WO2019064555A1 - 作業機械の油圧駆動装置 - Google Patents

作業機械の油圧駆動装置 Download PDF

Info

Publication number
WO2019064555A1
WO2019064555A1 PCT/JP2017/035671 JP2017035671W WO2019064555A1 WO 2019064555 A1 WO2019064555 A1 WO 2019064555A1 JP 2017035671 W JP2017035671 W JP 2017035671W WO 2019064555 A1 WO2019064555 A1 WO 2019064555A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
hydraulic
valve
accumulator
switching valve
Prior art date
Application number
PCT/JP2017/035671
Other languages
English (en)
French (fr)
Inventor
高橋 究
太平 前原
剛史 石井
Original Assignee
株式会社日立建機ティエラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立建機ティエラ filed Critical 株式会社日立建機ティエラ
Priority to CN201780054542.9A priority Critical patent/CN109963986B/zh
Priority to KR1020197006942A priority patent/KR102138783B1/ko
Priority to JP2019510386A priority patent/JP6676824B2/ja
Priority to US16/331,768 priority patent/US11454002B2/en
Priority to PCT/JP2017/035671 priority patent/WO2019064555A1/ja
Priority to EP17922917.4A priority patent/EP3495569B1/en
Publication of WO2019064555A1 publication Critical patent/WO2019064555A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor

Definitions

  • the present invention relates to a hydraulic drive system of a working machine such as a hydraulic shovel provided with a pressure oil energy recovery device, and in particular, comprises a variable displacement hydraulic pump, which hydraulic pump is operated from the maximum load pressure of one or more actuators.
  • a work machine comprising a pressure oil energy recovery device configured to perform load sensing control that controls the discharge flow rate such that the discharge pressure is increased by a certain set pressure, and that recovers pressure oil energy from the hydraulic actuator.
  • the present invention relates to a hydraulic drive system.
  • Patent Document 1 describes a related art related to a pressure oil energy recovery device that regenerates the pressure oil accumulated in the accumulator into the pressure oil supply path of the hydraulic pump when performing operations other than the operation of lowering the front work machine. There is.
  • the variable displacement hydraulic pump discharges the hydraulic pump so that the pump discharge pressure is higher by a set pressure than the maximum load pressure of the plurality of actuators including the hydraulic cylinder that moves the front work machine up and down. It is configured to perform so-called load sensing control for controlling the flow rate.
  • a recovery flow control valve that raises the pressured pressure oil and supplies the pressurized pressure oil to the accumulator, and regenerates the pressure oil accumulated in the accumulator when the boom cylinder extends against the load to the pressure oil supply path of the hydraulic pump
  • a regeneration flow control valve is provided, and the recovery flow control valve and the regeneration flow control valve are each provided with a pressure compensation valve.
  • the pressure oil energy recovery device described in Patent Document 1 If the pressure oil energy recovery device described in Patent Document 1 is used, the pressure on the bottom side is increased by shorting the bottom side and the rod side of the boom cylinder in the boom lowering operation, and the pressurized oil is accumulated in the accumulator In the boom raising operation, the pressure oil accumulated in the accumulator can be efficiently regenerated in the pressure oil supply path of the hydraulic pump.
  • the recovery flow control valve and the regeneration flow control valve are each provided with a pressure compensating valve, the pressure fluctuation of the regeneration flow accumulated in the accumulator and the regeneration flow discharged from the accumulator to the pressure oil supply path of the hydraulic pump It is possible to control without being influenced by and to control the accumulation speed and the regeneration speed accurately.
  • the pressure oil energy recovery device described in Patent Document 1 is accumulated in the accumulator from the bottom side of the boom cylinder through the recovery flow control valve in the operation of lowering the front working machine, that is, the boom lowering operation of retracting the boom cylinder.
  • the pressure oil is regenerated to the pressure oil supply path of the hydraulic pump while the flow rate is controlled by the regeneration flow control valve in the boom raising operation for extending the boom cylinder, and the flow rate combined with the discharge flow rate of the hydraulic pump It leads to a control valve.
  • the hydraulic pump described in Patent Document 1 controls the discharge flow rate such that the discharge pressure is larger than the maximum load pressure of all the actuators driven by the hydraulic pump by a predetermined value.
  • a so-called load sensing control is performed, and an unloading valve is provided in the pressure oil supply path in order to discharge excess pressure oil to a tank.
  • the unload valve is indispensable.
  • the pressure oil accumulated in the accumulator by the operation to raise the front work machine that is, boom raising operation
  • the pressure oil of the hydraulic pump When joining the passage through the regeneration flow control valve, if the pressure in the pressure oil supply passage is high enough to be higher than the load pressure of the boom cylinder by a predetermined pressure (not in the saturation state)
  • the flow rate that joins the pressure oil supply path from the accumulator via the regeneration flow rate control valve is discharged as a surplus flow rate from the above-mentioned unload valve to the tank, and the pressure oil accumulated in the accumulator is boomed
  • An object of the present invention is a pressure oil energy which is configured to perform load sensing control and accumulates pressure oil returning from an actuator in an operation of lowering a front working machine in an accumulator to recover potential energy of the front working machine
  • a hydraulic drive system of a working machine equipped with a recovery device when performing an operation other than lowering the front work machine, the pressure oil accumulated in the accumulator is joined to the pressure oil supply path of the hydraulic pump to be regenerated. It is an object of the present invention to provide a hydraulic drive system for a working machine which can prevent the wasteful consumption of pressure oil energy accumulated in an accumulator.
  • the present invention provides a variable displacement hydraulic pump, and one or more actuators including a hydraulic cylinder driven by pressure oil discharged from the hydraulic pump to move a working device up and down;
  • One or more flow control valves that control the flow of hydraulic fluid supplied from the hydraulic pump to the one or more actuators, and the hydraulic pump by a set pressure that is higher than the maximum load pressure of the one or more actuators
  • a regulator performing load sensing control which controls the discharge flow rate of the hydraulic pump so that the discharge pressure becomes high, and the pressure of the pressure oil supply passage of the hydraulic pump is higher than the maximum load pressure of the one or more actuators
  • the load sensing control setting pressure is increased by a predetermined value or more
  • the unload valve is opened to return the pressure oil in the pressure oil supply passage to the tank, and
  • An operation having a hydraulic cylinder and an accumulator connected to a pressure oil supply path of the hydraulic pump, wherein pressure oil returned from the hydraulic cylinder in the operation of lowering the work device is accumulated in the accumulator to lower the work device
  • the pressure oil energy recovery device includes a regeneration switching valve device for controlling a regeneration flow rate of pressure oil supplied from the accumulator to the pressure oil supply path of the hydraulic pump, and the regeneration switching valve device is configured to control the oil pressure If the difference between the pressure in the pressure oil supply passage of the pump and the maximum load pressure is greater than the set pressure for the load sensing control, When the supply of pressure oil to the pressure oil supply passage of the hydraulic pump is limited, and the difference between the pressure of the pressure oil supply passage of the hydraulic pump and the maximum load pressure is smaller than the set pressure of the load sensing control, Communication between the accumulator and the hydraulic oil supply path of the hydraulic pump is controlled to allow supply of pressure oil from the accumulator to the hydraulic oil supply path of the hydraulic pump.
  • a regeneration switching valve device for controlling the regeneration flow rate of pressure oil supplied from the accumulator to the pressure oil supply path of the hydraulic pump is provided, and the pressure and the maximum load of the hydraulic oil supply path of the hydraulic pump are provided by this regeneration switching valve device. If the difference between the pressure and the load sensing control setting pressure is greater, the pressure oil supply from the accumulator to the pressure oil supply path of the hydraulic pump is limited, and the pressure of the hydraulic oil supply path of the hydraulic pump and the maximum load pressure When the difference is smaller than the set pressure of the load sensing control, the hydraulic pump is controlled by controlling the communication between the accumulator and the hydraulic oil supply path of the hydraulic pump so as to allow the supply from the accumulator to the hydraulic oil supply path of the hydraulic pump.
  • the pressure oil discharged from the pump is sufficient for the required flow rate, the difference between the pressure in the pressure oil supply passage of the hydraulic pump and the maximum load pressure is higher than the set pressure for load sensing control.
  • the pressure oil energy accumulated in the accumulator is consumed wastefully by the unload valve connected to the hydraulic oil supply passage. It can be prevented.
  • the regeneration switching valve device that controls the communication between the accumulator and the pressure oil supply path of the hydraulic pump so as to allow the supply from the accumulator to the pressure oil supply path of the hydraulic pump, If the pressure oil to be discharged is sufficient for the required flow rate, the difference between the pressure in the pressure oil supply passage of the hydraulic pump and the maximum load pressure becomes larger than the set pressure of the load sensing control, and Since the regeneration to the pressure oil supply passage is limited, it is possible to prevent the pressure oil energy accumulated in the accumulator from being wastefully consumed by the unload valve connected to the pressure oil supply passage.
  • the pressure oil energy accumulated in the accumulator can be effectively used.
  • FIG. 1 is a diagram showing the configuration of a hydraulic drive system for a working machine according to a first embodiment of the present invention.
  • the hydraulic drive system includes a prime mover 1 (for example, a diesel engine), a main pump 2 which is a variable displacement hydraulic cylinder driven by the prime mover 1, and a fixed displacement driven by the prime mover 1.
  • a plurality of flow control valves 6a, 6b, 6c, 6d for controlling the drive direction and drive speed of the plurality of actuators 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h.
  • the pressure oil in the pressure oil supply passage 5 is opened and returned to the tank (that is, the pressure P1 of the pressure oil supply passage 5 is higher than the set pressure). Not be controlled), the pressure difference between the pressure P1 of the pressure oil supply passage 5 and the maximum load pressure Plmax of the plurality of actuators 3a, 3b, 3c, 3d, 3e, 3f, 3g and 3h A differential pressure reducing valve 11 is provided to output pressure Pls.
  • the unload valve 15 may not be provided with the spring 15a.
  • the set pressure (predetermined pressure) of the unload valve 15 is a value obtained by adding the target LS differential pressure Pgr to the maximum load pressure Plmax.
  • the pressure oil discharged from the fixed displacement pilot pump 30 flows to the pressure oil supply path 31b via the pressure oil supply path 31a and the motor rotation speed detection valve 13, and is connected to the pressure oil supply path 31b.
  • the valve 32 generates a constant pilot pressure Pi0.
  • the prime mover rotational speed detection valve 13 includes a flow rate detection valve 13a connected between the pressure oil supply passage 31a and the pressure oil supply passage 31b, and a differential pressure across the flow rate detection valve 13a (before and after the prime mover rotation number detection valve 13). And a differential pressure reducing valve 13b for outputting the differential pressure as the absolute pressure Pgr.
  • the flow rate detection valve 13a has a variable throttle that increases the opening area as the passing flow rate (discharge flow rate of the pilot pump 30) increases, and the oil discharged from the pilot pump 30 passes through the variable throttle of the flow rate detection valve 13a. It flows to the pressure oil supply passage 31b side. At this time, a differential pressure that increases as the passing flow rate increases is generated in the variable throttle of the flow rate detection valve 13a, and the differential pressure reducing valve 13b outputs the differential pressure before and after as the absolute pressure Pgr. Since the discharge flow rate of the pilot pump 30 changes according to the rotation speed of the prime mover 1, the discharge flow rate of the pilot pump 30 can be detected by detecting the differential pressure across the variable throttle of the flow rate detection valve 13a. The rotation speed can be detected. The absolute pressure Pgr output from the motor rotation speed detection valve 13 (differential pressure reducing valve 13b) is led to the regulator 12 and a regeneration switching valve 23 described later as a target LS differential pressure.
  • a pressure oil supply passage 31c is connected downstream of the pilot relief valve 32 of the pressure oil supply passage 31b via a gate lock valve 33.
  • a plurality of operating devices 60a, 60b, 60c, 60d, A pair of pilot valves (pressure reducing valves) respectively provided to 60e, 60f, 60g and 60h (60d to 60h are not shown) are connected.
  • the plurality of operating devices 60a, 60b, 60c, 60d, 60e, 60f, 60g are for commanding the operation of the corresponding actuators 3a to 3h, and each pilot valve is A plurality of operating devices 60a, 60b, 60c, 60d, 60e, 60f, 60h (60d to 60h are not shown) generated by the pilot relief valve 32 by operating the operating means such as the operating levers and pedals.
  • the operation pressure (operation signal) a, b; c, d; e, f... Is generated with the constant pilot primary pressure Ppi0 as the source pressure.
  • the gate lock valve 100 is operated by operating the gate lock lever 34 provided at the entrance of the driver's seat of the hydraulic shovel (work machine), and the pilot primary pressure Ppi0 generated by the pilot relief valve 32 is the pilot oil path Whether the pressure oil in the pressure oil supply passage 31b is discharged to the tank (operation of the operation devices 60a to 60h) (if the operation of the operation devices 60a to 60h becomes effective) Will be switched).
  • the regulator 12 of the variable displacement main pump 2 operates with the output pressure of the LS valve 12b and the LS valve 12b, and the required flow rates of the plurality of flow control valves 6a, 6b, 6c, 6d, 6e, 6f, 6g, 6h According to the flow control piston 12c that controls the discharge flow rate of the main pump 2 and the pressure P1 of the pressure oil supply passage 5 of the main pump 2 are introduced, and when the pressure P1 becomes large, the displacement of the main pump 2 is reduced to reduce And a horsepower control piston 12d for controlling so as not to exceed a predetermined torque.
  • a target LS differential pressure Pgr which is an output pressure of the motor rotational speed detection valve 13 and an LS differential pressure Pls which is an output pressure of the differential pressure reducing valve 11 are introduced.
  • a constant pilot pressure Ppi0 is introduced to the flow control piston 12c to decrease the discharge flow rate of the main pump 2.
  • the LS differential pressure Pls is smaller than the target LS differential pressure Pgr, the flow control The pressure oil of the piston 12c is discharged to the tank, and the flow control piston 12c is controlled to increase the flow rate of the main pump 2.
  • a regeneration switching valve 20 and switching valves 27 and 28 are provided.
  • the bottom side oil passage 41 a of the boom cylinder 3 a and the rod side oil passage 42 are connected to each other via the regeneration switching valve 20 and the check valve 24.
  • FIG. 3A is a view showing the opening area characteristic of the regeneration switching valve 20.
  • the regeneration switching valve 20 is in the closed position when the boom lowering operation pressure b is not applied, and is characterized in that the opening area becomes larger as the boom lowering operation pressure b increases.
  • Pi_rg_0 is the minimum effective boom lowering operation pressure
  • Pi_rg_max is the maximum boom lowering operation pressure
  • A20max is the maximum opening area.
  • the switching valve 27 outputs the tank pressure when the pressure of the bottom side oil passage 41a of the boom cylinder 3a is less than a predetermined value, and the operation is operated when the pressure of the oil passage 41a is equal to or more than a predetermined value It switches so that the operation pressure b (boom lowering operation pressure) which is the output pressure of the pilot valve of the apparatus 60a may be output.
  • the pressure output from the switching valve 27 is led to switch the pressure compensation valve 7a in the closing direction.
  • the switching valve 27 outputs the boom lowering operation pressure b in the right direction in the figure by the pressure of the bottom side oil passage 41a of the boom cylinder 3a in a state where the front working machine 104 is not grounded. It is set to switch to the position).
  • the switching valve 27 leads the tank pressure to the pressure compensation valve 7a
  • the switching valve 28 opens the pressure compensation valve 7a and the load pressure of the boom cylinder 3a obtained via the flow control valve 6a of the boom cylinder 3a.
  • the load pressure of the boom cylinder 3a is guided to the shuttle valve 9a provided for outputting the maximum load pressure Plmax, and the switching valve 27 is the output pressure of the pilot valve of the operating device 60a.
  • the operation pressure b boost lowering operation pressure
  • the tank pressure is led simultaneously in the direction to switch the pressure compensation valve 7a in the opening direction. It switches so as to lead to the valve 9a.
  • the hydraulic drive system of the present embodiment has a pressure oil energy recovery system 80.
  • the pressure oil energy recovery device 80 has an accumulator 40 and stores pressure oil, which is returned from the boom cylinder 3a which is one of the front actuators in the operation of lowering the front work implement 104 (see FIG. 2), in the accumulator 40.
  • the pressure oil accumulated in the accumulator 40 is supplied to the pressure oil supply passage of the main pump 2 It is supplied to 5 and regenerated.
  • the pressure oil energy recovery device 80 includes, in addition to the accumulator 40, switching valves 21 and 22, a regeneration switching valve 23 (first regeneration switching valve), and check valves 25 and 26, and the bottom side oil of the boom cylinder 3a.
  • the passage 41 a is connected to the pressure oil supply passage 5 via the switching valve 21, the check valve 25, the switching valve 22, the regeneration switching valve 23, the check valve 26 and the internal passage of the control valve block 4.
  • the accumulator 40 is connected to an oil passage 41 c between the check valve 25 and the switching valve 22.
  • An operation pressure b boost lowering operation pressure which is an output pressure of the pilot valve of the operation device 60a is guided to the switching valves 21 and 22.
  • FIG. 3B is a view showing the opening area characteristic of the switching valve 21. As shown in FIG.
  • FIG. 3C is a view showing the opening area characteristic of the switching valve 22. As shown in FIG.
  • a pressure receiving portion 23a (first pressure receiving portion) in the opening direction action and a pressure receiving portion 23b (second pressure receiving portion) in the closing direction action are provided at both ends of the regeneration switching valve 23, and an oil passage 23c (a first pressure receiving portion)
  • the target LS differential pressure Pgr is introduced through 1 oil passage, and the pressure P1 of the pressure oil supply passage 5 of the main pump 2 is applied to the pressure receiving portion 23b through the oil passage 23d (second oil passage).
  • the maximum load pressure a pressure difference with the maximum load pressure Plmax is derived.
  • FIG. 3D is a view showing the opening area characteristic of the regeneration switching valve 23.
  • the regeneration switching valve 23, the pressure receiving portions 23a and 23b, and the oil passages 23c and 23d control the regeneration flow rate of the pressure oil supplied from the accumulator 40 to the pressure oil supply passage 5 of the main pump 2. Act as a device.
  • the regeneration switching valve 23, the pressure receiving portions 23a and 23b, and the oil passages 23c and 23d are loaded with the LS differential pressure Pls, which is the difference between the pressure P1 of the pressure oil supply passage 5 of the main pump 2 and the maximum load pressure Plmax.
  • the pressure oil supply passage 5 of the main pump 2 When the pressure is larger than the target LS differential pressure Pgr which is the set pressure for sensing control, the supply of pressure oil from the accumulator 40 to the pressure oil supply passage 5 of the main pump 2 is restricted (in this embodiment, prohibited)
  • the LS differential pressure Pls which is the difference between the pressure P1 of the pressure oil supply passage 5 of the pump 2 and the maximum load pressure Plmax, is smaller than the set pressure Pgr for load sensing control
  • the pressure oil supply passage 5 of the main pump 2 from the accumulator 40 It functions as a regeneration switching valve device that controls the communication between the accumulator 40 and the pressure oil supply passage 5 of the main pump 2 so as to allow the supply of pressure oil to the main pump 2.
  • the LS differential pressure Pls which is the difference between the pressure P1 of the pressure oil supply path 5 of the main pump 2 and the maximum load pressure Plmax, is loaded.
  • the regeneration switching valve 23 (first regeneration switching valve 23) is switched to a position where the regeneration oil passage 41e is shut off, and the pressure P1 of the pressure oil supply passage 5 of the main pump 2 and the maximum load
  • the LS differential pressure Pls which is a difference from the pressure Plmax, is smaller than the set pressure Pgr for load sensing control, it functions as a switching control device that switches the regeneration switching valve 23 to a position communicating the regeneration oil passage 41e.
  • FIG. 2 is a view showing the appearance of a hydraulic shovel on which the above-described hydraulic drive system is mounted.
  • the hydraulic shovel includes an upper swing body 102, a lower traveling body 101, and a swing-type front work machine 104.
  • the front work machine 104 includes a boom 111, an arm 112, and a bucket 113.
  • the upper swing body 102 is pivotable relative to the lower traveling body 101 by the rotation of the swing motor 3c.
  • a swing post 103 is attached to a front portion of the upper swing body 102, and a front working tool 104 is attached to the swing post 103 so as to be vertically movable.
  • the swing post 103 can be rotated in the horizontal direction with respect to the upper swing body 102 by the expansion and contraction of the swing cylinder 3e, and the boom 111, the arm 112 and the bucket 113 of the front working machine 104 are the boom cylinder 3a, the arm cylinder 3b, and the bucket cylinder It can be vertically rotated by the expansion and contraction of 3d.
  • Attached to the central frame 105 of the undercarriage 101 is a blade 106 that moves up and down by the expansion and contraction of the blade cylinder 3h.
  • the lower traveling body 101 travels by driving the left and right crawler belts by the rotation of the traveling motors 3 f and 3 g.
  • a driver's cab 108 is installed in the upper revolving superstructure 102, and in the driver's cab 108, a driver's seat 121, a boom cylinder 3a, an arm cylinder 3b, a bucket cylinder 3d, operating devices 60a to 60d for a swing motor 3c, and a swing
  • An operating device 60e for the cylinder 3e, an operating device 60h for the blade cylinder 3h, operating devices 60f and 60g for the traveling motors 3f and 3g, and a gate lock lever 34 are provided.
  • the operating devices 60a to 60d, the operating device 60e, the operating device 60h, and the operating devices 60f and 60g are operating lever devices that can be operated by the operating lever, and the operating devices 60f and 60g for the traveling motors 3f and 3g are further pedals It can also be operated by
  • the boom cylinders 3a, the arm cylinders 3b, the bucket cylinders 3d, and the operation devices 60a to 60d for the swing motor 3c are disposed, for example, on the left and right of the driver's seat 121, respectively. It has two control levers operable in directions, and is configured as a control lever device.
  • the left operation lever device functions as the operation device 60c for turning when the operation lever is operated in the front-rear direction, and functions as the operation device 60b for the arm when the operation lever is operated in the left-right direction.
