WO2019065591A1 - 金属造形物の製造装置、金属造形物の製造方法、及び金属粉末回収方法 - Google Patents

金属造形物の製造装置、金属造形物の製造方法、及び金属粉末回収方法 Download PDF

Info

Publication number
WO2019065591A1
WO2019065591A1 PCT/JP2018/035352 JP2018035352W WO2019065591A1 WO 2019065591 A1 WO2019065591 A1 WO 2019065591A1 JP 2018035352 W JP2018035352 W JP 2018035352W WO 2019065591 A1 WO2019065591 A1 WO 2019065591A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal powder
metal
tank
area
region
Prior art date
Application number
PCT/JP2018/035352
Other languages
English (en)
French (fr)
Inventor
祐典 山口
佐藤 豊幸
佐々木 智章
宏紀 天野
Original Assignee
大陽日酸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陽日酸株式会社 filed Critical 大陽日酸株式会社
Priority to JP2019545111A priority Critical patent/JP6827553B2/ja
Publication of WO2019065591A1 publication Critical patent/WO2019065591A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F8/00Manufacture of articles from scrap or waste metal particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the present invention relates to an apparatus for producing a metal shaped article, a method for producing a metal shaped article, and a method for recovering a metal powder.
  • Additive Manufacturing is attracting attention as a promising technology in the aerospace industry and advanced technology fields such as medical care, because structures of arbitrary shapes can be manufactured in a short time.
  • 3D metal printer which irradiates energy rays, such as a laser, to metal powder with which a modeling tank which a modeling stage has is filled is known.
  • the 3D metal printer repeats the shaping of the metal layer by irradiation of energy rays and the lamination of the shaped metal layer to produce a metal shaped article of any shape.
  • the finished shaped metal object is removed from the forming tank after the non-sintered metal powder around the shaped metal object is removed.
  • Patent Documents 1 and 2 The metal powder around the finished metal figure is denatured under the influence of heat accompanying the irradiation of energy rays. It is known that when the metal powder is thermally affected by energy rays, impurities such as fumes and spatters and aggregates of metal particles are generated. Therefore, in the technical field related to 3D metal printers, a technology for recovering thermally affected metal powder and a technique for regenerating metal powder to a state before being thermally impacted have been developed in order to reuse the recovered metal powder. (Patent Documents 1 and 2).
  • Patent Document 2 discloses a technique of determining the chemical composition of a powder base material, storing and atomizing the powder only in a dry protective shielding gas atmosphere, and adjusting the content of a specific element. According to the technique described in Patent Document 2, it is possible to sort metal powder that has been subjected to heat influence from the recovered metal powder, and to regenerate metal powder in a state before it has been subjected to heat influence.
  • the metal powder is sintered in the presence of an inert gas called a shielding gas so that the oxide of the metal particles is not formed in the metal powder and the metal form.
  • an inert gas called a shielding gas
  • the inventors of the present invention slightly oxidize the metal powder due to the thermal effect accompanying the energy beam irradiation, and in addition to fumes and spatters, oxides of metal particles are mixed in the unsintered metal powder.
  • the metal powder may be thermally affected and oxidized by irradiating the energy beam while a small amount of water in the atmosphere is attached to the metal particles.
  • the conventional 3D metal printer recovers the thermally affected metal powder after the metallic shaped object is completed. Therefore, in the conventional 3D metal printer, impurities and aggregates and oxides of metal particles are generated each time the energy beam is irradiated, and impurities and the like generated in the metal powder around the metal shaped object in the process of being mixed are metal A shaped object is manufactured. In this way, when the metal shaped object is manufactured while the impurities and the aggregates and oxides of the metal particles are accumulated in the metal powder and mixed, the toughness, resistance to cracking, etc. of the finished metal shaped object, etc. As the mechanical properties of the metal are lowered, the smoothness of the surface of the metal shaped article is impaired, and the designability of the appearance is lowered.
  • the present invention has been made in view of the above circumstances, and it is an apparatus and a manufacturing method capable of manufacturing metal shaped objects excellent in mechanical physical properties and design of the appearance; reuse of heat-insensitive powder is simplified It is an object of the present invention to provide a metal powder recovery method that can be carried out.
  • the present invention comprises the following composition.
  • a calculation mechanism for calculating a second region which is a region around the first region to which the energy beam is irradiated, and metal powder contained in the second region calculated by the calculation mechanism are removed from the modeling tank And a removing mechanism for producing a metal shaped article.
  • [4] A method of forming a metal layer by irradiating an energy ray on a surface layer of a metal powder filled in a formation tank of a formation stage, and laminating the layers to produce a metal formed article, the energy A metal shaping characterized in that a second area which is an area around a first area to which a line is irradiated is calculated, and the metal powder contained in the calculated second area is removed from the modeling tank. Method of manufacturing objects. [5] The method for producing a metal-molded article according to [4], wherein the metal powder contained in the second region is removed by suction from above the modeling tank.
  • the apparatus for producing a metal shaped article and the method for producing a metal shaped article of the present invention it is possible to produce a metal shaped article excellent in design properties of mechanical physical properties and appearance.
  • the metal powder recovery method of the present invention it is possible to simply reuse the powder which is not affected by heat.
  • the apparatus for producing a metal shaped article refers to an apparatus for producing a metal shaped article by irradiating a metal powder with an energy ray to form a metal layer and laminating the shaped metal layer.
  • a device for producing a metal shaped article may be abbreviated as a "production device".
  • the apparatus for producing a metal shaped article sinters or melts and solidifies the metal powder by irradiating energy beams, forms a metal layer, and laminates the formed layer.
  • sintering metal powder etc. when “sintering metal powder etc.” is described, it means to sinter metal powder or to solidify metal powder.
  • the metal layer formed by sintering the metal powder may be simply referred to as “sintered layer”.
  • modification of metal powder means change in physical property and chemical property of metal powder before and after irradiation with energy rays.
  • impurities such as fumes and spatters are mixed in the metal powder, and metal particles of the metal powder are aggregated to generate aggregates. It is exemplified that an oxide of metal particles is formed.
  • the shield gas means a gas supplied to the periphery of the metal powder for the purpose of reducing the concentration of oxygen gas around the metal powder when the metal powder is sintered or the like.
  • FIG. 1 is a schematic view showing an example of the configuration of the manufacturing apparatus 20.
  • the manufacturing apparatus 20 includes a laser oscillator 1, an optical system 2, a modeling unit 3, and an arithmetic unit (calculation mechanism) 4.
  • the manufacturing apparatus 20 includes a laser oscillator 1, an optical system 2, a modeling unit 3, and an arithmetic unit (calculation mechanism) 4.
  • each component of the manufacturing apparatus 20 of a metal shaped article will be described in detail.
  • the laser oscillator 1 is not particularly limited as long as the metal powder M in the shaping unit 3 can be irradiated with the laser L which is an example of an energy beam.
  • the laser oscillator 1 irradiates the laser L to the metal powder M in the shaping unit 3 via the optical system 2. Further, the laser oscillator 1 switches between laser irradiation and stop in accordance with data previously input to the calculation unit 4. Thereby, the manufacturing apparatus 20 can sinter the metal powder M, etc., and can form a metal layer in an arbitrary shape along the drawing line of the laser L.
  • the optical system 2 is not particularly limited as long as it can reflect the laser L emitted from the laser oscillator 1.
  • the optical system 2 can be configured by, for example, one or more reflecting mirrors.
  • the forming unit 3 is a case for forming a sintered layer of the metal powder M by sintering the metal powder M or the like and laminating the sintered layer.
  • the manufacturing apparatus 20 can control the position of the laser L irradiated to the metal powder M by controlling the modeling unit 3 in accordance with the data previously input to the calculation unit 4 and can form a metal layer of any shape. .
  • the shaping unit 3 accommodates the shaping stage 10 and the removing mechanism 5.
  • the shaping stage 10 is a place for repeating the shaping of the sintered layer and the lamination of the shaped sintered layer.
  • the modeling stage 10 has a supply tank 11, a modeling tank 12, a recoater 15, and a recess 16.
  • the supply tank 11 is a tank for storing the unmodified metal powder M and supplying the unmodified metal powder M to the shaping tank 12.
  • a metal powder M supplied from a metal powder supply source (not shown) is spread.
  • the bottom surface of the supply tank 11 is supported by the first elevator 13.
  • the first elevator 13 is movable upward in the figure. Thus, the bottom of the supply tank 11 can move upward in the figure.
  • the modeling tank 12 is a tank for being filled with the metal powder M for modeling and for modeling the metallic model X.
  • the unmodified metal powder M supplied from the supply tank 11 is spread.
  • the metal shaped article X in the middle of modeling is formed.
  • the bottom surface of the modeling tank 12 is supported by the second elevator 14.
  • the second elevator 14 is movable downward in the figure.
  • the bottom surface of the modeling tank 12 can move downward in the drawing.
  • the recoater 15 supplies the metal powder M stored in the supply tank 11 to the forming tank 12 and makes the upper surfaces of the supply tank 11 and the forming tank 12 uniform with the upper surface of the forming stage 10.
  • the recoater 15 is movable in the horizontal direction in FIG. 1 along the upper surface of the forming stage 10.
  • the tip 15 a of the recoater 15 is in contact with the upper surface of the modeling stage 10. Therefore, when the recoater 15 moves in the left direction in FIG. 1, the metal powder on the upper surface of the modeling stage 10 is transported in the left direction in FIG. 1, and the upper surfaces of the supply tank 11 and the modeling tank 12 form the modeling stage 10. Become uniform with the top of the.
  • the supply mechanism for supplying the unmodified metal powder M to the modeling tank 12 includes the supply source of the metal powder (not shown), the supply tank 11, the first elevator 13 and the recoater 15 And is configured. Thereby, the manufacturing apparatus 20 can fill the modeling tank 12 with the unmodified metal powder M.
