WO2019065763A1 - Method and device for freezing blood - Google Patents
Method and device for freezing blood Download PDFInfo
- Publication number
- WO2019065763A1 WO2019065763A1 PCT/JP2018/035750 JP2018035750W WO2019065763A1 WO 2019065763 A1 WO2019065763 A1 WO 2019065763A1 JP 2018035750 W JP2018035750 W JP 2018035750W WO 2019065763 A1 WO2019065763 A1 WO 2019065763A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blood
- package
- cold air
- slit nozzle
- freezing
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J3/00—Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/02—Blood transfusion apparatus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/08—Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D13/00—Stationary devices, e.g. cold-rooms
- F25D13/06—Stationary devices, e.g. cold-rooms with conveyors carrying articles to be cooled through the cooling space
Definitions
- the present invention relates to a method or apparatus for freezing blood or components fractionated from blood. More specifically, while shortening the time for freezing blood or components fractionated from blood, degradation of physiologically active components present in blood or components fractionated from blood is minimized and effective after thawing.
- the present invention relates to a method and apparatus capable of obtaining blood or a fractionated component of blood containing a physiologically active ingredient.
- air blast freezing is used as a method of freezing blood or components fractionated from blood.
- problems such as a large amount of power consumption due to a long time for freezing, a large amount of cost and a large amount of CO 2 emissions.
- the work of freezing is performed manually, for example, by manually inserting and removing a tray in which packages containing the blood or a fractionated component from blood are placed in and out of the freezing apparatus, which is not efficient.
- Patent Document 1 a brine type freezing method using a solvent has been proposed (Patent Document 1), but there is a problem in freezing blood or components fractionated from blood because it uses a liquid. Many, not realistic.
- An object of the present invention is to provide a method and apparatus for consuming less power in a short time and further reducing CO 2 emission when freezing blood or components fractionated from blood.
- Another object of the present invention is to provide a method and apparatus for freezing blood or blood fractionated components in which decomposition of physiologically active components is minimized.
- the present inventors have found that the above problems are solved by using a specific freezing method and freezing apparatus.
- the present invention is a method of freezing blood or components fractionated from blood, (A) preparing a package in which the blood or the fractionated component of the blood is enclosed; (B) cooling the package at a maximum ice crystal formation time of 2 to 11 seconds for 1 mL of blood or a component fractionated from blood enclosed in the package; And the freezing method.
- the present invention is the above method, wherein the step (b) cools the package by blowing cold air onto the package.
- the present invention is the above-mentioned method, characterized in that in the step of blowing cold air to the package, the cold air is blown through a slit nozzle.
- the present invention is also the above method, wherein the slit nozzle and / or the package are moved in opposite directions to blow cold air on the package.
- the present invention is the above method, wherein the slit nozzle is disposed above and / or below the package.
- the present invention is the above-mentioned method, wherein the slit nozzle is arranged in plurality above and / or below the package.
- the present invention is the above method, wherein the package is loaded on a conveyor belt and reciprocates above and / or below the slit nozzle.
- the step (b) is A housing having an inlet opening and an outlet opening, a conveyor belt for transporting the package through the inlet opening and the outlet opening of the housing, and a cooler and blower for circulating cool air in the housing
- a continuous transfer type freezing apparatus comprising: a cold air circulating device; and a slit nozzle for discharging a substantially vertical jet of cold air to the package to cool the package, A plurality of upper slit nozzles disposed in a direction for transporting the package in the upper space of the conveyor belt, and a plurality of lower slit nozzles disposed in a direction for transporting the package in the lower space are continuously arranged in parallel.
- the opening on the upstream side of the upper slit nozzle faces the space above the housing, while the opening on the upstream side of the lower slit nozzle is a duct opening provided on both sides in the belt width direction orthogonal to the package conveyance direction of the conveyor belt.
- Cold air in the upper space of the housing can be introduced through the After the cooling of the package on both sides in the belt width direction of the conveyor belt via the exhaust passage, the exhaust passage is continuously provided by using the concave portion formed between the slit nozzles arranged in parallel and sandwiching the slit nozzle. Cold air is drawn out, and the drawn-out cold air is returned to the cooler, and is supplied to the upper space of the housing via a cold air circulating device consisting of the cooler and a blower.
- Continuous transport type freezing device characterized by The above method is characterized in that it is a step of cooling using
- the present invention is the above method, wherein the continuous transfer type freezing device is a slit nozzle unit in which a plurality of the slit nozzles are integrally configured.
- the nozzle tip of the upper slit nozzle installed in the vicinity of the housing inlet opening or outlet opening where the conveyor belt enters and exits is installed at an angle toward the center of the housing.
- the present invention is the above-mentioned method, wherein the blood or a component fractionated from blood is derived from a mammal.
- the present invention is the above method, wherein said mammal is at least one selected from the group consisting of human, cow, horse, pig, sheep and monkey.
- the present invention is the above method, wherein the mammal is a human.
- the present invention is the above method, wherein the component fractionated from blood is a blood preparation.
- the present invention is the above-mentioned method, wherein 100 mL to 1000 mL of the blood or components fractionated from blood are enclosed in one package.
- the present invention is the above-mentioned method, wherein 200 mL to 500 mL of a blood or a component fractionated from blood is enclosed in one package.
- the present invention is the above method, wherein the component of the package comprises vinyl chloride.
- the present invention is a freezing apparatus for blood or a component fractionated from blood, comprising a slit nozzle for blowing cold air to a package in which the blood or the component fractionated from blood is enclosed. It is an apparatus.
- the present invention also relates to a freezing apparatus for blood or a component fractionated from blood, comprising: an apparatus for moving the slit nozzle and / or the package in opposite directions to each other. It is.
- the present invention is the above-mentioned freezing apparatus, characterized in that the slit nozzle is disposed above and / or below the package.
- the present invention is the above-mentioned freezing apparatus, wherein a plurality of the slit nozzles are disposed above and / or below the package.
- the present invention is also the freezing apparatus described above, further comprising a conveyor belt, wherein the package is loaded on the conveyor belt and reciprocates above and / or below the slit nozzle.
- the present invention is a continuous transfer type freezing apparatus for blood or components fractionated from blood,
- a housing having an inlet opening and an outlet opening; a conveyor belt for transporting a package containing blood or a component fractionated from blood through the inlet opening and the outlet opening of the housing;
- a cold air circulating device comprising a cooler and a fan for circulating cold air inside, and a slit nozzle for jetting a substantially vertical jet of cold air to the package to cool the package,
- a plurality of upper slit nozzles disposed in a direction for transporting the package in the upper space of the conveyor belt, and a plurality of lower slit nozzles disposed in a direction for transporting the package in the lower space are continuously arranged in parallel.
- the opening on the upstream side of the upper slit nozzle faces the space above the housing, while the opening on the upstream side of the lower slit nozzle is a duct opening provided on both sides in the belt width direction orthogonal to the package conveyance direction of the conveyor belt.
- Cold air in the upper space of the housing can be introduced through the An exhaust passage is continuously provided on both sides of the slit nozzle using the concave portion formed between the slit nozzles arranged in parallel, and the package is cooled on both sides in the belt width direction of the conveyor belt via the exhaust passage. It is configured that cold air is derived and that the derived cold air is returned to the cooler and supplied to the upper space of the housing via a cold air circulating device including the cooler and a blower. It is the above-mentioned freezing device of the component fractionated from blood or blood which is characterized.
- the present invention is the above-mentioned freezing device characterized in that the continuous transfer type freezing device is a slit nozzle unit in which a plurality of the slit nozzles are integrally formed.
- the nozzle tip of the upper slit nozzle installed in the vicinity of the housing inlet opening or outlet opening where the conveyor belt enters and exits is installed at an angle toward the center of the housing. It is the above-mentioned freezing device characterized by being.
- the present invention is the above-mentioned freezing apparatus, wherein 100 mL to 1000 mL of the blood or the fractionated fraction of blood is enclosed in one package.
- the present invention is the above-mentioned freezing apparatus, wherein 200 mL to 500 mL of the blood or components fractionated from blood are enclosed in one package.
- the present invention is the above-mentioned freezing apparatus, wherein the component of the package contains vinyl chloride.
- FIG. 2 shows the maximum ice crystal formation time according to the present invention and the prior art. It is a figure which shows the arrival time of bag center part temperature by this invention and prior art. It is a figure which shows the change rate of coagulation-factor activity before and behind freezing by this invention and prior art.
- FIG. 1 shows the state of ice crystals according to the present invention and the prior art. It is a figure explaining the principle of the Coanda effect.
- FIG. 10 is a perspective view of the freezing device of FIG. 9 from another angle; It is a perspective view which shows the flow of the collision jet stream which hits the belt conveyor of the freezing apparatus shown to FIG. 9, FIG. It is an enlarged elevation view which shows another example of the continuous conveyance type freezing apparatus of this invention. It is an enlarged view of the VIa part of FIG.
- the blood used in the present invention is not particularly limited as long as it has the function of delivering oxygen and the like into the body of an animal, but examples include blood of mammals, preferably humans, cattle and horses. And blood of pigs, sheep, monkeys, etc., particularly human blood.
- the component fractionated from blood used in the present invention is not particularly limited as long as it is a component contained in blood, and can be, for example, plasma, platelets, red blood cells, white blood cells, etc. And albumin, immunoglobulin, blood coagulation factor, antithrombin, tissue adhesive and the like.
- blood products obtained by fractionating human blood such as whole blood preparations, blood component preparations, plasma fraction preparations and the like. It can be classified.
- the package used in the present invention is usually manufactured to enclose blood or blood fractionated components, and is mainly composed of vinyl chloride.
- this package is injected with the component fractionated from the blood or the blood using a peristaltic pump or the like. Will be sealed.
- the amount of blood or components fractionated from the blood per one package is not particularly limited, but is usually 10 to 5000 mL, preferably 100 to 1000 mL, more preferably 200 to 500 mL. Can be mentioned.
- the maximum ice crystal formation zone means that when the blood or a component fractionated from the blood is cooled, the temperature change of the blood or the component fractionated from the blood decreases and at the same time It refers to the temperature zone where the formation of ice is maximum.
- the maximum ice crystal formation time refers to the time of staying in the maximum ice crystal formation zone when the blood or a component fractionated from the blood is cooled.
- the maximum ice crystal formation is usually 2 to 11 seconds, preferably 3 to 10 seconds, more preferably 4 to 9 seconds, to 1 mL of blood or a component fractionated from blood enclosed in the package.
- the package will be cooled in a band time.
- the method for blowing cold air onto the package is not particularly limited, as long as cold air is applied to the package by the air flow, for example, the package is efficiently sprayed by blowing cold air through the slit nozzle. Can be cooled.
- efficient cooling can be achieved by moving the slit nozzle and / or the package in opposite directions.
- cooling can be efficiently performed by blowing cold air from above and below.
- the package can be cooled more efficiently by mounting the package on a conveyor belt and reciprocating the slit nozzle above and / or below.
- the freezing apparatus of the present invention is provided with a slit nozzle for blowing cold air to the blood or a package in which components separated from the blood are sealed.
- a slit nozzle for blowing cold air to the blood or a package in which components separated from the blood are sealed.
- the package By arranging a plurality of slit nozzles and further arranging them above and below the package, the package can be cooled more efficiently.
- the package can be efficiently cooled, and the package is placed on the conveyor belt to set the upper and / or lower of the slit. Reciprocation can cool the package more efficiently.
- the provision of the exhaust passage hinders the installation of the slit nozzle by providing the exhaust passage for leading the cold air after the ejection to the both sides of the conveyor belt among the plurality of slit nozzles.
- the slit nozzle can be set at an optimum position with respect to the package, it is possible to reliably form a thin film flow along the package surface by the Coanda effect.
- FIG. 7 is a diagram for explaining the Coanda effect.
- the film-like air jet k collides vertically on the center line of the cylindrical body A with respect to the side surface of the cylindrical body A
- a stable thin film flow enveloping the cylinder A is formed in close contact with the side surface of the cylinder A over the entire length of the body A. Therefore, when the cold air stream collides, the cold air stream by the Coanda effect can make the heat transfer coefficient to the cylindrical body A very good and improve the cooling effect.
- the jet stream colliding with the package does not incline obliquely, and the exhaust gas is smoothly discharged to both sides of the conveyor belt to generate cold air. It can easily reach the suction side of a cooler or the like.
- FIG. 8 is a view for explaining this principle, and the mountain-shaped slit nozzle n has an entry section b, and the collision jet k ejected from here impinges vertically on the package w transported on the conveyor belt c. .
- the collision jet k ejected from the chevron nozzle n having the entry section b has good flow straightening ability and directionality, it does not diffuse easily and the reach distance h of the collision jet can be increased. As a result, even if the distance from the slit nozzle to the package is large, the cooling effect can be maintained because the cold air stream can collide with the package.
- the opening on the upstream side of the upper slit nozzle and the upper space of the housing are opposed, while the opening on the upstream side of the lower slit nozzle is provided on both sides in the belt width direction orthogonal to the package conveyance direction of the conveyor belt.
- Cold air in the upper space of the housing can be introduced through the duct opening.
- An exhaust passage is continuously provided on both sides of the slit nozzle using the concave portion formed between the slit nozzles arranged in parallel, and the cool air after the package is cooled on both sides of the conveyor belt in the belt width direction via the exhaust passage.
- the cold air is returned to the cooler, and the cold air is supplied to the upper space of the housing through the cold air circulating means including the cooler and the blower.
- the cool air after being ejected into the package is discharged from the exhaust passage, and is smoothly discharged from the conveyor belt without disturbing the jet flow ejected into the package or the atmosphere around the package.
- the formation of the exhaust passage does not disturb the arrangement of the slit nozzle, and the formation of the exhaust passage becomes extremely easy, and the exhaust is smoothly exhausted from both sides of the conveyor belt. Air pressure loss is reduced.
- the nozzle tip of the slit nozzle installed in the vicinity of the inlet opening or outlet opening of the housing through which the conveyor belt enters and exits (according to the pressure difference between the same inlet opening and outlet opening)
- the housing may be installed obliquely at an angle toward the center side. That is, a cold air flow is generated from the high pressure side (at the center of the housing) to the low side (at the same inlet opening and at the same outlet opening) inside the housing, whereby cold air is blown out of the freezer storage and Inflow of air outside the freezer may occur.
- the slit nozzle obliquely at an angle toward the center of the housing in a direction to resist the cold air flow, cold air blown out of the freezer from outside the freezer and outside air can be discharged from the slit nozzle. It is possible to prevent the inflow of When there is a pressure difference between the two openings, it is possible to shut off the air inflow by changing the direction of the angle of the nozzle tip obliquely.
