peripheral circuit 114; Is equipped.
  • the first ends of the first wire group 112a and the second wire group 112b are both connected to the connector 2a of the main control circuit 2 via a common connector (hereinafter referred to as "common connector") 116.
  • the second end of the first wire group 112a is connected to the connector 104a of the first peripheral circuit 104 via the connector 118a.
  • the second end of the second wire group 112b is connected to the connector 114a of the second peripheral circuit 114 via the connector 118b.
  • a unit similar to the second unit 24 described above is incorporated in the connector 118a of the first wire group 112a, and a unit similar to the second unit 24 is incorporated in the connector 118b of the second wire group 112b. Ru.
  • the common connector 116 includes a differential amplifier circuit for measuring the voltage between the leads in the first wire group 112a, a differential amplifier circuit for measuring the voltage between the leads in the second wire group 112b, and the respective differences.
  • a unit including a communication module and an MCU is incorporated.
  • the electric field communication module in the common connector 116 communicates with the electric field communication module in the connector 118a using the insulators 12b and 14b of the first electric wire group 112a as a communication medium, and between the conductors of the first electric wire group 112a on the connector 118a side Receive voltage.
  • the electric field communication module in the common connector 116 communicates with the electric field communication module in the connector 118b using the insulators 12b and 14b of the second electric wire group 112b as a communication medium, and the conductors of the second electric wire group 112b on the connector 118b side Receive the voltage between.
  • the MCU in the common connector 116 acquires the voltage between the conductors on the connector 118a side received by the electric field communication module and controls the ADC to acquire the voltage between the conductors of the first wire group 112a on the common connector 116 side. Do. And the deterioration state of the 1st electric wire group 112a is determined based on the acquired electrical potential difference of two voltages.
  • the MCU in the common connector 116 acquires the voltage between the conductors on the connector 118b side received by the electric field communication module and controls the ADC to control the voltage between the conductors of the second wire group 112b on the common connector 116 side. To get And the deterioration state of the 2nd electric wire group 112b is determined based on the acquired electrical potential difference of two voltages.
  • the first connector 16 and the second connector 18 are not essential components, and the first ends of the conductors 12a and 14a may be directly connected to the main control circuit 2. Alternatively, the second ends of the conductors 12a and 14a may be directly connected to the peripheral circuit 4. That is, any configuration may be used as long as only one of the connectors (for example, only the first connector 16) is provided. In such an aspect, the other unit (e.g., the second unit 24) is incorporated in the connected device (e.g., peripheral device).
  • the connected device e.g., peripheral device
  • the communication apparatus comprises a first unit 22 having a first MCU 34 and a first electric field communication module 38, and a second unit 24 having a second MCU 36 and a second electric field communication module 40.
  • the first MCU 34 is connected to the control terminal of the connector 2 a via the first connector 16
  • the second MCU 36 is connected to the control terminal of the connector 4 a via the second connector 18. Then, the first MCU 34 acquires the control command input from the control terminal, controls the first electric field communication module 38, and transmits the control command to the second electric field communication module 40.
  • the second MCU 36 acquires a control instruction from the second electric field communication module 40, and outputs the control instruction to the control terminal of the connector 4a.
  • the first MCU 34 functions as an acquisition unit for acquiring an input from the device to which the first connector 16 is connected, and the second MCU 36 is connected to the second connector 18 with information received via electric field communication. It functions as an output unit that outputs to the device.
  • the transmission line according to the second embodiment differs from the first embodiment in that the transmission line according to the second embodiment does not include the first connector 16 and the second connector 18, but the other configuration is the same as that of the first embodiment. That is, in the transmission line of the present embodiment, the conducting wire 12a covered by the insulator 12b, the conducting wire 14a covered by the insulator 14b, and the first unit 22 disposed at the first end of the conducting wires 12a and 14a. , And the second unit 24 disposed at the second end of the conducting wires 12a and 14a, and both ends of the conducting wires 12a and 14a are directly connected to the main control circuit 2 and the peripheral circuit 4 ing. The operation flow of the first unit 22 and the second unit 24 is also the same as the operation flow of the first embodiment shown in FIG. Note that each of the above modifications may be applied to the transmission line according to the present embodiment.
  • the third embodiment is different from the first embodiment in that a known connector-equipped wire 212 and a pair of relays 300 are used as shown in FIG.
  • the known connector-equipped electric wire 212 includes the conducting wires 12a and 14a (FIG. 2), the insulators 12b and 14b (FIG. 2) covering the conducting wires 12a and 14a, and a pair of connectors 216 provided at both ends of the conducting wires 12a and 14a. , 218, and the like.
  • the units 22 and 24 of the first embodiment are not built in the connectors 216 and 218.
  • the pair of relays 300 includes a first relay 300a disposed between the connector-equipped wire 212 and the main control device, and a second relay 300b disposed between the connector-equipped wire 212 and the peripheral device. .
  • the first relay 300a relays the connector connection of the main controller and the connector-equipped electric wire 212
  • the second relay 300b relays the peripheral device and the connector connection of the connector-equipped electric wire 212.
  • the first relay 300a is provided in the wire-side connector 302a connected to the first connector 216 provided at the first end of the connector-attached wire 212, and in the circuit (main control circuit 2) in the main control device And a device-side connector 304a connected to the connector 2a.
  • An electric path 306 is provided between the electric wire side connector 302a and the device side connector 304a, and the corresponding connector terminal is electrically connected through the electric path 306.
  • the second relay 300b is provided in the wire-side connector 302b connected to the second connector 218 provided at the second end of the connector-attached wire 212 and in the circuit (peripheral circuit 4) in the peripheral device.
  • An electric path (not shown) is provided between the wire-side connector 302b and the device-side connector 304b.
  • the device-side connector 304b is connected to the connector 4a.
  • the MCUs 34 and 36 (FIG. 2) and the electric field communication modules 38 and 40 (FIG. 2) are built in the pair of relays 300.
  • the MCUs 34 and 36 and the electric field communication modules 38 and 40 operate with the power (not shown) provided in the relays 300 a and 300 b and the power supplied from the main control circuit 2.
  • Each of the electric field communication modules 38 and 40 is capacitively coupled to the insulators 12b and 14b (FIG. 2) forming the surface of the connector-attached electric wire 212 via the electrode 308 such as a worm clip or the like.
  • Conduct electric field communication as a communication medium.
  • the first MCU 34 is communicably connected to the main control circuit 2 via the device-side connector 304 a, and acquires a control signal for the peripheral circuit 4 from the main control circuit 2.
  • the first MCU 34 controls the first electric field communication module 38 to transmit the control signal to the second electric field communication module 40.
  • the second MCU 36 controls the second electric field communication module 40 to receive a control signal. Then, when the second MCU 36 receives the control signal, the second MCU 36 transmits the control signal to the peripheral circuit 2 via the device connector 304 b.
  • control signal from the main control circuit 2 to the peripheral circuit 4 is transmitted by electric field communication, it is not necessary to separately provide a signal line for transmitting the control signal. It is also possible to reduce the impact on other devices and parts. Furthermore, in the present embodiment, since a known connector-attached wire 212 can be used, it is not necessary to newly prepare a wire for performing electric field communication.
  • the known connector-equipped electric wire 212 has been described as an example, but a known connector-equipped cable may be used.
  • the electric field communication modules 38 and 40 of the pair of relays 200 are capacitively coupled to the sheath 64 of the cable.
  • the relays 300a and 300b are provided at each end of the connector-attached electric wire 212.
  • the relay 300a is provided at each end of the connector-attached electric wire 212.
  • the relay 300a is provided at each end of the connector-attached electric wire 212.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