  • the lever device functions as a boom operating device 60a when the operating lever is operated in the front-rear direction, and functions as a bucket operating device when the operating lever is operated in the left-right direction.
  • the pressure oil discharged from the fixed displacement pilot pump 30 is supplied to the pressure oil supply passage 31a, and the prime mover rotation number detection valve 13 connected downstream of the pressure oil supply passage 31a allows the fixed displacement pilot pump 30 to be supplied.
  • the discharge flow rate is output as the target LS differential pressure Pgr.
  • a pilot relief valve 32 is connected downstream of the motor rotation speed detection valve 13, and generates a constant pilot primary pressure Ppi0 in the pressure oil supply passage 31b.
  • the switching valve 27 When the pressure in the bottom side oil passage 41a of the boom cylinder 3a is lower than the pressure previously determined by the spring of the switching valve 27 (for example, the front work machine 104 is grounded and the holding pressure does not act on the boom cylinder 3a In the case, etc., the switching valve 27 is switched to the left in the figure by a spring, and the tank pressure is introduced to the pressure compensating valve 7a and the switching valve 28.
  • the switching valve 28 is switched to the right in the drawing by a spring, and the load pressure detection oil passage of the flow control valve 6a is connected to the pressure compensating valve 7a and the shuttle valve 9a.
  • the pressure P1 of the pressure oil supply passage 5 includes a spring 15a provided to the unload valve 15, and an output pressure Pgr (target LS differential pressure) of the motor rotational speed detection valve 13 guided in the direction to close the unload valve 15.
  • Pgr target LS differential pressure
  • the target LS differential pressure Pgr and the LS differential pressure Pls are led to the LS valve 12b in the regulator 12 of the main pump 2 of the variable displacement type, and the LSb valve 12b compares the LS differential pressure Pls with the target LS differential pressure Pgr, In the case of Pls ⁇ Pgr, the pressure oil of the flow control piston 12c is discharged to the tank, and in the case of Pls> Pgr, the constant pilot primary pressure Ppi0 generated in the pressure oil supply passage 31b by the pilot relief valve 32 It leads to the flow control piston 12c.
  • the switching valves 21 and 22 are held in the illustrated closed position and communicating position, respectively. Therefore, the bottom side oil passage 41a of the boom cylinder 3a is disconnected from the oil passage 41c to which the accumulator 40 is connected, and the oil passage 41d between the oil passage 41c to which the accumulator 40 is connected and the regeneration switching valve 23 is communicated. .
  • the pressure compensating valve 7a is held in the closed position by the boom lowering operation pressure b guided in the closing direction of the pressure compensating valve 7a.
  • the switching valve 28 is switched leftward in the drawing by the boom lowering operation pressure b, and the tank pressure is introduced to the pressure compensating valve 7a and the shuttle valve 9a.
  • the tank pressure is led to the differential pressure reducing valve 11 and the unloading valve 15 as the maximum load pressure Plmax via the shuttle valve 9a as in the case of "(a) when all the operating levers are neutral", and the pressure oil is supplied.
  • the pressure P1 of the passage 5 is held by the unload valve 15 slightly higher than the target LS differential pressure Pgr.
  • the pressure oil in the bottom side oil passage 41a of the boom cylinder 3a thus boosted is the flow control valve because the switching valve 21 is switched to the open position and the switching valve 22 is switched to the closed position as described above.
  • the pressure is accumulated in the accumulator 40 through the switching valve 21 and the check valve 25 at the same time as discharging to the tank through the meter-out opening on the boom lower side of 6 a.
  • the switching valve 27 When the pressure in the bottom side oil passage 41a of the boom cylinder 3a is lower than the pressure previously determined by the spring of the switching valve 27 (for example, the front work machine 104 is grounded and the holding pressure does not act on the boom cylinder 3a In the case, etc., the switching valve 27 is switched to the left in the figure by a spring, and the tank pressure is introduced to the pressure compensating valve 7a and the switching valve 28.
  • the switching valve 28 is switched to the right in the drawing by a spring, and the load pressure detection oil passage of the flow control valve 6a is connected to the pressure compensating valve 7a and the shuttle valve 9a.
  • the switching valve 27 switches to the right in the figure to guide the boom lowering operation pressure b to the pressure compensating valve 7a and the switching valve 28.
  • the boom lowering operation pressure Since b is equal to the tank pressure the switching valve 28 is switched to the right in the figure, and the load pressure detection oil path of the flow control valve 6a is connected to the pressure compensating valve 7a and the shuttle valve 9a.
  • the load pressure of the boom cylinder 3a (the pressure of the oil passage 41a) is guided to the shuttle valve 9a via the flow control valve 6a and the switching valve 28, and the maximum load pressure Plmax
  • the differential pressure reducing valve 11 and the unloading valve 15 are introduced as
  • the maximum load pressure Plmax introduced to the unload valve 15, the spring 15a of the unload valve 15 and the target LS differential pressure Pgr make the set pressure of the unload valve 15 the target LS differential pressure Pgr to the load pressure Plmax of the boom cylinder 3a.
  • a value obtained by adding a biasing force of the spring 15a hereinafter referred to as a spring force to shut off the oil passage for discharging the pressure oil in the pressure oil supply passage 5 to the tank.
  • the differential pressure reducing valve 11 outputs P1-Plmax as the LS differential pressure Pls by the maximum load pressure Plmax led to the differential pressure reducing valve 11, the pressure oil supply passage is activated at the moment when it is activated in the boom raising direction. Since the pressure P1 of 5 is held at a low pressure predetermined by the spring 15a of the unloading valve 15 and the LS differential pressure Pgr, the LS differential pressure Pls is substantially equal to the tank pressure.
  • the LS differential pressure Pls is led to the LS valve 12 b in the regulator 12 of the variable displacement main pump 2.
  • the switching valves 21 and 22 are held at the closed position and the communicating position, respectively.
  • the bottom side oil passage 41a of the boom cylinder 3a and the oil passage 41c to which the accumulator 40 is connected are shut off, and the oil passage 41d between the oil passage 41c to which the accumulator 40 is connected and the regeneration switching valve 23 is communicated.
  • the pressure oil is led to the regeneration switching valve 23.
  • the regeneration switching valve 23 is switched to the left direction in the drawing, that is, the communication position, and the pressure of the oil passage 41c to which the accumulator 40 is connected is the pressure oil supply passage 5 If it is higher than that, the pressure oil of the accumulator 40 flows into the pressure oil supply passage 5 via the check valve 26 and is regenerated.
  • the pressure oil supplied from the accumulator 40 and the pressure oil discharged from the main pump 2 join together and are supplied to the bottom side of the boom cylinder 3a via the flow control valve 6a to drive the boom cylinder 3a. Start-up can be performed, and good operability can be realized.
  • the regeneration switching valve 23 switches to the closed position.
  • the switching valve 27 moves to the right in FIG.
  • the boom lowering operation pressure b is guided to the pressure compensation valve 7a and the switching valve 28.
  • the boom lowering operation pressure b is equal to the tank pressure, so the switching valve 28 moves to the right in the figure.
  • the load pressure detection oil passage of the flow control valve 6a is connected to the pressure compensation valve 7a and the shuttle valve 9a.
  • the switching valve 27 is springed in FIG.
  • the left pressure is switched to direct the tank pressure to the pressure compensation valve 7a and the switching valve 28, and the switching valve 28 is switched to the right in the figure by a spring, and the load pressure detection oil path of the flow control valve 6a is switched to the pressure compensation valve 7a and Connect to the shuttle valve 9a.
  • the differential pressure reducing valve 11 outputs P1-Plmax as the LS differential pressure Pls by the maximum load pressure Plmax led to the differential pressure reducing valve 11, the boom is activated in the raising direction or the arm is activated in the cloud direction At the moment the pressure P1 of the pressure oil supply passage 5 is maintained at a low pressure predetermined by the spring 15a of the unloading valve 15 and the LS differential pressure Pgr, the LS differential pressure Pls becomes approximately equal to the tank pressure .
  • the LS differential pressure Pls is led to the LS valve 12 b in the regulator 12 of the variable displacement main pump 2.
  • the boom raising and arm crowding simultaneous operations are performed, the boom lowering operation pressure b is equal to the tank pressure, so both the regeneration switching valve 20 and the switching valve 21 are held in the closed position and the switching valve 22 is held in the communication position.
  • the oil passage 41c to which the bottom side oil passage 41a of the boom cylinder 3a and the accumulator 40 are connected is shut off, and the oil passage 41d between the oil passage 41c to which the accumulator 40 is connected and the regeneration switching valve 23 is communicated.
  • the pressure oil is led to the regeneration switching valve 23.
  • the regeneration switching valve 23 Since the regeneration switching valve 23 is switched to the open position, when the pressure of the oil passage 41c to which the accumulator 40 is connected is higher than the pressure P1 of the pressure oil supply passage 5, the pressure oil of the accumulator 40 is the switching valve 22, the regeneration It flows into the pressure oil supply passage 5 via the switching valve 23 and the check valve 26, and is regenerated.
  • the pressure oil supplied from the accumulator 40 and the pressure oil discharged from the main pump 2 join together and are supplied to the bottom side of the boom cylinder 3a and the bottom side of the arm cylinder 3b via the flow control valves 6a and 6b, Since the boom cylinder 3a and the arm cylinder 3b are driven, speedy boom raising and arm cloud operations can be performed, and good combined operability can be realized.
  • the switching valve 27 switches to the left in the figure, and the tank pressure changes to the pressure compensating valve 7a and the switching valve 28.
  • the switching valve 28 is switched to the right in the figure to guide the load pressure of the boom cylinder 3a (the rod pressure of the boom cylinder 3a in the boom lowering operation) to the pressure compensating valve 7a and the shuttle valve 9a.
  • the load pressure of the boom cylinder 3a (pressure of the oil passage 42) is pressure compensated via the flow control valve 6a and the switching valve 28. It is led to the valve 7a and the shuttle valve 9a, and is led to the differential pressure reducing valve 11 and the unloading valve 15 as the maximum load pressure Plmax.
  • the maximum load pressure Plmax introduced to the unload valve 15, the spring 15a of the unload valve 15 and the target LS differential pressure Pgr make the set pressure of the unload valve 15 the target LS differential pressure Pgr to the load pressure Plmax of the boom cylinder 3a. And the spring force is increased to a value to shut off the oil passage for discharging the pressure oil in the pressure oil supply passage 5 to the tank.
  • the differential pressure reducing valve 11 outputs P1-Plmax as the LS differential pressure Pls by the maximum load pressure Plmax led to the differential pressure reducing valve 11, the pressure oil supply passage is activated at the moment when the boom is lowered. Since the pressure P1 of 5 is held at a low pressure predetermined by the spring 15a of the unload valve 15 and the target LS differential pressure Pgr, the LS differential pressure Pls is approximately equal to the tank pressure.
  • the LS differential pressure Pls is led to the LS valve 12 b in the regulator 12 of the variable displacement main pump 2.
  • the pressure oil flowing out from the bottom side oil passage 41a of the boom cylinder 3a is discharged to the tank via the boom lowering meter out opening of the flow control valve 6a and at the same time the accumulator via the switching valve 21 and the check valve 25
  • the pressure in the bottom side oil passage 41a of the boom cylinder 3a is low, so the pressure in the oil passage 41a is introduced. Does not reach the minimum operating pressure of the accumulator 40, the accumulator 40 is not pressurized.
  • the regeneration switching valve 23 is switched to the open position when in the so-called saturation state. Since the supply of the variable displacement main pump 2 to the pressure oil supply passage 5 from the accumulator 40 is permitted, the pressure oil accumulated in the accumulator 40 in the boom lowering operation is supplied to the pressure oil supply passage 5 and regenerated. The pressure oil discharged from the main pump 2 is joined and supplied to actuators such as the boom cylinder 3a and the arm cylinder 3b to drive the actuators. As a result, work such as speeding up booms and arm clouds can be performed, and good combined operability can be realized.
  • the regeneration switching valve 23 when the LS differential pressure Pls is larger than the target LS differential pressure Pgr (Pls ⁇ Pgr), the regeneration switching valve 23 is fully closed to shut off the oil passage 41d and the regeneration oil passage 41e. Although the supply of pressure oil from the accumulator 40 to the pressure oil supply passage 5 of the main pump 2 is prohibited, the regeneration switching valve 23 is not fully closed but switched to the throttling position, and the pressure from the accumulator 40 to the main pump 2 is reduced. The supply of the pressure oil to the oil supply passage 5 may be suppressed (a certain amount of pressure oil flow may be allowed).
  • the regeneration switching valve 23 is the hydraulic switching valve
  • the regeneration switching valve 23 is an electromagnetic switching valve
  • the controller determines the magnitude of the LS differential pressure Pls and the target LS differential pressure Pgr.
  • the electromagnetic switching valve may be switched according to the result.
  • Second Embodiment A hydraulic drive system for a working machine according to a second embodiment of the present invention will be described with reference to FIGS. 4 to 7C, focusing on differences from the first embodiment.
  • FIG. 4 is a view showing the configuration of a hydraulic drive system for a working machine according to a second embodiment of the present invention.
  • the hydraulic drive system includes a pressure oil energy recovery system 81.
  • This pressure oil energy recovery system 81 has a variable displacement main pump 2 inclined with respect to the first embodiment.
  • a tilt angle sensor 50 (first sensor) for detecting a displacement angle
  • a rotation speed sensor 56 (second sensor) for detecting a rotation speed of the prime mover 1
  • Pressure sensor 54 (fourth sensor)
  • a pressure sensor 55 third sensor for detecting the pressure Pacc of the oil passage 41c to which the accumulator 40 is connected, the tilt angle sensor 50, the rotational speed sensor 56, and the pressure sensor 54.
  • the regeneration switching valve 52 (second regeneration switching valve) is disposed at 41e and 41f and is operated by the output pressure of the proportional solenoid valve 53, and the opening area can be adjusted.
  • FIG. 5 is a view showing the opening area characteristic of the regeneration switching valve 52. As shown in FIG.
  • the opening area A52 of the regeneration switching valve 52 is 0 when the output pressure Pi_sr ′ of the proportional solenoid valve 53 is smaller than the minimum effective value Pi_fr_0, as shown in FIG. 5, and the output pressure Pi_sr ′ is higher than the effective minimum Pi_fr_0.
  • FIG. 6 is a functional block diagram showing the contents of processing performed by the CPU 51a of the controller 51.
  • FIGS. 7A, 7B and 7C respectively show the first to third tables 51a, 51b, 51c used by the CPU 51a of the controller 51. It is a figure which shows a characteristic.
  • the CPU 51a of the controller 51 has processing functions of first to fourth tables 51a, 51b, 51c, and 51g, a multiplier 51d, a difference unit 51e, and a multiplier 51f.
  • the tilt angle Ang_sw of the variable displacement main pump 2 input from the tilt angle sensor 50 is converted to the volume q1 of the main pump 2 by the first table 51a.
  • the characteristic of the first table 51a is as shown in FIG. 7A, and when the tilt angle Ang_sw of the main pump 2 is the minimum Angle_sw_min, the capacity q1 of the main pump 2 is also the minimum q1_min, and the tilt angle Ang_sw When Angle is more than Angle_sw_min, capacity q1 of main pump 2 increases with the increase of tilt angle Ang_sw, and when tilt angle Ang_sw reaches maximum Angle_sw_max, volume q1 of main pump 2 also reaches maximum q1_max. .
  • the capacity q1 is multiplied by the rotation speed N1 of the motor 1 which is an input from the rotation speed sensor 56 by the multiplier 51d, and becomes the flow rate Q1.
  • the flow rate Q1 is converted to a pilot pressure Pi_sr for switching the regeneration switching valve 52 by the second table 51b.
  • the characteristic of the second table 51b is as shown in FIG. 7B, and the pilot pressure Pi_sr is 0 when the discharge flow rate of the main pump 2, that is, while the pump flow rate Q1 is smaller than a predetermined value Q1_0 close to 0,
  • the pilot pressure Pi_sr increases with the increase of the pump flow rate Q1
  • the pilot pressure Pi_sr reaches the maximum Pi_sr_max, Q1 In the range of> Q1_1, the pilot pressure Pi_sr is maintained at the maximum Pi_sr_max.
  • the pressure of the accumulator 40 input from the pressure sensor 55 that is, the accumulator pressure Pacc
  • the discharge pressure of the main pump 2 that is input from the pressure sensor 54 that is, the pump pressure P1
  • the differential pressure ⁇ P is converted to the gain Gain1 in the third table 51c.
  • the characteristic of the third table 51c is as shown in FIG. 7C, and the gain Gain1 is 1 when the differential pressure ⁇ P is less than or equal to 0 and the predetermined value ⁇ P_0 or less, and the gain Gain1 decreases as the differential pressure ⁇ P increases.
  • the differential pressure ⁇ P reaches the predetermined value ⁇ P_1, Gain1 reaches the minimum value (0.1 in the present embodiment), and the gain Gain1 is maintained at the minimum value even if the differential pressure ⁇ P is further increased.
  • the pilot pressure Pi_sr which is the output of the second table 51b and the gain Gain1 which is the output of the third table 51c are multiplied by the multiplier 51f to become a command pilot pressure Pi_sr '.
  • the command pilot pressure Pi_sr ' is converted into a current command I53 to the proportional solenoid valve 53 by the fourth table 51g, and is output to the proportional solenoid valve 53.
  • the controller 51 controls the regeneration switching valve 52 (based on detection values of the tilt angle sensor 50 (first sensor), the rotation speed sensor 56 (second sensor), and the pressure sensors 54 and 55 (third and fourth sensors)).
  • the target opening area of the second regeneration switching valve is determined, and a switching command of the second regeneration switching valve is generated, and the proportional solenoid valve 53 performs the second regeneration so as to secure the target opening area based on the switching command.
  • the switching valve 52 is operated.
  • the second embodiment is different from the first embodiment in that the pressure oil is accumulated in the accumulator 40 and the main pump 2 is in a saturation state, for example, when the boom raising and the arm cloud are simultaneously operated.
  • Pls Pls ⁇ Pgr
  • the pressure oil energy accumulated in the accumulator 40 is joined to the pressure oil supply path of the main pump 2.
  • the regeneration switching valve 52 is controlled so as to reduce the opening area, and the pressure oil of the accumulator 40 is throttled by the opening of the regeneration switching valve 52 and joins the pressure oil supply path 5 via the check valve 26.
  • the command pilot pressure Pi_sr for switching the regeneration switching valve 52 becomes the maximum value Pi_sr_max.
  • the differential pressure ⁇ P between the accumulator pressure Pacc and the pump pressure P1 is large, for example, immediately after the boom lowering operation is completed, a sufficiently high pressure is accumulated in the accumulator 40 and the arm approaches the maximum cloud posture
  • the gain Gain1 is 0.1 which is the minimum value.
  • the opening area of the regeneration switching valve 52 decreases when the differential pressure ⁇ P between the accumulator pressure Pacc and the pump pressure P1 is large, and the pressure oil of the accumulator 40 is throttled by the opening of the regeneration switching valve 52. Merge with the pressure oil supply path 5 via
  • the pressure oil accumulated in the accumulator 40 is discharged to the pressure oil supply path 5 as described above, and the accumulator pressure Pcc gradually decreases, and the value of the differential pressure ⁇ P between the accumulator pressure Pacc and the pump pressure P1 decreases. Accordingly, the gain Gain1 of the unloading valve 15 increases from the minimum value 0.1 to the maximum value 1 along with it, and when the differential pressure ⁇ P becomes ⁇ P_0 or less, the gain Gain1 becomes the maximum value 1.
  • the pressure oil joins the pressure oil supply passage 5 via the check valve 26 without being throttled by the opening of the regeneration switching valve 52.
  • the regeneration switching valve 52 squeezes the opening.
  • the discharge flow rate of the variable displacement main pump 2 is minimized and the consumption power is suppressed while accumulating a part of the pressurized oil in the accumulator in the boom lowering operation. it can.
  • the pressure oil accumulated in the accumulator joins the pressure oil supply path of the main pump 2 to enable speedy work, and when it is not in the saturation state (main When the pressure oil discharged from the pump 2 is sufficient for the required flow rate of the flow control valve), the regeneration switching valve 23 is switched to the closed position, and the accumulator 40 to the pressure oil supply passage 5 of the main pump 2 Since the regeneration is prohibited, it is possible to prevent the pressure oil accumulated in the accumulator 40 from being wastefully consumed by the unload valve 15, and to use the pressure oil accumulated in the accumulator effectively.
  • the work machine is a hydraulic shovel provided with a front work machine, an upper swing body, and a lower traveling body
  • actuators including hydraulic cylinders for moving the work device up and down are described.
  • it may be a working machine other than a hydraulic shovel, such as a wheel loader, a hydraulic crane, or a telehandler, and the same effect can be obtained in that case.
  • the regeneration switching valve 20 is disposed between the bottom side oil passage and the rod side oil passage of the boom cylinder, but the present invention is applied to a hydraulic drive without the regeneration switching valve 20 You may
  • Variable displacement main pump (hydraulic pump) 3a Boom cylinder (hydraulic cylinder) 3b Arm cylinder (actuator) 3c Swing motor (actuator) 4 Control valve block 5 Pressure oil supply passages 6a to 6c of the main pump 2 Flow control valves 7a to 7c Pressure compensation valves 8a to 8c, 24, 25, 26 Check valves 9a to 9c Shuttle valve 11 Differential pressure reducing valve 12 Regulator 13 Motor 13 Speed detecting valve 14 Relief valve 15 Unloading valve 20 Regeneration switching valve 21, 22, 27, 28 Switching valve 23 Regeneration switching valve (Regeneration switching valve device; first regeneration switching valve) 23a Pressure receiving unit (switch control device; first pressure receiving unit) 23b Pressure receiving unit (switch control device; second pressure receiving unit) 23c Oil passage (switching control device; first oil passage) 23d oil passage (switching control device; second oil passage) 30 Fixed displacement pilot pump 40 Accumulators 41a to 41f, 42 Oil passages 41e, 41f Regenerated oil passage 50 Tilting angle sensor (first sensor) 51

