WO2019062248A1 - 光学系统 - Google Patents

光学系统 Download PDF

Info

Publication number
WO2019062248A1
WO2019062248A1 PCT/CN2018/094224 CN2018094224W WO2019062248A1 WO 2019062248 A1 WO2019062248 A1 WO 2019062248A1 CN 2018094224 W CN2018094224 W CN 2018094224W WO 2019062248 A1 WO2019062248 A1 WO 2019062248A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
modulator
controller
information
spatial light
Prior art date
Application number
PCT/CN2018/094224
Other languages
English (en)
French (fr)
Inventor
谈顺毅
Original Assignee
江苏慧光电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏慧光电子科技有限公司 filed Critical 江苏慧光电子科技有限公司
Publication of WO2019062248A1 publication Critical patent/WO2019062248A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • the present invention relates to an optical system, and more particularly to an optical system that can perform high quality imaging at different imaging distances.
  • Spatial Light Modulator which is often abbreviated as SLM in the literature.
  • SLM Spatial Light Modulator
  • an electronic spatial light modulator refers to some or some characteristics (such as phase,) of a light wave under the control of a signal source signal (control signal).
  • a one- or two-dimensional distribution of amplitude or intensity, frequency, polarization, etc. spatially or temporally transforms or modulates, thereby writing information carried by the source signal into the device of the optical wave.
  • the control signal may be an optical signal or an electrical signal.
  • a spatial light modulator contains a number of individual units that are spatially arranged in a one- or two-dimensional array. Each unit can independently control optical signals or electrical signals, using various physical effects (Pockels effect, Kerr effect, acousto-optic effect, magneto-optic effect, self-electrooptic effect of semiconductor, photorefractive effect) Etc.) altering its optical properties to modulate the light waves on which it is illuminated.
  • Pockels effect, Kerr effect, acousto-optic effect, magneto-optic effect, self-electrooptic effect of semiconductor, photorefractive effect) Etc. altering its optical properties to modulate the light waves on which it is illuminated.
  • the spatial light modulator is susceptible to signal loss or coding errors. Therefore, it is very difficult to achieve high quality imaging with a spatial light modulator. It is therefore necessary to provide an optical system that can simultaneously restore the amplitude and phase of the light field with high quality.
  • the first spatial light modulator and the second spatial light modulator modulate the incident light and output the modulated incident light as an output light output from the output of the first spatial light modulator and the second spatial light modulator Light rays are superimposed on each other to form a target light field.
  • an optical device provided by the present invention further includes a first lens system disposed between the light source and the splitter/combiner, the first lens system being adapted to modulate from The incident light of the light source is input to the splitter/combiner after modulation.
  • an optical device provided by the present invention further includes a waveguide device having a first end and a second end, the first end being disposed at an output position of the splitter/combiner and adapted Receiving output light from the sub/combiner;
  • the waveguide device transmits the output light and outputs the output light at the second end to form a target light field.
  • the waveguide device amplifies the field of view and/or expands the pupil of the target light field.
  • an optical device provided by the present invention further includes a grating device that amplifies the field of view and/or expands the pupil of the target light field.
  • an optical device provided by the present invention further includes a filter device that filters the output light output from the first spatial light modulator and the second spatial light modulator;
  • the filter is such that at least a portion of the output ray having a predetermined angle of light is impermeable to the filter.
  • an optical device provided by the present invention further includes a controller that generates a first control phase And second control phase And according to the first control phase And second control phase A phase distribution of the first spatial light modulator and the second spatial light modulator is controlled.
  • the controller takes the formula Calculate the first control phase And second control phase
  • the controller is based on the formula Calculating a first control phase of the first spatial light modulator And the second spatial phase of the second spatial light modulator
  • the controller is based on the first control phase And the second control phase A phase distribution of the first spatial light modulator and the second spatial light modulator is controlled.
  • the input signal further includes the target phase information
  • the controller reads the intensity information and the target phase information Obtaining the input light field distribution information
  • the controller generates the target phase information according to the amplitude distribution information A xy and/or the feature information B
  • the controller generates the target phase information based on the feature information B using a Zernike polynomial or a Seidel polynomial.
  • the controller is based on the input light field distribution information
  • the intensity of light incident on the first modulator on the surface of the first modulator is the intensity of the first modulator
  • the phase of the first modulator surface light wave is the first modulator phase
  • a phase of the second modulator surface light wave that is, a second modulator phase
  • the controller controls the first control phase And the second control phase Discretization, controlling the phase distribution of the first spatial light modulator and the second spatial light modulator according to the discretized ⁇ 1 xy and ⁇ 2 xy .
  • the controller obtains a maximum value A max of the amplitude distribution information A xy according to the input signal;
  • the controller is based on the formula Calculate the first control phase And second control phase
  • the controller is based on the normalized amplitude information
  • the first modulator phase The second modulator phase Formula Calculate the first control phase Formula Calculating the second control phase
  • the controller obtains an error in the optical device
  • the controller is based on the compensated first control phase And the second control phase A phase distribution of the first spatial light modulator and the second spatial light modulator is controlled.
  • the controller controls the first control phase And the second control phase Perform a translation operation
  • the controller is based on the first control phase after the translation operation And the second control phase A phase distribution of the first spatial light modulator and the second spatial light modulator is controlled.
  • the controller controls the first control phase And the second control phase Perform optical path compensation
  • the controller determines the light intensity of the first modulator obtained The first modulator phase The second modulator light intensity And the second modulator phase Performing optical path compensation to generate the first control phase And the second control phase
  • the controller controls the first control phase according to the optical path compensation And the second control phase A phase distribution of the first spatial light modulator and the second spatial light modulator is controlled.
  • the controller controls the first control phase And the second control phase Perform tilt compensation
  • the controller distributes the phase Performing deformation compensation for the deformation of the spatial light modulator
  • the controller controls the first control phase according to the deformation And the second control phase A phase distribution of the first spatial light modulator and the second spatial light modulator is controlled.
  • the controller obtains the first modulator light intensity emitted by the light source onto the first spatial light modulator and the second spatial light modulator according to a Gaussian distribution and at least one measurement result.
  • the first modulator phase The second modulator light intensity And the second modulator phase At least one of them.
  • the controller is based on physical parameters (eg, resolution, pixel size, bit depth, modulation range, aperture ratio, etc.) of the first spatial light modulator and the second spatial light modulator.
  • the feature information generates the first modulator phase using a Zernike polynomial or a Seidel polynomial
  • the second modulator phase is based on physical parameters (eg, resolution, pixel size, bit depth, modulation range, aperture ratio, etc.) of the first spatial light modulator and the second spatial light modulator.
  • At least one sub-light field distribution information Resolution and other sub-light field distribution information The resolution is different.
  • the input signal includes a signal body and a feature information B n , and amplitude information and/or phase information of each frame of the input signal corresponds to the feature information B n ;
  • the input signal or signals comprises a body and a plurality of feature information B n, each of the amplitude information of the frame and / or phase information of the input signal to the plurality of feature information B n should be one or more.
  • the feature information B includes spatial distance information between respective spatial positions representing respective images included in the user and the target light field, angle information representing the viewing angle of the user, and optical system aberration information. At least one of the viewer's vision information.
  • the optical center of the equivalent lens is offset from the center of the spatial light modulator; or the optical of each sub-lens in the lens array The center is offset from the center of the corresponding phase region on the spatial light modulator.