- a plurality of the slit nozzles are integrally configured as a slit nozzle unit. This greatly facilitates the manufacture and installation of the slit nozzle. Furthermore, in addition to the above configuration, preferably, the slit nozzle unit disposed above the conveyor belt is placed on a frame provided on both sides of the conveyor belt to perform cleaning and other maintenance inspections. At the same time, removal of the slit nozzle is extremely easy.
- the slit nozzle unit when the slit nozzle unit is placed on the frame provided on both sides of the conveyor belt when the nozzle tip of the slit nozzle is installed obliquely, the direction of the slit nozzle unit The oblique orientation of the nozzle tip can be easily changed simply by changing.
- FIG. 9 and FIG. 10 1 is preferably a housing made of a heat insulating wall, an inlet opening and an outlet opening (not shown) through which the conveyor belt 2 goes in and out.
- the other parts are sealed to form a sealed space in which the internally cooled air circulates.
- 3 and 4 are coolers and fans that form part of the cold air cycle.
- Reference numeral 5 denotes an upper slit nozzle unit provided in the space above the conveyor belt 2, and a plurality of upper slit nozzles 5a are integrally formed.
- a column 9 supports the conveyor belt 2 and the upper slit nozzle unit 5 and the like.
- a vertical frame 10 is mounted on the column 9.
- a plurality of upper slit nozzle units 5 are mounted so as to be able to be lifted by the vertical frame 10.
- Reference numeral 6 denotes a lower slit nozzle unit provided in the lower space of the conveyor belt 2. Like the upper slit nozzle unit 5, a plurality of lower slit nozzles 6a are integrally formed, and a horizontal frame supported by a support 9 It is supported by 11.
- the upper and lower slit nozzles 5a and 6a are disposed in a direction crossing the conveyor belt 2, and both have a chevron shape, and as shown in FIG. 8, an approach section b is provided on the upstream side of the opening.
- the upper and lower slit nozzles 5a and 6a may have a continuous opening so as to form an air curtain according to the type of package, or a spacer is intermittently arranged in the continuous opening and interrupted. You may make it blow off a jet stream.
- the cold air flow generated by the cooler 3 is directed toward the upper slit nozzle unit 5 by the fan 4 as indicated by the arrow, but a part is from the opening 7 a of the duct 7 disposed on both sides of the conveyor belt 2.
- the lower slit nozzle unit 6 is introduced into the duct 8 disposed below. Thereafter, the lower slit nozzle 6 a blows out toward the lower surface of the conveyor belt 2 to cool the package from the lower surface of the conveyor belt 2.
- the conveyor belt 2 is a steel belt made of steel having a high heat transfer coefficient, and since the heat transfer coefficient is good, the package can be indirectly cooled by being cooled by a cold air flow from below. Because it is non-porous, it may instead be perforated so that a portion of the cold air stream flows from above and below through the same hole.
- the conveyor belt 2 mounts the package w and moves in the direction of the arrow a.
- the cold air flow generated by the cooler (cooler) 3 is directed to the upper slit nozzle unit 5 by the fan 4 as indicated by the arrow, and vertically directed from the upper slit nozzle 5a toward the package w on the conveyor belt 2
- the collision jet k is blown to cool the package w.
- the package w is indirectly cooled by cooling the lower surface of the conveyor belt 2.
- the jet flow that has collided with the lower surface of the package w or the conveyor belt 2 passes through the exhaust passage 12 of the recess formed between the upper and lower slit nozzles 5a and 6a, as shown by arrow e in FIG. It is discharged to both sides. Thereafter, the cold exhaust air is again drawn into the cooler 3 by the fan 4.
- a cold air flow k having a flow direction and an increased reaching distance h which is rectified by the chevron upper and lower slit nozzles 5a and 6a having the entry section upstream of the opening, is perpendicular to the package w. Because of the collision in the direction, it is possible to form a stable thin film flow enveloping the package w in close contact with the side surface of the package w over the entire length of the package w by the Coanda effect. Therefore, when the cold air stream collides, the cold air stream by the Coanda effect can make the heat transfer coefficient with respect to the package w extremely good, and the cooling effect can be improved.
- cold air is supplied from the fan 4 to the upper space of the housing 1 and jetted from the upper slit nozzle 5 a to the package w and then discharged to the exhaust passage 12.
- a part of the cold air is introduced into the lower slit nozzle 6 a through the openings 7 a of the duct 7 provided on both sides of the conveyor belt 2 and jetted out to the package w.
- the jet stream or the periphery of the package from which the cold air after being jetted to the package w is jetted to the package Is discharged smoothly from the conveyor belt 2 without disturbing the atmosphere.
- the formation of the exhaust passage becomes extremely easy without obstructing the arrangement of the slit nozzle by forming the exhaust passage of the cold air flow in the exhaust passage 12 of the recess between the upper and lower slit nozzles 5a and 6a arranged in parallel. . Furthermore, since the exhaust air is smoothly exhausted from both sides of the conveyor belt 2 and the open space in the housing 1 is smoothly circulated to the cooler 3 as it is, there is an advantage that the pressure loss of the cold air is reduced.
- the upper and lower slit nozzle units 5 and 6 in which a plurality of slit nozzles are integrally configured are used, manufacture and installation of the slit nozzles are extremely facilitated. Furthermore, when the upper slit nozzle unit 5 disposed above the conveyor belt 2 is removably mounted on the vertical frame 10 provided on both sides of the conveyor belt 2, cleaning and other maintenance inspections can be performed. There is an advantage that the removal of the slit nozzle is extremely easy.
- FIG. 12 is a partially enlarged cross-sectional view of another example of the device of the present invention.
- a pressure differential occurs between the housing inlet opening and the outlet opening of the continuous transfer type freezing device, a cold air flow is generated inside the housing from the higher pressure side to the lower pressure side, which causes the air flow out of the housing.
- Cold air blowout and air flow out of the housing may occur.
- the cold air leaks out of the refrigerator and adversely affects the workers, or the air outside the housing flows in and frost is formed on the cooler, which adversely affects the cooling performance.
- the outlet opening 22 of the housing 21 when a cold air flow is generated from an inlet opening (not shown) toward the outlet opening 22 in order to eliminate this, as shown in FIG. 12, the outlet opening 22 of the housing 21.
- the slit nozzle tip 23a of the upper slit nozzle unit 23 installed in the vicinity is installed at an angle in the direction opposite to the outlet opening 22 side. This makes it possible to prevent the blowout of cold air from the outlet opening 22 to the outside of the freezer and the inflow of outside air from the inlet opening.
- 23 b is directed in the vertical direction with respect to the conveyor belt 25 at the nozzle tip of the upper slit nozzle disposed at a position away from the outlet opening 22.
- Reference numeral 24 denotes a lower slit nozzle unit, the nozzle tip 24 a of which is disposed in the vertical direction with respect to the conveyor belt 25.
- w is a package placed on the conveyor belt 25;
- FIG. 13 is an enlarged view of a portion VIa of FIG.
- the lower slit nozzle tip 24a may be installed at an oblique angle. Further, the number of slit nozzle rows which can be inclined obliquely can be set appropriately according to the conditions of the apparatus.
- Sample, device etc. As a simulated plasma preparation, a sample containing 880 mL of physiological saline, 120 mL of ACD-A solution, 70 g of bovine albumin, and 0.003% of rhodamine B (hereinafter simply referred to as “ACD-A solution”) was prepared.
- ACD-A solution As a package used in the present invention, 240 mL of ACD-A solution was sealed in a 400 mL blood bag and 480 mL of ACD-A solution was sealed in an 800 mL blood bag.
- simulated plasma formulations were made in the blood bag only form (240 mL bag and 480 mL bag) and in the FFP (attachment + blood bag + packaging box) form (240 mL box and 480 mL box).
- ⁇ Device used> using a continuous carry-in type freezing apparatus (Thermojack-type freezing apparatus, manufactured by Maekawa Seisakusho Co., Ltd.) shown on the left of FIG. It injected from the direction. Since this device is a tester and is not equipped with a cooler, the test was performed by placing the device in a freezer and setting the temperature in the freezer to -33.5 ° C.
- Thermojack-type freezing apparatus manufactured by Maekawa Seisakusho Co., Ltd.
- the conveyor belt was made of steel and frozen with one bag of simulated plasma preparation.
- an air blast type freezing apparatus TBF-500 (manufactured by Teion Co., Ltd.) shown on the right of FIG. 1 was used.
- the temperature inside the refrigerator was set to -70 ° C, and cold air was blown from the left and right by a fan inside the refrigerator.
- a temperature sensor is installed at the center of each bag, the freezing temperature is recorded on a temperature recorder TR-55i (made by D & D Co., Ltd.), ice crystal formation time, -20 ° C and -30 ° C arrival time It was confirmed.
- the 480 mL bag of the simulated plasma preparation was frozen for 1 hour with a thermojack freezer, and another 480 mL bag for 6 hours with an air blast freezer. After freezing, the central part of the bag is cut out to 30 mm x 30 mm, and further cut out into a cylinder with a diameter of 10 mm and a height of 20 mm, and the upper part of the cylinder (near the bag surface) and the central part are sliced in a frozen state and near infrared spectroscopy Photomicrographs were taken (see FIG. 6 top).
- FIG. 2 shows the temperature change at the center of the bag when the simulated plasma preparation is frozen.
- thermojack freezing apparatus (Examples 1 to 4)
- freezing is performed in a significantly shorter time than when the air blast type freezing apparatus is used (Comparative Examples 1 to 4). I understand.
- FIG. 3 shows a diagram in which the maximum ice crystal formation time of the simulated plasma preparation is plotted from the graph obtained in FIG. From this, it can be seen that the maximum ice crystal formation zone time is significantly shorter in the case of using a thermojack freezing apparatus than in the case of using an air blast freezing apparatus.
- Table 1 shows the maximum ice crystal formation time obtained in FIG. 3 divided by the amount of the simulated plasma preparation.
- thermojack freezer is in the range of about 2 to about 10 per mL of simulated plasma preparation
- the maximum ice crystal formation in the case of using an air blast freezer is The banding time is about 12 seconds to about 25 seconds.
- FIG. 4 shows the time until the bag center temperature of the simulated plasma preparation reaches ⁇ 20 ° C. and ⁇ 30 ° C. From this, it can be seen that when the thermojack freezing apparatus is used, the time to reach ⁇ 20 ° C. and ⁇ 30 ° C. is significantly shorter than when using the air blast freezing apparatus.
- FIG. 5 shows the effect of freezing on the quality of plasma preparation.
- thermojack freezing apparatus it is significant in any of PT, APTT, fibrinogen concentration and blood coagulation factor V, VII, and IX activity as compared with the case of using the thermojack freezing apparatus and the case of using the air blasting freezing apparatus. There is no difference, and some data show higher activity. Therefore, it can be understood that even if the thermojack freezing apparatus is replaced by the air blast freezing apparatus conventionally used, there is no problem of the quality of the plasma preparation.
- Table 2 shows the effect of freezing on the package material.
- FIG. 6 The lower part shows the effect of freezing on the form of ice crystals.
- thermojack type freezing apparatus no clear protein compression layer is observed at both the upper and central portions of the bag, and freezing is completed in a state in which ice crystals have not grown enough It is considered that there is less separation of water and protein and less influence on the quality of the plasma preparation as compared with the case of using a long air blast type freezing apparatus.
- REFERENCE SIGNS LIST 1 housing 2 conveyor belt 3 cooler 4 fan 5 upper slit nozzle unit 5 a upper slit nozzle 6 lower slit nozzle unit 6 a lower slit nozzle w package
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Hematology (AREA)
- Diabetes (AREA)
- Heart & Thoracic Surgery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Anesthesiology (AREA)
- Developmental Biology & Embryology (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Vascular Medicine (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Virology (AREA)
- Zoology (AREA)
- Epidemiology (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- External Artificial Organs (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Provided are a method and a device for freezing blood or a component fractionated from the blood, wherein the freezing is performed in a short period of time while consuming a small amount of power and emitting a small amount of CO2. Provided are a method and a device for freezing: blood in which the decomposition of physiological active components has been suppressed as much as possible; or a component fractionated from the blood. A freezing method is used, the freezing method being characterized by comprising: (a) a step for preparing a package in which blood or a component fractionated from the blood is enclosed; and (b) a step for cooling the package for 2-10 seconds, which is the maximum ice crystal formation zone time for 1 mL of the blood or component fractionated from the blood enclosed in the package.
Description
本発明は、血液または血液から分画された成分の凍結方法または凍結装置に関するものである。より詳しくは、血液または血液から分画された成分を凍結する際の時間を短縮するとともに、血液または血液から分画された成分内に存在する生理活性成分の分解を極力抑え、解凍後にも有効な生理活性成分を含む血液または血液から分画された成分を得ることが出来る方法および装置に関する。
The present invention relates to a method or apparatus for freezing blood or components fractionated from blood. More specifically, while shortening the time for freezing blood or components fractionated from blood, degradation of physiologically active components present in blood or components fractionated from blood is minimized and effective after thawing. The present invention relates to a method and apparatus capable of obtaining blood or a fractionated component of blood containing a physiologically active ingredient.
現在血液または血液から分画された成分を凍結させる方法としては、エアブラスト式凍結法が用いられている。しかし、凍結のための時間が長いため消費電力が多くなり、多額の費用および大量のCO2の排出が生じるなどの問題がある。
Currently, air blast freezing is used as a method of freezing blood or components fractionated from blood. However, there are problems such as a large amount of power consumption due to a long time for freezing, a large amount of cost and a large amount of CO 2 emissions.
また、凍結にかかる作業は、血液または血液から分画された成分を封入したパッケージを並べたトレイを凍結装置へ出し入れするなどすべて手作業で行っており、効率的ではない。
In addition, the work of freezing is performed manually, for example, by manually inserting and removing a tray in which packages containing the blood or a fractionated component from blood are placed in and out of the freezing apparatus, which is not efficient.
また、エアブラスト式凍結法に代えて、溶媒を利用したブライン型凍結法も提案されているが(特許文献1)、液体を用いるため血液または血液から分画された成分の凍結には課題が多く、現実的ではない。
Also, instead of the air blast freezing method, a brine type freezing method using a solvent has been proposed (Patent Document 1), but there is a problem in freezing blood or components fractionated from blood because it uses a liquid. Many, not realistic.