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)
  • Mechanical Engineering (AREA)

Abstract

ロードセンシング制御を行うように構成され、かつフロント作業機104を降下させる動作において油圧シリンダ3aから戻ってくる圧油をアキュムレータ40に蓄圧する圧油エネルギ回収装置80を備えた作業機械の油圧駆動装置において、フロント作業機104を降下させる動作以外の動作を行う場合に、アキュムレータ40に蓄圧された圧油エネルギが無駄に消費されることを防止するため、アキュムレータ40に蓄圧された圧油をメインポンプ2の圧油供給路5に再生する油路に再生切換弁23を設け、その再生切換弁23を、メインポンプ2がサチュレーションを起こしている場合にのみアキュムレータ40から圧油供給路5への流れを許容するように制御する。

Description

作業機械の油圧駆動装置
 本発明は圧油エネルギ回収装置を備えた油圧ショベルなどの作業機械の油圧駆動装置に係わり、特に、可変容量型の油圧ポンプを備え、その油圧ポンプが、1つ以上のアクチュエータの最高負荷圧よりもある設定圧だけ吐出圧が高くなるように吐出流量を制御する、ロードセンシング制御を行うように構成され、かつ油圧アクチュエータからの圧油エネルギを回収する圧油エネルギ回収装置を備えた作業機械の油圧駆動装置に関する。
 油圧ショベルなどの作業機械の油圧駆動装置において、フロント作業機を降下させる動作で、フロント作業機を上下動させるアクチュエータから戻ってくる圧油をアキュムレータに蓄圧して、フロント作業機の位置エネルギを回収し、フロント作業機を降下させる動作以外の動作を行う場合に、アキュムレータに蓄圧した圧油を油圧ポンプの圧油供給路に再生する圧油エネルギ回収装置に関する従来技術が特許文献1に記載されている。
 特許文献1において、可変容量型の油圧ポンプは、フロント作業機を上下動する油圧シリンダを含む複数のアクチュエータの最高負荷圧よりも、ある設定圧だけポンプ吐出圧が高くなるように油圧ポンプの吐出流量を制御する、いわゆるロードセンシング制御を行うよう構成されている。また、圧油エネルギ回収装置は、フロント作業機を上下動させる油圧シリンダがフロント作業機の自重などによって縮むときにそのシリンダ(ブームシリンダ)のボトム側とロッド側を短絡してボトム側の圧力を上昇させるとともに、その昇圧した圧油をアキュムレータに供給する回収流量制御バルブと、ブームシリンダが負荷に抗して伸長するときにアキュムレータに蓄圧された圧油を油圧ポンプの圧油供給路に再生する再生流量制御バルブとを備え、その回収流量制御バルブと再生流量制御バルブはそれぞれ圧力補償弁を備えている。
特開2007-170485号公報
 特許文献1記載に記載されている圧油エネルギ回収装置を用いれば、ブーム下げ動作でブームシリンダのボトム側とロッド側を短絡することでボトム側の圧力を上昇させ、その昇圧した圧油をアキュムレータに蓄圧し、ブーム上げ動作の際、アキュムレータに蓄圧した圧油を油圧ポンプの圧油供給路に効率良く再生させることができる。
 また、回収流量制御バルブと再生流量制御バルブにそれぞれ圧力補償弁を備えているので、アキュムレータに蓄圧される回生流量と、アキュムレータから油圧ポンプの圧油供給路に放出される再生流量を、圧力変動の影響を受けることなく制御でき、蓄圧速度及び再生速度を正確に制御できる。
 しかしながら、特許文献1に記載の従来技術を用いた場合でも、以下のような問題があった。
 特許文献1に記載されている圧油エネルギ回収装置は、フロント作業機を降下させる動作、つまりブームシリンダを縮めるブーム下げ動作でブームシリンダのボトム側から回収流量制御バルブを介してアキュムレータに蓄圧された圧油は、ブームシリンダを伸長させるブーム上げ動作において再生流量制御バルブで流量を制御されながら油圧ポンプの圧油供給路に再生され、油圧ポンプの吐出流量と合流した流量をブームシリンダ制御用の流量制御弁に導くようになっている。
 しかし、特許文献1に記載されている油圧ポンプは、その吐出圧がその油圧ポンプによって駆動される全アクチュエータの最高負荷圧よりも予め定められた値だけ大きくなるようにその吐出流量を制御する、いわゆるロードセンシング制御を行う構成となっており、その圧油供給路には、余剰な圧油をタンクに放出するためにアンロード弁が設けられている。
 このようにロードセンシング制御を行う場合は、アンロード弁は不可欠であり、その場合、フロント作業機を上昇させる動作、つまりブーム上げ動作などでアキュムレータに蓄圧された圧油を油圧ポンプの圧油供給路に再生流量制御弁を介して合流させる際、仮に圧油供給路の圧力が十分に高く、ブームシリンダの負荷圧よりも予め定められた圧力だけ高い値になっていた場合(サチュレーション状態ではない場合)には、アキュムレータから再生流量制御弁を介して圧油供給路に合流する流量は、余剰流量として、前述のアンロード弁からタンクに排出されてしまい、アキュムレータに蓄圧された圧油をブーム下げ以外の動作に有効に利用できないという問題があった。
 本発明の目的は、ロードセンシング制御を行うように構成され、かつフロント作業機を降下させる動作においてアクチュエータから戻ってくる圧油をアキュムレータに蓄圧し、フロント作業機の位置エネルギを回収する圧油エネルギ回収装置を備えた作業機械の油圧駆動装置において、フロント作業機を降下させる動作以外の動作を行う場合に、アキュムレータに蓄圧された圧油を油圧ポンプの圧油供給路に合流して再生することができ、かつアキュムレータに蓄圧された圧油エネルギが無駄に消費されることを防止する作業機械の油圧駆動装置を提供することにある。
 本発明は、上記目的を達成するために、可変容量型の油圧ポンプと、前記油圧ポンプから吐出された圧油により駆動され、作業装置を上下動させる油圧シリンダを含む1つ以上のアクチュエータと、前記油圧ポンプから前記1つ以上のアクチュエータに供給される圧油の流れを制御する1つ以上の流量制御弁と、前記1つ以上のアクチュエータの最高負荷圧よりもある設定圧だけ前記油圧ポンプの吐出圧が高くなるように前記油圧ポンプの吐出流量を制御する、ロードセンシング制御を行うレギュレータと、前記油圧ポンプの圧油供給路の圧力が前記1つ以上のアクチュエータの最高負荷圧よりも、前記ロードセンシング制御の設定圧以上の所定値以上高くなると、開状態になって前記圧油供給路の圧油をタンクに戻すアンロード弁と、前記油圧シリンダと前記油圧ポンプの圧油供給路に接続されたアキュムレータを有し、前記作業装置を降下させる動作において前記油圧シリンダから戻される圧油を前記アキュムレータに蓄圧し、前記作業装置を降下させる動作以外の動作を行う場合に、前記アキュムレータに蓄圧された圧油の少なくとも一部を前記油圧ポンプの圧油供給路に供給して再生する圧油エネルギ回収装置とを備えた作業機械の油圧駆動装置において、前記圧油エネルギ回収装置は、前記アキュムレータから前記油圧ポンプの圧油供給路に供給される圧油の再生流量を制御する再生切換弁装置を有し、前記再生切換弁装置は、前記油圧ポンプの圧油供給路の圧力と前記最高負荷圧との差が前記ロードセンシング制御の設定圧より大きいときは、前記アキュムレータから前記油圧ポンプの圧油供給路への圧油の供給を制限し、前記油圧ポンプの圧油供給路の圧力と前記最高負荷圧との差が前記ロードセンシング制御の設定圧より小さいときは、前記アキュムレータから前記油圧ポンプの圧油供給路への圧油の供給を許容するよう、前記アキュムレータと前記油圧ポンプの圧油供給路との連通を制御する構成とする。
 このようにアキュムレータから油圧ポンプの圧油供給路に供給される圧油の再生流量を制御する再生切換弁装置を設け、この再生切換弁装置により、油圧ポンプの圧油供給路の圧力と最高負荷圧との差がロードセンシング制御の設定圧より大きいときは、アキュムレータから油圧ポンプの圧油供給路への圧油の供給を制限し、油圧ポンプの圧油供給路の圧力と最高負荷圧との差がロードセンシング制御の設定圧より小さいときは、アキュムレータから油圧ポンプの圧油供給路への供給を許容するよう、アキュムレータと油圧ポンプの圧油供給路との連通を制御することにより、油圧ポンプから吐出される圧油が要求流量に対して足りている場合には、油圧ポンプの圧油供給路の圧力と最高負荷圧との差がロードセンシング制御の設定圧より大きくなり、アキュムレータから油圧ポンプの圧油供給路への再生が制限されるので、アキュムレータに蓄圧された圧油エネルギが、圧油供給路に接続されたアンロード弁によって無駄に消費されることを防止することができる。
 一方、油圧ポンプから吐出される圧油が要求流量に対して足りていない(不足している)場合には、油圧ポンプの圧油供給路の圧力と最高負荷圧との差がロードセンシング制御の設定圧より小さくなり、アキュムレータから油圧ポンプの圧油供給路への供給が許容されるので、アキュムレータから供給された圧油が油圧ポンプから吐出された圧油と合流して再生され、アクチュエータを駆動するので、スピーディーな作業を実現することができる。
 本発明によれば、アキュムレータから油圧ポンプの圧油供給路への供給を許容するよう、アキュムレータと油圧ポンプの圧油供給路との連通を制御する再生切換弁装置を設けることにより、油圧ポンプから吐出される圧油が要求流量に対して足りている場合には、油圧ポンプの圧油供給路の圧力と最高負荷圧との差がロードセンシング制御の設定圧より大きくなり、アキュムレータから油圧ポンプの圧油供給路への再生が制限されるので、アキュムレータに蓄圧された圧油エネルギが、圧油供給路に接続されたアンロード弁によって無駄に消費されることを防止することができる。
 一方、油圧ポンプから吐出される圧油が要求流量に対して足りていない(不足している)場合には、油圧ポンプの圧油供給路の圧力と最高負荷圧との差がロードセンシング制御の設定圧より小さくなり、アキュムレータから油圧ポンプの圧油供給路への供給が許容されるので、アキュムレータから供給された圧油が油圧ポンプから吐出された圧油と合流して再生され、アクチュエータを駆動するので、スピーディーな作業を実現することができる。
 このように本発明においては、アキュムレータに蓄圧された圧油エネルギを有効に利用することができる。
本発明の第1の実施の形態による作業機械の油圧駆動装置の構成を示す図である。 本発明の第1の実施の形態による油圧駆動装置が搭載される油圧ショベルの外観を示す図である。 ブームシリンダのボトム側油路とロッド側油路間に配置された再生切換弁の開口面積特性を示す図である。 ブームシリンダのボトム側油路から分岐し、アキュムレータに至る油路に配置された切換弁の開口面積特性を示す図である。 アキュムレータに連通する油路に配置された切換弁の開口面積特性を示す図である。 アキュムレータをメインポンプの圧油供給路に連通させる油路に配置された再生切換弁(第1再生切換弁)の開口面積特性を示す図である。 本発明の第2の実施の形態による作業機械の油圧駆動装置の構成を示す図である。 第1再生切換弁の下流側に配置された再生切換弁(第2再生切換弁)の開口面積特性を示す図である。 コントローラのCPUが行う処理内容を示す機能ブロック図である。 コントローラのCPUが用いる第1テーブルの特性を示す図である。 コントローラのCPUが用いる第2テーブルの特性を示す図である。 コントローラのCPUが用いる第3テーブルの特性を示す図である。
 以下、本発明の実施の形態を図面に従い説明する。
 <第1の実施の形態>
 本発明の第1の実施の形態による作業機械の油圧駆動装置を図1~図3Dを用いて説明する。
 ~構成~
 図1は、本発明の第1の実施の形態による作業機械の油圧駆動装置の構成を示す図である。
 図1において、本実施の形態の油圧駆動装置は、原動機1(例えばディーゼルエンジン)と、原動機1によって駆動される可変容量型の油圧シリンダであるメインポンプ2と、原動機1によって駆動される固定容量型のパイロットポンプ30と、メインポンプ2の吐出流量を制御するためのレギュレータ12と、メインポンプ2から吐出された圧油によって駆動される複数のアクチュエータであるブームシリンダ3a、アームシリンダ3b、旋回モータ3c、バケットシリンダ3d、スイングシリンダ3e、走行モータ3f,3g、ブレードシリンダ3h(3d~3hは図2参照)と、メインポンプ2から吐出された圧油を複数のアクチュエータ3a,3b,3c,3d,3e,3f,3g,3hへ導くための圧油供給路5と、圧油供給路5の下流に接続され、メインポンプ2から吐出された圧油が導かれる制御弁ブロック4とを備えている。
 制御弁ブロック4内には、複数のアクチュエータ3a,3b,3c,3d,3e,3f,3g,3hの駆動方向と駆動速度を制御するための複数の流量制御弁6a,6b,6c,6d,6e,6f,6g,6h(6d~6hは図示省略)と、複数の流量制御弁6a,6b,6c,6d,6e,6f,6g,6hの前後差圧を制御するための複数の圧力補償弁7a,7b,7c,7d,7e,7f,7g,7h(7d~7hは図示省略)と、チェック弁8a,8b,8c,8d,8e,8f,8g,8h(8d~8hは図示省略)と、圧油供給路5に接続され、圧油供給路5の圧力P1を設定圧力以上にならないように制御するリリーフ弁14と、複数のアクチュエータ3a,3b,3c,3d,3e,3f,3g,3hの最高負荷圧Plmaxを検出するためのシャトル弁9a,9b,9c,9d,9e,9f,9g(9d~9gは図示省略)と、圧油供給路5の圧力P1が複数のアクチュエータ3a,3b,3c,3d,3e,3f,3g,3hの最高負荷圧Plmaxより所定圧(最高負荷圧Plmaxに後述する目標LS差圧Pgrとバネ15aの付勢力を加えたセット圧)以上高くなると、開状態になって圧油供給路5の圧油をタンクに戻す(すなわち、圧油供給路5の圧力P1が当該セット圧以上高くならないように制御する)アンロード弁15と、圧油供給路5の圧力P1と複数のアクチュエータ3a,3b,3c,3d,3e,3f,3g,3hの最高負荷圧Plmaxとの差圧を絶対圧Plsとして出力する差圧減圧弁11とが設けられている。
 アンロード弁15はバネ15aを備えない構成であってもよく、その場合、アンロード弁15のセット圧(所定圧)は、最高負荷圧Plmaxに目標LS差圧Pgrを加えた値となる。
 固定容量型パイロットポンプ30から吐出される圧油は、圧油供給路31aと原動機回転数検出弁13を経由して圧油供給路31bへと流れ、圧油供給路31bに接続されるパイロットリリーフ弁32によって一定のパイロット圧Pi0が生成される。原動機回転数検出弁13は、圧油供給路31aと圧油供給路31bとの間に接続された流量検出弁13aと、その流量検出弁13aの前後差圧(原動機回転数検出弁13の前後差圧)を絶対圧Pgrとして出力する差圧減圧弁13bとを有している。
 流量検出弁13aは通過流量(パイロットポンプ30の吐出流量)が増大するにしたがって開口面積を大きくする可変絞りを有しており、パイロットポンプ30の吐出油は流量検出弁13aの可変絞りを通過して圧油供給路31b側へと流れる。このとき、流量検出弁13aの可変絞りには通過流量が増加するにしたがって大きくなる前後差圧が発生し、差圧減圧弁13bはその前後差圧を絶対圧Pgrとして出力する。パイロットポンプ30の吐出流量は原動機1の回転数によって変化するため、流量検出弁13aの可変絞りの前後差圧を検出することにより、パイロットポンプ30の吐出流量を検出することができ、原動機1の回転数を検出することができる。原動機回転数検出弁13(差圧減圧弁13b)が出力する絶対圧Pgrは目標LS差圧としてレギュレータ12と後述する再生切換弁23に導かれる。