  • the controller is a GPU chip, an FPGA chip or an ASIC chip, and the controller converts each of the frames into an amplitude distribution signal and a phase distribution signal.
  • the input signal is transmitted via at least one of a video data interface of DISPLAY PORT, MIPI, LVDS, RGB or HDMI.
  • Feature information B and/or target phase information in accordance with at least one embodiment of the present invention
  • the input signal body is transmitted in a manner other than the particular data line by transmission through at least one particular data line.
  • the controller synchronizes the first spatial light modulator, the second spatial light modulator, and the light source upon activation.
  • the present invention also provides an optical system comprising a plurality of sets of the above optical devices and a total controller, the master controller controlling the plurality of sets of optical devices to cooperate.
  • the spatial light modulator uses a phase modulated liquid crystal liquid crystal device.
  • the optical device provided by the present invention further includes a secondary light combining system that combines the light that has not been introduced into the output optical path after combining and the light that has entered the output optical path and outputs the same.
  • Figure 1 is a schematic view showing the structure of a first non-limiting example of the optical device of the present invention
  • Figure 2 is a schematic view showing the structure of a second non-limiting example of the optical device of the present invention.
  • Figure 4 is a view showing the structure of a fourth non-limiting example of the optical device of the present invention.
  • Figure 5 is a schematic view showing the structure of a fifth non-limiting example of the optical device of the present invention.
  • Fig. 6 is a view showing the structure of a sixth non-limiting example of the optical device of the present invention.
  • an optical device of the present invention includes a first spatial light modulator 1, a second spatial light modulator 2, and a light source 3.
  • the light source 3 emits incident light to the first spatial light modulator 1 and the second spatial light modulator 2.
  • the first spatial light modulator 1 and the second spatial light modulator 2 modulate the incident light and output the modulated incident light as an output light, and output the output light from the first spatial light modulator 1 and the second spatial light modulator 2.
  • the target light field 100 is superimposed on each other.
  • the specific superposition manner may be as shown in FIG. 1.
  • the first spatial light modulator 1 and the second spatial light modulator 2 are both transmissive spatial light modulators, and the light emitted by the light source 3 sequentially passes through the first spatial light modulator. 1 and a second spatial light modulator 2 and forming a target light field 100.
  • the target light field 100 can be displayed on a screen 10 as shown in FIG. 1, or can be in other forms. For example, it can be distributed in space without a screen.
  • the optical device of the present invention includes a splitter/combiner 4 in addition to the first spatial light modulator 1, the second spatial light modulator 2, and the light source 3, the light source. 3 is adapted to emit incident light rays 31 to the minute/combiner.
  • the minute/combiner 4 is capable of splitting the incident light rays 31 from the light source 3 and transmitting them to the first spatial light modulator 1 and the second spatial light modulator 2.
  • the minute/combiner 4 is capable of superimposing the output rays from the first spatial light modulator 1 and the second spatial light modulator 2, and outputting the output light superimposed on each other.
  • the output rays superimposed on each other form a target light field.
  • the optical device having the first lens system 5 may have a lens system other than the first lens system 5.
  • the optical device provided by the present invention includes, in addition to the first lens system 5, a second lens system 8 for processing the output light to change the parameters of the target light field.
  • the optical device of the present invention has a waveguide device 6 in addition to the components of the previous non-limiting example.
  • the waveguide device 6 has a first end 61 and a second end 62.
  • the first end 61 of the waveguide device 6 is disposed at the output position of the splitter/combiner 4 to receive the output light from the splitter/combiner 4.
  • the waveguide device 6 transmits the received output light to the second end 62 and outputs the light at the second end 62 to form a target light field.
  • the waveguide device 6 can amplify the field of view or expand the pupil of the target light field (of course, it is also possible to simultaneously enlarge the field of view and expand the output field).
  • the above examples are only used to illustrate the functions that the waveguide device 6 can implement, and do not mean that the process of amplifying the field of view, expanding the pupil, and the like for the target light field can only be realized by the waveguide device 6.
  • a grating device or a grating waveguide or a lens array to amplify the field of view and/or extend the pupil of the target light field. Such changes should obviously also fall within the scope of protection of this case.
  • One half of the returned beam is transmitted to the direction of the reflecting surface 93, and the other half is transmitted to the direction of the optical rotatory device 92.
  • Light that is transmitted to the direction of the reflecting surface 93 is reflected and introduced to the polarization combining surface or the polarizing prism 94.
  • the light emitted from the splitting/combining prism 4 to the optical rotatory device 92 is again rotated by 45°, and then emitted to the polarizing prism 91. Due to the initial incident light, the polarization directions of these beams have been rotated by 90°. This light is reflected by the polarizing prism 91 and introduced into the polarization combining surface 94 to be combined with the light reflected by the reflecting surface 93.
  • the optical device provided by the present invention may further have a light shielding device.
  • the optical device forms an intermediate image plane therein, which may be formed by simply modulating the phases of the first spatial light modulator 1 and the second spatial light modulator 2, or may be modulated by the first spatial light.
  • the first spatial light modulator 1 and the second spatial light modulator 2 are formed together with other structures such as a lens and a diaphragm.
  • a light blocking device may be disposed at a position of the intermediate image plane to block light for forming a portion of the pixels of the target light field such that a portion of the pixel is not illuminated by the light on the target light field.
  • a transparent material is disposed at the position of the intermediate image surface, and the center of the material is an opaque black dot for blocking the 0-level bright spot, and the position other than the positive and negative 1 is blocked by the aperture, so as to ensure the image is removed. Excess diffraction orders outside level 1 are blocked.
  • the optical device of the present invention also has a controller 7.
  • the controller 7 is connected to the light source 3 and is capable of controlling the luminous intensity of the light source 3.
  • the specific control method can be varied.
  • the controller 7 first extracts the amplitude distribution information A xy or the light energy distribution information A xy 2 of the input signal. Then, the controller 7 sums the amplitude distribution information or the light energy distribution information of each frame, and controls the output of the light source 3 in accordance with the result of the sum.
  • the current example is merely illustrative of an alternative example of the optical device proposed by the present invention.
  • Many parts of the optical device in the current example can have a variety of arrangements.
  • the first spatial light modulator 1, the second spatial light modulator 2, and the light source 3 may also be synchronized first.
  • the controller 7 of the optical device of the present invention has an interface 71.
  • the controller 7 is capable of receiving an input signal from the outside through the interface 71.
  • the input signal can be, for example, a video file, a streaming media file, or the like.
  • the input signal includes one or more frames, and each frame of the input signal includes intensity information.
  • the intensity information may be amplitude distribution information A xy or light energy distribution information A xy 2 .
  • Controller 7 converts the input signal into target light field distribution information among them Is the target phase information representing the input signal. Further, the controller 7 stores a case where the light source 3 emits light to the first spatial light modulator 1.
  • the controller 7 obtains the light intensity emitted by the light source 3 to the first spatial light modulator 1, that is, the intensity of the first modulator And phase information of the light emitted by the light source 3 onto the first spatial light modulator 1, ie, the first modulator phase “Acquisition” here should be understood in a broad sense.
  • controller 7 can receive the first modulator light intensity from interface 71 First modulator phase It is also possible that the controller 7 reads the first modulator light intensity already stored in the memory.
