WO2019062492A1 - 换热器芯体和具有其的空调器 - Google Patents

换热器芯体和具有其的空调器 Download PDF

Info

Publication number
WO2019062492A1
WO2019062492A1 PCT/CN2018/103995 CN2018103995W WO2019062492A1 WO 2019062492 A1 WO2019062492 A1 WO 2019062492A1 CN 2018103995 W CN2018103995 W CN 2018103995W WO 2019062492 A1 WO2019062492 A1 WO 2019062492A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
fin
heat exchanger
exchanger core
fins
Prior art date
Application number
PCT/CN2018/103995
Other languages
English (en)
French (fr)
Inventor
梁欣
闫志恒
肖瑞雪
钟笑鸣
Original Assignee
杭州三花微通道换热器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201721274256.7U external-priority patent/CN207280281U/zh
Priority claimed from CN201710912412.6A external-priority patent/CN109579594A/zh
Application filed by 杭州三花微通道换热器有限公司 filed Critical 杭州三花微通道换热器有限公司
Publication of WO2019062492A1 publication Critical patent/WO2019062492A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element

Definitions

  • the present disclosure relates to the field of heat exchange technology, and in particular to a heat exchanger core and an air conditioner having the heat exchanger core.
  • the tube-and-fin heat exchanger of the related art has a large diameter and a large wind resistance of the heat exchange tube, so that in the leeward side region at the rear of the heat exchange tube, the heat exchange efficiency is insufficient, and the influence is affected.
  • the overall heat transfer performance of the heat exchanger is affected.
  • the present disclosure is intended to address at least one of the technical problems existing in the background art. To this end, the present disclosure proposes a heat exchanger core having advantages such as good heat exchange performance.
  • the present disclosure also proposes an air conditioner having the heat exchanger core.
  • a heat exchanger core comprising: fins, the fins including a plurality of fin units arranged in a longitudinal direction of the fins a plurality of heat exchange tubes each having a width and a thickness, a plurality of the heat exchange tubes being interposed on the fins and respectively located in a plurality of fin units; the fin units and interspersed in The heat exchange tube on the fin unit constitutes a heat exchange unit, wherein a ratio of a cross-sectional area of the heat exchange tube to an orthographic area corresponding to the heat exchange unit in a plane of the fin unit is 0.03 -0.3.
  • the heat exchanger core according to an embodiment of the present disclosure has advantages such as good heat exchange performance.
  • each of the heat exchange units has a dimension a in the longitudinal direction of the fin, a lateral width of the fins is c, and a width of each of the heat exchange tubes is e
  • the thickness of each of the heat exchange tubes is d, and the above parameters satisfy the relationship: 0.03 ⁇ (d*e) / (a * c) ⁇ 0.3.
  • each of the heat exchange tubes includes, in a circumferential direction thereof, a first straight segment, a first elliptical arc segment, a second straight segment, and a second elliptical arc that are sequentially connected in a closed loop shape.
  • a segment, the first straight segment and the second straight segment are spaced apart along a thickness direction of the heat exchange tube, and the first elliptical arc segment and the second elliptical arc segment are along
  • the heat transfer tubes are spaced apart in the width direction.
  • the heat transfer tube has a thickness d that is less than or equal to two-fifths of the dimension a of each of the heat exchange units in the longitudinal direction of the fin.
  • the ratio of the width e of the heat exchange tubes to the lateral width c of the fins is greater than or equal to 0.25 and less than or equal to 0.75.
  • the ratio of the width e of the heat exchange tube to the dimension a of the heat exchange unit in the longitudinal direction of the fin is greater than or equal to 0.3 and less than or equal to 0.6.
  • the heat exchange tubes are welded to the fins.
  • the distance between the two ends of the heat exchange tube to the corresponding side of the fin is not equal.
  • a ratio of a distance difference m between the two ends of each of the heat exchange tubes to a corresponding side of the fin and a lateral width c of the fin is greater than or equal to 0.06 and less than or equal to 0.5.
  • the fins are at least two groups, adjacent two sets of fins are arranged along a width direction of the fins, and corresponding heat exchange units on adjacent sets of fins are on the fins. Staggered in the longitudinal direction.
  • an orthographic projection area of one of the corresponding heat exchange units on the adjacent group of fins is S1
  • an orthographic projection area of one of the corresponding heat exchange units on the adjacent group of fins is S2, adjacent group
  • the sum of the orthographic projection areas of the overlapping portions of the fins on the fins in the longitudinal direction of the fins is S, S, S1, S2 satisfy the relationship: 0.25 ⁇ S / (S1 + S2) ⁇ 0.75.
  • an angle ⁇ between a width direction of the heat exchange tube and a lateral direction of the fin is greater than or equal to 0° and less than or equal to 45°.
  • an angle ⁇ between a width direction of the heat exchange tube and a lateral direction of the fin satisfies a relationship of 0.02 ⁇ (d*e*cos ⁇ ) / (a*c) ⁇ 0.3.
  • an air conditioner including a heat exchanger including two headers spaced apart by a predetermined distance, and two collectors a heat exchanger core, the heat exchanger core being a heat exchanger core according to an embodiment of the first aspect of the present disclosure, each heat exchange tube on the heat exchanger core Both ends are respectively connected to the two headers.
  • An air conditioner according to an embodiment of the present disclosure has advantages such as good heat exchange performance by utilizing the heat exchanger core according to the embodiment of the first aspect of the present disclosure.
  • FIG. 1 is a schematic structural view of a heat exchanger core according to an embodiment of the present disclosure.
  • Figure 2 is a graph of parameter ratio and heat transfer performance in a heat exchanger.
  • FIG. 3 is a graph comparing performance of a heat exchanger according to an embodiment of the present disclosure with a heat exchanger of the prior art.
  • FIG. 4 is a schematic structural view of a heat exchanger core according to a first alternative embodiment of the present disclosure.
  • FIG. 5 is a schematic structural view of a heat exchanger core according to a second alternative embodiment of the present disclosure.
  • FIG. 6 is a schematic structural view of a heat exchanger core according to a third alternative embodiment of the present disclosure.
  • Heat exchange tube 200 long axis X, short axis Z, first straight section 210, first elliptical arc section 220, second straight section 230, second elliptical arc section 240,