【課題】電線やケーブルに沿った信号の送受信において、当該信号の送受信に用いられる信号線を別途設ける必要がなく、かつ他の装置や部品に対する影響を低減する。 【解決手段】導線12aおよび該導線12aを被覆する絶縁体12bを有し、主制御回路2に接続されるコネクタ付き伝送線10であって、前記導線12aの第1端部と第2端部にそれぞれ配されて、前記絶縁体12bを通信媒体として電界通信を行う1対の電界通信モジュール38,40と、前記電界通信モジュール38に接続され、前記電界通信により受信した情報又は該受信した情報の処理結果を主制御回路2に対して出力する出力部52と、を備えるコネクタ付き伝送線10。

Description

伝送線、コネクタ付き伝送線、及び中継器
 本発明は、伝送線、コネクタ付き伝送線、及び中継器に関する。
 一般に、制御信号の送受信や電力を供給するために電線やケーブルが種々の設備や装置に用いられている。例えば、特許文献1に記載の送電設備では、電力を送電するための送電線と、当該送電線の複数のポイントに設置された断線検出センサを中継装置と電気的に接続する信号電線路と、が用いられている。断線検出センサによって検出された送電線の断線情報が、当該信号電線路を通じて中継装置に送られている。このように、送電線とは別個に設けられた信号電線路などの信号線を用いることで、送電線に沿って信号を送る有線通信が可能となっている。
特開平09-251050号公報
 一方、電線やケーブルなどを使用しない通信技術として、電波を利用して信号の送受信を行う無線通信が知られている。このような無線通信は、電線などを必要としない反面、通信に用いられる電波がノイズとして他の装置や部品に影響するといった問題が生じ得る。
 本願発明は、上記の課題に鑑み、電線やケーブルに沿って信号を送受信する場合に、当該信号の送受信に用いられる信号線を別途設ける必要がなく、かつ他の装置や部品に対する影響を低減することを目的とする。
 上記目的を達成するため、本願発明は、表面を形成する絶縁体、及び該絶縁体の内方に配された導線を含む伝送線であって、前記導線の第1端部と第2端部にそれぞれ配されて、前記絶縁体を通信媒体として電界通信を行う1対の電界通信モジュールと、前記電界通信モジュールの一方に接続され、前記電界通信により受信した情報又は該受信した情報の処理結果を出力する出力部と、を備える。
 また、前記第1端部の電圧を測定する第1測定部と、前記第2端部の電圧を測定する第2測定部と、前記第1端部の電圧と第2端部の電圧を取得して、該第1端部の電圧と該第2端部の電圧の電位差に基づいて前記導線の状態を判定する判定部と、を備え、前記判定部は、前記一対の電界通信モジュールによる電界通信により前記第2端部の電圧を取得する構成であってもよい。
 さらに、前記第1測定部は、前記第1端部から生じる特定の周波数帯域における信号を抽出する第1フィルタを有し、当該抽出した信号に基づいて前記第1端部の電圧を測定し、前記第2測定部は、前記第2端部から生じる特定の周波数帯域における信号を抽出する第2フィルタを有し、当該抽出した信号に基づいて前記第2端部の電圧を測定する構成であってもよい。
 本発明のコネクタ付き伝送線は、上記の伝送線と、前記電界通信モジュールの一方および前記出力部を内蔵するコネクタと、を備える。
 本発明の中継器は、表面を形成する絶縁体を有する電線またはケーブルの第1端部に設けられたコネクタと機器が有するコネクタとを中継する中継器であって、前記第1端部の絶縁体に容量結合される電界通信モジュールを備え、前記電界通信モジュールは、前記絶縁体を通信媒体として、前記電線または前記ケーブルの第2端部側に設けられた電界通信モジュールと電界通信を行う。
 本発明の伝送線、コネクタ付き伝送線、及び中継器は、電界通信モジュール同士が絶縁体を通信媒体とする電界通信を行うことで、当該電界通信により受信した情報又は当該情報の処理結果を機器に対して出力することができる。このように電界通信モジュール同士による電界通信を用いて情報の送受信が可能となっているので、通信用の電線を別途設ける必要がない。また、電界通信に用いられる電力は微弱であるため、他の装置や部品に対する影響を低減させることが可能となっている。
第1実施形態のコネクタ付き伝送線の接続態様を示した概略図 上記コネクタ付き伝送線の回路構成図 上記コネクタ付き伝送線のブロック図 上記コネクタ付き伝送線の第1ユニットおよび第2ユニットの動作フロー図 変形例7に係るコネクタ付き伝送線の回路構成図 上記コネクタ付き伝送線の帯状電極で検出する電波の周波数スペクトルであり、(a)周辺機器が駆動される前の周波数スペクトル、(b)周辺機器が駆動された時の周波数スペクトル 変形例7に係るコネクタ付き伝送線の回路構成を一部変更した図 変形例8に係るコネクタ付き伝送線の概略図 第3実施形態の中継器の使用態様を示した概略図
[第1実施形態]
 以下、図面に基づいて、本発明の実施形態に係るコネクタ付き伝送線を説明する。
 図1に示すように、本実施形態のコネクタ付き伝送線10は、主制御回路2から周辺回路4に対してDC電力を供給するものであり、電源ラインとして用いられる電線12およびグランドラインとして用いられる電線14を備えている。各電線12,14は、銅やアルミニウム合金などを主な原材料とする導体が線状に形成された単線や撚り線などの導線12a,14a(図2)と、導線12a,14aを覆う絶縁体12b,14b(図2)と、を備えている。
 コネクタ付き伝送線10は、両電線12,14の第1端部に配された第1コネクタ16と、両電線12,14の第2端部に配された第2コネクタ18と、を備えている。第1コネクタ16は、主制御回路2のコネクタ2aに接続され、第2コネクタ18は周辺回路4のコネクタ4aに接続される。第1コネクタ16および第2コネクタ18は、コネクタ2a,4aに嵌入されるハウジングを有しており、当該ハウジング内には各導線12a,14aと導通する接続端子(不図示)が設けられている。