  • the recess 16 is provided on the upper surface of the modeling stage 10. In the recess 16, the remainder of the metal powder M not supplied to the modeling tank 12 is stored.
  • the modeling unit 3 is connected to a shield gas supply unit (not shown).
  • the shield gas supply unit is not particularly limited as long as it can supply the shield gas into the modeling unit 3 and purge the oxygen gas remaining from the modeling unit 3 with the shield gas.
  • the metal powder M examples include powders of various metals such as carbon, boron, magnesium, calcium, chromium, copper, iron, manganese, molybdenum, cobalt, nickel, hafnium, niobium, titanium, aluminum, and alloys thereof. .
  • the particle diameter of the metal particles of the metal powder M can be about 10 to 200 ⁇ m.
  • the removal mechanism 5 removes the metal powder M contained in the area S (see FIG. 2) calculated by the calculation unit 4 from the modeling tank 12.
  • the area S will be described later.
  • the removing mechanism 5 includes a control unit 6 electrically connected to the computing unit 4, a first movable unit 7 provided on the upper surface of the control unit 6, and a first movable unit 7.
  • a second movable unit 8 to be connected and a suction unit 9 to be connected to the second movable unit 8 and to suction the metal powder M are provided.
  • the control unit 6 controls the operation of the first movable unit 7, the operation of the second movable unit 8, and the operation of the suction unit 9, respectively.
  • the control unit 6 is electrically connected to the first movable unit 7, the second movable unit 8, and the suction unit 9. Thereby, the control unit 6 can transmit an instruction signal electrically to the first movable unit 7, the second movable unit 8, and the suction unit 9, respectively.
  • the first movable portion 7 has a first end connected to the upper surface of the control portion 6 and a second end connected to the first end of the second movable portion 8.
  • the first movable unit 7 can operate in accordance with an instruction signal electrically transmitted from the control unit 6.
  • the operation of the first movable portion 7 is not particularly limited as long as the suction portion 9 can move above the metal powder M filled in the modeling tank 12.
  • the second movable portion 8 has a first end connected to the second end of the first movable portion 7 and a second end connected to the suction portion 9.
  • the second movable unit 8 can operate in accordance with an instruction signal electrically transmitted from the control unit 6.
  • the operation of the second movable portion 8 is not particularly limited as long as the suction portion 9 can move above the metal powder M filled in the modeling tank 12.
  • FIG. 2 is a schematic view for explaining an example of the operation of the suction unit 9. As shown in FIG. 2, the suction unit 9 moves in the space above the region S along the direction indicated by the double arrows in FIG. 2. The suction unit 9 sucks and removes the metal powder M contained in the region S from above the shaping stage 10. Since the metal powder M contained in area
  • the area S is an area (second area) around the first area to which the laser L is irradiated.
  • the sintered layer W is a metal layer in which the metal powder M is sintered or the like by the irradiation of the laser L.
  • the sintered layer W is included in the first region.
  • the sintering of the metal powder M by the irradiation of the laser L thermally affects the metal powder M around the sintered layer W. Therefore, the region S around the sintered layer W, that is, the second region is filled with the metal powder M which is the unsintered metal powder M and is modified by the thermal influence of the laser L.
  • the removal mechanism 5 removes the metal powder M from the region S, thereby excluding the metal powder M denatured from the metal powder M filled in the shaping tank 12 it can.
  • the arithmetic unit 4 (see FIG. 1) is electrically connected to the laser oscillator 1. Thus, information such as the output value of the laser L and the spot diameter of the laser L is transmitted to the calculation unit 4. Arithmetic unit 4 calculates a second region, that is, region S, which is a region around the first region irradiated with laser L.
  • the calculation unit 4 is based on the material of the metal powder M, the particle diameter of the metal particles of the metal powder M, the thickness of the sintered layer of the metal powder M, the output value of the laser L, the spot diameter of the laser L, etc.
  • the area S is calculated.
  • the region S is a region predicted by the operation unit 4 that there is a metal powder denatured due to the heat of the laser L after the laser L is irradiated.
  • the operation unit 4 a sequencer, a CPU, an input device, an output device, etc. are exemplified.
  • the calculation unit 4 is electrically connected to the control unit 6. Thereby, the calculation unit 4 can transmit the position information on the area S to the control unit 6.
  • the control unit 6 supplies an instruction signal to at least one of the first movable unit 7 and the second movable unit 8 based on the position information. Thereby, the suction part 9 can move above the metal powder with which the area
  • the manufacturing apparatus 20 provided with the above structure irradiates the laser L to the metal powder M with which the modeling tank 12 was filled, and models a metal layer.
  • the manufacturing apparatus 20 laminates the metal layer formed in the forming unit 3 in the forming unit 3.
  • the manufacturing apparatus 20 repeats, in the modeling unit 3, an operation of sintering the metal powder M to model the sintered layer on the modeling stage 10 in an arbitrary shape and an operation of laminating the sintered layer modeled. Then, a metal shaped article X having a three-dimensional structure of any shape is manufactured.
  • the apparatus for manufacturing a metal shaped article of the present embodiment described above, a calculation mechanism that calculates a second region that is a region around the first region to which the energy beam is irradiated, and a calculation mechanism that calculates the second region Since the metal powder contained in the region 2 is removed from the modeling tank, the modified metal powder is less likely to be mixed in the metal powder filled in the modeling tank. Therefore, the apparatus for producing a metal shaped article according to the present embodiment irradiates energy rays on the metal powder in which the amount of the modified metal powder is reduced to form a metal layer, and laminates the metal layer to form a metal In order to manufacture the object, it is possible to manufacture a metal shaped article which is excellent in design properties of mechanical physical properties and appearance.
  • the method for producing a metal shaped article according to the present embodiment is a method for producing a metal shaped article using the apparatus for producing a metal shaped article having the above-described configuration.
  • the manufacturing method of the metal shaped article of this embodiment is concretely demonstrated.
  • FIG. 3 is a schematic diagram for demonstrating the manufacturing method of the metal molded article of this embodiment.
  • illustration of the calculating part 4 is abbreviate
  • the manufacturing apparatus 20 is the metal powder M filled in the shaping tank 12 and burns the metal powder M spread on the upper side of the metal shaped article X in the process of shaping They are sintered to form a sintered layer.
  • the manufacturing apparatus 20 forms the sintered layer using the heat of the laser L to form the sintered layer, and laminates the sintered layer on the metal object X during formation.
  • the irradiation of the laser L it is preferable to supply a shield gas into the shaped portion 3 and purge the oxygen gas remaining in the shaped portion 3 with the shield gas. Thereby, the mechanical physical properties of the metal structure X can be further enhanced, and the deterioration of the shape can be further prevented. It is preferable to perform the purge until the concentration of oxygen gas in the modeling unit 3 becomes 0.8% or less.
  • the metal powder M is hard to oxidize that the density
  • the manufacturing apparatus 20 removes the metal powder denatured by the heat of the laser.
  • a second area which is an area around the first area to be irradiated with the laser L, that is, an area on the shaping tank 12 filled with the modified metal powder
  • the calculation unit 4 calculates. The calculation of the region is based on the material of the metal powder M, the particle diameter of the metal particles of the metal powder M, the thickness of the sintered layer of the metal powder M, the output value of the laser L, the spot diameter of the laser L, etc. It can be carried out.
  • the metal powder contained in the second region calculated by the calculation unit 4 is removed.
  • the metal powder contained in the area is denatured by the heat of the laser. Therefore, by removing the metal powder contained in the region from the shaping tank 12, the modified metal powder can be excluded from the metal powder M filled in the modeling tank 12.
  • the metal powder is removed by suction from above the shaping stage by the suction unit 9. As described above, by performing the suction in a noncontact manner with the metal object X, the occurrence of breakage and flaws of the metal object X is reduced.
  • the manufacturing apparatus 20 moves the first elevator 13 upward and moves the second elevator 14 downward.
  • the upper surface of the metal powder M stored in the supply tank 11 moves above the upper surface of the modeling stage 10, and the upper surface of the metal powder M filled in the modeling tank 12 is below the upper surface of the modeling stage 10.
  • the supply amount of the metal powder M to the shaping tank 12 is determined by the upward moving distance of the first elevator 13. Therefore, according to the filling amount of the metal powder M of the modeling tank 12, it is preferable to adjust the said raise distance.
  • the manufacturing apparatus 20 moves the recoater 15 from the position shown in FIG. 1 to a position near the recess 16.
  • the metal powder M stored in the supply tank 11 is an unmodified metal powder.
  • the metal powder M located above the upper surface of the modeling stage 10 is conveyed and supplied to the modeling tank 12 by the tip 15 a of the recoater 15 on the modeling stage 10.
  • the top surface of the metal powder M is flattened by the tip 15 a of the recoater 15 so that the top surface of the metal powder M matches the top surface of the modeling stage 10, and the metal powder M is spread in the modeling tank 12.
  • the unmodified metal powder in the modeling tank 12 Supply after removing the metal powder contained in the region of the modeling tank 12 calculated by the calculation unit 4 from the modeling tank 12, the unmodified metal powder in the modeling tank 12 Supply.
  • the manufacturing apparatus 20 returns from the state shown in (iv) in FIG. 3 to the state shown in (i) and sinters the metal powder M spread over the metal shaped object X in the middle of shaping by irradiating the laser L etc. And stack the metal layers. Therefore, the thickness of the sintered layer of the metal powder M is the thickness of the layer of the non-sintered metal powder M above the sintered layer that has already been shaped, ie, the downward moving distance of the second elevator 14 Determined by Therefore, it is preferable to adjust the downward moving distance of the second elevator 14 according to the desired thickness of the sintered layer.
