WO2019062371A1 - 确定同步信号块的时域位置的方法及装置 - Google Patents

确定同步信号块的时域位置的方法及装置 Download PDF

Info

Publication number
WO2019062371A1
WO2019062371A1 PCT/CN2018/100843 CN2018100843W WO2019062371A1 WO 2019062371 A1 WO2019062371 A1 WO 2019062371A1 CN 2018100843 W CN2018100843 W CN 2018100843W WO 2019062371 A1 WO2019062371 A1 WO 2019062371A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
index
ofdm symbol
signal block
time unit
Prior art date
Application number
PCT/CN2018/100843
Other languages
English (en)
French (fr)
Inventor
苗婷
刘星
毕峰
郝鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019062371A1 publication Critical patent/WO2019062371A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to the field of communications, and in particular to a method and apparatus for determining a time domain location of a sync signal block.
  • the transmitting end can concentrate the transmitting energy in a certain direction, and the energy is small or absent in other directions, that is, each beam has its own directivity, and each beam can only cover To a terminal in a certain direction, the transmitting end, that is, the base station needs to transmit a beam in dozens or even hundreds of directions to complete the full coverage.
  • the measurement and identification of the preliminary beam direction are performed during the initial access of the terminal to the network, and the base station side transmit beam is polled once in a time interval for the terminal to measure and identify the preferred beam or port.
  • SS/PBCH blocks synchronization signals/physical broadcast channel blocks
  • PBCH blocks synchronization signal blocks
  • the SS/PBCH block carries a specific beam/port (group) synchronization signal, and one synchronization signal transmission period completes one beam scanning, that is, all beam/port transmission is completed.
  • the SS/PBCH block may further include a physical broadcast channel PBCH, a demodulation reference signal corresponding to the PBCH, other control channels, and other signals such as a data channel.
  • an SS/PBCH block in the time domain is composed of four Orthogonal Frequency Division Multiplexing (OFDM) symbols, wherein a Primary Synchronous Signal (PSS) and a secondary signal are used.
  • the Synchronous Signal (SSS) occupies one OFDM symbol, and the PBCH occupies two OFDM symbols.
  • the frequency domain it consists of 24 consecutive Resource Blocks (RBs), where the synchronization signal SS maps.
  • RBs Resource Blocks
  • the PBCH is mapped to 24 RBs, and one of the RBs is composed of 12 subcarriers.
  • the bandwidth of the SS/PBCH block is 4.32/8.64 MHz, respectively.
  • the bandwidth of the SS/PBCH block is: 34.56/69.12 MHz.
  • the minimum channel bandwidth required for the subcarrier spacing 15/30/120/240 kHz is 5/10/50/100 MHz, respectively.
  • the minimum channel bandwidth of the carrier frequency above 6 GHz does not exceed 50 MHz, and the bandwidth of the PBCH needs to be reduced.
  • the bandwidth of the PBCH is reduced to half of the original, that is, the PBCH is also mapped as the SS. Up to 12 RBs.
  • the number of OFDM symbols occupied by the PBCH needs to be increased. Therefore, the number of OFDM symbols occupied by the SS/PBCH block is correspondingly increased, so the number of symbols to be designed needs to be designed.
  • the time domain location of more than 4 candidate SS/PBCH blocks can only design a time domain position of less than 5 candidate SS/PBCH blocks.
  • Embodiments of the present disclosure provide a method and apparatus for determining a time domain location of a synchronization signal block to at least solve the problem that the solution in the related art can only design a time domain location of less than five candidate SS/PBCH blocks.
  • a method of determining a time domain position of a sync signal block comprising: determining, in a first time unit of consecutive plurality of time units, each of one or more sync signal blocks An index of the first orthogonal frequency division multiplexing OFDM symbol in the synchronization signal block, wherein each synchronization signal block is composed of M OFDM symbols, and M is an integer greater than or equal to 5; according to each of the synchronization signal blocks The index of the first OFDM symbol in the first time unit, and the product number K of the OFDM symbol corresponding to the subcarrier spacing of the synchronization signal block in one time unit and the coefficient N are determined to start with the first time unit An index of the first OFDM symbol in each sync signal block in a plurality of consecutive time units; wherein N is a non-negative integer and K is a natural number.
  • apparatus for determining a time domain position of a sync signal block comprising: a first determining module configured to determine one or in a first time unit of consecutive plurality of time units An index of a first orthogonal frequency division multiplexing OFDM symbol in each of the plurality of synchronization signal blocks, wherein each synchronization signal block is composed of M OFDM symbols, and M is an integer greater than or equal to 5; a second determining module, configured to: according to the index of the first OFDM symbol in the first time unit in each synchronization signal block, and the number of OFDM symbols corresponding to the subcarrier spacing of the synchronization signal block in one time unit
  • the coefficient N product determines an index of the first OFDM symbol in each of the synchronization signal blocks in successive plurality of time units starting with the first time unit; wherein N is a non-negative integer and K is a natural number.
  • a storage medium including a stored program, wherein the program is executed to perform the above-described method of determining a time domain position of a sync signal block.
  • determining, in a first time unit of consecutive plurality of time units, a first orthogonal frequency division multiplexing OFDM symbol in each of the one or more synchronization signal blocks An index, wherein each sync signal block is composed of M OFDM symbols, M is an integer greater than or equal to 5; an index according to the first OFDM symbol in the first time unit in each of the sync signal blocks, and The product of the number of OFDM symbols K corresponding to the subcarrier spacing of the synchronization signal block in one time unit and the coefficient N is determined to determine the first OFDM in each synchronization signal block in consecutive plurality of time units starting with the first time unit
  • the index of the symbol; that is, the time domain position can be determined when the OFDM symbol is greater than or equal to 5 by the embodiment of the present disclosure, thereby solving the solution in the related art that only less than 5 candidate SS/PBCH blocks can be designed.
  • the problem of time domain location fills the gaps in related technologies.
  • FIG. 1 is a block diagram showing a hardware configuration of a base station of a method for determining a time domain position of a synchronization signal block according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a method of determining a time domain location of a sync signal block, in accordance with an embodiment of the present disclosure
  • 3 is a first time-domain position of a sync signal block with a subcarrier spacing of 15 kHz in a 1 millisecond time according to an embodiment of the present disclosure
  • FIG. 4 is a second time domain position diagram of a synchronization signal block with a subcarrier spacing of 15 kHz in a 1 millisecond time according to an embodiment of the present disclosure
  • FIG. 5 is a third schematic diagram of a time domain position of a sync signal block with a subcarrier spacing of 15 kHz in a 1 millisecond time according to an embodiment of the present disclosure
  • FIG. 6 is a first schematic diagram of a time domain position of a sync signal block with a subcarrier spacing of 30 kHz in a 1 millisecond time according to an embodiment of the present disclosure
  • FIG. 7 is a second schematic diagram of a time domain position of a subcarrier spacing of 30 kHz sync signal block in a 1 millisecond time according to an embodiment of the present disclosure
  • FIG. 8 is a third schematic diagram of a time domain position of a sub-carrier spacing of 30 kHz sync signal block in a 1 millisecond time according to an embodiment of the present disclosure
  • FIG. 9 is a first time-domain position diagram of a sync signal block with a subcarrier spacing of 120 kHz in a 0.25 millisecond time according to an embodiment of the present disclosure
  • FIG. 10 is a second time domain position diagram of a sync signal block with a subcarrier spacing of 120 kHz in a 0.25 millisecond time according to an embodiment of the present disclosure
  • FIG. 11 is a third schematic diagram of a time domain position of a sync signal block with a subcarrier spacing of 120 kHz in a 0.25 millisecond time according to an embodiment of the present disclosure
  • FIG. 12 is a first schematic diagram of a time domain position of a sync signal block with a subcarrier spacing of 240 kHz in a time period of 0.25 milliseconds according to an embodiment of the present disclosure
  • FIG. 13 is a second schematic diagram of a time domain position of a sync signal block with a subcarrier spacing of 240 kHz in a 0.25 millisecond time according to an embodiment of the present disclosure
  • FIG. 14 is a third schematic diagram of a time domain position of a sync signal block with a subcarrier spacing of 240 kHz in a time period of 0.25 milliseconds according to an embodiment of the present disclosure
  • 15 is a fourth schematic diagram of a time domain position of a sync signal block with a subcarrier spacing of 240 kHz in a 0.25 millisecond time, in accordance with an embodiment of the present disclosure
  • 16 is a schematic diagram of a time domain position of a synchronization signal block in one time slot in a case where a synchronization signal block is composed of six consecutive OFDM symbols, according to an embodiment of the present disclosure
  • 17 is a timing diagram of a time domain position of a synchronization signal block when PBCH and PSS/SSS are separated by different subcarriers within a synchronization signal block, according to an embodiment of the present disclosure
  • 18 is a first schematic diagram 1 of a mapping sequence of PSS, SSS, and PBCH to sync signal blocks according to an embodiment of the present disclosure
  • 19 is a second schematic diagram of a mapping sequence of PSS, SSS, and PBCH to sync signal blocks according to an embodiment of the present disclosure
  • 20 is a structural diagram of an apparatus for determining a time domain position of a sync signal block, according to an embodiment of the present disclosure.
  • FIG. 1 is a hardware structural block diagram of a base station of a method for determining a time domain position of a synchronization signal block according to an embodiment of the present disclosure.
  • mobile terminal 10 may include one or more (only one shown) processor 102 (processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA)
  • processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA)
  • a memory 104 for storing data
  • a transmission device 106 for communication functions.
  • the structure shown in FIG. 1 is merely illustrative and does not limit the structure of the above electronic device.
  • the mobile terminal 10 may also include more or fewer components than those shown in FIG. 1, or have a different configuration than that shown in FIG.
  • the memory 104 can be used to store software programs and modules of the application software, such as program instructions/modules corresponding to the method for determining the time domain position of the sync signal block in the embodiment of the present disclosure, and the processor 102 runs the software program stored in the memory 104. And the module, thereby performing various functional applications and data processing, that is, implementing the above method.
  • Memory 104 may include high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 104 may further include memory remotely located relative to processor 102, which may be connected to mobile terminal 10 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 106 is for receiving or transmitting data via a network.
  • the above specific network example may include a wireless network provided by a communication provider of the base station 10.
  • the synchronization signal block usually adopts a subcarrier spacing, and the subcarrier spacing of the carrier frequency below 6 GHz is 15 kHz or 30 kHz, and the subcarrier spacing of the carrier frequency above 6 GHz is 120 kHz or 240 kHz.
  • the maximum number of synchronization signal blocks in a synchronization signal transmission period is Y, that is, the number of candidate synchronization signal blocks in a synchronization signal transmission period is Y, Y is a natural number, and different carrier frequency ranges correspond to different Ys.
  • the carrier frequency Y below 3 GHz is 4, the carrier frequency Y of 3 GHz to 6 GHz is 8, and the carrier frequency Y of 6 GHz or higher is 64.
  • FIG. 2 is a flowchart of a method for determining a time domain position of a synchronization signal block according to an embodiment of the present disclosure, as shown in the figure. As shown in 2, the process includes the following steps:
  • Step S202 determining, in a first time unit of consecutive plurality of time units, an index of a first orthogonal frequency division multiplexing OFDM symbol in each of the one or more synchronization signal blocks, where Each sync signal block is composed of M OFDM symbols, and M is an integer greater than or equal to 5;
  • Step S204 according to the index of the first OFDM symbol in the first time unit in each synchronization signal block, and the number of OFDM symbols corresponding to the subcarrier spacing (SCS) of the synchronization signal block in one time unit.
  • K is multiplied by a coefficient N to determine an index of the first OFDM symbol in each synchronization signal block in consecutive plurality of time units starting with the first time unit; wherein N is a non-negative integer and K is a natural number;
  • execution body of the above steps may be a base station or the like, but is not limited thereto.
  • the manner of determining the index of the first OFDM symbol in each of the one or more synchronization signal blocks involved in step S202 in this embodiment may be implemented by: determining two synchronization signal blocks The index of the first OFDM symbol in the first synchronization signal block is 1, and the index of the first OFDM symbol in the second synchronization signal block is 8;
  • the index of the first OFDM symbol in the first time unit in each synchronization signal block and the number of OFDM symbols corresponding to the subcarrier spacing of the synchronization signal block in one time unit are involved in step S204 in this embodiment.
  • the manner of determining the index of the first OFDM symbol in each synchronization signal block in consecutive plurality of time units starting with the first time unit by the coefficient N product is determined by the following formula:
  • the time unit is 1 millisecond
  • the synchronization signal block may be composed of 5 consecutive OFDM symbols, and one time slot (one time slot corresponding to one time unit in this embodiment) is composed of 14 OFDM symbols.
  • the first few OFDM symbols of each slot are usually used to transmit downlink control information, and the last few OFDM symbols are usually used for the downlink to uplink transition guard band and the uplink control information, so the sync block needs to avoid these OFDM.
  • Symbols that is, resources that cannot occupy these symbols.
  • FIG. 3 is a schematic diagram of a time domain position of a sub-carrier interval of 15 kHz sync signal block in a 1 millisecond time according to an embodiment of the present disclosure, as shown in FIG.
  • the sync signal block is marked with two different shading marks, and the subsequent alternatives are also similarly labeled, and will not be described again.
  • the horizontal granularity of time is OFDM symbol level, that is, one cell represents one OFDM symbol, and the duration of the OFDM symbol is inversely scaled with the subcarrier spacing.
  • the uppermost digit of Figure 3 represents 15 kHz in 1 millisecond.
  • the OFDM symbol index corresponding to the subcarrier spacing.
  • the number of candidate synchronization signal blocks and the index of the first OFDM symbol of the candidate synchronization signal block in the semi-radio frame ie, 5 milliseconds
  • the semi-radio intra-frame candidate synchronization signal blocks are sequentially numbered in ascending order of time, and the number of candidate synchronization signal blocks having the number of candidate synchronization signal blocks is 4, which are 0, 1, 2, 3, and the number of candidate synchronization signal blocks is 8.
  • the numbers are 0, 1, ..., 7, in order.
  • This method can better support time division multiplexing and coexistence of a synchronization signal block with a subcarrier spacing of 15 kHz and a control channel with a subcarrier spacing of 30 kHz. If it is necessary to support time division multiplexing and coexistence of a synchronization signal block with a subcarrier spacing of 15 kHz and a control channel with a subcarrier spacing of 15 kHz, it is necessary to adjust an uplink control symbol with a subcarrier spacing of 15 kHz to a subcarrier spacing of greater than 15 kHz (eg, OFDM symbol of 30 kHz) to leave a GP (guard band) for downlink to uplink conversion.
  • GP guard band