  • connection In the description of the present disclosure, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meaning of the above terms in the present disclosure can be understood in the specific circumstances by those skilled in the art.
  • a heat exchanger core 10 in accordance with an embodiment of the present disclosure is described below with reference to the accompanying drawings.
  • a heat exchanger core 10 includes a fin 100 and a plurality of heat exchange tubes 200.
  • the fin 100 includes a plurality of fin units arranged in the longitudinal direction of the fin 100 (as indicated by an arrow M in the drawing), and the fin unit and the heat exchange tube 200 interposed on the fin unit constitute the heat exchange unit 300.
  • Each heat exchange tube 200 has a width and a thickness, which refers to the overall thickness of the heat exchange tubes 200.
  • the cross section of each heat exchange tube 200 has a major axis X and a minor axis Z orthogonal to each other, and the major axis X The length is greater than the length of the short axis Z.
  • a plurality of heat exchange tubes 200 are interposed on the fins 100 and are respectively located in the plurality of fin units.
  • one heat exchange unit 300 has a heat exchange tube 200 located at the center of the heat exchange unit 300. At the office.
  • the ratio of the cross-sectional area of the heat exchange tube 200 to the orthographic area of the corresponding heat exchange unit 300 in the plane of the fin unit is 0.03-0.3.
  • the cross-sectional area of the heat exchange tube 200 refers to the area of the shape enclosed by the outer contour of the heat exchange tube 200 in the cross section of the heat exchange tube 200.
  • each heat exchange unit 300 in the longitudinal direction of the fin 100 is a
  • the width of the fin 100 in the lateral direction is c, that is, the heat exchange unit 300 is at the fin 100.
  • the dimension in the lateral direction is c
  • the width of each heat exchange tube 200 is e, that is, the length of the long axis X of each heat exchange tube 200 is e
  • the thickness of each heat exchange tube 200 is d, that is, each change
  • the length of the short axis Z of the heat pipe 200 is d, and the above parameters satisfy the relationship: 0.03 ⁇ (d*e) / (a*c) ⁇ 0.3.
  • heat exchange between the heat exchange tubes 200 and the fins 100 is performed on the refrigerant side, and in other regions of the fins 100, heat exchange on the air side is performed.
  • the heat exchange tube 200 is designed in the shape of an elliptical tube.
  • the heat exchange tube 200 can be regarded as a heat source in the heat exchange unit 300.
  • the area occupied by the cross section of the heat exchange tube 200 is the heat source area, and the larger the area occupied by the heat source, the heat transfer on the refrigerant side is enhanced, but the air side is also affected.
  • the heat exchange; the area occupied by the heat source is too small, and the heat exchange area on the refrigerant side is reduced.
  • the cross-sectional area of the heat exchange tube 200 should occupy a suitable range in the heat exchange unit 300, so as to simultaneously improve the heat exchange efficiency between the refrigerant side and the air side, thereby improving the heat exchange performance of the heat exchanger.
  • the heat exchange tube 200 using an elliptical tube is combined with the interaction design of each parameter, that is, the cross-sectional area of the heat exchange tube 200 and the orthographic area of the corresponding heat exchange unit 300.
  • the ratio is 0.03-0.3, so that the heat exchange efficiency on the refrigerant side and the air side can be improved, and the heat exchange area on the refrigerant side is sufficient, and the heat exchange area on the air side of the fin 100 is also effectively utilized.
  • the heat exchanger core 10 according to an embodiment of the present disclosure has advantages such as good heat exchange performance.
  • a heat exchanger core 10 in accordance with an embodiment of the present disclosure is described below with reference to the drawings.
  • a heat exchanger core 10 includes a fin 100 and a plurality of heat exchange tubes 200.
  • each heat exchange tube 200 includes, in its circumferential direction, a first straight section 210, a first elliptical arc section 220, a second straight section 230, and a Two elliptical arc segments 240.
  • the first straight section 210 and the second straight section 230 are spaced apart along the thickness direction of the heat exchange tube 200
  • the first elliptical arc segment 220 and the second elliptical arc segment 240 are spaced apart along the width direction of the heat exchange tube 200.
  • first straight straight section 210 and the second straight straight section 230 are spaced apart along the length direction of the short axis Z of the heat exchange tube 200, and the first elliptical curved section 220 and the second elliptical curved section 240 are along the heat exchange tube 200
  • the long axis X is spaced apart in the longitudinal direction. That is, the cross section of the heat exchange tube 200 is substantially racetrack-shaped, whereby the heat exchange efficiency on the refrigerant side can be improved.
  • the fins 100 may be flat fins, corrugated fins, slitted or fenestrated fins, and may have embossing or the like of various shapes.
  • each heat exchange tube 200 is welded to the fins 100, for example, brazed.
  • the heat exchange tube and the fin are connected by the expansion tube, the contact heat resistance between the heat exchange tube and the fin is large, and the actual heat exchange area is limited.
  • the present disclosure increases the effective heat exchange area of the fins 100 by welding the heat exchange tubes 200 to the fins 100, thereby improving the heat exchange effect.
  • the ratio of the width e of the heat exchange tubes 200 to the lateral width c of the fins 100 is greater than or equal to 0.25 and less than or equal to 0.75, and, in some specific examples of the present disclosure, the heat exchange tubes
  • the length d of the minor axis Z of 200 satisfies the relationship: d ⁇ 2a/5.
  • the installation area of the heat exchange tube 200 must be bypassed. If the heat exchange tube 200 has an excessive blocking area in the air flow direction, the wind resistance is too large, and the replacement is performed. The leeward side of the heat pipe 200 has a large area wasted.
  • the present disclosure limits the length d of the short axis Z of the heat exchange tube 200 to less than 2/5 of the dimension of each heat exchange unit 300 in the longitudinal direction of the fin 100, that is, d ⁇ 2a/5, on the one hand, eliminates
  • the influence of the heat exchange on the refrigerant side can be ensured, and on the other hand, the strength of the heat exchange tube 200 can be ensured, whereby the parameters a and d are controlled within a reasonable range, so that the wind resistance and the heat exchange efficiency are effectively balanced.
  • the ratio of the width e of the heat exchange tubes 200 to the lateral width c of the fins 100 is greater than or equal to 0.25 and less than or equal to 0.75, that is, the length e of the long axis X of the heat exchange tubes 200 and The lateral width c of the fin 100 satisfies the relationship: 0.25 ⁇ e / c ⁇ 0.75.
  • the heat exchanger using the heat exchanger core 10 When the heat exchanger using the heat exchanger core 10 is used as an evaporator or a heat pump, condensed water generated on the fins 100 may accumulate on the surface of the heat exchange tube 200, thereby affecting heat exchange, and the parameters e and c are The main parameters determining the heat exchange capacity of the heat exchanger and the fin drainage speed, water storage rate, etc., the present disclosure can comprehensively consider the heat exchange capacity of the heat exchanger and the fin 100 by defining 0.25 ⁇ e / c ⁇ 0.75. The drainage speed makes the two optimal.
  • the ratio of the width e of the heat exchange tubes 200 to the dimension a of the heat exchange unit 300 in the longitudinal direction of the fins 100 is greater than or equal to 0.3 and less than or equal to 0.6, that is, the length of the heat exchange tubes 200
  • the length e of the axis X and the dimension a of the heat exchange unit 300 in the longitudinal direction of the fin 100 satisfy the relationship: 0.3 ⁇ e / a ⁇ 0.6.
  • Parameters a and e determine the material cost and heat flux density of the heat exchanger.
  • the heat exchange tube 200 is required under certain strength requirements.
  • the parameter e often determines the weight of the heat exchange tube 200, the parameter a affects the heat flux density of the heat exchanger, reflects the ratio of the heat exchange tube 200 to the fin 100 in the heat exchanger, and also the cost of the heat exchanger as a whole. influential.
  • the present disclosure can optimize the economics and heat exchange performance of the heat exchanger by defining 0.3 ⁇ e / a ⁇ 0.6.
  • the distance between the two ends of the heat exchange tube 200 to the corresponding sides of the fin 100 is not equal, for example, the midpoint of the long axis X of each heat exchange tube 200 is relative to The longitudinal center axis of the fin 100 is offset toward the leeward side.
  • the area of the fin 100 on the leeward side of the heat exchange tube 200 can be reduced. Since the area is on the leeward side of the heat exchange tube 200, air will form a wake vortex in this area, and the heat exchange capability is poor, by reducing the area of the area. Therefore, it is conducive to the improvement of heat exchange capacity.
  • the ratio of the distance difference m between the two ends of the heat exchange tube 200 to the corresponding side of the fin 100 and the lateral width c of the fin 100 is greater than or equal to 0.06 and less than or equal to 0.5, that is, the long axis X of the heat exchange tube 200.
  • the offset distance from the intersection of the minor axis Z with respect to the longitudinal center axis of the fin 100 is m/2, and m and the lateral width c of the fin 100 satisfy the relationship: 0.03 ⁇ m/2c ⁇ 0.25.
  • the fins 100 are at least two groups, and the fins 100 in each group are arranged along the thickness direction of the fins 100, and the adjacent two sets of fins 100 are along the fins.
  • the width direction of 100 is aligned, that is, a plurality of rows of structures are formed.
  • the corresponding heat exchange units 300 on the adjacent set of fins 100 are staggered in the longitudinal direction of the fins 100. Thereby, the heat exchange capacity of the heat exchanger core 10 can be improved, and the corresponding heat exchange units 300 on the adjacent group fins 100 are staggered in the longitudinal direction of the fins 100, so that the correspondences on the adjacent group fins 100 are made.
  • the heat exchange tubes 200 in the heat exchange unit 300 are staggered in the longitudinal direction of the fins 100, thereby preventing the front heat exchange tubes 200 from blocking the wind and affecting the heat exchange amount in the rear row, thereby ensuring the fins on the leeward side row.
  • an orthographic projection area of one of the corresponding heat exchange units 300 on the adjacent group of fins 100 is S1 (such as the heat exchange unit 300 on the left side in FIG. 5), and the adjacent group of fins 100 is on the same
  • the orthographic projection area of one of the corresponding heat exchange units 300 is S2 (such as the heat exchange unit 300 on the right side in FIG. 5), and the corresponding heat exchange unit 300 on the adjacent group of fins 100 is in the longitudinal direction of the fin 100.
  • the sum of the orthographic projection areas of the overlapping portion is S, that is, the sum of the areas of the thick-lined portions in FIG. 5, and S, S1, and S2 satisfy the relationship: 0.25 ⁇ S / (S1 + S2) ⁇ 0.75, so that The overall performance of the multi-row heat exchanger core 10 is optimized.
  • the orthographic projection area of the heat exchange unit 300 refers to the area of the orthographic projection of the heat exchange unit 300 in the plane of the fin unit.
  • the angle ⁇ between the width direction of the heat exchange tube 200 and the lateral direction of the fin 100 is greater than or equal to 0° and less than or equal to 45°, that is, heat exchange.
  • the angle between the long axis X of the tube 200 and the lateral direction of the fin 100 is ⁇ , 0° ⁇ ⁇ ⁇ 45°.
  • the air flow direction is not perpendicular to the heat exchange tube 200, and the wind resistance can be reduced by adjusting the angle ⁇ . It is to be understood that when ⁇ is not equal to 0°, the heat exchange unit 300 is a parallelogram, and the parameter a is the height of the parallelogram.
  • the angle between the width direction of the heat exchange tube 200 (the long axis X of the heat exchange tube 200) and the lateral direction of the fin 100 is ⁇ satisfying the relationship: 0.02 ⁇ (d*e*cos ⁇ ) / (a* c) ⁇ 0.3. This optimizes the overall performance of the heat exchanger core 10.
  • An air conditioner includes a heat exchanger including two headers spaced apart by a predetermined distance, and a heat exchanger core disposed between the two headers, the heat exchange
  • the core body is a heat exchanger core 10 according to the above embodiment of the present disclosure, and both ends of each heat exchange tube on the heat exchanger core are respectively in communication with the two headers.
  • the heat exchanger according to an embodiment of the present disclosure has advantages such as good heat exchange performance by utilizing the heat exchanger core 10 according to the above-described embodiment of the present disclosure.

Abstract

一种换热器芯体(10)和具有其的空调器,换热器芯体(10)包括:翅片(100),翅片(100)包括沿翅片(100)的纵向排列的多个翅片单元;多个换热管(200),每个换热管(200)具有宽度和厚度,多个换热管(200)穿插在翅片(100)上且分别位于多个翅片单元内;翅片单元以及穿插在翅片单元上的换热管(200)构成换热单元(300),其中,换热管(200)的横截面积与对应换热单元(300)在翅片单元所在平面内的正投影面积之比为0.03-0.3。换热器芯体(10)具有换热性能好等优点。

Description

换热器芯体和具有其的空调器
相关申请的交叉引用
本公开基于申请号为201721274256.7及201710912412.6,申请日为2017年9月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及换热技术领域,具体而言,涉及一种换热器芯体和具有所述换热器芯体的空调器。
背景技术
相关技术中的圆管翅片式换热器,由于其换热管的管径较大,风阻较大,这样在换热管后部的背风侧区域,容易出现换热效率不足的情况,影响换热器的整体换热性能。
公开内容
本公开旨在至少解决背景技术中存在的技术问题之一。为此,本公开提出一种换热器芯体,该换热器芯体具有换热性能好等优点。
本公开还提出一种具有所述换热器芯体的空调器。
根据本公开的第一方面的实施例提出一种换热器芯体,所述换热器芯体包括:翅片,所述翅片包括沿所述翅片的纵向排列的多个翅片单元;多个换热管,每个所述换热管具有宽度和厚度,多个所述换热管穿插在所述翅片上且分别位于多个翅片单元内;所述翅片单元以及穿插在所述翅片单元上的换热管构成换热单元,其中,所述换热管的横截面积与对应所述换热单元在所述翅片单元所在平面内的正投影面积之比为0.03-0.3。
根据本公开实施例的换热器芯体具有换热性能好等优点。
根据本公开的一些具体实施例,每个所述换热单元在所述翅片的纵向上的尺寸为a,所述翅片的横向宽度为c,每个所述换热管的宽度为e,每个所述换热管的厚度为d, 上述参数满足关系式:0.03≤(d*e)/(a*c)≤0.3。
根据本公开的一些具体实施例,每个所述换热管沿其周向包括依次连接成闭环形的第一平直段、第一椭圆弧形段、第二平直段和第二椭圆弧形段,所述第一平直段和所述第二平直段沿所述换热管的厚度方向间隔设置,所述第一椭圆弧形段和所述第二椭圆弧形段沿所述换热管的宽度方向间隔设置。
根据本公开的一些具体示例,所述换热管的厚度d小于或等于每个所述换热单元在所述翅片的纵向上的尺寸a的五分之二。
根据本公开的一些具体示例,所述换热管的宽度e与所述翅片的横向宽度c之比大于或等于0.25且小于或等于0.75。
根据本公开的一些具体示例,所述换热管的宽度e与所述换热单元在所述翅片的纵向上的尺寸a之比大于或等于0.3且小于或等于0.6。
根据本公开的一些具体示例,所述换热管到所述翅片焊接相连。
根据本公开的一些具体实施例,所述换热管的两端到所述翅片对应侧边的距离不等。
进一步地,每个所述换热管的两端与所述翅片对应侧边的距离差m与所述翅片的横向宽度c之比大于或等于0.06且小于或等于0.5。
根据本公开的一些具体实施例,所述翅片为至少两组,相邻两组翅片沿所述翅片的宽度方向排列,相邻组翅片上的对应换热单元在所述翅片的纵向上错开。
进一步地,所述相邻组翅片上的对应换热单元中的一个的正投影面积为S1,所述相邻组翅片上的对应换热单元中的一个的正投影面积为S2,相邻组所述翅片上的对应换热单元在所述翅片的纵向上的重叠部分的正投影面积之和为S,S、S1、S2满足关系式:0.25≤S/(S1+S2)≤0.75。
根据本公开的一些具体实施例,所述换热管的宽度方向与所述翅片的横向之间的夹角θ大于或等于0°且小于或等于45°。
进一步地,所述换热管的宽度方向与所述翅片的横向之间的夹角θ满足关系式:0.02≤(d*e*cosθ)/(a*c)≤0.3。
根据本公开的第二方面的实施例提出一种空调器,所述空调器包括换热器,所述换热器包括间隔开预定距离的两个集流管,以及设在两集流管之间的换热器芯体,所述换热器芯体为根据本公开的第一方面的实施例所述的换热器芯体,所述换热器芯体上的每个换热管的两端分别与所述两个集流管连通。
根据本公开实施例的空调器,通过利用根据本公开的第一方面的实施例所述的换热器芯体,具有换热性能好等优点。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开实施例的换热器芯体的结构示意图。
图2是换热器中参数比值与换热性能的曲线图。
图3是根据本公开实施例的换热器与现有技术中的换热器的性能对比图。
图4是根据本公开第一可选实施例的换热器芯体的结构示意图。
图5是根据本公开第二可选实施例的换热器芯体的结构示意图。
图6是根据本公开第三可选实施例的换热器芯体的结构示意图。
附图标记:
换热器芯体10、
翅片100、
换热管200、长轴X、短轴Z、第一平直段210、第一椭圆弧形段220、第二平直段230、第二椭圆弧形段240、
换热单元300。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“上”、“下”、等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可 以具体情况理解上述术语在本公开中的具体含义。
下面参考附图描述根据本公开实施例的换热器芯体10。
如图1-图6所示,根据本公开实施例的换热器芯体10包括翅片100和多个换热管200。
翅片100包括沿翅片100的纵向(如附图中的箭头M所示)排列的多个翅片单元,翅片单元以及穿插在翅片单元上的换热管200构成换热单元300。每个换热管200具有宽度和厚度,该厚度是指换热管200的整体厚度,例如每个换热管200的横截面具有彼此正交的长轴X和短轴Z,长轴X的长度大于短轴Z的长度。多个换热管200穿插在翅片100上且分别位于多个翅片单元内,例如,一个换热单元300内具有一个换热管200,该换热管200位于该换热单元300的中心处。
其中,换热管200的横截面积与对应换热单元300在翅片单元所在平面内的正投影面积之比为0.03-0.3。其中,换热管200的横截面积是指,在换热管200的横截面中,换热管200的外轮廓围成的形状的面积。
进一步地,每个换热单元300在翅片100的纵向上的尺寸为a,翅片100的横向(如附图中的箭头N所示)宽度为c,即换热单元300在翅片100的横向上的尺寸为c,每个换热管200的宽度为e,即每个换热管200的长轴X的长度为e,每个换热管200的厚度为d,即每个换热管200的短轴Z的长度为d,上述参数满足关系式:0.03≤(d*e)/(a*c)≤0.3。
在换热单元300中,换热管200与翅片100的连接处进行冷媒侧的换热,在翅片100的其他区域则进行空气侧的换热。为提高冷媒侧的换热效率,换热管200设计为类椭圆管形状。
换热管200在换热单元300中可认为热源,换热管200的横截面所占的面积为热源面积,热源所占面积越大,冷媒侧的换热会加强,但同时会影响空气侧的换热;热源所占面积过小,冷媒侧换热面积减少的同时,由于翅片100的温度由热源向外侧呈梯度分布,造成空气侧的翅片100区域面积虽然增大但是不能有效利用,因此换热管200的横截面积在换热单元300中应占有一个合适的范围,才能同时提高冷媒侧和空气侧的换热效率,从而提高换热器的换热性能。
根据本公开实施例的换热器芯体10,采用类椭圆管的换热管200结合对各参数的交互设计,即换热管200的横截面积与对应换热单元300的正投影面积之比为0.03-0.3,从而可以使冷媒侧以及空气侧的换热效率均可提高,冷媒侧具有足够的换热面积的同时,翅片100在空气侧的换热面积也得到有效的利用。
并且,进一步限定0.03≤(d*e)/(a*c)≤0.3,公开人经过研究发现,参数d太大 或a太小,都会使风阻偏大;参数e和c影响了换热器的能力和成本等因素,并通过试验验证本公开上述实施例的技术效果,该四个参数的组合比值对换热器性能的影响如图2和图3所示,从图2中可以看出,本公开实施例的换热器芯体10的换热能力能够达到最优,而从图3中可以看出,本公开实施例的换热器芯体10在接触热阻、风阻和传热性能方面均优于现有技术中的圆管式换热器。
因此,根据本公开实施例的换热器芯体10具有换热性能好等优点。
下面参考附图描述根据本公开具体实施例的换热器芯体10。
如图1-图6所示,根据本公开实施例的换热器芯体10包括翅片100和多个换热管200。
具体而言,如图1所示,每个换热管200沿其周向包括依次连接成闭环形的第一平直段210、第一椭圆弧形段220、第二平直段230和第二椭圆弧形段240。第一平直段210和第二平直段230沿换热管200的厚度方向间隔设置,第一椭圆弧形段220和第二椭圆弧形段240沿换热管200的宽度方向间隔设置。即第一平直段210和第二平直段230沿换热管200的短轴Z的长度方向间隔设置,第一椭圆弧形段220和第二椭圆弧形段240沿换热管200的长轴X的长度方向间隔设置。也就是说,换热管200的横截面大体为跑道形,由此可以提高冷媒侧的换热效率。
可选地,翅片100可以为平翅片、波纹翅片、开缝或开窗翅片,其上可以有各种形状的压纹等结构。
其中,每个换热管200与翅片100焊接相连,例如钎焊相连。
相关技术中的圆管式换热器,换热管与翅片通过胀管连接,换热管与翅片间的接触热阻大,实际换热面积有限。本公开通过将换热管200与翅片100之间焊接连接,增加了翅片100的有效换热面积,从而提高了换热效果。
在本公开的一些具体示例中,换热管200的宽度e与翅片100的横向宽度c之比大于或等于0.25且小于或等于0.75,并且,在本公开的一些具体示例中,换热管200的短轴Z的长度d满足关系式:d≤2a/5。
当空气流通过翅片100的表面进行换热时,必须要绕过换热管200的安装区域,如果换热管200在气流方向上阻挡面积过大,则会造成风阻过大,且使换热管200的背风侧有较大的面积浪费。本公开通过将换热管200的短轴Z的长度d限定小于每个换热单元300在翅片100的纵向上的尺寸为a的2/5,即d≤2a/5,一方面会消除对冷媒侧换热的影响,另一方面可以保证换热管200的强度,由此参数a和d之间控制在一个合理的范围,使风阻和换热效率达到有效的平衡。
在本公开的一些具体实施例中,换热管200的宽度e与翅片100的横向宽度c之比 大于或等于0.25且小于或等于0.75,即换热管200的长轴X的长度e和翅片100的横向宽度c满足关系式:0.25≤e/c≤0.75。
当采用换热器芯体10的换热器作为蒸发器或者热泵使用时,翅片100上产生的冷凝水会积聚在换热管200的表面,从而影响换热,而参数e和c,是决定换热器的换热能力以及翅片排水速度、存水率等的主要参数,本公开通过限定0.25≤e/c≤0.75,从而能够综合考虑换热器的换热能力和翅片100的排水速度,使两者达到最优。
在本公开的一些具体示例中,换热管200的宽度e与换热单元300在翅片100的纵向上的尺寸a之比大于或等于0.3且小于或等于0.6,即换热管200的长轴X的长度e和换热单元300在翅片100的纵向上的尺寸a满足关系式:0.3≤e/a≤0.6。
参数a和e决定了换热器的材料成本、热流密度等因素,在换热器的设计中需要综合考虑换热器的单位重量与单位换热量,换热管200在一定的强度要求下,参数e往往决定了换热管200的重量,参数a则影响换热器的热流密度,反应了换热器中换热管200与翅片100的比例情况,也对换热器整体的成本有影响。本公开通过限定0.3≤e/a≤0.6,能够使换热器的经济性以及换热性能达到最优。
在本公开的一些具体示例中,如图4所示,换热管200的两端到翅片100对应侧边的距离不等,例如每个换热管200的长轴X的中点相对于翅片100的纵向中心轴线向背风侧偏移。由此可以减小换热管200背风侧的翅片100区域,由于该区域在换热管200背风侧,空气在该区域会形成尾涡,换热能力较差,通过减小该区域的面积,从而利于换热能力的提升。
进一步地,换热管200的两端到翅片100对应侧边的距离差m与翅片100的横向宽度c之比大于或等于0.06且小于或等于0.5,即换热管200的长轴X和短轴Z的交点相对于翅片100的纵向中心轴线的偏移距离为m/2,m和翅片100的横向宽度c满足关系式:0.03≤m/2c≤0.25。由此可以保证迎风侧区域翅片100与换热管200间的距离,保证翅片100的换热效率。
在本公开的一些具体实施例中,如图5所示,翅片100为至少两组,每组中的翅片100沿翅片100的厚度方向排列,相邻两组翅片100沿翅片100的宽度方向排列,即形成多排结构。相邻组翅片100上的对应换热单元300在翅片100的纵向上错开。由此可以提升换热器芯体10的换热能力,且将相邻组翅片100上的对应换热单元300在翅片100的纵向上错开,从而使相邻组翅片100上的对应换热单元300内的换热管200在翅片100的纵向上错开,由此可以避免前排换热管200挡风,影响后排的换热量,进而能够保证位于背风侧排的翅片100及换热管200的换热效果。
进一步地,所述相邻组翅片100上的对应换热单元300中的一个的正投影面积为 S1(如图5中左侧的换热单元300),所述相邻组翅片100上的对应换热单元300中的一个的正投影面积为S2(如图5中右侧的换热单元300),相邻组翅片100上的对应换热单元300在翅片100的纵向上的重叠部分的正投影面积之和为S,即图5中粗线框出部分的面积之和,S、S1、S2满足关系式:0.25≤S/(S1+S2)≤0.75,这样可以使具有多排结构的换热器芯体10的综合性能达到最优。
可以理解地是,上述换热单元300的正投影面积是指,换热单元300在翅片单元所在平面内的正投影的面积。
在本公开的一些具体实施例中,如图6所示,换热管200的宽度方向与翅片100的横向之间的夹角θ大于或等于0°且小于或等于45°,即换热管200的长轴X与翅片100的横向之间的夹角为θ,0°≤θ≤45°。在某些应用场景下,空气流动方向与换热管200不垂直,通过调节角度θ,能够降低风阻。需要理解地是,θ不等于0°时,换热单元300为一个平行四边形,而参数a为该平行四边形的高。
进一步地,换热管200的宽度方向(换热管200的长轴X)与翅片100的横向之间的夹角为θ满足关系式:0.02≤(d*e*cosθ)/(a*c)≤0.3。这样可以使换热器芯体10的综合性能达到最优。
下面描述根据本公开实施例的空调器。
根据本公开实施例的空调器包括换热器,所述换热器包括间隔开预定距离的两个集流管,以及设在两集流管之间的换热器芯体,所述换热器芯体为根据本公开上述实施例的换热器芯体10,所述换热器芯体上的每个换热管的两端分别与所述两个集流管连通。
根据本公开实施例的换热器,通过利用根据本公开上述实施例的换热器芯体10,具有换热性能好等优点。
根据本公开实施例的换热器的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (14)

  1. 一种换热器芯体,其特征在于,包括:
    翅片,所述翅片包括沿所述翅片的纵向排列的多个翅片单元;
    多个换热管,每个所述换热管具有宽度和厚度,多个所述换热管穿插在所述翅片上且分别位于多个翅片单元内;
    所述翅片单元以及穿插在所述翅片单元上的换热管构成换热单元,
    其中,所述换热管的横截面积与对应所述换热单元在所述翅片单元所在平面内的正投影面积之比为0.03-0.3。
  2. 根据权利要求1所述的换热器芯体,其特征在于,每个所述换热单元在所述翅片的纵向上的尺寸为a,所述翅片的横向宽度为c,每个所述换热管的宽度为e,每个所述换热管的厚度为d,上述参数满足关系式:0.03≤(d*e)/(a*c)≤0.3。
  3. 根据权利要求1所述的换热器芯体,其特征在于,每个所述换热管沿其周向包括依次连接成闭环形的第一平直段、第一椭圆弧形段、第二平直段和第二椭圆弧形段,所述第一平直段和所述第二平直段沿所述换热管的厚度方向间隔设置,所述第一椭圆弧形段和所述第二椭圆弧形段沿所述换热管的宽度方向间隔设置。
  4. 根据权利要求1所述的换热器芯体,其特征在于,所述换热管的厚度d小于或等于每个所述换热单元在所述翅片的纵向上的尺寸a的五分之二。
  5. 根据权利要求1所述的换热器芯体,其特征在于,所述换热管的宽度e与所述翅片的横向宽度c之比大于或等于0.25且小于或等于0.75。
  6. 根据权利要求1所述的换热器芯体,其特征在于,所述换热管的宽度e与所述换热单元在所述翅片的纵向上的尺寸a之比大于或等于0.3且小于或等于0.6。
  7. 根据权利要求1所述的换热器芯体,其特征在于,每个所述换热管与所述翅片焊接相连。
  8. 根据权利要求1-7中任一项所述的换热器芯体,其特征在于,所述换热管的两端到所述翅片对应侧边的距离不等。
  9. 根据权利要求8所述的换热器芯体,其特征在于,所述换热管的两端到所述翅片对应侧边的距离差m与所述翅片的横向宽度c之比大于或等于0.06且小于或等于0.5。
  10. 根据权利要求1-7中任一项所述的换热器芯体,其特征在于,所述翅片为至少两组,相邻两组翅片沿所述翅片的宽度方向排列,相邻组翅片上的对应换热单元在所述翅片的纵向上错开。
  11. 根据权利要求10所述的换热器芯体,其特征在于,所述相邻组翅片上的对应换热单元中的一个的正投影面积为S1,所述相邻组翅片上的对应换热单元中的一个的正投影面积为S2,相邻组所述翅片上的对应换热单元在所述翅片的纵向上的重叠部分的正投影面积之和为S,S、S1、S2满足关系式:
    0.25≤S/(S1+S2)≤0.75。
  12. 根据权利要求1-7中任一项所述的换热器芯体,其特征在于,所述换热管的宽度方向与所述翅片的横向之间的夹角θ大于或等于0°且小于或等于45°。
  13. 根据权利要求12所述的换热器芯体,其特征在于,所述换热管的宽度方向与所述翅片的横向之间的夹角θ满足关系式:
    0.02≤(d*e*cosθ)/(a*c)≤0.3。
  14. 一种空调器,其特征在于,包括换热器,所述换热器包括间隔开预定距离的两个集流管,以及设在两集流管之间的换热器芯体,所述换热器芯体为根据权利要求1-11中任一项所述的换热器芯体,所述换热器芯体上的每个换热管的两端分别与所述两个集流管连通。
PCT/CN2018/103995 2017-09-29 2018-09-04 换热器芯体和具有其的空调器 WO2019062492A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201721274256.7 2017-09-29
CN201721274256.7U CN207280281U (zh) 2017-09-29 2017-09-29 换热器芯体和具有其的空调器
CN201710912412.6 2017-09-29
CN201710912412.6A CN109579594A (zh) 2017-09-29 2017-09-29 换热器芯体和具有其的空调器

Publications (1)

Publication Number Publication Date
WO2019062492A1 true WO2019062492A1 (zh) 2019-04-04

Family

ID=65900576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103995 WO2019062492A1 (zh) 2017-09-29 2018-09-04 换热器芯体和具有其的空调器

Country Status (1)

Country Link
WO (1) WO2019062492A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1188228A (zh) * 1996-12-30 1998-07-22 三星电子株式会社 热交换器的翅片
US20060196648A1 (en) * 2005-03-07 2006-09-07 Kim Myung-Sun Heat dissipating fin for use in heat exchanger
CN201122069Y (zh) * 2007-10-23 2008-09-24 陈正伦 散热片
CN106482567A (zh) * 2015-08-24 2017-03-08 江苏海德节能科技有限公司 异形双h型翅片管
CN207280281U (zh) * 2017-09-29 2018-04-27 杭州三花微通道换热器有限公司 换热器芯体和具有其的空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1188228A (zh) * 1996-12-30 1998-07-22 三星电子株式会社 热交换器的翅片
US20060196648A1 (en) * 2005-03-07 2006-09-07 Kim Myung-Sun Heat dissipating fin for use in heat exchanger
CN201122069Y (zh) * 2007-10-23 2008-09-24 陈正伦 散热片
CN106482567A (zh) * 2015-08-24 2017-03-08 江苏海德节能科技有限公司 异形双h型翅片管
CN207280281U (zh) * 2017-09-29 2018-04-27 杭州三花微通道换热器有限公司 换热器芯体和具有其的空调器

Similar Documents

Publication Publication Date Title
US20140027098A1 (en) Heat exchanger
US20110036550A1 (en) Fin and heat exchanger having the same
CN109737793B (zh) 一种用于空调换热器的仿生波浪型翅片
JP6011481B2 (ja) 熱交換器用フィン
JP5803768B2 (ja) 熱交換器用フィンおよび熱交換器
US20100263847A1 (en) Microchannel heat exchanger
WO2019218429A1 (zh) 换热器及换热设备
CN104937362B (zh) 热交换器
WO2017050237A1 (zh) 翅片和具有它的换热器
CN204806953U (zh) 带扰流片的换热管
CN109737792B (zh) 一种用于空调换热器的异形环管结构翅片
CN207280281U (zh) 换热器芯体和具有其的空调器
CN103256834A (zh) 椭圆管翅片式换热器及顶出风空调室外机
JP2009097805A5 (zh)
WO2019062492A1 (zh) 换热器芯体和具有其的空调器
CN207456255U (zh) 一种换热翅片及热交换器
WO2018041138A1 (zh) 翅片和具有该翅片的换热器
JP2001141383A (ja) 熱交換器
JP3957021B2 (ja) 熱交換器
CN203274549U (zh) 椭圆管翅片式换热器及顶出风空调室外机
CN101984310A (zh) 平行流蒸发器
CN109579594A (zh) 换热器芯体和具有其的空调器
WO2019205601A1 (zh) 一种换热器及空调器
CN218097370U (zh) 用于管翅式换热器的翅片及管翅式换热器
CN218349297U (zh) 翅片、换热器及空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860048

Country of ref document: EP

Kind code of ref document: A1