 本実施形態では、主制御回路2を内蔵する主制御機器(不図示)に対して反復動作する周辺機器(不図示)内に上記の周辺回路4が設けられており、当該反復動作による撓みや屈曲に起因する電線12,14の劣化状態を点検する点検装置20(図2)がコネクタ付き伝送線10に備えられている。なお、電線12,14の劣化状態とは、導線12a,14aの一部に亀裂等が生じ、導線12a,14aが断線しかかった状態のことである。
 図2に示すように、点検装置20は、第1コネクタ16(図1)内に設けられた第1ユニット22と、第2コネクタ18(図1)内に設けられた第2ユニット24と、を備えている。
 第1ユニット22および第2ユニット24には、それぞれ差動増幅回路26,28、アナログ-デジタル変換器(以下、「ADC」という)30,32、マイクロコンピュータ(以下、「MCU」という)34,36、及び電界通信モジュール38,40などの電子デバイスが基板上に実装されている。これらの電子デバイスには、上記の電源ラインを入力電源とする定電圧回路(不図示)から一定の電源が供給されている。なお、以下の説明において、これらの電子デバイスをユニット22,24ごとに区別する場合には、第1ユニット22の電子デバイスをそれぞれ第1差動増幅回路26、第1ADC30、第1MCU34、及び第1電界通信モジュール38といい、第2ユニット24の電子デバイスをそれぞれ第2差動増幅回路28、第2ADC32、第2MCU36、及び第2電界通信モジュール40という。
 第1差動増幅回路26は、入力の一方が導線12aの第1端部に接続され、入力の他方が導線14aの第1端部に接続されている。これら入力の電圧の差が第1差動増幅回路26から出力される。なお、当該出力が定電圧回路により供給される電源電圧よりも若干低いレベルとなるように増幅率が予め定められている。したがって、第1差動増幅回路26からは第1端部における導線12a,14a間の電圧を指標するアナログ信号が出力される。第2差動増幅回路28は、第1差動増幅回路26と同様の回路構成であり、第2端部における導線12a,14a間の電圧を指標するアナログ信号を出力する。各差動増幅回路26,28から出力された信号は、各差動増幅回路26,28に対応して接続されたADC30,32に入力される。各ADC30,32の出力はMCU34,36に接続されており、ADC30,32によって変換されたデジタル信号がMCU34,36へと入力される。
 各MCU34,36には、上記のADC30,32に加えて、電界通信モジュール38,40が接続されている。各電界通信モジュール38,40は、絶縁体12b,14bの表面に発生させた電界により信号を伝達する電界通信を行うモジュールであって、絶縁体12b,14bに巻きつけられた電極42,44を介して、第1端部および第2端部の絶縁体12b,14bに対して容量結合されている。このように電線12,14の表面を形成している絶縁体12b,14bは電界通信の通信媒体となっている。
 ここで、本実施形態の第1MCU34は、メモリに格納されたプログラムがCPUに実行されることで、第1端部における導線12a,14a間の電圧を取得する。このような第1MCU34、並びに電極42、第1差動増幅回路26、及び第1ADC30は、電線12の第1端部における導線12a,14a間の電圧を測定する第1測定部46(図3)として機能する。同様に、第2MCU36は、メモリに格納されたプログラムがCPUに実行されることで、第2端部における導線12a,14a間の電圧を取得する。このような第2MCU、並びに電極44、第2差動増幅回路28、及び第2ADC32は、電線12の第2端部における導線12a,14a間の電圧を測定する第2測定部50(図3)として機能する。また、下記の動作フローで説明するように、第1MCU34は、第2MCU36から受信した電圧と測定した電圧の電位差に基づいて、導線12a,14aの劣化状態を判定する判定する判定部48(図3)として機能する。また、第1MCU34は判定結果を出力する出力部52(図3)として機能する。
 以下、第1ユニット22および第2ユニット24の動作フローを説明する。
 図1に示すように、第1コネクタ16および第2コネクタ18がコネクタ2a,4aに接続された状態で主制御装置が起動されると、主制御回路2の電力が導線12aを介して定電圧回路に供給され、定電圧回路から電子デバイスへと電力が供給される。これにより各MCU34,36が起動して上記プログラムに定められた処理を開始する。
 図4に示すように、処理が開始されると、先ず、各MCU34,36は、タイミングを合わせて後述の測定処理(s102,s202)を実行するための同期処理(s101,s201)を実行する。具体的には、同期処理(s101)では、第1MCU34が第1電界通信モジュール38を制御して、同期の開始を指標するトリガーを第1電界通信モジュール38から第2電界通信モジュール40へと送信する。同期処理(s201)では、第2MCU36が、第2電界通信モジュール40を制御して、トリガーの受信状態を繰り返し確認する。そして、トリガーの受信を確認すると、第2MCU36は測定処理(s202)を実行する。第1MCU34はトリガーを送信した後に測定処理(s102)を実行する。
 測定処理(s102,s202)は、導線12a,14a間の電圧を測定する処理である。具体的には、測定処理(s102)では、第1MCU34が、第1ADC30を制御して、第1差動増幅回路26から入力されたアナログ信号をデジタル信号へと変換させる。そして、第1MCU34は、当該デジタル信号に基づいて、第1端部における導線12a,14a間の電圧を指標する電圧値(以下、「第1電圧値」という)を取得する。第2MCU36も同様に処理を実行(s202)し、第2端部における各導線12a,14a間の電圧を指標する電圧値(以下、「第2電圧値」)を取得する。