 圧油供給路31bのパイロットリリーフ弁32の下流には、ゲートロック弁33を介して圧油供給路31cが接続され、この圧油供給路31cに複数の操作装置60a,60b,60c,60d,60e,60f,60g,60h(60d~60hは図示省略)にそれぞれ備えられた1対のパイロットバルブ(減圧弁)が接続されている。複数の操作装置60a,60b,60c,60d,60e,60f,60g,60h(60d~60hは図示省略)はそれぞれ対応するアクチュエータ3a~3hの動作を指令するものであり、それぞれのパイロットバルブは、複数の操作装置60a,60b,60c,60d,60e,60f,60g,60h(60d~60hは図示省略)の操作レバー、ペダル等の操作手段を操作することにより、パイロットリリーフ弁32で生成された一定のパイロット一次圧Ppi0を元圧として操作圧(操作信号)a,b;c,d;e,f・・・を生成する。これらの操作圧は対応する流量制御弁6a~6jに導かれ、これらを切り換え操作する。また、油圧ショベル(作業機械)の運転席の入り口に設けられたゲートロックレバー34を操作することによりゲートロック弁100が操作され、パイロットリリーフ弁32で生成されたパイロット一次圧Ppi0がパイロット油路としての圧油供給路31bに供給されるか(操作装置60a~60hの操作が有効となるか)、圧油供給路31bの圧油がタンクに排出されるか(操作装置60a~60hの操作が無効となるか)が切り換えられる。
 可変容量型のメインポンプ2のレギュレータ12は、LS弁12bと、LS弁12bの出力圧により動作し、複数の流量制御弁6a,6b,6c,6d,6e,6f,6g,6hの要求流量に応じてメインポンプ2の吐出流量を制御する流量制御ピストン12cと、メインポンプ2の圧油供給路5の圧力P1が導かれ,圧力P1が大きくなるとメインポンプ2の傾転を小さくして予め決められたトルクを超えないように制御する馬力制御用ピストン12dとを有している。
 LS弁12bは、原動機回転数検出弁13の出力圧である目標LS差圧Pgrと、前記差圧減圧弁11の出力圧であるLS差圧Plsとが導かれ,LS差圧Plsが目標LS差圧Pgrより大きい場合には、一定のパイロット圧Ppi0を流量制御ピストン12cに導いてメインポンプ2の吐出流量を減少させ、LS差圧Plsが目標LS差圧Pgrより小さい場合には、流量制御ピストン12cの圧油をタンクに放出し、メインポンプ2の流量を増加させるよう流量制御ピストン12cを制御する。
 制御弁ブロック4内には、更に、再生切換弁20と切換弁27,28が設けられている。
 ブームシリンダ3aのボトム側油路41aとロッド側油路42は、再生切換弁20とチェック弁24を介して接続されている。
 図3Aは、再生切換弁20の開口面積特性を示す図である。再生切換弁20は、図3Aに示すように、ブーム下げ操作圧bが作用していない場合は閉じ位置にあり、ブーム下げ操作圧bが大きくなるとその開口面積が大きくなるような特性としてある。図中、Pi_rg_0は最小有効ブーム下げ操作圧、Pi_rg_maxは最大ブーム下げ操作圧、A20maxは最大開口面積である。
 切換弁27は、ブームシリンダ3aのボトム側油路41aの圧力が予め決められたある値未満の場合はタンク圧を出力し、油路41aの圧力が予め決められたある値以上の場合は操作装置60aのパイロットバルブの出力圧である操作圧b(ブーム下げ操作圧)を出力するように切り換わる。切換弁27から出力された圧力は、圧力補償弁7aを閉じ方向に切り換える向きに導かれる。また、切換弁27のバネ力は、フロント作業機104を接地しない状態における、ブームシリンダ3aのボトム側油路41aの圧力で切換弁27が図中右方向に(ブーム下げ操作圧bを出力する位置に)切り換わるように設定されている。
 切換弁28は、切換弁27がタンク圧を圧力補償弁7aに導いている場合は、ブームシリンダ3aの流量制御弁6aを介して得られるブームシリンダ3aの負荷圧を、圧力補償弁7aを開き方向に切り換える向きに導くと同時に、ブームシリンダ3aの負荷圧を、最高負荷圧Plmaxを出力するために設けられたシャトル弁9aに導き、切換弁27が操作装置60aのパイロットバルブの出力圧である操作圧b(ブーム下げ操作圧)を、圧力補償弁7aを閉じ方向に切り換える向きに導いている場合は、タンク圧を圧力補償弁7aを開き方向に切り換える向きに導くと同時に、タンク圧をシャトル弁9aに導くように切り換わる。
 また、本実施の形態の油圧駆動装置は圧油エネルギ回収装置80を有している。圧油エネルギ回収装置80は、アキュムレータ40を有し、フロント作業機104(図2参照)を降下させる動作においてフロントアクチュエータの1つであるブームシリンダ3aから戻される圧油をアキュムレータ40に蓄圧して、フロント作業機104の位置エネルギを回収するとともに、フロント作業機104を降下させる動作以外の動作を行う場合に、アキュムレータ40に蓄圧された圧油の少なくとも一部をメインポンプ2の圧油供給路5に供給して再生するものである。
 圧油エネルギ回収装置80は、アキュムレータ40に加え、切換弁21,22と再生切換弁23(第1再生切換弁)と、チェック弁25,26とを備えており、ブームシリンダ3aのボトム側油路41aは、切換弁21、チェック弁25、切換弁22、再生切換弁23、チェック弁26と、制御弁ブロック4の内部通路を介して圧油供給路5に接続されている。
 アキュムレータ40はチェック弁25と切換弁22の間の油路41cに接続されている。切換弁21,22には操作装置60aのパイロットバルブの出力圧である操作圧b(ブーム下げ操作圧)が導かれている。
 図3Bは切換弁21の開口面積特性を示す図である。
 切換弁21は、図3Bに示すように、ブーム下げ操作圧bが作用していない場合は、油路41aと、切換弁21とチェック弁25の間の油路41bを遮断し、ブーム下げ操作圧bが大きくなると、油路41aと油路41bとの間の開口面積を大きくするような特性としてある。図中、Pi_ch_0は最小有効ブーム下げ操作圧、Pi_ch_maxは最大ブーム下げ操作圧、A21maxは最大開口面積である。
 図3Cは切換弁22の開口面積特性を示す図である。
 切換弁22は、図3Cに示すように、切換弁21と逆に、ブーム下げ操作圧bが作用していない場合は油路41cと、切換弁22と再生切換弁23の間の油路41dを連通し、ブーム下げ操作圧bが作用すると油路41cと油路41dを遮断するような特性としてある。図中、Pi_rs_0は最大ブーム下げ操作圧、Pi_rs_maxは最大ブーム下げ操作圧、A22maxは最大開口面積である。
 再生切換弁23の両端には、開き方向作用の受圧部23a(第1受圧部)と閉じ方向作用の受圧部23b(第2受圧部)が設けられ、受圧部23aには油路23c(第1油路)を介して目標LS差圧Pgrが導かれ、受圧部23bには油路23d(第2油路)を介してLS差圧Pls(メインポンプ2の圧油供給路5の圧力P1と最高負荷圧最高負荷圧Plmaxとの差の圧力)が導かれている。このように再生切換弁23の両端には、目標LS差圧Pgrがその開口を開き方向に作用する向きに、また、LS差圧Plsがその開口を閉じ方向に作用する向きにそれぞれ導かれている。
 図3Dは、再生切換弁23の開口面積特性を示す図である。
 再生切換弁23は、図3Dに示すように、LS差圧Plsが目標LS差圧Pgrよりも大きい(Pls<Pgr)ときは、油路41dと、再生切換弁23とチェック弁26の間の再生油路41eを遮断し、LS差圧Plsが目標LS差圧Pgrよりも小さくなる(Pls<Pgr)と、直ちに開いて差圧偏差Pi_as_0で全開し、油路41dと再生油路41eを連通するような特性としてある。図中、Pi_as_0は最小有効差圧偏差、Pi_as_maxは最大差圧偏差、A23maxは最大開口面積である。
 以上において、再生切換弁23と、受圧部23a,23bと、油路23c,23dは、アキュムレータ40からメインポンプ2の圧油供給路5に供給される圧油の再生流量を制御する再生切換弁装置として機能する。
 また、再生切換弁23と、受圧部23a,23bと、油路23c,23dは、メインポンプ2の圧油供給路5の圧力P1と最高負荷圧Plmaxとの差であるLS差圧Plsがロードセンシング制御の設定圧である目標LS差圧Pgrより大きいときは、アキュムレータ40からメインポンプ2の圧油供給路5への圧油の供給を制限し(本実施の形態においては禁止し)、メインポンプ2の圧油供給路5の圧力P1と最高負荷圧Plmaxとの差であるLS差圧Plsがロードセンシング制御の設定圧Pgrより小さいときは、アキュムレータ40からメインポンプ2の圧油供給路5への圧油の供給を許容するよう、アキュムレータ40とメインポンプ2の圧油供給路5との連通を制御する再生切換弁装置として機能する。
 また、本実施の形態において、受圧部23a,23bと、油路23c,23dは、メインポンプ2の圧油供給路5の圧力P1と最高負荷圧Plmaxとの差であるLS差圧Plsがロードセンシング制御の設定圧Pgrより大きいときは、再生油路41eを遮断する位置に再生切換弁23(第1再生切換弁23)を切り換え、メインポンプ2の圧油供給路5の圧力P1と最高負荷圧Plmaxとの差であるLS差圧Plsがロードセンシング制御の設定圧Pgrより小さいときは、再生油路41eを連通する位置に再生切換弁23を切り換える切換制御装置として機能する。
 図2は、上述した油圧駆動装置が搭載される油圧ショベルの外観を示す図である。
 油圧ショベルは、上部旋回体102と、下部走行体101と、スイング式のフロント作業機104とを備え、フロント作業機104は、ブーム111、アーム112、バケット113から構成されている。上部旋回体102は下部走行体101に対し旋回モータ3cの回転によって旋回可能である。上部旋回体102の前部にはスイングポスト103が取付けられ,このスイングポスト103にフロント作業機104が上下動可能に取付けられている。スイングポスト103はスイングシリンダ3eの伸縮により上部旋回体102に対して水平方向に回動可能であり、フロント作業機104のブーム111、アーム112、バケット113はブームシリンダ3a、アームシリンダ3b、バケットシリンダ3dの伸縮により上下方向に回動可能である。下部走行体101の中央フレーム105には、ブレードシリンダ3hの伸縮により上下動作を行うブレード106が取付けられている。下部走行体101は、走行モータ3f,3gの回転により左右の履帯を駆動することによって走行を行う。
 上部旋回体102には運転室108が設置され、運転室108内には、運転席121と、ブームシリンダ3a、アームシリンダ3b、バケットシリンダ3d、旋回モータ3c用の操作装置60a~60dと、スイングシリンダ3e用の操作装置60eと、ブレードシリンダ3h用の操作装置60hと、走行モータ3f,3g用の操作装置60f,60gと、ゲートロックレバー34とが設けられている。操作装置60a~60d、操作装置60e、操作装置60h、操作装置60f,60gは、それぞれ、操作レバーによって操作可能な操作レバー装置であり、走行モータ3f,3g用の操作装置60f,60gは更にペダルによっても操作できるようになっている。また、ブームシリンダ3a、アームシリンダ3b、バケットシリンダ3d、旋回モータ3c用の操作装置60a~60dは、例えば、運転席121の左右に配置され、それぞれ、中立位置から十字方向を基準とした任意の方向に操作可能な2つの操作レバーを備え操作レバー装置として構成されている。例えば、左側の操作レバー装置は、その操作レバーを前後方向に操作すると旋回用の操作装置60cとして機能し、同操作レバーを左右方向に操作するとアーム用の操作装置60bとして機能し、右側の操作レバー装置は、その操作レバーを前後方向に操作すると、ブーム用の操作装置60aとして機能し、同操作レバーを左右方向に操作すると、バケット用の操作装置として機能する。
 また、ブームシリンダ3aのボトム側受圧面積とロッド側受圧面積には差が設けてあり、ボトム側受圧面積>ロッド側受圧面積の関係となっている。
 ~作動~
 本実施の形態の作動を、図1~図3を用いて説明する。
 固定容量式のパイロットポンプ30から吐出された圧油は、圧油供給路31aに供給され、圧油供給路31aの下流に接続された原動機回転数検出弁13により、固定容量型のパイロットポンプ30の吐出流量が目標LS差圧Pgrとして出力される。
 原動機回転数検出弁13の下流には、パイロットリリーフ弁32が接続されており、圧油供給路31bに一定のパイロット一次圧Ppi0を生成している。
 (a)全ての操作レバーが中立の場合
 全ての操作装置60a,60b,60c,60d,60e,60f,60g,60hの操作レバーが中立なので、全てのパイロットバルブも中立となり、流量制御弁6a,6b,6c,6d,6e,6f,6g,6hはそれぞれ両端に設けられたバネによって全て中立位置に保持される。
 ブームシリンダ3aのボトム側油路41aの圧力が、切換弁27のバネで予め決めされた圧力より低い場合(例えばフロント作業機104が接地していて、ブームシリンダ3aに保持圧が作用していない場合など)は、切換弁27はバネにより図中左方向に切り換わり、タンク圧を圧力補償弁7aと切換弁28に導く。
 切換弁28はバネにより図中右方向に切り換わり、流量制御弁6aの負荷圧検出油路を圧力補償弁7aとシャトル弁9aに接続する。
 ブームシリンダ3aのボトム側油路41aの圧力が、切換弁27のバネで予め決めされた圧力より大きい場合(例えばフロント作業機104が接地しておらず、ブームシリンダ3aに保持圧が作用している場合など)は、切換弁27は図中右方向に切り換わり、ブーム下げ操作圧bを圧力補償弁7aと切換弁28に導くが、全ての操作レバーが中立なので、ブーム下げ操作圧bもタンク圧と等しくなっている。
 このように、全ての操作レバーが中立の場合には、流量制御弁6a,6b,6c,6d,6e,6f,6g,6hが中立位置にあるので、流量制御弁6a,6b,6c,6d,6e,6f,6g,6h、シャトル弁9a,9b,9c,9d,9e,9f,9gを介して最高負荷圧Plmaxとしてタンク圧が差圧減圧弁11とアンロード弁15に導かれる。
 圧油供給路5の圧力P1は、アンロード弁15に設けられたバネ15aと、アンロード弁15を閉じる向きに導かれた原動機回転数検出弁13の出力圧Pgr(目標LS差圧)とにより、出力圧Pgr(目標LS差圧)よりも若干高く保持される(P1>Pgr)。
 差圧減圧弁11は、圧油供給路5の圧力P1と最高負荷圧Plmaxとの差圧をLS差圧Plsとして出力するが、全てのレバーが中立の場合には、最高負荷圧Plmaxが前述のようにタンク圧と等しいので、Pls=P1-Plmax=P1>Pgrとなる。
 目標LS差圧PgrとLS差圧Plsは、可変容量型のメインポンプ2のレギュレータ12内のLS弁12bに導かれ、LSb弁12bは、LS差圧Plsと目標LS差圧Pgrを比較し、Pls<Pgrの場合には、流量制御ピストン12cの圧油をタンクに排出し、Pls>Pgrの場合には、パイロットリリーフ弁32によって圧油供給路31bに生成される一定のパイロット一次圧Ppi0を流量制御ピストン12cに導く。
 前述のように、全ての操作レバーが中立の場合には、Pls>Pgrの場合なので、LS弁12bは図中で右方向に切り換わり、パイロットリリーフ弁32によって一定に保たれたパイロット圧Ppi0が流量制御ピストン12cに導かれる。
 流量制御ピストン12cにパイロット圧Ppi0が導かれるので、可変容量型のメインポンプ2の容量は最小に保たれる。