本発明の課題は、血液または血液から分画された成分を凍結するのに際し、短時間で消費電力が少なく、さらにCO2排出量が少ない方法および装置を提供することにある。
An object of the present invention is to provide a method and apparatus for consuming less power in a short time and further reducing CO 2 emission when freezing blood or components fractionated from blood.
また、本発明の課題は、生理活性成分の分解を極力抑えた血液または血液から分画された成分の凍結方法および装置を提供することにある。
Another object of the present invention is to provide a method and apparatus for freezing blood or blood fractionated components in which decomposition of physiologically active components is minimized.
本研究者らは、特定の冷凍方法および凍結装置を用いることにより上記課題を解決することを見出した。
The present inventors have found that the above problems are solved by using a specific freezing method and freezing apparatus.
すなわち、本発明は、血液または血液から分画された成分の凍結方法であって、
(a)血液または血液から分画された成分が封入されたパッケージを用意する工程、
(b)前記パッケージに封入された血液または血液から分画された成分1mLに対して、2~11秒の最大氷結晶生成帯時間で前記パッケージを冷却する工程、
を有することを特徴とする、前記凍結方法である。 That is, the present invention is a method of freezing blood or components fractionated from blood,
(A) preparing a package in which the blood or the fractionated component of the blood is enclosed;
(B) cooling the package at a maximum ice crystal formation time of 2 to 11 seconds for 1 mL of blood or a component fractionated from blood enclosed in the package;
And the freezing method.
(a)血液または血液から分画された成分が封入されたパッケージを用意する工程、
(b)前記パッケージに封入された血液または血液から分画された成分1mLに対して、2~11秒の最大氷結晶生成帯時間で前記パッケージを冷却する工程、
を有することを特徴とする、前記凍結方法である。 That is, the present invention is a method of freezing blood or components fractionated from blood,
(A) preparing a package in which the blood or the fractionated component of the blood is enclosed;
(B) cooling the package at a maximum ice crystal formation time of 2 to 11 seconds for 1 mL of blood or a component fractionated from blood enclosed in the package;
And the freezing method.
また、本発明は、前記(b)工程が、前記パッケージに冷気を吹きつけることにより、前記パッケージを冷却することを特徴とする、上記の方法である。
The present invention is the above method, wherein the step (b) cools the package by blowing cold air onto the package.
また、本発明は、前記パッケージに冷気を吹きつける工程において、スリットノズルを通して冷気を吹き付けることを特徴とする、上記の方法である。
Further, the present invention is the above-mentioned method, characterized in that in the step of blowing cold air to the package, the cold air is blown through a slit nozzle.
また、本発明は、前記スリットノズルおよび/または前記パッケージを互いに反対方向に移動させて、前記パッケージに冷気を吹き付けることを特徴とする、上記の方法である。
The present invention is also the above method, wherein the slit nozzle and / or the package are moved in opposite directions to blow cold air on the package.
また、本発明は、前記スリットノズルが、前記パッケージに対して上方および/または下方に配置される、上記の方法である。
Also, the present invention is the above method, wherein the slit nozzle is disposed above and / or below the package.
また、本発明は、前記スリットノズルが、前記パッケージの上方および/または下方に複数配置される、上記の方法である。
Also, the present invention is the above-mentioned method, wherein the slit nozzle is arranged in plurality above and / or below the package.
また、本発明は、前記パッケージがコンベアベルトに載せられ、前記スリットノズルの上方および/または下方を往復することを特徴とする、上記の方法である。
Also, the present invention is the above method, wherein the package is loaded on a conveyor belt and reciprocates above and / or below the slit nozzle.
また、本発明は、前記(b)工程が、
入口開口部および出口開口部を有するハウジングと、前記ハウジングの前記入口開口部および前記出口開口部を通って前記パッケージを搬送するコンベアベルトと、前記ハウジング内で冷気を循環させる冷却器および送風機からなる冷気循環装置と、前記パッケージに対し冷気の略垂直噴流を噴出して前記パッケージの冷却を行なうスリットノズルとを備えた連続搬送式凍結装置であって、
前記コンベアベルトの上方空間に前記パッケージを搬送する方向に配置した複数の上部スリットノズル、および下方空間に前記パッケージを搬送する方向に配置した複数の下部スリットノズルを連続的に並設するとともに、
前記上部スリットノズル上流側の開口と前記ハウジングの上方空間とを対面させ、一方前記下部スリットノズル上流側の開口は、コンベアベルトのパッケージ搬送方向と直交するベルト幅方向両側に設けられたダクト開口を介してハウジングの上方空間の冷気が導入可能に構成され、
前記並設したスリットノズル間に形成された凹部を利用して前記スリットノズルを挟んで連続的に排気路を設け、前記排気路を介して前記コンベアベルトのベルト幅方向両側に前記パッケージを冷却後の冷気が導出されるとともに、前記導出された前記冷気が前記冷却器に戻り、前記冷却器および送風機からなる冷気循環装置を介してハウジングの上方空間に冷気が供給されるように構成されたことを特徴とする連続搬送式凍結装置、
を用いて冷却する工程であることを特徴とする、上記の方法である。 In the present invention, the step (b) is
A housing having an inlet opening and an outlet opening, a conveyor belt for transporting the package through the inlet opening and the outlet opening of the housing, and a cooler and blower for circulating cool air in the housing A continuous transfer type freezing apparatus comprising: a cold air circulating device; and a slit nozzle for discharging a substantially vertical jet of cold air to the package to cool the package,
A plurality of upper slit nozzles disposed in a direction for transporting the package in the upper space of the conveyor belt, and a plurality of lower slit nozzles disposed in a direction for transporting the package in the lower space are continuously arranged in parallel.
The opening on the upstream side of the upper slit nozzle faces the space above the housing, while the opening on the upstream side of the lower slit nozzle is a duct opening provided on both sides in the belt width direction orthogonal to the package conveyance direction of the conveyor belt. Cold air in the upper space of the housing can be introduced through the
After the cooling of the package on both sides in the belt width direction of the conveyor belt via the exhaust passage, the exhaust passage is continuously provided by using the concave portion formed between the slit nozzles arranged in parallel and sandwiching the slit nozzle. Cold air is drawn out, and the drawn-out cold air is returned to the cooler, and is supplied to the upper space of the housing via a cold air circulating device consisting of the cooler and a blower. Continuous transport type freezing device characterized by
The above method is characterized in that it is a step of cooling using
入口開口部および出口開口部を有するハウジングと、前記ハウジングの前記入口開口部および前記出口開口部を通って前記パッケージを搬送するコンベアベルトと、前記ハウジング内で冷気を循環させる冷却器および送風機からなる冷気循環装置と、前記パッケージに対し冷気の略垂直噴流を噴出して前記パッケージの冷却を行なうスリットノズルとを備えた連続搬送式凍結装置であって、
前記コンベアベルトの上方空間に前記パッケージを搬送する方向に配置した複数の上部スリットノズル、および下方空間に前記パッケージを搬送する方向に配置した複数の下部スリットノズルを連続的に並設するとともに、
前記上部スリットノズル上流側の開口と前記ハウジングの上方空間とを対面させ、一方前記下部スリットノズル上流側の開口は、コンベアベルトのパッケージ搬送方向と直交するベルト幅方向両側に設けられたダクト開口を介してハウジングの上方空間の冷気が導入可能に構成され、
前記並設したスリットノズル間に形成された凹部を利用して前記スリットノズルを挟んで連続的に排気路を設け、前記排気路を介して前記コンベアベルトのベルト幅方向両側に前記パッケージを冷却後の冷気が導出されるとともに、前記導出された前記冷気が前記冷却器に戻り、前記冷却器および送風機からなる冷気循環装置を介してハウジングの上方空間に冷気が供給されるように構成されたことを特徴とする連続搬送式凍結装置、
を用いて冷却する工程であることを特徴とする、上記の方法である。 In the present invention, the step (b) is
A housing having an inlet opening and an outlet opening, a conveyor belt for transporting the package through the inlet opening and the outlet opening of the housing, and a cooler and blower for circulating cool air in the housing A continuous transfer type freezing apparatus comprising: a cold air circulating device; and a slit nozzle for discharging a substantially vertical jet of cold air to the package to cool the package,
A plurality of upper slit nozzles disposed in a direction for transporting the package in the upper space of the conveyor belt, and a plurality of lower slit nozzles disposed in a direction for transporting the package in the lower space are continuously arranged in parallel.
The opening on the upstream side of the upper slit nozzle faces the space above the housing, while the opening on the upstream side of the lower slit nozzle is a duct opening provided on both sides in the belt width direction orthogonal to the package conveyance direction of the conveyor belt. Cold air in the upper space of the housing can be introduced through the
After the cooling of the package on both sides in the belt width direction of the conveyor belt via the exhaust passage, the exhaust passage is continuously provided by using the concave portion formed between the slit nozzles arranged in parallel and sandwiching the slit nozzle. Cold air is drawn out, and the drawn-out cold air is returned to the cooler, and is supplied to the upper space of the housing via a cold air circulating device consisting of the cooler and a blower. Continuous transport type freezing device characterized by
The above method is characterized in that it is a step of cooling using
また、本発明は、前記連続搬送式凍結装置が、前記スリットノズルを複数個ずつ一体に構成したスリットノズルユニットとすることを特徴とする、上記の方法である。
The present invention is the above method, wherein the continuous transfer type freezing device is a slit nozzle unit in which a plurality of the slit nozzles are integrally configured.
また、本発明は、前記コンベアベルトが出入りするハウジング入口開口部または出口開口部付近に設置された前記上部スリットノズルのノズル先端部が、前記ハウジング中央側に向け斜めに角度をもたせて設置されていることを特徴とする、上記の方法である。
Further, according to the present invention, the nozzle tip of the upper slit nozzle installed in the vicinity of the housing inlet opening or outlet opening where the conveyor belt enters and exits is installed at an angle toward the center of the housing. The method described above, characterized in that
また、本発明は、前記血液または血液から分画された成分が哺乳動物由来である、上記の方法である。
Also, the present invention is the above-mentioned method, wherein the blood or a component fractionated from blood is derived from a mammal.
また、本発明は、前記哺乳動物が、ヒト、ウシ、ウマ、ブタ、ヒツジおよびサルから成る群から選択される少なくとも1種である、上記の方法である。
Also, the present invention is the above method, wherein said mammal is at least one selected from the group consisting of human, cow, horse, pig, sheep and monkey.
また、本発明は、前記哺乳動物がヒトである、上記の方法である。
Also, the present invention is the above method, wherein the mammal is a human.
また、本発明は、血液から分画された成分が血液製剤である、上記の方法である。
Also, the present invention is the above method, wherein the component fractionated from blood is a blood preparation.
また、本発明は、血液または血液から分画された成分が、1つのパッケージあたり、100mL~1000mL封入されている、上記の方法である。
Also, the present invention is the above-mentioned method, wherein 100 mL to 1000 mL of the blood or components fractionated from blood are enclosed in one package.
また、本発明は、血液または血液から分画された成分が、1つのパッケージあたり、200mL~500mL封入されている、上記の方法である。
In addition, the present invention is the above-mentioned method, wherein 200 mL to 500 mL of a blood or a component fractionated from blood is enclosed in one package.
また、本発明は、前記パッケージの構成成分が塩化ビニルを含む、上記の方法である。
Also, the present invention is the above method, wherein the component of the package comprises vinyl chloride.
また、本発明は、血液または血液から分画された成分の凍結装置であって、血液または血液から分画された成分が封入されたパッケージに、冷気を吹き付けるスリットノズルを備えることを特徴とする装置である。
Further, the present invention is a freezing apparatus for blood or a component fractionated from blood, comprising a slit nozzle for blowing cold air to a package in which the blood or the component fractionated from blood is enclosed. It is an apparatus.
また、本発明は、血液または血液から分画された成分の凍結装置であって、前記スリットノズルおよび/または前記パッケージを互いに反対方向に移動させる装置を有することを特徴とする、上記の凍結装置である。
The present invention also relates to a freezing apparatus for blood or a component fractionated from blood, comprising: an apparatus for moving the slit nozzle and / or the package in opposite directions to each other. It is.
また、本発明は、前記スリットノズルが、前記パッケージに対して上方および/または下方に配置されることを特徴とする、上記の凍結装置である。
Also, the present invention is the above-mentioned freezing apparatus, characterized in that the slit nozzle is disposed above and / or below the package.
また、本発明は、前記スリットノズルが、前記パッケージの上方および/または下方に複数配置されることを特徴とする、上記の凍結装置である。
Further, the present invention is the above-mentioned freezing apparatus, wherein a plurality of the slit nozzles are disposed above and / or below the package.
また、本発明は、さらにコンベアベルトを備え、前記パッケージが前記コンベアベルトに載せられ、前記スリットノズルの上方および/または下方を往復することを特徴とする、上記の凍結装置である。
The present invention is also the freezing apparatus described above, further comprising a conveyor belt, wherein the package is loaded on the conveyor belt and reciprocates above and / or below the slit nozzle.
また、本発明は、血液または血液から分画された成分の連続搬送式凍結装置であって、
入口開口部および出口開口部を有するハウジングと、前記ハウジングの前記入口開口部および前記出口開口部を通って、血液または血液から分画された成分を封入したパッケージを搬送するコンベアベルトと、前記ハウジング内で冷気を循環させる冷却器および送風機からなる冷気循環装置と、前記パッケージに対し冷気の略垂直噴流を噴出して前記パッケージの冷却を行なうスリットノズルとを備え、
前記コンベアベルトの上方空間に前記パッケージを搬送する方向に配置した複数の上部スリットノズル、および下方空間に前記パッケージを搬送する方向に配置した複数の下部スリットノズルを連続的に並設するとともに、
前記上部スリットノズル上流側の開口と前記ハウジングの上方空間とを対面させ、一方前記下部スリットノズル上流側の開口は、コンベアベルトのパッケージ搬送方向と直交するベルト幅方向両側に設けられたダクト開口を介してハウジングの上方空間の冷気が導入可能に構成され、
前記並設したスリットノズル間に形成した凹部を利用して前記スリットノズルを挟んで連続的に排気路を設け、前記排気路を介して前記コンベアベルトのベルト幅方向両側に前記パッケージを冷却後の冷気が導出されるとともに、前記導出された前記冷気が前記冷却器に戻り、前記冷却器および送風機からなる冷気循環装置を介してハウジングの上方空間に冷気が供給されるように構成されたことを特徴とする、血液または血液から分画された成分の上記の凍結装置である。 Further, the present invention is a continuous transfer type freezing apparatus for blood or components fractionated from blood,
A housing having an inlet opening and an outlet opening; a conveyor belt for transporting a package containing blood or a component fractionated from blood through the inlet opening and the outlet opening of the housing; A cold air circulating device comprising a cooler and a fan for circulating cold air inside, and a slit nozzle for jetting a substantially vertical jet of cold air to the package to cool the package,
A plurality of upper slit nozzles disposed in a direction for transporting the package in the upper space of the conveyor belt, and a plurality of lower slit nozzles disposed in a direction for transporting the package in the lower space are continuously arranged in parallel.