 各MCU34,36は、測定処理を実行した後に通信処理(s103,s203)を実行する。具体的には、通信処理(s103)では、第1MCU34が第1電界通信モジュール38を制御して、第2電圧値の送信リクエストを第1電界通信モジュール38から第2電界通信モジュール40に対して送信する。通信処理(s203)では、第2MCU36が、第2電界通信モジュール40を制御して、送信リクエストの受信状況を確認する。そして、送信リクエストの受信を確認すると、第2MCU36は、第2電界通信モジュール40を制御して、測定処理(s202)において取得した第2電圧値を第1電界通信モジュール38へと送信する。第1MCU34は、第1電界通信モジュール38を制御して第2電圧値の有無を確認し、第2電圧値を受信すると判定処理を実行する。
 判定処理は、第1電圧値と第2電圧値に基づいて導線12a,14aの劣化状態を判定する処理であって、第1MCU34が、減算処理(s104)、第1比較処理(s105)、第2比較処理(s106)、及び信号出力処理(s107a、s107b)を順に実行する。
 減算処理(s104)では、第1電圧値から第2電圧値が減じられて、第1端部と第2端部間の電位差が求められる。当該電位差は、導線12a,14aの劣化の進行による導体抵抗の増大に伴って値が増加する。すなわち、減算処理(s104)で求められる電位差は導線12a,14aの劣化状態を指標している。
 第1比較処理(s105)では、導線12a,14aの劣化が少ないと判断すべき電位差の上限値(第1閾値)と減算処理(s104)で求められた電位差が比較される。比較の結果、電位差が第1閾値よりも小さい場合には処理を終了する。一方、減算処理で求められた電位差が第1閾値よりも大きい場合には、第2比較処理(s106)が実行される。
 第2比較処理(s106)では、導線12a,14aの劣化が多いと判断すべき電位差の下限値(第2閾値)と減算処理(s104)で求められた電位差が比較される。比較の結果、減算処理で求められた電位差が第2閾値よりも小さい場合には、劣化が進行中であることを指標する警告信号を出力端子から出力する(s107a)。一方、減算処理で求められた電位差が第2閾値よりも大きい場合には、劣化が多いことを指標する劣化信号を出力端子から出力する(s107b)。これら警告信号と劣化信号は、第1コネクタ16を介して主制御装置に対して送信される。主制御機器は、警告信号または劣化信号を受信すると、その旨をユーザや管理者に対して通知する。
 このように点検装置20が上記処理を実行することで、導線12a,14aの劣化状態が点検される。なお、これらの処理は、主制御装置の起動時のみに限られず、主制御装置の運転中に定期的に実行されても構わない。
 本実施形態のコネクタ付き伝送線10によれば、電線12,14を交換する目安をユーザや管理者に知らせることができる。また、第1電界通信モジュール38と第2電界通信モジュール40を用いた電界通信を行うことで、通信用の電線(信号線)を別途設けることなく、両端部における電圧を同期しながら測定することができ、また、第2端部の電圧を第1端部において取得することが可能となっている。さらに、電界通信に用いられる電力は微弱であるため、主制御回路2や周辺回路4に対する影響を低減させることが可能となっている。また、電波環境の悪いところなど、電波を用いた無線通信では通信接続が担保できない恐れがあったが、本実施形態の伝送線10によれば、第1端部から第2端部にかけて設けられている絶縁体12b,14bを通信媒体とするため、電波環境の良し悪しに関わらず安定した通信接続を担保することができる。
 以上、本発明に係るコネクタ付き伝送線10を実施形態に基づいて説明したが、本発明は上記した形態に限られないことは勿論であり、例えば、以下のような形態で実施されても構わない。
 <変形例1>
 上記の動作フローにおける同期処理は必須の処理ではなく、同期処理を省略したフローであっても構わない。
 <変形例2>
 上記実施形態の差動増幅回路26,28に変えて、電源ラインの電圧を分圧する分圧回路を用い、分圧回路の出力をADC30,32に入力しても構わない。
 <変形例3>
 上記の動作フローでは第1比較処理(s105)と第2比較処理(s106)を実行していたが、第1比較処理(s105)のみを実行し、当該第1比較処理(s105)において、電位差が第1閾値よりも大きいと判断された場合に警告信号を出力しても構わない。
 <変形例4>
 また、上記実施形態では判定結果を主制御回路2へと出力していたが、第1コネクタ16に多色LEDの発光部を露出させて設け、当該多色LEDの発光によって判定結果をユーザや管理者に知らせても構わない。例えば、第2比較処理(s106)において、電位差が第2閾値よりも小さければ多色LEDを黄色に発光させ、電位差が第2閾値よりも大きければ多色LEDを赤色に発光させる。これにより、ユーザや管理者は劣化状態を直感的に知ることができる。
 <変形例5>
 上記実施形態のコネクタ付き伝送線10は、主制御回路2から周辺回路4へと電力を供給するための電源ラインとして用いられる電線12と、グランドラインとして用いられる電線14と、を備えているが、さらに主制御回路2が周辺回路4を制御するための制御ラインとして用いられる他の電線を備えてもよい。
 上記他の電線をさらに備える態様においては、第1端部における導線14aと他の導線間の電圧を測定するための第3差動増幅回路が第1ユニット22に設けられ、第2端部における導線14aと他の導線間の電圧を測定するための第4差動増幅回路が第2ユニット24に設けられる。また、第1ユニット22のADCには、第1差動増幅回路26の出力信号と第3差動増幅回路の出力信号を切り換えてAD変換する多チャンネルのADCが用いられる。同様に、第2ユニット24のADCには、第2差動増幅回路28の出力信号と第4差動増幅回路の出力信号を切り換えてAD変換する多チャンネルのADCが用いられる。