 一方、ブーム下げ操作圧bがタンク圧と等しいので、切換弁21,22はそれぞれ図示の閉じ位置と連通位置に保持され。このため、ブームシリンダ3aのボトム側油路41aと、アキュムレータ40が接続される油路41cとは遮断され、アキュムレータ40が接続される油路41cと再生切換弁23間の油路41dが連通する。
 前述のように、全ての操作レバーが中立の場合には、Pls>Pgrなので、再生切換弁23は図中で右方向、つまり閉じ位置に切り換わり、アキュムレータ40の圧油がチェック弁26を介して圧油供給路5へ流入するのを遮断する。
 (b)フロント作業機が接地していない状態からブーム下げ操作を行った場合
 ブーム用操作装置60aのパイロットバルブからブーム下げ操作圧bが出力される。ブーム下げ操作圧bにより、流量制御弁6aが図中で左方向に切り換わる。
 フロント作業機104が接地していない状態では、ブームシリンダ3aのボトム側油路41aの圧力により、切換弁27は図中右方向に切り換わり、ブーム下げ操作圧bを圧力補償弁7aと切換弁28に導く。
 圧力補償弁7aは、圧力補償弁7aの閉じ方向に導かれたブーム下げ操作圧bにより、閉じ位置に保持される。
 一方、切換弁28はブーム下げ操作圧bにより、図中左方向に切り換わり、タンク圧を圧力補償弁7aとシャトル弁9aに導く。
 こうして、「(a)全ての操作レバーが中立の場合」と同様に、シャトル弁9aを介して最高負荷圧Plmaxとしてタンク圧が差圧減圧弁11とアンロード弁15に導かれ、圧油供給路5の圧力P1は、アンロード弁15により目標LS差圧Pgrよりも若干高く保持される。
 差圧減圧弁11はLS差圧Plsを出力するが、最高負荷圧Plmaxがタンク圧と等しいので、Pls=P1-Plmax=P1>Pgrとなる。
 前述のように、フロント作業機104が接地していない状態からブーム下げを操作した場合には、Pls>Pgrなので、LS弁12bは図中で右方向に切り換わり、パイロットリリーフ弁32によって一定に保たれたパイロット一次圧Ppi0が流量制御ピストン12cに導かれ、可変容量型のメインポンプ2の容量は最小に保たれる。
 一方、ブーム下げ操作圧bによって再生切換弁20と切換弁21は開位置に、切換弁22は閉位置に切り換わる。
 ブームシリンダ3aのボトム側油路41aの圧油が再生切換弁20、チェック弁24を介してブームシリンダ3aのロッド側油路42に導かれ、流量制御弁6aから供給される圧油と合流してブームシリンダ3aを縮み方向に駆動する。
 ここで、前述のように、ブームシリンダ3aのボトム側受圧面積とロッド側受圧面積には差があり、ボトム側受圧面積>ロッド側受圧面積となっているので、ブームシリンダ3aが縮むと、そのボトム側受圧室から流出する流量は、ロッド側受圧室に流入する流量より大きく、再生切換弁20とチェック弁24を介してブームシリンダ3aのボトム側油路41aからロッド側油路42へ供給される圧油により、ブームシリンダ3aのボトム側油路41aとロッド側油路42はともに圧力が上昇する。
 また、このように昇圧されたブームシリンダ3aのボトム側油路41aの圧油は、前述のように切換弁21が開位置に、切換弁22が閉位置に切り換わっているので、流量制御弁6aのブーム下げ側のメータアウト開口を介してタンクに排出されると同時に、切換弁21とチェック弁25を介してアキュムレータ40に蓄圧される。
 (c)アキュムレータに蓄圧された状態でブーム上げ操作を行った場合
 ブーム用の操作装置60aのパイロットバルブからブーム上げ操作圧aが出力される。ブーム上げ操作圧aにより、流量制御弁6aが図中で右方向に切り換わる。
 ブームシリンダ3aのボトム側油路41aの圧力が、切換弁27のバネで予め決めされた圧力より低い場合(例えばフロント作業機104が接地していて、ブームシリンダ3aに保持圧が作用していない場合など)は、切換弁27はバネにより図中左方向に切り換わり、タンク圧を圧力補償弁7aと切換弁28に導く。
 切換弁28はバネにより図中右方向に切り換わり、流量制御弁6aの負荷圧検出油路を圧力補償弁7aとシャトル弁9aに接続する。
 ブームシリンダ3aのボトム側油路41aの圧力が、切換弁27のバネで予め決めされた圧力より大きい場合(例えばフロント作業機104が接地しておらず、ブームシリンダ3aにフロント作業機104の保持圧が作用している場合など)は、切換弁27は図中右方向に切り換わり、ブーム下げ操作圧bを圧力補償弁7aと切換弁28に導くが、ブーム上げ操作時には、ブーム下げ操作圧bはタンク圧と等しくなっているので、切換弁28は図中右方向に切り換わり、流量制御弁6aの負荷圧検出油路を圧力補償弁7aとシャトル弁9aに接続する。
 このように、ブーム上げ操作を行った場合には、ブームシリンダ3aの負荷圧(油路41aの圧力)が流量制御弁6aと切換弁28を介してシャトル弁9aに導かれ、最高負荷圧Plmaxとして差圧減圧弁11とアンロード弁15に導かれる。
 アンロード弁15に導かれた最高負荷圧Plmaxとアンロード弁15のバネ15aと目標LS差圧Pgrにより、アンロード弁15のセット圧は、ブームシリンダ3aの負荷圧Plmaxに目標LS差圧Pgrとバネ15aの付勢力(以下バネ力という)を加えた値に上昇し、圧油供給路5の圧油をタンクに排出する油路を遮断する。
 また、差圧減圧弁11に導かれた最高負荷圧Plmaxにより、差圧減圧弁11はP1-PlmaxをLS差圧Plsとして出力するが、ブーム上げ方向に起動した瞬間には、圧油供給路5の圧力P1はアンロード弁15のバネ15aとLS差圧Pgrによって予め決められた低圧に保持されているので、LS差圧Plsはほぼタンク圧に等しくなる。
 LS差圧Plsは可変容量型のメインポンプ2のレギュレータ12内のLS弁12bに導かれる。
 前述のようにブーム上げ起動時はPls=タンク圧<Pgrなので、LS弁12bは図中で左方向に切り換えられ、流量制御ピストン12cの圧油は、LS弁12bを介してタンクに排出される。
 このため、メインポンプ2の流量は増加していき、その流量増加はLS差圧Plsが目標LS差圧Pgrに等しくなるまで継続する。
 一方、ブーム下げ操作圧bがタンク圧と等しいので、切換弁21,22はそれぞれ閉じ位置と連通位置に保持される。ブームシリンダ3aのボトム側油路41aと、アキュムレータ40が接続される油路41cは遮断され、アキュムレータ40が接続される油路41cと再生切換弁23間の油路41dが連通し、アキュムレータ40の圧油が再生切換弁23に導かれる。
 前述のように、ブーム上げ起動時はPls<Pgrなので、再生切換弁23は図中で左方向、つまり連通位置に切り換わり、アキュムレータ40が接続される油路41cの圧力が圧油供給路5よりも高い場合には、アキュムレータ40の圧油がチェック弁26を介して圧油供給路5へ流入し再生される。
 これによりアキュムレータ40から供給された圧油とメインポンプ2から吐出された圧油が合流して流量制御弁6aを介してブームシリンダ3aのボトム側に供給され、ブームシリンダ3aを駆動するので、スピーディーなブーム上げの起動が可能となり、良好な操作性を実現することができる。
 可変容量型のメインポンプ2の流量が増加していき、LS差圧Plsが次第に大きくなっていき、LS差圧Plsが目標LS差圧Pgrと等しくなると、図3Dに示すように、再生切換弁23は閉じ位置に切り換わる。
 これによりアキュムレータ40からメインポンプ2の圧油供給路5への再生が禁止されるので、アキュムレータ40に蓄圧された圧油エネルギが、圧油供給路5に接続されたアンロード弁15によって無駄に消費されることを防止することができる。
 (d)アキュムレータに蓄圧された状態でブーム上げ・アームクラウドを同時操作した場合
 ブーム用操作装置60aのパイロットバルブからブーム上げ操作圧aが、アーム用操作装置60bのパイロットバルブからアームクラウド操作圧cがそれぞれ出力される。ブーム上げ操作圧aにより、流量制御弁6aが図中で右方向に、アームクラウド操作圧cにより、流量制御弁6bが図中で右方向に、それぞれ切り換わる。
 フロント作業機104が接地しておらず、ブームシリンダ3aのボトム側油路41aの圧力が、切換弁27のバネで予め決めされた圧力より大きい場合には、切換弁27は図中右方向に切り換わり、ブーム下げ操作圧bを圧力補償弁7aと切換弁28に導くが、ブーム上げ操作時には、ブーム下げ操作圧bはタンク圧と等しくなっているので、切換弁28は図中右方向に切り換わり、流量制御弁6aの負荷圧検出油路を圧力補償弁7aとシャトル弁9aに接続する。
 また、フロント作業機104が接地していて、ブームシリンダ3aのボトム側油路41aの圧力が、切換弁27のバネで予め決めされた圧力より低い場合には、切換弁27はバネにより図中左方向に切り換わり、タンク圧を圧力補償弁7aと切換弁28に導き、切換弁28はバネにより図中右方向に切り換わり、流量制御弁6aの負荷圧検出油路を圧力補償弁7aとシャトル弁9aに接続する。
 一方、アームシリンダ3bのアームクラウド操作時は、アームシリンダ3bのボトム側油路の圧力が流量制御弁6aの負荷圧検出油路を介して圧力補償弁7bとシャトル弁9bに導かれる。
 このように、フロント作業機104が接地していても、いなくても、ブーム上げ・アームクラウドを同時操作した場合には、ブームシリンダ3aの負荷圧が流量制御弁6aと切換弁28介してシャトル弁9aに、アームシリンダ3bの負荷圧が流量制御弁6bを介してシャトル弁9bに導かれ、シャトル弁9a,9bにより、両者の高い方の圧力が最高負荷圧Plmaxとして差圧減圧弁11とアンロード弁15に導かれる。
 アンロード弁15に導かれた最高負荷圧Plmaxとアンロード弁15のバネ15aと目標LS差圧Pgrにより、アンロード弁15のセット圧は、最高負荷圧Plmaxに目標LS差圧Pgrとバネ力を加えた値に上昇し、圧油供給路5の圧油をタンクに排出する油路を遮断する。
 また、差圧減圧弁11に導かれた最高負荷圧Plmaxにより、差圧減圧弁11はP1-PlmaxをLS差圧Plsとして出力するが、ブームを上げ方向に起動、またはアームをクラウド方向に起動した瞬間には、圧油供給路5の圧力P1はアンロード弁15のバネ15aとLS差圧Pgrによって予め決められた低圧に保持されているので、LS差圧Plsはほぼタンク圧に等しくなる。
 LS差圧Plsは可変容量型のメインポンプ2のレギュレータ12内のLS弁12bに導かれる。
 前述のようにブーム上げ・アームクラウド起動時はPls=タンク圧<Pgrなので、LS弁12bは図中で左方向に切り換えられ、流量制御ピストン12cの圧油は、LS弁12bを介してタンクに排出される。
 このため、メインポンプ2の流量は増加していき、LS差圧(ポンプ圧-最高負荷圧)も増加していく。
 このとき、ブームシリンダ3a制御用の流量制御弁6aとアームシリンダ3b制御用の流量制御弁6bの合計の要求流量が、メインポンプ2の吐出流量より大きい場合には、メインポンプ2の吐出圧P1が最高負荷圧Plmaxに目標LS差圧Pgrを加えた値に達しない(LS差圧Pls(=P1-Plax)が目標LS差圧Pgrに達しない)、サチュレーションと呼ばれる状態となる。
 サチュレーション状態ではPls<Pgrが維持される。
 一方、ブーム上げ・アームクラウド同時操作した場合は、ブーム下げ操作圧bがタンク圧と等しいので、再生切換弁20と切換弁21はともに閉じ位置に、切換弁22は連通位置に保持されるので、ブームシリンダ3aのボトム側油路41aとアキュムレータ40が接続される油路41cは遮断され、アキュムレータ40が接続される油路41cと再生切換弁23間の油路41dが連通し、アキュムレータ40の圧油が再生切換弁23に導かれる。
 前述のように、ブーム上げ・アームクラウド同時操作でサチュレーション状態になった場合は、Pls<Pgrが維持されるので、再生切換弁23は図中で左方向、つまり開位置に切り換わり維持される。
 再生切換弁23が開位置に切り換わるので、アキュムレータ40が接続される油路41cの圧力が圧油供給路5の圧力P1よりも高い場合には、アキュムレータ40の圧油が切換弁22、再生切換弁23、チェック弁26を介して圧油供給路5へ流入し再生される。
 これによりアキュムレータ40から供給された圧油とメインポンプ2から吐出された圧油が合流して流量制御弁6a,6bを介してブームシリンダ3aのボトム側とアームシリンダ3bのボトム側に供給され、ブームシリンダ3aとアームシリンダ3bを駆動するので、スピーディーなブーム上げ・アームクラウドの作業が可能となり、良好な複合操作性を実現することができる。
 (e)フロント作業機104が接地した状態からブーム下げ操作を行った場合
 ブーム用操作装置60aのパイロットバルブからブーム下げ操作圧bが出力される。ブーム下げ操作圧bにより、流量制御弁6aが図中で左方向に切り換わる。
 フロント作業機104が接地した状態では、ブームシリンダ3aのボトム側油路41aの圧力が低圧のため、切換弁27は図中左方向に切り換わり、タンク圧が圧力補償弁7aと切換弁28に導かれ、切換弁28は図中右方向に切り換わり、ブームシリンダ3aの負荷圧(ブーム下げ操作ではブームシリンダ3aのロッド圧)を圧力補償弁7aとシャトル弁9aに導く。
 このように、フロント作業機104が接地した状態でブーム下げ操作を行った場合には、ブームシリンダ3aの負荷圧(油路42の圧力)が流量制御弁6aと切換弁28を介して圧力補償弁7aとシャトル弁9aに導かれ、最高負荷圧Plmaxとして差圧減圧弁11とアンロード弁15に導かれる。
 アンロード弁15に導かれた最高負荷圧Plmaxとアンロード弁15のバネ15aと目標LS差圧Pgrにより、アンロード弁15のセット圧は、ブームシリンダ3aの負荷圧Plmaxに目標LS差圧Pgrとバネ力を加えた値に上昇し、圧油供給路5の圧油をタンクに排出する油路を遮断する。
 また、差圧減圧弁11に導かれた最高負荷圧Plmaxにより、差圧減圧弁11はP1-PlmaxをLS差圧Plsとして出力するが、ブーム下げ方向に起動した瞬間には、圧油供給路5の圧力P1はアンロード弁15のバネ15aと目標LS差圧Pgrによって予め決められた低圧に保持されているので、LS差圧Plsはほぼタンク圧に等しくなる。
 LS差圧Plsは可変容量型のメインポンプ2のレギュレータ12内のLS弁12bに導かれる。
 前述のようにブーム下げ起動時はPls=タンク圧<Pgrなので、LS弁12bは図中で左方向に切り換えられ、流量制御ピストン12cの圧油は、LS弁12bを介してタンクに排出される。
 このため、メインポンプ2の流量は増加していき、その流量増加はLS差圧Plsが目標LS差圧Pgrに等しくなるまで継続する。
 一方、ブーム下げ操作圧bによって再生切換弁20と切換弁21は開位置に、切換弁22は閉位置に切り換わる。
 前述のように、フロント作業機104が接地した状態でブーム下げ操作を行った場合は、ブームシリンダ3aのボトム側油路41aの圧力は低圧となり、その圧力がブームシリンダ3aのロッド側油路42の圧力よりも小さい場合には、再生切換弁20が開位置に切り換わっても、チェック弁24があるため、油路41aから油路42への流れは発生しない。
 また、ブームシリンダ3aのボトム側油路41aから流出する圧油は、流量制御弁6aのブーム下げメータアウト開口を介してタンクに排出されると同時に、切換弁21とチェック弁25を介してアキュムレータ40に導かれるが、前述のようにフロント作業機104が接地した状態でブーム下げ操作を行った場合は、ブームシリンダ3aのボトム側油路41aの圧力は低圧であるため、油路41aの圧力がアキュムレータ40の最低作動圧に満たない場合は、アキュムレータ40への蓄圧は行われない。
 ~効果~
 本実施の形態によれば以下の効果が得られる。
