WO2019064700A1 - 映像装置 - Google Patents

映像装置 Download PDF

Info

Publication number
WO2019064700A1
WO2019064700A1 PCT/JP2018/021256 JP2018021256W WO2019064700A1 WO 2019064700 A1 WO2019064700 A1 WO 2019064700A1 JP 2018021256 W JP2018021256 W JP 2018021256W WO 2019064700 A1 WO2019064700 A1 WO 2019064700A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive signal
light
control unit
scanning
unit
Prior art date
Application number
PCT/JP2018/021256
Other languages
English (en)
French (fr)
Inventor
孝弘 松田
瀬尾 欣穂
大内 敏
愼介 尾上
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US16/627,914 priority Critical patent/US11212423B2/en
Publication of WO2019064700A1 publication Critical patent/WO2019064700A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/02Scanning details of television systems; Combination thereof with generation of supply voltages by optical-mechanical means only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/103Scanning systems having movable or deformable optical fibres, light guides or waveguides as scanning elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0008Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted at the end of the fibre
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/04Synchronising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • H04N9/3135Driving therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B2006/0098Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings for scanning

Definitions

  • the present invention relates to an imaging device having a light scanning unit having a protruding beam-like structure at one end of a light guide.
  • a scanning fiber device which scans light from the tip of an optical fiber toward an object and detects light reflected or scattered by the object, or fluorescence generated by the object (for example, refer to Patent Document 1).
  • a part of the optical fiber is supported in a cantilevered manner in a state in which the tip from which the light is emitted is swingable, and piezoelectric near the support By arranging the elements, the optical fiber is vibrated.
  • a helical scan (spiral scan) is used in which a spot of light to be irradiated is scanned in a spiral, and in the helical scan pattern, the vibration frequency is set to a resonance frequency It is done.
  • the vibration of the tip of the optical fiber is helically scanned by an actuator that can excite on two axes.
  • the number of scanning lines in upper, lower, left, and right is equal in a helical scanning locus, so 4: 3 or 16: 9, etc.
  • more rotation numbers are required to obtain the required resolution.
  • the present invention appropriately arranges a light source modulation point by controlling the locus or speed of fiber scanning, and achieves high resolution and reduced unevenness of brightness with a small number of rotations even when the horizontal and vertical resolutions are different. It is an object of the present invention to provide an imaging device that realizes
  • an excitation that applies vibration to the light guide via a light guide where light is incident from one end and emitted from the other end and a junction near the other end of the light guide.
  • a light scanning unit having a drive unit, a drive signal generation unit that generates a drive signal for inducing a vibration to the excitation unit, and the excitation unit is a first substantially perpendicular to an optical axis direction of the light guide path.
  • the second drive signal and the second drive signal are generated as sine waves having substantially the same frequency but different phases. Amplitude modulation of the sine wave, configured to a large amount of modulation than the amplitude modulation of the sine wave of the first drive signal.
  • the light guide path is vibrated through the light guide path in which light is incident from one end and emitted from the other end, and a junction near the other end of the light guide path.
  • An optical scanning unit having an oscillating unit, a drive signal generating unit for generating a drive signal for inducing a vibration in the oscillating unit, and the oscillating unit are substantially perpendicular to the optical axis direction of the light guide.
  • a scanning track control unit that generates a first drive signal for driving the vibration unit in a first direction and a second drive signal for driving in a second direction in an arbitrary pattern, and periodic that configures a frame of an image
  • a counter for measuring the number of cycles of optical scanning to be executed. Depending on the printer of the measurement results, it switches the phase of the first drive signal and second drive signals, configured to perform optical scanning at different loci.
  • FIG. 1 is a block diagram of a video apparatus according to a first embodiment.
  • FIG. 2 is a cross-sectional view of a light scanning unit of the imaging apparatus of Embodiment 1.
  • FIG. 2 is a cross-sectional view of a light scanning unit of the imaging apparatus of Embodiment 1.
  • FIG. 6 is a development view showing the configuration of the outer peripheral electrode of the excitation unit of the first embodiment.
  • FIG. 2 is a cross-sectional view of a light scanning unit of Example 1;
  • FIG. 5 is an electrical equivalent circuit diagram of the light scanning unit of the first embodiment.
  • FIG. 6 is a diagram showing a drive voltage applied to the light scanning unit of the first embodiment.
  • FIG. 7 is a diagram showing light scanning displacement of the light scanning unit of the first embodiment.
  • FIG. 3 is a diagram showing an optical scanning locus of Example 1;
  • FIG. 7 is a diagram showing the light scanning locus and the distribution of light source modulation points in Example 1;
  • FIG. 6 is a diagram showing an operation of the video apparatus of the first embodiment.
  • FIG. 7 is a diagram showing the light scanning locus and the distribution of light source modulation points in Example 1;
  • FIG. 7 is a diagram showing the light scanning locus and the distribution of light source modulation points in Example 1; It is a figure which shows a spiral type
  • 5 is an operation timing chart of the video apparatus of the first embodiment.
  • FIG. 7 is a view showing a light scanning locus and a distribution of light source modulation points according to a modification of the first embodiment. It is sectional drawing which shows another structure of a light scanning part.
  • FIG. 7 is a block diagram of a video apparatus according to a second embodiment. 7 is an operation timing chart of the video apparatus of the second embodiment.
  • FIG. 7 is a view showing a light scanning locus of pattern A of Example 2;
  • FIG. 7 is a view showing a light scanning locus of pattern B of Example 2;
  • FIG. 7 is a diagram showing an optical scanning locus of Example 2.
  • 15 is an operation timing chart of the video apparatus of the modified example of the second embodiment.
  • FIG. 15 is an operation timing chart of the video apparatus of the modified example of the second embodiment.
  • 15 is an operation timing chart of the video apparatus of the third embodiment.
  • FIG. 16 is a diagram showing an optical scanning locus of Example 3.
  • 15 is an operation timing chart of the video apparatus of the modification of the third embodiment.
  • 15 is an operation timing chart of the video apparatus of the fourth embodiment.
  • FIG. 18 is a diagram showing an optical scanning locus of the fourth embodiment.
  • FIG. 16 is a diagram showing the light scanning locus and the distribution of light source modulation points in Example 4;
  • FIG. 16 is a diagram showing the light scanning locus and the distribution of light source modulation points in Example 4;
  • FIG. 16 is a diagram showing the light scanning locus and the distribution of light source modulation points in Example 4; 15 is an operation timing chart of the video apparatus of the modified example of the fourth embodiment. 21 is an operation timing chart of the video apparatus of the fifth embodiment.
  • FIG. 18 is a diagram showing an optical scanning locus of Example 5.
  • FIG. 18 is a diagram showing the light scanning locus and the distribution of light source modulation points in Example 5;
  • FIG. 18 is a diagram showing the light scanning locus and the distribution of light source modulation points in Example 5;
  • 21 is an operation timing chart of the video apparatus of the fifth embodiment.
  • It is a block diagram which shows Example 6 of the imaging device which has an imaging function. It is a figure which shows operation
  • FIG. 1 is a block diagram showing an imaging device 10 provided with an optical scanning unit 1001 corresponding to a conventional scanning fiber device.
  • the video device 10 is a device having a function of projecting a video, such as a projector or a head mount display, for example.
  • the video apparatus 10 includes a light scanning unit 1001, a light source unit 1002, a light source control unit 1003, a light emission control unit 1004, a video control unit 1005, a video information storage unit 1006, a scanning locus control unit 1007, a drive signal generation unit 1008, and a drive control unit.
  • a device control unit 1010, a storage unit 1011, and an input / output control unit 1012 are provided.
  • the light emission control unit 1004, the video control unit 1005, the scanning locus control unit 1007, and the drive signal generation unit 1008 in the present embodiment are realized as digital circuits as an example. These circuits may exist as functional blocks in integrated circuits such as the same IC, for example, an FPGA (Field Programmable Gate Array), an ASIC (Application Specific Integrated Circuit), and the like.
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • the device control unit 1010 controls each block in the video device 10.
  • the device control unit 1010 is configured of, for example, a CPU (Central Processing Unit).
  • the video device 10 is connected to an external control device 50 via an input / output control unit 1012.
  • the video device 10 in the present embodiment has a function of receiving a video signal from the external control device 50 and displaying the video.
  • the input / output control unit 1012 can be considered to be integrated in an FPGA or ASIC as the same digital circuit as the light emission control unit 1004, the video control unit 1005, and the scanning locus control unit 1007. It may be done.
  • a storage unit 1011 is a memory area in which programs, data, and the like for performing processing in each unit are stored because the device control unit 1010 controls the video apparatus 10, and is realized by, for example, a flash memory or the like.
  • the storage unit 1011 may be another storage medium capable of writing and reading such as an HDD (Hard Disc Drive) or an optical disc. Further, it may be a temporary storage area such as RAM (Random Access Memory).
  • a video signal is received from the external control device 50 such as a video device or a personal computer via the input / output control unit 1012, and the video signal is stored in the video information storage unit 1006. Ru.
  • the scanning locus control unit 1007 generates a synchronization signal for scanning the light by driving the light scanning unit 1001 based on the control from the device control unit 1010, and transmits the synchronization signal to the video control unit 1005.
  • the trajectory pattern for light scanning by the light scanning unit 1001 is determined.
  • the drive signal generation unit 1008 generates a drive signal for scanning the light by driving the light scanning unit 1001 based on the information of the locus pattern.
  • the drive signal generation unit 1008 is realized by, for example, a DA converter.
  • the drive signal output from the drive signal generation unit 1008 is applied to an actuator unit in the light scanning unit 1001 by the drive control unit 1009.
  • the drive control unit 1009 supplies drive power to the light scanning unit according to the drive signal generated by the drive signal generation unit 1008, and is realized by an amplifier or the like.
  • the image control unit 1005 receives the synchronization signal from the scanning locus control unit 1007, and calculates coordinates (x, y) determined according to the light scanning position. Further, the data of the pixel corresponding to the coordinates (x, y) is read out from the video information storage unit 1006.
  • the pixel data is, for example, gradation data of RGB. The pixel data is transmitted to the light emission control unit 1004.
  • the light emission control unit 1004 generates a signal for turning on the light source 1002 according to the received pixel data.
  • the light emission control unit 1004 may correct the luminance based on the information from the scan locus control unit 1007.
  • the light source control unit 1003 supplies a current to the laser element in the light source unit 1002 based on the signal generated by the light emission control unit 1004, and generates a laser beam.
  • the laser light enters a light scanning unit 1001 and generates a laser spot at a light scanned position in a projection plane (not shown).
  • the image information is projected on the projection plane.
  • the light scanning unit 1001 will be described with reference to the cross-sectional view of FIG.
  • the light scanning unit 1001 includes an excitation unit 101, a light guide 102, a junction unit 103, a lens 104, an exterior unit 105, a support member 106, and an electrical wiring unit 107.
  • the excitation unit 101 is an actuator that generates a vibration, and is configured of a piezoelectric actuator.
  • the vibrating portion 101 in the present embodiment is a cylindrical piezoelectric element having a hollow central portion, and is configured by arranging a plurality of electrodes on the inner and outer peripheries thereof.
  • the light guide path 102 is disposed in the hollow portion of the excitation unit 101, and the excitation unit 101 and the light guide path 102 are mechanically joined by the joining unit 103.
  • the excitation unit 101 is fixed to the exterior unit 105 by the support member 106.
  • the light guide path 102 is realized by, for example, an optical fiber.
  • the bonding portion 103 is realized by, for example, an adhesive.
  • One end 102 a of the light guide path 102 is a free end, and the vibration of the excitation unit 101 is transmitted to the light guide path 102 by the joint portion 103, whereby the free end 102 a vibrates.
  • the light guide path 102 has a structure of a projecting beam whose free end is one end, and has a natural frequency that easily vibrates.
  • the lens 104 is a lens molded of glass or resin.
  • the lens 104 may be an aspheric lens other than a spherical lens as illustrated, or may be a Fresnel lens or a refractive index distribution type lens.
  • the lens 104 may be integrated with the distal end portion 102 a of the light guide path 102.
  • the lens 104 may be configured of a plurality of lenses.
  • the excitation unit 101 is a cylindrical piezoelectric actuator whose inside is hollow.
  • An electrode 3010 is a piezoelectric medium made of a material having piezoelectricity, and has a common electrode 3015 on the inner peripheral portion, and an electrode divided into four at intervals of approximately 90 degrees in the cylindrical axial rotation direction of the cylindrical actuator on the outer peripheral portion.