The opening on the upstream side of the upper slit nozzle faces the space above the housing, while the opening on the upstream side of the lower slit nozzle is a duct opening provided on both sides in the belt width direction orthogonal to the package conveyance direction of the conveyor belt. Cold air in the upper space of the housing can be introduced through the
An exhaust passage is continuously provided on both sides of the slit nozzle using the concave portion formed between the slit nozzles arranged in parallel, and the package is cooled on both sides in the belt width direction of the conveyor belt via the exhaust passage. It is configured that cold air is derived and that the derived cold air is returned to the cooler and supplied to the upper space of the housing via a cold air circulating device including the cooler and a blower. It is the above-mentioned freezing device of the component fractionated from blood or blood which is characterized.
入口開口部および出口開口部を有するハウジングと、前記ハウジングの前記入口開口部および前記出口開口部を通って、血液または血液から分画された成分を封入したパッケージを搬送するコンベアベルトと、前記ハウジング内で冷気を循環させる冷却器および送風機からなる冷気循環装置と、前記パッケージに対し冷気の略垂直噴流を噴出して前記パッケージの冷却を行なうスリットノズルとを備え、
前記コンベアベルトの上方空間に前記パッケージを搬送する方向に配置した複数の上部スリットノズル、および下方空間に前記パッケージを搬送する方向に配置した複数の下部スリットノズルを連続的に並設するとともに、
前記上部スリットノズル上流側の開口と前記ハウジングの上方空間とを対面させ、一方前記下部スリットノズル上流側の開口は、コンベアベルトのパッケージ搬送方向と直交するベルト幅方向両側に設けられたダクト開口を介してハウジングの上方空間の冷気が導入可能に構成され、
前記並設したスリットノズル間に形成した凹部を利用して前記スリットノズルを挟んで連続的に排気路を設け、前記排気路を介して前記コンベアベルトのベルト幅方向両側に前記パッケージを冷却後の冷気が導出されるとともに、前記導出された前記冷気が前記冷却器に戻り、前記冷却器および送風機からなる冷気循環装置を介してハウジングの上方空間に冷気が供給されるように構成されたことを特徴とする、血液または血液から分画された成分の上記の凍結装置である。 Further, the present invention is a continuous transfer type freezing apparatus for blood or components fractionated from blood,
A housing having an inlet opening and an outlet opening; a conveyor belt for transporting a package containing blood or a component fractionated from blood through the inlet opening and the outlet opening of the housing; A cold air circulating device comprising a cooler and a fan for circulating cold air inside, and a slit nozzle for jetting a substantially vertical jet of cold air to the package to cool the package,
A plurality of upper slit nozzles disposed in a direction for transporting the package in the upper space of the conveyor belt, and a plurality of lower slit nozzles disposed in a direction for transporting the package in the lower space are continuously arranged in parallel.
The opening on the upstream side of the upper slit nozzle faces the space above the housing, while the opening on the upstream side of the lower slit nozzle is a duct opening provided on both sides in the belt width direction orthogonal to the package conveyance direction of the conveyor belt. Cold air in the upper space of the housing can be introduced through the
An exhaust passage is continuously provided on both sides of the slit nozzle using the concave portion formed between the slit nozzles arranged in parallel, and the package is cooled on both sides in the belt width direction of the conveyor belt via the exhaust passage. It is configured that cold air is derived and that the derived cold air is returned to the cooler and supplied to the upper space of the housing via a cold air circulating device including the cooler and a blower. It is the above-mentioned freezing device of the component fractionated from blood or blood which is characterized.
また、本発明は、前記連続搬送式凍結装置が、前記スリットノズルの複数を一体に構成したスリットノズルユニットとすることを特徴とする、上記の凍結装置である。
Further, the present invention is the above-mentioned freezing device characterized in that the continuous transfer type freezing device is a slit nozzle unit in which a plurality of the slit nozzles are integrally formed.
また、本発明は、前記コンベアベルトが出入りするハウジング入口開口部または出口開口部付近に設置された前記上部スリットノズルのノズル先端部が、前記ハウジング中央側に向け斜めに角度をもたせて設置されていることを特徴とする、上記の凍結装置である。
Further, according to the present invention, the nozzle tip of the upper slit nozzle installed in the vicinity of the housing inlet opening or outlet opening where the conveyor belt enters and exits is installed at an angle toward the center of the housing. It is the above-mentioned freezing device characterized by being.
また、本発明は、血液または血液から分画された成分が、1つのパッケージあたり、100mL~1000mL封入されている、上記の凍結装置である。
Also, the present invention is the above-mentioned freezing apparatus, wherein 100 mL to 1000 mL of the blood or the fractionated fraction of blood is enclosed in one package.
また、本発明は、血液または血液から分画された成分が、1つのパッケージあたり、200mL~500mL封入されている、上記の凍結装置である。
Also, the present invention is the above-mentioned freezing apparatus, wherein 200 mL to 500 mL of the blood or components fractionated from blood are enclosed in one package.
また、本発明は、前記パッケージの構成成分が塩化ビニルを含む、上記の凍結装置である。
Also, the present invention is the above-mentioned freezing apparatus, wherein the component of the package contains vinyl chloride.
本発明によれば、血液または血液から分画された成分を凍結するのに際し、短時間で消費電力が少なく、さらにCO2排出量が少ない方法および装置を提供することができる。
According to the present invention, it is possible to provide a method and apparatus which consumes less power in a short time and further reduces CO 2 emission when freezing blood or components fractionated from blood.
さらに、本発明によれば、生理活性成分の分解を極力抑えた血液または血液から分画された成分の凍結方法および装置を提供することができる。
Furthermore, according to the present invention, it is possible to provide a method and apparatus for freezing blood or blood fractionated components in which degradation of physiologically active components is minimized.
本発明に用いられる血液としては、動物の体内に酸素等を運搬する作用を有するものであれば特に制限はないが、例えば哺乳動物の血液を挙げることができ、好ましくは、ヒト、ウシ、ウマ、ブタ、ヒツジ、サル等の血液を挙げることができ、特にヒトの血液を挙げることができる。
The blood used in the present invention is not particularly limited as long as it has the function of delivering oxygen and the like into the body of an animal, but examples include blood of mammals, preferably humans, cattle and horses. And blood of pigs, sheep, monkeys, etc., particularly human blood.
また、本発明で用いられる血液から分画された成分としては、血液に含まれる成分であれば特に制限はないが、例えば血漿、血小板、赤血球、白血球等を挙げることができ、さらに、血漿成分を分画した、アルブミン、免疫グロブリン、血液凝固因子、アンチトロンビン、組織接着剤等を挙げることができる。
Further, the component fractionated from blood used in the present invention is not particularly limited as long as it is a component contained in blood, and can be, for example, plasma, platelets, red blood cells, white blood cells, etc. And albumin, immunoglobulin, blood coagulation factor, antithrombin, tissue adhesive and the like.
また、血液または血液から分画された成分の他の分類としては、ヒトの血液を分画して得られる血液製剤を挙げることができ、全血製剤、血液成分製剤、血漿分画製剤等に分類することができる。
Further, as another classification of blood or components fractionated from blood, there can be mentioned blood products obtained by fractionating human blood, such as whole blood preparations, blood component preparations, plasma fraction preparations and the like. It can be classified.
本発明で用いられるパッケージは、通常血液または血液を分画した成分を封入するために製造されたものであり、主として塩化ビニルで構成されている。
The package used in the present invention is usually manufactured to enclose blood or blood fractionated components, and is mainly composed of vinyl chloride.
ここで、本発明の(a)血液または血液から分画された成分が封入されたパッケージを用意する工程としては、このパッケージにペリスタポンプなどを用いて、血液または血液から分画された成分を注入し、封入することとなる。
Here, in the step of preparing (a) the package of the present invention in which the blood or the component fractionated from the blood is enclosed, this package is injected with the component fractionated from the blood or the blood using a peristaltic pump or the like. Will be sealed.
本発明において、1つのパッケージあたりに封入される血液または血液から分画された成分の量としては特に制限はないが、通常10~5000mLであり、好ましくは100~1000mL、より好ましくは200~500mLを挙げることができる。
In the present invention, the amount of blood or components fractionated from the blood per one package is not particularly limited, but is usually 10 to 5000 mL, preferably 100 to 1000 mL, more preferably 200 to 500 mL. Can be mentioned.
次に、本発明の(b)前記パッケージに封入された血液または血液から分画された成分1mLに対して、2~10秒の最大氷結晶生成帯時間で前記パッケージを冷却する工程、を行うこととなる。
Next, (b) cooling the package at a maximum ice crystal formation time of 2 to 10 seconds with respect to 1 mL of blood or a component fractionated from the blood enclosed in the package of the present invention It will be.
ここで、本発明において最大氷結晶生成帯とは、前記血液または血液から分画された成分を冷却していった場合、血液または血液から分画された成分の温度の変化が少なくなり、同時に氷の生成が最大になる温度帯のことをいう。
Here, in the present invention, the maximum ice crystal formation zone means that when the blood or a component fractionated from the blood is cooled, the temperature change of the blood or the component fractionated from the blood decreases and at the same time It refers to the temperature zone where the formation of ice is maximum.
そして、本発明において最大氷結晶生成帯時間とは、血液または血液から分画された成分を冷却していった場合に、最大氷結晶生成帯にとどまる時間のことをいう。
And, in the present invention, the maximum ice crystal formation time refers to the time of staying in the maximum ice crystal formation zone when the blood or a component fractionated from the blood is cooled.
本発明においては、前記パッケージに封入された血液または血液から分画された成分1mLに対して、通常2~11秒、好ましくは3~10秒、より好ましくは4~9秒の最大氷結晶生成帯時間で前記パッケージを冷却することとなる。
In the present invention, the maximum ice crystal formation is usually 2 to 11 seconds, preferably 3 to 10 seconds, more preferably 4 to 9 seconds, to 1 mL of blood or a component fractionated from blood enclosed in the package. The package will be cooled in a band time.
本発明の(b)工程において、パッケージに冷気を吹き付ける方法としては、特に制限はなく、気流により冷気がパッケージにあたればよいが、たとえばスリットノズルを通して冷気をパッケージに吹き付けることにより、効率的にパッケージを冷却することができる。
In the step (b) of the present invention, the method for blowing cold air onto the package is not particularly limited, as long as cold air is applied to the package by the air flow, for example, the package is efficiently sprayed by blowing cold air through the slit nozzle. Can be cooled.
また、スリットノズルおよび/またはパッケージを互いに反対方向に、移動させることにより、効率的に冷却することができる。
In addition, efficient cooling can be achieved by moving the slit nozzle and / or the package in opposite directions.
また、パッケージの上方および/または下方に、さらに複数のスリットノズルを配置することにより、上下から冷気を吹き付けることにより、効率的に冷却することができる。
Further, by arranging a plurality of slit nozzles above and / or below the package, cooling can be efficiently performed by blowing cold air from above and below.
さらに、パッケージをコンベアベルトに載せ、スリットノズルの上方および/または下方を往復させることにより、より効率的にパッケージを冷却することもできる。
Furthermore, the package can be cooled more efficiently by mounting the package on a conveyor belt and reciprocating the slit nozzle above and / or below.
次に、本発明の血液または血液から分画された成分の凍結装置について説明する。
Next, the freezing apparatus of the blood or the component fractionated from the blood of the present invention will be described.
本発明の凍結装置は、血液または血液から分画された成分が封入されたパッケージに冷気を吹き付けるスリットノズルを備える。このスリットノズルを用いることにより、パッケージに対して、コアンダ効果によるパッケージ表面に沿う薄膜流を確実に形成することができるようになる。
The freezing apparatus of the present invention is provided with a slit nozzle for blowing cold air to the blood or a package in which components separated from the blood are sealed. By using this slit nozzle, it is possible to reliably form a thin film flow along the package surface by the Coanda effect on the package.
そして、このスリットノズルを複数配置し、さらにパッケージの上下に配置することにより、より効率的にパッケージを冷却することが可能となる。
By arranging a plurality of slit nozzles and further arranging them above and below the package, the package can be cooled more efficiently.
また、スリットノズルおよび/またはパッケージをを互いに反対方向に移動させる装置を備えることにより、効率的ににパッケージを冷却することができ、さらにパッケージをコンベアベルトに載せてスリットの上方および/または下方を往復させることにより、より一層効率的にパッケージを冷却することができる。
Also, by providing a device for moving the slit nozzle and / or the package in the opposite direction, the package can be efficiently cooled, and the package is placed on the conveyor belt to set the upper and / or lower of the slit. Reciprocation can cool the package more efficiently.
次に、本発明の連続搬送式凍結装置について説明する。
Next, the continuous transfer type freezing apparatus of the present invention will be described.
本発明の連続搬送式凍結装置において、噴出後の冷気を複数のスリットノズル間でコンベアベルトの両側方向に導出する排気路を設けたことにより、排気路の設置がスリットノズルの設置を阻害することがなく、従ってスリットノズルをパッケージに対して最適な位置に設置可能となるため、コアンダ効果によるパッケージ表面に沿う薄膜流を確実に形成することができるようになる。
In the continuous conveyance type freezing device of the present invention, the provision of the exhaust passage hinders the installation of the slit nozzle by providing the exhaust passage for leading the cold air after the ejection to the both sides of the conveyor belt among the plurality of slit nozzles. As a result, since the slit nozzle can be set at an optimum position with respect to the package, it is possible to reliably form a thin film flow along the package surface by the Coanda effect.
図7はコアンダ効果を説明する図であり、図7において、たとえば円筒体Aの側面に対して、円筒体Aの中心線上を垂直に膜状の空気噴流kが衝突した場合、コアンダ効果により円筒体Aの全長に亘り円筒体Aの側面に密着した状態で円筒体Aを包絡する安定した薄膜流が形成される。従って冷気流を衝突させた場合、コアンダ効果による冷風気流は円筒体Aに対する熱伝達率をきわめて良好にし、冷却効果を向上させることができる。
FIG. 7 is a diagram for explaining the Coanda effect. In FIG. 7, for example, when the film-like air jet k collides vertically on the center line of the cylindrical body A with respect to the side surface of the cylindrical body A A stable thin film flow enveloping the cylinder A is formed in close contact with the side surface of the cylinder A over the entire length of the body A. Therefore, when the cold air stream collides, the cold air stream by the Coanda effect can make the heat transfer coefficient to the cylindrical body A very good and improve the cooling effect.