 1.上記(b)のように、フロント作業機104が接地していない状態でブーム下げ操作をした場合に、ブームシリンダのボトム側からの戻り油の一部をロッド側に再生してブームシリンダボトム圧を昇圧し、その昇圧された戻り油の一部をアキュムレータに蓄圧するとともに、ブームシリンダ制御用の圧力補償弁を閉止し、パイロットリリーフ弁32によって一定に保たれたパイロット一次圧Ppi0をポンプレギュレータ12の流量制御ピストン12cに導くことにより、可変容量型のメインポンプ2の吐出流量を最小に抑え、消費動力を抑えることができる。
 2.また、上記(d)のように、ブーム下げ以外の操作で、LS差圧Plsが目標LS差圧Pgrよりも低い場合、いわゆるサチュレーション状態にある場合は、再生切換弁23が開位置に切り換わり、アキュムレータ40から可変容量型のメインポンプ2の圧油供給路5への供給が許容されるので、ブーム下げ動作でアキュムレータ40に蓄圧された圧油が圧油供給路5に供給されて再生され、メインポンプ2から吐出された圧油に合流してブームシリンダ3a及びアームシリンダ3b等のアクチュエータに供給され、アクチュエータが駆動される。これによりスピーディーなブーム上げ・アームクラウド等の作業が可能となり、良好な複合操作性を実現することができる。
 3.一方、上記(c)のように、ブーム下げ以外の操作で、LS差圧Plsが目標LS差圧Pgr以上の場合、すなわち、メインポンプ2から吐出される圧油が流量制御弁の要求流量に対して足りている場合には、再生切換弁23が閉じ位置に切り換わり、アキュムレータ40からメインポンプ2の圧油供給路5への再生が禁止されるので、アキュムレータ40に蓄圧された圧油を、メインポンプ2の圧油供給路5に接続されたアンロード弁15から無駄に排出してしまう(アンロード弁15によって無駄に消費される)ことを防止することができる。
 なお、上記の実施の形態では、再生切換弁23は、LS差圧Plsが目標LS差圧Pgrよりも大きい(Pls<Pgr)ときは全閉して油路41dと再生油路41eを遮断し、アキュムレータ40からメインポンプ2の圧油供給路5への圧油の供給を禁止する構成としたが、再生切換弁23は全閉ではなく絞り位置に切り換えて、アキュムレータ40からメインポンプ2の圧油供給路5への圧油の供給を抑制する(ある程度の圧油の流れを許容する)構成としてもよい。このようにしても、上記(c)のように、ブーム下げ以外の操作で、LS差圧Plsが目標LS差圧Pgr以上の場合、アキュムレータ40からメインポンプ2の圧油供給路5への再生が制限されるので、アキュムレータ40に蓄圧された圧油をアンロード弁15から無駄に排出してしまうことを防止することができる。また、この場合は、圧油供給路5における再生流量の増加割合が緩やかとなり、アクチュエータの速度を滑らかに増加させることができる。
 また、本実施の形態では、再生切換弁23は油圧切換弁としたが、再生切換弁23を電磁切換弁とし、コントローラでLS差圧Plsと目標LS差圧Pgrの大小を判定し、その判定結果に応じて電磁切換弁を切り換えるようにしてもよい。
 <第2の実施の形態>
 本発明の第2の実施の形態による作業機械の油圧駆動装置を図4~図7Cを用いて、第1の実施の形態と異なる部分を中心に説明する。
 ~構成~
 図4は、本発明の第2の実施の形態による作業機械の油圧駆動装置の構成を示す図である。
 図4において、本実施の形態の油圧駆動装置は圧油エネルギ回収装置81を備え、この圧油エネルギ回収装置81は、第1の実施の形態に対して、可変容量型のメインポンプ2の傾転角を検出する傾転角センサ50(第1センサ)と、原動機1の回転数を検出する回転数センサ56(第2センサ)と、メインポンプ2の圧油供給路5の圧力P1を検出する圧力センサ54(第4センサ)と、アキュムレータ40が接続される油路41cの圧力Paccを検出する圧力センサ55(第3センサ)と、傾転角センサ50、回転数センサ56、圧力センサ54,55を入力し、所定の演算処理を行い、指令電流を出力するコントローラ51と、コントローラ51から出力される指令電流によって駆動され、出力圧を比例制御する比例電磁弁53と、再生油路41e,41fに配置され、比例電磁弁53の出力圧によって動作し、開口面積が調整可能な再生切換弁52(第2再生切換弁)とを備えている。
 図5は、再生切換弁52の開口面積特性を示す図である。
 再生切換弁52の開口面積A52は、図5に示すように、比例電磁弁53の出力圧Pi_sr’が最小有効値Pi_fr_0よりも小さい場合に0であり、有効最小値Pi_fr_0よりも出力圧Pi_sr’が大きくなると、開口面積A52も大きくなってゆき、Pi_sr’=Pi_fr_1で開口面積A52は最大のA52maxに到達し、Pi_sr’>Pi_fr_1では開口面積A52は最大のA52maxに保持される。
 図6は、コントローラ51のCPU51aが行う処理内容を示す機能ブロック図であり、図7A、図7B及び図7Cは、それぞれ、コントローラ51のCPU51aが用いる第1~第3テーブル51a,51b,51cの特性を示す図である。
 図6において、コントローラ51のCPU51aは、第1~第4テーブル51a,51b,51c,51gと、乗算器51d 、差分器51e、乗算器51fによる処理機能を有している。
 傾転角センサ50から入力された可変容量型のメインポンプ2の傾転角Ang_swは、第1テーブル51aによってメインポンプ2の容量q1に変換される。
 第1テーブル51aの特性は図7Aに示すようになっており、メインポンプ2の傾転角Ang_swが最小のAngle_sw_minであるとき、メインポンプ2の容量q1も最小のq1_minであり、傾転角Ang_swがAngle_sw_min以上になると、メインポンプ2の容量q1は傾転角Ang_swの増加に応じて大きくなってゆき、傾転角Ang_swが最大のAngle_sw_maxに達すると、メインポンプ2の容量q1も最大のq1_max達する。
 容量q1は、回転数センサ56からの入力である原動機1の回転数N1と乗算器51dで乗算され、流量Q1となる。
 流量Q1は、第2テーブル51bによって、再生切換弁52を切り換えるためのパイロット圧Pi_srに変換される。
 第2テーブル51bの特性は図7Bに示すようになっており、メインポンプ2の吐出流量、すなわちポンプ流量Q1が0に近い所定値Q1_0より小さい間は、パイロット圧Pi_srは0であり、ポンプ流量Q1がQ1_0以上になるとパイロット圧Pi_srはポンプ流量Q1の増加に応じて大きくなってゆき、ポンプ流量Q1が最大ポンプ流量より少し手前の所定値Q1_1になるとパイロット圧Pi_srは最大のPi_sr_maxに達し、Q1>Q1_1の範囲ではパイロット圧Pi_srは最大のPi_sr_maxに保たれる。
 一方、圧力センサ55から入力されたアキュムレータ40の圧力、すなわちアキュムレータ圧Paccと、圧力センサ54から入力されたメインポンプ2の吐出圧、すなわちポンプ圧P1は、差分器51eで差分され、差圧ΔP(=Pacc-P1)となる。差圧ΔPは第3テーブル51cでゲインGain1に変換される。
 第3テーブル51cの特性は図7Cに示すようになっており、差圧ΔPが0に近い所定値ΔP_0以下ではゲインGain1は1であり、差圧ΔPが大きくなるにつれてゲインGain1が小さくなってゆき、差圧ΔPが所定値ΔP_1になるとGain1は最小値(本実施の形態では0.1)に達し、差圧ΔPそれ以上増加しても、ゲインGain1は最小値に保たれる。
 第2テーブル51bの出力であるパイロット圧Pi_srと、第3テーブル51cの出力であるゲインGain1は乗算器51fで乗算され、指令パイロット圧Pi_sr’となる。
 指令パイロット圧Pi_sr’は、第4テーブル51gにて比例電磁弁53への電流指令I53に変換され、比例電磁弁53に出力される。
 以上において、再生切換弁52と、傾転角センサ50、回転数センサ56、圧力センサ54,55と、コントローラ51と、比例電磁弁53は、メインポンプ2の吐出流量と、アキュムレータ40の圧力とメインポンプ2の圧油供給路5の圧力との差の少なくとも一方が減少するにしたがい、アキュムレータ40からメインポンプ2の圧油供給路5への圧油の供給を減らすように制限する再生制限装置として機能する。
 そして、コントローラ51は、傾転角センサ50(第1センサ)、回転数センサ56(第2センサ)、圧力センサ54,55(第3及び第4センサ)の検出値に基づき再生切換弁52(第2再生切換弁)の目標開口面積を決定し、第2再生切換弁の切換指令を生成し、比例電磁弁53は、その切換指令に基づいて前記目標開口面積を確保するように第2再生切換弁52を動作させる。
 ~作動~
 第2の実施の形態の作動を以下に説明する。
 ブーム下げ動作において、アキュムレータ40への圧油の蓄圧や、可変容量型のメインポンプ2の流量制御については、第1の実施の形態と同様である。
 第2の実施の形態が第1の実施の形態と異なるのは、アキュムレータ40に圧油が蓄圧されていて、ブーム上げ・アームクラウドを同時に操作した場合など、メインポンプ2がサチュレーション状態にあって、Pls<Pgrの状態の場合に、アキュムレータ40に蓄圧された圧油エネルギをメインポンプ2の圧油供給路へ合流させる際の作動である。
 第1の実施の形態と同様、サチュレーション状態ではPls<Pgrなので、再生切換弁23は図中で左方向に切り換わり、アキュムレータ40の圧油を再生油路41eに導く。
 このとき、メインポンプ2の傾転が小さく、ポンプ流量がQ1_1よりも小さい、例えばQ1_0付近の値であった場合には、図7Bに示す第2テーブル51bにより、再生切換弁52を切り換えるための指令パイロット圧Pi_srは、0に近い小さな値となる。このため、仮にこのとき、第3テーブル51cで演算されたゲインGain1が1であったとしても、再生切換弁52を切換えるための最終的な指令パイロット圧Pi_sr’も0に近い小さな値となる。
 このため再生切換弁52は、開口面積が小さくなるように制御され、アキュムレータ40の圧油は、再生切換弁52の開口で絞られ、チェック弁26を介して圧油供給路5へ合流する。
 また、メインポンプ2の傾転が大きく、原動機1の回転数が大きい場合、つまりメインポンプ2の吐出流量Q1が大きく、ポンプ流量がQ1_1以上だった場合には、図7Bに示す第2テーブル51bにより、再生切換弁52を切り換えるための指令パイロット圧Pi_srは、最大値Pi_sr_maxとなる。
 ここで、アキュムレータ圧Paccとポンプ圧P1の差圧ΔPが大きい場合、例えば、ブーム下げ動作を終えた直後で、アキュムレータ40に十分に高い圧力が蓄圧されていて、かつアームが最大クラウド姿勢に近く、ブームシリンダ3aの負荷圧が低いような場合など、ブーム上げ・アームクラウド同時動作でのポンプ圧が低く、ΔP=Pacc-P1>ΔP_1の場合には、図7Cに示す第3テーブル51cの特性に従い、ゲインGain1は最小値である0.1となる。
 そして再生切換弁52を切換えるための最終的な指令パイロット圧Pi_sr’はパイロット圧Pi_srにゲインGain1を乗じたものになるから、この場合の指令パイロット圧Pi_sr’は、Pi_sr’=Pi_sr_max×0.1で表される。
 こうして再生切換弁52の開口面積は、アキュムレータ圧Paccとポンプ圧P1の差圧ΔPが大きい場合には、小さくなり、アキュムレータ40の圧油は、再生切換弁52の開口で絞られ、チェック弁26を介して圧油供給路5へ合流する。
 更に、アキュムレータ40に蓄圧された圧油が、上記のように圧油供給路5へ放出され、アキュムレータ圧Pccが低下していき、アキュムレータ圧Paccとポンプ圧P1の差圧ΔPの値が小さくなってくると、それに伴いアンロード弁15のゲインGain1が最小値0.1から最大値1に向かって大きくなっていき、差圧ΔPがΔP_0以下になると、ゲインGain1は最大値1となる。
 ゲインGain1が1の場合には、再生切換弁52を切換えるための指令パイロット圧Pi_sr’=Pi_sr_max×1=Pi_sr_maxとなり、再生切換弁52は、第2テーブル51bの出力Pi_sr_maxのままとなり、アキュムレータ40の圧油は、再生切換弁52の開口で絞られることなく、チェック弁26を介して圧油供給路5へ合流する。
 このように、再生切換弁52は、可変容量型のメインポンプ2の吐出流量が小さい場合や、アキュムレータ40と圧油供給路5の差圧が大きい場合に、その開口を絞る。
 ~効果~
 本発明の第2の実施の形態によれば以下の効果が得られる。
 1.第1の実施の形態と同様に、ブーム下げ操作では昇圧された圧油の一部をアキュムレータに蓄圧しつつ、可変容量型のメインポンプ2の吐出流量を最小に抑え、消費動力を抑えることができる。また、ブーム下げ以外の動作では、サチュレーション状態にある場合は、アキュムレータに蓄圧された圧油をメインポンプ2の圧油供給路に合流し、スピーディーな作業が可能となり、サチュレーション状態にない場合(メインポンプ2から吐出される圧油が流量制御弁の要求流量に対して足りている場合)は、再生切換弁23が閉じ位置に切り換わり、アキュムレータ40からメインポンプ2の圧油供給路5への再生が禁止されるので、アキュムレータ40に蓄圧された圧油がアンロード弁15によって無駄に消費されることを防止し、アキュムレータに蓄圧された圧油を有効に利用することができる。
 2.また、メインポンプ2の吐出流量が小さい場合や、アキュムレータ40とポンプ圧との差圧が大きい場合に、アキュムレータ40からメインポンプ2の圧油供給路5への合流する流量を絞るので、サチュレーション状態で、メインポンプ2からの吐出油が、各アクチュエータの要求流量に足りず、各アクチュエータのスピードが低下している場合に、アキュムレータ40から流入する流量で、各アクチュエータのスピードが急激に増加し、操作性を悪化するのを防ぐことができる。
 ~その他~
 以上の実施の形態では、作業機械がフロント作業機と上部旋回体と下部走行体を備えた油圧ショベルである場合について説明したが、作業装置を上下動させる油圧シリンダを含む1つ以上のアクチュエータを有する作業機械であれば、ホイールローダ、油圧クレーン、テレハンドラー等、油圧ショベル以外の作業機械であってもよく、その場合も同様の効果が得られる。
 また、以上の実施の形態では、ブームシリンダのボトム側油路とロッド側油路間に再生切換弁20を配置する構成としたが、再生切換弁20を備えない油圧駆動装置に本発明を適用してもよい。
2 可変容量型のメインポンプ(油圧ポンプ)
3a ブームシリンダ(油圧シリンダ)
3b アームシリンダ(アクチュエータ)
3c 旋回モータ(アクチュエータ)
4 制御弁ブロック
5 メインポンプ2の圧油供給路
6a~6c 流量制御弁
7a~7c 圧力補償弁
8a~8c,24,25,26 チェック弁
9a~9c シャトル弁
11 差圧減圧弁
12 レギュレータ
13 原動機回転数検出弁
14 リリーフ弁
15 アンロード弁
20 再生切換弁
21,22,27,28 切換弁
23 再生切換弁(再生切換弁装置;第1再生切換弁)
23a 受圧部(切換制御装置;第1受圧部)
23b 受圧部(切換制御装置;第2受圧部)
23c 油路(切換制御装置;第1油路)
23d 油路(切換制御装置;第2油路)
30 固定容量型のパイロットポンプ
40 アキュムレータ
41a~41f,42 油路
41e,41f 再生油路
50 傾転角センサ(第1センサ)
51 コントローラ
52 再生切換弁(第2再生切換弁)
53 比例電磁弁
54,55 圧力センサ(第3、第4センサ)
56 回転数センサ(第2センサ)
60a~60c 複数の操作装置
80,81 圧油エネルギ回収装置
104 フロント作業機(作業装置)
111 ブーム