  • a first outer peripheral electrode 3011, a second outer peripheral electrode 3012, a third outer peripheral electrode 3013, and a fourth outer peripheral electrode 3014 are disposed.
  • the electrodes provided on these cylindrical actuators are arranged continuously in the form of a surface shown in FIG. 3 along the longitudinal direction of the cylindrical shape.
  • the electrodes 3011 to 3014 having substantially equal sizes in the longitudinal direction are aligned in parallel.
  • a light guide 102 is disposed at the center of the cylindrical pressure piezoelectric actuator.
  • Each electrode in the outer peripheral portion is connected to the drive control unit 1008 by the electrical wiring unit 107, and an arbitrary voltage can be applied.
  • the piezoelectric medium 3010 forms a plurality of piezoelectric elements in each region sandwiched by the electrodes. This is shown in FIG. A region sandwiched by four electrodes arranged on the outer periphery of the piezoelectric medium 3010 and an electrode on the inner periphery functions as a piezoelectric element. That is, the first piezoelectric element 3021 sandwiched between the first outer peripheral electrode 3011 and the common electrode 3015, the second piezoelectric element 3022 sandwiched between the second outer peripheral electrode 3012 and the common electrode 3015, the third outer peripheral electrode 3013 And a fourth piezoelectric element 3024, sandwiched between the fourth outer peripheral electrode 3014 and the common electrode 3015.
  • the vertical direction toward the paper surface is defined as y-axis
  • the horizontal direction is defined as x-axis.
  • the light guide path 102 in the center is excited using this piezoelectric actuator.
  • a voltage is applied to the first piezoelectric element 3021 and the third piezoelectric element 3023 facing each other across the central portion to expand the first piezoelectric element 3021 and contract the third piezoelectric element 3023, the light guide path 102 is formed. Receives force in the y-axis downward direction. Conversely, when the first piezoelectric element 3021 is contracted and the third piezoelectric element is expanded, the light guide path 102 receives a force in the y-axis upward direction. As described above, in order to give vibration in the y-axis direction, the first piezoelectric element 3021 and the third piezoelectric element 3023 facing each other are operated as a pair.
  • the light guide path 102 is made to resonate by making the voltage for applying vibration into a sinusoidal signal and setting the period thereof to a period near the above-mentioned natural frequency.
  • the opposing second piezoelectric element 3022 and fourth opposing piezoelectric element 3024 are operated in pairs.
  • each of the piezoelectric elements 3021 to 3024 is connected through the common electrode 3015.
  • the voltage applied to each piezoelectric element is determined by the difference between the potential applied to the outer peripheral electrodes 3011 to 3014 and the potential of the inner peripheral electrode 3015.
  • the inner peripheral electrode 3015 may be electrically grounded to a potential of 0 or may be a float.
  • the voltage applied to the first outer electrode 3011 is Vy1
  • the voltage applied to the second outer electrode 3012 is Vx1
  • the voltage applied to the third outer electrode 3013 is Vy2
  • the fourth The voltage applied to the outer peripheral electrode 3014 is Vx2.
  • Each voltage is represented by the following equation with respect to time t.
  • a 1 , A 2 , A 3 , A 4 are vibration amplitudes
  • fr is a resonance frequency
  • ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 is an initial phase of a sine wave
  • C 1 , C 2 , C 3 , C 4 is an offset component.
  • the first piezoelectric element 3021 and the third piezoelectric element 3023 are a pair of piezoelectric elements in the y-axis direction, and when one of them is contracted, the other may expand, that is, the movement may be in the opposite phase.
  • the light guiding path 102 can be independently controlled and vibrated on the y axis and the x axis by the excitation unit 101, and light is scanned.
  • a 1 and A 2 be functions of time t.
  • it can be described as the following equation.
  • a 1 , a 2 , b 1 and b 2 are 0 or positive values.
  • a 1 and A 2 are not limited to the linear function of time t as in the equations 7 and 8.
  • the scanning locus control unit 1007 in the present embodiment applies the drive signal shown in FIG. 7A to the excitation unit 101.
  • the amplitude A 1 of the y-axis drive signal during the excitation period Tv is gradually increased with time, and zero or attenuate with the amplitude A 1 at the decay time Td time.
  • the amplitude A 2 of the other x-axis driving signal to a substantially constant value.
  • the displacement in the y-axis direction and the displacement in the x-axis direction become the displacement shown in FIG. 7B, and while the optical scanning trajectory draws a substantially elliptical shape, the amplitude on the short axis side increases and the trajectory shown in FIG. Draw.
  • the configurations of the light source control unit 1003 and the light source unit 1002 are illustrated in FIG.
  • the light source unit 1002 includes three LDs of three primary colors (laser diodes: red LD 1201, green LD 1202, and blue LD 1203).
  • the three LDs are respectively connected in series with current limiting resistors 1204, 1205 and 1206, and are supplied with power supply voltages VLDr, VLDg and VLDb, respectively.
  • the voltage value of VLDr, VLDg, and VLDb can be set to an arbitrary value by a power control unit (not shown), whereby the light emission of the red LD 1201, the green LD 1202, and the blue LD 1203 can be controlled.
  • the terminals of the current limiting resistors 1204, 1205, 1206 on the opposite side to the LD are connected to the light source controller 1003.
  • the light source control unit 1003 can control the light emission amount, the light emission time, and the like of the red LD 1201, the green LD 1202, and the blue LD 1203 by changing the voltage of each terminal of CTRLr, CTRLg, and CTRLb.
  • the power supply voltages VLDr, VLDg, and VLDb may have the same value or may have the same terminal. Further, the voltages CTRLr, CTRLg, and CTRLb of the terminals of the light source control unit 1003 may have the same value or may be the same terminal. However, the three LDs need to be individually controlled, and when both the VLD terminal and the CTRL terminal are made the same terminal, a separate member such as a switch is required.
  • the light source unit 1002 is described as having a configuration in which one primary color LD is provided, it is not limited thereto. It may be configured to have one or more LDs of a single color. Moreover, light sources other than LD may be used. Also for the three primary colors, the light source does not have to be configured to emit only the primary color. For example, a specific color may be extracted by a filter using a white light source, a dichroic filter or a color wheel.
  • the light emission control unit 1004 operates with a cycle sufficiently earlier than one cycle of the sine wave of the x-axis drive signal, generates a modulation signal with a faster cycle to the light source control unit 1003, and Operate.
  • the period is sufficiently smaller than the resonance period Tr.
  • FIG. 8B the timing at which the light source unit 1002 is modulated on the scanning locus of FIG. 8A is illustrated in FIG. 8B.
  • the timing at which the light source 1002 is modulated is illustrated as a light source modulation point.
  • the brightness or color of the light source can be changed. Therefore, as the number of light source modulation points increases, the resolution of the displayed image can be increased.
  • the light source modulation points in proportion to the number of rotations of the scanning locus in the vertical direction (y-axis direction).
  • the resolution in the y-axis direction can be increased by increasing the resonance frequency fr.
  • the light source modulation points can be arranged by the number of points determined by the resonance period Tr and the light source modulation period T L.
  • the light source modulation point in the x-axis direction can be increased by shortening the light source modulation period TL and performing high-speed modulation without changing the resonance frequency fr, and the resolution can be increased.
  • the modulation frequency f L of the light source can be on the order of several tens of MHz
  • the resonance frequency fr can be on the order of several kHz to several tens of kHz, with a value different by about two to four digits. Therefore, the light source modulation period T L is smaller by about 2 to 4 digits than the resonance period Tr, and it is possible to arrange the light source modulation points 1000 or more in the x-axis direction.
  • Tr is an integral multiple of T L . Since general video data is a set of V vertical pixel data and H horizontal pixel data, it is better to align the positions in the x-axis direction in this way.
  • Tr is (an integral multiple of T L ) + (1/2 of T L )
  • the light source modulation point is shifted by a half period each time the locus goes to the outer periphery, as shown in FIG. Aligned. Since the laser spot is usually circular, in the case of the alignment of points as shown in FIG. 9B, it is easy to maintain the uniformity of the in-plane brightness.
  • the scanning locus control unit 1007 generates the drive signal as described above.
  • the drive signal generation unit 1008 converts the drive signal into an analog signal, and the drive signal amplified by the drive control unit 1009 is applied to the light scanning unit 1001.
  • Vy1, Vy2, Vx1, and Vx2 become the signals shown in FIG. 7 (a).
  • FIG. 8C a locus shown in FIG. 8A is generated on the screen 60.
  • the excitation part 101 applicable to this drive system is not limited to a piezoelectric element, It is applicable if it is a structure which can be excited to a longitudinal direction and a horizontal direction.
  • the shape of the piezoelectric element is not limited to a cylindrical shape, and may be applied to another shape such as a rectangular cylindrical shape as shown in FIG. 14, for example.
  • the resolution in the trajectory of FIG. 10B is the same value determined only by the number of rotations of the spiral in the y-axis direction and the x-axis direction. Further, at the central portion of the spiral, the linear velocity of light scanning is reduced, so the difference in brightness with the outer peripheral portion is increased.
  • the resolution in the x-axis direction can be increased by the modulation period T L of the light source independent of the resonance frequency fr. Since a general video format has a rectangular aspect ratio such as 16: 9 or 4: 3, the structure of the light scanning unit 1001 is changed by increasing the resolution in the x-axis direction regardless of the resonance frequency fr. You can increase the resolution without
  • the imaging device 10 can project an image continuously by repeatedly performing the above-described light scanning.
  • the video apparatus 10 performs optical scanning Nf times (Nf is a positive number) during one second, if the video signal stored in the video information storage unit 1006 is changed for each optical scanning, the frame rate N f It can display moving images at frames per second (fps).
  • FIG. 11 shows a timing chart of moving image display.
  • the y-axis displacement and the x-axis displacement repeat the same operation as in FIG. 7A for each frame.
  • an attenuation period Td is provided to return the light scanning position in the y-axis direction to the center.
  • the amplitude of the drive signal is attenuated so as to stop the vibration of the excitation unit 101.
  • a signal of a frequency fr having a phase different from that of the drive signal applied in the vibration period Tv by 180 ° may be applied.
  • the excitation period Tv controls the light source 1002 by the light emission control unit 1004 described above to turn on the laser light.
  • the light emission control unit 1004 turns off the light source 1002.
  • the video information stored in the video information storage unit 1006 to which the video control unit 1005 refers is updated every time Tf.
  • the update of the video information is processed during the turn-off period Td.
  • the scanning range is expanded only in the x-axis direction, and the light source 1002 emits light only when the scanning position is within the predetermined effective range 130, so that the aspect ratio of a rectangle like a general video format Can be displayed.
  • the expansion of the scanning range is set to A 1 ⁇ A 2 in the equations (5) and (6). It may be optically extended to one side by a lens or the like.
  • the display method as shown in FIG. 13 since the light is not emitted in the left and right portions where the light source modulation point is concentrated, the difference in brightness between the central portion and the peripheral portion is reduced. Further, as in the case of the spiral scanning trajectory shown in FIG. 10B, the problem that the difference in brightness between the central portion and the outer peripheral portion becomes large is eliminated.
  • the video apparatus 20 includes a light scanning unit 1001, a light source unit 1002, a light source control unit 1003, a light emission control unit 1004, a video control unit 1005, a video information storage unit 1006, a scanning locus control unit 1007, a drive signal generation unit 1008, and a drive control unit.
  • a device control unit 1010, a storage unit 1011, an input / output control unit 1012, and a frame counter 1501 are provided. Components in FIG. 15 other than the scanning locus control unit 1007 and the frame counter 1501 are the same as in the first embodiment, and thus the description thereof is omitted.
  • the scanning locus control unit 1007 and the frame counter 1501 are realized as a digital circuit as an example, and the same IC as the light emission control unit 1004 and the video control unit 1005, for example, may be present as a functional block in integrated circuits such as FPGA and ASIC. good.
  • the scanning locus control unit 1007 generates driving signals of equations (5) and (6).
  • the frame counter 1501 has a function of counting the number of video frames. Assuming that the count of the number of frames is Fnum, the following equation is given for time t, for example.
  • the scanning locus control unit 1007 is characterized by changing the driving signal and changing the locus of optical scanning when the frame count Fnum obtained by the frame counter 1501 is an odd number or an even number. That is, in Equations 5 and 6, ⁇ 1 and ⁇ 2 are controlled as follows.
  • the drive signal becomes a signal shown in FIG.
  • the odd frame light scanning is performed along the locus of the pattern A shown in FIG.
  • the even frame light scanning is performed along the locus of pattern B shown in FIG.
  • the locus of the pattern B is a figure obtained by rotating the locus of the pattern A by 180 ° with respect to the center of the spiral.
  • scanning is performed by the drive signal of pattern B of opposite phase in which the phase is reversed by 180 ° in both the x axis and the y axis, thereby canceling the vibration component excited in pattern A. Can be driven.