またコンベアベルトの両側方向に導出する冷気の排気路を設けたことにより、パッケージに衝突する噴流が斜めに傾くことがなく、しかも排気がスムーズにコンベアベルトの両側方に排出され、冷気を発生する冷却器等の吸入側に容易に到達することができる。
Also, by providing a cold air exhaust path leading to both sides of the conveyor belt, the jet stream colliding with the package does not incline obliquely, and the exhaust gas is smoothly discharged to both sides of the conveyor belt to generate cold air. It can easily reach the suction side of a cooler or the like.
本発明の装置において、前記スリットノズル上流側に助走区間をもうけることによって、冷気流に整流性をもたせ、流れに方向性を与えることができるとともに、スリットノズルから噴出する際の到達距離を増加することができる。図8はこの原理を説明する図であり、山型のスリットノズルnは助走区間bを有し、ここから噴出した衝突噴流kは、コンベアベルトc上を搬送されるパッケージwに垂直に衝突する。
In the apparatus according to the present invention, by providing the approach section upstream of the slit nozzle, the cold air flow can be provided with rectification and the flow can be given directionality, and the reach distance when spouting from the slit nozzle is increased. be able to. FIG. 8 is a view for explaining this principle, and the mountain-shaped slit nozzle n has an entry section b, and the collision jet k ejected from here impinges vertically on the package w transported on the conveyor belt c. .
この際助走区間bを有する山形ノズルnから噴出される衝突噴流kは、整流性が良く、流れに方向性があるため、なかなか拡散せず、衝突噴流の到達距離hを長くすることができる。これによってたとえスリットノズルからパッケージまでの距離が離れていても、冷気流がパッケージに衝突可能であるため、冷却効果を維持することができる。
At this time, since the collision jet k ejected from the chevron nozzle n having the entry section b has good flow straightening ability and directionality, it does not diffuse easily and the reach distance h of the collision jet can be increased. As a result, even if the distance from the slit nozzle to the package is large, the cooling effect can be maintained because the cold air stream can collide with the package.
また本発明において、前記上部スリットノズル上流側の開口と前記ハウジングの上方空間とを対面させ、一方前記下部スリットノズル上流側の開口は、コンベアベルトのパッケージ搬送方向と直交するベルト幅方向両側に設けられたダクト開口を介してハウジングの上方空間の冷気が導入可能に構成されている。前記並設したスリットノズル間に形成した凹部を利用して該スリットノズルを挟んで連続的に排気路を設け、該排気路を介して前記コンベアベルトのベルト幅方向両側に前記パッケージ冷却後の冷気が導出されるとともに、該導出された前記冷気が前記冷却器に戻り、該冷却器および送風機からなる冷気循環手段を介してハウジングの上方空間に冷気が供給されるように構成されている。
In the present invention, the opening on the upstream side of the upper slit nozzle and the upper space of the housing are opposed, while the opening on the upstream side of the lower slit nozzle is provided on both sides in the belt width direction orthogonal to the package conveyance direction of the conveyor belt. Cold air in the upper space of the housing can be introduced through the duct opening. An exhaust passage is continuously provided on both sides of the slit nozzle using the concave portion formed between the slit nozzles arranged in parallel, and the cool air after the package is cooled on both sides of the conveyor belt in the belt width direction via the exhaust passage. The cold air is returned to the cooler, and the cold air is supplied to the upper space of the housing through the cold air circulating means including the cooler and the blower.
これによって、パッケージに噴出した後の冷気が前記排気路から排出されることによって、パッケージに噴出される噴出流又はパッケージ周辺の雰囲気を乱すことなく、スムーズにコンベアベルトから排出される。
As a result, the cool air after being ejected into the package is discharged from the exhaust passage, and is smoothly discharged from the conveyor belt without disturbing the jet flow ejected into the package or the atmosphere around the package.
また本発明によれば前記構成により、排気路の形成がスリットノズルの配置を阻害することなく、かつ排気路の形成がきわめて容易になると共に、排気がコンベアベルトの両側からスムーズに排気され、冷気流の圧力損失が少なくなる。
Further, according to the present invention, with the above configuration, the formation of the exhaust passage does not disturb the arrangement of the slit nozzle, and the formation of the exhaust passage becomes extremely easy, and the exhaust is smoothly exhausted from both sides of the conveyor belt. Air pressure loss is reduced.
また本発明において、コンベアベルトが出入りするハウジングの入口開口部又は出口開口部付近に設置されたスリットノズルのノズル先端部を(同入口開口部と同出口開口部との圧力差に応じて)前記ハウジング中央側に向け斜めに角度をもたせて設置してもよい。即ちハウジングの内部で(ハウジング中央側の)圧力の高いほうから(同入口開口部と同出口開口部側に)低いほうに向かって冷気流が生じ、これによってフリーザ庫外への冷気の吹き出しおよびフリーザ庫外の空気の流入が生じる場合がある。そのため前記スリットノズルを発生した冷気流に抗する方向へハウジング中央側に向け斜めに角度をもたせて設置することにより、スリットノズルから噴射される冷風のフリーザ庫外への冷風の吹き出しおよび庫外空気の流入を防ぐことが可能になる。前記両開口部での圧力差がある場合、ノズル先端部の角度の方向を斜めに変えることにより空気流入を遮断することが可能になる。
In the present invention, the nozzle tip of the slit nozzle installed in the vicinity of the inlet opening or outlet opening of the housing through which the conveyor belt enters and exits (according to the pressure difference between the same inlet opening and outlet opening) The housing may be installed obliquely at an angle toward the center side. That is, a cold air flow is generated from the high pressure side (at the center of the housing) to the low side (at the same inlet opening and at the same outlet opening) inside the housing, whereby cold air is blown out of the freezer storage and Inflow of air outside the freezer may occur. Therefore, by installing the slit nozzle obliquely at an angle toward the center of the housing in a direction to resist the cold air flow, cold air blown out of the freezer from outside the freezer and outside air can be discharged from the slit nozzle. It is possible to prevent the inflow of When there is a pressure difference between the two openings, it is possible to shut off the air inflow by changing the direction of the angle of the nozzle tip obliquely.
また本発明において、好ましくは、前記スリットノズルの複数を一体に構成したスリットノズルユニットとする。これによってスリットノズルの製造および取り付けがきわめて容易になる。さらには上記構成に加えて、好ましくは、前記コンベアベルトの上方に配置された前記スリットノズルユニットを同コンベアベルトの両側方に設けられたフレーム上に載置することにより、洗浄、その他の保守点検の際に、スリットノズルの取り外しがきわめて容易になる。
Further, in the present invention, preferably, a plurality of the slit nozzles are integrally configured as a slit nozzle unit. This greatly facilitates the manufacture and installation of the slit nozzle. Furthermore, in addition to the above configuration, preferably, the slit nozzle unit disposed above the conveyor belt is placed on a frame provided on both sides of the conveyor belt to perform cleaning and other maintenance inspections. At the same time, removal of the slit nozzle is extremely easy.
なお前述のように、スリットノズルのノズル先端を斜めに設置した場合において、スリットノズルユニットをコンベアベルトの両側方に設けられたフレーム上に載置する構成とした場合には、スリットノズルユニットの向きを入れ変えるだけでノズル先端部の斜め方向の向きを簡単に変えることができる。
As described above, when the slit nozzle unit is placed on the frame provided on both sides of the conveyor belt when the nozzle tip of the slit nozzle is installed obliquely, the direction of the slit nozzle unit The oblique orientation of the nozzle tip can be easily changed simply by changing.
以下、本発明を図に例示して詳細に説明する。但し、これらの例示に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
Hereinafter, the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative positions, etc. of components described in these exemplifications are not intended to limit the scope of the present invention to only the specific ones unless specifically described otherwise, and merely illustrative examples It is only
本発明の連続搬送式凍結装置の一例として、図9、図10において、1は、好ましくは、断熱性の壁で構成されたハウジングで、コンベアベルト2が出入りする図示しない入口開口部および出口開口部以外は密閉され、内部で冷却された空気が循環する密閉空間を形成している。3および4は、冷風サイクルの一部を構成する冷却器およびファンである。
As an example of the continuous conveyance type freezing apparatus of the present invention, in FIG. 9 and FIG. 10, 1 is preferably a housing made of a heat insulating wall, an inlet opening and an outlet opening (not shown) through which the conveyor belt 2 goes in and out. The other parts are sealed to form a sealed space in which the internally cooled air circulates. 3 and 4 are coolers and fans that form part of the cold air cycle.
5は、コンベアベルト2の上方空間に設けられた上部スリットノズルユニットで、上部スリットノズル5aが複数個で一体に構成されている。9は、コンベアベルト2および上部スリットノズルユニット5等を支持する支柱、10は、支柱9に装架された縦フレームで、複数の上部スリットノズルユニット5が縦フレーム10に持ち上げ可能に載置されている。6はコンベアベルト2の下方空間に設けられた下部スリットノズルユニットで、上部スリットノズルユニット5と同様に、複数個の下部スリットノズル6aが一体となって構成され、支柱9に支持された横フレーム11に支持されている。
Reference numeral 5 denotes an upper slit nozzle unit provided in the space above the conveyor belt 2, and a plurality of upper slit nozzles 5a are integrally formed. A column 9 supports the conveyor belt 2 and the upper slit nozzle unit 5 and the like. A vertical frame 10 is mounted on the column 9. A plurality of upper slit nozzle units 5 are mounted so as to be able to be lifted by the vertical frame 10. ing. Reference numeral 6 denotes a lower slit nozzle unit provided in the lower space of the conveyor belt 2. Like the upper slit nozzle unit 5, a plurality of lower slit nozzles 6a are integrally formed, and a horizontal frame supported by a support 9 It is supported by 11.
上下スリットノズル5aおよび6aは、コンベアベルト2を横切る方向に配置され、ともに山形をなし、図8に示されるように、開口部の上流側に助走区間bが設けられている。本発明において、上下スリットノズル5aおよび6aは、パッケージの種類に応じてエアカーテンを形成するごとく連続した開口を有してもよいし、あるいは連続した開口に断続的にスペーサを配置して断続した噴流を吹き出すようにしてもよい。
The upper and lower slit nozzles 5a and 6a are disposed in a direction crossing the conveyor belt 2, and both have a chevron shape, and as shown in FIG. 8, an approach section b is provided on the upstream side of the opening. In the present invention, the upper and lower slit nozzles 5a and 6a may have a continuous opening so as to form an air curtain according to the type of package, or a spacer is intermittently arranged in the continuous opening and interrupted. You may make it blow off a jet stream.
冷却器3で発生した冷気流は、ファン4で矢印のように上部スリットノズルユニット5のほうに向けられるが、一部がコンベアベルト2の両側部に配置されたダクト7の開口7aからダクト7を通って、下部スリットノズルユニット6の下方に配置されたダクト8に導入される。その後下部スリットノズル6aからコンベアベルト2の下面に向けて吹き出し、コンベアベルト2の下面からパッケージを冷却する。
The cold air flow generated by the cooler 3 is directed toward the upper slit nozzle unit 5 by the fan 4 as indicated by the arrow, but a part is from the opening 7 a of the duct 7 disposed on both sides of the conveyor belt 2. Through the lower slit nozzle unit 6 is introduced into the duct 8 disposed below. Thereafter, the lower slit nozzle 6 a blows out toward the lower surface of the conveyor belt 2 to cool the package from the lower surface of the conveyor belt 2.
なおコンベアベルト2は、本実施例では、熱伝達率の良いスチール製でつくられたスチールベルトであり、熱伝達率が良いため、下方からの冷気流により冷却されて間接的にパッケージを冷却できるため無孔であるが、代わりに有孔として、冷気流の一部が上方および下方から同孔を通して流れるようにしてもよい。
In the present embodiment, the conveyor belt 2 is a steel belt made of steel having a high heat transfer coefficient, and since the heat transfer coefficient is good, the package can be indirectly cooled by being cooled by a cold air flow from below. Because it is non-porous, it may instead be perforated so that a portion of the cold air stream flows from above and below through the same hole.
かかる装置において、図11に示すように、コンベアベルト2はパッケージwを載置して矢印a方向に移動する。一方冷却器(クーラ)3で発生した冷気流は、矢印で示すように、ファン4によって上部スリットノズルユニット5に向けられ、上部スリットノズル5aからコンベアベルト2上のパッケージwに向けて垂直方向に衝突噴流kを吹き出し、パッケージwを冷却する。冷気流の一部はダクト7の開口7aからダクト7の内部を通ってダクト8および下部スリットノズルユニット6を経て下部スリットノズル6aからコンベアベルト2の下面に向けて垂直方向に衝突噴流kを吹き出し、コンベアベルト2の下面を冷却することにより間接的にパッケージwを冷却する。パッケージw又はコンベアベルト2の下面にぶつかった噴流は、その後上下スリットノズル5aおよび6aの間に形成された凹部の排気路12を通って、図11の矢印eで示すように、コンベアベルト2の両側方へ排出される。その後冷排気は、ファン4により再び冷却器3に吸引される。
In such an apparatus, as shown in FIG. 11, the conveyor belt 2 mounts the package w and moves in the direction of the arrow a. On the other hand, the cold air flow generated by the cooler (cooler) 3 is directed to the upper slit nozzle unit 5 by the fan 4 as indicated by the arrow, and vertically directed from the upper slit nozzle 5a toward the package w on the conveyor belt 2 The collision jet k is blown to cool the package w. A part of the cold air flow from the opening 7a of the duct 7 through the inside of the duct 7 through the duct 8 and the lower slit nozzle unit 6 and blows out the collision jet k in the vertical direction from the lower slit nozzle 6a toward the lower surface of the conveyor belt 2. The package w is indirectly cooled by cooling the lower surface of the conveyor belt 2. The jet flow that has collided with the lower surface of the package w or the conveyor belt 2 passes through the exhaust passage 12 of the recess formed between the upper and lower slit nozzles 5a and 6a, as shown by arrow e in FIG. It is discharged to both sides. Thereafter, the cold exhaust air is again drawn into the cooler 3 by the fan 4.