  • the manner of determining the index of the first OFDM symbol in each of the one or more synchronization signal blocks involved in step S202 in this embodiment may be implemented by: determining the first of the two synchronization signal blocks The index of the first OFDM symbol in a synchronization signal block is 2, and the index of the first OFDM symbol in the second synchronization signal block is 7;
  • the index of the first OFDM symbol in the first time unit in each synchronization signal block and the number of OFDM symbols corresponding to the subcarrier spacing of the synchronization signal block in one time unit are related to step S202 in this embodiment.
  • the coefficient N product determines the manner in which the index of the first OFDM symbol in each sync signal block in successive plurality of time units starting with the first time unit is determined by the following formula:
  • the time unit is 1 millisecond
  • the optional implementation manner 2 may be:
  • the synchronization signal block is composed of 5 consecutive OFDM symbols.
  • FIG. 4 is a second time domain position diagram of a synchronization signal block with a subcarrier spacing of 15 kHz in 1 millisecond time according to an embodiment of the present disclosure, as shown in FIG. 4, in a semi-radio frame.
  • the number of candidate sync signal blocks and the index of the first OFDM symbol of the candidate sync block are:
  • the number of candidate sync signal blocks is 4; for a carrier frequency greater than 3 GHz and less than or equal to 6 GHz, the number of candidate sync signal blocks is 8; the number of candidate sync signal blocks in the half-radio frame is the same as above The same is true in the first embodiment.
  • This method can better support time division multiplexing and coexistence of a synchronization signal block with a subcarrier spacing of 15 kHz and a control channel with a subcarrier spacing of 15 kHz.
  • time division multiplexing and coexistence of a synchronization signal block having a subcarrier spacing of 15 kHz and a control channel having a subcarrier spacing of 30 kHz or 60 kHz cannot be supported.
  • the synchronization signal block includes 4 OFDM symbols with a subcarrier spacing of 15 kHz, wherein the second and fourth OFDM symbols are respectively split into two OFDM symbols with a subcarrier spacing of 30 kHz.
  • the method may be implemented as follows: determining two synchronization signal blocks The index of the first OFDM symbol in the first synchronization signal block is 2, and the index of the first OFDM symbol in the second synchronization signal block is 8;
  • the index according to the first OFDM symbol in each synchronization signal block in the first time unit, and the number of OFDM symbols K and the coefficient N corresponding to the subcarrier spacing 15 kHz in one time unit is determined by the following formula:
  • FIG. 5 is a third schematic diagram of a time domain position of a sync signal block with a subcarrier spacing of 15 kHz in a 1 millisecond time according to an embodiment of the present disclosure.
  • the time granularity in the horizontal direction is OFDM symbol level, that is, One cell represents one OFDM symbol, and the duration of the OFDM symbol is inversely scaled with the subcarrier spacing.
  • the uppermost digit of Figure 5 represents the OFDM symbol index corresponding to the subcarrier spacing of 15 kHz in 1 millisecond.
  • the number of candidate synchronization signal blocks and the index of the first OFDM symbol of the candidate synchronization signal block in the semi-radio frame ie, 5 milliseconds
  • the number of candidate sync signal blocks is 4; for a carrier frequency greater than 3 GHz and less than or equal to 6 GHz, the number of candidate sync signal blocks is 8; as in the above-described alternative embodiment 1
  • the semi-radio intra-frame candidate sync signal blocks are numbered sequentially in ascending order of time.
  • This method can better support time division multiplexing and coexistence of a synchronization signal block with a subcarrier spacing of 15 kHz and a control channel with a subcarrier spacing of 30 kHz.
  • the manner of determining the index of the first OFDM symbol in each of the one or more synchronization signal blocks involved in step S202 of this embodiment may be implemented by: determining four of the synchronization signal blocks
  • the index of the first OFDM symbol in the first synchronization signal block is 1, the index of the first OFDM symbol in the second synchronization signal block is 8, and the index of the first OFDM symbol in the third synchronization signal block is 15.
  • the index of the first OFDM symbol in the fourth synchronization signal block is 22;
  • the index of the first OFDM symbol in the first time unit in each synchronization signal block and the number of OFDM symbols corresponding to the subcarrier spacing of the synchronization signal block in one time unit are involved in step S204 in this embodiment.
  • the manner of determining the index of the first OFDM symbol in each synchronization signal block in consecutive plurality of time units starting with the first time unit by the coefficient N product is determined by the following formula:
  • the optional implementation manner may be:
  • the sync signal block is composed of 5 consecutive OFDM symbols, and one slot is composed of 14 OFDM symbols.
  • the first few OFDM symbols of each slot are usually used for transmitting downlink control information, and the last few OFDM symbols are usually used for downlink.
  • the protection band to the uplink conversion and the transmission of the uplink control information, so the synchronization signal block needs to avoid these OFDM symbols, that is, resources that cannot occupy these symbols.
  • the time domain position of the synchronization signal block with a subcarrier spacing of 30 kHz in 1 millisecond time is shown in FIG. 6, the semi-radio frame is shown in FIG. Within (ie, within 5 milliseconds), the number of candidate sync signal blocks and the index of the first OFDM symbol of the candidate sync block are:
  • the number of the semi-radio intra-frame candidate synchronization signal block is the same as that in the above-described optional embodiment 1.
  • This method can better support time division multiplexing and coexistence of a synchronization signal block with a subcarrier spacing of 30 kHz and a control channel with a subcarrier spacing of 60 kHz.
  • the manner of determining the index of the first OFDM symbol in each of the one or more synchronization signal blocks involved in step S202 in this embodiment may be implemented by: determining the first of the four synchronization signal blocks
  • the index of the first OFDM symbol in a synchronization signal block is 2, the index of the first OFDM symbol in the second synchronization signal block is 7, and the index of the first OFDM symbol in the third synchronization signal block is 16,
  • the index of the first OFDM symbol in the fourth synchronization signal block is 21;
  • the index of the first OFDM symbol in the first time unit in each synchronization signal block and the number of OFDM symbols corresponding to the subcarrier spacing of the synchronization signal block in one time unit involved in step S204 in this embodiment The product of K and the coefficient N determines the manner in which the index of the first OFDM symbol in each of the synchronization signal blocks in consecutive plurality of time units starting with the first time unit is determined by the following formula:
  • the synchronization signal block may be composed of 5 consecutive OFDM symbols.
  • FIG. 7 is a second schematic diagram of the time domain position of the subcarrier spacing of 30 kHz sync signal block in 1 millisecond time according to an embodiment of the present disclosure, and the synchronization signal block per millisecond according to FIG.
  • the time domain location, then within the semi-radio frame (ie, 5 milliseconds), the number of candidate sync signal blocks and the index of the first OFDM symbol of the candidate sync block are:
  • the semi-radio intra-frame candidate synchronization signal blocks are sequentially numbered in ascending order of time.
  • This method can better support time division multiplexing and coexistence of a synchronization signal block with a subcarrier spacing of 30 kHz and a control channel with a subcarrier spacing of 30 kHz.
  • the time division multiplexing and coexistence of the synchronization signal block with a subcarrier spacing of 30 kHz and the uplink control channel with a subcarrier spacing of 15 kHz are limited, and the subcarrier spacing used by the uplink control channel needs to be increased.
  • the manner of determining the index of the first OFDM symbol in each of the one or more synchronization signal blocks involved in step S202 in this embodiment may be implemented by: determining four of the synchronization signal blocks
  • the index of the first OFDM symbol in the first synchronization signal block is 4, the index of the first OFDM symbol in the second synchronization signal block is 9, and the index of the first OFDM symbol in the third synchronization signal block is 14
  • the index of the first OFDM symbol in the fourth synchronization signal block is 19;
  • the index of the first OFDM symbol in the first time unit in each synchronization signal block and the number of OFDM symbols corresponding to the subcarrier spacing of the synchronization signal block in one time unit are related to step S204 in this embodiment.
  • the coefficient N product determines the manner in which the index of the first OFDM symbol in each sync signal block in successive plurality of time units starting with the first time unit is determined by the following formula:
  • the synchronization signal block may be composed of 5 consecutive OFDM symbols.
  • FIG. 8 is a schematic diagram of a time domain position of a synchronization signal block with a subcarrier spacing of 30 kHz in a 1 millisecond time according to an embodiment of the present disclosure, and a synchronization signal block per millisecond according to FIG.
  • the time domain location, then within the semi-radio frame (ie, 5 milliseconds), the number of candidate sync signal blocks and the index of the first OFDM symbol of the candidate sync block are:
  • the number of the semi-radio intra-frame candidate synchronization signal block is the same as that in the above-described alternative embodiment 1.
  • This method can better support time division multiplexing and coexistence of a synchronization signal block with a subcarrier spacing of 30 kHz and a control channel with a subcarrier spacing of 15 kHz.
  • the time division multiplexing and coexistence of the synchronization signal block with the subcarrier spacing of 30 kHz and the control channel with the subcarrier spacing of 30 kHz are limited, and the partial control information with the subcarrier spacing of 30 kHz cannot coexist with the synchronization signal block with the subcarrier spacing of 30 kHz.
  • the manner of determining the index of the first OFDM symbol in each of the one or more synchronization signal blocks involved in step S202 involved in the embodiment may be implemented as follows: determining four synchronization signal blocks The index of the first OFDM symbol in the first synchronization signal block is 2, the index of the first OFDM symbol in the second synchronization signal block is 7, and the index of the first OFDM symbol in the third synchronization signal block 16, the index of the first OFDM symbol in the fourth synchronization signal block is 21;
  • the index of the first OFDM symbol in the first time unit in each synchronization signal block and the number of OFDM symbols corresponding to the subcarrier spacing of the synchronization signal block in one time unit are involved in step S204 in this embodiment.
  • the manner of determining the index of the first OFDM symbol in each synchronization signal block in consecutive plurality of time units starting with the first time unit by the coefficient N product is determined by the following formula:
  • the time unit is 0.25 milliseconds
  • K is 28, and for carrier frequencies greater than 6 GHz
  • N 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16 17,18.
  • the synchronization signal block may be composed of 5 consecutive OFDM symbols.
  • One slot is composed of 14 OFDM symbols, and the first few OFDM symbols of each slot are generally used for transmitting downlink control information, and the last few OFDM symbols are usually used for downlink to uplink conversion guard bands and transmitting uplink control information. Therefore, the sync signal block needs to avoid these OFDM symbols, that is, resources that cannot occupy these symbols.
  • the following is a detailed description of the time domain position of the synchronization signal block with a subcarrier spacing of 120 kHz in a time of 0.25 milliseconds according to an embodiment of the present disclosure, and the time granularity in the horizontal direction is OFDM symbol level. That is to say, one grid represents one OFDM symbol, and the uppermost digit of FIG. 9 represents an OFDM symbol index corresponding to a subcarrier spacing of 60 kHz in 0.25 milliseconds.
  • the time domain position of the sync signal block is used in the same mode as in FIG.
  • the number of candidate sync signal blocks and the index of the first OFDM symbol of the candidate sync block are:
  • n 0,1,2,3,5,6,7,8,10,11,12,13,15,16 , 17, 18.
  • the semi-radio intra-frame candidate synchronization signal blocks are sequentially numbered in ascending order of time, and the number of the synchronization signal blocks whose number of candidate synchronization signal blocks is 64 is 0, 1, 2, ..., 63 in order.
  • the design can better support time division multiplexing and coexistence of a synchronization signal block with a subcarrier spacing of 120 kHz and a control channel with a subcarrier spacing of 120 kHz.
  • the time division multiplexing and coexistence of the synchronization signal block with a subcarrier spacing of 120 kHz and the uplink control channel with a subcarrier spacing of 60 kHz are limited, and the subcarrier spacing used by the uplink control channel needs to be increased.
  • Determining, in step S202 of this embodiment, determining an index of the first OFDM symbol in each of the one or more synchronization signal blocks includes: determining the first one of the four synchronization signal blocks The index of the first OFDM symbol is 4, the index of the first OFDM symbol in the second synchronization signal block is 9, and the index of the first OFDM symbol in the third synchronization signal block is 14, the fourth synchronization signal block.
  • the index of the first OFDM symbol is 19;
  • the index according to the first OFDM symbol in the first time unit in each synchronization signal block and the number of OFDM symbols corresponding to the subcarrier spacing of the synchronization signal block in one time unit involved in step S204 of the embodiment The product of K and the coefficient N determines the manner in which the index of the first OFDM symbol in each of the synchronization signal blocks in consecutive plurality of time units starting with the first time unit is determined by the following formula:
  • the time unit is 0.25 milliseconds
  • K is 28, and for carrier frequencies greater than 6 GHz
  • N 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16 17,18.
  • the synchronization signal block may be composed of 5 consecutive OFDM symbols.
  • the synchronization signal is displayed every 0.25 milliseconds.
  • the time domain position of the block adopts the same mode as that of FIG. 10, and 0.25 milliseconds every 1 millisecond (ie, one time slot with a subcarrier spacing of 60 kHz) does not map the synchronization signal block to reduce the sync signal block beam scanning pair. The impact of data transmission.
  • the number of candidate sync signal blocks and the index of the first OFDM symbol of the candidate sync block are:
  • n 0,1,2,3,5,6,7,8,10,11,12,13,15,16 , 17, 18.
  • the semi-radio intra-frame candidate synchronization signal blocks are sequentially numbered in ascending order of time, and the number of the synchronization signal blocks whose number of candidate synchronization signal blocks is 64 is 0, 1, 2, ..., 63 in order.
  • This method can better support time division multiplexing and coexistence of a synchronization signal block with a subcarrier spacing of 120 kHz and a control channel with a subcarrier spacing of 60 kHz.
  • the synchronization signal block includes 4 OFDM symbols with a subcarrier spacing of 120 kHz, wherein the second and fourth OFDM symbols are respectively split into two OFDM symbols with a subcarrier spacing of 240 kHz.
  • the manner of determining the index of the first OFDM symbol in each of the one or more synchronization signal blocks involved in step S202 in this embodiment may be implemented by: determining four synchronizations.
  • the index of the first OFDM symbol in the first synchronization signal block in the signal block is 4, the index of the first OFDM symbol in the second synchronization signal block is 8, and the first OFDM symbol in the third synchronization signal block
  • the index of 16, the index of the first OFDM symbol in the fourth synchronization signal block is 20;
  • the index of the first OFDM symbol in the first time unit in each synchronization signal block and the number of OFDM symbols corresponding to the subcarrier spacing of the synchronization signal block in one time unit are involved in step S204 in this embodiment.
  • the manner of determining the index of the first OFDM symbol in each synchronization signal block in consecutive plurality of time units starting with the first time unit by the coefficient N product is determined by the following formula:
  • the time unit is 0.25 milliseconds
  • K is 28, and for carrier frequencies greater than 6 GHz
  • N 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16 17,18.
  • FIG. 11 is a third schematic diagram of a time domain position of a sync signal block with a subcarrier spacing of 120 kHz in a 0.25 millisecond time according to an embodiment of the present disclosure.
  • the time granularity in the horizontal direction is OFDM symbol level, that is, Let a cell represent an OFDM symbol, and the uppermost digit of Figure 11 represents the OFDM symbol index corresponding to the subcarrier spacing of 60 kHz in 0.25 milliseconds.
  • the time domain position of the sync signal block is used in the same mode as in FIG.
  • the number of candidate sync signal blocks and the index of the first OFDM symbol of the candidate sync block are:
  • n 0,1,2,3,5,6,7,8,10,11,12,13,15,16 , 17, 18.
  • the candidate synchronization signal blocks are sequentially numbered in ascending order in time in the semi-radio frame, and the number of the synchronization signal blocks having the number of candidate synchronization signal blocks of 64 is 0, 1, 2, ..., 63 in order.
  • This method can better support time division multiplexing and coexistence of a synchronization signal block with a subcarrier spacing of 120 kHz and a control channel with a subcarrier spacing of 60 kHz.
  • the manner of determining the index of the first OFDM symbol in each of the one or more synchronization signal blocks involved in step S202 of this embodiment may be implemented by determining the seven synchronization signal blocks.
  • the index of the first OFDM symbol in the first synchronization signal block is 4, the index of the first OFDM symbol in the second synchronization signal block is 9, and the index of the first OFDM symbol in the third synchronization signal block is 14
  • the index of the first OFDM symbol in the fourth synchronization signal block is 19, the index of the first OFDM symbol in the fifth synchronization signal block is 32, and the index of the first OFDM symbol in the sixth synchronization signal block is 37, the index of the first OFDM symbol in the seventh synchronization signal block is 42;
  • the index of the first OFDM symbol in the first time unit in each synchronization signal block and the number of OFDM symbols corresponding to the subcarrier spacing of the synchronization signal block in one time unit are involved in step S204 of this embodiment.
  • the manner of determining the index of the first OFDM symbol in each synchronization signal block in consecutive plurality of time units starting with the first time unit by the coefficient N product is determined by the following formula:
  • the index of the first OFDM symbol of the first 63 sync signal blocks is:
  • the index of the first OFDM symbol of the 64th sync signal block is ⁇ 620 ⁇ .
  • the following may be:
  • the sync signal block is composed of 5 consecutive OFDM symbols.
  • 12 is a first schematic diagram of a time domain position of a sync signal block with a subcarrier spacing of 240 kHz in a time period of 0.25 milliseconds according to an embodiment of the present disclosure. As shown in FIG. 12, the time domain position of the sync signal block is used and plotted every 0.25 milliseconds. 12 is the same mode, and there is 0.25 milliseconds every 1 millisecond (ie, one time slot with a subcarrier spacing of 60 kHz).
  • the synchronization signal block is not mapped to reduce the influence of the synchronization signal block beam scan on the data transmission.
  • the number of candidate sync signal blocks and the index of the first OFDM symbol of the candidate sync block are:
  • the index of the first OFDM symbol of the first 63 sync signal blocks is:
  • n 0, 1, 2, 3, 5, 6, 7, 8.
  • the index of the first OFDM symbol of the last sync signal block is ⁇ 620 ⁇ ;
  • the semi-radio intra-frame candidate synchronization signal blocks are sequentially numbered in ascending order of time, and the number of the synchronization signal blocks whose number of candidate synchronization signal blocks is 64 is 0, 1, 2, ..., 63 in order.
  • This method can better support time division multiplexing and coexistence of a synchronization signal block with a subcarrier spacing of 240 kHz and a control channel with a subcarrier spacing of 120 kHz.
  • the time division multiplexing and coexistence of the synchronization signal block with a subcarrier spacing of 240 kHz and the uplink control channel with a subcarrier spacing of 60 kHz are limited, and the subcarrier spacing used by the uplink control channel needs to be increased.
  • the manner of determining the index of the first OFDM symbol in each of the synchronization signal blocks in the one or more synchronization signal blocks in step S202 in this embodiment may be implemented by: determining the six synchronization signal blocks
  • the index of the first OFDM symbol in the first synchronization signal block is 8, the index of the first OFDM symbol in the second synchronization signal block is 13, and the index of the first OFDM symbol in the third synchronization signal block is 18
  • the index of the first OFDM symbol in the fourth synchronization signal block is 32, the index of the first OFDM symbol in the fifth synchronization signal block is 37, and the index of the first OFDM symbol in the sixth synchronization signal block is 42;
  • the step S202 in this embodiment relates to the index according to the first OFDM symbol in the first time unit in each synchronization signal block, and the number of OFDM symbols corresponding to the subcarrier spacing of the synchronization signal block in one time unit.
  • the manner of determining the index of the first OFDM symbol in each synchronization signal block in consecutive plurality of time units starting with the first time unit by the coefficient N product is determined by the following formula:
  • the index of the first OFDM symbol of the first 60 sync signal blocks is:
  • the index of the first OFDM symbol of the last four sync signal blocks is ⁇ 680, 685, 690, 704 ⁇ .
  • the following may be:
  • FIG. 13 is a schematic diagram 2 of the time domain position of the sync signal block with a subcarrier spacing of 240 kHz in a 0.25 millisecond time according to an embodiment of the present disclosure, as shown in FIG. 13, every 0.25 milliseconds.
  • the time domain position of the internal synchronization signal block adopts the same mode as that of FIG. 13, and 0.25 milliseconds every 1 millisecond (that is, one time slot with a subcarrier spacing of 60 kHz) does not map the synchronization signal block to reduce the synchronization signal block.
  • the number of candidate sync signal blocks and the index of the first OFDM symbol of the candidate sync block are:
  • the index of the first OFDM symbol of the first 60 sync signal blocks is:
  • the index of the first OFDM symbol of the last four sync signal blocks is ⁇ 680, 685, 690, 704 ⁇ .
  • the semi-radio intra-frame candidate synchronization signal blocks are sequentially numbered in ascending order of time, and the number of the synchronization signal blocks whose number of candidate synchronization signal blocks is 64 is 0, 1, 2, ..., 63 in order.
  • This method cannot support time division multiplexing and coexistence of a synchronization signal block with a subcarrier spacing of 240 kHz and a control channel with a subcarrier spacing of 60 kHz or 120 kHz.
  • the manner of determining the index of the first OFDM symbol in each of the one or more synchronization signal blocks involved in step S202 of this embodiment may be implemented by: determining eight of the synchronization signal blocks
  • the index of the first OFDM symbol in the first synchronization signal block is 4, the index of the first OFDM symbol in the second synchronization signal block is 9, and the index of the first OFDM symbol in the third synchronization signal block is 14
  • the index of the first OFDM symbol in the fourth synchronization signal block is 19, the index of the first OFDM symbol in the fifth synchronization signal block is 32, and the index of the first OFDM symbol in the sixth synchronization signal block is 37, the index of the first OFDM symbol in the seventh synchronization signal block is 42, the index of the first OFDM symbol in the eighth synchronization signal block is 47;
  • the index of the first OFDM symbol in the first time unit in each synchronization signal block and the number of OFDM symbols corresponding to the subcarrier spacing of the synchronization signal block in one time unit are involved in step S204 of this embodiment.
  • the manner of determining the index of the first OFDM symbol in each synchronization signal block in consecutive plurality of time units starting with the first time unit by the coefficient N product is determined by the following formula:
  • the following may be:
  • the sync signal block is composed of 5 consecutive OFDM symbols.
  • 14 is a third schematic diagram of a time domain position of a sync signal block with a subcarrier spacing of 240 kHz in a 0.25 millisecond time according to an embodiment of the present disclosure. As shown in FIG. 14, the time domain position of the sync signal block is used and plotted every 0.25 milliseconds. The same mode, and 0.25 milliseconds every 1 millisecond (i.e., a time slot with a subcarrier spacing of 60 kHz) does not map the sync signal block to reduce the impact of sync signal block beam scanning on data transmission.
  • the number of candidate sync signal blocks and the index of the first OFDM symbol of the candidate sync block are:
  • n 0, 1, 2, 3, 5, 6, 7, 8.
  • the semi-radio intra-frame candidate synchronization signal blocks are sequentially numbered in ascending order of time, and the number of the synchronization signal blocks whose number of candidate synchronization signal blocks is 64 is 0, 1, 2, ..., 63 in order.
  • This method can better support time division multiplexing and coexistence of a synchronization signal block with a subcarrier spacing of 240 kHz and a control channel with a subcarrier spacing of 120 kHz.
  • the time division multiplexing and coexistence of the synchronization signal block with a subcarrier spacing of 240 kHz and the uplink control channel with a subcarrier spacing of 60 kHz are limited, and the subcarrier spacing used by the uplink control channel needs to be increased.
  • the manner of determining the index of the first OFDM symbol in each of the one or more synchronization signal blocks involved in step S202 of this embodiment may be implemented by: determining eight of the synchronization signal blocks
  • the index of the first OFDM symbol in the first synchronization signal block is 8, the index of the first OFDM symbol in the second synchronization signal block is 13, and the index of the first OFDM symbol in the third synchronization signal block is 18
  • the index of the first OFDM symbol in the fourth synchronization signal block is 23, the index of the first OFDM symbol in the fifth synchronization signal block is 28, and the index of the first OFDM symbol in the sixth synchronization signal block is 33, the index of the first OFDM symbol in the seventh synchronization signal block is 38, and the index of the first OFDM symbol in the eighth synchronization signal block is 43;
  • the index of the first OFDM symbol in the first time unit in each synchronization signal block and the number of OFDM symbols corresponding to the subcarrier spacing of the synchronization signal block in one time unit are involved in step S204 of this embodiment.
  • the manner of determining the index of the first OFDM symbol in each synchronization signal block in consecutive plurality of time units starting with the first time unit by the coefficient N product is determined by the following formula:
  • the following may be:
  • the sync signal block is composed of 5 consecutive OFDM symbols.
  • FIG. 15 is a schematic diagram 4 of the time domain position of the sync signal block with a subcarrier spacing of 240 kHz in a 0.25 millisecond time according to an embodiment of the present disclosure, as shown in FIG. 15, every 0.25 milliseconds.
  • the time domain position of the internal synchronization signal block adopts the same mode as that of FIG. 11, and 0.25 milliseconds every 1 millisecond (that is, one time slot with a subcarrier spacing of 60 kHz) does not map the synchronization signal block to reduce the synchronization signal block.
  • the number of candidate sync signal blocks and the index of the first OFDM symbol of the candidate sync block are:
  • n 0, 1, 2, 3, 5, 6, 7, 8.
  • the semi-radio intra-frame candidate synchronization signal blocks are sequentially numbered in ascending order of time, and the number of the synchronization signal blocks whose number of candidate synchronization signal blocks is 64 is 0, 1, 2, ..., 63 in order.
  • This method cannot support time division multiplexing and coexistence of a synchronization signal block with a subcarrier spacing of 240 kHz and a control channel with a subcarrier spacing of 60 kHz or 120 kHz.
  • the subcarrier spacing of the synchronization signal block includes at least one of: 15 kHz, 30 kHz, 120 kHz, 240 kHz;
  • the manner of determining the index of the first OFDM symbol in each of the one or more synchronization signal blocks involved in step S202 of this embodiment may be implemented by: determining a number in a synchronization signal block
  • the index of the first OFDM symbol in a synchronization signal block is L, where L is an integer greater than or equal to 2 and less than or equal to 7;
  • the index of the first OFDM symbol in the first time unit in each synchronization signal block and the number of OFDM symbols corresponding to the subcarrier spacing of the synchronization signal block in one time unit are involved in step S204 of this embodiment.
  • the manner of determining the index of the first OFDM symbol in each synchronization signal block in consecutive plurality of time units starting with the first time unit by the coefficient N product is determined by the following formula:
  • K 14
  • n 0, 1, 2, 3
  • n 0, 1, 2, 3, 4, 5, 6 7, for a carrier frequency greater than 6 GHz
  • n 0, 1, ... 63;
  • the sub-carrier spacing is 15 kHz, 30 kHz, 120 kHz, and the 240 kHz sync signal block corresponds to a time unit of 1 millisecond, 1/2 millisecond, 1/8 millisecond, and 1/16 millisecond.
  • the sync signal block is composed of 6 consecutive OFDM symbols, and as long as the sync signal block occupies no more than 10 OFDM symbols, the transmission of control information having the same subcarrier spacing as the sync signal block can be better supported.
  • a synchronization signal block is mapped in one time slot (one time slot, that is, 14 OFDM symbols), and the synchronization signal block is mapped to other OFDM symbols in the time slot except for the uplink and downlink control channels and the guard band for downlink to uplink conversion.
  • 16 is a schematic diagram of a time domain position of a synchronization signal block in one time slot in a case where a synchronization signal block is composed of six or more consecutive OFDM symbols, as shown in FIG. 16 , in which a synchronization signal is generated, according to an embodiment of the present disclosure.
  • the block is composed of 6 consecutive OFDM symbols.
  • the downlink control channel occupies the first three OFDM symbols in one slot, the uplink control channel occupies the last and second OFDM symbols of the slot, and the GP occupies the third last of the slot. OFDM symbol. The remaining two OFDM symbols can be used to transmit other information, such as traffic data.
  • the index of the first OFDM symbol of the candidate sync block is:
  • the number of candidate sync signal blocks is 4; for a carrier frequency greater than 3 GHz and less than or equal to 6 GHz, the number of candidate sync signal blocks is 8; for carrier frequencies greater than 6 GHz, the number of candidate sync signal blocks is 64.
  • a radio intraframe candidate sync signal block is numbered sequentially in ascending order of time.
  • the signal or channel carried by the synchronization signal block includes at least one of the following: a primary synchronization signal (Primary synchronization signal, Referred to as PSS), Secondary Synchronization Signal (SSS), Physical Broadcast Channel (PBCH).
  • PSS Primary synchronization signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • FIG. 17 is a schematic diagram of a time domain position of a synchronization signal block when PBCH and PSS/SSS are separated by different subcarriers in a synchronization signal block according to an embodiment of the present disclosure
  • each of FIG. RBs contain 12 ⁇ f
  • ⁇ f is the subcarrier spacing of PSS/SSS
  • the subcarrier spacing of PBCH is twice the subcarrier spacing of the synchronization signal (ie 2 ⁇ f)
  • ie the OFDM symbol length of the PBCH is the OFDM symbol length of the synchronization signal.
  • PSS, SSS and PBCH are in the same sync signal block
  • the PSS is mapped onto one OFDM symbol
  • the SSS is mapped onto one OFDM symbol
  • the PBCH is mapped onto 3 OFDM symbols; among them, PSS, SSS, and PBCH are
  • the OFDM symbol number in the same sync signal block corresponds to at least one of the following:
  • the PSS is mapped onto one OFDM symbol
  • the SSS is mapped onto one OFDM symbol
  • the PBCH is mapped onto 4 OFDM symbols; among them, PSS, SSS, and PBCH are
  • the OFDM symbol number in the same sync signal block corresponds to at least one of the following:
  • Example 1 Structure of a sync signal block composed of 5 OFDM symbols.
  • a synchronization signal block includes 12 resource blocks (Resource Blocks, referred to as RBs), each RB includes 12 subcarriers; in the time domain, a primary synchronization signal (PSS) and a secondary synchronization signal (Secondary synchronization, SSS) each mapped to one OFDM symbol, and a Physical Broadcast Channel (PBCH) is mapped to 3 OFDM symbols.
  • FIG. 18 is a first schematic diagram of a mapping sequence of PSS, SSS, and PBCH to sync signal blocks according to an embodiment of the present disclosure. As shown in FIG. 18, the mapping order of PSS, SSS, and PBCH to sync signal blocks is as follows:
  • PBCH-PSS-PBCH-SSS-PBCH that is, the OFDM symbol numbers in the synchronization signal block in PSS, SSS, and PBCH are ⁇ 1 ⁇ , ⁇ 3 ⁇ , ⁇ 0, 2, 4 ⁇ , respectively.
  • PBCH-PSS-PBCH-PBCH-SSS that is, the OFDM symbol numbers in the synchronization signal block in PSS, SSS, and PBCH are ⁇ 1 ⁇ , ⁇ 4 ⁇ , ⁇ 0, 2, 3 ⁇ , respectively.
  • PSS-PBCH-PBCH-PBCH-SSS that is, the OFDM symbol numbers in the synchronization signal block in PSS, SSS, and PBCH are ⁇ 0 ⁇ , ⁇ 4 ⁇ , ⁇ 1, 2, 3 ⁇ , respectively.
  • PSS-PBCH-SSS-PBCH-PBCH that is, the OFDM symbol numbers in the synchronization signal block in PSS, SSS, and PBCH are ⁇ 0 ⁇ , ⁇ 2 ⁇ , ⁇ 1, 3, 4 ⁇ , respectively.
  • PSS-PBCH-PBCH-SSS-PBCH that is, the OFDM symbol numbers in the synchronization signal block in PSS, SSS, and PBCH are ⁇ 0 ⁇ , ⁇ 3 ⁇ , ⁇ 1, 2, 4 ⁇ , respectively.
  • PBCH-PBCH-PSS-PBCH-SSS that is, the OFDM symbol numbers in the synchronization signal block in PSS, SSS, and PBCH are ⁇ 2 ⁇ , ⁇ 4 ⁇ , ⁇ 0, 1, 3 ⁇ , respectively.
  • the time domain order of the OFDM symbols in which the PSS, SSS and PBCH are located in one synchronization signal block may also be any other combination.
  • Example 2 Structure of a sync signal block composed of 6 OFDM symbols.
  • one sync signal block contains 12 resource block RBs, each RB contains 12 subcarriers; in the time domain, PSS and SSS are each mapped to one OFDM symbol, and PBCH is mapped to 4 OFDM symbols.
  • 19 is a second schematic diagram of a mapping sequence of PSS, SSS, and PBCH to sync signal blocks according to an embodiment of the present disclosure. As shown in FIG. 19, the mapping order of PSS, SSS, and PBCH to sync signal blocks is as follows:
  • PBCH-PSS-PBCH-SSS-PBCH-PBCH that is, the OFDM symbol numbers in the synchronization signal block in PSS, SSS, and PBCH are ⁇ 1 ⁇ , ⁇ 3 ⁇ , ⁇ 0, 2, 4, 5 ⁇ , respectively.
  • PBCH-PSS-PBCH-PBCH-SSS-PBCH that is, the OFDM symbol numbers in the synchronization signal block in PSS, SSS, and PBCH are ⁇ 1 ⁇ , ⁇ 4 ⁇ , ⁇ 0, 2, 3, 5 ⁇ , respectively.
  • PBCH-PSS-PBCH-PBCH-PBCH-SSS that is, the OFDM symbol numbers in the synchronization signal block in PSS, SSS, and PBCH are ⁇ 1 ⁇ , ⁇ 5 ⁇ , ⁇ 0, 2, 3, 4 ⁇ , respectively.
  • PSS-PBCH-SSS-PBCH-PBCH-PBCH that is, the OFDM symbol numbers in the synchronization signal block in PSS, SSS, and PBCH are ⁇ 0 ⁇ , ⁇ 2 ⁇ , ⁇ 1, 3, 4, 5 ⁇ , respectively.
  • PSS-PBCH-PBCH-SSS-PBCH-PBCH that is, the OFDM symbol numbers in the synchronization signal block in PSS, SSS, and PBCH are ⁇ 0 ⁇ , ⁇ 3 ⁇ , ⁇ 1, 2, 4, 5 ⁇ , respectively.
  • PSS-PBCH-PBCH-PBCH-SSS-PBCH that is, the OFDM symbol numbers in the synchronization signal block in PSS, SSS, and PBCH are ⁇ 0 ⁇ , ⁇ 4 ⁇ , ⁇ 1, 2, 3, 5 ⁇ , respectively.
  • the time domain order of the OFDM symbols in which the PSS, SSS and PBCH are located in one synchronization signal block may also be any other combination.
  • the time domain order of the OFDM symbols in which the PSS, SSS and PBCH are located in one synchronization signal block may be any combination.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present disclosure which is essential or contributes to the related art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present disclosure.
  • a device for determining the time domain position of the synchronization signal block is further provided, and the device is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus includes: a first determining module 2002 for using a plurality of consecutive time units Determining, in a time unit, an index of a first orthogonal frequency division multiplexing OFDM symbol in each of the one or more synchronization signal blocks, wherein each synchronization signal block is composed of M OFDM symbols, M is an integer greater than or equal to 5; the second determining module 2004 is coupled with the first determining module 2002 for indexing according to the first OFDM symbol in the first time unit in each sync block, and one The product of the number of OFDM symbols K corresponding to the subcarrier spacing of the synchronization signal block in the time unit and the coefficient N determines the index of the first OFDM symbol in each synchronization signal block in consecutive time units starting with the first time unit. Where N is a non-negative integer and K is a natural number.
  • the first determining module is further configured to determine the first OFDM in the first synchronization signal block of the two synchronization signal blocks.
  • the index of the symbol is 1, and the index of the first OFDM symbol in the second synchronization signal block is 8; the second determining module is further configured to determine, by using the following formula, a plurality of consecutive times starting from the first time unit The index of the first OFDM symbol in each sync block in the unit:
  • the time unit is 1 millisecond
  • the first determining module is further configured to determine the first OFDM in the first synchronization signal block of the two synchronization signal blocks.
  • the index of the symbol is 2, and the index of the first OFDM symbol in the second synchronization signal block is 7;
  • the second determining module is further configured to determine a plurality of consecutive times starting with the first time unit by the following formula The index of the first OFDM symbol in each sync block in the unit:
  • the time unit is 1 millisecond
  • the synchronization signal block includes 4 OFDM symbols with a subcarrier spacing of 15 kHz, wherein the second and fourth OFDM symbols are respectively split into two OFDM symbols with a subcarrier spacing of 30 kHz, and the first determining module is further used for Determining that the index of the first OFDM symbol in the first synchronization signal block of the two synchronization signal blocks is 2, and the index of the first OFDM symbol in the second synchronization signal block is 8; the second determining module is further used for The index of the first OFDM symbol in each sync block in successive consecutive time units starting with the first time unit is determined by the following formula:
  • the first determining module is further configured to determine the first OFDM in the first synchronization signal block of the four synchronization signal blocks.
  • the index of the symbol is 1, the index of the first OFDM symbol in the second sync block is 8, the index of the first OFDM symbol in the third sync block is 15, and the first of the fourth sync block
  • the index of the OFDM symbol is 22;
  • the second determining module is further configured to determine, by using the following formula, an index of the first OFDM symbol in each synchronization signal block in consecutive multiple time units starting with the first time unit:
  • the first determining module is further configured to determine that the index of the first OFDM symbol in the first one of the four synchronization signal blocks is 2, and the second The index of the first OFDM symbol in the synchronization signal block is 7, the index of the first OFDM symbol in the third synchronization signal block is 16, and the index of the first OFDM symbol in the fourth synchronization signal block is 21;
  • the determining module is further configured to determine an index of the first OFDM symbol in each of the synchronization signal blocks in consecutive plurality of time units starting with the first time unit by using the following formula:
  • the first determining module is further configured to determine that an index of the first OFDM symbol in the first one of the four synchronization signal blocks is 4.
  • the index of the first OFDM symbol in the second synchronization signal block is 9, the index of the first OFDM symbol in the third synchronization signal block is 14, and the index of the first OFDM symbol in the fourth synchronization signal block.
  • a second determining module configured to determine, by using the following formula, an index of the first OFDM symbol in each synchronization signal block in consecutive multiple time units starting with the first time unit:
  • the first determining module is further configured to determine that an index of the first OFDM symbol in the first synchronization signal block of the four synchronization signal blocks is 2.
  • the index of the first OFDM symbol in the second synchronization signal block is 7, the index of the first OFDM symbol in the third synchronization signal block is 16, and the index of the first OFDM symbol in the fourth synchronization signal block.
  • a second determining module configured to determine, by using the following formula, an index of the first OFDM symbol in each synchronization signal block in consecutive multiple time units starting with the first time unit:
  • the time unit is 0.25 milliseconds
  • K is 28, and for carrier frequencies greater than 6 GHz
  • N 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16 17,18.
  • the first determining is further used to determine that the index of the first OFDM symbol in the first synchronization signal block of the four synchronization signal blocks is 4
  • the index of the first OFDM symbol in the second synchronization signal block is 9, the index of the first OFDM symbol in the third synchronization signal block is 14, and the index of the first OFDM symbol in the fourth synchronization signal block is a second determining module, configured to determine, by using the following formula, an index of a first OFDM symbol in each synchronization signal block in consecutive plurality of time units starting with the first time unit:
  • the time unit is 0.25 milliseconds
  • K is 28, and for carrier frequencies greater than 6 GHz
  • N 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16 17,18.
  • the synchronization signal block includes 4 OFDM symbols with a subcarrier spacing of 120 kHz, wherein the second and fourth OFDM symbols are respectively split into two OFDM symbols with a subcarrier spacing of 240 kHz, and the first determining module is configured to determine
  • the index of the first OFDM symbol in the first synchronization signal block of the four synchronization signal blocks is 4, the index of the first OFDM symbol in the second synchronization signal block is 8, and the first in the third synchronization signal block
  • the index of the OFDM symbol is 16, and the index of the first OFDM symbol in the fourth synchronization signal block is 20;
  • the second determining module is further configured to determine, by using the following formula, a continuous number starting from the first time unit
  • the index of the first OFDM symbol in each sync block in each time unit is
  • the time unit is 0.25 milliseconds
  • K is 28, and for carrier frequencies greater than 6 GHz
  • N 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16 17,18.
  • the first determining module is further configured to determine that an index of the first OFDM symbol in the first synchronization signal block of the seven synchronization signal blocks is 4.
  • the index of the first OFDM symbol in the second synchronization signal block is 9, the index of the first OFDM symbol in the third synchronization signal block is 14, and the index of the first OFDM symbol in the fourth synchronization signal block.
  • the index of the first OFDM symbol in the fifth synchronization signal block is 32
  • the index of the first OFDM symbol in the sixth synchronization signal block is 37
  • the first OFDM symbol in the seventh synchronization signal block The index is 42
  • the second determining module is further configured to determine, by using the following formula, an index of the first OFDM symbol in each synchronization signal block in consecutive multiple time units starting with the first time unit:
  • the index of the first OFDM symbol of the first 63 sync signal blocks is:
  • the index of the first OFDM symbol of the last sync block is ⁇ 620 ⁇ .
  • the first determining module is further configured to determine that an index of the first OFDM symbol in the first synchronization signal block of the six synchronization signal blocks is 8.
  • the index of the first OFDM symbol in the second synchronization signal block is 13
  • the index of the first OFDM symbol in the third synchronization signal block is 18, and the index of the first OFDM symbol in the fourth synchronization signal block.
  • the second determining module is further used to determine by the following formula The index of the first OFDM symbol in each sync block in successive multiple time units starting with the first time unit:
  • the index of the first OFDM symbol of the first 60 sync signal blocks is:
  • the index of the first OFDM symbol of the last 4 sync signal blocks is ⁇ 680, 685, 690, 704 ⁇ .
  • the first determining module is further configured to determine that an index of the first OFDM symbol in the first synchronization signal block of the eight synchronization signal blocks is 4.
  • the index of the first OFDM symbol in the second synchronization signal block is 9, the index of the first OFDM symbol in the third synchronization signal block is 14, and the index of the first OFDM symbol in the fourth synchronization signal block.
  • the second determining module is further configured to determine, by using the following formula, a plurality of consecutive time units starting with the first time unit The index of the first OFDM symbol in each sync block:
  • the first determining module is further configured to determine that an index of the first OFDM symbol in the first synchronization signal block of the eight synchronization signal blocks is 8.
  • the index of the first OFDM symbol in the second synchronization signal block is 13
  • the index of the first OFDM symbol in the third synchronization signal block is 18, and the index of the first OFDM symbol in the fourth synchronization signal block.
  • the second determining module is further configured to determine, by using the following formula, a plurality of consecutive time units starting with the first time unit The index of the first OFDM symbol in each sync block:
  • the subcarrier spacing of the synchronization signal block includes at least one of: 15 kHz, 30 kHz, 120 kHz, 240 kHz; the first determining module is further configured to determine a synchronization signal block.
  • the index of the first OFDM symbol in the first synchronization signal block is L, where L is an integer greater than or equal to 2 and less than or equal to 7; the second determining module is further configured to determine
  • the first time unit is an index of the first OFDM symbol in each sync block in a plurality of consecutive consecutive time units:
  • K 14
  • n 0, 1, 2, 3
  • n 0, 1, 2, 3, 4, 5, 6 7, for a carrier frequency greater than 6 GHz
  • n 0, 1, ... 63;
  • the sub-carrier spacing is 15 kHz, 30 kHz, 120 kHz, and the 240 kHz sync signal block corresponds to a time unit of 1 millisecond, 1/2 millisecond, 1/8 millisecond, and 1/16 millisecond.
  • all X sync signal blocks are numbered in ascending order of time: 0, 1, 2, ..., X-1, where X is a specific frequency of a synchronization signal transmission period
  • X is a natural number.
  • the signal or channel carried by the synchronization signal block includes at least one of the following: a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast channel PBCH.
  • the PSS is mapped onto one OFDM symbol
  • the SSS is mapped onto one OFDM symbol
  • the PBCH is mapped onto three OFDM symbols; wherein, PSS,
  • the OFDM symbol number of the SSS and the PBCH in the same synchronization signal block corresponds to at least one of the following:
  • the PSS is mapped onto one OFDM symbol
  • the SSS is mapped onto one OFDM symbol
  • the PBCH is mapped onto 4 OFDM symbols; among them, PSS, SSS, and PBCH are
  • the OFDM symbol number in the same sync signal block corresponds to at least one of the following:
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present disclosure also provide a storage medium including a stored program, wherein the program described above executes the method of any of the above.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • a time unit is an index of the first OFDM symbol in each sync signal block in a plurality of consecutive time units starting; wherein N is a non-negative integer.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • Embodiments of the present disclosure also provide a processor for running a program, wherein the program executes the steps of any of the above methods when executed.
  • the foregoing program is used to perform the following steps:
  • a time unit is an index of the first OFDM symbol in each sync signal block in a plurality of consecutive time units starting; wherein N is a non-negative integer.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
  • the present disclosure is applicable to the field of communications to at least solve the problem that the solution in the related art can only design a time domain location of less than 5 candidate SS/PBCH blocks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种确定同步信号块的时域位置的方法及装置,其中,该方法包括:在连续的多个时间单元的第一个时间单元中,确定一个或多个同步信号块中的每个同步信号块中第一个正交频分复用OFDM符号的索引;根据所述每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以所述第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引。通过本公开解决了相关技术中的方案只能设计出小于5个候选SS/PBCH block的时域位置的问题,填补了相关技术的空白。

Description

确定同步信号块的时域位置的方法及装置 技术领域
本公开涉及通信领域,具体而言,涉及一种确定同步信号块的时域位置的方法及装置。
背景技术
在未来无线通信中,将会采用比第四代(4G)通信系统所采用的载波频率更高的载波频率进行通信,比如28GHz、45GHz、70GHz等等,这种高频信道具有自由传播损耗较大,容易被氧气吸收,受雨衰影响大等缺点,严重影响了高频通信系统的覆盖性能。但是,由于高频通信对应的载波频率具有更短的波长,所以可以保证单位面积上能容纳更多的天线元素,而更多的天线元素意味着可以采用波束赋形的方法来提高天线增益,从而保证高频通信的覆盖性能。
采用波束赋形的方法后,发射端可以将发射能量集中在某一方向上,而在其它方向上能量很小或者没有,也就是说,每个波束具有自身的方向性,每个波束只能覆盖到一定方向上的终端,发射端即基站需要在几十个甚至上百个方向上发射波束才能完成全方位覆盖。相关技术中,倾向在终端初始接入网络的过程中进行初步波束方向的测量与识别,并集中在一个时间间隔内将基站侧发射波束轮询一遍,供终端测量识别优选的波束或端口。具体的,在一个同步信号发送周期内有多个同步信号(Synchronous Signal,简称为SS)/物理广播信道块(Physical Broadcast Channel block,简称为PBCH block),以后也简称为同步信号块,每个SS/PBCH block内承载特定波束/端口(组)的同步信号,一个同步信号发送周期完成一次波束扫描,即完成所有波束/端口的发送。其中,SS/PBCH block内还可以包含物理广播信道PBCH,PBCH对应的解调参考信号,其他控制信道,数据信道等其他信号。
相关技术中,在时域上一个SS/PBCH block由四个正交频分复用(Orthogonal Frequency Division Multiplexing,简称为OFDM)符号组成,其中主同步信号(Primary Synchronous Signal,简称为PSS)和辅同步信号(Secondary Synchronous Signal,简称为SSS)分别占用一个OFDM符号,PBCH占用2个OFDM符号,在频域上由24个连续的资源块(Resource Blocks,简称为RBs)组成,其中同步信号SS映射到中间的12RBs上,PBCH映射到24个RBs上,其中一个RB由12个子载波组成。这样对于6GHz以下载波频率,子载波间隔为15/30kHz时,SS/PBCH block的带宽分别为:4.32/8.64MHz。对于6GHz以上载波频率,子载波间隔为120/240kHz时,SS/PBCH block的带宽分别为:34.56/69.12MHz。
在相关技术的这种设计方式下,不同的子载波间隔对最小信道带宽的要求是不一样的,子载波间隔15/30/120/240kHz要求的最小信道带宽分别为5/10/50/100MHz,为了使6GHz以下载波频率的最小信道带宽不超过5MHz,6GHz以上载波频率的最小信道带宽不超过50MHz,需要降低PBCH的带宽,例如PBCH的带宽降为原来的一半,即PBCH也和SS一样映射到12个RBs上。这样,如果要保持PBCH有效负荷不变,且传输码率与原来近似, 则需要增加PBCH占用的OFDM符号数,因此SS/PBCH block占用的OFDM符号数也要相应的增加,因此需要设计符号数超过4个的候选SS/PBCH block的时域位置。然而在相关技术中的方案只能设计出小于5个候选SS/PBCH block的时域位置。
针对相关技术中的上述问题,目前尚未存在有效的解决方案。
发明内容
本公开实施例提供了一种确定同步信号块的时域位置的方法及装置,以至少解决相关技术中的方案只能设计出小于5个候选SS/PBCH block的时域位置的问题。
根据本公开的一个方面,提供了一种确定同步信号块的时域位置的方法,包括:在连续的多个时间单元的第一个时间单元中,确定一个或多个同步信号块中的每个同步信号块中第一个正交频分复用OFDM符号的索引,其中,每个同步信号块由M个OFDM符号组成,M为大于或等于5的整数;根据所述每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以所述第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引;其中,N为非负整数,K为自然数。
根据本公开的另一个方面,提供了一种确定同步信号块的时域位置的装置,包括:第一确定模块,设置为在连续的多个时间单元的第一个时间单元中,确定一个或多个同步信号块中的每个同步信号块中第一个正交频分复用OFDM符号的索引,其中,每个同步信号块由M个OFDM符号组成,M为大于或等于5的整数;第二确定模块,设置为根据所述每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以所述第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引;其中,N为非负整数,K为自然数。
根据本公开的又一个方面,提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述确定同步信号块的时域位置的方法。
在本公开实施例中,在连续的多个时间单元的第一个时间单元中,确定一个或多个同步信号块中的每个同步信号块中第一个正交频分复用OFDM符号的索引,其中,每个同步信号块由M个OFDM符号组成,M为大于或等于5的整数;根据所述每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以所述第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引;也就是说通过本公开实施例能够确定OFDM符号大于或等于5的情况下确定其时域位置,从而解决了相关技术中的方案只能设计出小于5个候选SS/PBCH block的时域位置的问题,填补了相关技术的空白。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示 意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是本公开实施例的确定同步信号块的时域位置的方法的基站的硬件结构框图;
图2是根据本公开实施例的确定同步信号块的时域位置的方法的流程图;
图3是根据本公开实施例的1毫秒时间内子载波间隔为15kHz同步信号块的时域位置示意图一;
图4是根据本公开实施例的1毫秒时间内子载波间隔为15kHz的同步信号块的时域位置示意图二;
图5是根据本公开实施例的1毫秒时间内的子载波间隔为15kHz的同步信号块的时域位置示意图三;
图6是根据本公开实施例的1毫秒时间内子载波间隔为30kHz的同步信号块的时域位置的示意图一;
图7是根据本公开实施例的1毫秒时间内子载波间隔为30kHz同步信号块的时域位置的示意图二;
图8是根据本公开实施例的1毫秒时间内子载波间隔为30kHz同步信号块的时域位置示意图三;
图9是根据本公开实施例的0.25毫秒时间内子载波间隔为120kHz的同步信号块的时域位置示意图一;
图10是根据本公开实施例的0.25毫秒时间内子载波间隔为120kHz的同步信号块的时域位置示意图二;
图11是根据本公开实施例的0.25毫秒时间内的子载波间隔为120kHz的同步信号块的时域位置的示意图三;
图12是根据本公开实施例的0.25毫秒时间内子载波间隔为240kHz的同步信号块的时域位置的示意图一;
图13是根据本公开实施例的0.25毫秒时间内子载波间隔为240kHz的同步信号块的时域位置的示意图二;
图14是根据本公开实施例的0.25毫秒时间内子载波间隔为240kHz的同步信号块的时域位置的示意图三;
图15是根据本公开实施例的0.25毫秒时间内子载波间隔为240kHz的同步信号块的时域位置的示意图四;
图16是根据本公开实施例的在同步信号块由大于等于6个连续的OFDM符号组成的情况下在一个时隙内同步信号块的时域位置的示意图;
图17是根据本公开实施例的在同步信号块内PBCH和PSS/SSS采用不同子载波间隔时同步信号块的时域位置示意图;
图18是根据本公开实施例的PSS、SSS和PBCH到同步信号块的映射顺序示意图一;
图19是根据本公开实施例的PSS、SSS和PBCH到同步信号块的映射顺序示意图二;
图20是根据本公开实施例的确定同步信号块的时域位置的装置的结构示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例一所提供的方法实施例可以在网络架构端或者类似的运算装置中执行。以运行在基站上为例,图1是本公开实施例的确定同步信号块的时域位置的方法的基站的硬件结构框图。如图1所示,移动终端10可以包括一个或多个(图中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器104、以及用于通信功能的传输装置106。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,移动终端10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储应用软件的软件程序以及模块,如本公开实施例中的确定同步信号块的时域位置的方法对应的程序指令/模块,处理器102通过运行存储在存储器104内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括基站10的通信供应商提供的无线网络。
需要说明的是,同步信号块通常采用一种子载波间隔,在6GHz以下载波频率子载波间隔为15kHz或者30kHz,在6GHz以上载波频率子载波间隔为120kHz或者240kHz。一个同步信号发送周期内同步信号块的最大数目为Y,即一个同步信号发送周期内候选同步信号块数目为Y,Y为自然数,不同载波频率范围对应不同的Y。具体地,3GHz以下载波频率Y为4,3GHz至6GHz载波频率Y为8,6GHz以上载波频率Y为64。
在本实施例中提供了一种运行于网络架构的确定同步信号块的时域位置的方法,图2是根据本公开实施例的确定同步信号块的时域位置的方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,在连续的多个时间单元的第一个时间单元中,确定一个或多个同步信号块中的每个同步信号块中第一个正交频分复用OFDM符号的索引,其中,每个同步信号块由M个OFDM符号组成,M为大于或等于5的整数;
步骤S204,根据每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔(Subcarrier spacing,简称为SCS)对应的OFDM 符号数量K与系数N乘积确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引;其中,N为非负整数,K为自然数;
通过上述步骤S202和步骤S204,能够确定OFDM符号大于或等于5的情况下确定其时域位置,从而解决了相关技术中的方案只能设计出小于5个候选SS/PBCH block的时域位置的问题,填补了相关技术的空白。
需要说明的是,上述步骤的执行主体可以为基站等,但不限于此。
下面结合本实施例的可选实施方式对上述步骤S202和步骤S204进行举例说明;
可选实施方式一
在M为5,且同步信号块的子载波间隔为15kHz的情况下,
本实施例中步骤S202中涉及到的确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引的方式可以通过如下方式来实现:确定两个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为1,第二个同步信号块中第一个OFDM符号的索引为8;
本实施例中步骤S204中涉及到的根据每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
{1,8}+K*N;
其中,时间单元为1毫秒,K为14,且对于小于等于3GHz的载波频率,N=0,1;对于大于3GHz小于等于6GHz的载波频率,N=0,1,2,3。
在具体应用场景中,对于可选实施方式一可以是:同步信号块由5个连续的OFDM符号组成,一个时隙(在该实施方式中一个时隙对应一个时间单元)由14个OFDM符号组成,每个时隙的开始几个OFDM符号通常用于传输下行控制信息,末尾的几个OFDM符号通常用于下行到上行转换的保护带以及传输上行控制信息,因此同步信号块需要避开这些OFDM符号,也就是不能占用这些符号的资源。
下面结合图3对该可选实施方式进行详细说明;图3是根据本公开实施例的1毫秒时间内子载波间隔为15kHz同步信号块的时域位置示意图一,如图3所示,相邻的同步信号块用两种不同底纹标记,后面是可选实施方式也是采用类似的标记,之后就不再赘述。水平方向的时间粒度是OFDM符号级的,也就是说一个格代表一个OFDM符号,且OFDM符号的持续时间随子载波间隔的成反比例缩放,图3最上方的数字表示在1毫秒时间内15kHz的子载波间隔对应的OFDM符号索引。
按照图3给出的每毫秒内同步信号块的时域位置,则在半无线帧内(即5毫秒时间内),候选同步信号块的数目以及候选同步信号块的第一个OFDM符号的索引为:
{1,8}+14*n,对于小于等于3GHz的载波频率,n=0,1;对于大于3GHz小于等于6GHz的载波频率,n=0,1,2,3。
其中,半无线帧内候选同步信号块按时间升序依次编号,候选同步信号块的数目为4的 候选同步信号块的编号依次为0,1,2,3,候选同步信号块的数目为8的编号依次为0,1,...,7。
该方式可以较好地支持子载波间隔为15kHz的同步信号块与子载波间隔为30kHz的控制信道的时分复用和共存。如果要支持子载波间隔为15kHz的同步信号块与子载波间隔为15kHz的控制信道的时分复用和共存,需要将子载波间隔为15kHz的一个上行控制符号调整为子载波间隔为大于15kHz(例如30kHz)的OFDM符号,以便留出下行到上行转换的GP(guard band)。
可选实施方式二
在本可选实施方式中,在M为5,且同步信号块的子载波间隔为15kHz的情况下,
本实施例步骤S202中涉及到的确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引的方式可以通过如下方式来实现:确定两个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为2,第二个同步信号块中第一个OFDM符号的索引为7;
本实施例步骤S202中涉及到的根据每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
{2,7}+K*N;
其中,时间单元为1毫秒,K为14,且对于小于等于3GHz的载波频率,N=0,1;对于大于3GHz小于等于6GHz的载波频率,N=0,1,2,3。
在具体应用场景中,对于可选实施方式二可以是:
同步信号块由5个连续的OFDM符号组成,图4是根据本公开实施例的1毫秒时间内子载波间隔为15kHz的同步信号块的时域位置示意图二,如图4所示,在半无线帧内(即5毫秒时间内),候选同步信号块的数目以及候选同步信号块的第一个OFDM符号的索引为:
{2,7}+14*n,对于小于等于3GHz的载波频率,n=0,1;对于大于3GHz小于等于6GHz的载波频率,n=0,1,2,3。
对于小于等于3GHz的载波频率,候选同步信号块的数目为4;对于大于3GHz小于等于6GHz的载波频率,候选同步信号块的数目为8;在半无线帧内候选同步信号块的编号与上述可选实施方式一中的相同。
该方式可以较好地支持子载波间隔为15kHz的同步信号块和子载波间隔为15kHz的控制信道的时分复用和共存。但不能支持子载波间隔为15kHz的同步信号块和子载波间隔为30kHz或60kHz的控制信道的时分复用和共存。
可选实施方式三
在该可选实施方式中,同步信号块包含子载波间隔为15kHz的4个OFDM符号,其中第二和第四个OFDM符号分别分裂为子载波间隔为30kHz的两个OFDM符号,
对于本实施例中步骤S202涉及到的确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引的方式,可以通过如下方式来实现:确定两个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为2,第二个同步信号块中第一个OFDM符号的索引为8;
对于本实施例中步骤S202涉及到的根据每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及与一个时间单元内子载波间隔15kHz对应的OFDM符号数量K与系数N乘积确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
{2,8}+K*N;
其中,时间单元为1毫秒,K为14,且对于小于等于3GHz的载波频率,N=0,1;以及M为4;对于大于3GHz小于等于6GHz的载波频率,N=0,1,2,3;以及M为8。
下面结合图5在具体的应用场景中对可选实施方式三进行详细说明;
图5是根据本公开实施例的1毫秒时间内的子载波间隔为15kHz的同步信号块的时域位置示意图三,如图5所示,水平方向的时间粒度是OFDM符号级的,也就是说一个格代表一个OFDM符号,且OFDM符号的持续时间随子载波间隔的成反比例缩放,图5最上方的数字表示在1毫秒时间内15kHz的子载波间隔对应的OFDM符号索引。
按照图5给出的每毫秒内同步信号块的时域位置,则在半无线帧内(即5毫秒时间内),候选同步信号块的数目以及候选同步信号块的第一个OFDM符号的索引为:
{2,8}+14*n,对于小于等于3GHz的载波频率,n=0,1;对于大于3GHz小于等于6GHz的载波频率,n=0,1,2,3。
对于小于等于3GHz的载波频率,候选同步信号块的数目为4;对于大于3GHz小于等于6GHz的载波频率,候选同步信号块的数目为8;与上述与上述可选实施方式一中的相同,在半无线帧内候选同步信号块按时间升序依次编号。
该方式可以较好地支持子载波间隔为15kHz的同步信号块与子载波间隔为30kHz的控制信道的时分复用和共存。
可选实施方式四
在本可选实施方式中,在M为5,且同步信号块的子载波间隔为30kHz的情况下,
本实施例的步骤S202中涉及到的确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引的方式可以通过如下方式来实现:确定四个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为1,第二个同步信号块中第一个OFDM符号的索引为8,第三个同步信号块中第一个OFDM符号的索引为15,第四个同步信号块中第一个OFDM符号的索引为22;
本实施例中步骤S204中涉及到的根据每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第 一个OFDM符号的索引的方式通过以下公式来确定包括:
{1,8,15,22}+K*N;
其中,时间单元为1毫秒,K为28,且对于小于等于3GHz的载波频率,N=0;对于大于3GHz小于等于6GHz的载波频率,N=0,1。
在本实施例的具体应用场景中,对于该可选实施方式可以是:
同步信号块由5个连续的OFDM符号组成,一个时隙由14个OFDM符号组成,每个时隙的开始几个OFDM符号通常用于传输下行控制信息,末尾的几个OFDM符号通常用于下行到上行转换的保护带以及传输上行控制信息,因此同步信号块需要避开这些OFDM符号,也就是不能占用这些符号的资源。
下面结合图6对其进行详细描述,图6是根据本公开实施例的1毫秒时间内子载波间隔为30kHz的同步信号块的时域位置的示意图一,如图6所示,则在半无线帧内(即5毫秒时间内),候选同步信号块的数目以及候选同步信号块的第一个OFDM符号的索引为:
{1,8,15,22}+28*n,对于小于等于3GHz的载波频率,n=0;对于大于3GHz小于等于6GHz的载波频率,n=0,1。
其中,半无线帧内候选同步信号块的编号与与上述可选实施方式一中的相同。
该方式可以较好地支持子载波间隔为30kHz的同步信号块和子载波间隔为60kHz的控制信道的时分复用和共存。
可选实施方式五
对于本可选实施方式在M为5,且子载波间隔为30kHz的情况下,
本实施例步骤S202中涉及到的确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引的方式可以通过如下方式来实现:确定四个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为2,第二个同步信号块中第一个OFDM符号的索引为7,第三个同步信号块中第一个OFDM符号的索引为16,第四个同步信号块中第一个OFDM符号的索引为21;
本实施例中的步骤S204中涉及到的根据每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
{2,7,16,21}+K*N;
其中,时间单元为1毫秒,K为28,且对于小于等于3GHz的载波频率,N=0;对于大于3GHz小于等于6GHz的载波频率,N=0,1。
对于本可选实施方式,在具体应用场景中可以是:同步信号块由5个连续的OFDM符号组成。
下面结合图7对其进行详细说明;图7是根据本公开实施例的1毫秒时间内子载波间隔为30kHz同步信号块的时域位置的示意图二,按照图7给出的每毫秒内同步信号块的时域位 置,则在半无线帧内(即5毫秒时间内),候选同步信号块的数目以及候选同步信号块的第一个OFDM符号的索引为:
{2,7,16,21}+28*n,对于小于等于3GHz的载波频率,n=0;对于大于3GHz小于等于6GHz的载波频率,n=0,1。
其中,半无线帧内候选同步信号块按时间升序依次编号。
该方式可以较好地支持子载波间隔为30kHz的同步信号块与子载波间隔为30kHz的控制信道的时分复用和共存。但是子载波间隔为30kHz的同步信号块与子载波间隔为15kHz的上行控制信道的时分复用和共存受限,需增加上行控制信道采用的子载波间隔。
可选实施方式六
在本可选实施方式中在M为5,且子载波间隔为30kHz的情况下,
本实施例中步骤S202中涉及到的确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引的方式可以通过如下方式来实现:确定四个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为4,第二个同步信号块中第一个OFDM符号的索引为9,第三个同步信号块中第一个OFDM符号的索引为14,第四个同步信号块中第一个OFDM符号的索引为19;
本实施例步骤S204中涉及到的根据每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
{4,9,14,19}+K*N;
其中,时间单元为1毫秒,K为28,且对于小于等于3GHz的载波频率,N=0;对于大于3GHz小于等于6GHz的载波频率,N=0,1。
对于本可选实施方式,在具体应用场景中可以是:,同步信号块由5个连续的OFDM符号组成。
下面结合图8对其进行详细的描述,图8是根据本公开实施例的1毫秒时间内子载波间隔为30kHz同步信号块的时域位置示意图三,按照图8给出的每毫秒内同步信号块的时域位置,则在半无线帧内(即5毫秒时间内),候选同步信号块的数目以及候选同步信号块的第一个OFDM符号的索引为:
{4,9,14,19}+28*n,对于小于等于3GHz的载波频率,n=0;对于大于3GHz小于等于6GHz的载波频率,n=0,1。
其中,半无线帧内候选同步信号块的编号与上述可选实施方式一中的相同。
该方式可以较好地支持子载波间隔为30kHz的同步信号块和子载波间隔为15kHz的控制信道的时分复用和共存。但是子载波间隔为30kHz的同步信号块和子载波间隔为30kHz的控制信道的时分复用和共存受限,子载波间隔为30kHz的部分控制信息无法与子载波间隔为30kHz的同步信号块共存。
可选实施方式七
对于本可选实施方式,在M为5,且子载波间隔为120kHz的情况下,
本实施例中涉及到的步骤S202中涉及到的确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引的方式可以如下方式来实现:确定四个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为2,第二个同步信号块中第一个OFDM符号的索引为7,第三个同步信号块中第一个OFDM符号的索引为16,第四个同步信号块中第一个OFDM符号的索引为21;
本实施例中步骤S204中涉及到的根据每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
{2,7,16,21}+K*N;
其中,时间单元为0.25毫秒,K为28,且对于大于6GHz的载波频率,N=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。
对于本可选实施方式,在具体应用场景中可以是:同步信号块由5个连续的OFDM符号组成。一个时隙由14个OFDM符号组成,每个时隙的开始几个OFDM符号通常用于传输下行控制信息,末尾的几个OFDM符号通常用于下行到上行转换的保护带以及传输上行控制信息,因此同步信号块需要避开这些OFDM符号,也就是不能占用这些符号的资源。
下面结合图9对其进行详细描述,图9是根据本公开实施例的0.25毫秒时间内子载波间隔为120kHz的同步信号块的时域位置示意图一,水平方向的时间粒度是OFDM符号级的,也就是说一个格代表一个OFDM符号,图9最上方的数字表示在0.25毫秒时间内60kHz的子载波间隔对应的OFDM符号索引。每0.25毫秒内同步信号块的时域位置都采用与图9相同的模式,且每隔1毫秒有0.25毫秒的时间(即子载波间隔为60kHz的一个时隙)不映射同步信号块,以减少同步信号块波束扫描对数据传输的影响。
因此,在半无线帧内(即5毫秒时间内),候选同步信号块的数目以及候选同步信号块的第一个OFDM符号的索引为:
{2,7,16,21}+28*n,对于大于6GHz的载波频率,n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。
其中,半无线帧内候选同步信号块按时间升序依次编号,候选同步信号块的数目为64的同步信号块的编号依次为0,1,2,...,63。
该设计可以较好地支持子载波间隔为120kHz的同步信号块与子载波间隔为120kHz的控制信道的时分复用和共存。但是子载波间隔为120kHz的同步信号块与子载波间隔为60kHz的上行控制信道的时分复用和共存受限,需增加上行控制信道采用的子载波间隔。
可选实施方式八
对于本可选实施方式,在M为5,且子载波间隔为120kHz的情况下,
本实施例的步骤S202中涉及到的确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引包括:确定四个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为4,第二个同步信号块中第一个OFDM符号的索引为9,第三个同步信号块中第一个OFDM符号的索引为14,第四个同步信号块中第一个OFDM符号的索引为19;
在本实施例的步骤S204中涉及到的根据每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
{4,9,14,19}+K*N;
其中,时间单元为0.25毫秒,K为28,且对于大于6GHz的载波频率,N=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。
对于本可选实施方式,在本实施例的具体应用场景中可以是:同步信号块由5个连续的OFDM符号组成。
下面结合图10对其进行详细描述,图10是根据本公开实施例的0.25毫秒时间内子载波间隔为120kHz的同步信号块的时域位置示意图二,如图10所示,每0.25毫秒内同步信号块的时域位置都采用与图10相同的模式,且每隔1毫秒有0.25毫秒的时间(即子载波间隔为60kHz的一个时隙)不映射同步信号块,以减少同步信号块波束扫描对数据传输的影响。
在半无线帧内(即5毫秒时间内),候选同步信号块的数目以及候选同步信号块的第一个OFDM符号的索引为:
{4,9,14,19}+28*n,对于大于6GHz的载波频率,n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。
其中,半无线帧内候选同步信号块按时间升序依次编号,候选同步信号块的数目为64的同步信号块的编号依次为0,1,2,...,63。
该方式可以较好地支持子载波间隔为120kHz的同步信号块与子载波间隔为60kHz的控制信道的时分复用和共存。
可选实施方式九
在本可选实施方式中,同步信号块包含子载波间隔为120kHz的4个OFDM符号,其中第二和第四个OFDM符号分别分裂为子载波间隔为240kHz的两个OFDM符号。
基于此,本实施例中步骤S202中涉及到的确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引的方式可以通过如下方式来实现包括:确定四个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为4,第二个同步信号块中第一个OFDM符号的索引为8,第三个同步信号块中第一个OFDM符号的索引为16,第四个同步信号块中第一个OFDM符号的索引为20;
本实施例中步骤S204中涉及到的根据每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K 与系数N乘积确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
{4,8,16,20}+K*N;
其中,时间单元为0.25毫秒,K为28,且对于大于6GHz的载波频率,N=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。
对于本可选实施方式,下面结合图11在本实施例的具体应用场景中对其进行详细说明;
图11是根据本公开实施例的0.25毫秒时间内的子载波间隔为120kHz的同步信号块的时域位置的示意图三,如图11所示,水平方向的时间粒度是OFDM符号级的,也就是说一个格代表一个OFDM符号,图11最上方的数字表示在0.25毫秒时间内60kHz的子载波间隔对应的OFDM符号索引。每0.25毫秒内同步信号块的时域位置都采用与图11相同的模式,且每隔1毫秒有0.25毫秒的时间(即子载波间隔为60kHz的一个时隙)不映射同步信号块,以减少同步信号块波束扫描对数据传输的影响。
在半无线帧内(即5毫秒时间内),候选同步信号块的数目以及候选同步信号块的第一个OFDM符号的索引为:
{4,8,16,20}+28*n,对于大于6GHz的载波频率,n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。
其中,在半无线帧内候选同步信号块按时间升序依次编号,候选同步信号块的数目为64的同步信号块的编号依次为0,1,2,...,63。
该方式可以较好地支持子载波间隔为120kHz的同步信号块与子载波间隔为60kHz的控制信道的时分复用和共存。
可选实施方式十
在本可选实施方式中,在M为5,且子载波间隔为240kHz的情况下,
本实施例的步骤S202中涉及到的确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引的方式可以通过如下方式来实现:确定七个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为4,第二个同步信号块中第一个OFDM符号的索引为9,第三个同步信号块中第一个OFDM符号的索引为14,第四个同步信号块中第一个OFDM符号的索引为19,第五个同步信号块中第一个OFDM符号的索引为32,第六个同步信号块中第一个OFDM符号的索引为37,第七个同步信号块中第一个OFDM符号的索引为42;
本实施例的步骤S204中涉及到的根据每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
前63个同步信号块的第一个OFDM符号的索引为:
{4,9,14,19,32,37,42}+K*N;其中,时间单元为0.25毫秒,K为56,且对于大于6GHz的载波频率,N=0,1,2,3,5,6,7,8,10;
第64个同步信号块的第一个OFDM符号的索引为{620}。
对于本可选实施方式,在本实施例的具体应用场景中可以是:
同步信号块由5个连续的OFDM符号组成。图12是根据本公开实施例的0.25毫秒时间内子载波间隔为240kHz的同步信号块的时域位置的示意图一,如图12所示,每0.25毫秒内同步信号块的时域位置都采用与图12相同的模式,且每隔1毫秒有0.25毫秒的时间(即子载波间隔为60kHz的一个时隙)不映射同步信号块,以减少同步信号块波束扫描对数据传输的影响。
在半无线帧内(即5毫秒时间内),候选同步信号块的数目以及候选同步信号块的第一个OFDM符号的索引为:
前63个同步信号块的第一个OFDM符号的索引为:
{4,9,14,19,32,37,42,47}+56*n,对于大于6GHz的载波频率,n=0,1,2,3,5,6,7,8。
最后一个同步信号块的第一个OFDM符号的索引为{620};
其中,半无线帧内候选同步信号块按时间升序依次编号,候选同步信号块的数目为64的同步信号块的编号依次为0,1,2,...,63。
该方式可以较好地支持子载波间隔为240kHz的同步信号块与子载波间隔为120kHz的控制信道的时分复用和共存。但是子载波间隔为240kHz的同步信号块与子载波间隔为60kHz的上行控制信道的时分复用和共存受限,需增加上行控制信道采用的子载波间隔。
可选实施方式十一
在本可选实施方式中,在M为5,且子载波间隔为240kHz的情况下,
本实施例中的步骤S202涉及到的确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引的方式可以通过如下方式来实现:确定六个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为8,第二个同步信号块中第一个OFDM符号的索引为13,第三个同步信号块中第一个OFDM符号的索引为18,第四个同步信号块中第一个OFDM符号的索引为32,第五个同步信号块中第一个OFDM符号的索引为37,第六个同步信号块中第一个OFDM符号的索引为42;
本实施例中的步骤S202涉及到的根据每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
前60个同步信号块的第一个OFDM符号的索引为:
{8,13,18,32,37,42}+K*N;其中,时间单元为0.25毫秒,K为56,且对于大于6GHz的载波频率,N=0,1,2,3,5,6,7,8,10,11;
最后四个同步信号块的第一个OFDM符号的索引为{680,685,690,704}。
对于本可选实施方式,在本实施例的具体应用场景中可以是:
同步信号块由5个连续的OFDM符号组成,图13是根据本公开实施例的0.25毫秒时间 内子载波间隔为240kHz的同步信号块的时域位置的示意图二,如图13所示,每0.25毫秒内同步信号块的时域位置都采用与图13相同的模式,且每隔1毫秒有0.25毫秒的时间(即子载波间隔为60kHz的一个时隙)不映射同步信号块,以减少同步信号块波束扫描对数据传输的影响。
在半无线帧内(即5毫秒时间内),候选同步信号块的数目以及候选同步信号块的第一个OFDM符号的索引为:
前60个同步信号块的第一个OFDM符号的索引为:
{8,13,18,32,37,42}+K*N;其中,时间单元为0.25毫秒,K为56,且对于大于6GHz的载波频率,N=0,1,2,3,5,6,7,8,10,11;
最后四个同步信号块的第一个OFDM符号的索引为{680,685,690,704}。
其中,半无线帧内候选同步信号块按时间升序依次编号,候选同步信号块的数目为64的同步信号块的编号依次为0,1,2,...,63。
该方式不能支持子载波间隔为240kHz的同步信号块与子载波间隔为60kHz或者120kHz的控制信道的时分复用和共存。
可选实施方式十二
对于本可选实施方式,在M为5,且子载波间隔为240kHz的情况下,
本实施例的步骤S202中涉及到的确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引的方式可以通过如下方式来实现:确定八个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为4,第二个同步信号块中第一个OFDM符号的索引为9,第三个同步信号块中第一个OFDM符号的索引为14,第四个同步信号块中第一个OFDM符号的索引为19,第五个同步信号块中第一个OFDM符号的索引为32,第六个同步信号块中第一个OFDM符号的索引为37,第七个同步信号块中第一个OFDM符号的索引为42,第八个同步信号块中第一个OFDM符号的索引为47;
本实施例的步骤S204中涉及到的根据每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
{4,9,14,19,32,37,42,47}+K*N;
其中,时间单元为0.25毫秒,K为56,且对于大于6GHz的载波频率,N=0,1,2,3,5,6,7,8。
对于本可选实施方式,在本实施例的具体应用场景中可以是:
同步信号块由5个连续的OFDM符号组成。图14是根据本公开实施例的0.25毫秒时间内子载波间隔为240kHz的同步信号块的时域位置的示意图三,如图14所示,每0.25毫秒内同步信号块的时域位置都采用与图14相同的模式,且每隔1毫秒有0.25毫秒的时间(即子载波间隔为60kHz的一个时隙)不映射同步信号块,以减少同步信号块波束扫描对数据传输的影响。
在半无线帧内(即5毫秒时间内),候选同步信号块的数目以及候选同步信号块的第一个OFDM符号的索引为:
{4,9,14,19,32,37,42,47}+56*n,对于大于6GHz的载波频率,n=0,1,2,3,5,6,7,8。
其中,半无线帧内候选同步信号块按时间升序依次编号,候选同步信号块的数目为64的同步信号块的编号依次为0,1,2,...,63。
该方式可以较好地支持子载波间隔为240kHz的同步信号块与子载波间隔为120kHz的控制信道的时分复用和共存。但是子载波间隔为240kHz的同步信号块与子载波间隔为60kHz的上行控制信道的时分复用和共存受限,需增加上行控制信道采用的子载波间隔。
可选实施方式十三
在本可选实施方式中,在M为5,且子载波间隔为240kHz的情况下,
本实施例的步骤S202中涉及到的确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引的方式可以通过如下方式来实现:确定八个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为8,第二个同步信号块中第一个OFDM符号的索引为13,第三个同步信号块中第一个OFDM符号的索引为18,第四个同步信号块中第一个OFDM符号的索引为23,第五个同步信号块中第一个OFDM符号的索引为28,第六个同步信号块中第一个OFDM符号的索引为33,第七个同步信号块中第一个OFDM符号的索引为38,第八个同步信号块中第一个OFDM符号的索引为43;
本实施例的步骤S204中涉及到的根据每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
{8,13,18,23,28,33,38,43}+K*N;
其中,时间单元为0.25毫秒,K为56,且对于大于6GHz的载波频率,N=0,1,2,3,5,6,7,8。
对于本可选实施方式,在本实施例的具体应用场景中可以是:
同步信号块由5个连续的OFDM符号组成,图15是根据本公开实施例的0.25毫秒时间内子载波间隔为240kHz的同步信号块的时域位置的示意图四,如图15所示,每0.25毫秒内同步信号块的时域位置都采用与图11相同的模式,且每隔1毫秒有0.25毫秒的时间(即子载波间隔为60kHz的一个时隙)不映射同步信号块,以减少同步信号块波束扫描对数据传输的影响。
在半无线帧内(即5毫秒时间内),候选同步信号块的数目以及候选同步信号块的第一个OFDM符号的索引为:
{8,13,18,23,28,33,38,43}+56*n,对于大于6GHz的载波频率,n=0,1,2,3,5,6,7,8。
其中,半无线帧内候选同步信号块按时间升序依次编号,候选同步信号块的数目为64的同步信号块的编号依次为0,1,2,...,63。
该方式不能支持子载波间隔为240kHz的同步信号块与子载波间隔为60kHz或者120kHz 的控制信道的时分复用和共存。
可选实施方式十四
在本可选实施方式中,在M为大于或等于6的整数,且同步信号块的子载波间隔包括以下至少之一:15kHz、30kHz、120kHz、240kHz;
本实施例的步骤S202中涉及到的确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引的方式可以通过如下方式来实现:确定一个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为L,其中,L的取值为大于等于2且小于等于7的整数;
本实施例的步骤S204中涉及到的根据每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
{L}+K*N;
其中,K为14,且对于小于等于3GHz的载波频率,n=0,1,2,3;对于大于3GHz小于等于6GHz的载波频率,n=0,1,2,3,4,5,6,7,对于大于6GHz的载波频率,n=0,1,...63;
其中,子载波间隔为15kHz,30kHz,120kHz,240kHz的同步信号块对应的时间单元分别为1毫秒,1/2毫秒,1/8毫秒,1/16毫秒。
对于本可选实施方式,下面以L为3为例在本实施例的具体应用场景中进行说明;
同步信号块由大于等于6个连续的OFDM符号组成,只要同步信号块所占的OFDM符号不超过10个,就能较好地支持与同步信号块具有相同子载波间隔的控制信息的传输。
一个时隙内(一个时隙即14个OFDM符号)映射一个同步信号块,同步信号块映射到时隙内除了上下行控制信道以及下行到上行转换的保护带之外的其它OFDM符号上。图16是根据本公开实施例的在同步信号块由大于等于6个连续的OFDM符号组成的情况下在一个时隙内同步信号块的时域位置的示意图,如图16所示,其中同步信号块由6个连续的OFDM符号组成,一个时隙内下行控制信道占用前三个OFDM符号,上行控制信道占用时隙的倒数第一和第二个OFDM符号,GP占用时隙的倒数第三个OFDM符号。剩余的两个OFDM符号可以用于传输其他信息,例如业务数据。
在一个无线帧内(即10毫秒时间内),候选同步信号块的第一个OFDM符号的索引为:
3+14*n,对于小于等于3GHz的载波频率,n=0,1,2,3;对于大于3GHz小于等于6GHz的载波频率,n=0,1,...,7。对于大于3GHz的载波频率,n=0,1,...,63。
对于小于等于3GHz的载波频率,候选同步信号块的数目为4;对于大于3GHz小于等于6GHz的载波频率,候选同步信号块的数目为8;对于大于6GHz的载波频率,候选同步信号块的数目为64。一个无线帧内候选同步信号块按时间升序依次编号。
基于上述可选实施方式一至十三中涉及到的同步信号块,在本实施例的可选实施方式中,同步信号块承载的信号或信道包括以下至少之一:主同步信号(Primary synchronization  signal,简称为PSS),辅同步信号(Secondary synchronization,简称为SSS),物理广播信道(Physical Broadcast Channel,简称为PBCH)。
在本实施例中,图17是根据本公开实施例的在同步信号块内PBCH和PSS/SSS采用不同子载波间隔时同步信号块的时域位置示意图,如图17所示,图17中每个RB包含12个Δf,Δf为PSS/SSS的子载波间隔,PBCH的子载波间隔是同步信号的子载波间隔两倍(即2Δf),即PBCH的OFDM符号长度是同步信号的OFDM符号长度的一半
PSS、SSS以及PBCH在同一个同步信号块内
在每个同步信号块中的OFDM符号数量为5的情况下,PSS映射到一个OFDM符号上,SSS映射到一个OFDM符号上,PBCH映射到3个OFDM符号上;其中,PSS、SSS以及PBCH在同一个同步信号块内的OFDM符号编号对应为以下至少之一:
{1},{3},{0,2,4};{1},{4},{0,2,3};{0},{4},{1,2,3};{0},{2},{1,3,4};{0},{3},{1,2,4};{2},{4},{0,1,3};
在每个同步信号块中的OFDM符号数量为6的情况下,PSS映射到一个OFDM符号上,SSS映射到一个OFDM符号上,PBCH映射到4个OFDM符号上;其中,PSS、SSS以及PBCH在同一个同步信号块内的OFDM符号编号对应为以下至少之一:
{1},{3},{0,2,4,5};{1},{4},{0,2,3,5};{1},{5},{0,2,3,4};{0},{2},{1,3,4,5};{0},{3},{1,2,4,5};{0},{4},{1,2,3,5}。
下面结合图18和图19对上述PSS,SSS,PBCH在同步信号块中的位置进行举例说明;
举例一:由5个OFDM符号组成的同步信号块的结构。在频域上,一个同步信号块包含12个资源块(Resource Block,简称为RB),每个RB包含12个子载波;在时域上,主同步信号(Primary synchronization signal,PSS)和辅同步信号(Secondary synchronization,SSS)各映射到一个OFDM符号,物理广播信道(Physical Broadcast Channel,PBCH)映射到3个OFDM符号。图18是根据本公开实施例的PSS、SSS和PBCH到同步信号块的映射顺序示意图一,如图18所示,PSS、SSS和PBCH到同步信号块的映射顺序为如下任意一种:
(a)PBCH-PSS-PBCH-SSS-PBCH,即在PSS、SSS以及PBCH在同步信号块内的OFDM符号编号分别为{1},{3},{0,2,4}
(b)PBCH-PSS-PBCH-PBCH-SSS,即在PSS、SSS以及PBCH在同步信号块内的OFDM符号编号分别为{1},{4},{0,2,3}
(c)PSS-PBCH-PBCH-PBCH-SSS,即在PSS、SSS以及PBCH在同步信号块内的OFDM符号编号分别为{0},{4},{1,2,3}
(d)PSS-PBCH-SSS-PBCH-PBCH,即在PSS、SSS以及PBCH在同步信号块内的OFDM符号编号分别为{0},{2},{1,3,4}
(e)PSS-PBCH-PBCH-SSS-PBCH,即在PSS、SSS以及PBCH在同步信号块内的OFDM符号编号分别为{0},{3},{1,2,4}
(f)PBCH-PBCH-PSS-PBCH-SSS,即在PSS、SSS以及PBCH在同步信号块内的OFDM符号编号分别为{2},{4},{0,1,3}
一个同步信号块内PSS,SSS以及PBCH所在的OFDM符号的时域顺序也可以是其他任意一种组合。
举例二:由6个OFDM符号组成的同步信号块的结构。在频域上,一个同步信号块包含12个资源块RBs,每个RB包含12个子载波;在时域上,PSS和SSS各映射到一个OFDM符号,PBCH映射到4个OFDM符号。图19是根据本公开实施例的PSS、SSS和PBCH到同步信号块的映射顺序示意图二,如图19所示,PSS、SSS和PBCH到同步信号块的映射顺序为如下任意一种:
(a)PBCH-PSS-PBCH-SSS-PBCH-PBCH,即在PSS、SSS以及PBCH在同步信号块内的OFDM符号编号分别为{1},{3},{0,2,4,5}
(b)PBCH-PSS-PBCH-PBCH-SSS-PBCH,即在PSS、SSS以及PBCH在同步信号块内的OFDM符号编号分别为{1},{4},{0,2,3,5}
(c)PBCH-PSS-PBCH-PBCH-PBCH-SSS,即在PSS、SSS以及PBCH在同步信号块内的OFDM符号编号分别为{1},{5},{0,2,3,4}
(d)PSS-PBCH-SSS-PBCH-PBCH-PBCH,即在PSS、SSS以及PBCH在同步信号块内的OFDM符号编号分别为{0},{2},{1,3,4,5}
(e)PSS-PBCH-PBCH-SSS-PBCH-PBCH,即在PSS、SSS以及PBCH在同步信号块内的OFDM符号编号分别为{0},{3},{1,2,4,5}
(f)PSS-PBCH-PBCH-PBCH-SSS-PBCH,即在PSS、SSS以及PBCH在同步信号块内的OFDM符号编号分别为{0},{4},{1,2,3,5}
一个同步信号块内PSS,SSS以及PBCH所在的OFDM符号的时域顺序也可以是其他任意一种组合。
当一个同步信号块内包含4个以上PBCH OFDM符号时,类似地,一个同步信号块内PSS,SSS以及PBCH所在OFDM符号的时域顺序也可以是任意一种组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
实施例2
在本实施例中还提供了一种确定同步信号块的时域位置的装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图20是根据本公开实施例的确定同步信号块的时域位置的装置的结构示意图,如图20 所示,该装置包括:第一确定模块2002,用于在连续的多个时间单元的第一个时间单元中,确定一个或多个同步信号块中的每个同步信号块中第一个正交频分复用OFDM符号的索引,其中,每个同步信号块由M个OFDM符号组成,M为大于或等于5的整数;第二确定模块2004,与第一确定模块2002耦合链接,用于根据每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引;其中,N为非负整数,K为自然数。
可选地,在M为5,且同步信号块的子载波间隔为15kHz的情况下,第一确定模块,还用于确定两个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为1,第二个同步信号块中第一个OFDM符号的索引为8;第二确定模块,还用于通过以下公式来确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引:
{1,8}+K*N;
其中,时间单元为1毫秒,K为14,且对于小于等于3GHz的载波频率,N=0,1;对于大于3GHz小于等于6GHz的载波频率,N=0,1,2,3。
可选地,在M为5,且同步信号块的子载波间隔为15kHz的情况下,第一确定模块还用于,确定两个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为2,第二个同步信号块中第一个OFDM符号的索引为7;第二确定模块,还用于通过以下公式来确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引:
{2,7}+K*N;
其中,时间单元为1毫秒,K为14,且对于小于等于3GHz的载波频率,N=0,1;对于大于3GHz小于等于6GHz的载波频率,N=0,1,2,3。
可选地,同步信号块包含子载波间隔为15kHz的4个OFDM符号,其中第二和第四个OFDM符号分别分裂为子载波间隔为30kHz的两个OFDM符号,第一确定模块,还用于确定两个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为2,第二个同步信号块中第一个OFDM符号的索引为8;第二确定模块,还用于通过以下公式来确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引:
{2,8}+K*N;
其中,时间单元为1毫秒,K为14,且对于小于等于3GHz的载波频率,N=0,1;以及M为4;对于大于3GHz小于等于6GHz的载波频率,N=0,1,2,3;以及M为8。
可选地,在M为5,且同步信号块的子载波间隔为30kHz的情况下,第一确定模块,还用于确定四个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为1,第二个同步信号块中第一个OFDM符号的索引为8,第三个同步信号块中第一个OFDM符号的索引为15,第四个同步信号块中第一个OFDM符号的索引为22;第二确定模块,还用于通过以下公式来确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一 个OFDM符号的索引:
{1,8,15,22}+K*N;
其中,时间单元为1毫秒,K为28,且对于小于等于3GHz的载波频率,N=0;对于大于3GHz小于等于6GHz的载波频率,N=0,1。
可选地,且子载波间隔为30kHz的情况下,第一确定模块,还用于确定四个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为2,第二个同步信号块中第一个OFDM符号的索引为7,第三个同步信号块中第一个OFDM符号的索引为16,第四个同步信号块中第一个OFDM符号的索引为21;第二确定模块,还用于通过以下公式来确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引:
{2,7,16,21}+K*N;
其中,时间单元为1毫秒,K为28,且对于小于等于3GHz的载波频率,N=0;对于大于3GHz小于等于6GHz的载波频率,N=0,1。
可选地,在M为5,且子载波间隔为30kHz的情况下,第一确定模块,还用于确定四个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为4,第二个同步信号块中第一个OFDM符号的索引为9,第三个同步信号块中第一个OFDM符号的索引为14,第四个同步信号块中第一个OFDM符号的索引为19;第二确定模块,还用于通过以下公式来确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引:
{4,9,14,19}+K*N;
其中,时间单元为1毫秒,K为28,且对于小于等于3GHz的载波频率,N=0;对于大于3GHz小于等于6GHz的载波频率,N=0,1。
可选地,在M为5,且子载波间隔为120kHz的情况下,第一确定模块,还用于确定四个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为2,第二个同步信号块中第一个OFDM符号的索引为7,第三个同步信号块中第一个OFDM符号的索引为16,第四个同步信号块中第一个OFDM符号的索引为21;第二确定模块,还用于通过以下公式来确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引:
{2,7,16,21}+K*N;
其中,时间单元为0.25毫秒,K为28,且对于大于6GHz的载波频率,N=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。
可选地,在M为5,且子载波间隔为120kHz的情况下,第一确定还用于,确定四个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为4,第二个同步信号块中第一个OFDM符号的索引为9,第三个同步信号块中第一个OFDM符号的索引为14,第四个同步信号块中第一个OFDM符号的索引为19;第二确定模块,还用于通过以下公式来确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引:
{4,9,14,19}+K*N;
其中,时间单元为0.25毫秒,K为28,且对于大于6GHz的载波频率,N=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。
可选地,同步信号块包含子载波间隔为120kHz的4个OFDM符号,其中第二和第四个OFDM符号分别分裂为子载波间隔为240kHz的两个OFDM符号,第一确定模块,用于确定四个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为4,第二个同步信号块中第一个OFDM符号的索引为8,第三个同步信号块中第一个OFDM符号的索引为16,第四个同步信号块中第一个OFDM符号的索引为20;第二确定模块,还用于通过以下公式来确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引:
{4,8,16,20}+K*N;
其中,时间单元为0.25毫秒,K为28,且对于大于6GHz的载波频率,N=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。
可选地,在M为5,且子载波间隔为240kHz的情况下,第一确定模块,还用于确定七个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为4,第二个同步信号块中第一个OFDM符号的索引为9,第三个同步信号块中第一个OFDM符号的索引为14,第四个同步信号块中第一个OFDM符号的索引为19,第五个同步信号块中第一个OFDM符号的索引为32,第六个同步信号块中第一个OFDM符号的索引为37,第七个同步信号块中第一个OFDM符号的索引为42;第二确定模块,还用于通过以下公式来确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引:
前63个同步信号块的第一个OFDM符号的索引为:
{4,9,14,19,32,37,42}+K*N;其中,时间单元为0.25毫秒,K为56,且对于大于6GHz的载波频率,N=0,1,2,3,5,6,7,8,10;
最后一个同步信号块的第一个OFDM符号的索引为{620}。
可选地,在M为5,且子载波间隔为240kHz的情况下,第一确定模块,还用于确定六个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为8,第二个同步信号块中第一个OFDM符号的索引为13,第三个同步信号块中第一个OFDM符号的索引为18,第四个同步信号块中第一个OFDM符号的索引为32,第五个同步信号块中第一个OFDM符号的索引为37,第六个同步信号块中第一个OFDM符号的索引为42;第二确定模块,还用于通过以下公式来确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引:
前60个同步信号块的第一个OFDM符号的索引为:
{8,13,18,32,37,42}+K*N;其中,时间单元为0.25毫秒,K为56,且对于大于6GHz的载波频率,N=0,1,2,3,5,6,7,8,10,11;
最后4个同步信号块的第一个OFDM符号的索引为{680,685,690,704}。
可选地,在M为5,且子载波间隔为240kHz的情况下,第一确定模块,还用于确定八 个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为4,第二个同步信号块中第一个OFDM符号的索引为9,第三个同步信号块中第一个OFDM符号的索引为14,第四个同步信号块中第一个OFDM符号的索引为19,第五个同步信号块中第一个OFDM符号的索引为32,第六个同步信号块中第一个OFDM符号的索引为37,第七个同步信号块中第一个OFDM符号的索引为42,第八个同步信号块中第一个OFDM符号的索引为47;第二确定模块,还用于通过以下公式来确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引:
{4,9,14,19,32,37,42,47}+K*N;
其中,时间单元为0.25毫秒,K为56,且对于大于6GHz的载波频率,N=0,1,2,3,5,6,7,8。
可选地,在M为5,且子载波间隔为240kHz的情况下,第一确定模块,还用于确定八个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为8,第二个同步信号块中第一个OFDM符号的索引为13,第三个同步信号块中第一个OFDM符号的索引为18,第四个同步信号块中第一个OFDM符号的索引为23,第五个同步信号块中第一个OFDM符号的索引为28,第六个同步信号块中第一个OFDM符号的索引为33,第七个同步信号块中第一个OFDM符号的索引为38,第八个同步信号块中第一个OFDM符号的索引为43;第二确定模块,还用于通过以下公式来确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引:
{8,13,18,23,28,33,38,43}+K*N;
其中,时间单元为0.25毫秒,K为56,且对于大于6GHz的载波频率,N=0,1,2,3,5,6,7,8。
可选地,在M为大于或等于6的整数,且同步信号块的子载波间隔包括以下至少之一:15kHz、30kHz、120kHz、240kHz;第一确定模块,还用于确定一个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为L,其中,L的取值为大于等于2且小于等于7的整数;第二确定模块,还用于通过以下公式来确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引:
{L}+K*N;
其中,K为14,且对于小于等于3GHz的载波频率,n=0,1,2,3;对于大于3GHz小于等于6GHz的载波频率,n=0,1,2,3,4,5,6,7,对于大于6GHz的载波频率,n=0,1,...63;
其中,子载波间隔为15kHz,30kHz,120kHz,240kHz的同步信号块对应的时间单元分别为1毫秒,1/2毫秒,1/8毫秒,1/16毫秒。
可选地,在连续多个时间单元内,所有X个同步信号块在按照时间升序编号为:0,1,2,...,X-1,其中X为一个同步信号发送周期内特定频率范围对应的最大同步信号块数目,X为自然数。
可选地,同步信号块承载的信号或信道包括以下至少之一:主同步信号PSS,辅同步信号SSS,物理广播信道PBCH。
可选地,在每个同步信号块中的OFDM符号数量为5的情况下,PSS映射到一个OFDM符号上,SSS映射到一个OFDM符号上,PBCH映射到3个OFDM符号上;其中,PSS、 SSS以及PBCH在同一个同步信号块内的OFDM符号编号对应为以下至少之一:
{1},{3},{0,2,4};{1},{4},{0,2,3};{0},{4},{1,2,3};{0},{2},{1,3,4};{0},{3},{1,2,4};{2},{4},{0,1,3};
在每个同步信号块中的OFDM符号数量为6的情况下,PSS映射到一个OFDM符号上,SSS映射到一个OFDM符号上,PBCH映射到4个OFDM符号上;其中,PSS、SSS以及PBCH在同一个同步信号块内的OFDM符号编号对应为以下至少之一:
{1},{3},{0,2,4,5};{1},{4},{0,2,3,5};{1},{5},{0,2,3,4};{0},{2},{1,3,4,5};{0},{3},{1,2,4,5};{0},{4},{1,2,3,5}。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本公开的实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一项所述的方法。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,在连续的多个时间单元的第一个时间单元中,确定一个或多个同步信号块中的每个同步信号块中第一个正交频分复用OFDM符号的索引,其中,每个同步信号块由M个OFDM符号组成,M为大于或等于5的整数;
S2,根据每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引;其中,N为非负整数。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本公开的实施例还提供了一种处理器,该处理器用于运行程序,其中,该程序运行时执行上述任一项方法中的步骤。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,在连续的多个时间单元的第一个时间单元中,确定一个或多个同步信号块中的每个同步信号块中第一个正交频分复用OFDM符号的索引,其中,每个同步信号块由M个OFDM符号组成,M为大于或等于5的整数;
S2,根据每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引;其中,N为非负整数。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开适用于通信领域,用以至少解决相关技术中的方案只能设计出小于5个候选SS/PBCH block的时域位置的问题。

Claims (22)

  1. 一种确定同步信号块的时域位置的方法,包括:
    在连续的多个时间单元的第一个时间单元中,确定一个或多个同步信号块中的每个同步信号块中第一个正交频分复用OFDM符号的索引,其中,每个同步信号块由M个OFDM符号组成,M为大于或等于5的整数;
    根据所述每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以所述第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引;其中,N为非负整数,K为自然数。
  2. 根据权利要求1所述的方法,其中,在M为5,且同步信号块的子载波间隔为15kHz的情况下,
    所述确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引包括:确定两个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为1,第二个同步信号块中第一个OFDM符号的索引为8;
    所述根据所述每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以所述第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
    {1,8}+K*N;
    其中,时间单元为1毫秒,K为14,且对于小于等于3GHz的载波频率,N=0,1;对于大于3GHz小于等于6GHz的载波频率,N=0,1,2,3。
  3. 根据权利要求1所述的方法,其中,在M为5,且同步信号块的子载波间隔为15kHz的情况下,
    所述确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引包括:确定两个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为2,第二个同步信号块中第一个OFDM符号的索引为7;
    所述根据所述每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以所述第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
    {2,7}+K*N;
    其中,时间单元为1毫秒,K为14,且对于小于等于3GHz的载波频率,N=0,1;对于大于3GHz小于等于6GHz的载波频率,N=0,1,2,3。
  4. 根据权利要求1所述的方法,其中,同步信号块包含子载波间隔为15kHz的4个OFDM符号,其中第二和第四个OFDM符号分别分裂为子载波间隔为30kHz的两个OFDM 符号,
    所述确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引包括:确定两个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为2,第二个同步信号块中第一个OFDM符号的索引为8;
    所述根据所述每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内子载波间隔15kHz对应的OFDM符号数量K与系数N乘积确定在以所述第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
    {2,8}+K*N;
    其中,时间单元为1毫秒,K为14,且对于小于等于3GHz的载波频率,N=0,1;以及M为4;对于大于3GHz小于等于6GHz的载波频率,N=0,1,2,3;以及M为8。
  5. 根据权利要求1所述的方法,其中,在M为5,且同步信号块的子载波间隔为30kHz的情况下,
    所述确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引包括:确定四个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为1,第二个同步信号块中第一个OFDM符号的索引为8,第三个同步信号块中第一个OFDM符号的索引为15,第四个同步信号块中第一个OFDM符号的索引为22;
    所述根据所述每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以所述第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
    {1,8,15,22}+K*N;
    其中,时间单元为1毫秒,K为28,且对于小于等于3GHz的载波频率,N=0;对于大于3GHz小于等于6GHz的载波频率,N=0,1。
  6. 根据权利要求1所述的方法,其中,在M为5,且子载波间隔为30kHz的情况下,
    所述确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引包括:确定四个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为2,第二个同步信号块中第一个OFDM符号的索引为7,第三个同步信号块中第一个OFDM符号的索引为16,第四个同步信号块中第一个OFDM符号的索引为21;
    所述根据所述每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以所述第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
    {2,7,16,21}+K*N;
    其中,时间单元为1毫秒,K为28,且对于小于等于3GHz的载波频率,N=0;对于 大于3GHz小于等于6GHz的载波频率,N=0,1。
  7. 根据权利要求1所述的方法,其中,在M为5,且子载波间隔为30kHz的情况下,
    所述确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引包括:确定四个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为4,第二个同步信号块中第一个OFDM符号的索引为9,第三个同步信号块中第一个OFDM符号的索引为14,第四个同步信号块中第一个OFDM符号的索引为19;
    所述根据所述每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以所述第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
    {4,9,14,19}+K*N;
    其中,时间单元为1毫秒,K为28,且对于小于等于3GHz的载波频率,N=0;对于大于3GHz小于等于6GHz的载波频率,N=0,1。
  8. 根据权利要求1所述的方法,其中,在M为5,且子载波间隔为120kHz的情况下,
    所述确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引包括:确定四个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为2,第二个同步信号块中第一个OFDM符号的索引为7,第三个同步信号块中第一个OFDM符号的索引为16,第四个同步信号块中第一个OFDM符号的索引为21;
    所述根据所述每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以所述第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
    {2,7,16,21}+K*N;
    其中,时间单元为0.25毫秒,K为28,且对于大于6GHz的载波频率,N=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。
  9. 根据权利要求1所述的方法,其中,在M为5,且子载波间隔为120kHz的情况下,
    所述确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引包括:确定四个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为4,第二个同步信号块中第一个OFDM符号的索引为9,第三个同步信号块中第一个OFDM符号的索引为14,第四个同步信号块中第一个OFDM符号的索引为19;
    所述根据所述每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以所述第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
    {4,9,14,19}+K*N;
    其中,时间单元为0.25毫秒,K为28,且对于大于6GHz的载波频率,N=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。
  10. 根据权利要求1所述的方法,其中,同步信号块包含子载波间隔为120kHz的4个OFDM符号,其中第二和第四个OFDM符号分别分裂为子载波间隔为240kHz的两个OFDM符号,
    所述确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引包括:确定四个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为4,第二个同步信号块中第一个OFDM符号的索引为8,第三个同步信号块中第一个OFDM符号的索引为16,第四个同步信号块中第一个OFDM符号的索引为20;
    所述根据所述每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以所述第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
    {4,8,16,20}+K*N;
    其中,时间单元为0.25毫秒,K为28,且对于大于6GHz的载波频率,N=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。
  11. 根据权利要求1所述的方法,其中,在M为5,且子载波间隔为240kHz的情况下,
    所述确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引包括:确定七个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为4,第二个同步信号块中第一个OFDM符号的索引为9,第三个同步信号块中第一个OFDM符号的索引为14,第四个同步信号块中第一个OFDM符号的索引为19,第五个同步信号块中第一个OFDM符号的索引为32,第六个同步信号块中第一个OFDM符号的索引为37,第七个同步信号块中第一个OFDM符号的索引为42;
    所述根据所述每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以所述第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
    前63个同步信号块的第一个OFDM符号的索引为:
    {4,9,14,19,32,37,42}+K*N;其中,时间单元为0.25毫秒,K为56,且对于大于6GHz的载波频率,N=0,1,2,3,5,6,7,8,10;
    最后一个同步信号块的第一个OFDM符号的索引为{620}。
  12. 根据权利要求1所述的方法,其中,在M为5,且子载波间隔为240kHz的情况下,
    所述确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引包括:确定六个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为8,第二个同步信号块中第一个OFDM符号的索引为13,第三个同步信号块中第一个OFDM符号的 索引为18,第四个同步信号块中第一个OFDM符号的索引为32,第五个同步信号块中第一个OFDM符号的索引为37,第六个同步信号块中第一个OFDM符号的索引为42;
    所述根据所述每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以所述第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
    前60个同步信号块的第一个OFDM符号的索引为
    {8,13,18,32,37,42}+K*N;其中,时间单元为0.25毫秒,K为56,且对于大于6GHz的载波频率,N=0,1,2,3,5,6,7,8,10,11;
    最后4个同步信号块的第一个OFDM符号的索引为{680,685,690,704}。
  13. 根据权利要求1所述的方法,其中,在M为5,且子载波间隔为240kHz的情况下,
    所述确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引包括:确定八个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为4,第二个同步信号块中第一个OFDM符号的索引为9,第三个同步信号块中第一个OFDM符号的索引为14,第四个同步信号块中第一个OFDM符号的索引为19,第五个同步信号块中第一个OFDM符号的索引为32,第六个同步信号块中第一个OFDM符号的索引为37,第七个同步信号块中第一个OFDM符号的索引为42,第八个同步信号块中第一个OFDM符号的索引为47;
    所述根据所述每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以所述第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
    {4,9,14,19,32,37,42,47}+K*N;
    其中,时间单元为0.25毫秒,K为56,且对于大于6GHz的载波频率,N=0,1,2,3,5,6,7,8。
  14. 根据权利要求1所述的方法,其中,在M为5,且子载波间隔为240kHz的情况下,
    所述确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引包括:确定八个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为8,第二个同步信号块中第一个OFDM符号的索引为13,第三个同步信号块中第一个OFDM符号的索引为18,第四个同步信号块中第一个OFDM符号的索引为23,第五个同步信号块中第一个OFDM符号的索引为28,第六个同步信号块中第一个OFDM符号的索引为33,第七个同步信号块中第一个OFDM符号的索引为38,第八个同步信号块中第一个OFDM符号的索引为43;
    所述根据所述每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以所述第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM 符号的索引的方式通过以下公式来确定包括:
    {8,13,18,23,28,33,38,43}+K*N;
    其中,时间单元为0.25毫秒,K为56,且对于大于6GHz的载波频率,N=0,1,2,3,5,6,7,8。
  15. 根据权利要求1所述的方法,其中,在M为大于或等于6的整数,且同步信号块的子载波间隔包括以下至少之一:15kHz、30kHz、120kHz、240kHz;
    所述确定一个或多个同步信号块中的每个同步信号块中第一个OFDM符号的索引包括:确定一个同步信号块中的第一个同步信号块中第一个OFDM符号的索引为L,其中,L的取值为大于等于2且小于等于7的整数;
    所述根据所述每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以所述第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引的方式通过以下公式来确定包括:
    {L}+K*N;
    其中,K为14,且对于小于等于3GHz的载波频率,n=0,1,2,3;对于大于3GHz小于等于6GHz的载波频率,n=0,1,2,3,4,5,6,7,对于大于6GHz的载波频率,n=0,1,...63;
    其中,子载波间隔为15kHz,30kHz,120kHz,240kHz的同步信号块对应的时间单元分别为1毫秒,1/2毫秒,1/8毫秒,1/16毫秒。
  16. 根据权利要求2至15任一项所述的方法,其中,
    在连续多个时间单元内,所有X个同步信号块在按照时间升序编号为:0,1,2,...,X-1,其中X为一个同步信号发送周期内特定频率范围对应的最大同步信号块数目,X为自然数。
  17. 根据权利要求1所述的方法,其中,所述同步信号块承载的信号或信道包括以下至少之一:主同步信号PSS,辅同步信号SSS,物理广播信道PBCH。
  18. 根据权利要求17所述的方法,其中,
    在每个同步信号块中的OFDM符号数量为5的情况下,所述PSS映射到一个OFDM符号上,SSS映射到一个OFDM符号上,PBCH映射到3个OFDM符号上;其中,所述PSS、所述SSS以及所述PBCH在同一个同步信号块内的OFDM符号编号对应为以下至少之一:
    {1},{3},{0,2,4};{1},{4},{0,2,3};{0},{4},{1,2,3};{0},{2},{1,3,4};{0},{3},{1,2,4};{2},{4},{0,1,3};
    在每个同步信号块中的OFDM符号数量为6的情况下,所述PSS映射到一个OFDM符号上,SSS映射到一个OFDM符号上,PBCH映射到4个OFDM符号上;其中,所述PSS、所述SSS以及所述PBCH在同一个同步信号块内的OFDM符号编号对应为以下至少之一:
    {1},{3},{0,2,4,5};{1},{4},{0,2,3,5};{1},{5},{0,2,3,4};{0},{2},{1,3,4,5}; {0},{3},{1,2,4,5};{0},{4},{1,2,3,5}。
  19. 一种确定同步信号块的时域位置的装置,包括:
    第一确定模块,设置为在连续的多个时间单元的第一个时间单元中,确定一个或多个同步信号块中的每个同步信号块中第一个正交频分复用OFDM符号的索引,其中,每个同步信号块由M个OFDM符号组成,M为大于或等于5的整数;
    第二确定模块,设置为根据所述每个同步信号块中第一个OFDM符号在第一个时间单元中的索引,以及一个时间单元内同步信号块的子载波间隔对应的OFDM符号数量K与系数N乘积确定在以所述第一个时间单元为开始的连续多个时间单元内每个同步信号块中第一个OFDM符号的索引;其中,N为非负整数,K为自然数。
  20. 根据权利要求19所述的装置,其中,所述同步信号块承载的信号或信道包括以下至少之一:主同步信号PSS,辅同步信号SSS,物理广播信道PBCH。
  21. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至18中任一项所述的方法。
  22. 一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至18中任一项所述的方法。
PCT/CN2018/100843 2017-09-29 2018-08-16 确定同步信号块的时域位置的方法及装置 WO2019062371A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710912086.9 2017-09-29
CN201710912086.9A CN109586873A (zh) 2017-09-29 2017-09-29 确定同步信号块的时域位置的方法及装置

Publications (1)

Publication Number Publication Date
WO2019062371A1 true WO2019062371A1 (zh) 2019-04-04

Family

ID=65900580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100843 WO2019062371A1 (zh) 2017-09-29 2018-08-16 确定同步信号块的时域位置的方法及装置

Country Status (2)

Country Link
CN (1) CN109586873A (zh)
WO (1) WO2019062371A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210345268A1 (en) * 2019-01-18 2021-11-04 Huawei Technologies Co., Ltd. Signal transmission method and related device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113812108B (zh) * 2019-05-16 2023-03-17 华为技术有限公司 一种时分双工通信方法和装置
CN110601809B (zh) * 2019-09-30 2021-04-02 北京紫光展锐通信技术有限公司 信息发送方法及装置、信息接收方法及装置
WO2021102859A1 (zh) * 2019-11-28 2021-06-03 华为技术有限公司 同步信号块指示方法及通信装置
CN114900883A (zh) * 2019-12-12 2022-08-12 展讯通信(上海)有限公司 候选同步信号块的处理方法及其装置
CN113965987B (zh) * 2020-07-20 2024-02-09 维沃移动通信有限公司 Ssb搜索信息确定方法、装置及通信设备
CN114499800A (zh) * 2020-11-13 2022-05-13 华为技术有限公司 信号传输的方法和通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101656701A (zh) * 2009-09-08 2010-02-24 清华大学 确定ofdm码元起始位置的方法及装置
CN103428143A (zh) * 2012-05-22 2013-12-04 普天信息技术研究院有限公司 一种同步信号发送方法
US20170005850A1 (en) * 2014-01-24 2017-01-05 Lg Electronics Inc. Method and apparatus for acquiring synchronization by device-to-device terminal in wireless communication system
WO2017111378A1 (ko) * 2015-12-24 2017-06-29 엘지전자 주식회사 무선 접속 시스템에서 주동기신호 송신 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101656701A (zh) * 2009-09-08 2010-02-24 清华大学 确定ofdm码元起始位置的方法及装置
CN103428143A (zh) * 2012-05-22 2013-12-04 普天信息技术研究院有限公司 一种同步信号发送方法
US20170005850A1 (en) * 2014-01-24 2017-01-05 Lg Electronics Inc. Method and apparatus for acquiring synchronization by device-to-device terminal in wireless communication system
WO2017111378A1 (ko) * 2015-12-24 2017-06-29 엘지전자 주식회사 무선 접속 시스템에서 주동기신호 송신 방법 및 장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210345268A1 (en) * 2019-01-18 2021-11-04 Huawei Technologies Co., Ltd. Signal transmission method and related device
EP3902218A4 (en) * 2019-01-18 2022-02-16 Huawei Technologies Co., Ltd. SIGNAL TRANSMISSION METHOD AND RELEVANT DEVICE
US11910336B2 (en) 2019-01-18 2024-02-20 Huawei Technologies Co., Ltd. Signal transmission method and related device

Also Published As

Publication number Publication date
CN109586873A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
WO2019062371A1 (zh) 确定同步信号块的时域位置的方法及装置
US11601932B2 (en) Information sending and receiving methods and devices
RU2749096C1 (ru) Способ, устройство, аппаратное устройство и носитель информации для указания и приема местоположения ресурса
WO2019096291A1 (zh) 信息发送、接收方法及装置
JP7027466B2 (ja) ランダムアクセス方法および装置
JP7198812B2 (ja) ランダムアクセス方法及び装置
US20190215788A1 (en) Methods and apparatuses for transmitting and receiving synchronization signal, and transmission system
US20190254026A1 (en) Information transmission method and device based on sweeping block
CN111464274B (zh) 一种通信方法及装置
US11974257B2 (en) Time domain resource allocation method and apparatus
US20220256487A1 (en) Rate matching indication method and apparatus, and device and storage medium
KR20190060800A (ko) 협대역, 저 복잡도의 수신기들을 위한 물리적으로 분리된 채널들
CN110035028A (zh) 基于非授权频谱的同步信号传输方法、装置和存储介质
WO2020032645A1 (ko) 무선통신 시스템에서 동기화 신호 블록 지시 방법 및 장치
KR20120006573A (ko) 무선 로컬 영역 네트워크들에서 동기 멀티-채널 전송들
CN110537386B (zh) 同步广播块的发送方法、接收方法、装置、设备及介质
CN117546568A (zh) 用于通信的方法、设备和计算机存储介质
CN107889262B (zh) 一种信号发送、接收方法及装置
JP2021521669A (ja) クリアチャネルのリスニング方法、装置及び機器
CN113993089A (zh) 一种广播数据传输的方法和装置及设备
CN117997490A (zh) 上行定位参考信号的发送方法、装置、终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18861901

Country of ref document: EP

Kind code of ref document: A1