  • the light scanning position moved to the outer periphery of the locus of the pattern A can be quickly returned to the center position of the spiral, and the attenuation period Td can be reduced.
  • the attenuation period Td is reduced, the one frame required time Tf can be reduced without changing the excitation period Tv and the resonance period Tr, so that the frame rate Nf can be increased.
  • the excitation period Tv can be increased by reducing the attenuation period Td, and the trajectory rotation number and the resolution can be increased.
  • the locus of pattern B passes between the loci of pattern A. It is good also as a system which draws an image of higher resolution by drawing another pixel of the same picture with a pattern A locus and a pattern B locus like an interlace picture using this.
  • a method may be employed in which a drive pulse whose phase is inverted in the attenuation period Td is applied as a brake pulse to further reduce the attenuation period Td.
  • the drive signal in the attenuation period Td of the odd frame and the excitation period Tv of the even frame becomes a sinusoidal signal in phase
  • the drive signal in the attenuation period Td of the even frame and the excitation period Tv of the odd frame is in phase It becomes a signal.
  • the vibration amplitude is reduced by the amount of attenuation that is approximately the same as the amount of increase in displacement during the excitation period Tv.
  • Equations 7 and 8 the coefficients are changed as in the following equation.
  • the drive signal of FIG. 20 is generated based on Equations 12 and 13.
  • a third embodiment of the present invention will be described according to FIG.
  • the configuration of the video apparatus 20 of the present embodiment is the same as that of the second embodiment.
  • the scanning locus control unit 1007 generates driving signals of equations (5) and (6).
  • driving signals of equations (5) and (6) gradually increased with time the amplitude A1 of the y-axis driving signal, and zero or attenuate with the amplitude A 1 at the decay time Td time.
  • the amplitude A 2 of the other x-axis driving signal to a substantially constant value.
  • the scanning locus control unit 1007 changes the locus of optical scanning by changing only the drive signal in the y-axis direction when the frame count Fnum obtained by the frame counter 1501 is an odd number or an even number. . That is, in Equations 5 and 6, ⁇ 1 and ⁇ 2 are controlled as follows.
  • the drive signal becomes a signal shown in FIG.
  • the locus at this time is shown in FIG.
  • light scanning is performed along the locus of pattern A shown by the solid line in FIG.
  • light scanning is performed along the locus of pattern B shown by the broken line in FIG.
  • the trajectory of the pattern B is a trajectory obtained by inverting the trajectory of the pattern A in the y-axis direction.
  • the resolution in the x-axis direction can be increased by the modulation period T L of the light source independent of the resonance frequency fr. Since a general video format has a rectangular aspect ratio such as 16: 9 or 4: 3, the structure of the light scanning unit 1001 is changed by increasing the resolution in the x-axis direction regardless of the resonance frequency fr. You can increase the resolution without
  • the attenuation period Td is reduced, the one frame required time Tf can be reduced without changing the excitation period Tv and the resonance period Tr, so that the frame rate Nf can be increased.
  • the excitation period Tv can be increased by reducing the attenuation period Td, and the trajectory rotation number and the resolution can be increased.
  • another pixel of the same image is drawn with the pattern A locus and the pattern B locus like an interlaced image using the locus of the pattern A and the locus of the pattern B. It is good also as a system which draws a picture of higher resolution.
  • the operation may be performed as shown in the timing chart of FIG.
  • the amount of vibration of the light scanning position on the y axis in the attenuation period Td is gently attenuated.
  • the vibration amplitude is reduced by the amount of attenuation that is approximately the same as the amount of increase in displacement during the excitation period Tv.
  • Equation 7 the coefficients are changed as in the following equation.
  • the drive signal of FIG. 23 is generated based on Formula 14 and Formula 15.
  • a fourth embodiment of the present invention will be described according to FIG.
  • the configuration of the video apparatus 10 of the present embodiment is the same as that of the first embodiment.
  • Components in FIG. 1 other than the scanning trajectory control unit 1007 are the same as those in the first embodiment, and thus the description thereof is omitted.
  • the scanning locus control unit 1007 may be implemented as a digital circuit as an example, and may be present as a functional block in an integrated circuit such as an IC such as an FPGA or an ASIC, which is the same as the light emission control unit 1004 and the video control unit 1005.
  • the scanning locus control unit 1007 generates driving signals of equations (5) and (6).
  • the coefficients in Equations 7 and 8 are modulated to have the following relationship.
  • the amplitude (increase or decrease of the envelope) of the sine wave of the drive signal is modulated in such a manner that one increases and the other decreases in the substantially orthogonal x-axis and y-axis.
  • the drive signal becomes a signal shown in FIG.
  • the locus at this time is shown in FIG.
  • the light source 1002 is modulated with a modulation period T L sufficiently shorter than the resonance period Tr to obtain a distribution of light source modulation points shown in FIG.
  • FIG. 26 (a) When the distribution of the light source modulation points in FIG. 25 (b) is inclined 45 degrees diagonally, a locus close to a rectangle becomes as shown in FIG. 26 (a). This is horizontally expanded as shown in FIG. 26 (b), and the light source 1002 is made to emit light only when the scanning position is within the predetermined effective range 130, whereby a rectangular aspect ratio like a general video format can be obtained.
  • Image display can be performed.
  • the extension of the scanning range can be performed optically by a lens or the like. In this embodiment, since the number of light source modulation points to be turned off can be reduced compared to the first embodiment shown in FIG. 13, the display brightness of the effective range 130 is increased.
  • the operation may be performed as shown in the timing chart of FIG.
  • this modification in the equations (7) and (8), this can be realized by changing the coefficients as in the following equation.
  • a 1 and A 2 are not limited to linear functions of time t as in the equations (7) and (8). If A 1 and A 2 are functions such as the square root of time t, it can be expected that the distribution of light source modulation points will be closer to a rectangle.
  • a fifth embodiment of the present invention will be described according to FIG.
  • the configuration of the video apparatus 10 of the present embodiment is the same as that of the first embodiment.
  • Components in FIG. 1 other than the scanning trajectory control unit 1007 are the same as those in the first embodiment, and thus the description thereof is omitted.
  • the scanning locus control unit 1007 may be implemented as a digital circuit as an example, and may be present as a functional block in an integrated circuit such as an IC such as an FPGA or an ASIC, which is the same as the light emission control unit 1004 and the video control unit 1005.
  • the scanning locus control unit 1007 generates driving signals of equations (5) and (6).
  • the coefficients in Equations 7 and 8 are modulated to have the following relationship.
  • the relationship between the amplitude (increase or decrease of the envelope) of the sine wave of the drive signal in the drive signal of the substantially orthogonal x axis and the drive signal of the y axis decreases when the other increases.
  • Modulate to become And the drive signal amplitude is set to an arbitrary maximum value, and modulation is performed so that the amplitude of the sine wave does not exceed the maximum value. With such control, the drive signal becomes a signal shown in FIG. The locus at this time is shown in FIG.
  • the light source 1002 is modulated with a modulation period T L sufficiently shorter than the resonance period Tr to obtain a distribution of light source modulation points shown in FIG.
  • FIG. 29 (b) When the distribution of light source modulation points in FIG. 29 (b) is inclined 45 degrees diagonally, it becomes a locus close to a rectangle as shown in FIG. 30 (a). This is horizontally expanded as shown in FIG. 30 (b), and the light source 1002 is made to emit light only when the scanning position is within the predetermined effective range 130, whereby a rectangular aspect ratio like a general video format can be obtained. Image display can be performed.
  • the extension of the scanning range can be performed optically by a lens or the like. In this embodiment, as compared with the fourth embodiment shown in FIG. 26, the light scanning range can be made closer to a rectangle, so the number of light source modulation points to be turned off can be further reduced. Brightness increases.
  • the operation may be performed as shown in the timing chart of FIG.
  • this modification in the equations (7) and (8), this can be realized by changing the coefficients as in the following equation.
  • a 1 and A 2 are not limited to linear functions of time t as in the equations (7) and (8). If A 1 and A 2 are functions such as the square root of time t, it can be expected that the distribution of light source modulation points will be closer to a rectangle.
  • the video devices 10 and 20 have been described as devices having a function of projecting a video, such as a projector and a head mount display, for example.
  • the present invention can also be configured as an imaging device having a function of acquiring an image of
  • the video apparatus 30 includes a light scanning unit 1001, a light source unit 1002, a light source control unit 1003, a light emission control unit 1004, a video control unit 1005, a video information storage unit 1006, a scanning locus control unit 1007, a drive signal generation unit 1008, and a drive control unit.
  • a device control unit 1010, a storage unit 1011, an input / output control unit 1012, and a light receiving unit 1020 are provided.
  • the components other than the light emission control unit 1004, the video control unit 1005, the video information storage unit 1006, and the light receiving unit 1020 are the same as in the first embodiment, and thus the description thereof is omitted.
  • the light emission control unit 1004 and the video control unit 1005 are realized as a digital circuit as an example, and the light emission control unit 1004, the video control unit 1005 and the scanning locus control unit 1007 are functional blocks in the same IC, for example, an integrated circuit such as FPGA or ASIC. It may exist as
  • the video apparatus 30 in this embodiment is connected to the external control apparatus 50 via the input / output control unit 1012.
  • the video apparatus 30 in the present embodiment transmits the captured video signal to the external control apparatus 50.
  • the external control device 50 is, for example, a display device that displays video information, a recording device that stores video information, and the like.
  • the light emission control unit 1004 generates a signal for lighting the light source 1002 at a predetermined timing.
  • the light emission control unit 1004 may correct the timing and the luminance based on the information from the scanning locus control unit 1007.
  • the light receiving unit 1020 is formed of a light receiving element such as a photodetector for converting light into an electric signal.
  • the light receiving unit 1020 may include, in addition to the light receiving element, a light guide, an optical amplifier, an electric signal amplification circuit, an analog-digital conversion circuit, and the like.
  • the light receiving unit 1020 generates light reception information according to the received light.
  • the light reception information is, for example, light reception intensity information according to the intensity of the received light, timing information in which the light reception intensity changes, or the like. In this embodiment, the light reception intensity information is described as an example.
  • the imaging device 30 of the present embodiment which operates as an imaging device, irradiates the imaging target 70 with the laser light output from the light source 1002 as shown in FIG.
  • the laser light emitted to the object to be imaged 70 is reflected or scattered on the surface of the object to be imaged 70, and a part of the reflected light or the scattered light is received by the light receiving unit 1020.
  • the position where the laser beam is irradiated to the object to be photographed 70 by the light scanning unit 1001 is changed by the same light scanning as the light scanning described in each of the first to fifth embodiments.
  • the image control unit 1005 receives the synchronization signal from the scanning locus control unit 1007, and calculates coordinates (x, y) determined according to the light scanning position. Further, the light reception information is received from the light receiving unit 1020, and the pixel data corresponding to the light reception information and the coordinates (x, y) is written to the video information storage unit 1006.
  • the pixel data is, for example, gradation data according to the light reception intensity information.
  • the video information storage unit 1006 receives pixel data from the video information control unit 1005, and holds screen data composed of a plurality of pixel data.
  • the input / output control unit 1012 outputs the screen data held in the video information storage unit 1006 to the external control device 50 at a predetermined interval.
  • the video apparatus 30 can transmit the captured video information to the external control apparatus.
  • the present invention is not limited to the embodiments described above, but includes various modifications.
  • the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the configurations, functions, processing units, processing means, etc. described above may be realized by hardware, for example, by designing part or all of them with an integrated circuit.
  • External control device 60 ... Screen 70 ⁇ imaging object 101 ... exciting units 102 ... light guide path 103 ... joint 104 ... lens 105 ... outer portion 106 ... support member 107,107-1,107-2 , 107-3, 107-4 ... electrical wiring unit 130 ... effective range 1001 of image display device ... light scanning unit 1002 ... light source unit 1003 ... light source control unit 1004 ...
  • Video control unit 1006 ⁇ ⁇ ⁇ Video information storage unit 1007 ⁇ ⁇ ⁇ Scanning locus control unit 1008 ⁇ ⁇ ⁇ Drive signal generation unit 1009 ⁇ ⁇ ⁇ Drive control unit 1010 ⁇ ⁇ ⁇ Device control unit 1011 ⁇ ⁇ ⁇ Storage unit 1012: Input / output control unit 1 20 ... the light-receiving unit 1201 ...