  • the controller 7 also obtains the second modulator intensity of the light emitted by the light source 3 onto the second spatial light modulator 2. And second modulator phase Based on the above information, the controller 7 can calculate the first control phase by applying the following formula (1) And second control phase
  • the controller 7 is based on the first control phase And second control phase
  • the phase distributions of the first spatial light modulator 1 and the second spatial light modulator 2 are controlled.
  • controller 7 controls the phase distribution of the first spatial light modulator 1 and the second spatial light modulator 2.
  • the controller 7 can also control the phase distribution of the first spatial light modulator 1 and the second spatial light modulator 2 in other ways.
  • controller 7 receives an input signal through an interface, the input signal including intensity information, and the intensity information is amplitude distribution information A xy or light energy distribution information A xy 2 .
  • the light intensity of the light input by the controller 7 to the spatial light modulations 1 and 2 by default is uniformly distributed and is 1, and the phase distribution is also the same, for example, all are e i ⁇ 0 , then the following can be used.
  • Equation (2) calculates the first control phase of the first spatial light modulator 1 And second spatial phase of the second spatial light modulator 2
  • the controller 7 converts the input signal into input light field distribution information.
  • the methods can be varied.
  • the target phase information ⁇ xy is included in the input signal.
  • the controller 7 can directly read the intensity information and the target phase information ⁇ xy to obtain the input light field distribution information.
  • the input signal includes an input signal body and feature information B, the signal body including intensity information.
  • the controller 7 obtains the amplitude distribution information A xy based on the intensity information, and generates target phase information based on the amplitude distribution information A xy and/or the feature information B.
  • the controller is generating target phase information
  • the specific method used can be varied. For example, Zernike polynomials or Seidel polynomials can be used to generate target phase information.
  • the input signal may include one or more feature information B in addition to the signal body.
  • the amplitude information and/or phase information of each of the frames of the input signal corresponds to the feature information B n .
  • the amplitude information and/or the phase information of each of the frames of the input signal may correspond to one of the plurality of feature information B n or may correspond to multiple A plurality of the feature information B n .
  • the plurality of feature information B n can be represented as a series of numbers and/or a combination of arrays.
  • information of each frame of the input signal may be set to correspond to one of the plurality of feature information B n or A plurality of information, that is, information of each frame, may correspond to different feature information B n .
  • the feature information B n may be including various contents.
  • the feature information B n may be spatial distance information including a distance between one or more spatial locations representing one or more images included in the user and the target light field, angle information representing the viewing angle of the user, and optics System aberration information, viewer vision information, etc.
  • Feature information B and/or target phase information The transmission can be transmitted through the same data line along with the input signal body.
  • one or more specific data lines are provided to transmit the feature information B and/or target phase information.
  • the input signal body is transmitted through other transmission methods than specific data lines.
  • the feature signal B may not be included in the input signal, and at least one pre-stored feature information B 0 is pre-stored in the controller 7.
  • the controller 7 generates the target phase information according to the pre-stored feature information B 0
  • the pre-stored feature information B 0 may be a numerical value or a two-dimensional array, such as phase information.
  • the controller 7 generates the target phase information using the pre-stored feature information B 0 .
  • the pre-stored feature information B 0 is a two-dimensional array, such as phase information
  • the controller 7 can directly send the phase information As the target phase information
  • the controller 7 may pre-store at least one feature information B 0 while the other feature information B n is input from the outside. Under this setting, the controller 7 generates and generates based on the pre-stored feature information B 0 and the external input feature information B n .
  • Target phase information
  • the controller 7 calculates the first control phase based on various information. And second control phase
  • the specific method can be varied. According to one non-limiting example, controller 7 is based on input light field distribution information First modulator light intensity Second modulator light intensity First modulator phase And second modulator phase Calculate the first control phase by the following formula (3)
  • controller 7 calculates the second control phase based on the above information, the following formula (4)
  • the controller 7 obtains a maximum value A max of the amplitude distribution information A xy from the input signal. On this basis, the controller 7 will input the light field distribution Normalized by the maximum value A max to obtain normalized amplitude information
  • controller 7 is based on normalized amplitude information First modulator phase Second modulator phase Calculate the first control phase by equation (3) and formula (4) And second control phase After that, the first control phase can be first And second control phase Discretization/quantization.
  • the controller 7 controls the phase distributions of the first spatial light modulator 1 and the second spatial light modulator 2 based on the discretized ⁇ 1 xy and ⁇ 2 xy .
  • the controller 7 obtains the first modulator light intensity emitted by the light source 3 to the first spatial light modulator 1 And/or first modulator phase Similarly, the controller 7 obtains the second modulator light intensity emitted by the light source 3 onto the second spatial light modulator 2. And/or second modulator phase At the same time, the controller 7 also obtains an error in the optical device. On this basis, the controller 7 can adjust the first control phase And second control phase To compensate for the error of the optical device. After compensating for the error of the optical device, the controller 7 is based on the compensated first control phase And second control phase The phase distributions of the first spatial light modulator 1 and the second spatial light modulator 2 are controlled.
  • the specific manner of compensation in the above non-limiting examples can be varied.
  • the first modulator light intensity and phase incident on the spatial light modulators 1 and 2 after passing through the splitter in the original design should be the same as the second modulator light intensity and phase, ie
  • the control phase can be compensated by increasing the control phase. The quality of the final output light field.
  • the controller 7 can control the first control phase.
  • second control phase Perform a translation operation and follow the first control phase after the translation operation
  • second control phase The phase distributions of the first spatial light modulator 1 and the second spatial light modulator 2 are controlled.
  • the controller 7 can perform optical path compensation.
  • the specific method of compensation can be directly to the first control phase And second control phase Perform optical path compensation.
  • the controller 7 generates the first control phase with the compensated above information. And second control phase Then the controller 7 is based on the first control phase after the optical path compensation And second control phase The phase distributions of the first spatial light modulator 1 and the second spatial light modulator 2 are controlled.
  • the controller 7 obtains the first modulator light intensity that the light source 3 emits onto the first spatial light modulator 1 and the second spatial light modulator 2 First modulator phase Second modulator light intensity And second modulator phase
  • the controller 7 obtains the first input of the light source 3 to the first spatial light modulator 1 and the second spatial light modulator 2 in accordance with at least one measurement result in combination with a mathematical model of the Gaussian distribution.
  • Modulator light intensity First modulator phase Second modulator light intensity And second modulator phase At least one of them. Since the light emitted by the light source 3 generally conforms to a Gaussian distribution, such an arrangement can improve the accuracy of the above data.
  • the controller 7 generates the first modulator phase in the above embodiment. And second modulator phase At time, related information of the first spatial light modulator 1 and the second spatial light modulator 2 may also be combined. For example, the controller 7 generates a first modulator phase using a Zernike polynomial or a Seidel polynomial according to physical parameter nodes and feature information such as pixel size, resolution, and the like of the first spatial light modulator 1 and the second spatial light modulator 2. And second modulator phase Such a setting causes the generated first modulator phase distribution And second modulator phase distribution After outputting to the first spatial light modulator 1 and the second spatial light modulator 2, the desired effect can be achieved.
  • a Zernike polynomial or a Seidel polynomial according to physical parameter nodes and feature information such as pixel size, resolution, and the like of the first spatial light modulator 1 and the second spatial light modulator 2.
  • second modulator phase Such a setting causes the generated first modulator phase distribution And second modulator phase distribution After outputting to the first
  • the controller 7 can also utilize other information to further enhance the output effect.
  • the controller 7 can obtain user vision information such as a user's nearsightedness condition and use the user's visual acuity information as characteristic information. At least part of it to generate target phase information.
