WO2019064950A1 - Automatic travel system - Google Patents

Automatic travel system Download PDF

Info

Publication number
WO2019064950A1
WO2019064950A1 PCT/JP2018/029768 JP2018029768W WO2019064950A1 WO 2019064950 A1 WO2019064950 A1 WO 2019064950A1 JP 2018029768 W JP2018029768 W JP 2018029768W WO 2019064950 A1 WO2019064950 A1 WO 2019064950A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
path
traveling
tractor
target travel
Prior art date
Application number
PCT/JP2018/029768
Other languages
French (fr)
Japanese (ja)
Inventor
優飛 兒玉
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2019064950A1 publication Critical patent/WO2019064950A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to an automatic travel system that causes a work vehicle to travel automatically along a target travel path.
  • the above-described automatic travel system continuously operates the work vehicle based on a position information acquisition unit that acquires position information of the work vehicle using a satellite positioning system or the like and the current position of the work vehicle acquired by the position information acquisition unit. And a control unit for automatically traveling along a plurality of target traveling routes, and automatically traveling the working vehicle along a plurality of continuous target traveling routes generated in advance while acquiring the current position of the working vehicle as needed (See, for example, Patent Documents 1 and 2).
  • a control unit for automatically traveling along a plurality of target traveling routes, and automatically traveling the working vehicle along a plurality of continuous target traveling routes generated in advance while acquiring the current position of the working vehicle as needed See, for example, Patent Documents 1 and 2).
  • a turnaround route is generated.
  • a plurality of forward straight paths K1 (forward paths Kf) are generated to linearly move forward as work paths.
  • a first forward rotation circuit K2 (forward travel path Kf) for advancing the work vehicle 2 while making a turn along an approximately 1 ⁇ 4 arc toward the machine body side (right side of the machine) following the forward straight path K1 as a turning path.
  • a reverse linear path K3 (rear path Kb) for moving the working vehicle 2 linearly backward following the first forward rotation circuit K2, and a working vehicle 2 following the reverse linear path K3 to the side of the fuselage one side (body right side)
  • the second forward turning circuit K4 (forward path Kf) is generated which is advanced while turning to connect to the next forward linear path K1.
  • the control unit of the automatic travel system sets one target travel route to be automatically traveled from a plurality of continuous target travel routes K1 to K4, and the work for acquiring the set target travel route by the position information acquisition unit
  • the work vehicle 2 is automatically traveled along a plurality of continuous target travel routes K1 to K4.
  • the tractor 2 is automatically traveled along the forward travel straight route K1
  • the set target travel route is moved as the work vehicle 2 moves.
  • the forward linear path K1, the first forward rotational circuit K2, the reverse linear path K3, and so on by sequentially switching in order of the forward rotational circuit K2, the reverse linear path K3, the second forward rotational circuit K4, and the next forward linear path K1.
  • the work vehicle 2 is automatically traveled continuously in the order of the second forward rotation circuit K4 and the next forward linear path K1.
  • the control unit of the automatic travel system switches the set target travel route to the next target travel route when the work vehicle 2 (the current position P of the work vehicle 2) reaches the end point of the target travel route during travel.
  • the work vehicle 2 is set from the first forward rotation circuit K2 (see FIG. 12 (a)) while traveling to the reverse linear path K3 (the route traveling in FIG. 12 (d))
  • the target travel route is switched to the reverse linear route K3.
  • the braking distance OR moves forward at least from the end point K2e (Kfe) of Kf) and travels wastefully past the end point K2e (Kfe) of the first forward path K2 (forward path Kf) on which the work vehicle 2 is traveling It will be. Therefore, there is a disadvantage that the traveling efficiency of the work vehicle 2 is increased and the work efficiency is reduced. In addition, such a problem also occurs when the set target traveling route is switched from the rear route Kb during traveling to the subsequent forward route Kf.
  • the main object of the present invention is to provide an automatic travel system capable of improving work efficiency by reducing unnecessary travel of a work vehicle.
  • a position information acquisition unit for acquiring position information of a work vehicle; By setting one target travel route for automatic travel from a plurality of continuous target travel routes and switching the set target travel route based on the current position of the work vehicle acquired by the position information acquisition unit, continuous An automatic travel system comprising: a control unit for automatically traveling the work vehicle along a plurality of target travel paths to be As the plurality of target travel paths, there are provided an advancing path for moving the work vehicle forward, and a rear track for moving the work vehicle backward.
  • the control unit is configured to switch the braking distance of the work vehicle when switching the set target traveling route from the traveling forward route to the following backward route or switching the traveling backward route to the following forward route
  • the set target travel path can be switched to the subsequent target travel route
  • the control unit sets the braking distance of the work vehicle as the reference when the set target traveling route is switched from the advancing route during traveling to the following backward route or from the backward route during traveling to the subsequent advancing route
  • the set target traveling route can be switched to the subsequent target traveling route when the work vehicle reaches the preceding switching point on the near side of the end point of the target traveling route during traveling by the set distance. Since the advance switching point is on the near side of the end point of the target travel route traveling by the set distance based on the braking distance of the work vehicle, the work vehicle travels the braking distance from the advance switching point immediately after switching the set target travel route. Even if the vehicle moves forward or backward, it is possible to prevent the work vehicle from passing the end point of the target travel path being traveled.
  • the advance switching point is based on the set distance based on the braking distance of the work vehicle
  • the target travel while traveling is performed by switching the set target traveling route to the subsequent target traveling route at the advance switching point.
  • the traveling direction of the work vehicle can be switched at or near the end point of the route, and the traveling on the subsequent target traveling route can be smoothly performed.
  • unnecessary running of the work vehicle can be reduced to improve work efficiency.
  • a second characterizing feature of the present invention is that the set distance is set by adding a predetermined distance to the braking distance.
  • the preceding switching point for switching the set target traveling route can be made closer to the end point of the target traveling route during traveling by the set distance obtained by adding the predetermined distance to the braking distance, for example Even when the work vehicle moves forward or backward from the preceding switching point more than the braking distance when switching the set target travel route at high speed work, etc., the work vehicle passes the end point of the target travel route while traveling Can be properly avoided.
  • the predetermined distance is a predetermined distance for forward movement used when switching from the forward path while traveling the set target travel path to the subsequent backward path, and the set target travel path And a predetermined reverse travel distance used when switching from the rear track to the forward path,
  • the reverse travel predetermined distance is larger than the forward travel predetermined distance.
  • a predetermined forward travel distance is added to the braking distance, and the traveling forward traveling route to the subsequent rear traveling route It is possible to set a set distance suitable for switching.
  • a predetermined reverse travel distance is added to the braking distance, and it is suitable for switching from the rear course while running to the subsequent forward road.
  • the set distance can be set.
  • the predetermined reverse travel distance is larger than the predetermined travel forward distance
  • the set distance in the case of switching from the backward path during traveling to the subsequent forward path is changed from the backward path during traveling to the subsequent forward path Therefore, the advance switching point can be made closer to the front side. Therefore, when the work vehicle switches from the rear track while traveling with the work machine mounted on the rear side to the subsequent forward path, for example, the work machine on the rear side of the work vehicle jumps to an unplanned area It is possible to suppress the occurrence of inconvenience such as contact with an obstacle.
  • an azimuth angle specifying unit for specifying an azimuth angle of the work vehicle,
  • the control unit switches the set target traveling route from the forward path during traveling to the subsequent backward path after traveling or switches from the rear path during traveling to the subsequent forward path
  • the azimuth angle specifying unit When the angular deviation between the straight line along the current azimuth of the specified work vehicle and the straight line along the subsequent target travel route becomes equal to or less than a predetermined value, the preceding switching point in the target travel route while the work vehicle is traveling Even if the vehicle has not reached the above, the set target travel route is switched to the subsequent target travel route.
  • the azimuth angle specifying unit can specify the azimuth angle of the work vehicle traveling on the target traveling route. Then, in the control unit, the angular deviation between the straight line along the current azimuth of the work vehicle specified by the azimuth specifying unit and the straight line along the subsequent target travel route becomes equal to or less than a predetermined value, When it is possible to shift to a posture along a subsequent target travel route with a short travel distance, etc., the target travel route follows the set target travel route even if the work vehicle has not reached the preceding switching point in the target travel route. You can switch to the route. Thus, unnecessary traveling of the work vehicle can be further reduced to further improve the work efficiency.
  • a diagram showing a schematic configuration of an automatic traveling system Block diagram showing a schematic configuration of an automatic traveling system A diagram showing a schematic configuration of a target travel route Diagram showing travel control of the work vehicle when switching from a traveling forward path to a following rear path during traveling Diagram showing travel control of the work vehicle when switching from a traveling forward path to a following rear path during traveling Diagram showing travel control of the work vehicle when switching from a rear track while traveling to a subsequent forward path Diagram showing travel control of the work vehicle when switching from a rear track while traveling to a subsequent forward path
  • a diagram showing a schematic configuration of a turning route A diagram showing a schematic configuration of a turning route
  • a diagram showing a schematic configuration of a turning route A diagram showing a schematic configuration of a turning route
  • the automatic travel system 1 includes a tractor 2 as a work vehicle that automatically travels along a plurality of continuous target travel paths K1 to K4 (see FIG. 3), and various types of tractors 2. And a wireless communication terminal 3 capable of instructing information of And in this embodiment, the reference station 4 for acquiring position information on the tractor 2 is provided.
  • the tractor 2 includes a vehicle body portion 6 on the rear side to which the working machine 5 can be attached, the front of the vehicle body portion 6 is supported by a pair of left and right front wheels 7, and the rear portion of the vehicle body portion 6 is supported by a pair of left and right rear wheels 8 It is done.
  • a bonnet 9 is disposed at the front of the vehicle body portion 6, and an engine 10 (diesel engine) as a drive source is accommodated in the bonnet 9.
  • an engine 10 diesel engine
  • a cabin 12 for the user to board is provided, and in the cabin 12, a steering handle 13 for the user to steer and operate, a driver's seat 14 for the user, etc. are provided. .
  • a walking type working vehicle can be applied in addition to a riding type working vehicle such as a rice transplanter, a combine, a civil engineering / building work device, a snow removal vehicle, etc. besides a tractor.
  • the tractor 2 is provided with a vehicle-side wireless communication unit 26, the wireless communication terminal 3 is provided with a terminal-side wireless communication unit 31, and the reference station 4 is provided with a reference station-side wireless communication unit 41. ing.
  • Various information can be transmitted and received between the tractor 2 and the wireless communication terminal 3 by wireless communication between the vehicle-side wireless communication unit 26 and the terminal-side wireless communication unit 31, and the vehicle-side wireless communication unit 26 and the reference station
  • Various types of information can be transmitted and received between the tractor 2 and the reference station 4 by wireless communication with the side wireless communication unit 41.
  • the wireless communication terminal 3 and the reference station 4 are configured to be able to transmit and receive various types of information via the tractor 2.
  • the wireless communication terminal 3 and the reference station 4 can directly transmit and receive various information without using the tractor 2. You can also.
  • the frequency bands used for wireless communication between the wireless communication units may be a common frequency band or different frequency bands.
  • the tractor 2 includes a positioning antenna 21, a vehicle-side control unit 22, a vehicle-side wireless communication unit 26, a storage unit (not shown), and the like.
  • the vehicle-side control unit 22 includes a traveling control unit 23, a position information acquisition unit 24, an azimuth specifying unit 25, and the like.
  • the vehicle-side control unit 22 is the position information of its own (the current position P which is the installation position of the positioning antenna 21) acquired at any time by the position information acquiring unit 24 and the self specified by the azimuth specifying unit 25 at any time. Travel control with appropriate reference to the azimuth angle (current azimuth angle), the attitude of oneself measured by an inertial measurement device (not shown) with a 3-axis gyro and 3-direction accelerometer etc.
  • the engine control unit, a transmission capable of switching between forward and reverse, a steering unit, and a brake unit control various units provided in the tractor 2 and are arranged along the target travel paths K1 to K4.
  • the tractor 2 can be driven automatically.
  • the positioning antenna 21 is configured to receive, for example, a signal from a positioning satellite 15 that constitutes a satellite positioning system (GNSS), as shown in FIG.
  • GNSS satellite positioning system
  • the positioning antenna 21 is disposed, for example, on the top surface of the roof of the cabin 12 of the tractor 2.
  • a reference station 4 installed at a predetermined reference point is provided, and satellite positioning of tractor 2 (mobile station) is performed by positioning correction information from the reference station 4 It is possible to apply a positioning method for obtaining the current position P of the tractor 2 by correcting the information.
  • various positioning methods such as DGPS (differential GPS positioning) and RTK positioning (real-time kinematic positioning) can be applied.
  • DGPS differential GPS positioning
  • RTK positioning real-time kinematic positioning
  • the reference station 4 is provided. It is done. Position information of a reference point which is an installation position of the reference station 4 is set in advance and grasped.
  • the reference station 4 is disposed, for example, at a position (reference point) which does not interfere with the traveling of the tractor 2 such as around the field H.
  • the reference station 4 is provided with a reference station wireless communication unit 41 and a reference station positioning antenna 42.
  • the carrier phase (satellite positioning information) from the positioning satellite 15 is measured by both the reference station 4 installed at the reference point and the positioning antenna 21 of the tractor 2 on the mobile station side for which position information is to be determined. doing.
  • the reference station 4 generates positioning correction information including the measured satellite positioning information and the position information of the reference point every time the satellite positioning information is measured from the positioning satellite 15 or each time the setting period elapses, and the reference station side wireless
  • the positioning correction information is transmitted from the communication unit 41 to the vehicle-side wireless communication unit 26 of the tractor 2.
  • the position information acquisition unit 24 of the tractor 2 obtains the current position P of the tractor 2 using the satellite positioning information measured by the positioning antenna 21 and the positioning correction information transmitted from the reference station 4.
  • the position information acquisition unit 24 obtains, for example, latitude information and longitude information as the current position P of the tractor 2.
  • the azimuth specifying unit 25 of the tractor 2 is configured to specify the azimuth of the tractor 2 from the change state of the current position P of the tractor 2 acquired by the position information acquiring unit 24 along with the movement of the tractor 2 There is.
  • the azimuth angle identification unit 25 refers to the current position P immediately before stored in the storage unit and determines the current current from the current position P immediately before that.
  • the direction of the velocity vector toward the position P is specified as the azimuth angle of the tractor 2.
  • the current position P acquired by the position information acquiring unit 24 immediately before and stored in the storage unit can be used as the current position P immediately before the above, for example, when the traveling of the tractor 2 starts, the single positioning is performed.
  • the current position P obtained by the user can be used.
  • the wireless communication terminal 3 includes, for example, a tablet-type personal computer having a touch panel, and can display various information on the touch panel, and can also input various information by operating the touch panel.
  • the wireless communication terminal 3 can be carried and used outside of the tractor 2 by the user, and can also be used by attaching to the side of the driver's seat 14 of the tractor 2 or the like.
  • the wireless communication terminal 3 includes a terminal-side wireless communication unit 31 and a terminal-side control unit 32.
  • a path generation unit 33, a display unit 34 and the like are provided.
  • the route generation unit 33 is configured to generate a plurality of continuous target travel routes K1 to K4 (see FIG. 3) on which the tractor 2 automatically travels.
  • the wireless communication terminal 3 is provided with a storage unit (not shown), and the storage unit stores various types of information such as information registered by the user.
  • the user When automatic traveling of the tractor 2 is performed, the user operates the touch panel of the wireless communication terminal 3 to generate information for generating the target traveling routes K1 to K4 such as the field area, and information on the tractor 2 and the work machine 5. I have registered.
  • the route generation unit 33 of the wireless communication terminal 3 generates target traveling routes K1 to K4 on which the tractor 2 automatically travels based on the registration information and the like.
  • the route generation unit 33 is a work route for performing work such as tilling while automatically traveling the tractor 2 as a target travel route in the field H, and the tractor 2 is linear Forward straight path K1 is generated.
  • the route generation unit 33 is a turning route for turning the tractor 2 as a target travel route in the agricultural field H, and turns the tractor 2 along the approximately 1 ⁇ 4 arc toward the one side (right side of the machine)
  • the first forward rotation circuit K2 which advances forward while continuing the reverse linear path K3 which continues to reverse the tractor 2 linearly to the first forward rotation circuit K2, continues the tractor 2 continuously to the reverse linear path K3 to the aircraft body side (right side of the aircraft)
  • a second forward turning circuit K4 is generated which advances while turning in a quarter arc.
  • the target travel routes K1 to K4 shown in FIG. 3 are merely examples, and the target travel route generated by the route generation unit 33 can be changed as appropriate.
  • the route generation unit 33 When the route generation unit 33 generates a plurality of continuous target travel routes K1 to K4, information on the field H such as the shape and position information of the field H is registered first. Then, in the field H, as a region for generating the target travel paths K1 to K4, a work area R1 in which work such as tillage is performed and a non-work area R2 (headland) in which the work is not performed are specified.
  • the path generation unit 33 generates an advancing straight path K1 as a working path with respect to the work area R1, and a first advancing turn circuit K2 as a turning path in the non-working area R2, a reverse linear path K3, a second advance A spiral circuit K4 is generated.
  • the forward straight path K1 is a path which is automatically traveled from one end side to the other end in the working area R1 in the field H, and the forward straight path K1 extends from the start point S to the goal point G over the entire working area R1.
  • a plurality of adjacent fields are generated in the width direction of the field H.
  • the forward straight path K1 is generated in such a manner that adjacent ones have their traveling directions reverse to each other.
  • the first forward rotation circuit K2 as a turning path, the reverse linear passage K3 and the second forward rotation circuit K4 connect the start point K4e and the end point K1e in two forward linear passages K1 aligned in the width direction of the field H It is generated as a route to turn around. Specifically, as shown on the left side of FIG.
  • the end point K1e of the straight forward path K1 and the start point of the first forward turning circuit K2 are continuous at the same point where the straight advancing path K1 and the first forward turning circuit K2 are continuous. It is in the state.
  • the end point K2e of the first forward rotation circuit K2 and the start point of the reverse linear passage K3 are in the same position, and the first forward rotation circuit K2 and the reverse linear passage K3 are continuous.
  • An end point K3e of the reverse linear travel K3 and a start point of the second forward rotation circuit K4 are in the same position, and the reverse linear travel K3 and the second forward rotation circuit K4 are continuous.