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

導光路の一端が突き出し梁状の構造を持つ光走査部を有する映像装置の光走査方式を提案する。 映像装置を、一端から光を入射して他端から出射する導光路と、前記導光路の前記他端の近傍の接合部を介して前記導光路に振動を加える加振部とを有する光走査部と、前記加振部に振動を誘起するための駆動信号を生成する駆動信号生成部と、前記加振部は、前記導光路の光軸方向と略垂直な第一の方向と、および前記導光路の光軸方向と略垂直かつ前記第一の方向と略垂直な第二の方向に、独立して前記導光路を加振する機能を有し、前記加振部を第一の方向に駆動する第一の駆動信号と、第二の方向に駆動する第二の駆動信号を任意のパターンで発生する走査軌跡制御部とを備え、前記走査軌跡制御部は第一の駆動信号と第二の駆動信号を略同一の周波数の位相が異なる正弦波として発生し、第二の駆動信号の正弦波の振幅変調を、第一の駆動信号の正弦波の振幅変調よりも大きな変調量とするように構成する。

Description

映像装置
 本発明は、導光路の一端が突き出し梁状の構造を持つ光走査部を有する映像装置に関する。
 従来、光ファイバの先端部から光を対象物に向けて走査し、対象物で反射、散乱等される光、あるいは、対象物で発生する蛍光等を検出する走査ファイバ装置が知られている(例えば、特許文献1参照)。このような装置では、照射する光を、対象物上で走査させるため、光が出射する先端部が揺動可能な状態で光ファイバの一部を片持ち支持し、この支持部の近傍に圧電素子を配置することによって、光ファイバを振動させている。
 光ファイバの走査方法としては、通常、照射する光のスポットが、螺旋を描くように走査する螺旋走査(スパイラル走査)が使用されており、螺旋型の走査パターンでは、振動周波数は共振周波数に設定されている。
米国公開公報US2008/0265178
 特許文献1に記載の走査ファイバ装置では、二つの軸に加振可能なアクチュエータにより、光ファイバ先端の振動を螺旋状に走査する。
 共振周波数により決まる一定の加振周波数によって螺旋状の走査軌跡とした場合、螺旋の中央に軌跡を戻す走査が必要となる。このような操作により、螺旋の中央部では移動速度が極端に低下する。光ファイバから単位時間あたり等しい光量が放出される場合、螺旋の中央部では増光する傾向を有するなど、移動速度の低下は全体の明るさのムラを発生させる要因となる。
 また、走査ファイバ装置をプロジェクターに組み込んでスクリーンなどに投影する用途を考えた場合に、螺旋状の走査軌跡では、上下左右の走査線の数は等しくなるため、4:3や16:9などのような、水平と垂直とで解像度の異なる映像装置への適用時に、必要とする解像度を得るためにより多くの回転数を必要とする。
 また、軌跡の中央部は、共振振動する光ファイバをほぼ無振動状態の位置に戻すことと等価であるため、振動の抑制のための制御や処理時間が必要となる。
 本発明は、ファイバ走査の軌跡または速度を制御することで光源変調点を適切に配置し、水平垂直の解像度の異なる場合でも少ない回転数で、高解像で明るさのムラを低減した高画質を実現する映像装置を提供することを目的とする。
 本発明の映像装置の好ましい例では、一端から光を入射して他端から出射する導光路と、前記導光路の前記他端の近傍の接合部を介して前記導光路に振動を加える加振部とを有する光走査部と、前記加振部に振動を誘起するための駆動信号を生成する駆動信号生成部と、前記加振部は、前記導光路の光軸方向と略垂直な第一の方向と、および前記導光路の光軸方向と略垂直かつ前記第一の方向と略垂直な第二の方向に、独立して前記導光路を加振する機能を有し、前記加振部を第一の方向に駆動する第一の駆動信号と、第二の方向に駆動する第二の駆動信号を任意のパターンで発生する走査軌跡制御部とを備え、前記走査軌跡制御部は第一の駆動信号と第二の駆動信号を略同一の周波数の位相が異なる正弦波として発生し、第二の駆動信号の正弦波の振幅変調を、第一の駆動信号の正弦波の振幅変調よりも大きな変調量とするように構成する。
 また、本発明の映像装置の好ましい例では、一端から光を入射して他端から出射する導光路と、前記導光路の前記他端の近傍の接合部を介して前記導光路に振動を加える加振部とを有する光走査部と、前記加振部に振動を誘起するための駆動信号を生成する駆動信号生成部と、前記加振部は、前記導光路の光軸方向と略垂直な第一の方向と、および前記導光路の光軸方向と略垂直かつ前記第一の方向と略垂直な第二の方向に、独立して前記導光路を加振する機能を有し、前記加振部を第一の方向に駆動する第一の駆動信号と、第二の方向に駆動する第二の駆動信号を任意のパターンで発生する走査軌跡制御部と、映像のフレームを構成する周期的に実行される光走査の周期回数を計測するカウンタとを備え、前記走査軌跡制御部は、前記カウンタの計測結果に応じて、第一の駆動信号および第二の駆動信号の位相の切り替えを行い、異なる軌跡で光走査を行うように構成する。
 本発明によれば、ファイバ走査の軌跡または速度を制御することにより、高画質な映像装置を提供することができる。
実施例1の映像装置のブロック図である。 実施例1の映像装置の光走査部の断面図である。 実施例1の映像装置の光走査部の断面図である。 実施例1の加振部の外周電極の構成を示す展開図である。 実施例1の光走査部の断面図である。 実施例1の光走査部の電気的な等価回路図である。 実施例1の光走査部に印加する駆動電圧を示す図である。 実施例1の光走査部の光走査変位を示す図である。 実施例1の光走査軌跡を示す図である。 実施例1の光走査軌跡と光源変調点の分布を示す図である。 実施例1の映像装置の動作を示す図である。 実施例1の光走査軌跡と光源変調点の分布を示す図である。 実施例1の光走査軌跡と光源変調点の分布を示す図である。 螺旋型光走査軌跡を示す図である。 螺旋型光走査軌跡と光源変調点の分布を示す図である。 実施例1の映像装置の動作タイミングチャートである。 映像装置の光源部の実施例を示す図である。 実施例1の変形例の光走査軌跡と光源変調点の分布を示す図である。 光走査部の別の構成を示す断面図である。 実施例2の映像装置のブロック図である。 実施例2の映像装置の動作タイミングチャートである。 実施例2のパターンAの光走査軌跡を示す図である。 実施例2のパターンBの光走査軌跡を示す図である。 実施例2の光走査軌跡を示す図である。 実施例2の変形例の映像装置の動作タイミングチャートである。 実施例2の変形例の映像装置の動作タイミングチャートである。 実施例3の映像装置の動作タイミングチャートである。 実施例3の光走査軌跡を示す図である。 実施例3の変形例の映像装置の動作タイミングチャートである。 実施例4の映像装置の動作タイミングチャートである。 実施例4の光走査軌跡を示す図である。 実施例4の光走査軌跡と光源変調点の分布を示す図である。 実施例4の光走査軌跡と光源変調点の分布を示す図である。 実施例4の光走査軌跡と光源変調点の分布を示す図である。 実施例4の変形例の映像装置の動作タイミングチャートである。 実施例5の映像装置の動作タイミングチャートである。 実施例5の光走査軌跡を示す図である。 実施例5の光走査軌跡と光源変調点の分布を示す図である。 実施例5の光走査軌跡と光源変調点の分布を示す図である。 実施例5の光走査軌跡と光源変調点の分布を示す図である。 実施例5の映像装置の動作タイミングチャートである。 撮像機能を有する映像装置の実施例6を示すブロック図である。 撮像機能を有する映像装置の動作を示す図である。
 以下、本発明の実施例について図面を用いて説明する。
 図1は、従来の走査ファイバ装置に相当する光走査部1001を備えた映像装置10を示すブロック図である。
 映像装置10は、例えばプロジェクターやヘッドマウントディスプレイ等の映像を投影する機能を有する装置である。
 映像装置10は、光走査部1001、光源部1002、光源制御部1003、発光制御部1004、映像制御部1005、映像情報記憶部1006、走査軌跡制御部1007、駆動信号生成部1008、駆動制御部1009、装置制御部1010、記憶部1011、及び入出力制御部1012を備えている。
 本実施例における発光制御部1004、映像制御部1005、走査軌跡制御部1007、及び駆動信号生成部1008は一例としてデジタル回路として実現される。これらの回路は、同一のIC、例えばFPGA(Field Programable Gate Array)、ASIC(Application Specific Integrated Circuit)等の集積回路内の機能ブロックとして存在していても良い。
 装置制御部1010は、映像装置10内の各ブロックの制御を行う。装置制御部1010は例えばCPU(Central Processing Unit)等により構成される。
 映像装置10は、入出力制御部1012を介して外部制御装置50と接続されている。本実施における映像装置10は、外部制御装置50から映像信号を受信し、当該映像を表示する機能を有する。入出力制御部1012は、発光制御部1004、映像制御部1005、及び走査軌跡制御部1007と同一のデジタル回路としてFPGAやASICに集積されている構成が考えられる他、装置制御部1010内に構成されていることでもよい。
 記憶部1011は、装置制御部1010が映像装置10を制御するため、各部に処理を行うためのプログラムやデータ等が格納されるメモリ領域であり、例えばフラッシュメモリ等により実現される。記憶部1011は、HDD(Hard Disc Drive)や光ディスク等の書き込みおよび読み出しが可能な他の記憶メディアであっても良い。また、RAM(Random Access Memory)等の一時記憶領域であっても良い。
 映像装置10が例えばプロジェクターなどの製品であれば、入出力制御部1012を介してビデオ機器、パソコンなどの外部制御装置50から映像信号を受信し、該映像信号は映像情報記憶部1006に格納される。
 走査軌跡制御部1007は、装置制御部1010からの制御に基づき、光走査部1001を駆動させて光を走査するための同期信号を生成し、映像制御部1005に送信するとともに、同期信号を元に光走査部1001が光走査する軌跡パターンを決定する。駆動信号生成部1008は前記軌跡パターンの情報に基づき、光走査部1001を駆動させて光を走査するための駆動信号を生成する。
 駆動信号生成部1008は例えばDA変換器などにより実現される。駆動信号生成部1008から出力された駆動信号は、駆動制御部1009により光走査部1001内のアクチュエータ部に印加される。