  • the optical center of the equivalent lens may be aligned with the center of the spatial light modulator or may be offset.
  • the optical center of each sub-lens in the lens array is offset from the center of the corresponding phase region on the spatial light modulator.
  • the controller 7 is a system composed of a GPU chip, an FPGA chip, or a custom ASIC chip.
  • the controller 7 made using these chips can convert each frame into an amplitude distribution signal and a phase distribution signal due to its strong data processing capability.
  • the input signal can be transmitted via at least one of DISPLAY PORT, MIPI, LVDS, RGB, HDMI, or a custom video data interface.
  • optical device proposed by the present invention can also operate in an integrated manner. That is, a plurality of optical devices of the present invention can be cooperatively operated to form an optical system, and a general controller is provided to control a plurality of optical devices in the system.
  • two sets of optical devices according to the present invention are used as a pair of AR glasses, and the light fields output by each set of optical devices are respectively put into the left eye or the right eye of the wearer, and the light fields output by the two sets of optical devices can be different, and at the same time
  • the light field output by the two sets of optical devices is synchronized by the controller, which can produce a better viewing effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明提供一种光学装置,包括光源、第一空间光调制器、第二空间光调制器,所述光源向所述第一空间光调制器和所述第二空间光调制器发射入射光线;所述第一空间光调制器和所述第二空间光调制器调制所述入射光线并将调制后的所述入射光线作为输出光线输出,输出自所述第一空间光调制器和第二空间光调制器的输出光线相互叠加形成目标光场。本发明提的光学装置由于使用了两个空间光调制器来形成目标光场,所以能够同时高质量的还原光场的振幅和相位,可以在不同成像距离上进行高质量成像。

Description

光学系统 技术领域
本发明涉及一种光学系统,特别涉及一种可在不同成像距离进行高质量成像的光学系统。
背景技术
随着技术的进步,人们开始体验各种具有优秀显示效果的光学产品。特别是,随着空间光调制器的出现,使得人们在成像方面能够进行许多新的尝试。空间光调制器英文名称是Spatial Light Modulator,在文献上常缩写成SLM。顾名思义,它是一种对光波进行调制的器件,一般地说,电子空间光调制器是指在信号源信号(控制信号)的控制下,能对光波的某种或某些特性(如相位、振幅或强度、频率、偏振态等)的一维或二维分布进行空间和时间的变换或调制,从而将信源信号所荷载的信息写进入射光波之中的器件。控制信号可能是光学信号,又可能是电学信号。空间光调制器含有许多独立单元,它们在空间上排列成一维或二维阵列。每个单元都可以独立地接受光学信号或电学信号的控制,利用各种物理效应(泡克尔斯效应、克尔效应、声光效应、磁光效应、半导体的自电光效应、光折变效应等)改变自身的光学特性,从而对照明在其上的光波进行调制。然而由于单独一个空间光调制器只能调制光的振幅或者频率之一,无法同时调制这两种物理量,所以空间光调制器易造成信号损失或编码错误。所以用空间光调制器实现高质量成像十分困难。因此有必要提供一种可高质量同时还原光场的振幅和相位的光学系统。
发明内容
本发明的目的是提供一种可高质量还原光场的振幅和相位的光学系统,以便在不同成像距离上进行高质量的成像。
为了解决本发明的至少一部分技术问题,本发明提供一种光学装置,包括光源、第一空间光调制器、第二空间光调制器,该光源向该第一空间光调制器和该第二空间光调制器发射入射光线;
该第一空间光调制器和该第二空间光调制器调制该入射光线并将调制后的该 入射光线作为输出光线输出,输出自该第一空间光调制器和第二空间光调制器的输出光线相互叠加形成目标光场。
根据本发明的至少一个实施例,本发明提供的光学装置还包括分/合路器,该光源适于向该分/合路器发出该入射光线;
该分/合路器适于将来自该光源的该入射光线传输至该第一空间光调制器和第二空间光调制器,该分/合路器适于将来自该第一空间光调制器和第二空间光调制器的输出光线相互叠加,并将相互叠加的该输出光线输出。
根据本发明的至少一个实施例,本发明提供的光学装置还包括第一透镜系统,该第一透镜系统设置在该光源和该分/合路器之间,该第一透镜系统适于调制来自该光源的该入射光线,并将调制后该入射光线输入该分/合路器。
根据本发明的至少一个实施例,本发明提供的光学装置还包括波导器件,该波导器件具有第一端和第二端,该第一端设置在该分/合路器的输出位置并适于接收来自该分/合路器的输出光线;
该波导器件传输该输出光线,并在该第二端输出该输出光线形成目标光场。
根据本发明的至少一个实施例,该波导器件对该目标光场进行放大视场和/或扩展出瞳。
根据本发明的至少一个实施例,本发明提供的光学装置还包括光栅器件,对该目标光场进行放大视场和/或扩展出瞳。
根据本发明的至少一个实施例,本发明提供的光学装置还包括滤波器件,该滤波器对输出自该第一空间光调制器和第二空间光调制器的该输出光线进行滤波;
该滤波器使该输出光线中的至少一部分具有预设角度的光线无法透过该滤波器。
根据本发明的至少一个实施例,本发明提供的光学装置还包括一遮光器件,该光学装置在其内部形成一个中间像面,该遮光器件设置在该中间像面的位置;
该遮光器遮挡中间像面特定位置的像素点。
根据本发明的至少一个实施例,本发明提供的光学装置还包括控制器,该控制器与该光源连接并适于控制该光源的发光强度。
根据本发明的至少一个实施例,本发明提供的光学装置还包括控制器,该控 制器生成第一控制相位
Figure PCTCN2018094224-appb-000001
和第二控制相位
Figure PCTCN2018094224-appb-000002
并根据该第一控制相位
Figure PCTCN2018094224-appb-000003
和第二控制相位
Figure PCTCN2018094224-appb-000004
控制该第一空间光调制器和该第二空间光调制器的相位分布。
根据本发明的至少一个实施例,该控制器具有接口,且适于通过该接口接收输入信号,该输入信号包括一个或多个帧,该输入信号的每个该帧包括强度信息,该强度信息是振幅分布信息A xy或光能分布信息A xy 2,该控制器将该输入信号转化为输入光场分布信息
Figure PCTCN2018094224-appb-000005
其中
Figure PCTCN2018094224-appb-000006
是代表该输入信号的目标相位信息;
该控制器中获得该光源发射到该第一空间光调制器上的第一调制器光强
Figure PCTCN2018094224-appb-000007
和第一调制器相位
Figure PCTCN2018094224-appb-000008
该控制器获得该光源发射到该第二空间光调制器上的第二调制器光强
Figure PCTCN2018094224-appb-000009
和第二调制器相位
Figure PCTCN2018094224-appb-000010
该控制器以公式
Figure PCTCN2018094224-appb-000011
计算出第一控制相位
Figure PCTCN2018094224-appb-000012
和第二控制相位
Figure PCTCN2018094224-appb-000013
该控制器根据该第一控制相位
Figure PCTCN2018094224-appb-000014
和该第二控制相位
Figure PCTCN2018094224-appb-000015
控制该第一空间光调制器和该第二空间光调制器的相位分布。
根据本发明的至少一个实施例,该控制器具有接口,该控制器通过该接口接收输入信号,该输入信号包括强度信息,该强度信息是振幅分布信息A xy或光能分布信息A xy 2
该控制器根据公式
Figure PCTCN2018094224-appb-000016
计算该第一空间光调制器的第一控制相位
Figure PCTCN2018094224-appb-000017
和该第二空间光调制器第二控制相位
Figure PCTCN2018094224-appb-000018
该控制器根据该第一控制相位
Figure PCTCN2018094224-appb-000019
和该第二控制相位
Figure PCTCN2018094224-appb-000020
控制该第一空间光调制器和该第二空间光调制器的相位分布。
根据本发明的至少一个实施例,对于输入光场分布信息
Figure PCTCN2018094224-appb-000021
做光学变换,并将变换后的结果作为新的光场分布信息
Figure PCTCN2018094224-appb-000022
根据本发明的至少一个实施例,该输入信号还包括该目标相位信息
Figure PCTCN2018094224-appb-000023
该 控制器读取该强度信息和该目标相位信息
Figure PCTCN2018094224-appb-000024
获得该输入光场分布信息
Figure PCTCN2018094224-appb-000025
根据本发明的至少一个实施例,该输入信号包括输入信号主体和特征信息B,该信号主体包括该强度信息,该控制器根据该强度信息获得该振幅分布信息A xy
该控制器根据该振幅分布信息A xy和/或特征信息B生成该目标相位信息
Figure PCTCN2018094224-appb-000026
根据本发明的至少一个实施例,该控制器使用Zernike多项式或Seidel多项式,根据该特征信息B生成该目标相位信息
Figure PCTCN2018094224-appb-000027
根据本发明的至少一个实施例,该控制器中预存有至少一个预存特征信息B 0,该控制器根据该预存特征信息B 0生成该目标相位信息
Figure PCTCN2018094224-appb-000028
的至少一部分。
根据本发明的至少一个实施例,该控制器根据该输入光场分布信息
Figure PCTCN2018094224-appb-000029
入射到该第一调制器上的光在第一调制器表面上的光强即第一调制器光强
Figure PCTCN2018094224-appb-000030
入射到该第二调制器上的光在第二调制器表面上的光强即第二调制器光强
Figure PCTCN2018094224-appb-000031
该第一调制器表面光波的相位即第一调制器相位
Figure PCTCN2018094224-appb-000032
和该第二调制器表面光波的相位即第二调制器相位
Figure PCTCN2018094224-appb-000033
以公式
Figure PCTCN2018094224-appb-000034
计算出该第一控制相位
Figure PCTCN2018094224-appb-000035
以公式
Figure PCTCN2018094224-appb-000036
计算出该第二控制相位
Figure PCTCN2018094224-appb-000037
该控制器将该第一控制相位
Figure PCTCN2018094224-appb-000038
和该第二控制相位
Figure PCTCN2018094224-appb-000039
离散化,根据离散化后的φ 1 xy和φ 2 xy控制该第一空间光调制器和该第二空间光调制器的相位分布。
根据本发明的至少一个实施例,该控制器根据该输入信号,获得该振幅分布信息A xy的最大值A max
该控制器将输入光场分布
Figure PCTCN2018094224-appb-000040
以该最大值A max归一化,获得归一化振幅信息
Figure PCTCN2018094224-appb-000041
该控制器根据公式
Figure PCTCN2018094224-appb-000042
计算出第一控制相位
Figure PCTCN2018094224-appb-000043
和第二控制相位
Figure PCTCN2018094224-appb-000044
根据本发明的至少一个实施例,该控制器根据该归一化振幅信息
Figure PCTCN2018094224-appb-000045
该第一调制器相位
Figure PCTCN2018094224-appb-000046
该第二调制器相位
Figure PCTCN2018094224-appb-000047
以公式
Figure PCTCN2018094224-appb-000048
计算出第一控制相位
Figure PCTCN2018094224-appb-000049
以公式
Figure PCTCN2018094224-appb-000050
计算出第二控制相位
Figure PCTCN2018094224-appb-000051
该控制器将该第一控制相位
Figure PCTCN2018094224-appb-000052
和该第二控制相位
Figure PCTCN2018094224-appb-000053
离散化/量化,根据离散化/量化后的φ 1 xy和φ 2 xy控制该第一空间光调制器和该第二空间光调制器的相位分布。
根据本发明的至少一个实施例,该控制器获得该光学装置中的误差;
该控制器调整该第一控制相位
Figure PCTCN2018094224-appb-000054
和该第二控制相位
Figure PCTCN2018094224-appb-000055
补偿该光学装置的误差;
该控制器根据补偿后的该第一控制相位
Figure PCTCN2018094224-appb-000056
和该第二控制相位
Figure PCTCN2018094224-appb-000057
控制该第一空间光调制器和该第二空间光调制器的相位分布。
根据本发明的至少一个实施例,该控制器对该第一控制相位
Figure PCTCN2018094224-appb-000058
和该第二控制相位
Figure PCTCN2018094224-appb-000059
进行平移运算;
该控制器根据平移运算后的该第一控制相位
Figure PCTCN2018094224-appb-000060
和该第二控制相位
Figure PCTCN2018094224-appb-000061
控制该第一空间光调制器和该第二空间光调制器的相位分布。
根据本发明的至少一个实施例,该控制器对该第一控制相位
Figure PCTCN2018094224-appb-000062
和该第二控制相位
Figure PCTCN2018094224-appb-000063
进行光程补偿;
或该控制器对获取的该第一调制器光强
Figure PCTCN2018094224-appb-000064
该第一调制器相位
Figure PCTCN2018094224-appb-000065
该第二调制器光强
Figure PCTCN2018094224-appb-000066
和该第二调制器相位
Figure PCTCN2018094224-appb-000067