かかる装置によれば、開口の上流側に助走区間を有する山形の上下スリットノズル5aおよび6aにより整流された、流れに方向を有し、到達距離hを長くした冷気流kをパッケージwに対し垂直方向に衝突させるため、コアンダ効果によりパッケージwの全長に亘りパッケージwの側面に密着した状態でパッケージwを包絡する安定した薄膜流を形成することができる。従って冷気流を衝突させた場合、コアンダ効果による冷風気流はパッケージwに対する熱伝達率をきわめて良好にし、冷却効果を向上させることができる。
According to such a device, a cold air flow k having a flow direction and an increased reaching distance h, which is rectified by the chevron upper and lower slit nozzles 5a and 6a having the entry section upstream of the opening, is perpendicular to the package w. Because of the collision in the direction, it is possible to form a stable thin film flow enveloping the package w in close contact with the side surface of the package w over the entire length of the package w by the Coanda effect. Therefore, when the cold air stream collides, the cold air stream by the Coanda effect can make the heat transfer coefficient with respect to the package w extremely good, and the cooling effect can be improved.
またファン4から冷気をハウジング1の上方空間に供給し、上部スリットノズル5aからパッケージwに噴出した後、排気路12に排出する。一方冷気の一部をコンベアベルト2の両側部に設けられたダクト7の開口7aを通って下部スリットノズル6aに導入し、パッケージwに噴出する。その後、排気路12に排出し、排気路12から冷却器(クーラ)3に戻る冷気の循環経路を形成したことによって、パッケージwに噴出した後の冷気がパッケージに噴出される噴出流又はパッケージ周辺の雰囲気を乱すことなく、スムーズにコンベアベルト2から排出される。
Further, cold air is supplied from the fan 4 to the upper space of the housing 1 and jetted from the upper slit nozzle 5 a to the package w and then discharged to the exhaust passage 12. On the other hand, a part of the cold air is introduced into the lower slit nozzle 6 a through the openings 7 a of the duct 7 provided on both sides of the conveyor belt 2 and jetted out to the package w. Thereafter, by forming a circulation path of the cold air which is discharged to the exhaust path 12 and returned from the exhaust path 12 to the cooler (cooler) 3, the jet stream or the periphery of the package from which the cold air after being jetted to the package w is jetted to the package Is discharged smoothly from the conveyor belt 2 without disturbing the atmosphere.
また冷気流の排気路を並設された上下スリットノズル5a,6a間の凹部の排気路12に形成したことによって、排気路の形成がスリットノズルの配置を阻害することなく、かつきわめて容易になる。さらに、排気がコンベアベルト2の両側からスムーズに排気され、そのままハウジング1内のオープンスペースを冷却器3までスムーズに循環されるため、冷気流の圧力損失が少なくなるという利点がある。
Further, the formation of the exhaust passage becomes extremely easy without obstructing the arrangement of the slit nozzle by forming the exhaust passage of the cold air flow in the exhaust passage 12 of the recess between the upper and lower slit nozzles 5a and 6a arranged in parallel. . Furthermore, since the exhaust air is smoothly exhausted from both sides of the conveyor belt 2 and the open space in the housing 1 is smoothly circulated to the cooler 3 as it is, there is an advantage that the pressure loss of the cold air is reduced.
またスリットノズルを複数個ずつ一体に構成した上下スリットノズルユニット5および6としたため、スリットノズルの製造および取り付けがきわめて容易になる。さらにはコンベアベルト2の上方に配置された上部スリットノズルユニット5をコンベアベルト2の両側方に設けられた縦フレーム10上に取り外し自在に載置することにより、洗浄、その他の保守点検の際に、スリットノズルの取り外しがきわめて容易になるという利点がある。
In addition, since the upper and lower slit nozzle units 5 and 6 in which a plurality of slit nozzles are integrally configured are used, manufacture and installation of the slit nozzles are extremely facilitated. Furthermore, when the upper slit nozzle unit 5 disposed above the conveyor belt 2 is removably mounted on the vertical frame 10 provided on both sides of the conveyor belt 2, cleaning and other maintenance inspections can be performed. There is an advantage that the removal of the slit nozzle is extremely easy.
図12は、本発明の装置の他の例の一部拡大断面図である。連続搬送式凍結装置のハウジング入口開口部と出口開口部との間に圧力差が生じた場合、ハウジングの内部で圧力の高いほうから低いほうに向かって冷気流が生じ、これによってハウジング外への冷気の吹き出しおよびハウジング外の空気の流入が生じる場合がある。この場合、冷風が庫外に洩れて作業者へ悪影響を及ぼしたり、或いはハウジング外の空気が流入して冷却器に霜が付き、冷却性能に悪影響を及ぼしたりする。
FIG. 12 is a partially enlarged cross-sectional view of another example of the device of the present invention. When a pressure differential occurs between the housing inlet opening and the outlet opening of the continuous transfer type freezing device, a cold air flow is generated inside the housing from the higher pressure side to the lower pressure side, which causes the air flow out of the housing. Cold air blowout and air flow out of the housing may occur. In this case, the cold air leaks out of the refrigerator and adversely affects the workers, or the air outside the housing flows in and frost is formed on the cooler, which adversely affects the cooling performance.
本発明の他の一例としては、これを解消するために、図示しない入口開口部から出口開口部22に向かって冷気流が生じている場合、図12のように、ハウジング21の出口開口部22付近に設置された上部スリットノズルユニット23のスリットノズル先端部23aを出口開口部22側と反対の方向に斜めに角度をもたせて設置する。これによって出口開口部22からフリーザ庫外への冷風の吹き出しおよび入口開口部からの庫外空気の流入を防ぐことが可能になる。なお23bは、出口開口部22から離れた位置に配置された上部スリットノズルのノズル先端部で、コンベアベルト25に対し鉛直方向に向けられている。24は下部スリットノズルユニットで、そのノズル先端部24aはコンベアベルト25に対し鉛直方向に配置されている。wはコンベアベルト25に載置されたパッケージである。図13は、図12のVIa部分の拡大図である。このように入口開口部および出口開口部で圧力差がある場合、ノズル先端部の角度を斜め方向に変えることにより冷気の吹き出しおよび空気流入を防ぐことが可能になる。
As another example of the present invention, when a cold air flow is generated from an inlet opening (not shown) toward the outlet opening 22 in order to eliminate this, as shown in FIG. 12, the outlet opening 22 of the housing 21. The slit nozzle tip 23a of the upper slit nozzle unit 23 installed in the vicinity is installed at an angle in the direction opposite to the outlet opening 22 side. This makes it possible to prevent the blowout of cold air from the outlet opening 22 to the outside of the freezer and the inflow of outside air from the inlet opening. Note that 23 b is directed in the vertical direction with respect to the conveyor belt 25 at the nozzle tip of the upper slit nozzle disposed at a position away from the outlet opening 22. Reference numeral 24 denotes a lower slit nozzle unit, the nozzle tip 24 a of which is disposed in the vertical direction with respect to the conveyor belt 25. w is a package placed on the conveyor belt 25; FIG. 13 is an enlarged view of a portion VIa of FIG. As described above, when there is a pressure difference between the inlet opening and the outlet opening, it is possible to prevent the blowout of cold air and the air inflow by changing the angle of the nozzle tip in the oblique direction.
なお上部スリットノズル先端部23aに限らず、下部スリットノズル先端部24aを斜めに角度をもたせて設置してもよい。また斜めに角度をもたせるスリットノズル列の数は装置の条件に応じて適宜に設定することができる。
Not limited to the upper slit nozzle tip 23a, the lower slit nozzle tip 24a may be installed at an oblique angle. Further, the number of slit nozzle rows which can be inclined obliquely can be set appropriately according to the conditions of the apparatus.
以下、実施例を用いて本発明を説明するが、本発明は以下の実施例に限定されるものではない。
Hereinafter, the present invention will be described using examples, but the present invention is not limited to the following examples.
1.サンプル、装置等
<模擬血漿製剤サンプル>
模擬血漿製剤として、生理食塩液880mL、ACD-A液120mL、ウシアルブミン70g、ローダミンB0.003%を含むサンプル(以下、単に「ACD-A液」という。)を調製した。 1. Sample, device etc. <Simulated plasma preparation sample>
As a simulated plasma preparation, a sample containing 880 mL of physiological saline, 120 mL of ACD-A solution, 70 g of bovine albumin, and 0.003% of rhodamine B (hereinafter simply referred to as “ACD-A solution”) was prepared.
<模擬血漿製剤サンプル>
模擬血漿製剤として、生理食塩液880mL、ACD-A液120mL、ウシアルブミン70g、ローダミンB0.003%を含むサンプル(以下、単に「ACD-A液」という。)を調製した。 1. Sample, device etc. <Simulated plasma preparation sample>
As a simulated plasma preparation, a sample containing 880 mL of physiological saline, 120 mL of ACD-A solution, 70 g of bovine albumin, and 0.003% of rhodamine B (hereinafter simply referred to as “ACD-A solution”) was prepared.
本発明に用いるパッケージとして、400mL用血液バッグにACD-A液を240mL、800mL用血液バッグにACD-A液を480mLそれぞれ封入した。
As a package used in the present invention, 240 mL of ACD-A solution was sealed in a 400 mL blood bag and 480 mL of ACD-A solution was sealed in an 800 mL blood bag.
さらに、血液バッグのみの形態(240mLbagおよび480mLbag)のものと、FFP(添付文書+血液バッグ+包装箱)形態(240mL箱および480mL箱)の模擬血漿製剤を作製した。
In addition, simulated plasma formulations were made in the blood bag only form (240 mL bag and 480 mL bag) and in the FFP (attachment + blood bag + packaging box) form (240 mL box and 480 mL box).
<使用した装置>
本発明の実施例としては、図1の左に示す連続搬入式凍結装置(サーモジャック式凍結装置、株式会社前川製作所製)を用い、幅5mmのスリットノズルより冷気を15m/秒の速度で上下方向から噴射させた。この装置は試験機であり冷却器を搭載していないため、試験の実施はこの装置を冷凍室に置き、冷凍室内の温度を-33.5℃に設定して行った。 <Device used>
As an embodiment of the present invention, using a continuous carry-in type freezing apparatus (Thermojack-type freezing apparatus, manufactured by Maekawa Seisakusho Co., Ltd.) shown on the left of FIG. It injected from the direction. Since this device is a tester and is not equipped with a cooler, the test was performed by placing the device in a freezer and setting the temperature in the freezer to -33.5 ° C.
本発明の実施例としては、図1の左に示す連続搬入式凍結装置(サーモジャック式凍結装置、株式会社前川製作所製)を用い、幅5mmのスリットノズルより冷気を15m/秒の速度で上下方向から噴射させた。この装置は試験機であり冷却器を搭載していないため、試験の実施はこの装置を冷凍室に置き、冷凍室内の温度を-33.5℃に設定して行った。 <Device used>
As an embodiment of the present invention, using a continuous carry-in type freezing apparatus (Thermojack-type freezing apparatus, manufactured by Maekawa Seisakusho Co., Ltd.) shown on the left of FIG. It injected from the direction. Since this device is a tester and is not equipped with a cooler, the test was performed by placing the device in a freezer and setting the temperature in the freezer to -33.5 ° C.
また、コンベアベルトはスチール製のものを用い、模擬血漿製剤を1バッグのせて凍結した。
Also, the conveyor belt was made of steel and frozen with one bag of simulated plasma preparation.
一方、比較例としては図1の右に示すエアブラスト式凍結装置TBF-500(株式会社テイオン製)を用いた。庫内の温度を-70℃に設定し、庫内ファンにより冷気を左右から吹き付けた。
On the other hand, as a comparative example, an air blast type freezing apparatus TBF-500 (manufactured by Teion Co., Ltd.) shown on the right of FIG. 1 was used. The temperature inside the refrigerator was set to -70 ° C, and cold air was blown from the left and right by a fan inside the refrigerator.
現行で血漿製剤凍結に使用しているプラスチック製トレイを9ケース重ね、中心のケースに模擬血漿製剤を1バッグのせて、その上下のケースに水480mL入りバッグを各々4バッグを置いて凍結した。
Nine cases of plastic trays currently used for freezing the plasma preparation were stacked, one bag of simulated plasma preparation was placed in the center case, and four bags each containing 480 mL of water were placed in the upper and lower cases for freezing.
<温度の測定>
各バッグの中心部に温度センサーを設置し、凍結時の温度を温度記録計TR-55i(株式会社デイアンドデイ製)に記録し、氷結晶生成帯時間と-20℃および-30℃到達時間を確認した。 <Measurement of temperature>
A temperature sensor is installed at the center of each bag, the freezing temperature is recorded on a temperature recorder TR-55i (made by D & D Co., Ltd.), ice crystal formation time, -20 ° C and -30 ° C arrival time It was confirmed.
各バッグの中心部に温度センサーを設置し、凍結時の温度を温度記録計TR-55i(株式会社デイアンドデイ製)に記録し、氷結晶生成帯時間と-20℃および-30℃到達時間を確認した。 <Measurement of temperature>
A temperature sensor is installed at the center of each bag, the freezing temperature is recorded on a temperature recorder TR-55i (made by D & D Co., Ltd.), ice crystal formation time, -20 ° C and -30 ° C arrival time It was confirmed.
<凍結による血漿製剤の品質への影響評価>
凍結による品質への影響を調べるため、血漿製剤を用いサーモジャック式凍結装置で-33.5℃で30分間、エアブラスト式凍結装置で-70℃で18時間それぞれ凍結した。これらを-33℃で14日間保存し、恒温槽サーモミンダー(タイテック株式会社製)で37℃で融解した後、PT、APTT、フィブリノーゲン濃度および血液凝固第V、VII,IX因子活性を全自動血液凝固測定機CS-2000i(シスメックス株式会社製)で測定した。 <Assessing the impact of freezing on the quality of plasma preparations>
In order to examine the influence of freezing on the quality, each was frozen using a plasma preparation at -33.5 ° C for 30 minutes in a thermojack freezing apparatus, and at -70 ° C for 18 hours in an air blast freezing apparatus. These are stored at -33.degree. C. for 14 days and thawed at 37.degree. C. in a thermostatic bath Thermominder (manufactured by Taitec Co., Ltd.). PT, APTT, fibrinogen concentration and blood coagulation factor V, VII, and IX activity are fully automated blood coagulation. It was measured by a measuring machine CS-2000i (manufactured by Sysmex Corporation).