Claims (6)

  1.  可変容量型の油圧ポンプと、
     前記油圧ポンプから吐出された圧油により駆動され、作業装置を上下動させる油圧シリンダを含む1つ以上のアクチュエータと、
     前記油圧ポンプから前記1つ以上のアクチュエータに供給される圧油の流れを制御する1つ以上の流量制御弁と、
     前記1つ以上のアクチュエータの最高負荷圧よりもある設定圧だけ前記油圧ポンプの吐出圧が高くなるように前記油圧ポンプの吐出流量を制御する、ロードセンシング制御を行うレギュレータと、
     前記油圧ポンプの圧油供給路の圧力が前記1つ以上のアクチュエータの最高負荷圧よりも、前記ロードセンシング制御の設定圧以上の所定値以上高くなると、開状態になって前記圧油供給路の圧油をタンクに戻すアンロード弁と、
     前記油圧シリンダと前記油圧ポンプの圧油供給路に接続されたアキュムレータを有し、前記作業装置を降下させる動作において前記油圧シリンダから戻される圧油を前記アキュムレータに蓄圧し、前記作業装置を降下させる動作以外の動作を行う場合に、前記アキュムレータに蓄圧された圧油の少なくとも一部を前記油圧ポンプの圧油供給路に供給して再生する圧油エネルギ回収装置とを備えた作業機械の油圧駆動装置において、
     前記圧油エネルギ回収装置は、前記アキュムレータから前記油圧ポンプの圧油供給路に供給される圧油の再生流量を制御する再生切換弁装置を有し、
     前記再生切換弁装置は、
     前記油圧ポンプの圧油供給路の圧力と前記最高負荷圧との差が前記ロードセンシング制御の設定圧より大きいときは、前記アキュムレータから前記油圧ポンプの圧油供給路への圧油の供給を制限し、前記油圧ポンプの圧油供給路の圧力と前記最高負荷圧との差が前記ロードセンシング制御の設定圧より小さいときは、前記アキュムレータから前記油圧ポンプの圧油供給路への圧油の供給を許容するよう、前記アキュムレータと前記油圧ポンプの圧油供給路との連通を制御することを特徴とする作業機械の油圧駆動装置。
  2.  請求項1に記載の作業機械の油圧駆動装置において、
     前記再生切換弁装置は、
     前記アキュムレータから前記油圧ポンプの圧油供給路へ圧油を供給する再生油路に配置された第1再生切換弁と、
     前記油圧ポンプの圧油供給路の圧力と前記最高負荷圧との差が前記ロードセンシング制御の設定圧より大きいときは、前記再生油路を遮断する位置に前記第1再生切換弁を切り換え、前記油圧ポンプの圧油供給路の圧力と前記最高負荷圧との差が前記ロードセンシング制御の設定圧より小さいときは、前記再生油路を連通する位置に前記第1再生切換弁を切り換える切換制御装置とを有することを特徴とする作業機械の油圧駆動装置。
  3.  請求項2に記載の作業機械の油圧駆動装置において、
     前記切換制御装置は、前記第1再生切換弁の一端に設けられた開き方向作用の第1受圧部と、前記第1再生切換弁の他端に設けられた閉じ方向作用の第2受圧部と、前記第1受圧部に前記ロードセンシング制御の設定圧を導く第1油路と、前記第2受圧部に前記油圧ポンプの圧油供給路の圧力と前記最高負荷圧との差の圧力を導く第2油路とを有することを特徴とする作業機械の油圧駆動装置。
  4.  請求項1に記載の作業機械の油圧駆動装置において、
     前記油圧ポンプの吐出流量と、前記アキュムレータの圧力と前記油圧ポンプの圧油供給路の圧力との差の少なくとも一方が減少するにしたがい、前記アキュムレータから前記油圧ポンプの圧油供給路への圧油の供給を減少させるように制限する再生制限装置を更に備えることを特徴とする作業機械の油圧駆動装置。
  5.  請求項4に記載の作業機械の油圧駆動装置において、
     前記再生制限装置は、
     前記アキュムレータから前記油圧ポンプの圧油供給路へ圧油を供給する再生油路に配置された第2再生切換弁と、
     前記油圧ポンプの容量を検出する第1センサと、
     前記油圧ポンプの回転数を検出する第2センサと、
     前記アキュムレータの圧力を検出する第3センサと、
     前記油圧ポンプの吐出圧を検出する第4センサと、
     前記第1~第4センサの検出値に基づき前記第2再生切換弁の目標開口面積を決定し、前記第2再生切換弁の切換指令を生成するコントローラ51と、
     前記切換指令に基づいて前記目標開口面積を確保するように前記第2再生切換弁を動作させる比例電磁弁とを有することを特徴とする作業機械の油圧駆動装置。
  6.  請求項1~5のいずれか1項に記載の作業機械の油圧駆動装置において、
     前記作業機械は油圧ショベルであり、
     前記作業装置は前記油圧ショベルのフロント作業機であり、
     前記作業装置を上下動させる油圧シリンダは、前記フロント作業機のブームを上下動させるブームシリンダであることを特徴とする作業機械の油圧駆動装置。
PCT/JP2017/035671 2017-09-29 2017-09-29 作業機械の油圧駆動装置 WO2019064555A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780054542.9A CN109963986B (zh) 2017-09-29 2017-09-29 作业机械的液压驱动装置
KR1020197006942A KR102138783B1 (ko) 2017-09-29 2017-09-29 작업 기계의 유압 구동 장치
JP2019510386A JP6676824B2 (ja) 2017-09-29 2017-09-29 作業機械の油圧駆動装置
US16/331,768 US11454002B2 (en) 2017-09-29 2017-09-29 Hydraulic drive system for work machine
PCT/JP2017/035671 WO2019064555A1 (ja) 2017-09-29 2017-09-29 作業機械の油圧駆動装置
EP17922917.4A EP3495569B1 (en) 2017-09-29 2017-09-29 Hydraulic drive device of work machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/035671 WO2019064555A1 (ja) 2017-09-29 2017-09-29 作業機械の油圧駆動装置

Publications (1)

Publication Number Publication Date
WO2019064555A1 true WO2019064555A1 (ja) 2019-04-04

Family

ID=65902732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035671 WO2019064555A1 (ja) 2017-09-29 2017-09-29 作業機械の油圧駆動装置

Country Status (6)

Country Link
US (1) US11454002B2 (ja)
EP (1) EP3495569B1 (ja)
JP (1) JP6676824B2 (ja)
KR (1) KR102138783B1 (ja)
CN (1) CN109963986B (ja)
WO (1) WO2019064555A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112384663B (zh) * 2018-09-27 2023-10-13 住友重机械工业株式会社 挖土机
KR102422276B1 (ko) * 2020-10-23 2022-07-15 국방과학연구소 유압 구동 시스템 및 유압 구동 시스템의 구동 명령 속도 제한 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170485A (ja) 2005-12-20 2007-07-05 Shin Caterpillar Mitsubishi Ltd エネルギ回収・再生装置
JP2008185182A (ja) * 2007-01-31 2008-08-14 Shin Caterpillar Mitsubishi Ltd 作業機械における油圧制御システム
JP2012159131A (ja) * 2011-01-31 2012-08-23 Kcm:Kk 産業用車両の油圧ポンプ制御システムと産業用車両
JP2012241742A (ja) * 2011-05-16 2012-12-10 Hitachi Constr Mach Co Ltd 建設機械の油圧駆動装置
WO2015185699A1 (en) * 2014-06-06 2015-12-10 Cnh Industrial Italia S.P.A. System for coordinating the direction of travel of a hydraulic machine with the operator's position
JP2016099001A (ja) * 2014-11-26 2016-05-30 日立建機株式会社 建設機械の油圧駆動装置
US20170114804A1 (en) * 2015-10-23 2017-04-27 Liebherr-France Sas Device for recovering hydraulic energy in an implement and a corresponding implement

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123480A (ja) * 1999-10-28 2001-05-08 Sumitomo Constr Mach Co Ltd 油圧ショベルの走行速度切換装置
JP2008014468A (ja) * 2006-07-10 2008-01-24 Shin Caterpillar Mitsubishi Ltd 作業機械における油圧制御システム
EP2752586B1 (en) 2011-08-31 2019-04-17 Hitachi Construction Machinery Tierra Co., Ltd. Hydraulic drive device for construction machine
CN103215982B (zh) * 2013-04-16 2015-10-14 三一重机有限公司 混合动力回转驱动系统和工程机械
CN103628519B (zh) * 2013-11-01 2015-10-07 南京工业大学 一种挖掘机回转制动能量回收系统
JP6112559B2 (ja) * 2013-11-06 2017-04-12 キャタピラー エス エー アール エル 流体圧回路および作業機械
JP6740132B2 (ja) * 2014-10-06 2020-08-12 住友重機械工業株式会社 ショベル
JP6549543B2 (ja) * 2016-09-29 2019-07-24 日立建機株式会社 作業機械の油圧駆動装置
JP6636977B2 (ja) * 2017-03-14 2020-01-29 日立建機株式会社 作業機械の油圧駆動装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170485A (ja) 2005-12-20 2007-07-05 Shin Caterpillar Mitsubishi Ltd エネルギ回収・再生装置
JP2008185182A (ja) * 2007-01-31 2008-08-14 Shin Caterpillar Mitsubishi Ltd 作業機械における油圧制御システム
JP2012159131A (ja) * 2011-01-31 2012-08-23 Kcm:Kk 産業用車両の油圧ポンプ制御システムと産業用車両
JP2012241742A (ja) * 2011-05-16 2012-12-10 Hitachi Constr Mach Co Ltd 建設機械の油圧駆動装置
WO2015185699A1 (en) * 2014-06-06 2015-12-10 Cnh Industrial Italia S.P.A. System for coordinating the direction of travel of a hydraulic machine with the operator's position
JP2016099001A (ja) * 2014-11-26 2016-05-30 日立建機株式会社 建設機械の油圧駆動装置
US20170114804A1 (en) * 2015-10-23 2017-04-27 Liebherr-France Sas Device for recovering hydraulic energy in an implement and a corresponding implement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3495569A4

Also Published As

Publication number Publication date
EP3495569A4 (en) 2020-05-06
KR20190043561A (ko) 2019-04-26
EP3495569B1 (en) 2023-08-02
KR102138783B1 (ko) 2020-07-28
CN109963986A (zh) 2019-07-02
CN109963986B (zh) 2021-05-07
EP3495569A1 (en) 2019-06-12
JPWO2019064555A1 (ja) 2019-11-14
JP6676824B2 (ja) 2020-04-08
US20210340720A1 (en) 2021-11-04
US11454002B2 (en) 2022-09-27

Similar Documents

Publication Publication Date Title
JP6200498B2 (ja) 建設機械の油圧駆動装置
EP3203089B1 (en) Workmachine comprising a hydraulic drive system
JP6549543B2 (ja) 作業機械の油圧駆動装置
WO2011046184A1 (ja) 作業機械の油圧システム
JP5996778B2 (ja) 建設機械の油圧駆動装置
JP6453898B2 (ja) 作業機械の油圧駆動システム
US9932993B2 (en) System and method for hydraulic energy recovery
JP6005185B2 (ja) 建設機械の油圧駆動装置
WO2019049435A1 (ja) 建設機械
WO2014054326A1 (ja) 建設機械の油圧回路
JP2012241742A (ja) 建設機械の油圧駆動装置
US10006472B2 (en) Construction machine
JP6676824B2 (ja) 作業機械の油圧駆動装置
JP6082690B2 (ja) 建設機械の油圧駆動装置
JP2018145984A (ja) 建設機械の油圧駆動装置
JP3594680B2 (ja) 油圧機械の油圧再生装置
JP2015110981A5 (ja)
JP6591370B2 (ja) 建設機械の油圧制御装置
JP5342293B2 (ja) 建設機械の油圧回路
JP2019065569A (ja) 建設機械の油圧駆動装置
JP6807399B2 (ja) 作業車両および油圧制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019510386

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197006942

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017922917

Country of ref document: EP

Effective date: 20190308

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE