WO2019063591A1 - Procédé permettant de déterminer une température d'une couche active d'une résistance chauffante - Google Patents

Procédé permettant de déterminer une température d'une couche active d'une résistance chauffante Download PDF

Info

Publication number
WO2019063591A1
WO2019063591A1 PCT/EP2018/076068 EP2018076068W WO2019063591A1 WO 2019063591 A1 WO2019063591 A1 WO 2019063591A1 EP 2018076068 W EP2018076068 W EP 2018076068W WO 2019063591 A1 WO2019063591 A1 WO 2019063591A1
Authority
WO
WIPO (PCT)
Prior art keywords
active layer
heating resistor
temperature
value
determining
Prior art date
Application number
PCT/EP2018/076068
Other languages
German (de)
English (en)
Inventor
Maximilian Benkert
Egor SAWAZKI
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to US16/645,958 priority Critical patent/US12071042B2/en
Priority to EP18789004.1A priority patent/EP3687850B1/fr
Priority to CN201880063255.9A priority patent/CN111194277B/zh
Publication of WO2019063591A1 publication Critical patent/WO2019063591A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/02Dynamic electric resistor braking
    • B60L7/08Controlling the braking effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/02Dynamic electric resistor braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/22Dynamic electric resistor braking, combined with dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/183Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer characterised by the use of the resistive element

Definitions

  • the invention relates to a method for determining a temperature of an active layer of a heating resistor for a recuperation system of a motor vehicle and to a method for operating a recuperation system. Furthermore, the invention relates to a heating resistor for a recuperation system of a motor vehicle. Additional claims are directed to a Re ⁇ kuperations system with the heating resistor and a vehicle with the recuperation system. Electric vehicles are known which have a heating resistor. The technical purpose of the heating resistor is, even with a traction battery, which can no longer absorb energy (for example due to temperature conditions or high charge state), continue to allow a recuperation mode. This allows less mechanical brake wear and higher overall energy efficiency of the vehicle.
  • generated electrical energy can be converted into heat via the heating resistor, which can be dissipated via a cooling circuit.
  • the temperature of the active layer of the heating resistor must not exceed certain limits.
  • the active layer of the heating resistor typically has a built-in temperature ⁇ tursensor.
  • a certain minimum temperature distance must be maintained in order to avoid overtemperatures due to the always slow measurement of thermal variables. Such excess temperatures can lead to irreversible damage or lead to a drastic reduction in the life of the heating resistor.
  • the distance of the estimated temperature to the maximum permitted temperature must be selected to be even greater, in order to avoid any overtemperatures. This leads to a non-optimal use of the heating wire, since a potential performance for security reasons can not be accessed. Furthermore - due to the highly dynamic current load of the heating resistor - a prediction or a prediction on the capacity of electrical energy is difficult to achieve.
  • An object of the present invention may therefore be to provide an alternative method for determining a temperature of an active layer of a heating resistor for a Rekuperati- ons system of a motor vehicle, the method by the measurement speed and the measurement accuracy is increased and an accurate forecast on the allows still recordable electrical power, so that the heating wire can be operated closer to its maximum power, without
  • Temperature ⁇ prevails at the first time ti in the active layer on average. Consequently, it is proposed to determine from the ascertained electrical resistance Ri a first temperature ⁇ of the active layer at the first time ti. These mentioned method steps can be repeated continuously, so that the temperature T of the active layer can be determined continuously.
  • the present invention thus makes it possible to dispense with the temperature sensor which has the disadvantages of thermal inertia. Due to the combined current and voltage measurement, which can be provided in particular via the power ⁇ electronics, the measurement speed and the measurement accuracy can be increased. Furthermore, an accurate forecast of the still recordable electrical power can be delivered. As a result, the heating resistor can be operated closer to its maximum power without the risk of damaging processes due to excess temperatures.
  • a method for determining a temperature of an active layer of a heating resistor for a recuperation system of a motor vehicle is provided. According to the method, an instantaneous value of a current flowing through an active layer of a heating resistor is determined. This determination, in particular measurement, takes place at a first time.
  • a current value of a voltage is determined which is applied to the active layer of the heating resistor. This determination, in particular measurement, takes place to the first Time. From the determined instantaneous value of the current and from the determined instantaneous value of the voltage, a momentary value of an electrical resistance is calculated. From the calculated value of the electrical resistance, a current value of a temperature of the active layer is determined.
  • These method steps can be carried out in particular by means of power electronics of the heating resistor. Furthermore, these method steps can be repeated nachei ⁇ nander performed, so that a continuous or almost continuous determination of the temperature of the active layer of the heating resistor. Due to the possibility of high measuring speed due to the omission of thermally inert sensors and the provision of the current and voltage measurement, the temperature of the active layer and thus also the power consumption of the heating resistor can be determined highly dynamically.
  • Braking energy can still be absorbed by the heating resistor. If it is predicted or predicted that it will be braked even longer than the thermal absorption capacity of the heating resistor permits, a friction brake can already be activated at the time when this is predicted. In particular, depending on the ratio of thermal absorption capacity of the active layer of the heating resistor on the one hand and the expected generated braking energy on the other hand, a ratio of adjusting friction braking force to recuperation braking force can be determined.
  • the method according to a further embodiment further comprises in particular the following step: - Determining a future thermal absorption capacity of the active layer based on the determined current value of the temperature of the active layer.
  • a further development is a method for operating a recuperation system with the additional steps:
  • Determining the current value of the temperature of the active layer may further include the following steps
  • the value pairs or the database can in particular be stored in the power electronics of the heating resistor and the power electronics can be configured to perform the additional steps of determining and selecting according to this embodiment.
  • Implementation of the determination of the instantaneous value of the temperature of the active Layer through value pairs is particularly simple and robust.
  • a function of the temperature of the active layer as a function of the electrical resistance of the active layer can be stored in the database.
  • the determination of the instantaneous value of the current and the determination of the instantaneous value of the voltage take place by means of the power electronics of the heating resistor.
  • the power electronics of the heating resistor In order to operate the heating resistor you need a power electronics anyway, which supplies the active layer of the heating resistor with adjusted current and voltage. This power electronics must perform a measurement of the transferred current and the applied voltage for correct operation. Since the measurement of current and voltage is carried out anyway, the temperature of the active layer of the heating resistor or its active layer can also be determined hereby.
  • This embodiment makes a contribution that can be dispensed with an additional component, which performs the voltage measurement and the current measurement, since use is made of the already typically necessary for the radio ⁇ tion capacity of the heater power electronics ⁇ .
  • the determination of the instantaneous value of the voltage can take place on a battery of the recuperation system.
  • the voltage measurement can alternatively be determined at the same voltage level outside the heating resistor. This makes it possible to measure the temperature Tem ⁇ very quickly in the active part of the heating and the heating wire and therefore to pursue high gradient good results for the heating resistor.
  • the heating resistor is not used for a long time, the voltage and the resistance can be reduced by small voltage pulses Temperature to be determined. In this sense, in another embodiment, after expiration of a specified
  • the current temperature value can be processed by the power electronics. In this way, a very accurate value about the currently recordable electrical power may be output to the powertrain via a vehicle communications network (e.g., CAN). In this sense, it is provided according to a further embodiment that the determined instantaneous value of the temperature of the active layer of the heating resistor is transmitted via a vehicle communication network to a drive train of the vehicle.
  • a vehicle communications network e.g., CAN
  • the model In combination with a temperature model which is calculated or provided by the power electronics, statements about the future electrical or thermal capacity of the heating resistor can be made. To this end, the model must include the thermal inertia and heat ⁇ transitions. The temperature of the active layer of the heating resistor determined by means of the above-described current measurement and voltage measurement can likewise be introduced into this predictive model.
  • the method comprises the following steps:
  • a heating resistor for a recuperation system of a motor vehicle is overlapge ⁇ provides.
  • the heating resistor comprises an active layer, a heat sink and a power electronics, wherein the active
  • the Layer is adapted to receive electrical energy, which can no longer be absorbed by a battery of the recuperation system, for example, because the battery is already fully charged or temperature conditions are too high.
  • the heat sink is arranged and designed such that a cooling medium can be passed through the heat sink, and that a heat transfer from the active layer to the heat sink and the cooling medium can take place.
  • the power electronics is adapted to perform a method according to the first aspect of the invention.
  • a recuperation system comprising a heating resistor according to the second aspect of the invention.
  • a vehicle comprising a recuperation system according to the third aspect of the invention.
  • the vehicle is, for example, a motor vehicle, such as a car, bus or truck, or else a rail vehicle, a ship, an aircraft, such as a helicopter or airplane, or, for example, a bicycle.
  • FIG. 1 is a longitudinal sectional view of aforementionedsbei ⁇ game of a heating resistor according to the invention for a recuperation system of a motor vehicle
  • 2 shows a resistance-temperature diagram for metals, not metals and superconductors
  • FIG. 3 shows a diagram with heat transfers on an exemplary embodiment of a heating resistor according to the invention for a recuperation system of a motor vehicle.
  • Fig. 1 shows a heating resistor 1 for a recuperation system of a motor vehicle.
  • the heating resistor 1 comprises an active layer 2, a power electronics 3, a high-voltage connection 4 with positive pole and negative pole, a connection 5 to a driving ⁇ zeugkommunikationsnetz in the form of a CAN, and a cooling body in the form of a cooling channel 6, which for cooling the active layer 2 passes through a housing 7 of the heating resistor 1 and a flow connection 8 for a coolant and a
  • the active layer 2 is configured to receive electrical energy which can no longer be taken up by a battery of the recuperation system, as for example, the battery is already fully charged or Temperaturver ⁇ ratios are too high.
  • the cooling medium can be passed, wherein a heat transfer from the active layer 2 to the cooling channel body 6 and the cooling medium therein can be carried out.
  • the power electronics 3 can be used to perform a combined current and voltage measurement.
  • a voltage Ui which is applied to the active layer 2 can be measured at a first time ti.
  • a current Ii flowing through the active layer 2 can also be measured at the first time ti.
  • AI the determination of the instantaneous value of the voltage Ui can take place at a battery (not shown) of the recuperation system.
  • the determined instantaneous value of the temperature ⁇ of the active layer 2 of the heating resistor 1 can be transmitted via the CAN to a drive train (not shown) of the vehicle.
  • the power electronics 3 may have a memory unit on which several value pairs are stored in a database.
  • the individual value pairs each comprise a resistance value R ⁇ and a temperature value i.
  • the power electronics 3 can compare the determined resistance value Ri with the resistance values of the value pairs. For example, a resistance value R x in a value pair x may come closest to the determined resistance value Ri. When the power electronics 3 detects this, it can select the associated temperature value T x in the value pair x as the instantaneous value of the temperature i of the active layer 2. Alternatively, a function of the temperature T as a function of the electrical resistance R (see. Fig.
  • the power electronics 3 to be ⁇ oriented may be, from a determined instantaneous resistance value Ri at a time ti a to determine respective mo ⁇ mentanen temperature value i of the active layer 2 of the Schuwi ⁇ derstands.
  • the power electronics 3 to be ⁇ oriented may be, from a determined instantaneous resistance value Ri at a time ti a to determine respective mo ⁇ mentanen temperature value i of the active layer 2 of the Schuwi ⁇ derstands. 1
  • a friction brake (not shown) of the recuperation system can already be activated at the time when this is predicted.
  • Heating resistor 1 on the one hand and the expected generated braking energy on the other hand a ratio of adjusting friction braking force to the recuperation braking force can be determined.
  • the resistance R and thus the temperature T can be determined by small voltage pulses.
  • a temperature model which is calculated by the power electronics 3 resp. is provided, statements about the future electrical or thermal capacity of the heating resistor 1 can be made.
  • the model must contain the thermal inertia and the heat transfer.
  • the temperature ⁇ of the active layer 2 of the heating resistor 1 determined by means of the above-described current measurement and voltage measurement can likewise be introduced into this predictive model.
  • FIG. 3 shows an exemplary temperature model with a heat source 11, eg caused by current or voltage in the active layer 2 of the heating resistor 1.
  • a heating wire or a heating surface having the active layer 2 forms a first heat capacity 12.
  • a first heat - Transition 13 takes place from the first heat capacity 12 to the body of the cooling channel 6, which forms a second heat capacity 14.
  • a second heat transfer 15 takes place from the second heat capacity 14 to the cooling medium, which is passed through the cooling channel 6 and forms a third heat capacity 16.
  • the cooling channel 6 or a cooling circuit formed by this forms a heat sink 17.
  • the three heat capacities 12, 14 and 16 form thermal inertia of the heating resistor. 1