进行光程补偿,生成该第一控制相位
Figure PCTCN2018094224-appb-000068
和该第二控制相位
Figure PCTCN2018094224-appb-000069
该控制器根据光程补偿后的该第一控制相位
Figure PCTCN2018094224-appb-000070
和该第二控制相位
Figure PCTCN2018094224-appb-000071
控制该第一空间光调制器和该第二空间光调制器的相位分布。
根据本发明的至少一个实施例,该控制器对该第一控制相位
Figure PCTCN2018094224-appb-000072
和该第二控制相位
Figure PCTCN2018094224-appb-000073
进行倾斜补偿;
该控制器根据倾斜补偿后的该第一控制相位
Figure PCTCN2018094224-appb-000074
和该第二控制相位
Figure PCTCN2018094224-appb-000075
控制该第一空间光调制器和该第二空间光调制器的相位分布。
根据本发明的至少一个实施例,该控制器对该相位分布
Figure PCTCN2018094224-appb-000076
进行针对空间光调制器的形变进行形变补偿;
该控制器根据形变补偿后的该第一控制相位
Figure PCTCN2018094224-appb-000077
和该第二控制相位
Figure PCTCN2018094224-appb-000078
控制该第一空间光调制器和该第二空间光调制器的相位分布。
根据本发明的至少一个实施例,该控制器根据高斯分布和至少一个测量结果获得该光源发射到该第一空间光调制器和该第二空间光调制器上的该第一调制器光强
Figure PCTCN2018094224-appb-000079
该第一调制器相位
Figure PCTCN2018094224-appb-000080
该第二调制器光强
Figure PCTCN2018094224-appb-000081
和该第二调制器相位
Figure PCTCN2018094224-appb-000082
中的至少一个。
根据本发明的至少一个实施例,该控制器根据该第一空间光调制器和该第二空间光调制器的物理参数(例如、分辨率、像素尺寸、位深度、调制范围、开口率等)和特征信息使用Zernike多项式或Seidel多项式生成该第一调制器相位
Figure PCTCN2018094224-appb-000083
和该第二调制器相位
Figure PCTCN2018094224-appb-000084
根据本发明的至少一个实施例,该控制器获得用户视力信息,并将该用户视力信息作为特征信息的至少一部分生成该目标相位信息。
根据本发明的至少一个实施例,该光源分时发出不同频段的入射光线,该控制器将每个帧根据光源的频率分为多个子帧,并针对每个子帧生成子光场分布信息
Figure PCTCN2018094224-appb-000085
至少有一个该子光场分布信息
Figure PCTCN2018094224-appb-000086
的分辨率与其他子光场分布信息
Figure PCTCN2018094224-appb-000087
的分辨率不同。
根据本发明的至少一个实施例,该控制器在时域上累加该多个子光场分布信 息
Figure PCTCN2018094224-appb-000088
并根据该子光场分布信息
Figure PCTCN2018094224-appb-000089
同步控制该第一空间光调制器和该第二空间光调制器的相位分布。
根据本发明的至少一个实施例,该输入信号包括信号主体和一个特征信息B n,该输入信号的每个该帧的振幅信息和/或相位信息对应该特征信息B n
或该输入信号包括信号主体和多个特征信息B n,该输入信号的每个该帧的振幅信息和/或相位信息对应该多个特征信息B n中的一个或者多个。
根据本发明的至少一个实施例,该控制器与该光源连接并适于控制该光源的发光强度;
该控制器提取该输入信号的振幅分布信息A xy或光能分布信息A xy 2,将每个该帧的振幅分布信息或光能分布信息求和,并根据该求和的结果控制所光源的输出。
根据本发明的至少一个实施例,该特征信息B包括代表用户和目标光场中所包含各图像的各个空间位置之间的空间距离信息,代表用户的观看角度的角度信息、光学系统像差信息、观看者视力信息中的至少一个。
根据本发明的至少一个实施例,当目标相位信息包含等效透镜或透镜阵列的相位分布时,该等效透镜的光学中心与空间光调制器中心偏离;或该透镜阵列中每个子透镜的光学中心与该空间光调制器上对应相位区域的中心偏离。
根据本发明的至少一个实施例,该控制器,是GPU芯片、FPGA芯片或ASIC芯片,该控制器将每一该帧转换为一振幅分布信号及相位分布信号。
根据本发明的至少一个实施例,该输入信号通过DISPLAY PORT、MIPI、LVDS、RGB或HDMI的视频数据接口中的至少一个传输。
根据本发明的至少一个实施例,特征信息B和/或目标相位信息
Figure PCTCN2018094224-appb-000090
通过至少一根特定数据线传输,该输入信号主体以该特定数据线以外的方式传输。
根据本发明的至少一个实施例,该控制器在启动后,同步该第一空间光调制器、该第二空间光调制器和该光源。
为了解决本发明的至少一部分技术问题,本发明还提供一种光学系统,包括多套上述光学装置和一总控制器,该总控制器控制该多套光学装置协同 工作。
根据本发明的至少一个实施例,其中该空间光调制器使用相位调制器件。
根据本发明的至少一个实施例,其中该空间光调制器使用相位调制的硅基液晶器件。
根据本发明的至少一个实施例,本发明提供的光学装置还包括二次合光系统,将合光后未导入输出光路的光线与已进入输出光路的光线再次合路并共同输出。
本发明提的光学装置由于使用了两个空间光调制器来形成目标光场,所以能够同时高质量的还原光场的振幅和相位,可以在不同成像距离上进行高质量成像。
应当理解,本发明以上的一般性描述和以下的详细描述都是示例性和说明性的,而非限制性的。这些详细描述旨在为如权利要求该的本发明提供进一步的解释。
附图概述
本发明的特征、性能由以下的实施例及其附图进一步描述。
图1示出了本发明的光学装置的第一个非限制性例子的结构示意图;
图2示出了本发明的光学装置的第二个非限制性例子的结构示意图;图3
示出了本发明的光学装置的第三个非限制性例子的结构示意图;
图4示出了本发明的光学装置的第四个非限制性例子的结构示意图;
图5示出了本发明的光学装置的第五个非限制性例子的结构示意图;
图6示出了本发明的光学装置的第六个非限制性例子的结构示意图。
本发明的较佳实施方式
现在将详细参考附图描述本发明的实施例。现在将详细参考本发明的优选实施例,其示例在附图中示出。在任何可能的情况下,在所有附图中将使用相同的标记来表示相同或相似的部分。此外,尽管本发明中所使用的术语是从公知公用的术语中选择的,但是本发明说明书中所提及的一些术语可能是申请人按他或她 的判断来选择的,其详细含义在本文的描述的相关部分中说明。此外,要求不仅仅通过所使用的实际术语,而是还要通过每个术语所蕴含的意义来理解本发明。
首先参考图1来说明本发明的第一个实施例的结构。如图1所示,根据一个非限制性的例子,本发明的光学装置,包括第一空间光调制器1、第二空间光调制器2和光源3。其中光源3向第一空间光调制器1和第二空间光调制器2发射入射光线。
第一空间光调制器1和第二空间光调制器2调制入射光线并将调制后的入射光线作为输出光线输出,输出自第一空间光调制器1和第二空间光调制器2的输出光线相互叠加形成目标光场100。具体的叠加方式可以如图1所示的,第一空间光调制器1和第二空间光调制器2都是透射式空间光调制器,光源3发出的光线依次穿过第一空间光调制器1和第二空间光调制器2,并形成目标光场100。该目标光场100可以显示在一个如图1中所示的屏幕10上,也可以是其他形式的。例如,可以是没有屏幕而分布在空间中的。
值得注意的是,以上的例子只是对本发明所提出的光学装置的一个可选的例子的说明。本发明所提出的光学装置的许多部分都可以具有多种多样的设置方式。下面以一些非限制性的例子对本发明的至少一部分变化进行进一步的说明。
参考图2,根据一个非限制性的例子,本发明所提出的光学装置除了包含第一空间光调制器1、第二空间光调制器2和光源3外还包含分/合路器4,光源3适于向分/合路器发出入射光线31。分/合路器4能够将来自光源3的入射光线31分路,并传输至第一空间光调制器1和第二空间光调制器2。分/合路器4能够将来自第一空间光调制器1和第二空间光调制器2的输出光线互叠加,并将相互叠加的输出光线输出。相互叠加的输出光线形成目标光场。