 駆動制御部1009は、駆動信号生成部1008により生成された駆動信号に応じて、光走査部に駆動電力を供給し107、増幅器などによって実現される。
 映像制御部1005は、走査軌跡制御部1007から同期信号を受信し、光走査位置に応じて決まる座標(x、y)を算出する。さらに、映像情報記憶部1006から座標(x、y)に対応した画素のデータを読み出す。画素データは例えばRGBの階調データである。当該画素データを発光制御部1004に送信する。
 発光制御部1004は受信した画素データに応じて、光源1002を点灯させるための信号を生成する。発光制御部1004は、走査軌跡制御部1007からの情報を元に、輝度の補正を行っても良い。
 光源制御部1003は、発光制御部1004で生成された信号を元に、光源部1002内のレーザー素子に電流を供給し、レーザー光を発生する。レーザー光は光走査部1001に入射し102、投影面(図示せず)内の光走査された位置にレーザースポットを生じる。
 このように、光走査位置に同期したレーザー発光制御を行うことで、投影面に映像情報を投影する仕組みである。
 光走査部1001について図2の断面図において説明する。光走査部1001は加振部101、導光路102、接合部103、レンズ104、外装部105、支持部材106、電気配線部107を備える。
 加振部101は、振動を発生するアクチュエータであり、圧電アクチュエータから構成される。本実施形態における加振部101は、中心部が中空の円筒型の圧電素子であり、その内外周に複数の電極を配置して構成される。
 加振部101の中空部分には、導光路102が配置され、加振部101と導光路102とは接合部103により機械的に接合される。加振部101は支持部材106により、外装部105と固定される。
 導光路102は、例えば光ファイバにより実現される。
  接合部103は例えば接着剤等により実現される。
  導光路102の一端102aは自由端とし、加振部101の振動が接合部103により導光路102に伝達されることで、自由端102aは振動する。
  導光路102は一端を自由端とする突き出し梁の構造となっており、振動しやすい固有振動数を有する。
 レンズ104はガラス又は樹脂などにより成型されるレンズである。レンズ104は図示したような球面レンズ以外にも、非球面レンズであってもよく、フレネルレンズや屈折率分布型のレンズであっても良い。また、レンズ104は、導光路102の先端部102aと一体化した構造であっても良い。また、レンズ104は複数枚のレンズからなる構成であってもよい。
 加振部101のA-A断面図を図3に示す。前述のように、加振部101は内部が中空な円筒型の圧電アクチュエータである。3010は圧電性を持つ素材からなる圧電媒体であり、内周部に共通電極3015を有し、外周部に円筒アクチュエータの円筒形の軸回転方向に略90度ごとに四つに分割された電極、第一の外周電極3011、第二の外周電極3012、第三の外周電極3013、第四の外周電極3014が配置される。
 これら円筒アクチュエータに設けられた電極は、図3に示す形状を円筒形の長手方向に沿って連続的に面状に配置される。外周側面を展開図として図4に示すと、長手方向に略等しい大きさの電極3011~3014が平行に整列する形状である。
  円筒圧圧電アクチュエータの中央には導光路102が配置される。
  外周部の各電極は、電気配線部107によって、駆動制御部1008と接続されており、任意の電圧を印加可能である。
 圧電媒体3010は、各電極に挟まれる領域ごとに、複数の圧電素子を形成している。
これを図5に示す。圧電媒体3010の外周に配置された4つの電極と、内周の電極とに挟まれた領域が圧電素子として機能する。すなわち、第一の外周電極3011と共通電極3015に挟まれた第一の圧電素子3021、第二の外周電極3012と共通電極3015に挟まれた第二の圧電素子3022、第三の外周電極3013と共通電極3015に挟まれた第三の圧電素子3023、第四の外周電極3014と共通電極3015に挟まれた第四の圧電素子3024である。
 便宜上、図3において、紙面に向かって縦方向をy軸、横方向をx軸と定義する。
 この圧電アクチュエータを用いて、中心部の導光路102を加振する。中心部を挟んで対向する第一の圧電素子3021と第三の圧電素子3023とに電圧印加し、第一の圧電素子3021を膨張、第三の圧電素子3023を収縮させれば、導光路102はy軸下方向に力を受ける。逆に第一の圧電素子3021を収縮、第三の圧電素子を膨張させれば、導光路102はy軸上方向に力を受ける。このように、y軸方向への振動を与えるためには、対向する第一の圧電素子3021と第三の圧電素子3023を対にして動作させる。振動を加えるための電圧を正弦波状の信号とし、その周期を前述の固有振動数付近の周期とすることで、導光路102を共振させる。
 同様に、x軸方向への振動を与えるために、対向する第二の圧電素子3022と第四の圧電素子3024を対にして動作させる。
 これら四つの圧電素子の電気的な等価図は図6のようになる。圧電素子3021~3024の一端が共通電極3015を通じて接続されている構成である。各圧電素子にかかる電圧は外周電極3011~3014に印加する電位と、内周電極3015の電位との差によって決まる。内周電極3015は電気的に接地して電位0とされていても良いし、フロートとしても良い。
 各電極に印加する電圧について、第一の外周電極3011に印加する電圧をVy1、第二の外周電極3012に印加する電圧をVx1、第三の外周電極3013に印加する電圧をVy2、第四の外周電極3014に印加する電圧をVx2とする。
 各電圧は時間tに対して以下の数式で表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
  ここで、A、A、A、Aは振動振幅、frは共振周波数、φ、φ、φ、φは正弦波の初期位相、C、C、C、Cはオフセット成分である。
 ここで、第一の圧電素子3021と第三の圧電素子3023は、y軸方向の圧電素子対であり、一方が収縮するときに他方が伸張する、すなわち逆相の動きとなればよい。このような動きとなるように、A=A、φ=φ+180°とする。
 すなわち、y軸方向の振動量は
Figure JPOXMLDOC01-appb-M000005
となり、同様にx軸方向の振動量は
Figure JPOXMLDOC01-appb-M000006
となる。
 このようにして、導光路102を加振部101によって、y軸およびx軸の2軸に独立制御して振動させることができ、光を走査する。
  このとき、y軸駆動信号の位相φと、x軸駆動信号の位相φを90°ずらすことで、光走査の軌跡が円を描く軌跡となる。
 さらに、y軸駆動信号の振幅Aと、x軸駆動信号の振幅Aを時間とともに徐々に増加させることで、光走査の軌跡は円を描きながら振幅が増加し、渦巻き状の軌跡を描く。これにより点状の光スポットを面状に走査することができる。
 すなわちA、Aを時間tの関数とする。例えば以下の式のように記述できる。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
  ここで、a、a、b、bは0又は正の値とする。
 例えば、a=a、b=b=0とすると、図10(a)に示す渦巻状の軌跡となる。
  A、Aは数7、数8のように時間tの一次関数に限られるものではない。
 ここで、本実施例における走査軌跡制御部1007は、図7(a)に示す駆動信号を加振部101に印加する。加振期間Tvの間y軸駆動信号の振幅Aを時間とともに徐々に増加させ、減衰期間Tdでは振幅Aを時間とともに減衰させるか零とする。他方のx軸駆動信号の振幅Aを略一定値とする。y軸方向変位量とx軸方向変位量は図7(b)に示す変位となり、光走査の軌跡は略楕円を描きながら短軸側の振幅が増加し、図8(a)に示す軌跡を描く。
  数7、数8において、例えば加振期間Tvでa>0、a=0、b=0、b>0とすれば上記の駆動信号を生成できる。
 図12に光源制御部1003と光源部1002の構成を図示する。
  光源部1002は赤色LD1201、緑色LD1202、青色LD1203の三原色の三つのLD(レーザーダイオード:Laser Diode)からなる。前記三つのLDはそれぞれ電流制限抵抗1204、1205、1206と直列に接続され、それぞれ電源電圧VLDr、VLDg、VLDbを印加される。VLDr、VLDg、VLDbの電圧値は図示しない電源制御部により任意の値に設定可能であり、これによりそれぞれ赤色LD1201、緑色LD1202、青色LD1203の発光を制御できる。前記各電流制限抵抗1204、1205、1206のLDと逆側の端子は、光源制御部1003に接続される。光源制御部1003はCTRLr、CTRLg、CTRLbの各端子の電圧を変化させることで、それぞれ赤色LD1201、緑色LD1202、青色LD1203の発光量や発光時間などを制御できる。
 電源電圧VLDr、VLDg、VLDbは同一の値であってもよいし、同一の端子であってもよい。また、光源制御部1003の各端子の電圧CTRLr、CTRLg、CTRLbは同一の値であってもよいし同一の端子であってもよい。ただし、前記三つのLDは個別に制御する必要があり、VLD端子、CTRL端子の両方を同一端子とする場合には、別途スイッチなどの部材が必要となる。
 光源部1002は三原色LDを一つずつ有する構成として説明したが、これに限るものではない。単一色のLDを一つ以上有する構成としてもよい。また、LD以外の光源であってもよい。三原色についても、光源が原色のみを発光する構成でなくてもよく、例えば白色光源とダイクロイックフィルタやカラーホイールなどにより、特定色をフィルタで取り出すような構成であってもよい。
 また、発光制御部1004は、前記x軸駆動信号の正弦波の一周期よりも充分に早い周期で動作し、光源制御部1003に対して早い周期での変調信号を発生し、光源部1002を動作する。
  前記x軸信号の正弦波の周期は、共振周波数frの逆数Tr=1/frである。
  前記発光制御部1004が、光源部1002の変調を行う周期をTとしたとき、
Figure JPOXMLDOC01-appb-M000009
のように、共振周期Trよりも十分に小さい周期とする。
 このとき、図8(a)の走査軌跡上に、光源部1002が変調されるタイミングを図示すると図8(b)となる。光源1002が変調されるタイミングを光源変調点として図示している。光源変調点では、光源の明るさや色を変更することができる。したがって、光源変調点が多いほど、表示される映像の解像度を高くすることができる。
 図8(b)の軌跡では、縦方向(y軸方向)には走査軌跡の回転数に比例した光源変調点を並べることができる。解像度を増加するためには、軌跡回転数を増加する必要がある。軌跡回転数は加振期間Tvを共振周期Trで割った商で決まるため、共振周波数frを大きくすることでy軸方向解像度を増加できる。
 一方、横方向(x軸方向)には、
Figure JPOXMLDOC01-appb-M000010
に示すように、共振周期Trと光源変調周期Tで決まる点数だけ、光源変調点を並べることができる。
 すなわち、x軸方向の光源変調点は共振周波数frを変えずに、光源変調周期Tを短くして高速な変調を行うことで増加することができ、解像度を増加できる。
  一般的に、光源の変調周波数fは数十MHz程度が可能であり、共振周波数frは数kHz~数十kHz程度と、2~4桁程度異なる値とすることができる。
  したがって、光源変調周期Tは共振周期Trより2~4桁程度小さく、光源変調点はx軸方向に1000点以上並べることが可能である。
 また、このときTrをTの整数倍となるようにすることで、図9(a)に示すように光源変調点のx軸方向の位置をそろえることができる。一般的な映像データは縦にV個と横にH個のピクセルデータの集合であるため、このようにx軸方向に位置をそろえると対応が良い。
 また、Trを(Tの整数倍)+(Tの2分の1)とすると、図9(b)に示すように、軌跡が外周へ行くごとに、光源変調点が半周期ずつずれて整列される。レーザースポットは通常円形となるため、図9(b)のような点の整列の場合、面内の明るさの均一性が保ちやすい。
 走査軌跡制御部1007は上記のような駆動信号を生成する。駆動信号生成部1008は駆動信号をアナログ信号に変換し、駆動制御部1009により増幅された駆動信号が光走査部1001に印加される。例えばVy1、Vy2、Vx1、Vx2は図7(a)に示す信号となる。このような光走査により、図8(c)のように、図8(a)に示す軌跡をスクリーン60上に生じる。
 なお、本駆動方式に適用可能な加振部101は圧電素子に限定されず、縦方向と横方向に加振可能な構造物であれば適用可能である。また、圧電素子の形状も円筒型に限定されず、例えば図14のように四角形の筒型など別の形であっても適用可能である。
 図10(a)に示す螺旋型の軌跡において、一定の周期Tで光源の変調を行うと、光源変調点の分布は図10(b)のように示される。したがって、図10(b)の軌跡における解像度はy軸方向もx軸方向も螺旋の回転数のみで決まる同一の値となる。また螺旋の中央部では光走査の線速度が遅くなるため、外周部との明るさの差が大きくなる。
 本実施例により、共振周波数frとは独立な光源の変調周期Tによってx軸方向の解像度を増加させることができる。一般的な映像フォーマットは、16:9や4:3などの長方形のアスペクト比を持つため、x軸方向の解像度を共振周波数frによらずに増加させることで、光走査部1001の構造を変えずに解像度を増すことができる。
 映像装置10は、上述の光走査を繰り返し実施することで連続的に映像を投影することができる。映像装置10が1秒間の間に光走査をNf回(Nfは正の数)実施する場合、光走査ごとに映像情報記憶部1006に保存される映像信号が変更されれば、フレームレートNfフレーム毎秒(fps)の動画像を表示できる。
 このように光走査を繰り返し行う場合には、数1から数8における時間tを、時間tを1フレーム所要時間Tf=1/Nfで割った余り(tのTfによる剰余)に置き換えることで対応できる。
 図11に動画像表示のタイミングチャートを示す。y軸変位とx軸変位はフレームごとに図7(a)と同様の動作を繰り返す。フレーム間に、y軸方向の光走査位置を中央に戻すための減衰期間Tdを設ける。減衰期間Tdでは、加振部101の振動を停止させるように、駆動信号の振幅を減衰させる。加振部101の振動停止のために、加振期間Tvで印加する駆動信号と180°異なる位相の周波数frの信号を印加してもよい。
 加振期間Tvは前述の発光制御部1004による光源1002を制御してレーザー光を点灯させる。減衰期間Tdでは、発光制御部1004は光源1002を消灯させる。
 映像制御部1005が参照する映像情報記憶部1006に記憶された映像情報は時間Tfごとに更新される。映像情報の更新は消灯期間Tdの期間に処理される。
 また、図13のように走査範囲をx軸方向のみに伸張し、走査位置が所定の有効範囲130にある場合のみ光源1002を発光することで、一般的な映像フォーマットのような長方形のアスペクト比の映像表示を行うことができる。
  走査範囲の伸張は、数5、数6において、A<Aとする。レンズなどにより光学的に一方に伸張してもよい。
  図13のような表示方法により、光源変調点が集中する軌跡左右の部分では発光されないため、中央部と周辺部との明るさの差が低減される。また、図10(b)に示す螺旋型の走査軌跡の場合のように、中央部と外周部との明るさの差が大きくなる問題は解消される。
 本発明における別の実施形態を図15に従って説明する。
  映像装置20は、光走査部1001、光源部1002、光源制御部1003、発光制御部1004、映像制御部1005、映像情報記憶部1006、走査軌跡制御部1007、駆動信号生成部1008、駆動制御部1009、装置制御部1010、記憶部1011、入出力制御部1012、フレームカウンタ1501を備えている。
  図15において、走査軌跡制御部1007およびフレームカウンタ1501以外の構成要素は実施例1と同様であるため、説明を省略する。
 走査軌跡制御部1007、フレームカウンタ1501は一例としてデジタル回路として実現され、発光制御部1004、映像制御部1005と同一のIC、例えばFPGA、ASIC等の集積回路内の機能ブロックとして存在していても良い。
 走査軌跡制御部1007は、実施例1と同様に、数5、数6となる駆動信号を生成する。本実施例では、y軸駆動信号の振幅A1と、x軸駆動信号の振幅A2を時間とともに徐々に増加させ、減衰期間Tdでは振幅A、Aを時間とともに減衰させるか零とする。すなわち数7および数8において、a=a、b=b=0とする。
 本実施例において、フレームカウンタ1501は映像のフレーム数をカウントする機能を有する。フレーム数のカウントをFnumとすると、時間tに対して例えば以下の数式により与えられる。
Figure JPOXMLDOC01-appb-M000011
 走査軌跡制御部1007は、フレームカウンタ1501により得られるフレーム数カウントFnumが奇数の場合と偶数の場合で駆動信号を変更して光走査の軌跡を変更することを特徴とする。
  すなわち、数5、数6において、φ1およびφを以下のように制御する。
Figure JPOXMLDOC01-appb-M000012
 このように制御することで、駆動信号は図16に示す信号となる。奇数のフレームでは図17(a)に示されるパターンAの軌跡で光走査が行われる。偶数のフレームでは図17(b)に示されるパターンBの軌跡で光走査が行われる。パターンBの軌跡は、パターンAの軌跡を螺旋の中央を基準に180°回転した図形となる。
  パターンAの駆動信号の後で、x軸、y軸ともに位相が180°反転した逆相のパターンBの駆動信号により走査を行うことで、パターンAで加振された振動成分を相殺しながら次の駆動を行うことができる。
 したがって、パターンAの軌跡の外周まで移動した光走査位置をすばやく螺旋の中央位置に戻すことが可能となり、減衰期間Tdを低減することができる。減衰期間Tdを低減すると、加振期間Tvや共振周期Trを変えずに、1フレーム所要時間Tfを減らすことができるため、フレームレートNfを増加することができる。
  もしくは、フレームレートNfと共振周期Trを一定としたとき、減衰期間Tdを低減すると加振期間Tvを増やすことができ、軌跡回転数と解像度を増加できる。
 パターンAの軌跡とパターンBの軌跡を同一面上に重ねると図18のようになる。パターンAの軌跡の間を、パターンBの軌跡が通る。これを利用してインターレース映像のように、パターンA軌跡とパターンB軌跡で同一画像の別の画素を描画することで、より高解像度の映像を描画する方式としても良い。
 また、図19のように、減衰期間Tdにおいて位相を反転した駆動パルスをブレーキパルスとして印加し、さらに減衰期間Tdを低減させる方式でもよい。
  この場合、奇数フレームの減衰期間Tdと偶数フレームの加振期間Tvにおける駆動信号が同相の正弦波状信号となり、同様に偶数フレームの減衰期間Tdと奇数フレームの加振期間Tvにおける駆動信号が同相の信号となる。
 また、本実施の変形例として、図20のタイミングチャートのように動作しても良い。本変形例では、減衰期間Tdにおけるy軸およびx軸の光走査位置の振動量を緩やかに減衰させる。例えば加振期間Tvにおける変位の増加量と逆の勾配程度の減衰量により振動振幅を低減する。数7および数8において、以下の数式のように係数を変化させる。
Figure JPOXMLDOC01-appb-M000013
  数12および数13に基づき図20の駆動信号が生成される。
 本発明における第三の実施形態を図15に従って説明する。本実施形態の映像装置20の構成は、第二の実施形態と同様である。
 走査軌跡制御部1007は、実施例1と同様に、数5、数6となる駆動信号を生成する。本実施例では、y軸駆動信号の振幅A1を時間とともに徐々に増加させ、減衰期間Tdでは振幅Aを時間とともに減衰させるか零とする。他方のx軸駆動信号の振幅Aを略一定値とする。
 走査軌跡制御部1007は、フレームカウンタ1501により得られるフレーム数カウントFnumが奇数の場合と偶数の場合で、y軸方向の駆動信号のみを変更して光走査の軌跡を変更することを特徴とする。
  すなわち、数5、数6において、φ1およびφを以下のように制御する。
Figure JPOXMLDOC01-appb-M000014
 このように制御することで、駆動信号は図21に示す信号となる。このときの軌跡を図22に示す。奇数のフレームでは図22の実線に示すパターンAの軌跡で光走査が行われる。偶数のフレームでは図22の破線に示すパターンBの軌跡で光走査が行われる。パターンBの軌跡は、パターンAの軌跡をy軸方向に反転した軌跡となる。
 本実施例における制御では、共振周波数frとは独立な光源の変調周期Tによってx軸方向の解像度を増加させることができる。一般的な映像フォーマットは、16:9や4:3などの長方形のアスペクト比を持つため、x軸方向の解像度を共振周波数frによらずに増加させることで、光走査部1001の構造を変えずに解像度を増すことができる。