  • the manufacturing device 20 can manufacture the metal object X by repeating the states (i) to (iv) described above.
  • FIG. 4 is sectional drawing for demonstrating the manufacturing method of the metal molded article of this embodiment.
  • the characters “i” to “iv” in FIG. 4 correspond to the states shown by (i) to (iv) in FIG.
  • the state shown in (i-1) in FIG. 4 is a state after the manufacturing apparatus 20 irradiates the laser L to the modeling tank 12 to model the metal layer, ie, the metallic model X in the middle of modeling (figure 3 (i)).
  • the portion of the area S 1 of the metal powder M 1 around the metal object X contains the metal powder modified by the laser irradiation.
  • the thickness H 1 is vertical height of the area S 1, that is, the thickness of the layer of the area S 1.
  • the thickness H 1, the output value of the laser is determined by the factors of the laser spot diameter and the like.
  • State shown in figure 4 (ii-1) is a state after the arithmetic unit 4 is specified to calculate the area S 1, removal mechanism 5 has removed the metal powder contained in the area S 1 (FIG. 3 (Ii)). Therefore, the metal powder M 1 remaining in the shaping tank 12 is an unmodified metal powder.
  • the modified region S 1 on the shaped vessel 12 in which the metal powder has been removed, the recess is formed.
  • the state shown in (iii-1) in FIG. 4 is a state after the manufacturing apparatus 20 has moved the second lifting platform 14 downward (see FIG. 3 (iii)).
  • the thickness H 2 represents the moving distance of the lower second elevation frame 14. Therefore layers and metal shaped article X of the metal powder M 1 is a partial thickness H 2, is moved downward.
  • the state shown in (i-2) in FIG. 4 is the state after the manufacturing apparatus 20 again irradiates the laser L to the shaping tank 12 after the state shown in (iv-1) in FIG. i) see).
  • a sintered layer having a thickness of H 2 is laminated on the metal shaped article X in the middle of forming from the state shown in (iv-1) in FIG.
  • the area S 2 contains metal powder modified by the irradiation of the laser L.
  • the thickness H 2 is vertical height of the area S 2, that is, the thickness of the layer of the area S 2.
  • State shown in figure 4 (ii-2) is a state after the manufacturing apparatus 20 is specified to calculate the area S 2, removing mechanism 5 has removed the metal powder contained in the area S 2 (Fig. 3 (Ii)). Therefore, the metal powder M 1 and the metal powder M 2 remains in the shaped tank 12 is unmodified metal powder. The region S 2 on the modified shaped vessel 12 in which the metal powder is removed to recess is formed.
  • the state shown in (iii-2) in FIG. 4 is a state after the manufacturing apparatus 20 again moves the second elevator 14 downward (see FIG. 3 (iii)).
  • the thickness H 3 shows the moving distance of the lower second elevation frame 14. Therefore, a layer of the metal powder M 1, a layer and a metal shaped article X of the metal powder M 2, min thickness H 3, are further moved downward.
  • the state shown in (iv-2) in FIG. 4 shows the state after the manufacturing apparatus 20 further supplies the unmodified metal powder M 3 to the shaping tank 12 (see FIG. 3 (iv)).
  • the thickness H 3 minutes of the metal powder M 3 are spread.
  • the upper surface of the metal powder M 3 are, are flattened.
  • the state shown in (i-3) in FIG. 4 is the state after the manufacturing apparatus 20 again irradiates the laser L to the shaping tank 12 after the state shown in (iv-2) in FIG. i) see).
  • a sintered layer having a thickness of H 3 is laminated on the metal shaped article X in the middle of forming from the state shown in FIG. 4 (iv-2).
  • the area S 3, contains metal powder modified by the irradiation of the laser L.
  • the thickness H 3 is the vertical height of the region S 3, that is, the thickness of the layer of the area S 3.
  • the metal shaped article X is shaped by repeating the irradiation of the laser L, the supply of the unmodified metal powders M 1 to M 3 and the lamination of the sintered layers.
  • the metal object X is completed.
  • the finished metal object is removed from the forming tank 12.
  • the unmodified metal powder is removed from the shaping tank 12. Supply.
  • the metal powder around the metal shaped article X is not mixed with the modified metal powder, and the metal powder around the metal shaped article X can be maintained in an unmodified state.
  • the second region which is the region around the first region irradiated with the energy beam is calculated and included in the calculated second region
  • the metal powder in which the amount of the modified metal powder is reduced is irradiated with energy rays to form a metal layer, and the metal layer is laminated to form a metal
  • the metal powder around the metal shaped article X is denatured during formation of the metal shaped article X by removing the metal powder that has been modified each time the laser L is irradiated. It becomes more difficult for the mixed metal powder to be mixed. Thereby, even if the laser L is irradiated to repeat the operation of laminating the sintered layer, the modified metal powder is less likely to be accumulated in the modeling tank 12. Therefore, removing the modified metal powder each time the laser L is irradiated allows the metal layer to be shaped using the unmodified metal powder, so even if the laser irradiation and the lamination of the metal layer are repeated, the metal The mechanical strength of the object X and the designability of the appearance are further excellent.
  • the metal powder recovery method of the present embodiment uses the metal powder M that was not used for shaping the metal shaped article X when producing the metal shaped article X using the apparatus for producing a metal shaped article having the above-described configuration. It is a metal powder recovery method to recover.
  • the manufacturing method of the metal shaped article of this embodiment is demonstrated concretely.
  • the case where the metal object X is completed in the state shown in (i-3) in FIG. 4 will be described as an example of the embodiment.
  • the metal shaped article X When the metal shaped article X is completed, the metal shaped article X is taken out of the shaping tank 12.
  • the metal powder recovery method of the present embodiment after the metal molded object X is completed, the second to remove the metal powder contained in the S 3 is an area, to recover the metal powder remaining in shaping tank 12. Thus, the metal powder which has not been used for shaping of the metal shaped article X is recovered from the shaping tank 12.
  • a second area which is an area around the first area to which the laser L is irradiated is calculated.
  • the metal powder contained in the calculated second region is removed from the modeling tank 12. Further, after removing the denatured metal powder, the unmodified metal powder is supplied to the shaping tank 12. Therefore, a large amount of unmodified metal powder which has not been used for shaping the metal shaped article X remains in the shaping tank 12 after the metal shaped article X is taken out.
  • the metal powder recovery method of the present embodiment reutilization of metal powder that is not affected by heat requires less time and cost and is economical compared to the conventional method. It is simple.
  • the modified metal powder removed by the removal mechanism 5 may be recovered.
  • the metal powder removed by the removal mechanism 5 is a modified metal powder, it is not necessary to sort out all the collected metal powders according to the presence or absence of modification. Therefore, if the metal powder to be removed by the removal mechanism 5 is recovered, recycling of the recovered metal powder will take less time and cost when regenerating the metal powder to a non-denatured state, as compared with the conventional method. Not necessary, economical and convenient.
  • the metal powder is sintered by laser irradiation in the manufacturing apparatus according to the embodiment described above
  • the above-described manufacturing apparatus is configured to melt and solidify the metal powder by laser or electron beam irradiation. It is also good.
  • the metal powder is recovered from the shaping tank 12 after the completion of the metal shaped article X, but one of the unmodified metal powders from the shaping tank 12 is produced during the production of the metal shaped article X You may collect parts.
  • Example 1 The metallic shaped article was produced by the metallic shaped article producing apparatus 20.
  • the laser oscillator 1 Red Power manufactured by SPI Lasers was used.
  • the optical system 2 was configured using a galvano mirror.
  • the base plate 7 was made of pure titanium, and titanium alloy Ti6Al4V (LPW Thechnology, 1010 to 45 ⁇ m) was used as a metal powder. Further, the output value of the laser was 200 W, the scanning width of the laser was 0.05 mm, and the scanning speed of the laser was 800 mm / s.
  • a layer of metal powder with a thickness of 30 ⁇ m was placed on the base plate 7, a layer of metal powder with a thickness of 30 ⁇ m was placed.
  • 100% by volume of argon gas was supplied as a shield gas into the chamber 3 at a flow rate of 30 L / min.
  • a square metal melt of 10 mm ⁇ 10 mm was produced.
  • the square metal melt of 10 mm x 10 mm corresponds to the metal shaped thing of one layer of a metal layer.
  • Unmelted metal powder S remains around the metal melt.
  • the oxygen content of the remaining metal powder was measured by the following measurement method. In this example, the oxygen content of the residual metal powder M within 7.5 mm from the end of the metal melt was measured.
  • Oxygen content [wt%] is an oxygen analyzer manufactured by LECO for unmelted metal powder S or unused metal powder remaining around the metal melt (second region) obtained by laser irradiation It measured using TC-600.
  • Example 2 In Example 2, the oxygen content of the metal powder was measured under the same conditions as in Example 1 except that the residual metal powder S within 5.0 mm from the end of the metal melt was used.
  • Example 3 In Example 3, the oxygen content of the metal powder was measured under the same conditions as in Example 1 except that the residual metal powder S in the range of 2.5 mm from the end of the metal melt was used.
  • Reference Example 1 oxygen content was measured for an unused metal powder.
  • Example 1 The measurement results of the above Examples 1 to 3 and Reference Example 1 are shown in FIG. From the results shown in FIG. 5, it was confirmed that the residual metal powder had a higher oxygen content than the unused powder. Moreover, it was confirmed that the residual metal powder closer to the end of the metal melt had a higher oxygen content. Under the conditions of Example 1, the residual metal powder within 5.0 mm from the end of the metal melt is oxidized, and the metal powder in the relevant range is separated into layers to be uniform in quality to a shaped object. The effect of can be expected.
  • the apparatus for producing a metal shaped article and the method for producing a metal shaped article of the present invention it is possible to produce a metal shaped article excellent in design properties of mechanical physical properties and appearance.
  • the metal powder recovery method of the present invention it is possible to simply reuse the powder which is not affected by heat.

Abstract

本発明は、機械的物性及び外観の意匠性に優れる金属造形物を製造できる製造装置及び製造方法;熱影響を受けていない粉末の再利用を簡便に行うことができる金属粉末回収方法を提供することを目的とし、造形ステージ(10)が有する造形槽(12)に充填された金属粉末(M)の表層にレーザー(L)を照射して金属の層を造形し、層を積層して金属造形物(X)を製造する装置(20)であって、レーザー(L)が照射される第1の領域の周囲の領域である第2の領域を算出する演算部(4)と、算出機構が算出する第2の領域に含まれる金属粉末を造形槽(12)から除去する除去機構(5)とを備えることを特徴とする、金属造形物の製造装置(20)を提供する。

Description

金属造形物の製造装置、金属造形物の製造方法、及び金属粉末回収方法
 本発明は、金属造形物の製造装置、金属造形物の製造方法、及び金属粉末回収方法に関する。
 Additive Manufacturingと称される付加製造技術がある。付加製造技術は任意の形状の構造物を短時間で製造できるため、航空機産業及び医療等の先端技術分野で有望な技術として注目されている。
 付加製造技術を利用する製造装置の一例として、造形ステージが有する造形槽に充填された金属粉末にレーザー等のエネルギー線を照射する3D金属プリンターが知られている。3D金属プリンターは、エネルギー線の照射による金属の層の造形と、造形した金属の層の積層とを繰り返し、任意の形状の金属造形物を製造する。完成した金属造形物は、金属造形物の周囲にある未焼結の金属粉末が除去された後に、造形槽から取り出される。
 完成した金属造形物の周囲にある金属粉末は、エネルギー線の照射にともなう熱影響を受けて変性している。金属粉末がエネルギー線による熱影響を受けると、ヒューム及びスパッタ等の不純物、金属粒子の凝集物が生じることが知られている。そこで、3D金属プリンターに関する技術分野では、熱影響を受けた金属粉末を回収する技術、回収した金属粉末を再利用するために、熱影響を受ける前の状態に金属粉末を再生する技術が開発されている(特許文献1,2)。
 特許文献1は複数の開口を含むふるいを用いて、良好な粉末を収納チャンバの中にふるいわける付加製造装置を開示している。
 特許文献2は粉末の母材料の化学組成を決定し、粉末を乾燥した保護遮蔽ガス雰囲気下のみで保管及びアトマイズし、特定の元素の含有量を調整する技術を開示している。特許文献2に記載の技術によれば、回収した金属粉末から熱影響を受けた金属粉末を選別し、熱影響を受ける前の状態に金属粉末を再生できる。
特開2017-30353号公報 特開2017-82324号公報
 一般の3D金属プリンターでは、金属粉末及び金属造形物中に金属粒子の酸化物が生成しないように、シールドガスと呼ばれる不活性ガスの存在下で金属粉末が焼結される。
 ところが、本発明の発明者らは、エネルギー線の照射にともなう熱影響によって、金属粉末がわずかに酸化され、ヒューム及びスパッタ等のほか、金属粒子の酸化物が未焼結の金属粉末に混入していることを知見した。より具体的には、大気中の僅かな水分が金属粒子に付着したままエネルギー線を照射することで、金属粉末が熱影響を受けて酸化している可能性が示唆された。
 しかしながら、特許文献1に記載の装置のように従来の3D金属プリンターは、金属造形物が完成した後に熱影響を受けた金属粉末を回収している。そのため、従来の3D金属プリンターでは、エネルギー線の照射の度に不純物並びに金属粒子の凝集物及び酸化物が生じ、造形途中の金属造形物の周囲の金属粉末に生じた不純物等が混入したまま金属造形物が製造される。このように、不純物並びに金属粒子の凝集物及び酸化物が金属粉末中に蓄積し、混入したまま金属造形物を製造すると、完成する金属造形物の靱性、割れにくさ(すなわち耐割れ性)等の機械的物性が低下するとともに、金属造形物の表面のなめらかさが損なわれ、外観の意匠性が低下する。
 さらに、特許文献2に記載の技術のように特殊な技術を利用して金属粉末を再生するには、回収した金属粉末を特殊な技術を保有する業者又は工場に委託して再生してもらう必要がある。また、従来の3D金属プリンターでは、熱影響を受けた金属粉末とともに熱影響を受けていない金属粉末を回収しているため、金属粉末の回収量が多い。このように、従来の方法で回収した金属粉末の再生は、時間とコスとを必要とし、経済的でなく、簡便でない。
 本発明は、上記事情に鑑みてなされたものであって、機械的物性及び外観の意匠性に優れる金属造形物を製造できる製造装置及び製造方法;熱影響を受けていない粉末の再利用を簡便に行うことができる金属粉末回収方法を提供することを課題とする。
 上記課題を解決するため、本発明は以下の構成を備える。
[1] 造形ステージが有する造形槽に充填された金属粉末の表層にエネルギー線を照射して金属の層を造形し、前記層を積層して金属造形物を製造する装置であって、
 前記エネルギー線が照射される第1の領域の周囲の領域である第2の領域を算出する算出機構と、前記算出機構が算出する前記第2の領域に含まれる金属粉末を前記造形槽から除去する除去機構とを備えることを特徴とする、金属造形物の製造装置。
[2] 前記除去機構が、前記第2の領域に含まれる金属粉末を前記造形槽の上方から吸引して除去する吸引部を備える、[1]の金属造形物の製造装置。
[3] 前記造形槽に金属粉末を供給する供給機構を備える、[1]又は[2]の金属造形物の製造装置。
[4] 造形ステージが有する造形槽に充填された金属粉末の表層にエネルギー線を照射して金属の層を造形し、前記層を積層して金属造形物を製造する方法であって、前記エネルギー線が照射される第1の領域の周囲の領域である第2の領域を算出し、算出した前記第2の領域に含まれる金属粉末を前記造形槽から除去することを特徴とする、金属造形物の製造方法。
[5] 前記第2の領域に含まれる金属粉末を前記造形槽の上方から吸引して除去する、[4]の金属造形物の製造方法。
[6] 金属粉末を除去した後に、前記造形槽に金属粉末を供給する、[4]又は[5]の金属造形物の製造方法。
[7] 造形ステージが有する造形槽に充填された金属粉末の表層にエネルギー線を照射して金属の層を造形し、前記層を積層して金属造形物を製造する際に前記金属造形物の造形に用いられなかった金属粉末を、回収する方法であって、前記エネルギー線が照射される第1の領域の周囲の領域である第2の領域を算出し、算出した前記第2の領域に含まれる金属粉末を前記造形槽から除去することを特徴とする、金属粉末回収方法。
[8] 前記第2の領域に含まれる金属粉末を前記造形槽の上方から吸引して除去する、[7]の金属粉末回収方法。
[9] 金属粉末を除去した後に、前記造形槽に金属粉末を供給する、[7]又は[8]の金属粉末回収方法。
[10] 金属造形物が完成した後に、前記第2の領域に含まれる金属粉末を除去し、前記造形槽に残留する金属粉末を回収する、[7]~[9]のいずれかの金属粉末回収方法。
 本発明の金属造形物の製造装置及び金属造形物の製造方法によれば、機械的物性及び外観の意匠性に優れる金属造形物を製造できる。
 本発明の金属粉末回収方法によれば、熱影響を受けていない粉末の再利用を簡便に行うことができる。
本発明を適用した一実施形態の金属造形物の製造装置の構成の一例を示す模式図である。 図1の金属造形物の製造装置が備える吸引部の動作の一例を説明するための模式図である。 本発明を適用した一実施形態の金属造形物の製造方法を説明するための模式図である。 本発明を適用した一実施形態の金属造形物の製造方法を説明するための断面図である。 実施例における金属粉末中の酸素含有量の測定結果である。
 本明細書において、金属造形物の製造装置とは、金属粉末にエネルギー線を照射して金属の層を造形し、造形された金属の層を積層して金属造形物を製造する装置を意味する。本明細書において、金属造形物の製造装置を「製造装置」と省略して記すこともある。
 金属造形物の製造装置は、エネルギー線を照射することにより、金属粉末を焼結して又は溶融固化させて、金属の層を造形し、造形された層を積層する。
 本明細書において、「金属粉末を焼結等する」と記載した場合、金属粉末を焼結すること又は金属粉末を溶融固化させることを意味する。なお、金属粉末を焼結等して造形される金属の層を単に、「焼結層」とも記すことがある。
 本明細書において、金属粉末の「変性」とは、エネルギー線の照射の前後における金属粉末の物理的性質及び化学的性質の変化を意味する。金属粉末の物理的性質及び化学的性質の変化としては、ヒューム及びスパッタ等の不純物が金属粉末に混入していること、金属粉末の金属粒子同士が凝集して凝集物が発生していること、金属粒子の酸化物が生成していること等が例示される。
 本明細書において、シールドガスとは、金属粉末を焼結等する際に、金属粉末の周囲の酸素ガス濃度を低減すること等を目的として金属粉末の周囲に供給されるガスを意味する。
 以下、本発明を適用した一実施形態に係る金属造形物の製造装置、金属造形物の製造方法及び金属粉末回収方法について、図面を参照しながら詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
[金属造形物の製造装置]
 まず、本実施形態の金属造形物の製造装置20の構成について説明する。
 図1は、製造装置20の構成の一例を示す模式図である。図1に示すように製造装置20は、レーザー発振器1と、光学系2と、造形部3と、演算部(算出機構)4とを備える。
 以下に金属造形物の製造装置20の各構成要素に関して詳しく説明を行う。
 レーザー発振器1は、造形部3内の金属粉末Mにエネルギー線の一例であるレーザーLを照射できる形態であれば特に限定されない。レーザー発振器1は光学系2を経由させて、レーザーLを造形部3内の金属粉末Mに照射する。また、レーザー発振器1は、演算部4にあらかじめ入力されたデータに従って、レーザーの照射と停止とを切り替える。これにより製造装置20は金属粉末Mを焼結等でき、レーザーLの描画線に沿って任意の形状に金属の層を造形できる。
 光学系2はレーザー発振器1から照射されるレーザーLを反射できる形態であれば特に限定されない。光学系2は、例えば一以上の反射鏡で構成できる。
 造形部3は金属粉末Mを焼結等して金属粉末Mの焼結層を造形し、焼結層を積層するための筐体である。製造装置20は、演算部4にあらかじめ入力されたデータにしたがって造形部3を制御することで、金属粉末Mに照射されるレーザーLの位置を制御し、任意の形状の金属の層を造形できる。
 図1に示すように造形部3は、造形ステージ10と、除去機構5とを収容している。
 造形ステージ10は、焼結層の造形と造形した焼結層の積層とを繰り返すための場である。造形ステージ10は、供給槽11と、造形槽12と、リコーター15と、凹部16とを有している。
 供給槽11は未変性の金属粉末Mを貯蔵するとともに、未変性の金属粉末Mを造形槽12に供給するための槽である。供給槽11には図示略の金属粉末の供給源から供給される金属粉末Mが敷き詰められている。
 供給槽11の底面は、第1の昇降台13に支持されている。第1の昇降台13は、図中上方向に移動可能である。これにより、供給槽11の底面は図中上方向に移動できる。
 造形槽12は造形用の金属粉末Mが充填されるとともに、金属造形物Xの造形を行うための槽である。造形槽12には供給槽11から供給された未変性の金属粉末Mが敷き詰められている。また、造形槽12に充填された金属粉末Mの表層では造形途中の金属造形物Xが形成されている。
 造形槽12の底面は、第2の昇降台14に支持されている。第2の昇降台14は、図中下方向に移動可能である。これにより、造形槽12の底面は図中下方向に移動できる。
 リコーター15は、供給槽11に貯蔵された金属粉末Mを造形槽12に供給するとともに、供給槽11及び造形槽12の上面を造形ステージ10の上面と均一にする。
 リコーター15は造形ステージ10の上面に沿って、図1中の水平方向に移動可能である。リコーター15の先端15aは、造形ステージ10の上面と接している。そのため、リコーター15が図1中の左方向に移動すると、造形ステージ10の上面にある金属粉末が図1中の左方向に搬送されるとともに、供給槽11及び造形槽12の上面が造形ステージ10の上面と均一になる。
 このように製造装置20では、造形槽12に未変性の金属粉末Mを供給する供給機構が、図示略の金属粉末の供給源と、供給槽11と、第1の昇降台13と、リコーター15とを備えて構成されている。これにより、製造装置20は、造形槽12に未変性の金属粉末Mを充填できる。
 凹部16は、造形ステージ10の上面に設けられている。凹部16には、造形槽12に供給されなかった金属粉末Mの残りが貯留される。
 造形部3は、図示略のシールドガス供給部と接続されている。シールドガス供給部は、造形部3内にシールドガスを供給して、造形部3内から残留している酸素ガスを当該シールドガスでパージできる形態であれば特に限定されない。造形部3がシールドガス供給部と接続されていることにより、金属粉末Mが酸化しにくくなり、金属粉末Mの変性を防止しやすくなる。そのため、金属構造物Xの機械的物性がさらに向上し、金属造形物Xの形状の劣化がさらに低減される。
 金属粉末Mとしては、カーボン、ホウ素、マグネシウム、カルシウム、クロム、銅、鉄、マンガン、モリブテン、コバルト、ニッケル、ハフニウム、ニオブ、チタン、アルミニウム等の各種の金属及びこれらの合金の粉末が例示される。
 金属粉末Mの金属粒子の粒径としては、10~200μm程度とすることができる。
 除去機構5は、演算部4が算出する領域S(図2参照)に含まれる金属粉末Mを造形槽12から除去する。領域Sについては後述する。図1に示すように除去機構5は、演算部4と電気的に接続される制御部6と、制御部6の上面に設けられた第1の可動部7と、第1の可動部7に接続される第2の可動部8と、第2の可動部8に接続されるとともに、金属粉末Mを吸引する吸引部9とを備える。
 制御部6は、第1の可動部7の動作と、第2の可動部8の動作と、吸引部9の動作とをそれぞれ制御する。制御部6は、第1の可動部7と、第2の可動部8と、吸引部9とそれぞれ電気的に接続されている。これにより制御部6は、第1の可動部7と、第2の可動部8と、吸引部9とにそれぞれ電気的に指示信号を送信できる。
 第1の可動部7は、第1の端部が制御部6の上面と接続され、第2の端部が、第2の可動部8の第1の端部と接続されている。第1の可動部7は、制御部6から電気的に送信される指示信号に従って、動作できる。第1の可動部7の動作は、吸引部9が造形槽12に充填されている金属粉末Mの上方を移動できる態様であれば特に限定されない。
 第2の可動部8は、第1の端部が第1の可動部7の第2の端部と接続され、第2の端部が吸引部9と接続されている。第2の可動部8は、制御部6から電気的に送信される指示信号に従って、動作できる。第2の可動部8の動作は、吸引部9が造形槽12に充填されている金属粉末Mの上方を移動できる態様であれば特に限定されない。
 吸引部9は、金属粉末を吸引できる形態であれば特に限定されない。
 図2は、吸引部9の動作の一例を説明するための模式図である。図2に示すように、吸引部9は、図2中の両矢印で示す向きに沿って、領域Sの上方の空間を移動する。吸引部9は、領域Sに含まれる金属粉末Mを造形ステージ10の上方から吸引して除去する。これにより除去機構5が金属造形物Xと接触せずに領域Sに含まれる金属粉末Mを造形槽12から除去できるため、金属造形物Xの破損及びキズの発生が低減される。
 図2に示すように、領域Sは、レーザーLが照射される第1の領域の周囲の領域(第2の領域)である。焼結層Wは、レーザーLの照射によって金属粉末Mが焼結等している金属の層である。焼結層Wは、第1の領域に含まれている。ここで、レーザーLの照射による金属粉末Mの焼結は、焼結層Wの周囲の金属粉末Mに熱影響を与えてしまう。そのため焼結層Wの周囲の領域S、すなわち第2の領域には、未焼結の金属粉末MであってレーザーLの熱影響を受けて変性した金属粉末Mが充填されている。
 本実施形態の金属造形物の製造装置20によれば、除去機構5が領域Sから金属粉末Mを除去することにより、造形槽12に充填されている金属粉末Mから変性した金属粉末Mを排除できる。
 演算部4(図1参照)は、レーザー発振器1と電気的に接続されている。これにより、レーザーLの出力値、レーザーLのスポット径等の情報が演算部4に送信される。
 演算部4は、レーザーLが照射される第1の領域の周囲の領域である第2の領域、すなわち領域Sを算出する。演算部4は、金属粉末Mの材質、金属粉末Mの金属粒子の粒子径、金属粉末Mの焼結層の厚さ、レーザーLの出力値、レーザーLのスポット径等の情報に基づいて、領域Sを算出する。領域SはレーザーLが照射された後に、レーザーLの熱に起因して変性している金属粉末が存在すると演算部4によって予測される領域である。
 演算部4としてはシーケンサー、CPU、入力機器、出力機器等が例示される。
 演算部4は、制御部6と電気的に接続されている。これにより、演算部4は領域Sに関する位置情報を制御部6に送信できる。制御部6は、前記位置情報に基づいて、第1の可動部7及び第2の可動部8の少なくとも一方に指示信号を与える。これにより、吸引部9が、領域Sに充填されている金属粉末の上方を移動できる。