 このような第1ユニット22では、測定処理(s102)がADCの各チャンネルに対して実行される。これにより、第1MCU34は、第1差動増幅回路26の出力に対応する第1電圧値と、第3差動増幅回路の出力に対応する第3電圧値と、を取得する。第2ユニット24では、測定処理(s202)がADCの各チャンネルに対して実行され、第2差動増幅回路28の出力に対応する第2電圧値と、第4差動増幅回路の出力に対応する第4電圧値と、が取得される。
 そして、通信処理(s103,s203)において、電界通信により第2電圧値と第4電圧値が第1MCU34に送信される。また、第1MCU34による減算処理(s104)および比較処理(s105,s106)により、第1電圧値と第2電圧値の電位差に基づいて導線12aの劣化状態が判定され、第3電圧値と第4電圧値の電位差に基づいて他の導線の劣化状態が判定される。
<変形例6>
 本実施形態のコネクタ付き伝送線は、絶縁体であるシース64(図5)によって電線12,14が被覆された態様であっても構わない。すなわち、コネクタ付き伝送線はケーブルを備えても構わない。このような態様においては、シース64の第1端部および第2端部の各々に電極が巻きつけられ、各電極を介して電界通信モジュール38,40がシース64に対して容量結合される。そして、シース64の表面に発生させた電界により信号を伝達する電界通信が行われる。すなわち、ケーブルを備えるコネクタ付き伝送線は、シース64が電界通信の通信媒体となる。
<変形例7>
 本実施形態に係るコネクタ付き伝送線は、図5に示されるように、電力用の電線12,14および信号線54から成る電線群112を一纏めにして劣化状態を判定しても構わない。当該態様においては、電線群112の各端部における絶縁体12b,14b,54bに巻きつけられる帯状電極56,58と、入力が当該帯状電極56,58に対して電気的に接続された第1フィルタ60および第2フィルタ62と、入力が各フィルタ60,62の出力に電気的に接続された第1ADC30および第2ADC32と、各ADC30,32を制御可能に電気的に接続された第1MCU34および第2MCU36と、が第1ユニット22および第2ユニット24に設けられている。
 帯状電極56,58は、例えば導体である銅がテープ状に形成された銅箔テープであり、絶縁体12b,14b,54bに対する取付面に接着層が形成されている。この帯状電極56,58は絶縁体12b,14b,54bを束ねるように巻き付けられている。このように帯状電極56,58が巻き付けられていることにより、帯状電極56,58は電線群112からの電波を受ける。
 ここで、本変形例において、周辺機器を稼働させる前に帯状電極56,58が受ける電波は図6(a)に示す通りである。一方、周辺機器を稼働させた場合に帯状電極56,58が受ける電波は図6(b)に示す通りである。各図を比較して分かるように、周辺機器を稼働させる前後において2kHz付近のスペクトラムに差異が生じており、周辺機器を稼働させた後には電圧が10dB程度増加することとなる。換言すれば、電線群112に劣化が生じると、電線群112の第2端部における当該増加分が減少する(停止させた状態の電圧に近づく)こととなり、本変形例では当該増加分の減少を検出することにより電線の劣化を検出しようとするものである。
 したがって、第1ユニット22と第2ユニット24に設けられた両フィルタ60,62は、上記周波数成分の信号を取り出すように設定されており、同じ周波数帯域(通過帯域や阻止帯域)を有することが好ましい。なお、上記の通り本例における周辺機器では取り出すべき周波数成分は2kHzであるが、周辺機器に対して入力する信号や供給する電力の周波数に応じて当該取り出すべき周波数成分は適宜設定される。また、一般的に電力の周波数は信号の周波数に比べて低いことから、図7に示すように、電線群112における電力用の電線12,14から発せられる電波の周波数成分を取り出すためのローパスフィルタ(以下、LPF60a,62a)と、信号線54から発せられる電波の周波数成分を取り出すためのハイパスフィルタ(以下、HPF60b,62b)と、LPF60a,62aの出力信号をデジタル信号に変換するLPF用ADC30a,32aと、HPF60b,62bの出力信号をデジタル信号に変換するHPF用ADC30b,32bと、を設けて電線12,14と信号線54の劣化を区別して検出するよう構成しても構わない。
 図5に戻り、両フィルタ60,62から出力された信号は対応するADC30,32によってデジタル信号へと変換されて、MCU34,36へと入力され、MCU34,36によって電圧値が取得されることとなる。MCU34,36によって電圧値が取得されるまでのフローについては、上記の実施形態と同様に、同期処理(s101)が実行された上で測定処理(s102)により取得される。ここで、図7に示すように、LPF60a,62a(電線12,14用のフィルタ)とHPF60b,62b(信号線54用のフィルタ)を用いる場合には、LPF60a,62aにより取り出された信号から電圧を測定するための第1同期処理及び電力線測定処理が実行され、次いでHPF60b,62bにより取り出された信号から電圧を測定するための第2同期処理及び信号線測定処理が実行される。
 また、通信処理(s103)では、電界通信を用いて、第2ユニット24から第1ユニット22に対して電圧値が送信されるが、2種類のフィルタ(LPF60a,62aおよびHPF60b,62b)が用いられる場合には、電力線測定処理において測定された電力線電圧値と、信号線測定処理において測定された信号線電圧値が送信される。そして、減算処理(s104)では、第1ユニット22の電力線電圧値から第2ユニット24の電力線電圧値が減じられで電力用の電線12,14の電位差が求められ、第1ユニット22の信号線電圧値から第2ユニット24の信号線電圧値が減じられ信号線54の電位差が求められる。