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Resistance Heating (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

L'invention concerne un procédé permettant de déterminer une température (T1) d'une couche active (2) d'une résistance chauffante (1) pour un système de récupération d'un véhicule automobile. Le procédé consiste à déterminer à un premier instant (t1) une valeur instantanée d'un courant (I1) qui traverse une couche active (2) d'une résistance chauffante (1), ainsi qu'à déterminer au premier instant (t1) une valeur instantanée d'une tension (U1) présente au niveau de la couche active (2) de la résistance chauffante (1). Une valeur instantanée d'une résistance électrique (R1) est calculée à partir de la valeur instantanée déterminée du courant (I1) et de la valeur instantanée déterminée de la tension (U1). Une valeur instantanée d'une température (T1) de la couche active (2) est par ailleurs déterminée à partir de la valeur calculée de la résistance électrique (R1).
PCT/EP2018/076068 2017-09-27 2018-09-26 Procédé permettant de déterminer une température d'une couche active d'une résistance chauffante WO2019063591A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/645,958 US12071042B2 (en) 2017-09-27 2018-09-26 Method for determining the temperature of an active layer of a heating resistor
EP18789004.1A EP3687850B1 (fr) 2017-09-27 2018-09-26 Procédé permettant de déterminer une température d'une couche active d'une résistance chauffante
CN201880063255.9A CN111194277B (zh) 2017-09-27 2018-09-26 用于确定加热电阻器的活性层的温度的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017217194.4 2017-09-27
DE102017217194.4A DE102017217194A1 (de) 2017-09-27 2017-09-27 Verfahren zur Ermittlung einer Temperatur einer aktiven Schicht eines Heizwiderstands

Publications (1)

Publication Number Publication Date
WO2019063591A1 true WO2019063591A1 (fr) 2019-04-04

Family

ID=63896084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/076068 WO2019063591A1 (fr) 2017-09-27 2018-09-26 Procédé permettant de déterminer une température d'une couche active d'une résistance chauffante

Country Status (5)

Country Link
US (1) US12071042B2 (fr)
EP (1) EP3687850B1 (fr)
CN (1) CN111194277B (fr)
DE (1) DE102017217194A1 (fr)
WO (1) WO2019063591A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12071042B2 (en) 2017-09-27 2024-08-27 Vitesco Technologies GmbH Method for determining the temperature of an active layer of a heating resistor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11716788B2 (en) 2020-02-18 2023-08-01 Gentherm Gmbh Heater control system based on slope of supply current

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004046275A1 (de) * 2003-09-23 2005-07-21 Saxotec Gmbh & Co.Kg Vorrichtung zur Überwachung der Temperatur von Hochspannung führenden Baugruppen
EP1610454A1 (fr) * 2004-06-23 2005-12-28 Bombardier Transportation GmbH Déetermination d'une température d'un resistor de frein