 また、y軸方向走査について、パターンAの軌跡の外周まで移動した光走査位置をすばやくy軸方向の中央位置に戻すことが可能となり、減衰期間Tdを低減することができる。減衰期間Tdを低減すると、加振期間Tvや共振周期Trを変えずに、1フレーム所要時間Tfを減らすことができるため、フレームレートNfを増加することができる。もしくは、フレームレートNfと共振周期Trを一定としたとき、減衰期間Tdを低減すると加振期間Tvを増やすことができ、軌跡回転数と解像度を増加できる。
 本実施例において実施例2と同様に、パターンAの軌跡とパターンBの軌跡を利用してインターレース映像のように、パターンA軌跡とパターンB軌跡で同一画像の別の画素を描画することで、より高解像度の映像を描画する方式としても良い。
 また、本実施の変形例として、図23のタイミングチャートのように動作しても良い。本変形例では、減衰期間Tdにおけるy軸の光走査位置の振動量を緩やかに減衰させる。例えば加振期間Tvにおける変位の増加量と逆の勾配程度の減衰量により振動振幅を低減する。数7において、以下の数式のように係数を変化させる。
Figure JPOXMLDOC01-appb-M000015
 数式14および数式15に基づき図23の駆動信号が生成される。
 本発明における第四の実施形態を図1に従って説明する。本実施形態の映像装置10の構成は、第一の実施形態と同様である。
  図1において、走査軌跡制御部1007以外の構成要素は実施例1と同様であるため、説明を省略する。
  走査軌跡制御部1007は一例としてデジタル回路として実現され、発光制御部1004、映像制御部1005と同一のIC、例えばFPGA、ASIC等の集積回路内の機能ブロックとして存在していても良い。
 走査軌跡制御部1007は、実施例1と同様に、数5、数6となる駆動信号を生成する。
  本実施例においては、数7、数8における係数を以下の関係となるように変調する。
Figure JPOXMLDOC01-appb-M000016
 すなわち、駆動信号の正弦波の振幅(包絡線の増減)が、略直交するx軸とy軸とで逆に一方が増加するとき他方が減少するような変調を行う。このように制御すると、駆動信号は図24に示す信号となる。このときの軌跡を図25(a)に示す。
  実施例1と同様に、共振周期Trよりも充分に短い変調周期Tにより光源1002を変調することで、図25(b)に示す光源変調点の分布を得る。
 図25(b)の光源変調点の分布を斜めに45度傾けると図26(a)のように長方形に近い軌跡となる。これを図26(b)のように横方向に伸張し、走査位置が所定の有効範囲130内にある場合のみ光源1002を発光させることで、一般的な映像フォーマットのような長方形のアスペクト比の映像表示を行うことができる。走査範囲の伸張はレンズなどにより光学的に行うことができる。
  本実施形態では図13に示した実施例1と比較して、消灯する光源変調点の数を少なくすることができるため、有効範囲130の表示の明るさが増加する。
 また、本実施の変形例として、図27のタイミングチャートのように動作しても良い。本変形例では数7および数8において、以下の数式のように係数を変化することで実現できる。
Figure JPOXMLDOC01-appb-M000017
 本実施例において、A、Aは数7、数8のように時間tの一次関数に限られるものではない。A、Aを例えば時間tの平方根などの関数にすると、光源変調点の分布をより長方形に近づけることが期待できる。
 本発明における第五の実施形態を図1に従って説明する。本実施形態の映像装置10の構成は、第一の実施形態と同様である。
  図1において、走査軌跡制御部1007以外の構成要素は実施例1と同様であるため、説明を省略する。
  走査軌跡制御部1007は一例としてデジタル回路として実現され、発光制御部1004、映像制御部1005と同一のIC、例えばFPGA、ASIC等の集積回路内の機能ブロックとして存在していても良い。
 走査軌跡制御部1007は、実施例1と同様に、数5、数6となる駆動信号を生成する。
  本実施例においては、数7、数8における係数を以下の関係となるように変調する。
Figure JPOXMLDOC01-appb-M000018
 すなわち、実施例4と同様に駆動信号の正弦波の振幅(包絡線の増減)が、略直交するx軸の駆動信号とy軸の駆動信号において、一方が増加するとき他方が減少する関係となるように変調を行う。かつ駆動信号振幅に任意の最大値を設定し、正弦波の振幅が最大値を超えないように変調を行う。このように制御すると、駆動信号は図28に示す信号となる。このときの軌跡を図29(a)に示す。
  実施例1と同様に、共振周期Trよりも充分に短い変調周期Tにより光源1002を変調することで、図29(b)に示す光源変調点の分布を得る。
 図29(b)の光源変調点の分布を斜めに45度傾けると図30(a)のように長方形に近い軌跡となる。これを図30(b)のように横方向に伸張し、走査位置が所定の有効範囲130内にある場合のみ光源1002を発光させることで、一般的な映像フォーマットのような長方形のアスペクト比の映像表示を行うことができる。走査範囲の伸張はレンズなどにより光学的に行うことができる。
  本実施形態では図26に示した実施例4と比較して、光走査範囲を長方形に近づけることができるため、消灯する光源変調点の数をさらに少なくすることができ、有効範囲130の表示の明るさが増加する。
 また、本実施の変形例として、図31のタイミングチャートのように動作しても良い。
本変形例では数7および数8において、以下の数式のように係数を変化することで実現できる。
Figure JPOXMLDOC01-appb-M000019
 本実施例において、A、Aは数7、数8のように時間tの一次関数に限られるものではない。A、Aを例えば時間tの平方根などの関数にすると、光源変調点の分布をより長方形に近づけることが期待できる。
 実施例1乃至5の各実施例において、映像装置10、20は、例えばプロジェクターやヘッドマウントディスプレイ等の映像を投影する機能を有する装置として説明したが、本実施例における映像装置はカメラやセンサー等の画像を取得する機能を有する撮像装置としても構成できる。
 撮像装置の一実施を図32に従って説明する。
  映像装置30は、光走査部1001、光源部1002、光源制御部1003、発光制御部1004、映像制御部1005、映像情報記憶部1006、走査軌跡制御部1007、駆動信号生成部1008、駆動制御部1009、装置制御部1010、記憶部1011、入出力制御部1012、及び受光部1020を備えている。
 図32において、発光制御部1004、映像制御部1005、映像情報記憶部1006、受光部1020以外の構成要素は実施例1と同様であるため、説明を省略する。
 発光制御部1004、映像制御部1005は一例としてデジタル回路として実現され、発光制御部1004、映像制御部1005、走査軌跡制御部1007は同一のIC、例えばFPGA、ASIC等の集積回路内の機能ブロックとして存在していても良い。
 本実施における映像装置30は、入出力制御部1012を介して外部制御装置50と接続されている。本実施における映像装置30は、外部制御装置50へ撮像した映像信号を送信する。外部制御装置50は例えば映像情報を表示するディスプレイ装置や、映像情報を蓄積する記録装置などである。
 発光制御部1004は所定のタイミングで、光源1002を点灯させるための信号を生成する。発光制御部1004は、走査軌跡制御部1007からの情報を元に、タイミングや輝度の補正を行っても良い。
 受光部1020は、フォトディテクタなどの光を電気信号に変換する受光素子からなる。受光部1020は、受光素子のほかに、導光路、光増幅器、電気信号増幅回路、アナログ-デジタル変換回路等を含んでいても良い。受光部1020は受光した光に応じた受光情報を生成する。受光情報は例えば受光した光の強度に応じた受光強度情報や、受光強度が変化したタイミング情報などである。本実施では、受光強度情報を例として説明する。
 撮像装置として動作する本実施例の映像装置30は、図33に示すように撮影対象物70に光源1002から出力されたレーザー光を照射する。撮影対象物70に照射されたレーザー光は撮影対象物70の表面で反射または散乱され、反射光または散乱光の一部が受光部1020により受光される。光走査部1001により、撮影対象物70に対して該レーザー光が照射される位置が、実施例1乃至5の各実施例で説明した光走査と同様の光走査により変動する。
 映像制御部1005は、走査軌跡制御部1007から同期信号を受信し、光走査位置に応じて決まる座標(x、y)を算出する。さらに受光部1020から該受光情報を受信し、該受光情報と座標(x、y)に対応した画素データの書き込みを映像情報記憶部1006に対して行う。画素データは例えば受光強度情報に応じた階調データである。
 映像情報記憶部1006は、映像情報制御部1005から画素データを受信し、複数の画素データからなる画面データを保持する。
 入出力制御部1012は、映像情報記憶部1006に保持された画面データを所定の間隔で外部制御装置50に出力する。
 これにより、映像装置30は、外部制御装置に撮像した映像情報を送信することができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。
10・・・実施例1、4、5の映像装置
20・・・実施例2、3の映像装置
30・・・実施例6の映像装置
50・・・外部制御装置
60・・・スクリーン
70・・・撮影対象物
101・・・加振部
102・・・導光路
103・・・接合部
104・・・レンズ
105・・・外装部
106・・・支持部材
107、107-1、107-2、107-3、107-4・・・電気配線部
130・・・映像表示装置の有効範囲
1001・・・光走査部
1002・・・光源部
1003・・・光源制御部
1004・・・発光制御部
1005・・・映像制御部
1006・・・映像情報記憶部
1007・・・走査軌跡制御部
1008・・・駆動信号生成部
1009・・・駆動制御部
1010・・・装置制御部
1011・・・記憶部
1012・・・入出力制御部
1020・・・受光部
1201・・・赤色LD
1202・・・緑色LD
1203・・・青色LD
1204、1205、1206・・・電流制限抵抗
1501・・・フレームカウンタ
3010・・・圧電媒体
3011・・・第一の外周電極
3012・・・第二の外周電極
3013・・・第三の外周電極
3014・・・第四の外周電極
3015・・・内周電極
3021・・・第一の圧電素子
3022・・・第二の圧電素子
3023・・・第三の圧電素子
3024・・・第四の圧電素子

Claims (16)

  1.  一端から光を入射して他端から出射する導光路と、前記導光路の前記他端の近傍の接合部を介して前記導光路に振動を加える加振部とを有する光走査部と、
     前記加振部に振動を誘起するための駆動信号を生成する駆動信号生成部と、
     前記加振部は、前記導光路の光軸方向と略垂直な第一の方向と、および前記導光路の光軸方向と略垂直かつ前記第一の方向と略垂直な第二の方向に、独立して前記導光路を加振する機能を有し、
     前記加振部を第一の方向に駆動する第一の駆動信号と、第二の方向に駆動する第二の駆動信号を任意のパターンで発生する走査軌跡制御部とを備え、
     前記走査軌跡制御部は第一の駆動信号と第二の駆動信号を略同一の周波数の位相が異なる正弦波として発生し、第二の駆動信号の正弦波の振幅変調を、第一の駆動信号の正弦波の振幅変調よりも大きな変調量とする
    ことを特徴とする映像装置。
  2.  請求項1に記載の映像装置において、
     前記走査軌跡制御部は第一の駆動信号として一定周波数の正弦波を一定の振幅で発生し、第二の駆動信号として第一の駆動信号と略同一の周波数で位相が異なる正弦波を振幅変調して発生することを特徴とする映像装置。
  3.  請求項1に記載の映像装置において、
     前記導光路に光を入射する光源部と、
     前記光源部を変調する発光制御部を更に備え、
     前記発光制御部が光源部を変調する周期が、前記第一の駆動信号の正弦波の周期よりも、第一の方向の解像度を充分に得られる程度に充分に早いことを特徴とする映像装置。
  4.  請求項3に記載の映像装置において、
     前記第一の駆動信号の正弦波の周期は、前記発光制御部が光源部を変調する周期の整数倍であることを特徴とする映像装置。
  5.  請求項3に記載の映像装置において、
     前記第一の駆動信号の正弦波の周期は、前記発光制御部が光源部を変調する周期の整数倍と半周期の和であることを特徴とする映像装置。
  6.  請求項3に記載の映像装置において、
     前記第一の駆動信号の正弦波の最大変調振幅は、前記第二の駆動信号の正弦波の最大変調振幅よりも大きい振幅であり、楕円形の領域に光走査を行うことを特徴とする映像装置。
  7.  一端から光を入射して他端から出射する導光路と、前記導光路の前記他端の近傍の接合部を介して前記導光路に振動を加える加振部とを有する光走査部と、
     前記加振部に振動を誘起するための駆動信号を生成する駆動信号生成部と、
     前記加振部は、前記導光路の光軸方向と略垂直な第一の方向と、および前記導光路の光軸方向と略垂直かつ前記第一の方向と略垂直な第二の方向に、独立して前記導光路を加振する機能を有し、
     前記加振部を第一の方向に駆動する第一の駆動信号と、第二の方向に駆動する第二の駆動信号を任意のパターンで発生する走査軌跡制御部と、
     映像のフレームを構成する周期的に実行される光走査の周期回数を計測するカウンタとを備え、
     前記走査軌跡制御部は、前記カウンタの計測結果に応じて、第一の駆動信号および第二の駆動信号の位相の切り替えを行い、異なる軌跡で光走査を行うことを特徴とする映像装置。
  8.  請求項7に記載の映像装置において、
     前記走査軌跡制御部は、前記カウンタの計測結果が加算されるたび、第一の駆動信号および第二の駆動信号の正弦波の位相をそれぞれ180°変化することを特徴とする映像装置。
  9.  請求項7に記載の映像装置において、
     前記走査軌跡制御部は、前記カウンタの計測結果に応じて、第二の駆動信号の位相の切り替えを行い、異なる軌跡で光走査を行うことを特徴とする映像装置。
  10.  請求項9に記載の映像装置において、
     前記走査軌跡制御部は、前記カウンタの計測結果が加算されるたび、第二の駆動信号の正弦波の位相を180°変化することを特徴とする映像装置。
  11.  請求項1に記載の映像装置において、
     前記走査軌跡制御部は、第一の駆動信号と第二の駆動信号を略同一の周波数の位相が異なる正弦波として発生し、
     第一の駆動信号の正弦波の振幅を増加する方向に変調し、第二の駆動信号の正弦波の振幅は減少する方向に変調することを特徴とする映像装置。
  12.  請求項1に記載の映像装置において、
     前記走査軌跡制御部は、第一の駆動信号と第二の駆動信号を略同一の周波数の位相が異なる正弦波として発生し、
     第一の駆動信号の正弦波の振幅を増加する方向に変調し、第二の駆動信号の正弦波の振幅は減少する方向に変調する第一の走査様式と、
     第一の駆動信号の正弦波の振幅を減少する方向に変調し、第二の駆動信号の正弦波の振幅を増加する方向に変調する第二の走査様式を有すること
    を特徴とする映像装置。
  13.  請求項7に記載の映像装置において、
     前記走査軌跡制御部は、第一の駆動信号と第二の駆動信号を略同一の周波数の位相が異なる正弦波として発生し、
     加振期間に、第一の駆動信号および第二の駆動信号の正弦波の振幅を増加する方向に変調する第一の走査様式と、
     減衰期間に、第一の駆動信号および第二の駆動信号を第一の走査様式における振幅の増加量と逆の勾配程度の振幅を減少する方向に変調する第二の走査様式を有すること
    を特徴とする映像装置。
  14.  請求項11に記載の映像装置において、
     前記走査軌跡制御部は、第一の駆動信号と第二の駆動信号を略同一の周波数の位相が異なる正弦波として発生し、
     第一の駆動信号の正弦波の振幅を増加する方向に変調し、第二の駆動信号の正弦波の振幅は減少する方向に変調を行い、かつ第一の駆動信号および第二の駆動信号のそれぞれに任意の最大値を設定し、第一の駆動信号および第二の駆動信号の正弦波の振幅がそれぞれの最大値を超えないように変調することを特徴とする映像装置。
  15.  請求項1に記載の映像装置において、
     前記走査軌跡制御部は、第一の駆動信号と第二の駆動信号を略同一の周波数の位相が異なる正弦波として発生し、
     加振期間に、第一の駆動信号の正弦波の振幅を増加する方向に変調し、第二の駆動信号の正弦波の振幅は減少する方向に変調を行い、かつ第一の駆動信号および第二の駆動信号のそれぞれに任意の最大値を設定し、第一の駆動信号および第二の駆動信号の正弦波の振幅がそれぞれの最大値を超えないように変調する第一の走査様式と、
     減衰期間に、第一の駆動信号の正弦波の振幅を減少する方向に変調し、第二の駆動信号の正弦波の振幅は増加する方向に変調を行い、かつ第一の駆動信号および第二の駆動信号のそれぞれに任意の最大値を設定し、第一の駆動信号および第二の駆動信号の正弦波の振幅がそれぞれの最大値を超えないように変調する第二の走査様式を有すること
    を特徴とする映像装置。
  16.  請求項1、または請求項7に記載の映像装置において、
     所定のタイミングで光源部を点灯させるための信号を生成する発光制御部と、
     前記導光路に光を入射する光源部と、
     前記導光路の前記他端より出射、走査された光が撮影対象物に反射または散乱した光を受光して受光情報を生成する受光部と、
     前記走査軌跡制御部から同期信号を受信し、光走査位置に対応する座標を算出し、受光部から受けた受光情報と前記座標に対応した画素データを映像情報記憶部へ書き込む映像制御部と、
     複数の画素データからなる画面データを保持する映像情報記憶部とを更に備え、
     撮像装置として機能することを特徴とする映像装置。
PCT/JP2018/021256 2017-09-28 2018-06-01 映像装置 WO2019064700A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/627,914 US11212423B2 (en) 2017-09-28 2018-06-01 Video device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-187572 2017-09-28
JP2017187572A JP6797775B2 (ja) 2017-09-28 2017-09-28 映像装置

Publications (1)

Publication Number Publication Date
WO2019064700A1 true WO2019064700A1 (ja) 2019-04-04

Family

ID=65901345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021256 WO2019064700A1 (ja) 2017-09-28 2018-06-01 映像装置

Country Status (3)

Country Link
US (1) US11212423B2 (ja)
JP (1) JP6797775B2 (ja)
WO (1) WO2019064700A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111830702A (zh) * 2019-04-19 2020-10-27 成都理想境界科技有限公司 一种扫描致动器、光纤扫描器及驱动方法
KR20200142343A (ko) * 2019-06-12 2020-12-22 주식회사 하이딥 터치 장치 및 이의 터치 검출 방법
JP2021140007A (ja) * 2020-03-04 2021-09-16 株式会社日立製作所 光走査装置及び光走査方法
CN113917680A (zh) * 2021-09-13 2022-01-11 北京航空航天大学 扫描方法、扫描轨迹采集结构及内窥镜系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116922A (ja) * 2006-09-14 2008-05-22 Optiscan Pty Ltd 光ファイバ走査装置
JP2013244045A (ja) * 2012-05-23 2013-12-09 Olympus Corp 走査型内視鏡装置
JP2014147462A (ja) * 2013-01-31 2014-08-21 Hoya Corp キャリブレーション方法及び走査型内視鏡システム
JP2015206981A (ja) * 2014-04-23 2015-11-19 オリンパス株式会社 光走査型画像形成装置及び光走査型画像形成方法
WO2016116963A1 (ja) * 2015-01-21 2016-07-28 オリンパス株式会社 光走査方法及び光走査装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7608842B2 (en) 2007-04-26 2009-10-27 University Of Washington Driving scanning fiber devices with variable frequency drive signals
US8757812B2 (en) * 2008-05-19 2014-06-24 University of Washington UW TechTransfer—Invention Licensing Scanning laser projection display devices and methods for projecting one or more images onto a surface with a light-scanning optical fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116922A (ja) * 2006-09-14 2008-05-22 Optiscan Pty Ltd 光ファイバ走査装置
JP2013244045A (ja) * 2012-05-23 2013-12-09 Olympus Corp 走査型内視鏡装置
JP2014147462A (ja) * 2013-01-31 2014-08-21 Hoya Corp キャリブレーション方法及び走査型内視鏡システム
JP2015206981A (ja) * 2014-04-23 2015-11-19 オリンパス株式会社 光走査型画像形成装置及び光走査型画像形成方法
WO2016116963A1 (ja) * 2015-01-21 2016-07-28 オリンパス株式会社 光走査方法及び光走査装置

Also Published As

Publication number Publication date
US11212423B2 (en) 2021-12-28
US20210168264A1 (en) 2021-06-03
JP2019061197A (ja) 2019-04-18
JP6797775B2 (ja) 2020-12-09

Similar Documents

Publication Publication Date Title
WO2019064700A1 (ja) 映像装置
JP4351995B2 (ja) 高解像度画像投射
KR100997021B1 (ko) 화소 매핑으로 화상을 투사하는 장치 및 방법
JP5687880B2 (ja) 画像表示装置
US9075246B2 (en) Image display device having laser light scanning with a variation in scanning speed
US8368006B2 (en) Driving a laser scanning section using a basic period of a pulse signal based on a period of a resonance frequency and accumulated period errors to produce a correction period quantity
JP6118913B2 (ja) 表示装置
CN103686027B (zh) 图像显示装置和图像扫描装置
JP2008529069A (ja) カラー画像を投射する装置および方法
US7997742B2 (en) Capacitive comb feedback for high speed scan mirror
JP2006323355A (ja) 光走査装置、光走査装置の制御方法及び画像表示装置
US8416481B2 (en) Laser projector
JP7058122B2 (ja) 光走査装置及び映像装置
JP2947231B2 (ja) 画像表示装置
US20170318181A1 (en) Optical scanning method and optical scanning apparatus
US20170322413A1 (en) Optical scanning method and optical scanning apparatus
Scholles et al. Ultra compact laser projection systems based on two-dimensional resonant micro scanning mirrors
JP4735608B2 (ja) 画像表示装置
CN110381301B (zh) 一种扫描显示装置及投影设备
JP6123877B2 (ja) 画像表示装置
JP5863998B2 (ja) 画像表示装置
CN114384692A (zh) 一种扫描致动器及光纤扫描器
JP2002357783A (ja) ディスプレイ装置及び画像表示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860190

Country of ref document: EP

Kind code of ref document: A1