  • the end point K4e of the second forward rotation circuit K4 and the start point of the next forward linear passage K1 are in the same position, and the second forward rotation circuit K4 and the next forward linear passage K1 are in a continuous state.
  • the terminal-side control unit 32 of the wireless communication terminal 3 transmits route information on the target travel routes K1 to K4 from the wireless communication terminal 3 to the tractor 2.
  • the vehicle-side control unit 22 of the tractor 2 can acquire the route information.
  • route information of all the target travel routes K1 to K4 may be transferred before the tractor 2 starts automatic traveling, for example, When the tractor 2 is traveling automatically, route information of one or more subsequent target traveling paths following the traveling target traveling path is sequentially transferred as the tractor 2 moves. It is also good.
  • the vehicle-side control unit 22 automatically travels the tractor 2 along a plurality of continuous target traveling routes K1 to K4 while acquiring the current position P of the vehicle by the position information acquiring unit 24 based on the acquired route information. It can be done.
  • the current position P of the tractor 2 acquired by the position information acquiring unit 24 is transmitted from the tractor 2 to the wireless communication terminal 3 in real time (for example, several seconds), and the current position of the tractor 2 in the wireless communication terminal 3 I try to grasp P.
  • the reference vehicle speed of the tractor 2 is set for each of the target travel routes K1 to K4.
  • the reference vehicle speed of the tractor 2 with respect to the forward straight road K1, the reference vehicle speed of the tractor 2 with respect to the first forward rotation circuit K2 and the second forward rotation circuit K4, and the reference vehicle speed of the tractor 2 with respect to the reverse travel K3 may be set to the same vehicle speed. Different vehicle speeds can be set.
  • the vehicle speed information indicating the reference vehicle speed of the tractor 2 is configured to allow wireless communication from the wireless communication terminal 3 to the tractor 2 along with the route information.
  • the wireless communication terminal 3 when the user operates the touch panel to instruct start of automatic traveling, the wireless communication terminal 3 transmits an instruction for starting automatic traveling to the tractor 2.
  • the vehicle-side control unit 22 receives the start instruction of the automatic traveling, and while acquiring the current position P of the position information acquisition unit 24, a plurality of continuous target travel routes K1 to ... It is configured to perform automatic travel control for causing the tractor 2 to automatically travel along K4.
  • the vehicle-side control unit 22 of the tractor 2 sets one target traveling route for automatic traveling from a plurality of continuous target traveling routes K1 to K4, and the setting target traveling route is acquired by the position information acquiring unit 24. By switching based on the current position P of itself, the tractor 2 is automatically traveled along a plurality of continuous target travel paths K1 to K4. In the example illustrated in FIG. 3, the vehicle-side control unit 22 first causes the tractor 2 to automatically travel along the forward straight path K1 by setting the set target travel route to the forward straight path K1.
  • the set target traveling route is sequentially switched in the order of the first forward turning circuit K2, the reverse straight path K3, the second forward turning circuit K4, and the next forward straight path K1, the forward straight path K1, the The tractor 2 is automatically traveled continuously in the order of (1) forward rotation circuit K2, reverse linear passage K3, second forward rotation circuit K4, and next forward linear passage K1.
  • the straight forward path K1, the first forward turning circuit K2, and the second forward turning circuit K4 correspond to the forward path Kf for advancing the tractor 2
  • the reverse straight path K3 corresponds to the rear path Kb for reversing the tractor 2.
  • the vehicle-side control unit 22 of the tractor 2 changes the timing according to the relationship between the target traveling route during traveling and the subsequent target traveling route (the relationship between the advancing route Kf and the rear route Kb, the forward / backward relationship of the tractor 2). And is configured to switch the set target travel route.
  • the timing of switching of the set target travel route by the vehicle-side control unit 22 will be described.
  • the vehicle-side control unit 22 switches the set target traveling path to the subsequent advancing path Kf.
  • the vehicle-side control unit 22 controls the tractor 2 (the current position P of the tractor 2) to travel on the forward straight path K1.
  • the set target travel route is switched to the subsequent first forward rotation circuit K2.
  • the vehicle-side control unit 22 moves forward for the braking distance that occurs when the tractor 2 is switched from forward travel to reverse travel.
  • the set target travel route is switched at the considered timing. Specifically, as shown in FIGS. 4 (a) and 4 (b), the vehicle-side control unit 22 is for advancing based on the forward movement of the tractor 2 (the current position P of the tractor 2) for the braking distance.
  • the set target traveling route is switched to the subsequent reverse linear route K3 when the leading switching point Ps on the near side of the end point K2e in the first forward rotating circuit K2 during traveling is reached by the set distance Df.
  • the forward set distance Df is set by the vehicle-side control unit 22 by adding (adding) the forward predetermined distance D2 to the braking distance D1 according to the vehicle speed when switching the tractor 2 from forward to reverse.
  • the braking distance D1 specifies the vehicle speed of the tractor 2 by, for example, detecting the actual vehicle speed of the tractor 2 with a vehicle speed sensor provided in the tractor 2, etc. It can be determined by referring to a table indicating the relationship.
  • the forward movement predetermined distance D2 is set in advance based on, for example, the distance from the installation position of the positioning antenna 21 in the tractor 2 to the front end of the tractor 2.
  • the vehicle-side control unit 22 detects the vehicle speed at any time by the vehicle speed sensor in real time or the like, and the forward setting distance based on the braking distance D1 at every timing of detecting the vehicle speed of the tractor 2
  • the advance switching point Ps can be specified as needed by obtaining Df.
  • the braking distance D1 according to the vehicle speed when switching the tractor 2 from forward to reverse may be determined, for example, by specifying the reference vehicle speed of the tractor 2 set for each of the target travel paths as the vehicle speed of the tractor 2.
  • the vehicle-side control unit 22 can specify the advance switching point Ps by obtaining the forward setting distance Df in consideration of the braking distance D1 at the timing immediately after switching the setting target traveling route or the like.
  • the vehicle-side control unit 22 applies a braking force to the forward movement of the tractor 2 by, for example, operating control of a brake device, a transmission, etc., and the tractor at or near the end point K2e of the first forward rotation circuit K2. Stop 2 Then, the vehicle-side control unit 22 moves the tractor 2 backward along the reverse linear path K3 as shown in FIG. 4D, for example, by performing operation control of the transmission.
  • the traveling direction of the tractor 2 can be switched at or near the end point K2e of the first forward rotation circuit K2, and the tractor 2 passes by the end point K2e in advance. It can avoid and useless traveling of the tractor 2 can be further reduced.
  • the vehicle-side control unit 22 makes an acute angle between a straight line Lc along the current azimuth angle of the tractor 2 specified by the azimuth angle specifying unit 25 and a straight line L3 along the subsequent target travel route.
  • the angular deviation ⁇ c on the side becomes equal to or less than the predetermined value ⁇ a, the set target traveling route is switched to the subsequent target traveling route even if the tractor 2 (the current position P of the tractor 2) has not reached the preceding switching point Ps.
  • FIG. 5 shows that the angular deviation ⁇ c on the side becomes equal to or less than the predetermined value ⁇ a
  • the vehicle-side control unit 22 calculates and monitors this angle deviation ⁇ c as needed, and even if the tractor 2 (the current position P of the tractor 2) has not reached the leading switching point Ps in the first forward rotation circuit K2, When the angular deviation ⁇ c becomes a predetermined value ⁇ a, the set target traveling route is switched to the following reverse linear route K3.
  • the predetermined value ⁇ a of the angular deviation ⁇ c is set to an allowable value that allows the tractor 2 to shift to a posture along a subsequent target traveling route in a short time or a short traveling distance.
  • the setting target traveling is performed when the angle deviation ⁇ c becomes the predetermined value ⁇ a.
  • the route to the subsequent reverse linear route K3 useless traveling of the tractor 2 can be further reduced.
  • the vehicle-side control unit 22 is traveling while the tractor 2 (the current position P of the tractor 2) is set for the reverse travel distance Db in consideration of backward travel for the braking distance.
  • the set target traveling route is switched to the subsequent second forward rotation circuit K4.
  • the reverse setting distance Db is set by the vehicle-side control unit 22 by adding (adding) the reverse distance D4 to the braking distance D3 according to the vehicle speed when switching the tractor 2 from reverse to forward.
  • the braking distance D3 specifies, for example, the vehicle speed of the tractor 2 by detecting the actual vehicle speed of the tractor 2 with a vehicle speed sensor provided in the tractor 2, etc. It can be determined by referring to a table indicating the relationship.
  • the predetermined reverse distance D4 is larger than the predetermined distance D2 for forward movement taking into consideration that the working machine 5 is attached to the rear of the tractor 2, for example, from the installation position of the positioning antenna 21 in the tractor 2 The distance to the rear end of the work machine 5 mounted at the rear is previously set.
  • the vehicle-side control unit 22 detects the vehicle speed at any time by the vehicle speed sensor in real time or the like, and sets the reverse setting distance Db in consideration of the braking distance D3 at every timing of detecting the vehicle speed of the tractor 2
  • the leading switching point Ps can be specified as needed.
  • the braking distance D3 according to the vehicle speed when switching the tractor 2 from reverse to forward is specified, as the vehicle speed of the tractor 2, the reference vehicle speed of the tractor 2 set for each of the target travel paths, similarly to the braking distance D1 described above.
  • the vehicle-side control unit 22 determines the setting distance Db for reverse in consideration of the braking distance D3 at the timing immediately after switching the set target traveling route, etc., and specifies the advance switching point Ps. can do.
  • the braking distance D3 according to the vehicle speed when switching the tractor 2 from reverse to forward may be substituted for the braking distance D1 according to the vehicle speed when switching the tractor 2 from forward to reverse, for example.
  • the vehicle-side control unit 22 applies a braking force to the reverse movement of the tractor 2 by, for example, operating control of a brake device or a transmission, and stops the tractor 2 at the end point K3e of the reverse linear path K3 or in the vicinity thereof. Let Then, the vehicle-side control unit 22 moves the tractor 2 forward along the second forward rotation circuit K4 as shown in FIG. 6 (d), for example, by operating the transmission.
  • the vehicle-side control unit 22 makes an acute angle between a straight line Lc along the current azimuth angle of the tractor 2 specified by the azimuth angle specifying unit 25 and a straight line L4 along the subsequent target travel route.
  • the angular deviation ⁇ c on the side becomes equal to or less than the predetermined value ⁇ b
  • the set target traveling route is switched to the subsequent target traveling route even if the tractor 2 has not reached the preceding switching point Ps.
  • the tractor 2 is traveling on the reverse linear path K3
  • a straight line Lc along the current azimuth angle of the tractor 2 and a straight line along the subsequent second forward rotating circuit K4 The angle deviation ⁇ c on the acute angle side with L4 gradually decreases.
  • the straight line L4 can be a tangent or the like of a point within a predetermined distance that can be shifted from the current position P of the tractor 2 traveling on the reverse linear path K3 in the second forward rotation circuit K4.
  • the vehicle-side control unit 22 calculates the angle deviation ⁇ c at any time and monitors the angle deviation even if the tractor 2 (the current position P of the tractor 2) has not reached the leading switching point Ps in the reverse linear path K3.
  • ⁇ c becomes a predetermined value ⁇ b, the set target traveling route is switched to the subsequent second forward rotation circuit K4.
  • the predetermined value ⁇ b of the angular deviation ⁇ c is set to an allowable value that allows the tractor 2 to shift to a posture along a subsequent target traveling route in a short time or a short traveling distance.
  • the predetermined value ⁇ b of the angle deviation ⁇ c when switching the tractor 2 from forward to reverse and the predetermined value ⁇ a of the angle deviation ⁇ c when switching the tractor 2 from forward to reverse may be set to the same value or different values. It can be set to
  • the set target travel route is set if the angular deviation ⁇ c becomes the predetermined value ⁇ b.
  • the setting target travel route is switched from the end point Kbe (K3e) of the back route Kb (backward straight path K3) as a turning route during driving to a back route Kb (not shown) It is conceivable to escape from the field H and the like.
  • the vehicle-side control unit 22 operates similarly to the case of switching from the forward path Kf to the forward path Kf.
  • the set target travel path is switched to the subsequent rear path Kb.
  • the set target travel route By switching the set target travel route at this timing, it is possible to automatically travel the tractor 2 along the following rear route Kb continuously from the end point Kbe of the rear route Kb during traveling.
  • the path generation unit 33 generates the forward straight path K1 that is the work path for the work area R1, and the first forward turning as the turning path for the non-work area R2.
  • the path K2 the reverse linear path K3 and the second forward rotation circuit K4 are generated
  • the turning path generated for the non-operation area R2 is not limited to that shown in FIG. It is also possible to generate turning routes K5 to K10 as shown.
  • the route generation unit 33 uses the fifth forward straight path K5, the sixth forward turning circuit K6, the seventh forward straight path K7, the eighth reverse straight path K8, and the ninth forward turning as the turning paths.
  • a road K9 and a tenth forward straight road K10 are generated. Therefore, the turning path is in the order of the fifth forward straight path K5, the sixth forward turning circuit K6, the seventh forward straight path K7, the eighth reverse straight path K8, the ninth forward turning circuit K9, and the tenth forward straight path K10. It is in a continuous state.
  • the fifth forward linear path K5 is a path for advancing the tractor 2 linearly following the forward linear path K1.
  • the sixth forward rotation circuit K6 is a path for advancing the tractor 2 along the approximately 1 ⁇ 4 arc while continuing to the fifth forward linear path K5 while turning to the first side (left side) of the machine.
  • the seventh forward linear path K7 causes the tractor 2 to move forward linearly with the sixth forward rotary circuit K6 so that the traveling direction of the tractor 1 becomes the direction along the eighth reverse linear path K8. It is a path to change the direction.
  • the eighth reverse linear passage K8 is a path for reversing the advancing direction of the tractor 1 and causing the tractor 2 to linearly reverse, following the seventh forward linear passage K7.
  • the ninth forward rotation circuit K9 reverses the advancing direction of the tractor 1 following the eighth reverse linear path K8 and advances the tractor 2 while turning along an approximately 1 ⁇ 4 arc toward the one side (the left side of the machine) of the machine It has become a route for.
  • the tenth forward linear path K10 causes the tractor body 2 to move forward linearly with the ninth forward rotary circuit K9 so that the traveling direction of the tractor 1 is in the direction along the forward linear path K1. It is a route to change.
  • the fifth forward straight path K5, the sixth forward turning circuit K6, the seventh forward straight path K7, the ninth forward turning circuit K9, and the tenth forward straight path K10 correspond to the forward path Kf for advancing the tractor 2;
  • the eighth reverse linear path K8 corresponds to a rear track Kb for moving the tractor 2 backward.
  • each of the cases switching from the tenth forward linear path K10 to the forward linear path K1 is the forward path while traveling the set target travel path. It will be a case where it switches from Kf to the following advancing path Kf. Therefore, in this case, when the tractor 2 reaches the end point of the forward travel path Kf in which the tractor 2 is traveling, the vehicle side control unit 22 switches the set target travel path to the subsequent forward travel path Kf.
  • the case of switching from the seventh forward straight road K7 to the eighth reverse straight road K8 is the case where the set target travel route is switched from the forward travel path Kf during traveling to the subsequent rear track Kb. Therefore, in this case, when the tractor 2 reaches the advance switching point Ps on the front side of the end point K7e in the seventh forward rectilinear advance path K7 during travel by the vehicle-side control unit 22 by the set travel distance Df. The set target travel route is switched to a subsequent eighth reverse linear route K8.
  • the vehicle-side control unit 22 determines an acute angle between a straight line along the current azimuth angle of the tractor 2 specified by the azimuth angle specifying unit 25 and a straight line along the following eighth reverse linear path K8. When the angular deviation on the side becomes equal to or less than the predetermined value, the set target travel route can be switched to the subsequent eighth reverse linear route K8 even if the tractor 2 has not reached the preceding switching point Ps.
  • the case where the set target traveling route is switched from the eighth reverse linear path K8 to the ninth forward rotation circuit K9 is the case where the set target traveling route is switched from the rear course Kb during traveling to the subsequent forward path Kf. Therefore, in this case, the vehicle-side control unit 22 sets the tractor 2 when it has reached the leading switching point Ps on the front side of the end point K8e on the eighth reverse rectilinear path K8 during traveling by the reverse set distance Db. The target travel route is switched to the subsequent ninth forward rotation circuit K9.
  • the vehicle-side control unit 22 determines an acute angle between a straight line along the current azimuth angle of the tractor 2 specified by the azimuth angle specifying unit 25 and a straight line along the subsequent ninth forward turn circuit K9.
  • the set target traveling route can be switched to the subsequent ninth forward rotation circuit K9 even if the tractor 2 has not reached the preceding switching point Ps.
  • the eighth reverse linear path K8 is generated as the turning path, and the setting target travel path is switched from the forward path Kf to the back path Kb, and the setting target travel path is the back path.
  • Kb There is a case of switching from Kb to the forward path Kf.
  • FIGS. 9 to 11 there are cases where the set target travel route is switched from the forward route Kf to the rear route Kb and cases where the set target travel route is switched from the rear route Kb to the forward route Kf It is also possible to generate a turnaround route.
  • the set target travel route is switched from the forward travel path Kf during traveling to the subsequent forward travel path Kf, so the vehicle side control unit 22 determines that the tractor 2 is traveling.
  • the set target travel path is switched to the following forward path Kf.
  • the path generation unit 33 uses, as a turning path, an eleventh forward straight path K11, a twelfth forward turning circuit K12, a thirteenth forward straight path K13, a fourteenth forward turning circuit K14, and a fifteenth straight line.
  • the passage K15 can be generated.
  • the eleventh forward linear path K11, the thirteenth forward linear path 13, and the fifteenth forward linear path K15 are paths for advancing the tractor 2 linearly.
  • the twelfth forward rotation circuit K12 and the fourteenth forward rotation circuit K14 form a path for advancing the tractor 2 while turning to the first side of the machine (the left side of the machine).
  • the path generation unit 33 can also generate a turning path by combining a plurality of forward linear paths and a plurality of forward rotation circuits.
  • 3, 8, and 9 show the case where the delimitation (the one-dot chain line in the figure) between the work area R1 and the non-work area R2 is linear, while FIGS. In this case, the division between work area R1 and non-work area R2 (in the figure, an alternate long and short dash line) is inclined (in the figure, the area on the right is lower than the area on the left). It shows.
  • the straight forward path is the sixteenth straight forward path K16, the eighteenth forward straight path K18, and the twentieth forward straight path K20, and the forward turning circuit is the seventeenth forward turning circuit K17, the nineteenth forward turning. It is road K19.
  • the tractor 2 travels away from the subsequent forward straight path K1 to ensure a turning radius for the tractor 2 to turn and drive the nineteenth forward turning circuit K19. .
  • the straight forward path is the 21st straight forward path K21, the 23rd forward straight path K23, and the 25th forward straight path K25
  • the forward turn circuit is the 22nd forward turn circuit K22, the 24th forward turn It is road K24.
  • the traveling direction of the tractor 2 is changed to the side approaching the subsequent advancing straight path K1, and the tractor 2 is linearly advanced diagonally forward along the 23rd advancing straight path K23. It is advanced to approach the following forward straight path K1, and the turning radius for the tractor 2 to turn on the twenty-fourth forward turning circuit K24 is secured.
  • the turning path shown in FIG. 11 is applied, for example, when the preceding forward straight path K1 and the following forward straight path K1 are separated.
  • the setting distance based on the braking distance of the tractor 2 is set by adding the predetermined distance to the braking distance of the tractor 2 is shown as an example, the braking distance may be determined by another method It may be set in consideration of Moreover, although two types, the predetermined distance D2 for advance, and the predetermined distance D4 for reverse, were shown as an example as a predetermined distance, it may be one common type.
  • the present invention can be applied to various automatic travel systems in which a work vehicle is automatically traveled along a target travel route.

Abstract

Provided is an automatic travel system with which it is possible to reduce unnecessary travel and improve work efficiency. The present invention is provided with: a position information acquisition unit 24; and a control unit 22 for setting one target travel route that is subject to automatic travel from among a plurality of continuous target travel routes, and switching the set target travel route on the basis of the current position P of a work vehicle 2 acquired by the position information acquisition unit 24, thereby causing the work vehicle 2 to automatically travel along the plurality of continuous target travel routes. A forward route Kf and a backward route Kb are provided in a continuous state as the target travel route. When switching the set target travel route from the forward route Kf currently being traveled to the subsequent backward route Kb or from the backward route Kb currently being traveled to the subsequent forward route Kf, the control unit 22 can switch the set target travel route when the work vehicle 2 has reached an advance switching point Ps, which is located ahead of an end point Kfe, Kbe of the target travel route being traveled by a set distance Df, Db based on the braking distance D1, D3 of the work vehicle 2.

Description

自動走行システムAutomatic traveling system
 本発明は、作業車両を目標走行経路に沿って自動走行させる自動走行システムに関する。 The present invention relates to an automatic travel system that causes a work vehicle to travel automatically along a target travel path.
 上記の自動走行システムは、衛星測位システム等を用いて作業車両の位置情報を取得する位置情報取得部と、その位置情報取得部にて取得される作業車両の現在位置に基づき、作業車両を連続する複数の目標走行経路に沿って自動走行させる制御部とを備えており、作業車両の現在位置を随時取得しながら予め生成された連続する複数の目標走行径路に沿って作業車両を自動走行させるようにしている(例えば、特許文献1、2参照。)。このような自動走行システムでは、作業車両が目標走行経路に沿って自動走行されるので、作業車両にユーザが搭乗していなくても、作業車両による作業を行うことができる。 The above-described automatic travel system continuously operates the work vehicle based on a position information acquisition unit that acquires position information of the work vehicle using a satellite positioning system or the like and the current position of the work vehicle acquired by the position information acquisition unit. And a control unit for automatically traveling along a plurality of target traveling routes, and automatically traveling the working vehicle along a plurality of continuous target traveling routes generated in advance while acquiring the current position of the working vehicle as needed (See, for example, Patent Documents 1 and 2). In such an automatic travel system, since the work vehicle is automatically traveled along the target travel path, even if the user is not on the work vehicle, work by the work vehicle can be performed.
 連続する複数の目標走行経路としては、例えば、図3に示すように、圃場の中央側の作業領域R1を走行するための作業用経路と、圃場Hの端部の非作業領域R2を走行するための転回用経路が生成される。
 図3に示す例では、作業用経路として直線的に前進するための複数の前進直線路K1(前進路Kf)が生成されている。また、転回用経路として、前進直進路K1に引き続き作業車両2を機体一側(機体右側)に約1/4円弧に沿って旋回させながら前進させる第1前進旋回路K2(前進路Kf)、第1前進旋回路K2に引き続き作業車両2を直線的に後進させる後進直線路K3(後進路Kb)、後進直線路K3に引き続き作業車両2を機体一側(機体右側)に約1/4円弧に旋回しながら前進させて次の前進直線路K1に接続する第2前進旋回路K4(前進路Kf)を生成している。
For example, as shown in FIG. 3, as a plurality of continuous target travel routes, the work route for traveling the work area R1 on the center side of the field and the non-work area R2 at the end of the field H A turnaround route is generated.
In the example shown in FIG. 3, a plurality of forward straight paths K1 (forward paths Kf) are generated to linearly move forward as work paths. In addition, a first forward rotation circuit K2 (forward travel path Kf) for advancing the work vehicle 2 while making a turn along an approximately 1⁄4 arc toward the machine body side (right side of the machine) following the forward straight path K1 as a turning path. A reverse linear path K3 (rear path Kb) for moving the working vehicle 2 linearly backward following the first forward rotation circuit K2, and a working vehicle 2 following the reverse linear path K3 to the side of the fuselage one side (body right side) The second forward turning circuit K4 (forward path Kf) is generated which is advanced while turning to connect to the next forward linear path K1.
 そして、自動走行システムの制御部は、連続する複数の目標走行経路K1~K4から自動走行対象の1つの目標走行経路を設定し、その設定目標走行経路を位置情報取得部にて取得される作業車両2の現在位置Pに基づき切り替えることで、連続する複数の目標走行経路K1~K4に沿って作業車両2を自動走行させている。
 例えば、まず、設定目標走行経路を前進直線路K1に設定することで、トラクタ2を前進直線路K1に沿って自動走行させ、その後、作業車両2の移動に連れて、設定目標走行経路を第1前進旋回路K2、後進直線路K3、第2前進旋回路K4、次の前進直線路K1の順で順番に切り替えることで、前進直線路K1、第1前進旋回路K2、後進直線路K3、第2前進旋回路K4、次の前進直線路K1の順で連続して作業車両2を自動走行させている。
Then, the control unit of the automatic travel system sets one target travel route to be automatically traveled from a plurality of continuous target travel routes K1 to K4, and the work for acquiring the set target travel route by the position information acquisition unit By switching based on the current position P of the vehicle 2, the work vehicle 2 is automatically traveled along a plurality of continuous target travel routes K1 to K4.
For example, first, by setting the set target travel route to the forward travel straight route K1, the tractor 2 is automatically traveled along the forward travel straight route K1, and then the set target travel route is moved as the work vehicle 2 moves. (1) The forward linear path K1, the first forward rotational circuit K2, the reverse linear path K3, and so on by sequentially switching in order of the forward rotational circuit K2, the reverse linear path K3, the second forward rotational circuit K4, and the next forward linear path K1. The work vehicle 2 is automatically traveled continuously in the order of the second forward rotation circuit K4 and the next forward linear path K1.
 ここで、自動走行システムの制御部は、作業車両2(作業車両2の現在位置P)が走行中の目標走行経路の終点に到達したときに設定目標走行経路を次の目標走行経路に切り替えるようにしている。例えば、図12に示すように、作業車両2が走行中の第1前進旋回路K2(図12(a)参照)から後進直線路K3(図12(d)にて走行中の経路)に設定目標走行経路を切り替える場合には、図12(b)に示すように、作業車両2(作業車両2の現在位置P)が走行中の第1前進旋回路K2の終点K2eに到達したときに設定目標走行経路を後進直線路K3に切り替えている。 Here, the control unit of the automatic travel system switches the set target travel route to the next target travel route when the work vehicle 2 (the current position P of the work vehicle 2) reaches the end point of the target travel route during travel. I have to. For example, as shown in FIG. 12, the work vehicle 2 is set from the first forward rotation circuit K2 (see FIG. 12 (a)) while traveling to the reverse linear path K3 (the route traveling in FIG. 12 (d)) When switching the target travel route, as shown in FIG. 12 (b), setting is made when the work vehicle 2 (the current position P of the work vehicle 2) reaches the end point K2e of the first forward rotation circuit K2 during travel. The target travel route is switched to the reverse linear route K3.
国際公開第2015/119263号公報International Publication No. 2015/119263 特許第4295911号公報Patent No. 4295911
 ところが、圃場Hの上で作業車両2の前進移動を止めて後進移動させるには、車速等に応じた相応の制動距離が必要となる。そのため、図12(b)に示すように、作業車両2(作業車両2の現在位置P)が走行中の第1前進旋回路K2(前進路Kf)の終点K2e(Kfe)に到達したときに設定目標走行経路を後続の後進直線路K3(後進路Kb)に切り替えると、図12(c)に示すように、設定目標走行経路の切り替え直後に作業車両2が第1前進路K2(前進路Kf)の終点K2e(Kfe)から少なくも制動距離分ORは前進移動し、作業車両2が走行中の第1前進路K2(前進路Kf)の終点K2e(Kfe)を通り過ぎて無駄に走行することになる。
 よって、作業車両2の走行が増大して作業能率が低下する不都合がある。また、このような不都合は、設定目標走行経路を走行中の後進路Kbから後続の前進路Kfに切り替える場合にも生じる。
However, in order to stop the forward movement of the work vehicle 2 and move it backward in the field H, a corresponding braking distance corresponding to the vehicle speed or the like is required. Therefore, as shown in FIG. 12 (b), when the work vehicle 2 (the current position P of the work vehicle 2) reaches the end point K2e (Kfe) of the first forward rotation circuit K2 (forward path Kf) while traveling When the set target traveling route is switched to the subsequent reverse linear route K3 (rear route Kb), as shown in FIG. 12 (c), the work vehicle 2 moves to the first forward route K2 (forward route) immediately after switching the set target traveling route. The braking distance OR moves forward at least from the end point K2e (Kfe) of Kf) and travels wastefully past the end point K2e (Kfe) of the first forward path K2 (forward path Kf) on which the work vehicle 2 is traveling It will be.
Therefore, there is a disadvantage that the traveling efficiency of the work vehicle 2 is increased and the work efficiency is reduced. In addition, such a problem also occurs when the set target traveling route is switched from the rear route Kb during traveling to the subsequent forward route Kf.
 この実情に鑑み、本発明の主たる課題は、作業車両の無駄な走行を削減して作業能率を向上できる自動走行システムを提供する点にある。 In view of this situation, the main object of the present invention is to provide an automatic travel system capable of improving work efficiency by reducing unnecessary travel of a work vehicle.
 本発明の第1特徴構成は、作業車両の位置情報を取得する位置情報取得部と、
 連続する複数の目標走行経路から自動走行対象の1つの目標走行経路を設定し、その設定目標走行経路を前記位置情報取得部にて取得される前記作業車両の現在位置に基づき切り替えることで、連続する複数の目標走行経路に沿って前記作業車両を自動走行させる制御部と、を備えた自動走行システムであって、
 前記複数の目標走行経路として、前記作業車両を前進させる前進路と、前記作業車両を後進させる後進路とが備えられ、
 前記制御部は、前記設定目標走行経路を、走行中の前記前進路から後続の前記後進路に切り替える又は走行中の前記後進路から後続の前記前進路に切り替える場合、前記作業車両の制動距離を基準とする設定距離だけ、走行中の前記目標走行経路における終点よりも手前側の先行切り替え地点に前記作業車両が到達したとき、前記設定目標走行経路を後続の目標走行経路に切り替え可能であることを特徴とする点にある。
According to a first aspect of the present invention, there is provided a position information acquisition unit for acquiring position information of a work vehicle;
By setting one target travel route for automatic travel from a plurality of continuous target travel routes and switching the set target travel route based on the current position of the work vehicle acquired by the position information acquisition unit, continuous An automatic travel system comprising: a control unit for automatically traveling the work vehicle along a plurality of target travel paths to be
As the plurality of target travel paths, there are provided an advancing path for moving the work vehicle forward, and a rear track for moving the work vehicle backward.
The control unit is configured to switch the braking distance of the work vehicle when switching the set target traveling route from the traveling forward route to the following backward route or switching the traveling backward route to the following forward route When the work vehicle reaches the preceding switching point on the near side of the end point of the target travel route during traveling by the set distance as a reference, the set target travel path can be switched to the subsequent target travel route The point is characterized by
 本構成によれば、制御部は、設定目標走行経路を、走行中の前進路から後続の後進路に切り替える又は走行中の後進路から後続の前進路に切り替える場合、作業車両の制動距離を基準とする設定距離だけ、走行中の前記目標走行経路における終点よりも手前側の先行切り替え地点に作業車両が到達したとき、設定目標走行経路を後続の目標走行経路に切り替えることができる。
 先行切り替え地点は作業車両の制動距離を基準とする設定距離だけ走行中の目標走行経路の終点よりも手前側であるので、設定目標走行経路の切り替え直後に作業車両が先行切り替え地点から制動距離分だけ前進移動又は後進移動しても、作業車両が走行中の目標走行経路の終点を通り過ぎるのを回避することができる。しかも、先行切り替え地点は、作業車両の制動距離を基準とする設定距離に基づくものであるので、先行切り替え地点にて設定目標走行経路を後続の目標走行経路に切り替えることで、走行中の目標走行経路の終点又はその近傍にて作業車両の進行方向を切り替えることができ、後続の目標走行経路に対する走行をスムーズに行うことができる。よって、作業車両の無駄な走行を削減して作業能率を向上できる。
According to this configuration, the control unit sets the braking distance of the work vehicle as the reference when the set target traveling route is switched from the advancing route during traveling to the following backward route or from the backward route during traveling to the subsequent advancing route The set target traveling route can be switched to the subsequent target traveling route when the work vehicle reaches the preceding switching point on the near side of the end point of the target traveling route during traveling by the set distance.
Since the advance switching point is on the near side of the end point of the target travel route traveling by the set distance based on the braking distance of the work vehicle, the work vehicle travels the braking distance from the advance switching point immediately after switching the set target travel route. Even if the vehicle moves forward or backward, it is possible to prevent the work vehicle from passing the end point of the target travel path being traveled. Moreover, since the advance switching point is based on the set distance based on the braking distance of the work vehicle, the target travel while traveling is performed by switching the set target traveling route to the subsequent target traveling route at the advance switching point. The traveling direction of the work vehicle can be switched at or near the end point of the route, and the traveling on the subsequent target traveling route can be smoothly performed. Thus, unnecessary running of the work vehicle can be reduced to improve work efficiency.
 本発明の第2特徴構成は、前記設定距離は、前記制動距離に所定距離を追加して設定されることを特徴とする点にある。 A second characterizing feature of the present invention is that the set distance is set by adding a predetermined distance to the braking distance.
 本構成によれば、設定目標走行経路を切り替えるための先行切り替え地点を、制動距離に所定距離を追加した設定距離だけ走行中の目標走行経路の終点よりも手前側にすることができるので、例えば、高速作業時等における設定目標走行経路の切り替え時などに作業車両が先行切り替え地点から制動距離以上に前進移動又は後進移動してしまう場合でも、作業車両が走行中の目標走行経路の終点を通り過ぎるのを適切に回避することができる。 According to this configuration, since the preceding switching point for switching the set target traveling route can be made closer to the end point of the target traveling route during traveling by the set distance obtained by adding the predetermined distance to the braking distance, for example Even when the work vehicle moves forward or backward from the preceding switching point more than the braking distance when switching the set target travel route at high speed work, etc., the work vehicle passes the end point of the target travel route while traveling Can be properly avoided.
 本発明の第3特徴構成は、前記所定距離は、前記設定目標走行経路を走行中の前記前進路から後続の前記後進路に切り替える場合に用いられる前進用所定距離と、前記設定目標走行経路を前記後進路から前記前進路に切り替える場合に用いられる後進用所定距離とを有し、
 前記前進用所定距離よりも前記後進用所定距離が大きいことを特徴とする点にある。
According to a third aspect of the present invention, the predetermined distance is a predetermined distance for forward movement used when switching from the forward path while traveling the set target travel path to the subsequent backward path, and the set target travel path And a predetermined reverse travel distance used when switching from the rear track to the forward path,
The reverse travel predetermined distance is larger than the forward travel predetermined distance.
 本構成によれば、設定目標走行経路を走行中の前進路から後続の後進路に切り替える場合には、制動距離に前進用所定距離を追加し、走行中の前進路から後続の後進路への切り替えに適した設定距離を設定することができる。また、設定目標走行経路を走行中の後進路から後続の前進路に切り替える場合には、制動距離に後進用所定距離を追加し、走行中の後進路から後続の前進路への切り替えに適した設定距離を設定することができる。
 しかも、後進用所定距離は、前進用所定距離よりも大きいので、走行中の後進路から後続の前進路への切り替える場合の設定距離を、走行中の後進路から後続の前進路への切り替える場合の設定距離よりも大きくし、その分、先行切り替え地点をより手前側とすることができる。
 よって、作業車両が、後方側に作業機が装着された状態で走行中の後進路から後続の前進路への切り替える場合に、例えば、作業車両の後方側の作業機が予定外の領域に飛び出して障害物に接触する等の不都合が生じるのを抑制することができる。
According to this configuration, when the set target traveling route is switched from the forward traveling route to the following rear traveling route, a predetermined forward travel distance is added to the braking distance, and the traveling forward traveling route to the subsequent rear traveling route It is possible to set a set distance suitable for switching. In addition, when switching the set target travel route from the rear course while traveling to the subsequent forward road, a predetermined reverse travel distance is added to the braking distance, and it is suitable for switching from the rear course while running to the subsequent forward road. The set distance can be set.
Moreover, since the predetermined reverse travel distance is larger than the predetermined travel forward distance, the set distance in the case of switching from the backward path during traveling to the subsequent forward path is changed from the backward path during traveling to the subsequent forward path Therefore, the advance switching point can be made closer to the front side.
Therefore, when the work vehicle switches from the rear track while traveling with the work machine mounted on the rear side to the subsequent forward path, for example, the work machine on the rear side of the work vehicle jumps to an unplanned area It is possible to suppress the occurrence of inconvenience such as contact with an obstacle.
 本発明の第4特徴構成は、前記作業車両の方位角を特定する方位角特定部を備え、
 前記制御部は、前記設定目標走行経路を、走行中の前記前進路から後続の前記後進路に切り替える又は走行中の前記後進路から後続の前記前進路に切り替える場合、前記方位角特定部にて特定される前記作業車両の現在方位角に沿う直線と後続の前記目標走行経路に沿う直線との角度偏差が所定値以下になると、前記作業車両が走行中の前記目標走行経路における前記先行切り替え地点に到達していなくても前記設定目標走行路を後続の前記目標走行経路に切り替えることを特徴とする点にある。
According to a fourth aspect of the present invention, there is provided an azimuth angle specifying unit for specifying an azimuth angle of the work vehicle,
When the control unit switches the set target traveling route from the forward path during traveling to the subsequent backward path after traveling or switches from the rear path during traveling to the subsequent forward path, the azimuth angle specifying unit When the angular deviation between the straight line along the current azimuth of the specified work vehicle and the straight line along the subsequent target travel route becomes equal to or less than a predetermined value, the preceding switching point in the target travel route while the work vehicle is traveling Even if the vehicle has not reached the above, the set target travel route is switched to the subsequent target travel route.
 本構成によれば、方位角特定部にて目標走行経路を走行中の作業車両の方位角を特定することができる。そして、制御部は、方位角特定部にて特定される作業車両の現在方位角に沿う直線と後続の目標走行経路に沿う直線との角度偏差が所定値以下になり、作業車両が短時間又は少ない走行距離で後続の目標走行経路に沿う姿勢に移行できる場合等には、作業車両が走行中の目標走行経路における先行切り替え地点に到達していなくても、設定目標走行路を後続の目標走行経路に切り替えることができる。よって、作業車両の無駄な走行を一層削減して作業能率を一層向上できる。 According to this configuration, the azimuth angle specifying unit can specify the azimuth angle of the work vehicle traveling on the target traveling route. Then, in the control unit, the angular deviation between the straight line along the current azimuth of the work vehicle specified by the azimuth specifying unit and the straight line along the subsequent target travel route becomes equal to or less than a predetermined value, When it is possible to shift to a posture along a subsequent target travel route with a short travel distance, etc., the target travel route follows the set target travel route even if the work vehicle has not reached the preceding switching point in the target travel route. You can switch to the route. Thus, unnecessary traveling of the work vehicle can be further reduced to further improve the work efficiency.
自動走行システムの概略構成を示す図A diagram showing a schematic configuration of an automatic traveling system 自動走行システムの概略構成を示すブロック図Block diagram showing a schematic configuration of an automatic traveling system 目標走行経路の概略構成を示す図A diagram showing a schematic configuration of a target travel route 走行中の前進路から後続の後進路に切り替えるときの作業車両の走行制御を示す図Diagram showing travel control of the work vehicle when switching from a traveling forward path to a following rear path during traveling 走行中の前進路から後続の後進路に切り替えるときの作業車両の走行制御を示す図Diagram showing travel control of the work vehicle when switching from a traveling forward path to a following rear path during traveling 走行中の後進路から後続の前進路に切り替えるときの作業車両の走行制御を示す図Diagram showing travel control of the work vehicle when switching from a rear track while traveling to a subsequent forward path 走行中の後進路から後続の前進路に切り替えるときの作業車両の走行制御を示す図Diagram showing travel control of the work vehicle when switching from a rear track while traveling to a subsequent forward path 転回用経路の概略構成を示す図A diagram showing a schematic configuration of a turning route 転回用経路の概略構成を示す図A diagram showing a schematic configuration of a turning route 転回用経路の概略構成を示す図A diagram showing a schematic configuration of a turning route 転回用経路の概略構成を示す図A diagram showing a schematic configuration of a turning route 従来における走行中の前進路から後進路に切り替えるときの作業車両の走行制御を示す図Diagram showing travel control of a work vehicle when switching from a forward path to a backward path during traveling in the prior art
 本発明に係る自動走行システムの実施形態を図面に基づいて説明する。
 この自動走行システム1は、図1に示すように、連続する複数の目標走行経路K1~K4(図3参照)に沿って自動走行する作業車両としてのトラクタ2と、そのトラクタ2に対して各種の情報を指示可能な無線通信端末3とが備えられている。そして、この実施形態では、トラクタ2の位置情報を取得するための基準局4が備えられている。
An embodiment of an automatic travel system according to the present invention will be described based on the drawings.
As shown in FIG. 1, the automatic travel system 1 includes a tractor 2 as a work vehicle that automatically travels along a plurality of continuous target travel paths K1 to K4 (see FIG. 3), and various types of tractors 2. And a wireless communication terminal 3 capable of instructing information of And in this embodiment, the reference station 4 for acquiring position information on the tractor 2 is provided.
 トラクタ2は、後方側に作業機5を装着可能な車体部6を備え、車体部6の前部が左右一対の前輪7で支持され、車体部6の後部が左右一対の後輪8で支持されている。車体部6の前部にはボンネット9が配置され、そのボンネット9内に駆動源としてのエンジン10(ディーゼルエンジン)が収容されている。ボンネット9の後方側には、ユーザが搭乗するためのキャビン12が備えられ、そのキャビン12内には、ユーザが操向操作するためのステアリングハンドル13、ユーザの運転座席14等が備えられている。 The tractor 2 includes a vehicle body portion 6 on the rear side to which the working machine 5 can be attached, the front of the vehicle body portion 6 is supported by a pair of left and right front wheels 7, and the rear portion of the vehicle body portion 6 is supported by a pair of left and right rear wheels 8 It is done. A bonnet 9 is disposed at the front of the vehicle body portion 6, and an engine 10 (diesel engine) as a drive source is accommodated in the bonnet 9. On the rear side of the bonnet 9, a cabin 12 for the user to board is provided, and in the cabin 12, a steering handle 13 for the user to steer and operate, a driver's seat 14 for the user, etc. are provided. .
 図1では、作業車両としてトラクタ2を例示したが、トラクタの他、田植機、コンバイン、土木・建築作業装置、除雪車等、乗用型作業車両に加え、歩行型作業車両も適用可能である。 Although the tractor 2 is illustrated as a working vehicle in FIG. 1, a walking type working vehicle can be applied in addition to a riding type working vehicle such as a rice transplanter, a combine, a civil engineering / building work device, a snow removal vehicle, etc. besides a tractor.
 図2に示すように、トラクタ2には車両側無線通信部26が備えられ、無線通信端末3には端末側無線通信部31が備えられ、基準局4には基準局側無線通信部41が備えられている。車両側無線通信部26と端末側無線通信部31との間での無線通信によりトラクタ2と無線通信端末3との間で各種の情報を送受信可能とするとともに、車両側無線通信部26と基準局側無線通信部41との間での無線通信によりトラクタ2と基準局4との間で各種の情報を送受信可能に構成されている。そして、無線通信端末3と基準局4とは、トラクタ2を介して各種の情報を送受信可能に構成されている。ちなみに、端末側無線通信部31と基準局側無線通信部41との間での無線通信により無線通信端末3と基準局4とが、トラクタ2を介さずに直接各種の情報を送受信可能に構成することもできる。各無線通信部同士での無線通信に用いられる周波数帯域は、共通の周波数帯域であってもよいし、互いに異なる周波数帯域であってもよい。 As shown in FIG. 2, the tractor 2 is provided with a vehicle-side wireless communication unit 26, the wireless communication terminal 3 is provided with a terminal-side wireless communication unit 31, and the reference station 4 is provided with a reference station-side wireless communication unit 41. ing. Various information can be transmitted and received between the tractor 2 and the wireless communication terminal 3 by wireless communication between the vehicle-side wireless communication unit 26 and the terminal-side wireless communication unit 31, and the vehicle-side wireless communication unit 26 and the reference station Various types of information can be transmitted and received between the tractor 2 and the reference station 4 by wireless communication with the side wireless communication unit 41. The wireless communication terminal 3 and the reference station 4 are configured to be able to transmit and receive various types of information via the tractor 2. Incidentally, by wireless communication between the terminal side wireless communication unit 31 and the reference station side wireless communication unit 41, the wireless communication terminal 3 and the reference station 4 can directly transmit and receive various information without using the tractor 2. You can also. The frequency bands used for wireless communication between the wireless communication units may be a common frequency band or different frequency bands.
 トラクタ2には、図2に示すように、測位用アンテナ21、車両側制御部22、車両側無線通信部26、記憶部(図示省略)等が備えられている。
 車両側制御部22には、走行制御部23、位置情報取得部24、方位角特定部25等が備えられている。車両側制御部22は、位置情報取得部24にて随時取得される自己の位置情報(測位用アンテナ21の設置位置である現在位置P、)、方位角特定部25にて随時特定される自己の方位角(現在方位角)、トラクタ2に備えられる3軸のジャイロと3方向の加速度計等を有する慣性計測装置(図示省略)で計測される自己の姿勢等を適時参照しながら、走行制御部23にてエンジン制御装置、前進と後進とを切替可能な変速装置、操舵装置、ブレーキ装置等(図示省略)のトラクタ2に備えられる各種の装置を制御し、目標走行経路K1~K4に沿ってトラクタ2を自動走行可能に構成されている。
As illustrated in FIG. 2, the tractor 2 includes a positioning antenna 21, a vehicle-side control unit 22, a vehicle-side wireless communication unit 26, a storage unit (not shown), and the like.
The vehicle-side control unit 22 includes a traveling control unit 23, a position information acquisition unit 24, an azimuth specifying unit 25, and the like. The vehicle-side control unit 22 is the position information of its own (the current position P which is the installation position of the positioning antenna 21) acquired at any time by the position information acquiring unit 24 and the self specified by the azimuth specifying unit 25 at any time. Travel control with appropriate reference to the azimuth angle (current azimuth angle), the attitude of oneself measured by an inertial measurement device (not shown) with a 3-axis gyro and 3-direction accelerometer etc. provided in the tractor 2 The engine control unit, a transmission capable of switching between forward and reverse, a steering unit, and a brake unit (not shown) control various units provided in the tractor 2 and are arranged along the target travel paths K1 to K4. Thus, the tractor 2 can be driven automatically.
 測位用アンテナ21は、図1に示すように、例えば、衛星測位システム(GNSS)を構成する測位衛星15からの信号を受信するように構成されている。測位用アンテナ21は、例えば、トラクタ2のキャビン12のルーフの上面に配置されている。 The positioning antenna 21 is configured to receive, for example, a signal from a positioning satellite 15 that constitutes a satellite positioning system (GNSS), as shown in FIG. The positioning antenna 21 is disposed, for example, on the top surface of the roof of the cabin 12 of the tractor 2.
 衛星測位システムを用いた測位方法として、図1に示すように、予め定められた基準点に設置された基準局4を備え、その基準局4からの測位補正情報によりトラクタ2(移動局)の衛星測位情報を補正して、トラクタ2の現在位置Pを求める測位方法を適用可能としている。例えば、DGPS(ディファレンシャルGPS測位)、RTK測位(リアルタイムキネマティック測位)等の各種の測位方法を適用することができる。ちなみに、測位方法については、基準局4を備えずに単独測位を用いることもできる。 As a positioning method using a satellite positioning system, as shown in FIG. 1, a reference station 4 installed at a predetermined reference point is provided, and satellite positioning of tractor 2 (mobile station) is performed by positioning correction information from the reference station 4 It is possible to apply a positioning method for obtaining the current position P of the tractor 2 by correcting the information. For example, various positioning methods such as DGPS (differential GPS positioning) and RTK positioning (real-time kinematic positioning) can be applied. Incidentally, as the positioning method, single positioning may be used without the reference station 4.
 この実施形態では、例えば、RTK測位を適用していることから、図1及び図2に示すように、移動局側となるトラクタ2に測位用アンテナ21を備えるのに加えて、基準局4が備えられている。基準局4の設置位置となる基準点の位置情報は予め設定されて把握されている。基準局4は、例えば、圃場Hの周囲等、トラクタ2の走行の邪魔にならない位置(基準点)に配置されている。基準局4には、基準局側無線通信部41と基準局測位アンテナ42とが備えられている。 In this embodiment, for example, since RTK positioning is applied, as shown in FIGS. 1 and 2, in addition to the positioning antenna 21 provided on the tractor 2 on the mobile station side, the reference station 4 is provided. It is done. Position information of a reference point which is an installation position of the reference station 4 is set in advance and grasped. The reference station 4 is disposed, for example, at a position (reference point) which does not interfere with the traveling of the tractor 2 such as around the field H. The reference station 4 is provided with a reference station wireless communication unit 41 and a reference station positioning antenna 42.
 RTK測位では、基準点に設置された基準局4と、位置情報を求める対象の移動局側となるトラクタ2の測位用アンテナ21との両方で測位衛星15からの搬送波位相(衛星測位情報)を測定している。基準局4では、測位衛星15から衛星測位情報を測定する毎に又は設定周期が経過する毎に、測定した衛星測位情報と基準点の位置情報等を含む測位補正情報を生成して、基準局側無線通信部41からトラクタ2の車両側無線通信部26に測位補正情報を送信している。トラクタ2の位置情報取得部24は、測位用アンテナ21にて測定した衛星測位情報と基準局4から送信される測位補正情報とを用いて、トラクタ2の現在位置Pを求めている。位置情報取得部24は、トラクタ2の現在位置Pとして、例えば、緯度情報・経度情報を求めている。 In RTK positioning, the carrier phase (satellite positioning information) from the positioning satellite 15 is measured by both the reference station 4 installed at the reference point and the positioning antenna 21 of the tractor 2 on the mobile station side for which position information is to be determined. doing. The reference station 4 generates positioning correction information including the measured satellite positioning information and the position information of the reference point every time the satellite positioning information is measured from the positioning satellite 15 or each time the setting period elapses, and the reference station side wireless The positioning correction information is transmitted from the communication unit 41 to the vehicle-side wireless communication unit 26 of the tractor 2. The position information acquisition unit 24 of the tractor 2 obtains the current position P of the tractor 2 using the satellite positioning information measured by the positioning antenna 21 and the positioning correction information transmitted from the reference station 4. The position information acquisition unit 24 obtains, for example, latitude information and longitude information as the current position P of the tractor 2.
 トラクタ2の方位角特定部25は、トラクタ2の移動に伴い、位置情報取得部24にて取得されるトラクタ2の現在位置Pの変化状態からトラクタ2の方位角を特定するように構成されている。例えば、方位角特定部25は、位置情報取得部24にて現在位置Pを取得した時点で、記憶部に保存された直前の現在位置Pを参照し、その直前の現在位置Pから現在の現在位置Pに向かう速度ベクトルの向きをトラクタ2の方位角として特定する。なお、上記直前の現在位置Pとしては、記憶部に保存された直前の位置情報取得部24で取得した現在位置Pを用いることができるが、例えば、トラクタ2の走行開始時においては、単独測位又はユーザが入力して得られた現在位置Pを用いることもできる。 The azimuth specifying unit 25 of the tractor 2 is configured to specify the azimuth of the tractor 2 from the change state of the current position P of the tractor 2 acquired by the position information acquiring unit 24 along with the movement of the tractor 2 There is. For example, when the azimuth information identification unit 25 acquires the current position P by the position information acquisition unit 24, the azimuth angle identification unit 25 refers to the current position P immediately before stored in the storage unit and determines the current current from the current position P immediately before that. The direction of the velocity vector toward the position P is specified as the azimuth angle of the tractor 2. Although the current position P acquired by the position information acquiring unit 24 immediately before and stored in the storage unit can be used as the current position P immediately before the above, for example, when the traveling of the tractor 2 starts, the single positioning is performed. Alternatively, the current position P obtained by the user can be used.
 無線通信端末3は、例えば、タッチパネルを有するタブレット型のパーソナルコンピュータ等から構成され、各種情報をタッチパネルに表示可能であり、タッチパネルを操作することで、各種の情報も入力可能となっている。無線通信端末3については、ユーザがトラクタ2の外部にて携帯して使用することが可能であるとともに、トラクタ2の運転座席14の側脇等に装着して使用することもできる。 The wireless communication terminal 3 includes, for example, a tablet-type personal computer having a touch panel, and can display various information on the touch panel, and can also input various information by operating the touch panel. The wireless communication terminal 3 can be carried and used outside of the tractor 2 by the user, and can also be used by attaching to the side of the driver's seat 14 of the tractor 2 or the like.
 無線通信端末3には、図2に示すように、端末側無線通信部31、端末側制御部32、
経路生成部33、表示部34等が備えられている。経路生成部33は、トラクタ2が自動走行する連続する複数の目標走行経路K1~K4(図3参照)を生成するように構成されている。また、無線通信端末3には、記憶部(図示省略)が備えられており、この記憶部には、ユーザにより登録された情報等、各種の情報が記憶されている。
As shown in FIG. 2, the wireless communication terminal 3 includes a terminal-side wireless communication unit 31 and a terminal-side control unit 32.
A path generation unit 33, a display unit 34 and the like are provided. The route generation unit 33 is configured to generate a plurality of continuous target travel routes K1 to K4 (see FIG. 3) on which the tractor 2 automatically travels. Further, the wireless communication terminal 3 is provided with a storage unit (not shown), and the storage unit stores various types of information such as information registered by the user.
 トラクタ2の自動走行を行う場合には、ユーザが無線通信端末3のタッチパネル等を操作して圃場領域、トラクタ2や作業機5に関する情報等の目標走行経路K1~K4を生成するための情報を登録している。無線通信端末3の経路生成部33が、登録情報等に基づいて、トラクタ2が自動走行する目標走行経路K1~K4を生成している。
 例えば、図3に示すように、経路生成部33は、圃場H内において、目標走行経路として、トラクタ2を自動走行させながら耕耘等の作業を行う作業用経路であって、トラクタ2を直線的に前進させる前進直線路K1を生成している。
 また、経路生成部33は、圃場H内において、目標走行経路として、トラクタ2を転回させる転回用経路であって、トラクタ2を機体一側(機体右側)に約1/4円弧に沿って旋回しながら前進させる第1前進旋回路K2、第1前進旋回路K2に引き続きトラクタ2を直線的に後進させる後進直線路K3、後進直線路K3に引き続きトラクタ2を機体一側(機体右側)に約1/4円弧に旋回しながら前進させる第2前進旋回路K4を生成している。
 なお、図3に示す目標走行経路K1~K4は、あくまで一例であり、経路生成部33が、どのような目標走行経路を生成するかは適宜変更が可能である。
When automatic traveling of the tractor 2 is performed, the user operates the touch panel of the wireless communication terminal 3 to generate information for generating the target traveling routes K1 to K4 such as the field area, and information on the tractor 2 and the work machine 5. I have registered. The route generation unit 33 of the wireless communication terminal 3 generates target traveling routes K1 to K4 on which the tractor 2 automatically travels based on the registration information and the like.
For example, as shown in FIG. 3, the route generation unit 33 is a work route for performing work such as tilling while automatically traveling the tractor 2 as a target travel route in the field H, and the tractor 2 is linear Forward straight path K1 is generated.
Further, the route generation unit 33 is a turning route for turning the tractor 2 as a target travel route in the agricultural field H, and turns the tractor 2 along the approximately 1⁄4 arc toward the one side (right side of the machine) The first forward rotation circuit K2 which advances forward while continuing the reverse linear path K3 which continues to reverse the tractor 2 linearly to the first forward rotation circuit K2, continues the tractor 2 continuously to the reverse linear path K3 to the aircraft body side (right side of the aircraft) A second forward turning circuit K4 is generated which advances while turning in a quarter arc.
The target travel routes K1 to K4 shown in FIG. 3 are merely examples, and the target travel route generated by the route generation unit 33 can be changed as appropriate.
 経路生成部33が連続する複数の目標走行経路K1~K4を生成するに当たり、圃場Hの形状や位置情報等、圃場Hに関する情報が先に登録されている。そして、圃場H内において、目標走行経路K1~K4を生成するための領域として、耕耘等の作業を行う作業領域R1と作業を行わない非作業領域R2(枕地)とが特定されている。
 経路生成部33は、作業領域R1に対して作業用経路である前進直線路K1を生成し、非作業領域R2に転回用経路としての第1前進旋回路K2、後進直線路K3、第2前進旋回路K4を生成している。前進直線路K1は、圃場H内の作業領域R1において一端側から他端側に向けて自動走行させる経路であり、前進直線路K1がスタート地点Sからゴール地点Gまで作業領域R1の全体に亘って圃場Hの幅方向に隣接して複数並ぶように生成されている。前進直線路K1は、隣接するもの同士が進行方向を逆向きとする状態で生成されている。
 転回用経路としての第1前進旋回路K2、後進直線路K3、第2前進旋回路K4は、圃場Hの幅方向に並ぶ2つの前進直線路K1において始点K4eと終点K1eを接続してトラクタ2を転回させるための経路として生成されている。
 具体的には、図3の左側に示すように、前進直線路K1の終点K1eと第1前進旋回路K2の始点とが同一地点で前進直線路K1と第1前進旋回路K2とが連続する状態となっている。第1前進旋回路K2の終点K2eと後進直線路K3の始点とが同一地点で、第1前進旋回路K2と後進直線路K3とが連続する状態となっている。後進直線路K3の終点K3eと第2前進旋回路K4の始点が同一地点で後進直線路K3と第2前進旋回路K4とが連続する状態となっている。第2前進旋回路K4の終点K4eと次の前進直線路K1の始点とが同一地点で第2前進旋回路K4と次の前進直線路K1とが連続する状態となっている。
When the route generation unit 33 generates a plurality of continuous target travel routes K1 to K4, information on the field H such as the shape and position information of the field H is registered first. Then, in the field H, as a region for generating the target travel paths K1 to K4, a work area R1 in which work such as tillage is performed and a non-work area R2 (headland) in which the work is not performed are specified.
The path generation unit 33 generates an advancing straight path K1 as a working path with respect to the work area R1, and a first advancing turn circuit K2 as a turning path in the non-working area R2, a reverse linear path K3, a second advance A spiral circuit K4 is generated. The forward straight path K1 is a path which is automatically traveled from one end side to the other end in the working area R1 in the field H, and the forward straight path K1 extends from the start point S to the goal point G over the entire working area R1. A plurality of adjacent fields are generated in the width direction of the field H. The forward straight path K1 is generated in such a manner that adjacent ones have their traveling directions reverse to each other.
The first forward rotation circuit K2 as a turning path, the reverse linear passage K3 and the second forward rotation circuit K4 connect the start point K4e and the end point K1e in two forward linear passages K1 aligned in the width direction of the field H It is generated as a route to turn around.
Specifically, as shown on the left side of FIG. 3, the end point K1e of the straight forward path K1 and the start point of the first forward turning circuit K2 are continuous at the same point where the straight advancing path K1 and the first forward turning circuit K2 are continuous. It is in the state. The end point K2e of the first forward rotation circuit K2 and the start point of the reverse linear passage K3 are in the same position, and the first forward rotation circuit K2 and the reverse linear passage K3 are continuous. An end point K3e of the reverse linear travel K3 and a start point of the second forward rotation circuit K4 are in the same position, and the reverse linear travel K3 and the second forward rotation circuit K4 are continuous. The end point K4e of the second forward rotation circuit K4 and the start point of the next forward linear passage K1 are in the same position, and the second forward rotation circuit K4 and the next forward linear passage K1 are in a continuous state.
 このようにして、経路生成部33が目標走行経路K1~K4を生成すると、無線通信端末3の端末側制御部32が、無線通信端末3からトラクタ2に目標走行経路K1~K4に関する経路情報を転送することで、トラクタ2の車両側制御部22が、経路情報を取得することができる。なお、無線通信端末3からトラクタ2への経路情報の転送については、トラクタ2が自動走行を開始する前に、全ての目標走行経路K1~K4の経路情報を転送するようにしてよいし、例えば、トラクタ2が自動走行中であるときに、走行中の目標走行経路の次に続く後続の1つ又は複数の目標走行経路の経路情報をトラクタ2の移動に連れて順次に転送するようにしてもよい。
 車両側制御部22は、取得した経路情報に基づいて、位置情報取得部24にて自己の現在位置Pを取得しながら、連続する複数の目標走行経路K1~K4に沿ってトラクタ2を自動走行させることができる。位置情報取得部24にて取得するトラクタ2の現在位置Pについては、リアルタイム(例えば、数秒周期)でトラクタ2から無線通信端末3に送信されており、無線通信端末3にてトラクタ2の現在位置Pを把握するようにしている。
Thus, when the route generation unit 33 generates the target travel routes K1 to K4, the terminal-side control unit 32 of the wireless communication terminal 3 transmits route information on the target travel routes K1 to K4 from the wireless communication terminal 3 to the tractor 2. By transferring, the vehicle-side control unit 22 of the tractor 2 can acquire the route information. As for transfer of route information from the wireless communication terminal 3 to the tractor 2, route information of all the target travel routes K1 to K4 may be transferred before the tractor 2 starts automatic traveling, for example, When the tractor 2 is traveling automatically, route information of one or more subsequent target traveling paths following the traveling target traveling path is sequentially transferred as the tractor 2 moves. It is also good.
The vehicle-side control unit 22 automatically travels the tractor 2 along a plurality of continuous target traveling routes K1 to K4 while acquiring the current position P of the vehicle by the position information acquiring unit 24 based on the acquired route information. It can be done. The current position P of the tractor 2 acquired by the position information acquiring unit 24 is transmitted from the tractor 2 to the wireless communication terminal 3 in real time (for example, several seconds), and the current position of the tractor 2 in the wireless communication terminal 3 I try to grasp P.
 なお、目標走行経路K1~K4を生成するに当たり、目標走行経路K1~K4の夫々に対してトラクタ2の基準車速が設定されている。前進直線路K1に対するトラクタ2の基準車速、第1前進旋回路K2や第2前進旋回路K4に対するトラクタ2の基準車速、後進直線路K3に対するトラクタ2の基準車速は、同じ車速に設定したり、異なる車速に設定することができる。トラクタ2の基準車速を示す車速情報は、経路情報に併せて、無線通信端末3からトラクタ2に無線通信可能に構成されている。 When generating the target travel routes K1 to K4, the reference vehicle speed of the tractor 2 is set for each of the target travel routes K1 to K4. The reference vehicle speed of the tractor 2 with respect to the forward straight road K1, the reference vehicle speed of the tractor 2 with respect to the first forward rotation circuit K2 and the second forward rotation circuit K4, and the reference vehicle speed of the tractor 2 with respect to the reverse travel K3 may be set to the same vehicle speed. Different vehicle speeds can be set. The vehicle speed information indicating the reference vehicle speed of the tractor 2 is configured to allow wireless communication from the wireless communication terminal 3 to the tractor 2 along with the route information.
 無線通信端末3では、ユーザがタッチパネルを操作して自動走行の開始が指示されると、無線通信端末3は、自動走行の開始指示をトラクタ2に送信する。これにより、トラクタ2では、車両側制御部22が、自動走行の開始指示を受けることで、位置情報取得部24にて自己の現在位置Pを取得しながら、連続する複数の目標走行経路K1~K4に沿ってトラクタ2を自動走行させる自動走行制御を行うように構成されている。 In the wireless communication terminal 3, when the user operates the touch panel to instruct start of automatic traveling, the wireless communication terminal 3 transmits an instruction for starting automatic traveling to the tractor 2. Thereby, in the tractor 2, the vehicle-side control unit 22 receives the start instruction of the automatic traveling, and while acquiring the current position P of the position information acquisition unit 24, a plurality of continuous target travel routes K1 to ... It is configured to perform automatic travel control for causing the tractor 2 to automatically travel along K4.
 トラクタ2の自動走行制御について説明を加える。
 トラクタ2の車両側制御部22は、連続する複数の目標走行経路K1~K4から自動走行対象の1つの目標走行経路を設定し、その設定目標走行経路を位置情報取得部24にて取得される自己の現在位置Pに基づき切り替えることで、連続する複数の目標走行経路K1~K4に沿ってトラクタ2を自動走行させる。
 図3に示す例では、車両側制御部22は、まず、設定目標走行経路を前進直線路K1に設定することで、トラクタ2を前進直線路K1に沿って自動走行させ、その後、トラクタ2の移動に連れて、設定目標走行経路を第1前進旋回路K2、後進直線路K3、第2前進旋回路K4、次の前進直線路K1の順で順番に切り替えることで、前進直線路K1、第1前進旋回路K2、後進直線路K3、第2前進旋回路K4、次の前進直線路K1の順で連続してトラクタ2を自動走行させる。
 なお、前進直線路K1、第1前進旋回路K2、第2前進旋回路K4は、トラクタ2を前進させる前進路Kfに該当し、後進直線路K3は、トラクタ2を後進させる後進路Kbに該当する。
A description of the automatic travel control of the tractor 2 will be added.
The vehicle-side control unit 22 of the tractor 2 sets one target traveling route for automatic traveling from a plurality of continuous target traveling routes K1 to K4, and the setting target traveling route is acquired by the position information acquiring unit 24. By switching based on the current position P of itself, the tractor 2 is automatically traveled along a plurality of continuous target travel paths K1 to K4.
In the example illustrated in FIG. 3, the vehicle-side control unit 22 first causes the tractor 2 to automatically travel along the forward straight path K1 by setting the set target travel route to the forward straight path K1. As the set target traveling route is sequentially switched in the order of the first forward turning circuit K2, the reverse straight path K3, the second forward turning circuit K4, and the next forward straight path K1, the forward straight path K1, the The tractor 2 is automatically traveled continuously in the order of (1) forward rotation circuit K2, reverse linear passage K3, second forward rotation circuit K4, and next forward linear passage K1.
The straight forward path K1, the first forward turning circuit K2, and the second forward turning circuit K4 correspond to the forward path Kf for advancing the tractor 2, and the reverse straight path K3 corresponds to the rear path Kb for reversing the tractor 2. Do.
 ここで、トラクタ2の車両側制御部22は、走行中の目標走行経路と後続の目標走行経路との関係(前進路Kfと後進路Kbに関する関係、トラクタ2の前後進関係)によって異なるタイミングにて設定目標走行経路を切り替えるように構成されている。以下、車両側制御部22による設定目標走行経路の切り替えのタイミングについて説明する。 Here, the vehicle-side control unit 22 of the tractor 2 changes the timing according to the relationship between the target traveling route during traveling and the subsequent target traveling route (the relationship between the advancing route Kf and the rear route Kb, the forward / backward relationship of the tractor 2). And is configured to switch the set target travel route. Hereinafter, the timing of switching of the set target travel route by the vehicle-side control unit 22 will be described.
 <設定目標走行経路を走行中の前進路から後続の前進路に切り替える場合>
 この場合、車両側制御部22は、トラクタ2(トラクタ2の現在位置P)が走行中の前進路Kfの終点Kfeに到達したときに設定目標走行経路を後続の前進路Kfに切り替える。
 図4(a)に示す例において、トラクタ2が前進直線路K1を走行している場合、車両側制御部22は、トラクタ2(トラクタ2の現在位置P)が走行中の前進直線路K1の終点K1eに到達した時点で、設定目標走行経路を後続の第1前進旋回路K2に切り替える。このタイミングにて設定目標走行経路を切り替えることで、前進直線路K1の終点K1eから連続して第1前進旋回路K2に沿ってトラクタ2を自動走行させることができる。
<When switching the set target traveling route from the advancing route in traveling to the subsequent advancing route>
In this case, when the tractor 2 (the current position P of the tractor 2) reaches the end point Kfe of the advancing path Kf during traveling, the vehicle-side control unit 22 switches the set target traveling path to the subsequent advancing path Kf.
In the example shown in FIG. 4A, when the tractor 2 travels on the straight forward path K1, the vehicle-side control unit 22 controls the tractor 2 (the current position P of the tractor 2) to travel on the forward straight path K1. When the end point K1e is reached, the set target travel route is switched to the subsequent first forward rotation circuit K2. By switching the set target travel route at this timing, it is possible to automatically travel the tractor 2 along the first forward rotation circuit K2 continuously from the end point K1e of the forward straight passage K1.
 <設定目標走行経路を走行中の前進路から後続の後進路に切り替える場合>
 前述したように、圃場Hの上でトラクタ2の前進移動を止めて後進移動させるには、車速等に応じた相応の制動距離が必要となる。そこで、車両側制御部22は、設定目標走行経路を走行中の前進路Kfから後続の後進路Kbに切り替える場合は、トラクタ2を前進から後進に切り替えたときに生じる制動距離分の前進移動を考慮したタイミングにて設定目標走行経路を切り替えるように構成されている。
 具体的には、図4(a)、(b)に示すように、車両側制御部22は、トラクタ2(トラクタ2の現在位置P)が、制動距離分の前進移動を基準とする前進用設定距離Dfだけ、走行中の第1前進旋回路K2における終点K2eよりも手前側の先行切り替え地点Psに到達したときに設定目標走行経路を後続の後進直線路K3に切り替える。
<When switching from the forward path on which the set target travel route is traveling to the following rear path>
As described above, in order to stop the forward movement of the tractor 2 on the field H and move it backward, a corresponding braking distance corresponding to the vehicle speed or the like is required. Therefore, when switching the set target travel route from the forward travel path Kf during traveling to the subsequent rear path Kb, the vehicle-side control unit 22 moves forward for the braking distance that occurs when the tractor 2 is switched from forward travel to reverse travel. The set target travel route is switched at the considered timing.
Specifically, as shown in FIGS. 4 (a) and 4 (b), the vehicle-side control unit 22 is for advancing based on the forward movement of the tractor 2 (the current position P of the tractor 2) for the braking distance. The set target traveling route is switched to the subsequent reverse linear route K3 when the leading switching point Ps on the near side of the end point K2e in the first forward rotating circuit K2 during traveling is reached by the set distance Df.
 前進用設定距離Dfは、トラクタ2を前進から後進に切り替える場合の車速に応じた制動距離D1に前進用所定距離D2を追加(加算)して車両側制御部22にて設定される。
 この制動距離D1は、例えば、トラクタ2に備えられた車速センサにてトラクタ2の実車速を検出する等によりトラクタ2の車速を特定し、記憶部に記憶された前進時の車速と制動距離の関係を示すテーブル等を参照して求めることができる。前進用所定距離D2は、例えば、トラクタ2における測位用アンテナ21の設置位置からトラクタ2の前端までの距離等に基づいて予め設定されている。
 この場合、例えば、車両側制御部22は、車速センサにてリアルタイム等で車速を随時検出しており、そのトラクタ2の車速を検出するタイミング毎で、制動距離D1を基準とする前進用設定距離Dfを求めて先行切り替え地点Psを随時特定することができる。
The forward set distance Df is set by the vehicle-side control unit 22 by adding (adding) the forward predetermined distance D2 to the braking distance D1 according to the vehicle speed when switching the tractor 2 from forward to reverse.
The braking distance D1 specifies the vehicle speed of the tractor 2 by, for example, detecting the actual vehicle speed of the tractor 2 with a vehicle speed sensor provided in the tractor 2, etc. It can be determined by referring to a table indicating the relationship. The forward movement predetermined distance D2 is set in advance based on, for example, the distance from the installation position of the positioning antenna 21 in the tractor 2 to the front end of the tractor 2.
In this case, for example, the vehicle-side control unit 22 detects the vehicle speed at any time by the vehicle speed sensor in real time or the like, and the forward setting distance based on the braking distance D1 at every timing of detecting the vehicle speed of the tractor 2 The advance switching point Ps can be specified as needed by obtaining Df.
 なお、トラクタ2を前進から後進に切り替える場合の車速に応じた制動距離D1は、例えば、目標走行経路の夫々に設定されたトラクタ2の基準車速をトラクタ2の車速として特定して求めてもよく、その場合、車両側制御部22は、設定目標走行経路を切り替えた直後のタイミング等で、制動距離D1を考慮した前進用設定距離Dfを求めて先行切り替え地点Psを特定することができる。 The braking distance D1 according to the vehicle speed when switching the tractor 2 from forward to reverse may be determined, for example, by specifying the reference vehicle speed of the tractor 2 set for each of the target travel paths as the vehicle speed of the tractor 2. In that case, the vehicle-side control unit 22 can specify the advance switching point Ps by obtaining the forward setting distance Df in consideration of the braking distance D1 at the timing immediately after switching the setting target traveling route or the like.
 このように特定した先行切り替え地点Psにトラクタ2(トラクタ2の現在位置P)が到達したタイミング(図4(b)のタイミング)で設定目標走行経路を切り替えると、図4(c)に示すように、車両側制御部22は、例えば、ブレーキ装置や変速装置等を作動制御する等によりトラクタ2の前進移動に制動力を付与し、第1前進旋回路K2の終点K2e又はその近傍にてトラクタ2を停止させる。そして、車両側制御部22は、例えば、変速装置を作動制御する等により、図4(d)に示すようにトラクタ2を後進直線路K3に沿って後進移動させる。
 よって、トラクタ2を前進から後進に切り替える場合にも、第1前進旋回路K2における終点K2eやその近傍にてトラクタ2の進行方向を切り替えることができ、トラクタ2が終点K2eを通り過ぎるのを未然に回避し、トラクタ2の無駄な走行を一層減らすことができる。
As shown in FIG. 4C, when the set target traveling route is switched at the timing (the timing of FIG. 4B) when the tractor 2 (the current position P of the tractor 2) reaches the preceding switching point Ps thus identified. In addition, the vehicle-side control unit 22 applies a braking force to the forward movement of the tractor 2 by, for example, operating control of a brake device, a transmission, etc., and the tractor at or near the end point K2e of the first forward rotation circuit K2. Stop 2 Then, the vehicle-side control unit 22 moves the tractor 2 backward along the reverse linear path K3 as shown in FIG. 4D, for example, by performing operation control of the transmission.
Therefore, even when the tractor 2 is switched from forward to reverse, the traveling direction of the tractor 2 can be switched at or near the end point K2e of the first forward rotation circuit K2, and the tractor 2 passes by the end point K2e in advance. It can avoid and useless traveling of the tractor 2 can be further reduced.
 更に、車両側制御部22は、図5に示すように、方位角特定部25にて特定されるトラクタ2の現在方位角に沿う直線Lcと、後続の目標走行経路に沿う直線L3との鋭角側の角度偏差θcが所定値θa以下になると、トラクタ2(トラクタ2の現在位置P)が先行切り替え地点Psに到達していなくても、設定目標走行経路を後続の目標走行経路に切り替える。
 具体的には、図5に示すように、トラクタ2が第1前進旋回路K2を走行しているとき、トラクタ2の前進移動に連れて、トラクタ2の現在方位角に沿う直線Lcと後続の後進直線路K3に沿う直線L3との鋭角側の角度偏差θcが徐々に小さくなっていく。車両側制御部22は、この角度偏差θcを随時算出して監視しており、トラクタ2(トラクタ2の現在位置P)が第1前進旋回路K2における先行切り替え地点Psに到達していなくとも、角度偏差θcが所定値θaになると、設定目標走行経路を後続の後進直線路K3に切り替える。
 例えば、角度偏差θcの所定値θaは、トラクタ2が短時間又は少ない走行距離で後続の目標走行経路に沿う姿勢に移行できる許容値に設定されている。
Furthermore, as shown in FIG. 5, the vehicle-side control unit 22 makes an acute angle between a straight line Lc along the current azimuth angle of the tractor 2 specified by the azimuth angle specifying unit 25 and a straight line L3 along the subsequent target travel route. When the angular deviation θc on the side becomes equal to or less than the predetermined value θa, the set target traveling route is switched to the subsequent target traveling route even if the tractor 2 (the current position P of the tractor 2) has not reached the preceding switching point Ps.
Specifically, as shown in FIG. 5, when the tractor 2 travels the first forward rotation circuit K2, as the tractor 2 moves forward, a straight line Lc along the current azimuth angle of the tractor 2 and the following The angle deviation θc on the acute angle side with the straight line L3 along the reverse linear path K3 gradually decreases. The vehicle-side control unit 22 calculates and monitors this angle deviation θc as needed, and even if the tractor 2 (the current position P of the tractor 2) has not reached the leading switching point Ps in the first forward rotation circuit K2, When the angular deviation θc becomes a predetermined value θa, the set target traveling route is switched to the following reverse linear route K3.
For example, the predetermined value θa of the angular deviation θc is set to an allowable value that allows the tractor 2 to shift to a posture along a subsequent target traveling route in a short time or a short traveling distance.
 このように、トラクタ2(トラクタ2の現在位置P)が、走行中の第1前進旋回路K2の先行切り替え地点Psに到達していなくとも、角度偏差θcが所定値θaになると、設定目標走行経路を後続の後進直線路K3に切り替えることで、トラクタ2の無駄な走行を一層減らすことができる。 As described above, even if the tractor 2 (the current position P of the tractor 2) does not reach the preceding switching point Ps of the first forward rotating circuit K2 during traveling, the setting target traveling is performed when the angle deviation θc becomes the predetermined value θa. By switching the route to the subsequent reverse linear route K3, useless traveling of the tractor 2 can be further reduced.
 <設定目標走行経路を走行中の後進路から後続の前進路に切り替える場合>
 設定目標走行経路を走行中の後進路Kbから後続の前進路Kfに切り替えるときも、圃場Hの上でトラクタ2の後進移動を止めるには、車速等に応じた相応の制動距離が必要となる。そこで、車両側制御部22は、設定目標走行経路を走行中の後進路Kbから後続の前進路Kfに切り替える場合は、トラクタ2を後進から前進に切り替えたときに生じる制動距離分の後進移動を考慮したタイミングにて設定目標走行経路を切り替えるように構成されている。
 具体的には、図6に示すように、車両側制御部22は、トラクタ2(トラクタ2の現在位置P)が、制動距離分の後進移動を考慮した後進用設定距離Dbだけ、走行中の後進直線路K3における終点K3eよりも手前側の先行切り替え地点Psに到達したときに設定目標走行経路を後続の第2前進旋回路K4に切り替える。
<When switching from the rear track while driving to the set target travel path to the following forward road>
Even when the set target travel route is switched from the rear track Kb to the next forward travel path Kf during traveling, in order to stop the backward movement of the tractor 2 on the field H, a corresponding braking distance corresponding to the vehicle speed or the like is required. . Therefore, when switching the set target travel route from the rear route Kb during traveling to the subsequent forward route Kf, the vehicle-side control unit 22 moves backward for the braking distance that occurs when the tractor 2 switches from reverse to forward. The set target travel route is switched at the considered timing.
Specifically, as shown in FIG. 6, the vehicle-side control unit 22 is traveling while the tractor 2 (the current position P of the tractor 2) is set for the reverse travel distance Db in consideration of backward travel for the braking distance. When the advance switching point Ps on the near side of the end point K3e in the reverse linear path K3 is reached, the set target traveling route is switched to the subsequent second forward rotation circuit K4.
 後進用設定距離Dbは、トラクタ2を後進から前進に切り替える場合の車速に応じた制動距離D3に後進用所定距離D4を追加(加算)して車両側制御部22にて設定される。
 この制動距離D3は、例えば、トラクタ2に備えられた車速センサにてトラクタ2の実車速を検出する等によりトラクタ2の車速を特定し、記憶部に記憶された後進時の車速と制動距離の関係を示すテーブル等を参照して求めることができる。
 後進用所定距離D4は、トラクタ2の後部に作業機5が装着されることを考慮して前進用所定距離D2よりも大きい距離、例えば、トラクタ2における測位用アンテナ21の設置位置からトラクタ2の後部に装着した作業機5の後端までの距離等に予め設定されている。
 この場合、例えば、車両側制御部22は、車速センサにてリアルタイム等で車速を随時検出しており、そのトラクタ2の車速を検出するタイミング毎で、制動距離D3を考慮した後進用設定距離Dbを求めて先行切り替え地点Psを随時特定することができる。
The reverse setting distance Db is set by the vehicle-side control unit 22 by adding (adding) the reverse distance D4 to the braking distance D3 according to the vehicle speed when switching the tractor 2 from reverse to forward.
The braking distance D3 specifies, for example, the vehicle speed of the tractor 2 by detecting the actual vehicle speed of the tractor 2 with a vehicle speed sensor provided in the tractor 2, etc. It can be determined by referring to a table indicating the relationship.
The predetermined reverse distance D4 is larger than the predetermined distance D2 for forward movement taking into consideration that the working machine 5 is attached to the rear of the tractor 2, for example, from the installation position of the positioning antenna 21 in the tractor 2 The distance to the rear end of the work machine 5 mounted at the rear is previously set.
In this case, for example, the vehicle-side control unit 22 detects the vehicle speed at any time by the vehicle speed sensor in real time or the like, and sets the reverse setting distance Db in consideration of the braking distance D3 at every timing of detecting the vehicle speed of the tractor 2 The leading switching point Ps can be specified as needed.
 なお、トラクタ2を後進から前進に切り替える場合の車速に応じた制動距離D3は、前述した制動距離D1と同様、目標走行経路の夫々に設定されたトラクタ2の基準車速をトラクタ2の車速として特定して求めてもよく、その場合、車両側制御部22は、設定目標走行経路を切り替えた直後のタイミング等で、制動距離D3を考慮した後進用設定距離Dbを求めて先行切り替え地点Psを特定することができる。
 また、トラクタ2を後進から前進に切り替える場合の車速に応じた制動距離D3は、例えば、トラクタ2を前進から後進に切り替える場合の車速に応じた制動距離D1を代用してもよい。
The braking distance D3 according to the vehicle speed when switching the tractor 2 from reverse to forward is specified, as the vehicle speed of the tractor 2, the reference vehicle speed of the tractor 2 set for each of the target travel paths, similarly to the braking distance D1 described above. In this case, the vehicle-side control unit 22 determines the setting distance Db for reverse in consideration of the braking distance D3 at the timing immediately after switching the set target traveling route, etc., and specifies the advance switching point Ps. can do.
The braking distance D3 according to the vehicle speed when switching the tractor 2 from reverse to forward may be substituted for the braking distance D1 according to the vehicle speed when switching the tractor 2 from forward to reverse, for example.
 このように特定した先行切り替え地点Psにトラクタ2(トラクタ2の現在位置P)が到達したタイミング(図6(b)のタイミング)で設定目標走行経路を切り替えると、図6(c)に示すように、車両側制御部22は、例えば、ブレーキ装置や変速装置を作動制御する等によりトラクタ2の後進移動に制動力を付与し、後進直線路K3の終点K3eやその近傍にてトラクタ2を停止させる。そして、車両側制御部22は、例えば、変速装置を作動制御する等により、図6(d)に示すようにトラクタ2を第2前進旋回路K4に沿って前進移動させる。
 よって、トラクタ2を後進から前進に切り替える場合にも、後進直線路K3における終点K3eやその近傍にてトラクタ2の進行方向を切り替えることができ、トラクタ2が終点K3eを通り過ぎるのを未然に回避し、トラクタ2の無駄な走行を一層減らすことができる。
As shown in FIG. 6C, when the set target travel route is switched at the timing (the timing of FIG. 6B) when the tractor 2 (the current position P of the tractor 2) reaches the preceding switching point Ps thus identified. In addition, the vehicle-side control unit 22 applies a braking force to the reverse movement of the tractor 2 by, for example, operating control of a brake device or a transmission, and stops the tractor 2 at the end point K3e of the reverse linear path K3 or in the vicinity thereof. Let Then, the vehicle-side control unit 22 moves the tractor 2 forward along the second forward rotation circuit K4 as shown in FIG. 6 (d), for example, by operating the transmission.
Therefore, even when the tractor 2 is switched from reverse to forward, the traveling direction of the tractor 2 can be switched at or near the end point K3e on the reverse linear path K3, and the tractor 2 is prevented from passing the end point K3e in advance. , Wasteful traveling of the tractor 2 can be further reduced.
 更に、車両側制御部22は、図7に示すように、方位角特定部25にて特定されるトラクタ2の現在方位角に沿う直線Lcと、後続の目標走行経路に沿う直線L4との鋭角側の角度偏差θcが所定値θb以下になると、トラクタ2が先行切り替え地点Psに到達していなくても、設定目標走行経路を後続の目標走行経路に切り替える。
 具体的には、トラクタ2が後進直線路K3を走行しているとき、トラクタ2の後進移動に連れて、トラクタ2の現在方位角に沿う直線Lcと後続の第2前進旋回路K4に沿う直線L4との鋭角側の角度偏差θcが徐々に小さくなっていく。なお、直線L4は、第2前進旋回路K4において後進直線路K3を走行中のトラクタ2の現在位置Pから移行が可能な所定距離内の地点の接線等とすることができる。
 車両側制御部22は、この角度偏差θcを随時算出して監視しており、トラクタ2(トラクタ2の現在位置P)が後進直線路K3における先行切り替え地点Psに到達していなくとも、角度偏差θcが所定値θbになると、設定目標走行経路を後続の第2前進旋回路K4に切り替える。
 例えば、角度偏差θcの所定値θbは、トラクタ2が短時間又は少ない走行距離で後続の目標走行経路に沿う姿勢に移行できる許容値に設定されている。なお、トラクタ2を前進から後進に切り替える場合の角度偏差θcの所定値θbと、トラクタ2を前進から後進に切り替える場合の角度偏差θcの所定値θaとは、同じ値に設定したり、異なる値に設定することができる。
Furthermore, as shown in FIG. 7, the vehicle-side control unit 22 makes an acute angle between a straight line Lc along the current azimuth angle of the tractor 2 specified by the azimuth angle specifying unit 25 and a straight line L4 along the subsequent target travel route. When the angular deviation θc on the side becomes equal to or less than the predetermined value θb, the set target traveling route is switched to the subsequent target traveling route even if the tractor 2 has not reached the preceding switching point Ps.
Specifically, when the tractor 2 is traveling on the reverse linear path K3, as the tractor 2 moves backward, a straight line Lc along the current azimuth angle of the tractor 2 and a straight line along the subsequent second forward rotating circuit K4 The angle deviation θc on the acute angle side with L4 gradually decreases. The straight line L4 can be a tangent or the like of a point within a predetermined distance that can be shifted from the current position P of the tractor 2 traveling on the reverse linear path K3 in the second forward rotation circuit K4.
The vehicle-side control unit 22 calculates the angle deviation θc at any time and monitors the angle deviation even if the tractor 2 (the current position P of the tractor 2) has not reached the leading switching point Ps in the reverse linear path K3. When θc becomes a predetermined value θb, the set target traveling route is switched to the subsequent second forward rotation circuit K4.
For example, the predetermined value θb of the angular deviation θc is set to an allowable value that allows the tractor 2 to shift to a posture along a subsequent target traveling route in a short time or a short traveling distance. The predetermined value θb of the angle deviation θc when switching the tractor 2 from forward to reverse and the predetermined value θa of the angle deviation θc when switching the tractor 2 from forward to reverse may be set to the same value or different values. It can be set to
 このように、トラクタ2(トラクタ2の現在位置P)が、走行中の後進直線路K3における先行切り替え地点Psに到達していなくとも、角度偏差θcが所定値θbになると、設定目標走行経路を後続の第2前進旋回路K4に切り替えることで、トラクタ2の無駄な走行を一層減らすことができる。 As described above, even if the tractor 2 (the current position P of the tractor 2) does not reach the advance switching point Ps on the reverse straight road K3 during traveling, the set target travel route is set if the angular deviation θc becomes the predetermined value θb. By switching to the subsequent second forward rotation circuit K4, useless traveling of the tractor 2 can be further reduced.
 <設定目標走行経路を走行中の後進路から後続の後進路に切り替える場合>
 目標走行経路に沿って圃場H内を走行中に何らかの事情で圃場Hから脱出したい場合も考えられる。その場合、例えば、設定目標走行経路を、走行中の転回用経路としての後進路Kb(後進直進路K3)の終点Kbe(K3e)から更に後進するための後進路Kb(図示省略)に切り替えて圃場Hから脱出すること等が考えられる。このように目標走行経路を走行中の後進路Kbから後続の後進路Kbに切り替える場合には、図示は省略するが、前進路Kfから前進路Kfに切り替える場合と同様、車両側制御部22は、トラクタ2(トラクタ2の現在位置P)が走行中の後進路Kbの終点Kbeに到達したときに設定目標走行経路を後続の後進路Kbに切り替える。このタイミングにて設定目標走行経路を切り替えることで、走行中の後進路Kbの終点Kbeから連続して後続の後進路Kbに沿ってトラクタ2を自動走行させることができる。
<When switching from the rear track while driving to the set target travel route to the rear road following it>
There is also a case where it is desired to escape from the field H for some reason while traveling in the field H along the target travel route. In that case, for example, the setting target travel route is switched from the end point Kbe (K3e) of the back route Kb (backward straight path K3) as a turning route during driving to a back route Kb (not shown) It is conceivable to escape from the field H and the like. When the target travel route is switched from the rear track Kb to the subsequent rear track Kb during travel as described above, although not shown, the vehicle-side control unit 22 operates similarly to the case of switching from the forward path Kf to the forward path Kf. When the tractor 2 (the current position P of the tractor 2) reaches the end point Kbe of the rear path Kb during traveling, the set target travel path is switched to the subsequent rear path Kb. By switching the set target travel route at this timing, it is possible to automatically travel the tractor 2 along the following rear route Kb continuously from the end point Kbe of the rear route Kb during traveling.
 上述の如く、経路生成部33は、図3に示すように、作業領域R1に対して作業用経路である前進直線路K1を生成し、非作業領域R2に転回用経路としての第1前進旋回路K2、後進直線路K3、第2前進旋回路K4を生成しているが、非作業領域R2に対して生成する転回用経路としては、図3に示すものに限らず、例えば、図8に示す転回用経路K5~K10を生成することもできる。 As described above, as shown in FIG. 3, the path generation unit 33 generates the forward straight path K1 that is the work path for the work area R1, and the first forward turning as the turning path for the non-work area R2. Although the path K2, the reverse linear path K3 and the second forward rotation circuit K4 are generated, the turning path generated for the non-operation area R2 is not limited to that shown in FIG. It is also possible to generate turning routes K5 to K10 as shown.
 図8に示すように、経路生成部33は、転回用経路として、第5前進直線路K5、第6前進旋回路K6、第7前進直線路K7、第8後進直線路K8、第9前進旋回路K9、第10前進直線路K10を生成している。よって、転回用経路は、第5前進直線路K5、第6前進旋回路K6、第7前進直線路K7、第8後進直線路K8、第9前進旋回路K9、第10前進直線路K10の順に連続する状態となっている。 As shown in FIG. 8, the route generation unit 33 uses the fifth forward straight path K5, the sixth forward turning circuit K6, the seventh forward straight path K7, the eighth reverse straight path K8, and the ninth forward turning as the turning paths. A road K9 and a tenth forward straight road K10 are generated. Therefore, the turning path is in the order of the fifth forward straight path K5, the sixth forward turning circuit K6, the seventh forward straight path K7, the eighth reverse straight path K8, the ninth forward turning circuit K9, and the tenth forward straight path K10. It is in a continuous state.
 第5前進直線路K5は、前進直線路K1に引き続きトラクタ2を直線的に前進させるための経路となっている。第6前進旋回路K6は、第5前進直線路K5に引き続きトラクタ2を機体一側(機体左側)に約1/4円弧に沿って旋回しながら前進させるための経路となっている。第7前進直線路K7は、第6前進旋回路K6に引き続きトラクタ2を直線的に前進させることで、トラクタ1の進行方向が第8後進直線路K8に沿う方向になるように車体部2の向きを変更させるための経路となっている。第8後進直線路K8は、第7前進直線路K7に引き続き、トラクタ1の進行方向を反転させてトラクタ2を直線的に後進させるための経路となっている。第9前進旋回路K9は、第8後進直線路K8に引き続き、トラクタ1の進行方向を反転させてトラクタ2を機体一側(機体左側)に約1/4円弧に沿って旋回しながら前進させるための経路となっている。第10前進直線路K10は、第9前進旋回路K9に引き続きトラクタ2を直線的に前進させることで、トラクタ1の進行方向が前進直線路K1に沿う方向になるように車体部2の向きを変更させるための経路となっている。
 なお、第5前進直線路K5、第6前進旋回路K6、第7前進直線路K7、第9前進旋回路K9、第10前進直線路K10は、トラクタ2を前進させる前進路Kfに該当し、第8後進直線路K8は、トラクタ2を後進させる後進路Kbに該当する。
The fifth forward linear path K5 is a path for advancing the tractor 2 linearly following the forward linear path K1. The sixth forward rotation circuit K6 is a path for advancing the tractor 2 along the approximately 1⁄4 arc while continuing to the fifth forward linear path K5 while turning to the first side (left side) of the machine. The seventh forward linear path K7 causes the tractor 2 to move forward linearly with the sixth forward rotary circuit K6 so that the traveling direction of the tractor 1 becomes the direction along the eighth reverse linear path K8. It is a path to change the direction. The eighth reverse linear passage K8 is a path for reversing the advancing direction of the tractor 1 and causing the tractor 2 to linearly reverse, following the seventh forward linear passage K7. The ninth forward rotation circuit K9 reverses the advancing direction of the tractor 1 following the eighth reverse linear path K8 and advances the tractor 2 while turning along an approximately 1⁄4 arc toward the one side (the left side of the machine) of the machine It has become a route for. The tenth forward linear path K10 causes the tractor body 2 to move forward linearly with the ninth forward rotary circuit K9 so that the traveling direction of the tractor 1 is in the direction along the forward linear path K1. It is a route to change.
The fifth forward straight path K5, the sixth forward turning circuit K6, the seventh forward straight path K7, the ninth forward turning circuit K9, and the tenth forward straight path K10 correspond to the forward path Kf for advancing the tractor 2; The eighth reverse linear path K8 corresponds to a rear track Kb for moving the tractor 2 backward.
 図8に示す転回用経路において、車両側制御部22による設定目標走行経路の切り替えのタイミングについて説明する。 The switching timing of the set target traveling route by the vehicle-side control unit 22 in the turning route shown in FIG. 8 will be described.
 設定目標走行経路を、前進直線路K1から第5前進直線路K5に切り替える場合、第5前進直線路K5から第6前進旋回路K6に切り替える場合、第6前進旋回路K6から第7前進直線路K7に切り替える場合、第9前進旋回路K9から第10前進直線路K10に切り替える場合、第10前進直線路K10から前進直線路K1に切り替える場合の夫々が、設定目標走行経路を走行中の前進路Kfから後続の前進路Kfに切り替える場合となる。よって、この場合、車両側制御部22は、トラクタ2が走行中の前進路Kfの終点に到達した時点で、設定目標走行経路を後続の前進路Kfに切り替える。 When the set target traveling route is switched from the straight forward path K1 to the fifth forward straight path K5, when switched from the fifth forward straight path K5 to the sixth forward turning circuit K6, the sixth forward turning circuit K6 to the seventh forward straight path When switching to K7, when switching from the ninth forward rotation circuit K9 to the tenth forward linear path K10, each of the cases switching from the tenth forward linear path K10 to the forward linear path K1 is the forward path while traveling the set target travel path. It will be a case where it switches from Kf to the following advancing path Kf. Therefore, in this case, when the tractor 2 reaches the end point of the forward travel path Kf in which the tractor 2 is traveling, the vehicle side control unit 22 switches the set target travel path to the subsequent forward travel path Kf.
 第7前進直線路K7から第8後進直線路K8に切り替える場合が、設定目標走行経路を走行中の前進路Kfから後続の後進路Kbに切り替える場合となる。よって、この場合には、車両側制御部22は、トラクタ2が、前進用設定距離Dfだけ、走行中の第7前進直進路K7における終点K7eよりも手前側の先行切り替え地点Psに到達したときに設定目標走行経路を後続の第8後進直線路K8に切り替える。このとき、上述と同様に、車両側制御部22は、方位角特定部25にて特定されるトラクタ2の現在方位角に沿う直線と、後続の第8後進直線路K8に沿う直線との鋭角側の角度偏差が所定値以下になると、トラクタ2が先行切り替え地点Psに到達していなくても、設定目標走行経路を後続の第8後進直線路K8に切り替えることもできる。 The case of switching from the seventh forward straight road K7 to the eighth reverse straight road K8 is the case where the set target travel route is switched from the forward travel path Kf during traveling to the subsequent rear track Kb. Therefore, in this case, when the tractor 2 reaches the advance switching point Ps on the front side of the end point K7e in the seventh forward rectilinear advance path K7 during travel by the vehicle-side control unit 22 by the set travel distance Df. The set target travel route is switched to a subsequent eighth reverse linear route K8. At this time, in the same manner as described above, the vehicle-side control unit 22 determines an acute angle between a straight line along the current azimuth angle of the tractor 2 specified by the azimuth angle specifying unit 25 and a straight line along the following eighth reverse linear path K8. When the angular deviation on the side becomes equal to or less than the predetermined value, the set target travel route can be switched to the subsequent eighth reverse linear route K8 even if the tractor 2 has not reached the preceding switching point Ps.
 設定目標走行経路を、第8後進直線路K8から第9前進旋回路K9に切り替える場合が、設定目標走行経路を走行中の後進路Kbから後続の前進路Kfに切り替える場合となる。よって、この場合、車両側制御部22は、トラクタ2が、後進用設定距離Dbだけ、走行中の第8後進直進路K8における終点K8eよりも手前側の先行切り替え地点Psに到達したときに設定目標走行経路を後続の第9前進旋回路K9に切り替える。このとき、上述と同様に、車両側制御部22は、方位角特定部25にて特定されるトラクタ2の現在方位角に沿う直線と、後続の第9前進旋回路K9に沿う直線との鋭角側の角度偏差が所定値以下になると、トラクタ2が先行切り替え地点Psに到達していなくても、設定目標走行経路を後続の第9前進旋回路K9に切り替えることもできる。 The case where the set target traveling route is switched from the eighth reverse linear path K8 to the ninth forward rotation circuit K9 is the case where the set target traveling route is switched from the rear course Kb during traveling to the subsequent forward path Kf. Therefore, in this case, the vehicle-side control unit 22 sets the tractor 2 when it has reached the leading switching point Ps on the front side of the end point K8e on the eighth reverse rectilinear path K8 during traveling by the reverse set distance Db. The target travel route is switched to the subsequent ninth forward rotation circuit K9. At this time, in the same manner as described above, the vehicle-side control unit 22 determines an acute angle between a straight line along the current azimuth angle of the tractor 2 specified by the azimuth angle specifying unit 25 and a straight line along the subsequent ninth forward turn circuit K9. When the angular deviation on the side becomes equal to or less than the predetermined value, the set target traveling route can be switched to the subsequent ninth forward rotation circuit K9 even if the tractor 2 has not reached the preceding switching point Ps.
 以上のように、図8では、転回用経路として、第8後進直線路K8を含めて生成し、設定目標走行経路を前進路Kfから後進路Kbへ切り替える場合と、設定目標走行経路を後進路Kbから前進路Kfに切り替える場合とが存在している。これに代えて、図9~図11に示すように、設定目標走行経路を前進路Kfから後進路Kbへ切り替える場合と、設定目標走行経路を後進路Kbから前進路Kfに切り替える場合とが存在しない転回用経路を生成することもできる。この場合には、設定目標走行経路の切り替えについて、設定目標走行経路を走行中の前進路Kfから後続の前進路Kfに切り替えることになるので、車両側制御部22は、トラクタ2が走行中の前進路Kfの終点に到達した時点で、設定目標走行経路を後続の前進路Kfに切り替える。 As described above, in FIG. 8, the eighth reverse linear path K8 is generated as the turning path, and the setting target travel path is switched from the forward path Kf to the back path Kb, and the setting target travel path is the back path. There is a case of switching from Kb to the forward path Kf. Instead of this, as shown in FIGS. 9 to 11, there are cases where the set target travel route is switched from the forward route Kf to the rear route Kb and cases where the set target travel route is switched from the rear route Kb to the forward route Kf It is also possible to generate a turnaround route. In this case, with regard to switching of the set target travel route, the set target travel route is switched from the forward travel path Kf during traveling to the subsequent forward travel path Kf, so the vehicle side control unit 22 determines that the tractor 2 is traveling. When the end point of the forward path Kf is reached, the set target travel path is switched to the following forward path Kf.
 図9に示すように、経路生成部33は、転回用経路として、第11前進直線路K11、第12前進旋回路K12、第13前進直線路K13、第14前進旋回路K14、第15前進直線路K15を生成することができる。第11前進直線路K11、第13前進直線路13、第15前進直線路K15は、トラクタ2を直線的に前進させるための経路となっている。第12前進旋回路K12、第14前進旋回路K14は、トラクタ2を機体一側(機体左側)に旋回しながら前進させるための経路となっている。 As shown in FIG. 9, the path generation unit 33 uses, as a turning path, an eleventh forward straight path K11, a twelfth forward turning circuit K12, a thirteenth forward straight path K13, a fourteenth forward turning circuit K14, and a fifteenth straight line. The passage K15 can be generated. The eleventh forward linear path K11, the thirteenth forward linear path 13, and the fifteenth forward linear path K15 are paths for advancing the tractor 2 linearly. The twelfth forward rotation circuit K12 and the fourteenth forward rotation circuit K14 form a path for advancing the tractor 2 while turning to the first side of the machine (the left side of the machine).
 また、図9に代えて、図10や図11に示すように、経路生成部33は、複数の前進直線路と複数の前進旋回路とを組み合わせて転回用経路を生成することもできる。なお、図3、図8、図9では、作業領域R1と非作業領域R2との区切り(図中、一点鎖線)が直線状である場合を示しているのに対して、図10及び図11では、作業領域R1と非作業領域R2との区切り(図中、一点鎖線)が傾斜状(図中、右側の領域が左側の領域よりも下方側に位置する傾斜状)となっている場合を示している。 Further, instead of FIG. 9, as shown in FIG. 10 and FIG. 11, the path generation unit 33 can also generate a turning path by combining a plurality of forward linear paths and a plurality of forward rotation circuits. 3, 8, and 9 show the case where the delimitation (the one-dot chain line in the figure) between the work area R1 and the non-work area R2 is linear, while FIGS. In this case, the division between work area R1 and non-work area R2 (in the figure, an alternate long and short dash line) is inclined (in the figure, the area on the right is lower than the area on the left). It shows.
 図10では、前進直線路が、第16前進直線路K16、第18前進直線路K18、第20前進直線路K20となっており、前進旋回路が、第17前進旋回路K17、第19前進旋回路K19となっている。図10に示す転回用経路では、トラクタ2が後続の前進直線路K1から一旦離れる側に走行することで、トラクタ2が第19前進旋回路K19を旋回走行するための旋回半径を確保している。 In FIG. 10, the straight forward path is the sixteenth straight forward path K16, the eighteenth forward straight path K18, and the twentieth forward straight path K20, and the forward turning circuit is the seventeenth forward turning circuit K17, the nineteenth forward turning. It is road K19. In the turning path shown in FIG. 10, the tractor 2 travels away from the subsequent forward straight path K1 to ensure a turning radius for the tractor 2 to turn and drive the nineteenth forward turning circuit K19. .
 図11では、前進直線路が、第21前進直線路K21、第23前進直線路K23、第25前進直線路K25となっており、前進旋回路が、第22前進旋回路K22、第24前進旋回路K24となっている。図11に示す転回用経路では、まず、トラクタ2の進行方向を後続の前進直線路K1に接近する側に変更させ、トラクタ2を第23前進直線路K23に沿って斜め前方側に直線的に前進させて後続の前進直線路K1に接近させ、トラクタ2が第24前進旋回路K24を旋回走行するための旋回半径を確保している。図11に示す転回用経路は、例えば、先行の前進直線路K1と後続の前進直線路K1とが離れている場合等に適用される。 In FIG. 11, the straight forward path is the 21st straight forward path K21, the 23rd forward straight path K23, and the 25th forward straight path K25, and the forward turn circuit is the 22nd forward turn circuit K22, the 24th forward turn It is road K24. In the turning path shown in FIG. 11, first, the traveling direction of the tractor 2 is changed to the side approaching the subsequent advancing straight path K1, and the tractor 2 is linearly advanced diagonally forward along the 23rd advancing straight path K23. It is advanced to approach the following forward straight path K1, and the turning radius for the tractor 2 to turn on the twenty-fourth forward turning circuit K24 is secured. The turning path shown in FIG. 11 is applied, for example, when the preceding forward straight path K1 and the following forward straight path K1 are separated.
 〔別実施形態〕
(1)上記実施形態では、トラクタ2の制動距離を基準とする設定距離として、前進用設定距離Dfと後進用設定距離Dbの二種類を例に示したが、共通の一種類であってもよい。
[Another embodiment]
(1) In the above embodiment, as the set distance based on the braking distance of the tractor 2, two types of the set distance for forward movement Df and the set distance for reverse movement Db are shown as an example, but even one common type Good.
(2)上記実施形態では、トラクタ2の制動距離を基準とする設定距離が、トラクタ2の制動距離に所定距離を追加して設定される場合を例に示したが、他の方法により制動距離を考慮して設定されてもよい。また、所定距離として、前進用の所定距離D2と後進用の所定距離D4の二種類を例に示したが、共通の一種類であってもよい。 (2) In the above embodiment, although the setting distance based on the braking distance of the tractor 2 is set by adding the predetermined distance to the braking distance of the tractor 2 is shown as an example, the braking distance may be determined by another method It may be set in consideration of Moreover, although two types, the predetermined distance D2 for advance, and the predetermined distance D4 for reverse, were shown as an example as a predetermined distance, it may be one common type.
 本発明は、作業車両を目標走行経路に沿って自動走行させる各種の自動走行システムに適用することができる。 The present invention can be applied to various automatic travel systems in which a work vehicle is automatically traveled along a target travel route.
1     自動走行システム
2     トラクタ(作業車両)
22    車両側制御部(制御部)
23    走行制御部
24    位置情報取得部
25    方位角特定部
Df    前進用設定距離(設定距離)
Db    後進用設定距離(設定距離)
D1,D3 制動距離
D2    前進用所定距離(所定距離)
D4    後進用所定距離(所定距離)
K1    前進直線路(目標走行経路)
K1e   終点
K2    第1前進旋回路(目標走行経路)
K2e   終点
K3    後進直線路(目標走行経路)
K3e   終点
K4    第2前進旋回路(目標走行経路)
K4e   終点
Kf    前進路
Kfe   終点
Kb    後進路
Kbe   終点
Ps    先行切り替え地点
θc    角度偏差
θa,θb 所定値

 
1 Automatic traveling system 2 Tractor (work vehicle)
22 Vehicle side control unit (control unit)
23 travel control unit 24 position information acquisition unit 25 azimuth angle identification unit Df forward set distance (set distance)
Db Reverse set distance (Set distance)
D1, D3 Braking distance D2 predetermined distance for forward movement (predetermined distance)
D4 predetermined distance for reverse (predetermined distance)
K1 forward straight road (target travel route)
K1e End point K2 1st forward rotation circuit (target travel route)
K2e end point K3 reverse straight road (target travel route)
K3e End point K4 Second forward rotation circuit (target travel route)
K4e End point Kf Forward track Kfe End point Kb Back track Kbe End point Ps Leading switching point θc Angle deviation θa, θb Predetermined value

Claims (4)

  1.  作業車両の位置情報を取得する位置情報取得部と、
     連続する複数の目標走行経路から自動走行対象の1つの目標走行経路を設定し、その設定目標走行経路を前記位置情報取得部にて取得される前記作業車両の現在位置に基づき切り替えることで、連続する複数の目標走行経路に沿って前記作業車両を自動走行させる制御部と、を備えた自動走行システムであって、
     前記複数の目標走行経路として、前記作業車両を前進させる前進路と、前記作業車両を後進させる後進路とが備えられ、
     前記制御部は、前記設定目標走行経路を、走行中の前記前進路から後続の前記後進路に切り替える又は走行中の前記後進路から後続の前記前進路に切り替える場合、前記作業車両の制動距離を基準とする設定距離だけ、走行中の前記目標走行経路における終点よりも手前側の先行切り替え地点に前記作業車両が到達したとき、前記設定目標走行経路を後続の目標走行経路に切り替え可能であることを特徴とする自動走行システム。
    A position information acquisition unit that acquires position information of a work vehicle;
    By setting one target travel route for automatic travel from a plurality of continuous target travel routes and switching the set target travel route based on the current position of the work vehicle acquired by the position information acquisition unit, continuous An automatic travel system comprising: a control unit for automatically traveling the work vehicle along a plurality of target travel paths to be
    As the plurality of target travel paths, there are provided an advancing path for moving the work vehicle forward, and a rear track for moving the work vehicle backward.
    The control unit is configured to switch the braking distance of the work vehicle when switching the set target traveling route from the traveling forward route to the following backward route or switching the traveling backward route to the following forward route When the work vehicle reaches the preceding switching point on the near side of the end point of the target travel route during traveling by the set distance as a reference, the set target travel path can be switched to the subsequent target travel route Automatic traveling system characterized by
  2.  前記設定距離は、前記制動距離に所定距離を追加して設定されることを特徴とする請求項1記載の自動走行システム。 The automatic traveling system according to claim 1, wherein the set distance is set by adding a predetermined distance to the braking distance.
  3.  前記所定距離は、前記設定目標走行経路を走行中の前記前進路から後続の前記後進路に切り替える場合に用いられる前進用所定距離と、前記設定目標走行経路を前記後進路から前記前進路に切り替える場合に用いられる後進用所定距離とを有し、
     前記前進用所定距離よりも前記後進用所定距離が大きいことを特徴とする請求項2記載の自動走行システム。
    The predetermined distance is a predetermined distance for advancing which is used when switching the set target travel route from the forward travel route to the following backward travel path, and the set target travel route is switched from the back travel route to the forward travel path And a predetermined distance for reverse movement to be used
    The automatic traveling system according to claim 2, wherein the reverse travel distance is larger than the forward travel distance.
  4.  前記作業車両の方位角を特定する方位角特定部を備え、
     前記制御部は、前記設定目標走行経路を、走行中の前記前進路から後続の前記後進路に切り替える又は走行中の前記後進路から後続の前記前進路に切り替える場合、前記方位角特定部にて特定される前記作業車両の現在方位角に沿う直線と後続の前記目標走行経路に沿う直線との角度偏差が所定値以下になると、前記作業車両が走行中の前記目標走行経路における前記先行切り替え地点に到達していなくても前記設定目標走行路を後続の前記目標走行経路に切り替えることを特徴とする請求項1~3のいずれか1項に記載の自動走行システム。

     
    An azimuth angle identification unit for identifying an azimuth angle of the work vehicle;
    When the control unit switches the set target traveling route from the forward path during traveling to the subsequent backward path after traveling or switches from the rear path during traveling to the subsequent forward path, the azimuth angle specifying unit When the angular deviation between the straight line along the current azimuth of the specified work vehicle and the straight line along the subsequent target travel route becomes equal to or less than a predetermined value, the preceding switching point in the target travel route while the work vehicle is traveling The automatic travel system according to any one of claims 1 to 3, wherein the set target travel route is switched to the subsequent target travel route even if the vehicle has not reached.

PCT/JP2018/029768 2017-09-29 2018-08-08 Automatic travel system WO2019064950A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017189458A JP6850706B2 (en) 2017-09-29 2017-09-29 Autonomous driving system
JP2017-189458 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019064950A1 true WO2019064950A1 (en) 2019-04-04

Family

ID=65901226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029768 WO2019064950A1 (en) 2017-09-29 2018-08-08 Automatic travel system

Country Status (2)

Country Link
JP (2) JP6850706B2 (en)
WO (1) WO2019064950A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7151669B2 (en) * 2019-08-29 2022-10-12 井関農機株式会社 work vehicle
JP7316198B2 (en) * 2019-11-22 2023-07-27 ヤンマーパワーテクノロジー株式会社 Automated driving system for work vehicles
JP7441385B2 (en) * 2020-12-28 2024-03-01 井関農機株式会社 Work vehicle control system
JP7125681B1 (en) 2021-04-27 2022-08-25 井関農機株式会社 Grain culm reaping work method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278912A (en) * 1985-06-03 1986-12-09 Komatsu Ltd Method for guiding unmanned moving machine by spot following system
JP2000270611A (en) * 1999-03-26 2000-10-03 Kubota Corp Reaping harvester

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131501A (en) * 1988-11-11 1990-05-21 Iseki & Co Ltd Turn-controlling process for mobile farm-working machine
JP5943039B2 (en) 2014-06-25 2016-06-29 トヨタ自動車株式会社 Parking assistance device
JP2016095660A (en) 2014-11-13 2016-05-26 ヤンマー株式会社 Unmanned operation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278912A (en) * 1985-06-03 1986-12-09 Komatsu Ltd Method for guiding unmanned moving machine by spot following system
JP2000270611A (en) * 1999-03-26 2000-10-03 Kubota Corp Reaping harvester

Also Published As

Publication number Publication date
JP2021099845A (en) 2021-07-01
JP6850706B2 (en) 2021-03-31
JP7132381B2 (en) 2022-09-06
JP2019066980A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP7132381B2 (en) automatic driving system
KR102508275B1 (en) Travel route specification system
EP3395139B1 (en) Automatic steering system
KR102534336B1 (en) Route generation system
US11234356B2 (en) Traveling route setting device
WO2021100373A1 (en) Automatic travel system for work vehicle
JP2020099226A (en) Controller for automatic travel work vehicle
JP6879896B2 (en) Satellite positioning system for work platforms
EP3939401A1 (en) Automatic travel system
JP2019053470A (en) Work vehicle-purpose autonomous travelling system
JP7275366B2 (en) automatic driving system
WO2019064927A1 (en) Automatic travel system
JP2022033175A (en) Automatic traveling system
JP2021009707A (en) Automatic steering system
JP7223552B2 (en) Display device and automatic driving system
JP2023078169A (en) Route generating system and route generating method
JP7094833B2 (en) Travel route display device
JP2023052875A (en) Travel path specification method
JP2020095744A (en) Travel route specification system
WO2020129413A1 (en) Travel state display device and automated travel system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861378

Country of ref document: EP

Kind code of ref document: A1