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3048999A1 (de) * 1980-12-24 1982-07-15 Robert Bosch Gmbh, 7000 Stuttgart Schaltungsanordnung zur energierueckgewinnung bei choppergesteuerten reihenschlussmaschinen
JPS57160380A (en) * 1981-03-27 1982-10-02 Mitsubishi Electric Corp Regenerative braking device for inverter
US4523084A (en) * 1981-09-02 1985-06-11 Oximetrix, Inc. Controller for resistive heating element
JPS58204912A (ja) * 1982-05-24 1983-11-29 Nissan Motor Co Ltd 排気温度警報装置
JPS6256849A (ja) * 1985-09-06 1987-03-12 Snow Brand Milk Prod Co Ltd 通電加熱法に用いられるセンサ−
JPS62277081A (ja) * 1986-05-21 1987-12-01 Mitsubishi Electric Corp インバ−タ装置
JPH0779523B2 (ja) * 1988-02-17 1995-08-23 日野自動車工業株式会社 自動車のリターダ装置
DE19543296C2 (de) * 1995-11-21 2001-02-22 I T V I Internat Techno Ventur Verfahren zur Ermittlung absoluter Gaskonzentrationen unter Verwendung halbleitender Gassensoren
DE69941000D1 (de) * 1998-04-07 2009-07-30 Tyco Electronics Raychem Kk Sekundärzelle, temperaturdetektor dafür und verfahren zur herstellung eines temperaturdetektors
JP4062967B2 (ja) * 2002-05-17 2008-03-19 富士電機機器制御株式会社 抵抗器の過熱保護方法
DE10254821A1 (de) 2002-11-25 2004-06-03 Robert Bosch Gmbh Spannungsreglerschaltung
CH696777A5 (de) * 2003-08-06 2007-11-30 Saia Burgess Murten Ag Anordnung und Verfahren zur Detektion von Stoffen.
JP4973112B2 (ja) * 2006-10-06 2012-07-11 パナソニック株式会社 充電装置と蓄電池の状態検知装置とからなるシステム
JP5489445B2 (ja) * 2007-11-15 2014-05-14 富士フイルム株式会社 薄膜電界効果型トランジスタおよびそれを用いた表示装置
DE102008001900A1 (de) * 2008-05-21 2009-11-26 Zf Friedrichshafen Ag Verfahren zur Optimierung der Bremsvorgänge bei einem Hybridfahrzeug
FR2931844B1 (fr) * 2008-06-02 2013-11-01 Alex Hr Roustaei Systemes pour la production de l'energie a la demande comme une source seule ou en assistance avec autres sources d'energie dans le domaine du transport ou de l'habitat.
EP2741060B1 (fr) * 2011-08-01 2016-11-02 Alps Green Devices Co., Ltd. Procédé de mesure de la température d'un dispositif de batterie
US9096134B2 (en) 2012-01-24 2015-08-04 GM Global Technology Operations LLC Enhanced HV pre-charge heater diagnostic detection system for liquid cooled HV battery packs
DE102012023366B4 (de) * 2012-11-29 2022-12-29 Audi Ag Verfahren für den Betrieb einer in einem Kraftfahrzeug einsetzbaren Heizung, Heizung für ein Bauteil eines Kraftfahrzeugs und Kraftfahrzeug
DE102013214835A1 (de) * 2013-07-30 2015-02-05 Robert Bosch Gmbh Überspannungsschutz für ein Mehrspannungsbordnetz
FR3033669B1 (fr) * 2015-03-13 2017-03-24 Peugeot Citroen Automobiles Sa Dispositif de stockage electrique comportant au moins un assemblage a electrode positive hybride et vehicule equipe d’un tel dispositif
AU2015391669A1 (en) * 2015-04-13 2017-11-02 Karl Brotzmann Consulting Gmbh Energy storage via thermal stores and air turbine
DE102015215424A1 (de) * 2015-08-13 2017-02-16 Continental Automotive Gmbh Verfahren zum Beheizen und Beheizungssystem
DE102015013301B3 (de) 2015-10-13 2017-02-16 Webasto SE Hochspannungs-Fahrzeugheizung und Verfahren zur Nutzung von Rekuperationsleistung in einem Fahrzeug
CN206468716U (zh) * 2017-01-13 2017-09-05 宁波宝陆汽车部件有限公司 一种耐磨汽车制动器挡泥板
DE102017217194A1 (de) 2017-09-27 2019-03-28 Continental Automotive Gmbh Verfahren zur Ermittlung einer Temperatur einer aktiven Schicht eines Heizwiderstands
AT525680B1 (de) * 2021-11-15 2024-04-15 Avl List Gmbh Bremsvorrichtung für ein elektrisches Bremsen eines Elektrofahrzeugs

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004046275A1 (de) * 2003-09-23 2005-07-21 Saxotec Gmbh & Co.Kg Vorrichtung zur Überwachung der Temperatur von Hochspannung führenden Baugruppen
EP1610454A1 (fr) * 2004-06-23 2005-12-28 Bombardier Transportation GmbH Déetermination d'une température d'un resistor de frein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12071042B2 (en) 2017-09-27 2024-08-27 Vitesco Technologies GmbH Method for determining the temperature of an active layer of a heating resistor

Also Published As

Publication number Publication date
CN111194277B (zh) 2023-06-30
CN111194277A (zh) 2020-05-22
EP3687850A1 (fr) 2020-08-05
DE102017217194A1 (de) 2019-03-28
US12071042B2 (en) 2024-08-27
US20200276901A1 (en) 2020-09-03
EP3687850B1 (fr) 2022-08-03

Similar Documents

Publication Publication Date Title
EP2652833B1 (fr) Procédé de régulation thermique d'un accumulateur d'énergie électrochimique dans un véhicule
DE102016201740B4 (de) Vorrichtung und Verfahren zur Leistungssteuerung
EP1377844B1 (fr) Procede et dispositif pour determiner l'effet tampon d'une batterie
EP3445607B1 (fr) Chargeur de batterie et procede correspondant
DE102014221547A1 (de) Verfahren zur Überwachung des Ladezustands einer Batterie
DE102016103420A1 (de) Batterieladestrategie unter verwendung des entladezyklus
DE102005023365A1 (de) Batterie-Management für Batterien in Hybrid-Fahrzeugen
DE102012213057A1 (de) Verfahren zum Steuern eines Batteriesystems, Batteriesystem und Kraftfahrzeug
DE102011089962A1 (de) Verfahren zur Temperaturregelung von mindestens einem Batterieelement, Batterie sowie Kraftfahrzeug mit einer solchen Batterie
DE112017003729T5 (de) Batteriemangement-Vorrichtung und -Verfahren
DE102009001258A1 (de) Verfahren zur Überwachung der thermischen Belastung eines Elektromotors
WO2014095279A1 (fr) Dispositif pour déterminer une température d'une cellule d'une batterie, dispositif de détermination et batterie
EP4217754B1 (fr) Procédé de détermination de la capacité d'accumulateurs d'énergie électrique de véhicule
DE102018131645A1 (de) Batterieladesysteme und -verfahren
DE102017002483A1 (de) Technik zur Isolationsüberwachung in Fahrzeugen
DE102015208744A1 (de) Traktionsbatterieleckdetektionssystem für ein elektrifiziertes fahrzeug
WO2011018130A1 (fr) Détermination d'une température de noyau de cellule d'un accumulateur d'énergie
WO2019063591A1 (fr) Procédé permettant de déterminer une température d'une couche active d'une résistance chauffante
DE102015207302A1 (de) Gerät zum Aufladen von Batterie und Verfahren dafür
WO2001091264A1 (fr) Surveillance thermique d'un element electrique de charge
DE102011103797A1 (de) Verfahren zur Bestimmung einer Temperatur
WO2021013696A1 (fr) Procédé pour traiter une batterie d'un véhicule à moteur en état de stationnement et véhicule à moteur
DE102014200673A1 (de) Verfahren zum Überwachen einer Batterie
WO2011045206A2 (fr) Procédé pour déterminer et/ou prédire la réponse d'une batterie à une forte sollicitation de courant
EP3038852A2 (fr) Appareil de commande de gestion énergétique et procédé pour déterminer une caractéristique d'un accumulateur d'énergie électrochimique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18789004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018789004

Country of ref document: EP

Effective date: 20200428