凍結による品質への影響を調べるため、血漿製剤を用いサーモジャック式凍結装置で-33.5℃で30分間、エアブラスト式凍結装置で-70℃で18時間それぞれ凍結した。これらを-33℃で14日間保存し、恒温槽サーモミンダー(タイテック株式会社製)で37℃で融解した後、PT、APTT、フィブリノーゲン濃度および血液凝固第V、VII,IX因子活性を全自動血液凝固測定機CS-2000i(シスメックス株式会社製)で測定した。 <Assessing the impact of freezing on the quality of plasma preparations>
In order to examine the influence of freezing on the quality, each was frozen using a plasma preparation at -33.5 ° C for 30 minutes in a thermojack freezing apparatus, and at -70 ° C for 18 hours in an air blast freezing apparatus. These are stored at -33.degree. C. for 14 days and thawed at 37.degree. C. in a thermostatic bath Thermominder (manufactured by Taitec Co., Ltd.). PT, APTT, fibrinogen concentration and blood coagulation factor V, VII, and IX activity are fully automated blood coagulation. It was measured by a measuring machine CS-2000i (manufactured by Sysmex Corporation).
<パッケージ材料に及ぼす凍結の影響評価>
サーモジャック式凍結装置により凍結した240mLbag、480mLbag、240mL箱、480mL箱それぞれにつき、バッグの変形および破損の有無を目視により確認した。 <Assessing the impact of freezing on package materials>
The presence or absence of deformation and breakage of the bag was visually confirmed for each of the 240 mL bag, 480 mL bag, 240 mL box, and 480 mL box frozen by the thermojack freezer.
サーモジャック式凍結装置により凍結した240mLbag、480mLbag、240mL箱、480mL箱それぞれにつき、バッグの変形および破損の有無を目視により確認した。 <Assessing the impact of freezing on package materials>
The presence or absence of deformation and breakage of the bag was visually confirmed for each of the 240 mL bag, 480 mL bag, 240 mL box, and 480 mL box frozen by the thermojack freezer.
<氷結晶の形態に及ぼす凍結の影響評価>
模擬血漿製剤の480mLbagをサーモジャック式凍結装置を用いて1時間、別の480mLbagをエアブラスト式凍結装置を用いて6時間凍結した。凍結後にバッグ中心部を30mm×30mmに切り出し、さらにそこから直径10mm、高さ20mmの円柱に切り出して円柱の上部(バッグ表面付近)と中心部を凍結状態でスライスして近赤外分光法により顕微鏡写真を撮影した(図6上部参照)。 <Assessing the influence of freezing on the morphology of ice crystals>
The 480 mL bag of the simulated plasma preparation was frozen for 1 hour with a thermojack freezer, and another 480 mL bag for 6 hours with an air blast freezer. After freezing, the central part of the bag is cut out to 30 mm x 30 mm, and further cut out into a cylinder with a diameter of 10 mm and a height of 20 mm, and the upper part of the cylinder (near the bag surface) and the central part are sliced in a frozen state and near infrared spectroscopy Photomicrographs were taken (see FIG. 6 top).
模擬血漿製剤の480mLbagをサーモジャック式凍結装置を用いて1時間、別の480mLbagをエアブラスト式凍結装置を用いて6時間凍結した。凍結後にバッグ中心部を30mm×30mmに切り出し、さらにそこから直径10mm、高さ20mmの円柱に切り出して円柱の上部(バッグ表面付近)と中心部を凍結状態でスライスして近赤外分光法により顕微鏡写真を撮影した(図6上部参照)。 <Assessing the influence of freezing on the morphology of ice crystals>
The 480 mL bag of the simulated plasma preparation was frozen for 1 hour with a thermojack freezer, and another 480 mL bag for 6 hours with an air blast freezer. After freezing, the central part of the bag is cut out to 30 mm x 30 mm, and further cut out into a cylinder with a diameter of 10 mm and a height of 20 mm, and the upper part of the cylinder (near the bag surface) and the central part are sliced in a frozen state and near infrared spectroscopy Photomicrographs were taken (see FIG. 6 top).
2.結果
(1)図2に、模擬血漿製剤を凍結させた場合のバッグ中心の温度変化を示す。 2. Results (1) FIG. 2 shows the temperature change at the center of the bag when the simulated plasma preparation is frozen.
(1)図2に、模擬血漿製剤を凍結させた場合のバッグ中心の温度変化を示す。 2. Results (1) FIG. 2 shows the temperature change at the center of the bag when the simulated plasma preparation is frozen.
これより、サーモジャック式凍結装置を用いた場合(実施例1~4)は、エアブラスト式凍結装置を用いた場合(比較例1~4)より、顕著に短い時間で凍結していることが分かる。
From this, when the thermojack freezing apparatus is used (Examples 1 to 4), freezing is performed in a significantly shorter time than when the air blast type freezing apparatus is used (Comparative Examples 1 to 4). I understand.
(2)図3に、図2で得られたグラフから、模擬血漿製剤の最大氷結晶生成帯時間をプロットした図を示す。
これより、サーモジャック式凍結装置を用いた場合は、エアブラスト式凍結装置を用いた場合より、最大氷結晶生成帯時間が優位に短いことが分かる。 (2) FIG. 3 shows a diagram in which the maximum ice crystal formation time of the simulated plasma preparation is plotted from the graph obtained in FIG.
From this, it can be seen that the maximum ice crystal formation zone time is significantly shorter in the case of using a thermojack freezing apparatus than in the case of using an air blast freezing apparatus.
これより、サーモジャック式凍結装置を用いた場合は、エアブラスト式凍結装置を用いた場合より、最大氷結晶生成帯時間が優位に短いことが分かる。 (2) FIG. 3 shows a diagram in which the maximum ice crystal formation time of the simulated plasma preparation is plotted from the graph obtained in FIG.
From this, it can be seen that the maximum ice crystal formation zone time is significantly shorter in the case of using a thermojack freezing apparatus than in the case of using an air blast freezing apparatus.
(3)表1に、図3で得られた最大氷結晶生成帯時間を模擬血漿製剤の量で割った値を示す。
(3) Table 1 shows the maximum ice crystal formation time obtained in FIG. 3 divided by the amount of the simulated plasma preparation.
(4)図4に、模擬血漿製剤のバッグ中心温度が-20℃および-30℃となるまでの時間を示す。
これより、サーモジャック式凍結装置を用いた場合は、エアブラスト式凍結装置を用いた場合より、-20℃および-30℃に到達するまでの時間が優位に短いことが分かる。 (4) FIG. 4 shows the time until the bag center temperature of the simulated plasma preparation reaches −20 ° C. and −30 ° C.
From this, it can be seen that when the thermojack freezing apparatus is used, the time to reach −20 ° C. and −30 ° C. is significantly shorter than when using the air blast freezing apparatus.
これより、サーモジャック式凍結装置を用いた場合は、エアブラスト式凍結装置を用いた場合より、-20℃および-30℃に到達するまでの時間が優位に短いことが分かる。 (4) FIG. 4 shows the time until the bag center temperature of the simulated plasma preparation reaches −20 ° C. and −30 ° C.
From this, it can be seen that when the thermojack freezing apparatus is used, the time to reach −20 ° C. and −30 ° C. is significantly shorter than when using the air blast freezing apparatus.
(5)図5に、凍結による血漿製剤の品質への影響を示す。
(5) FIG. 5 shows the effect of freezing on the quality of plasma preparation.
これより、PT、APTT、フィブリノーゲン濃度および血液凝固第V、VII,IX因子活性のいずれにおいても、サーモジャック式凍結装置を用いた場合と、エアブラスト式凍結装置を用いた場合と比べて有意な差は無く、また、一部データは活性がより高いものが認められる。よって、サーモジャック式凍結装置は従来用いられているエアブラスト式凍結装置に替えても、血漿製剤の品質の問題がないことがわかる。
From this, it is significant in any of PT, APTT, fibrinogen concentration and blood coagulation factor V, VII, and IX activity as compared with the case of using the thermojack freezing apparatus and the case of using the air blasting freezing apparatus. There is no difference, and some data show higher activity. Therefore, it can be understood that even if the thermojack freezing apparatus is replaced by the air blast freezing apparatus conventionally used, there is no problem of the quality of the plasma preparation.
(6)表2に、パッケージ材料に及ぼす凍結の影響を示す。
(6) Table 2 shows the effect of freezing on the package material.
(7)図6下部に、氷結晶の形態に及ぼす凍結の影響を示す。
(7) FIG. 6 The lower part shows the effect of freezing on the form of ice crystals.
氷結晶の形態は、エアブラスト式凍結装置を用いた場合は、徐々に結晶が成長するため水とタンパク質が分離し、結晶と結晶の間にタンパク質の圧縮層が鮮明に確認された。
As for the form of ice crystals, when an air blast type freezing apparatus was used, the crystals grew gradually and water and protein were separated, and a compressed layer of protein was clearly observed between the crystals.
一方、サーモジャック式凍結装置を用いた場合は、バッグ上部および中心部は共に鮮明なタンパク質の圧縮層は観察されず、氷結晶が成長しきらない状態で凍結が完了し、氷結晶生成帯時間の長いエアブラスト式凍結装置を用いた場合と比べて、水とタンパク質の分離が少なく、血漿製剤の品質に与える影響が少ないものと考えられる。
On the other hand, in the case of using a thermojack type freezing apparatus, no clear protein compression layer is observed at both the upper and central portions of the bag, and freezing is completed in a state in which ice crystals have not grown enough It is considered that there is less separation of water and protein and less influence on the quality of the plasma preparation as compared with the case of using a long air blast type freezing apparatus.
本発明によれば、血液または血液から分画された成分を凍結するのに際し、短時間で消費電力が少なく、さらにCO2排出量が少ない方法および装置を提供することができる。
According to the present invention, it is possible to provide a method and apparatus which consumes less power in a short time and further reduces CO 2 emission when freezing blood or components fractionated from blood.
さらに、本発明によれば、生理活性成分の分解を極力抑えた血液または血液から分画された成分の凍結方法および装置を提供することができる。
Furthermore, according to the present invention, it is possible to provide a method and apparatus for freezing blood or blood fractionated components in which degradation of physiologically active components is minimized.
1 ハウジング
2 コンベアベルト
3 冷却器
4 ファン
5 上部スリットノズルユニット
5a 上部スリットノズル
6 下部スリットノズルユニット
6a 下部スリットノズル
w パッケージ REFERENCE SIGNS LIST 1housing 2 conveyor belt 3 cooler 4 fan 5 upper slit nozzle unit 5 a upper slit nozzle 6 lower slit nozzle unit 6 a lower slit nozzle w package
2 コンベアベルト
3 冷却器
4 ファン
5 上部スリットノズルユニット
5a 上部スリットノズル
6 下部スリットノズルユニット
6a 下部スリットノズル
w パッケージ REFERENCE SIGNS LIST 1
Claims (37)
- 血液または血液から分画された成分の凍結方法であって、
(a)血液または血液から分画された成分が封入されたパッケージを用意する工程、
(b)前記パッケージに封入された血液または血液から分画された成分1mLに対して、2~10秒の最大氷結晶生成帯時間で前記パッケージを冷却する工程、
を有することを特徴とする、前記凍結方法。 A method of freezing blood or components fractionated from blood, comprising:
(A) preparing a package in which the blood or the fractionated component of the blood is enclosed;
(B) cooling the package at a maximum ice crystal formation time of 2 to 10 seconds for 1 mL of blood or a component fractionated from blood enclosed in the package;
Said freezing method, characterized by having. - 前記(b)工程が、前記パッケージに冷気を吹きつけることにより、前記パッケージを冷却することを特徴とする、請求項1に記載の方法。 The method according to claim 1, wherein the step (b) cools the package by blowing cold air on the package.
- 前記パッケージに冷気を吹きつける工程において、スリットノズルを通して冷気を吹き付けることを特徴とする、請求項2に記載の方法。 The method according to claim 2, wherein the step of blowing cold air to the package comprises blowing cold air through a slit nozzle.
- 前記パッケージは、血液バッグに封入された前記血液または血液から分画された成分である、請求項1に記載の方法。 The method according to claim 1, wherein the package is the blood enclosed in a blood bag or a component fractionated from blood.
- 前記最大氷結晶生成帯時間は、3.2~4.1秒である、請求項4に記載の方法。 The method according to claim 4, wherein the maximum ice crystal formation time is 3.2 to 4.1 seconds.
- 前記パッケージは、箱および前記箱中の前記血液バッグを有する、請求項4に記載の方法。 5. The method of claim 4, wherein the package comprises a box and the blood bag in the box.
- 前記最大氷結晶生成帯時間は、8.1~9.4秒である、請求項6に記載の方法。 The method according to claim 6, wherein the maximum ice crystal formation time is 8.1 to 9.4 seconds.
- 前記血液または血液から分画された成分は、フィブリノーゲン、血液凝固第V因子、血液凝固第VII因子および血液凝固第IX因子のいずれかを有する、請求項1に記載の方法。 The method according to claim 1, wherein the blood or the fractionated fraction of blood comprises any of fibrinogen, blood coagulation factor V, blood coagulation factor VII and blood coagulation factor IX.
- 前記(b)工程の凍結前後のフィブリノーゲン活性の変化率は、99.9±1.5%である、請求項8に記載の方法。 The method according to claim 8, wherein the change rate of fibrinogen activity before and after freezing in step (b) is 99.9 ± 1.5%.
- 前記(b)工程の凍結前後の血液凝固第V因子活性の変化率は、97.9±2.1%である、請求項8に記載の方法。 The method according to claim 8, wherein a change rate of blood coagulation factor V activity before and after freezing in the step (b) is 97.9 ± 2.1%.
- 前記(b)工程の凍結前後の血液凝固第VII因子活性の変化率は、95.3±3.9%である、請求項8に記載の方法。 9. The method according to claim 8, wherein the rate of change in blood coagulation factor VII activity before and after freezing in step (b) is 95.3 ± 3.9%.
- 前記(b)工程の凍結前後の血液凝固第IX因子活性の変化率は、94.8±3.6%である、請求項8に記載の方法。 The method according to claim 8, wherein the change rate of blood coagulation factor IX activity before and after freezing in step (b) is 94.8 ± 3.6%.
- 前記スリットノズルおよび/または前記パッケージを互いに反対方向に移動させて、前記パッケージに冷気を吹き付けることを特徴とする、請求項14に記載の方法。 The method according to claim 14, characterized in that the slit nozzle and / or the package are moved in opposite directions to blow cold air on the package.
- 前記スリットノズルが、前記パッケージに対して上方および/または下方に配置される、請求項3に記載の方法。 The method according to claim 3, wherein the slit nozzle is arranged above and / or below the package.
- 前記スリットノズルが、前記パッケージの上方および/または下方に複数配置される、請求項3に記載の方法。 The method according to claim 3, wherein a plurality of the slit nozzles are disposed above and / or below the package.
- 前記パッケージがコンベアベルトに載せられ、前記スリットノズルの上方および/または下方を往復することを特徴とする、請求項3に記載の方法。 The method according to claim 3, characterized in that the package is mounted on a conveyor belt and reciprocates above and / or below the slit nozzle.
- 前記(b)工程が、
入口開口部および出口開口部を有するハウジングと、前記ハウジングの前記入口開口部および前記出口開口部を通って前記パッケージを搬送するコンベアベルトと、前記ハウジング内で冷気を循環させる冷却器および送風機からなる冷気循環装置と、前記パッケージに対し冷気の略垂直噴流を噴出して前記パッケージの冷却を行なうスリットノズルとを備えた連続搬送式凍結装置であって、
前記コンベアベルトの上方空間に前記パッケージを搬送する方向に配置した複数の上部スリットノズル、および下方空間に前記パッケージを搬送する方向に配置した複数の下部スリットノズルを連続的に並設するとともに、
前記上部スリットノズル上流側の開口と前記ハウジングの上方空間とを対面させ、一方前記下部スリットノズル上流側の開口は、コンベアベルトのパッケージ搬送方向と直交するベルト幅方向両側に設けられたダクト開口を介してハウジングの上方空間の冷気が導入可能に構成され、
前記並設したスリットノズル間に形成された凹部を利用して前記スリットノズルを挟んで連続的に排気路を設け、前記排気路を介して前記コンベアベルトのベルト幅方向両側に前記パッケージを冷却後の冷気が導出されるとともに、前記導出された前記冷気が前記冷却器に戻り、前記冷却器および送風機からなる冷気循環装置を介してハウジングの上方空間に冷気が供給されるように構成されたことを特徴とする連続搬送式凍結装置、
を用いて冷却する工程であることを特徴とする、請求項1に記載の方法。 In the step (b),
A housing having an inlet opening and an outlet opening, a conveyor belt for transporting the package through the inlet opening and the outlet opening of the housing, and a cooler and blower for circulating cool air in the housing A continuous transfer type freezing apparatus comprising: a cold air circulating device; and a slit nozzle for discharging a substantially vertical jet of cold air to the package to cool the package,
A plurality of upper slit nozzles disposed in a direction for transporting the package in the upper space of the conveyor belt, and a plurality of lower slit nozzles disposed in a direction for transporting the package in the lower space are continuously arranged in parallel.
The opening on the upstream side of the upper slit nozzle faces the space above the housing, while the opening on the upstream side of the lower slit nozzle is a duct opening provided on both sides in the belt width direction orthogonal to the package conveyance direction of the conveyor belt. Cold air in the upper space of the housing can be introduced through the
After the cooling of the package on both sides in the belt width direction of the conveyor belt via the exhaust passage, the exhaust passage is continuously provided by using the concave portion formed between the slit nozzles arranged in parallel and sandwiching the slit nozzle. Cold air is drawn out, and the drawn-out cold air is returned to the cooler, and is supplied to the upper space of the housing via a cold air circulating device consisting of the cooler and a blower. Continuous transport type freezing device characterized by
The method according to claim 1, characterized in that it is a step of cooling using. - 前記連続搬送式凍結装置が、前記スリットノズルを複数個ずつ一体に構成したスリットノズルユニットとすることを特徴とする、請求項17に記載の方法。 The method according to claim 17, wherein the continuous transfer type freezing apparatus is a slit nozzle unit in which a plurality of the slit nozzles are integrally configured.
- 前記コンベアベルトが出入りするハウジング入口開口部または出口開口部付近に設置された前記上部スリットノズルのノズル先端部が、前記ハウジング中央側に向け斜めに角度をもたせて設置されていることを特徴とする、請求項17に記載の方法。 A nozzle tip end of the upper slit nozzle installed near the housing inlet opening or outlet opening where the conveyor belt comes in and out is installed at an angle toward the center of the housing. The method according to claim 17.
- 前記血液または血液から分画された成分が哺乳動物由来である、請求項1に記載の方法。 The method according to claim 1, wherein the blood or a component fractionated from blood is from a mammal.
- 前記哺乳動物が、ヒト、ウシ、ウマ、ブタ、ヒツジおよびサルから成る群から選択される少なくとも1種である、請求項20に記載の方法。 21. The method of claim 20, wherein the mammal is at least one selected from the group consisting of humans, cows, horses, pigs, sheep and monkeys.
- 前記哺乳動物がヒトである、請求項21に記載の方法。 22. The method of claim 21, wherein said mammal is a human.
- 血液から分画された成分が血液製剤である、請求項1に記載の方法。 The method according to claim 1, wherein the component fractionated from blood is a blood product.
- 血液または血液から分画された成分が、1つのパッケージあたり、100mL~1000mL封入されている、請求項1に記載の方法。 The method according to claim 1, wherein 100 mL to 1000 mL of the blood or components fractionated from blood are enclosed per package.
- 血液または血液から分画された成分が、1つのパッケージあたり、200mL~500mL封入されている、請求項24に記載の方法。 The method according to claim 24, wherein the blood or the fractionated from the blood is enclosed in 200 mL to 500 mL per package.
- 前記パッケージの構成成分が塩化ビニルを含む、請求項1に記載の方法。 The method of claim 1, wherein the components of the package comprise vinyl chloride.
- 血液または血液から分画された成分の凍結装置であって、血液または血液から分画された成分が封入されたパッケージに、冷気を吹き付けるスリットノズルを備えることを特徴とする装置。 What is claimed is: 1. A freezing apparatus for blood or a component fractionated from blood, comprising: a slit nozzle for blowing cold air to a package in which the blood or components fractionated from blood are enclosed.
- 血液または血液から分画された成分の凍結装置であって、前記スリットノズルおよび/または前記パッケージを互いに反対方向に移動させる装置を有することを特徴とする、請求項27に記載の装置。 28. A device according to claim 27, characterized in that it comprises a device for freezing blood or a component fractionated from blood, which moves the slit nozzle and / or the package in opposite directions.
- 前記スリットノズルが、前記パッケージに対して上方および/または下方に配置されることを特徴とする、請求項27に記載の装置。 The device according to claim 27, characterized in that the slit nozzle is arranged above and / or below the package.
- 前記スリットノズルが、前記パッケージの上方および/または下方に複数配置されることを特徴とする、請求項27に記載の装置。 The device according to claim 27, characterized in that a plurality of slit nozzles are arranged above and / or below the package.
- さらに、コンベアベルトを備え、前記パッケージが前記コンベアベルトに載せられ、前記スリットノズルの上方および/または下方を往復することを特徴とする、請求項27に記載の装置。 The apparatus according to claim 27, further comprising a conveyor belt, wherein the package is loaded on the conveyor belt and reciprocates above and / or below the slit nozzle.
- 血液または血液から分画された成分の連続搬送式凍結装置であって、
入口開口部および出口開口部を有するハウジングと、前記ハウジングの前記入口開口部および前記出口開口部を通って、血液または血液から分画された成分を封入したパッケージを搬送するコンベアベルトと、前記ハウジング内で冷気を循環させる冷却器および送風機からなる冷気循環装置と、前記パッケージに対し冷気の略垂直噴流を噴出して前記パッケージの冷却を行なうスリットノズルとを備え、
前記コンベアベルトの上方空間に前記パッケージを搬送する方向に配置した複数の上部スリットノズル、および下方空間に前記パッケージを搬送する方向に配置した複数の下部スリットノズルを連続的に並設するとともに、
前記上部スリットノズル上流側の開口と前記ハウジングの上方空間とを対面させ、一方前記下部スリットノズル上流側の開口は、コンベアベルトのパッケージ搬送方向と直交するベルト幅方向両側に設けられたダクト開口を介してハウジングの上方空間の冷気が導入可能に構成され、
前記並設したスリットノズル間に形成した凹部を利用して前記スリットノズルを挟んで連続的に排気路を設け、前記排気路を介して前記コンベアベルトのベルト幅方向両側に前記パッケージを冷却後の冷気が導出されるとともに、前記導出された前記冷気が前記冷却器に戻り、前記冷却器および送風機からなる冷気循環装置を介してハウジングの上方空間に冷気が供給されるように構成されたことを特徴とする、血液または血液から分画された成分の前記凍結装置。 A continuous transfer type freezing apparatus for blood or components fractionated from blood, comprising:
A housing having an inlet opening and an outlet opening; a conveyor belt for transporting a package containing blood or a component fractionated from blood through the inlet opening and the outlet opening of the housing; A cold air circulating device comprising a cooler and a fan for circulating cold air inside, and a slit nozzle for jetting a substantially vertical jet of cold air to the package to cool the package,
A plurality of upper slit nozzles disposed in a direction for transporting the package in the upper space of the conveyor belt, and a plurality of lower slit nozzles disposed in a direction for transporting the package in the lower space are continuously arranged in parallel.
The opening on the upstream side of the upper slit nozzle faces the space above the housing, while the opening on the upstream side of the lower slit nozzle is a duct opening provided on both sides in the belt width direction orthogonal to the package conveyance direction of the conveyor belt. Cold air in the upper space of the housing can be introduced through the
An exhaust passage is continuously provided on both sides of the slit nozzle using the concave portion formed between the slit nozzles arranged in parallel, and the package is cooled on both sides in the belt width direction of the conveyor belt via the exhaust passage. It is configured that cold air is derived and that the derived cold air is returned to the cooler and supplied to the upper space of the housing via a cold air circulating device including the cooler and a blower. The freezing apparatus for blood, or a component fractionated from blood, characterized by the above. - 前記連続搬送式凍結装置が、前記スリットノズルの複数を一体に構成したスリットノズルユニットとすることを特徴とする、請求項32に記載の凍結装置。 The freezing apparatus according to claim 32, wherein the continuous transfer type freezing apparatus is a slit nozzle unit in which a plurality of the slit nozzles are integrally configured.
- 前記コンベアベルトが出入りするハウジング入口開口部または出口開口部付近に設置された前記上部スリットノズルのノズル先端部が、前記ハウジング中央側に向け斜めに角度をもたせて設置されていることを特徴とする、請求項32に記載の凍結装置。 A nozzle tip end of the upper slit nozzle installed near the housing inlet opening or outlet opening where the conveyor belt comes in and out is installed at an angle toward the center of the housing. 33. The freezing apparatus of claim 32.
- 血液または血液から分画された成分が、1つのパッケージあたり、100mL~1000mL封入されている、請求項27に記載の凍結装置。 The freezing apparatus according to claim 27, wherein the blood or the fractionated from the blood is sealed in an amount of 100 mL to 1000 mL per package.
- 血液または血液から分画された成分が、1つのパッケージあたり、200mL~500mL封入されている、請求項35に記載の凍結装置。 The freezing apparatus according to claim 35, wherein 200 mL to 500 mL of blood or a fractionated component of blood is enclosed per package.
- 前記パッケージの構成成分が塩化ビニルを含む、請求項27に記載の凍結装置。 28. The freezing device according to claim 27, wherein the component of the package comprises vinyl chloride.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-185871 | 2017-09-27 | ||
JP2017185871A JP7213012B2 (en) | 2017-09-27 | 2017-09-27 | blood freezing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019065763A1 true WO2019065763A1 (en) | 2019-04-04 |
Family
ID=65902009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/035750 WO2019065763A1 (en) | 2017-09-27 | 2018-09-26 | Method and device for freezing blood |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7213012B2 (en) |
WO (1) | WO2019065763A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003052806A (en) * | 2001-08-13 | 2003-02-25 | Kawasumi Lab Inc | Blood bag |
WO2006046317A1 (en) * | 2004-10-29 | 2006-05-04 | Mayekawa Mfg. Co., Ltd. | Continuous conveyance-type freezer |
JP2014214911A (en) * | 2013-04-23 | 2014-11-17 | 株式会社テクニカン | Freezer |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4994021A (en) * | 1988-11-15 | 1991-02-19 | Baxter International Inc. | Apparatus and method for collecting and freezing blood plasma |
JP3033516B2 (en) | 1997-03-14 | 2000-04-17 | 豊丸産業株式会社 | Gaming machine |
-
2017
- 2017-09-27 JP JP2017185871A patent/JP7213012B2/en active Active
-
2018
- 2018-09-26 WO PCT/JP2018/035750 patent/WO2019065763A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003052806A (en) * | 2001-08-13 | 2003-02-25 | Kawasumi Lab Inc | Blood bag |
WO2006046317A1 (en) * | 2004-10-29 | 2006-05-04 | Mayekawa Mfg. Co., Ltd. | Continuous conveyance-type freezer |
JP2014214911A (en) * | 2013-04-23 | 2014-11-17 | 株式会社テクニカン | Freezer |
Also Published As
Publication number | Publication date |
---|---|
JP7213012B2 (en) | 2023-01-26 |
JP2019058393A (en) | 2019-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6263680B1 (en) | Modular apparatus for cooling and freezing of food product on a moving substrate | |
ES2533451T3 (en) | Tunnel freezer with improved flow | |
US5765381A (en) | Multitier crossflow cryogenic freezer and method of use | |
US6431060B1 (en) | Container for cooling perishable goods | |
CN107076496A (en) | Cold room | |
JP5486513B2 (en) | Food cooling equipment | |
US20010013227A1 (en) | Impingement cooler | |
JPH046860B2 (en) | ||
CN113892362B (en) | Cut flower fresh-keeping treatment system and method | |
JP3671121B2 (en) | Collision cooling device | |
US5606861A (en) | Crossflow cryogenic freezer and method of use | |
US20140298851A1 (en) | Combined Impingement/Plate Freezer | |
JP4702895B2 (en) | Continuous conveyance type freezer | |
JP6152216B1 (en) | Food storage method and food storage warehouse | |
WO2019065763A1 (en) | Method and device for freezing blood | |
JP2010243130A (en) | Conveying type cooling method and device for food | |
KR101693617B1 (en) | Freezer device | |
CN113063246A (en) | Real-time monitoring system and positioning structure for cold-chain logistics | |
US6557367B1 (en) | Impingement cooler with improved coolant recycle | |
ES2355829T3 (en) | PROCEDURE AND DEVICE FOR THE REFRIGERATION OF PRODUCTS. | |
WO2006126870A1 (en) | Apparatus and method for processing food products, drying and/or cooling unit and processed food product | |
JP2000171144A (en) | Multistage freezing device and method | |
US7272939B2 (en) | Cooling system | |
JP2010190568A (en) | Continuous conveying freezer | |
JP2019045102A (en) | Continuous transport type freezer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18863689 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18863689 Country of ref document: EP Kind code of ref document: A1 |