参考图3,根据一个非限制性的例子,本发明所提出的光学装置除了前一个非限制性例子中的部件外,还具有第一透镜系统5,第一透镜系统5设置在光源3和分/合路器4之间。第一透镜系统5的作用是,调制来自光源3的入射光线,并将调制后入射光线输入分/合路器4。第一透镜系统5既可以是如图3中所示的,包括一个透镜,也可以是一个包括多个透镜的透镜组。调制来自光源3的入射光线的具体方式可以是多样的,例如,可以将来自光源3的入射光线调制为平行光。
值得注意的是,虽然上述例子中记载了具有第一透镜系统5的光学装置,但事实上,该光学装置还可以具有除了第一透镜系统5以外的透镜系统。例如,参考图4,根据一个非限制性的例子,本发明提供的光学装置除了第一透镜系统5以外,还有一第二透镜系统8以便对输出光线进行处理,以改变目标光场的参数。
参考图5,根据一个非限制性的例子,本发明所提出的光学装置除了前一个非限制性例子中的部件外,还具有波导器件6。该波导器件6具有第一端61和第二端62。该波导器件6的第一端61设置在分/合路器4的输出位置,以便接收来自分/合路器4的输出光线。波导器件6将所接收到的输出光线传输至第二端62,并将这些光线在第二端62处输出,从而形成目标光场。可选的,该波导器件6能够对目标光场进行放大视场或扩展出瞳(当然也可以同时进行放大视场和扩展出瞳)。
值得注意的是,上述例子只是用于说明波导器件6能够实现的功能,并不代表对目标光场进行放大视场、扩展出瞳等处理仅能以波导器件6实现。例如,还可以使用光栅器件或者光栅波导或者透镜阵列对目标光场进行放大视场和/或扩展出瞳。这样的变化显然也应当属于本案的保护范围。
参考图6,根据一个非限制性的例子,本发明所提出的光学装置还包括二次合路系统9,用以将经过合路器后未被耦合入输出光路的光再次耦合进入系统。该二次合路系统9包括偏振棱镜91、旋光器件92、反射面93
在当前的光学装置中,光源3出射的光经第一透镜系统5调制后首先经过偏振棱镜91,光源3出射的光的偏振方向使光线全部透过偏振棱镜91并传播至旋光器件92,旋光器件92使光线偏振方向旋转45°,再传播至作为分/合路器4的分光/合光棱镜4。分光/合光棱镜4将光束分为相等的两部分分别入射至第一空间光调制器1和第二空间光调制器2。这些光束被第一空间光调制器1和第二空间光调制器2调制后,返回至分光/合光棱镜4。返回的光束一半被传输至反射面93的方向,另一半则传输至旋光器件92的方向。被传输至反射面93方向的光线被反射并导入至偏振合光面或偏振棱镜94。自分光/合光棱镜4射出至旋光器件92的光线其偏振方向再次被旋转45°,然后出射至偏振棱镜91。由于相比初始入射光,此时,这些光束的偏振方向已累计旋转90°。这些光将被偏振棱镜91反射 并导入偏振合光面94,与被反射面93反射的光线合路。
上述偏振棱镜91,旋光器件92,反射面93及偏振合光面94(或偏振棱镜)共同组成了一种非限定的二次合路系统9。当然,在其他的非限制性例子中,也可以使用其它的方式来构成二次合路系统。引入二次合路器件的好处在于可以提高光源利用率,提高亮度。此外,在偏振合光面94与偏振棱镜91之间还可以再加入一个旋光器件,将光线的偏振方向旋转45°。这样偏振棱镜91和反射面93分别输出到偏振合光面94上的光线的偏振方向将会相差90°,能够提高合光效率,同时不会相互干扰,避免出现由于精度问题产生的干涉条纹或造成散斑。
此外上述几个例子中光学装置的结构也仅是对本发明提供的光学装置的结构的示例性说明。事实上,本发明提供的光学装置还可以具有其他的结构,以实现更多的功能。例如本发明提供的光学装置还可以具有滤波器件。滤波器可以设置在第一空间光调制器1和第二空间光调制器2的输出光线的路径上,以便对第一空间光调制器1和第二空间光调制器2的输出光线进行滤波。通过滤波,能够使得输出光线中的至少一部分具有某些用户不想要的特定的角度的光线无法透过滤波器,例如过滤掉与光轴平行的0级光线。
又例如,本发明提供的光学装置还可以具有遮光器件。光学装置在其内部形成一个中间像面,这一中间像面可以是单纯通过调制第一空间光调制器1和第二空间光调制器2的相位形成的,也可以是由第一空间光调制器1和第二空间光调制器2与透镜、光阑等其他结构共同形成的。遮光器件可以设置在该中间像面的位置上,以遮挡用于形成目标光场的一部分像素的光线,使得在目标光场上,有一部分像素的位置没有被光线照射。例如在中间像面位置设置一透明材料,材料的中心位置为一不透光的黑点用于遮挡0级亮斑,正负1级之外的位置被光阑遮挡,这样可以保证图像中除1级之外多余的衍射级都被遮挡。
回到图3,根据一个非限制性的例子,本发明所提出的光学装置还具有控制器7。该控制器7与光源3连接并能够控制光源3的发光强度。其具体的控制方法可以是多样的。其中一种可选的方法是,控制器7首先提取输入信号的振幅分布信息A xy或光能分布信息A xy 2。然后,控制器7将每个帧的振幅分布信息或光能分布信息求和,再按照该和的结果控制所光源3的输出。
可选的,在当前的非限制性例子中,控制器7还与第一空间光调制器1和第二空间光调制器2连接。因此还能够控制该第一空间光调制器1和第二空间光调制器2。具体的控制方法可以是,控制器7能够生成第一控制相位
Figure PCTCN2018094224-appb-000091
和第二控制相位
Figure PCTCN2018094224-appb-000092
并根据生成的第一控制相位
Figure PCTCN2018094224-appb-000093
和第二控制相位
Figure PCTCN2018094224-appb-000094
来控制第一空间光调制器1和第二空间光调制器2的相位分布。
值得注意的是,当前的例子只是对本发明所提出的光学装置的一个可选的例子的说明。当前例子中的光学装置的许多部分都可以具有多种多样的设置方式。例如,控制器7在启动后,还可以先同步第一空间光调制器1、第二空间光调制器2和光源3。
继续参考图3,根据一个非限制性的例子,本发明所提出的光学装置的控制器7具有接口71。控制器7能够通过接口71接收来自外部的输入信号。输入信号可以是例如视频文件、流媒体文件等。该输入信号包括一个或多个帧,并且该输入信号的每个帧都包括强度信息。强度信息可以是振幅分布信息A xy,也可以是光能分布信息A xy 2。控制器7将输入信号转化为目标光场分布信息
Figure PCTCN2018094224-appb-000095
其中
Figure PCTCN2018094224-appb-000096
是代表输入信号的目标相位信息。此外,控制器7中存有光源3发射到第一空间光调制器1上的光线的情况。具体的,控制器7获得有光源3发射到第一空间光调制器1上光强,即第一调制器光强
Figure PCTCN2018094224-appb-000097
和光源3发射到第一空间光调制器1上的光线的相位信息,即第一调制器相位
Figure PCTCN2018094224-appb-000098
此处的“获得”应作为广义理解。例如,控制器7可以从接口71接收第一调制器光强
Figure PCTCN2018094224-appb-000099
第一调制器相位
Figure PCTCN2018094224-appb-000100
也可以是控制器7读取存储器中已经存有的第一调制器光强
Figure PCTCN2018094224-appb-000101
第一调制器相位
Figure PCTCN2018094224-appb-000102
相应的,控制器7还获得光源3发射到第二空间光调制器2上的光的第二调制器光强
Figure PCTCN2018094224-appb-000103
和第二调制器相位
Figure PCTCN2018094224-appb-000104
根据以上的信息,控制器7就能够通过运用以下的公式(1)计算出第一控制相位
Figure PCTCN2018094224-appb-000105
和第二控制相位
Figure PCTCN2018094224-appb-000106
Figure PCTCN2018094224-appb-000107
计算出第一控制相位
Figure PCTCN2018094224-appb-000108
和第二控制相位
Figure PCTCN2018094224-appb-000109
后,控制器7根据第一控制 相位
Figure PCTCN2018094224-appb-000110
和第二控制相位
Figure PCTCN2018094224-appb-000111