 以上の構成を備える製造装置20は、造形槽12に充填された金属粉末MにレーザーLを照射して金属の層を造形する。また、製造装置20は造形部3内で造形した金属の層を、造形部3内で積層する。製造装置20は、金属粉末Mを焼結等して造形ステージ10上に焼結層を任意の形状に造形する操作と、造形した焼結層を積層する操作とを、造形部3で繰り返すことで、任意の形状の三次元構造を有する金属造形物Xを製造する。
 以上説明した本実施形態の金属造形物の製造装置によれば、エネルギー線が照射される第1の領域の周囲の領域である第2の領域を算出する算出機構と、算出機構が算出する第2の領域に含まれる金属粉末を造形槽から除去する除去機構とを備えるため、造形槽に充填された金属粉末に、変性した金属粉末が混入しにくい。よって、本実施形態の金属造形物の製造装置は、変性した金属粉末の量が低減された金属粉末に、エネルギー線を照射して金属の層を造形し、金属の層を積層して金属造形物を製造するため、機械的物性及び外観の意匠性に優れる金属造形物を製造できる。
[金属造形物の製造方法]
 以下、本実施形態の金属造形物の製造方法について説明する。
 本実施形態の金属造形物の製造方法は、上述した構成を備える金属造形物の製造装置20を用いた金属造形物の製造方法である。以下図3を参照して、本実施形態の金属造形物の製造方法について具体的に説明する。
 図3は本実施形態の金属造形物の製造方法を説明するための模式図である。なお、簡略化のため、図3では演算部4の図示を省略する。
 まず、図3中(i)で示す状態では製造装置20が演算部4にあらかじめ入力されたデータにしたがい、造形槽12に充填された金属粉末MにレーザーLを照射している。レーザーLが照射されると、レーザーLが照射された部分の金属粉末Mが焼結等され、焼結層がレーザーLの描画線に沿って任意の形状に造形される。
 図3中(i)に示す状態では、製造装置20は、造形槽12に充填されている金属粉末Mであって、造形途中の金属造形物Xより上部に敷き詰められている金属粉末Mを焼結等して焼結層を造形する。製造装置20は、前記焼結層をレーザーLの熱を利用し、焼結層を造形するとともに、造形途中の金属造形物Xの上に積層する。
 レーザーLの照射に際しては、造形部3内にシールドガスを供給して、造形部3内に残留している酸素ガスをシールドガスでパージすることが好ましい。これにより、金属構造物Xの機械的物性をさらに高め、形状の劣化をさらに防止できる。造形部3内の酸素ガスの濃度が0.8%以下になるまでパージを行うことが好ましい。造形部3内の酸素ガスの濃度が0.8%以下であると、金属粉末Mが酸化しにくく、金属粉末Mの変質を防止しやすい。
 次に、図3中(ii)で示す状態では、製造装置20がレーザーの熱によって変性した金属粉末を除去している。
 本実施形態の金属造形物の製造方法では、レーザーLが照射される第1の領域の周囲の領域である第2の領域、すなわち変性した金属粉末が充填されている造形槽12上の領域を演算部4(図1参照)が算出する。前記領域の算出は、金属粉末Mの材質、金属粉末Mの金属粒子の粒子径、金属粉末Mの焼結層の厚さ、レーザーLの出力値、レーザーLのスポット径等の情報に基づいて行うことができる。
 本実施形態の金属造形物の製造方法では、演算部4が算出した第2の領域に含まれる金属粉末を除去する。前記領域に含まれる金属粉末は、レーザーの熱によって変性している。そのため、前記領域に含まれる金属粉末を造形槽12から除去することにより、造形槽12に充填されている金属粉末Mから変性した金属粉末を排除できる。
 変性した金属粉末を除去するに際しては、吸引部9によって、造形ステージの上方から金属粉末を吸引して除去する。このように、吸引を金属造形物Xと非接触的に行うことにより金属造形物Xの破損及びキズの発生が低減される。
 次に、図3中(iii)で示す状態では、製造装置20は第1の昇降台13を上方向に移動させるとともに、第2の昇降台14を下方向に移動させている。これにより、供給槽11に貯蔵されている金属粉末Mの上面が造形ステージ10の上面より上方に移動し、造形槽12に充填されている金属粉末Mの上面が造形ステージ10の上面より下方に移動する。
 ここで、造形槽12への金属粉末Mの供給量は、第1の昇降台13の上方への移動距離によって決定される。そのため造形槽12の金属粉末Mの充填量に応じて、前記上昇距離を調節することが好ましい。
 次に、図3中(iv)で示す状態では、製造装置20がリコーター15を図1に示す位置から、凹部16の付近の位置まで移動させている。
 供給槽11に貯蔵されている金属粉末Mは、未変性の金属粉末である。造形ステージ10の上面より上方に位置する金属粉末Mは、造形ステージ10上でリコーター15の先端15aによって、造形槽12に搬送されて供給される。この際、金属粉末Mの上面が造形ステージ10の上面と一致するように、金属粉末Mの上面がリコーター15の先端15aによって平坦化され、金属粉末Mが造形槽12に敷き詰められる。
 このようにして本実施形態の金属造形物の製造方法では、演算部4が算出した造形槽12の領域に含まれる金属粉末を造形槽12から除去した後に、造形槽12に未変性の金属粉末を供給する。
 図3中(iv)で示す状態では、未変性の金属粉末Mがリコーター15によって凹部16に向かって搬送されている。その結果、凹部16には、供給槽11から造形槽12に敷き詰めることができなかった未変性の金属粉末のみが貯留される。
 製造装置20は、図3中(iv)で示す状態から(i)で示す状態に戻り、造形途中の金属造形物Xの上方に敷き詰められている金属粉末MをレーザーLの照射によって焼結等して金属の層を積層する。そのため、金属粉末Mの焼結層の厚さは、すでに造形した焼結層の上方にある未焼結の金属粉末Mの層の厚さ、すなわち第2の昇降台14の下方への移動距離によって決定される。そのため、所望する焼結層の厚さに応じて、第2の昇降台14の下方への移動距離を調節することが好ましい。
 以上説明した(i)~(iv)の状態を繰り返すことで、製造装置20は、金属造形物Xを製造できる。
 図4は、本実施形態の金属造形物の製造方法を説明するための断面図である。図4中、「i」~「iv」の各文字は、図3中(i)~(iv)で示す各状態と対応している。
 図4中(i-1)に示す状態は、製造装置20がレーザーLを造形槽12に照射して、金属の層、すなわち造形途中の金属造形物Xを造形した後の状態である(図3(i)参照)。金属造形物Xの周囲の金属粉末Mの領域Sの部分には、レーザーの照射によって変性した金属粉末が含まれている。厚みHは領域Sの鉛直方向の高さ、すなわち領域Sの層の厚さを示している。厚みHは、レーザーの出力値、レーザーのスポット径等の要因によって決定される。
 図4中(ii-1)に示す状態は、演算部4が領域Sを算出して特定し、除去機構5が領域Sに含まれる金属粉末を除去した後の状態である(図3(ii)参照)。そのため、造形槽12に残る金属粉末Mは未変性の金属粉末である。変性した金属粉末が除去された造形槽12上の領域Sには、凹部が形成されている。
 図4中(iii-1)に示す状態は、製造装置20が第2の昇降台14を下方向に移動させた後の状態である(図3(iii)参照)。厚みHは第2の昇降台14の下方への移動距離を示している。そのため金属粉末Mの層及び金属造形物Xが、厚みHの分、下方に移動している。
 図4中(iv-1)に示す状態では、製造装置20が造形槽12に未変性の金属粉末Mを供給した後の状態を示す(図3(iv)参照)。図4中(iv-1)に示すように、造形途中の金属造形物Xの上方には、厚みH分の金属粉末Mが敷き詰められている。また、金属粉末Mの上面は、平坦化されている。
 図4中(i-2)に示す状態は、図4中(iv-1)に示す状態の後に、再び製造装置20がレーザーLを造形槽12に照射した後の状態である(図3(i)参照)。造形途中の金属造形物Xの上方には、図4中(iv-1)に示した状態から、厚みHの焼結層が積層されている。領域Sには、レーザーLの照射によって変性した金属粉末が含まれている。厚みHは領域Sの鉛直方向の高さ、すなわち領域Sの層の厚さを示している。
 図4中(ii-2)に示す状態は、製造装置20が領域Sを算出して特定し、除去機構5が領域Sに含まれる金属粉末を除去した後の状態である(図3(ii)参照)。そのため、造形槽12に残る金属粉末M及び金属粉末Mは未変性の金属粉末である。変性した金属粉末が除去された造形槽12上の領域Sには、凹部が形成されている。
 図4中(iii-2)に示す状態は、製造装置20が第2の昇降台14を下方向に再び移動させた後の状態である(図3(iii)参照)。厚みHは第2の昇降台14の下方への移動距離を示している。そのため、金属粉末Mの層、金属粉末Mの層及び金属造形物Xが、厚みHの分、さらに下方に移動している。
 図4中(iv-2)に示す状態は、製造装置20が造形槽12に未変性の金属粉末Mをさらに供給した後の状態を示す(図3(iv)参照)。図4中(iv-2)に示すように、造形途中の金属造形物Xの上方には、厚みH分の金属粉末Mが敷き詰められている。また、金属粉末Mの上面は、平坦化されている。
 図4中(i-3)に示す状態は、図4中(iv-2)に示す状態の後に、再び製造装置20がレーザーLを造形槽12に照射した後の状態である(図3(i)参照)。造形途中の金属造形物Xの上方には、図4中(iv-2)に示した状態から、厚みHの焼結層が積層されている。領域Sには、レーザーLの照射によって変性した金属粉末が含まれている。厚みHは領域Sの鉛直方向の高さ、すなわち領域Sの層の厚さを示している。
 このように造形槽12では、レーザーLの照射と、未変性の金属粉末M~Mの供給と、焼結層の積層とを繰り返して金属造形物Xが造形される。
 あらかじめデータが入力されたすべての焼結層の造形と、積層とが完了すると、金属造形物Xが完成する。完成した金属造形物は、造形槽12から取り出される。
 以上、図3及び図4を用いて説明したように、本実施形態の金属造形物の製造方法では、変性した金属粉末を造形槽12から除去した後に、造形槽12に未変性の金属粉末を供給している。これにより金属造形物Xの造形途中において、金属造形物Xの周囲の金属粉末には変性した金属粉末が混入せず、金属造形物Xの周囲の金属粉末を未変性の状態に維持できる。
 以上説明した本実施形態の金属造形物の製造方法によれば、エネルギー線が照射される第1の領域の周囲の領域である第2の領域を算出し、算出した第2の領域に含まれる金属粉末を造形槽から除去するため、造形槽に充填された金属粉末に、変性した金属粉末が混入しにくい。よって、本実施形態の金属造形物の製造方法では、変性した金属粉末の量が低減された金属粉末に、エネルギー線を照射して金属の層を造形し、金属の層を積層して金属造形物を製造するため、機械的物性及び外観の意匠性に優れる金属造形物を製造できる。
 また、図4を用いて説明したように、レーザーLを照射する度に変性した金属粉末を除去することで、金属造形物Xの造形途中において、金属造形物Xの周囲の金属粉末には変性した金属粉末がさらに混入しにくくなる。これにより、レーザーLを照射して焼結層を積層する操作を繰り返しても、変性した金属粉末が造形槽12に蓄積しにくくなる。そのため、レーザーLを照射する度に変性した金属粉末を除去すると、未変性の金属粉末を使用して金属の層を造形できるため、レーザーの照射と金属の層の積層とを繰り返しても、金属造形物Xの機械的強度及び外観の意匠性がさらに優れる。
[金属粉末回収方法]
 以下、本実施形態の金属粉末回収方法について説明する。
 本実施形態の金属粉末回収方法は、上述した構成を備える金属造形物の製造装置20を用いて金属造形物Xを製造する際に、金属造形物Xの造形に用いられなかった金属粉末Mを回収する金属粉末回収方法である。以下、図4を参照して本実施形態の金属造形物の製造方法について、具体的に説明する。以下、図4中(i-3)に示す状態で金属造形物Xが完成した場合を一実施形態例として説明する。
 金属造形物Xが完成すると、金属造形物Xは造形槽12から取り出される。本実施形態の金属粉末回収方法では、金属造形物Xが完成した後に、第2の領域であるSに含まれる金属粉末を除去し、造形槽12に残留する金属粉末を回収する。このようにして造形槽12から金属造形物Xの造形に用いられなかった金属粉末を回収する。
 図4に示すように、本実施形態の金属粉末回収方法では、金属造形物Xを製造する際に、レーザーLが照射される第1の領域の周囲の領域である第2の領域を算出し、算出した第2の領域に含まれる金属粉末を造形槽12から除去している。また、変性した金属粉末を除去した後に、造形槽12に未変性の金属粉末を供給している。そのため、金属造形物Xが取り出された後の造形槽12には、金属造形物Xの造形に用いられなかった大量の未変性の金属粉末が残される。
 よって、造形槽12に残された未変性の金属粉末を回収すれば、金属粉末の量が大量であっても、業者又は工場に委託して再生してもらう必要がなく、そのまま再利用できる。このように、本実施形態の金属粉末回収方法によれば、従来の方法と比べて、熱影響を受けていない金属粉末の再利用は、時間とコスとを必要とせず、経済的であり、簡便である。
 なお、本実施形態の金属粉末回収方法では、除去機構5が除去する変性した金属粉末を回収してもよい。この場合、除去機構5によって除去される金属粉末は、変性した金属粉末であるため、回収したすべての金属粉末を変性の有無で選別する必要がない。そのため、除去機構5によって除去される金属粉末を回収すれば、回収した金属粉末の再利用は、従来の方法と比べて、金属粉末を未変性の状態に再生をする際に時間とコスとを必要とせず、経済的であり、簡便である。
 以上、本発明のいくつかの実施形態を説明したが、本発明はかかる特定の実施の形態に限定されない。また、本発明は特許請求の範囲に記載された本発明の要旨の範囲内で、構成の付加、省略、置換、及びその他の変更が加えられてよい。
 例えば、以上説明した実施形態に係る製造装置では、金属粉末をレーザーの照射によって焼結していたが、上述した製造装置は金属粉末をレーザー又は電子ビームの照射によって、溶融固化させる形態であってもよい。
 その他にも、上述した金属粉末回収方法では、金属造形物Xの完成後に、造形槽12から金属粉末を回収したが、金属造形物Xの製造途中に造形槽12から未変性の金属粉末の一部を回収してもよい。
<実施例>
 以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。
(実施例1)
 金属造形物の製造装置20で金属造形物の製造を行った。レーザー発振機1として、SPI Lasers社製のRed Powerを使用した。また、光学系2はガルバノミラーを用いて構成した。ベースプレート7は、純チタン製のものを使用し、金属粉末としてチタン合金Ti6Al4V(LPW Thechnology社製、Φ10~45μm)を使用した。また、レーザーの出力値を200W、レーザーの走査幅を0.05mm、レーザーの走査速度を800mm/sとした。ベースプレート7上には、厚さ30μmの金属粉末の層を載置した。
 実施例1ではシールドガスとして100体積%のアルゴンガスを30L/minの流量でチャンバ3内に供給した。
 以上の条件で、10mm×10mmの正方形の金属溶融物を製造した。
 なお、10mm×10mmの正方形の金属溶融物は、金属層の一層分の金属造形物に相当する。金属溶融物の周囲には未溶融の金属粉末Sが残留する。残留した金属粉末は下記測定方法によって酸素含有量を測定した。本実施例では、金属溶融物の端部から7.5mm以内の残留金属粉末Mの酸素含有量の測定を行った。
(測定方法)
 「酸素含有量[wt%]」は、レーザー照射によって得られた金属溶融物周囲(第2の領域)に残留する未溶融の金属粉末Sまたは未使用の金属粉末について、LECO社製酸素分析計TC-600を用いて測定した。
(実施例2)
 実施例2では、金属溶融物の端部から5.0mm以内の残留金属粉末Sを用いた以外は、実施例1と同条件で金属粉末の酸素含有量測定を行った。
(実施例3)
 実施例3では、金属溶融物の端部から2.5mm範囲の残留金属粉末Sを用いた以外は、実施例1と同条件で金属粉末の酸素含有量測定を行った。
(参考例1)
参考例1では、未使用の金属粉末について、酸素含有量測定を行った。
 上記実施例1~3及び参考例1の測定結果を、図5に示す。図5に示す結果より、残留金属粉末は、未使用粉末に比べて酸素含有量が高いことを確認した。また、金属溶融物の端部に近い残留金属粉末ほど、酸素含有量が高いことを確認した。本実施例1の条件では、金属溶融物の端部から5.0mm以内の残留金属粉末が酸化されており、当該範囲の金属粉末を一層ごとに分別することで、造形物への品質に一定の効果が見込める。
 本発明の金属造形物の製造装置及び金属造形物の製造方法によれば、機械的物性及び外観の意匠性に優れる金属造形物を製造できる。
 本発明の金属粉末回収方法によれば、熱影響を受けていない粉末の再利用を簡便に行うことができる。
1…レーザー発振器、2…光学系、3…造形部、4…算出機構、5…除去機構、6…制御部、7…第1の可動部、8…第2の可動部、9…吸引部、10…造形ステージ、11…供給槽、12…造形槽、13…第1の昇降台、14…第2の昇降台、15…リコーター、16…凹部、20…金属造形物の製造装置、L…レーザー、M…金属粉末、S…第2の領域、W…焼結層(第1の領域)、X…金属造形物

Claims (10)

  1.  造形ステージが有する造形槽に充填された金属粉末の表層にエネルギー線を照射して金属の層を造形し、前記層を積層して金属造形物を製造する装置であって、
     前記エネルギー線が照射される第1の領域の周囲の領域である第2の領域を算出する算出機構と、
     前記算出機構が算出する前記第2の領域に含まれる金属粉末を前記造形槽から除去する除去機構とを備えることを特徴とする、金属造形物の製造装置。
  2.  前記除去機構が、前記第2の領域に含まれる金属粉末を前記造形槽の上方から吸引して除去する吸引部を備える、請求項1に記載の金属造形物の製造装置。
  3.  前記造形槽に金属粉末を供給する供給機構を備える、請求項1又は2に記載の金属造形物の製造装置。
  4.  造形ステージが有する造形槽に充填された金属粉末の表層にエネルギー線を照射して金属の層を造形し、前記層を積層して金属造形物を製造する方法であって、
     前記エネルギー線が照射される第1の領域の周囲の領域である第2の領域を算出し、
     算出した前記第2の領域に含まれる金属粉末を前記造形槽から除去することを特徴とする、金属造形物の製造方法。
  5.  前記第2の領域に含まれる金属粉末を前記造形槽の上方から吸引して除去する、請求項4に記載の金属造形物の製造方法。
  6.  金属粉末を除去した後に、前記造形槽に金属粉末を供給する、請求項4又は5に記載の金属造形物の製造方法。
  7.  造形ステージが有する造形槽に充填された金属粉末の表層にエネルギー線を照射して金属の層を造形し、前記層を積層して金属造形物を製造する際に前記金属造形物の造形に用いられなかった金属粉末を、回収する方法であって、
     前記エネルギー線が照射される第1の領域の周囲の領域である第2の領域を算出し、
     算出した前記第2の領域に含まれる金属粉末を前記造形槽から除去することを特徴とする、金属粉末回収方法。
  8.  前記第2の領域に含まれる金属粉末を前記造形槽の上方から吸引して除去する、請求項7に記載の金属粉末回収方法。
  9.  金属粉末を除去した後に、前記造形槽に金属粉末を供給する、請求項7又は8に記載の金属粉末回収方法。
  10.  金属造形物が完成した後に、前記第2の領域に含まれる金属粉末を除去し、前記造形槽に残留する金属粉末を回収する、請求項7~9のいずれか一項に記載の金属粉末回収方法。
PCT/JP2018/035352 2017-09-28 2018-09-25 金属造形物の製造装置、金属造形物の製造方法、及び金属粉末回収方法 WO2019065591A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019545111A JP6827553B2 (ja) 2017-09-28 2018-09-25 金属造形物の製造装置、金属造形物の製造方法、及び金属粉末回収方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-188393 2017-09-28
JP2017188393 2017-09-28

Publications (1)

Publication Number Publication Date
WO2019065591A1 true WO2019065591A1 (ja) 2019-04-04

Family

ID=65902376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035352 WO2019065591A1 (ja) 2017-09-28 2018-09-25 金属造形物の製造装置、金属造形物の製造方法、及び金属粉末回収方法

Country Status (2)

Country Link
JP (1) JP6827553B2 (ja)
WO (1) WO2019065591A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3741479A1 (de) * 2019-05-22 2020-11-25 Siemens Aktiengesellschaft Vorrichtung und verfahren zur additiven fertigung von bauteilen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249805A (ja) * 2001-02-23 2002-09-06 Matsushita Electric Works Ltd 三次元形状造形物の製造方法
JP2009001900A (ja) * 2007-05-23 2009-01-08 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法
JP2015175013A (ja) * 2014-03-13 2015-10-05 日本電子株式会社 3次元積層造形装置及び3次元積層造形方法
JP2015193866A (ja) * 2014-03-31 2015-11-05 日本電子株式会社 3次元積層造形装置、3次元積層造形システム及び3次元積層造形方法
JP2016056417A (ja) * 2014-09-10 2016-04-21 本田技研工業株式会社 金属粉末回収供給システム及び金属粉末焼結造形物の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249805A (ja) * 2001-02-23 2002-09-06 Matsushita Electric Works Ltd 三次元形状造形物の製造方法
JP2009001900A (ja) * 2007-05-23 2009-01-08 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法
JP2015175013A (ja) * 2014-03-13 2015-10-05 日本電子株式会社 3次元積層造形装置及び3次元積層造形方法
JP2015193866A (ja) * 2014-03-31 2015-11-05 日本電子株式会社 3次元積層造形装置、3次元積層造形システム及び3次元積層造形方法
JP2016056417A (ja) * 2014-09-10 2016-04-21 本田技研工業株式会社 金属粉末回収供給システム及び金属粉末焼結造形物の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3741479A1 (de) * 2019-05-22 2020-11-25 Siemens Aktiengesellschaft Vorrichtung und verfahren zur additiven fertigung von bauteilen

Also Published As

Publication number Publication date
JPWO2019065591A1 (ja) 2020-04-02
JP6827553B2 (ja) 2021-02-10

Similar Documents

Publication Publication Date Title
Yang et al. Additive manufacturing of metals: the technology, materials, design and production
Wang et al. Research on the fabricating quality optimization of the overhanging surface in SLM process
Dutta et al. Science, technology and applications of metals in additive manufacturing
JP5995202B2 (ja) 粉末積層造形装置及び粉末積層造形方法
JP6717573B2 (ja) 繊維強化を用いた付加製造方法
JP5519766B2 (ja) 三次元形状造形物の製造方法および三次元形状造形物
JP4882868B2 (ja) 三次元形状造形物の製造方法
KR20170077808A (ko) 산소를 포함하는 가스 혼합물을 이용하는 금속 적층 제조
JP4519560B2 (ja) 積層造形方法
US20150224607A1 (en) Superalloy solid freeform fabrication and repair with preforms of metal and flux
JP2011021218A (ja) 積層造形用粉末材料及び粉末積層造形法
JP5243935B2 (ja) 積層造形装置及び積層造形方法
JP2011006719A (ja) 三次元形状造形物の製造方法およびその製造装置
EP3406372B1 (en) Method of manufacturing aluminum alloy articles
JP2010255057A (ja) 電子ビーム造形装置
JP4915660B2 (ja) 三次元形状造形物の製造方法
WO2019065591A1 (ja) 金属造形物の製造装置、金属造形物の製造方法、及び金属粉末回収方法
JP2008291317A (ja) 三次元形状造形物の製造方法
Kumar Additive Manufacturing Classification
EP3315227A1 (en) Method of manufacturing metal articles
JP4384420B2 (ja) 積層造形方法
CN114101700A (zh) 层叠造形方法及层叠造形装置
Jayabal 3D Printing Support-less Engineered Lattice Structures via Jetting of Molten Aluminum Droplets
JP7074737B2 (ja) 積層造形装置、積層造形方法
Balasubramanian et al. Introduction to additive manufacturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861400

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545111

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861400

Country of ref document: EP

Kind code of ref document: A1