 そして、第1比較処理(s105)では、上記の減算処理(s104)において求められた電線12,14の電位差と第1閾値との比較、及び信号線54の電位差と第1閾値との比較が実行される。なお、この第1閾値は電線12,14と信号線54のそれぞれに対して個別に設定されても構わない。比較の結果、いずれかの電位差が第1閾値より大きい場合には第2比較処理が実行される。第2比較処理では、電線12、14の電位差と第2閾値との比較、及び信号線54の電位差と第2閾値との比較が実行される。なお、第2閾値値は電線12,14と信号線54のそれぞれに対して個別に設定されても構わない。比較の結果、第1比較処理において大きいと判断された値が第2閾値よりも小さい場合には警告信号が出力される(s107a)。一方、第2閾値よりも大きい場合には劣化信号が出力される(s107b)。
 本変形例に係るコネクタ付き伝送線によれば、電線群112単位で劣化の有無を判定することができる。従って、電線群112を構成する電線の本数に応じて回路の部品点数やMCUの処理数を増減させる必要がない。特に、多数の電線が複合した多芯ケーブルであっても同一の部品点数で構成できるので、ユニット22,24の肥大化を防止したり、製品コストの増大を抑制することができる。
 なお、特定の周波数帯域を効率的に取り出すために、上記のLPF60a,62aとHPF60b,62bの両方または一方をバンドパスフィルタに代えても構わない。また、当該バンドパスフィルタは、取り出すべき周波数帯域をMCU34,36によって適宜設定可能となるようにMCU34,36と電気的に接続されても構わない。このように周波数帯域を適宜設定するためには、周辺機器の稼働前において、全ての周波数帯域についてバンドパスフィルタから出力された電圧値を取得し、メモリに一旦記憶させておき、周辺機器の稼働後に、再度、全ての周波数についてバンドパスフィルタから出力された電圧値を取得する。そして、各周波数について、一旦記憶させておいた電圧値と再度取得した電圧値の各々を比較して差異が判別可能(又は顕著)な帯域をバンドパスフィルタより取り出すべき周波数帯域として設定することができる。
<変形例8>
 本実施形態に係るコネクタ付き伝送線は、図8に示されるように分岐型であっても構わない。当該コネクタ付き伝送線100は、主制御回路2から第1周辺回路104に配線される第1電線群112aと、主制御回路2から第2周辺回路114に配線される第2電線群112bと、を備えている。第1電線群112aと第2電線群112bの第1端部は共に共通のコネクタ(以下、「共通コネクタ」という。)116を介して主制御回路2のコネクタ2aに接続される。第1電線群112aの第2端部はコネクタ118aを介して第1周辺回路104のコネクタ104aに接続される。また、第2電線群112bの第2端部はコネクタ118bを介して第2周辺回路114のコネクタ114aに接続される。
 ここで、第1電線群112aのコネクタ118aには上記の第2ユニット24と同様のユニットが内蔵され、第2電線群112bのコネクタ118bにも上記の第2ユニット24と同様のユニットが内蔵される。
 共通コネクタ116には、第1電線群112aにおける導線間の電圧を測定するための差動増幅回路と、第2電線群112bにおける導線間の電圧を測定するための差動増幅回路と、各差動増幅回路の出力信号をAD変換する多チャンネルのADCと、第1電線群112aおよび第2電線群112bに巻きつけられた電極を介して各電線群112a,112bに対して容量結合された電界通信モジュールと、MCUと、を備えるユニットが内蔵される。
 共通コネクタ116内の電界通信モジュールは、第1電線群112aの絶縁体12b,14bを通信媒体としてコネクタ118a内の電界通信モジュールと通信を行い、コネクタ118a側における第1電線群112aの導線間の電圧を受信する。また、共通コネクタ116内の電界通信モジュールは、第2電線群112bの絶縁体12b,14bを通信媒体としてコネクタ118b内の電界通信モジュールと通信を行い、コネクタ118b側における第2電線群112bの導線間の電圧を受信する。
 共通コネクタ116内のMCUは、電界通信モジュールが受信したコネクタ118a側の導線間の電圧を取得すると共に、ADCを制御して、共通コネクタ116側における第1電線群112aの導線間の電圧を取得する。そして、取得した2つの電圧の電位差に基づいて、第1電線群112aの劣化状態を判定する。
 さらに、共通コネクタ116内のMCUは、電界通信モジュールが受信したコネクタ118b側の導線間の電圧を取得すると共に、ADCを制御して、共通コネクタ116側における第2電線群112bの導体間の電圧を取得する。そして、取得した2つの電圧の電位差に基づいて、第2電線群112bの劣化状態を判定する。
<変形例9>
 第1コネクタ16および第2コネクタ18は必須の構成ではなく、導線12a,14aの第1端部を主制御回路2に直接接続しても構わない。又は、導線12a,14aの第2端部を周辺回路4に直接接続しても構わない。すなわち、いずれか一方のコネクタのみ(例えば第1コネクタ16のみ)を備える構成であればよい。このような態様においては、他方のユニット(例えば第2ユニット24)は、接続された機器(例えば周辺機器)に内蔵されることとなる。
 <変形例10>
 また、上記の点検装置20に変えて通信装置を備えても構わない。通信装置は、第1MCU34および第1電界通信モジュール38を有する第1ユニット22と、第2MCU36および第2電界通信モジュール40を有する第2ユニット24と、を備える。第1MCU34は第1コネクタ16を介してコネクタ2aの制御用端子に接続され、第2MCU36は第2コネクタ18を介してコネクタ4aの制御端子に接続される。そして、第1MCU34は、制御端子から入力された制御命令を取得し、第1電界通信モジュール38を制御して、当該制御命令を第2電界通信モジュール40へと送信する。第2MCU36は、第2電界通信モジュール40から制御命令を取得し、当該制御命令をコネクタ4aの制御端子に対して出力する。このように、第1MCU34は、第1コネクタ16が接続される機器からの入力を取得する取得部として機能し、第2MCU36は、電界通信を介して受信した情報を第2コネクタ18が接続される機器に対して出力する出力部として機能する。
[第2実施形態]
 第2実施形態に係る伝送線は、第1コネクタ16および第2コネクタ18を備えていない点で第1実施形態と異なるが、その他の構成は第1実施形態と同一である。すなわち、本実施形態の伝送線は、絶縁体12bに被覆された導線12aと、絶縁体14bに被覆された導線14aと、導線12a,14aの第1端部に配された第1ユニット22と、導線12a,14aの第2端部に配された第2ユニット24と、を備えた構成となっており、導線12a,14aの両端部は主制御回路2と周辺回路4に直に接続されている。第1ユニット22および第2ユニット24の動作フローも図4に示された第1実施形態の動作フローと同一である。なお、本実施形態に係る伝送線に上記の各変形例を適用しても構わない。
[第3実施形態]
 第3実施形態は、図9に示されるように、公知のコネクタ付き電線212と、一対の中継器300が用いられている点で第1実施形態とは異なっている。公知のコネクタ付き電線212は、導線12a,14a(図2)と、導線12a,14aを覆う絶縁体12b,14b(図2)と、導線12a,14aの両端部に設けられた一対のコネクタ216,218と、から構成されている。なお、当該コネクタ216,218には第1実施形態のユニット22,24は内蔵されていない。
 一対の中継器300は、コネクタ付き電線212と主制御装置の間に配される第1中継器300aと、コネクタ付き電線212と周辺機器の間に配される第2中継器300bと、を備える。第1中継器300aは主制御装置とコネクタ付き電線212のコネクタ接続を中継し、第2中継器300bは周辺機器とコネクタ付き電線212のコネクタ接続を中継する。
 第1中継器300aは、コネクタ付き電線212の第1端部に設けられた第1コネクタ216に接続される電線側コネクタ302aと、主制御装置内の回路(主制御回路2)に設けられたコネクタ2aに接続される装置側コネクタ304aと、を備える。電線側コネクタ302aと装置側コネクタ304aの間には電路306が設けられており、当該電路306を介して、対応するコネクタ端子が導通している。
 同様に、第2中継器300bは、コネクタ付き電線212の第2端部に設けられた第2コネクタ218に接続される電線側コネクタ302bと、周辺機器内の回路(周辺回路4)に設けられたコネクタ4aに接続される装置側コネクタ304bと、を備えており、対応するコネクタ端子を導通させる電路(不図示)が電線側コネクタ302bと装置側コネクタ304bの間に設けられている。
 ここで、一対の中継器300には、MCU34,36(図2)および電界通信モジュール38,40(図2)が内蔵されている。当該MCU34,36および電界通信モジュール38,40は、各中継器300a,300b内に設けられた電池(不図示)や主制御回路2から供給された電力により動作する。各電界通信モジュール38,40は、みの虫クリップなどの電極308を介して、コネクタ付き電線212の表面を形成する絶縁体12b,14b(図2)に容量結合されており、絶縁体12b,14bを通信媒体とした電界通信を行う。
 第1MCU34は、装置側コネクタ304aを介して主制御回路2と通信可能に接続されており、周辺回路4に対する制御信号を主制御回路2から取得する。そして、第1MCU34は、制御信号を取得すると、第1電界通信モジュール38を制御して、当該制御信号を第2電界通信モジュール40へと送信する。
 第2MCU36は、第2電界通信モジュール40を制御して制御信号を受信する。そして、第2MCU36は、制御信号を受信すると、装置側コネクタ304bを介して当該制御信号を周辺回路2に送信する。
 本実施形態によると、主制御回路2から周辺回路4に対する制御信号が電界通信により送信されるので、制御信号を送信するための信号線を別途設ける必要がない。また、他の機器や部品に対する影響も低減することが可能である。さらに、本実施形態では公知のコネクタ付き電線212を用いることができるので、電界通信を行うための電線を新たに準備する必要がない。
 本実施形態では、公知のコネクタ付き電線212を例にして説明したが、公知のコネクタ付きケーブルを用いても構わない。当該コネクタ付きケーブルを用いる場合においては、一対の中継器200の電界通信モジュール38,40はケーブルのシース64に対して容量結合されることとなる。
 また、本実施形態では、コネクタ付き電線212の端部の各々に中継器300a,300bを設けたが、例えば、周辺回路2内に電界通信モジュールを備える場合には、中継器300aのみであっても構わない。
 本発明は、その趣旨を逸脱しない範囲で当業者の知識に基づいて種々なる改良、修正、または変形を加えた態様でも実施できる。また、同一の作用又は効果が生じる範囲内で、何れかの発明特定事項を他の技術に置換した形態で実施しても良い。
 10  伝送線
 12,14  電線
 12a,14a  導線
 12b,14b  絶縁体
 16  第1コネクタ
 18  第2コネクタ
 38  第1電界通信モジュール
 40  第2電界通信モジュール
 46  第1測定部
 48  判定部
 50  第2測定部
 52  出力部
 60  第1フィルタ
 62  第2フィルタ
 300  一対の中継器
 300a 第1中継器
 300b 第2中継器

 

Claims (5)

  1.  表面を形成する絶縁体、及び該絶縁体の内方に配された導線を含む伝送線であって、
     前記導線の第1端部と第2端部にそれぞれ配されて、前記絶縁体を通信媒体として電界通信を行う1対の電界通信モジュールと、
     前記電界通信モジュールの一方に接続され、前記電界通信により受信した情報又は該受信した情報の処理結果を出力する出力部と、
    を備える伝送線。
  2.  前記第1端部の電圧を測定する第1測定部と、
     前記第2端部の電圧を測定する第2測定部と、
     前記第1端部の電圧と第2端部の電圧を取得して、該第1端部の電圧と該第2端部の電圧の電位差に基づいて前記導線の状態を判定する判定部と、
     を備え、
     前記判定部は、前記一対の電界通信モジュールによる電界通信により前記第2端部の電圧を取得することを特徴とする請求項1に記載の伝送線。
  3.  前記第1測定部は、前記第1端部から生じる特定の周波数帯域における信号を抽出する第1フィルタを有し、当該抽出した信号に基づいて前記第1端部の電圧を測定し、
     前記第2測定部は、前記第2端部から生じる特定の周波数帯域における信号を抽出する第2フィルタを有し、当該抽出した信号に基づいて前記第2端部の電圧を測定する、
    ことを特徴とする請求項2に記載の伝送線。
  4.  請求項1から請求項3のいずれか1項に記載の伝送線と、
     前記電界通信モジュールの一方および前記出力部を内蔵するコネクタと、
    を備えるコネクタ付き伝送線。
  5.  表面を形成する絶縁体を有する電線またはケーブルの第1端部に設けられたコネクタと機器が有するコネクタとを中継する中継器であって、
     前記第1端部の絶縁体に容量結合される電界通信モジュールを備え、
     前記電界通信モジュールは、前記絶縁体を通信媒体として、前記電線または前記ケーブルの第2端部側に設けられた電界通信モジュールと電界通信を行うことを特徴とする中継器。

     
PCT/JP2018/036084 2017-09-29 2018-09-27 伝送線、コネクタ付き伝送線、及び中継器 WO2019065903A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019545642A JP7169281B2 (ja) 2017-09-29 2018-09-27 伝送線、コネクタ付き伝送線、及び中継器
CN201880061994.4A CN111149307B (zh) 2017-09-29 2018-09-27 传输线、带连接器的传输线、以及中继器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017191958 2017-09-29
JP2017-191958 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019065903A1 true WO2019065903A1 (ja) 2019-04-04

Family

ID=65902475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036084 WO2019065903A1 (ja) 2017-09-29 2018-09-27 伝送線、コネクタ付き伝送線、及び中継器

Country Status (3)

Country Link
JP (1) JP7169281B2 (ja)
CN (1) CN111149307B (ja)
WO (1) WO2019065903A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099235A (ja) * 2006-09-11 2008-04-24 Sony Corp 通信システム及び通信装置
JP2008099234A (ja) * 2006-09-11 2008-04-24 Sony Corp 通信システム
JP2017505557A (ja) * 2013-11-06 2017-02-16 エイ・ティ・アンド・ティ インテレクチュアル プロパティ アイ,エル.ピー. ミリ波表面波通信

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712875A (en) * 1995-06-07 1998-01-27 Compaq Computer Corporation Asynchronous differential communication
JP4480735B2 (ja) * 2007-03-22 2010-06-16 日本電信電話株式会社 電界通信装置
JP5287423B2 (ja) * 2009-03-30 2013-09-11 ソニー株式会社 通信装置並びに高周波結合器
US9768833B2 (en) * 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
JP2016092774A (ja) * 2014-11-11 2016-05-23 日立金属株式会社 通信監視システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099235A (ja) * 2006-09-11 2008-04-24 Sony Corp 通信システム及び通信装置
JP2008099234A (ja) * 2006-09-11 2008-04-24 Sony Corp 通信システム
JP2017505557A (ja) * 2013-11-06 2017-02-16 エイ・ティ・アンド・ティ インテレクチュアル プロパティ アイ,エル.ピー. ミリ波表面波通信

Also Published As

Publication number Publication date
JPWO2019065903A1 (ja) 2020-11-05
CN111149307A (zh) 2020-05-12
JP7169281B2 (ja) 2022-11-10
CN111149307B (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
EP3477316B1 (en) Method of testing cable shield performance
EP2642306B1 (en) High voltage testing device
KR101704861B1 (ko) 슬립링 및 슬립링 전기 시스템
WO2015172849A1 (en) A partial discharge acquisition system comprising a capacitive coupling electric field sensor
JP6947072B2 (ja) 多心ケーブルの検査方法、多心ケーブルアセンブリの製造方法、及び多心ケーブルの検査装置
KR20110040359A (ko) 휴대용 단말기에서 이어폰 인식 회로 장치
JP5301081B2 (ja) 二重絶縁された電気計測機器
TW201020563A (en) Cable length detection and signal compensation apparatus and method
CN101576599B (zh) 非接触式音频寻线方法
JP6171900B2 (ja) アクティブケーブルモジュール
KR101333584B1 (ko) 고전압 위상 동기화 기능을 갖는 전력 케이블용 부분방전 측정 장치 및 방법
CN111149307B (zh) 传输线、带连接器的传输线、以及中继器
JP5488891B2 (ja) ケーブル接続確認装置
KR101158540B1 (ko) 전력설비 열화진단용 광대역 초음파 스캐너
US20190212380A1 (en) Method for testing multicore cable, method for manufacturing multicore cable assembly, and multicore cable test device
KR101445083B1 (ko) 전원 분전함 내부 설치형 부분 방전 검출 방법
JP2013113691A (ja) 絶縁診断装置
CN207396683U (zh) 一种测量电路板波纹和噪声信号的装置
JP2000346901A (ja) 電気機器の部分放電検出装置及び検出器
CN212514856U (zh) 一种预埋式电容耦合传感器
JP2007304024A (ja) 信号伝達回路装置
US11277701B2 (en) Microphone
CN108710066A (zh) 一种界面放电检测装置及其方法
CN210775731U (zh) 一种基于4H-SiC传感器的GIS局放在线监测装置
KR20140031672A (ko) 휴대용 활선 고분자애자 진단장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860004

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545642

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860004

Country of ref document: EP

Kind code of ref document: A1