控制第一空间光调制器1和第二空间光调制器2的相位分布。
值得注意的是,上述例子只是控制器7控制第一空间光调制器1和第二空间光调制器2的相位分布的一个可选的方式。控制器7还可以以其他方式控制第一空间光调制器1和第二空间光调制器2的相位分布。例如,根据另一个非限制性的例子,控制器7通过接口接收输入信号,输入信号包括强度信息,强度信息是振幅分布信息A xy或光能分布信息A xy 2。在此基础上,控制器7默认输入到空间光调制1和2上的光的光强都是均匀分布且为1,相位分布也都相同,例如全为e i×0,则可以用下的公式(2)计算第一空间光调制器1的第一控制相位
Figure PCTCN2018094224-appb-000112
和第二空间光调制器2第二控制相位
Figure PCTCN2018094224-appb-000113
Figure PCTCN2018094224-appb-000114
此外,上述例子还可以在多个方面具有多种变化。一方面,根据一个非限制性的例子,控制器7还能够先对输入光场分布信息
Figure PCTCN2018094224-appb-000115
做光学变换,并将变换后的结果作为新的光场分布信息
Figure PCTCN2018094224-appb-000116
进行后续运算。其中光学变换可以是傅立叶正/逆变换或菲涅尔正逆变换或以角频谱的模型传播一定距离的光场等。
另一方面,控制器7将输入信号转化为输入光场分布信息
Figure PCTCN2018094224-appb-000117
的方法可以是多样的。根据一个非限制性的例子,输入信号中即包含了目标相位信息φ xy。此时,控制器7可以直接读取强度信息和目标相位信息φ xy,获得输入光场分布信息
Figure PCTCN2018094224-appb-000118
根据另一个非限制性的例子,输入信号包括输入信号主体和特征信息B,信号主体包括强度信息。控制器7根据强度信息获得振幅分布信息A xy,并根据振幅分布信息A xy和/或特征信息B生成目标相位信息
Figure PCTCN2018094224-appb-000119
控制器在生成目标相位信息
Figure PCTCN2018094224-appb-000120
时采用的具体方法可以是多样的。例如,可以使用Zernike多项式或Seidel多项式生成目标相位信息
Figure PCTCN2018094224-appb-000121
值得注意的是,输入信号除了包括信号主体外,包含的特征信息B的数量可以是一个或者多个。当输入信号包括信号主体和一个特征信息B n时,输入 信号的每个所述帧的振幅信息和/或相位信息都对应这一特征信息B n。当输入信号包括信号主体和多个特征信息B n时,输入信号的每个所述帧的振幅信息和/或相位信息则既可以对应多个特征信息B n中的一个,也可以对应多个特征信息B n中的多个。多个特征信息B n可以表示为一系列数和/或数组的组合。例如,其中B 1代表成像距离,B 2代表成像角度等,输入信号的每个帧的信息(例如振幅信息和/或相位信息)都可以被设置为对应多个特征信息B n中的一个或者多个,即各帧的信息可以对应不同的特征信息B n。此外,特征信息B n可以是包括各种内容的。例如,特征信息B n可以是包括代表用户和目标光场中所包含的一个或多个图像的一个或多个空间位置之间的距离的空间距离信息,代表用户的观看角度的角度信息、光学系统像差信息、观看者视力信息等。
特征信息B和/或目标相位信息
Figure PCTCN2018094224-appb-000122
的传输可以是与输入信号主体一起通过同一数据线传输的。或者,设置有一根或多根特定数据线以传输该特征信息B和/或目标相位信息
Figure PCTCN2018094224-appb-000123
同时,输入信号主体则通过特定数据线以外的其他传输方式传输。
当然,输入信号中也可以不包括特征信息B,在控制器7中预存有至少一个预存特征信息B 0。控制器7根据预存特征信息B 0生成所述目标相位信息
Figure PCTCN2018094224-appb-000124
其中预存特征信息B 0可以是一个数值,也可以是二维数组,例如相位信息
Figure PCTCN2018094224-appb-000125
当预存特征信息B 0是一个数值时,控制器7使用该预存特征信息B 0生成所述目标相位信息
Figure PCTCN2018094224-appb-000126
当预存特征信息B 0是二维数组,例如相位信息
Figure PCTCN2018094224-appb-000127
时,则控制器7可以直接将相位信息
Figure PCTCN2018094224-appb-000128
作为所述目标相位信息
Figure PCTCN2018094224-appb-000129
又或者控制器7可以预存有至少一个特征信息B 0,同时其它特征信息B n从外部输入,在这种设置下,控制器7根据预存特征信息B 0及外部输入特征信息B n计算后生成目标相位信息
Figure PCTCN2018094224-appb-000130
控制器7根据各种信息,计算出第一控制相位
Figure PCTCN2018094224-appb-000131
和第二控制相位
Figure PCTCN2018094224-appb-000132
的具体方法可以是多样的。根据一个非限制性的例子,控制器7根据输入光场分布 信息
Figure PCTCN2018094224-appb-000133
第一调制器光强
Figure PCTCN2018094224-appb-000134
第二调制器光强
Figure PCTCN2018094224-appb-000135
第一调制器相位
Figure PCTCN2018094224-appb-000136
和第二调制器相位
Figure PCTCN2018094224-appb-000137
以下列的公式(3)计算出第一控制相位
Figure PCTCN2018094224-appb-000138
Figure PCTCN2018094224-appb-000139
相应的,控制器7根据上述信息,下列的公式(4)计算出二控制相位
Figure PCTCN2018094224-appb-000140
Figure PCTCN2018094224-appb-000141
根据一个非限制性的例子,控制器7根据输入信号,获得振幅分布信息A xy的最大值A max。在此基础上,控制器7将输入光场分布
Figure PCTCN2018094224-appb-000142
以最大值A max归一化,获得归一化振幅信息
Figure PCTCN2018094224-appb-000143
在获得归一化振幅信息
Figure PCTCN2018094224-appb-000144
后,控制器7根据以下公式(5)计算出第一控制相位
Figure PCTCN2018094224-appb-000145
和第二控制相位
Figure PCTCN2018094224-appb-000146
Figure PCTCN2018094224-appb-000147
根据一个非限制性的例子,控制器7在根据归一化振幅信息
Figure PCTCN2018094224-appb-000148
第一调制器相位
Figure PCTCN2018094224-appb-000149
第二调制器相位
Figure PCTCN2018094224-appb-000150
以公式(3)和公式(4)分别计算出第一控制相位
Figure PCTCN2018094224-appb-000151
和第二控制相位
Figure PCTCN2018094224-appb-000152
后,可以先将第一控制相位
Figure PCTCN2018094224-appb-000153
和第二控制相位
Figure PCTCN2018094224-appb-000154
离散化/量化。控制器7根据离散化后的φ 1 xy和φ 2 xy控制第一空间光调制器1和第二空间光调制器2的相位分布。
根据一个非限制性的例子,控制器7获得光源3发射到第一空间光调制器1的第一调制器光强
Figure PCTCN2018094224-appb-000155
和/或第一调制器相位
Figure PCTCN2018094224-appb-000156
类似地,控制器7获得光源3发射到第二空间光调制器2上的第二调制器光强
Figure PCTCN2018094224-appb-000157
和/或第二调制器相位
Figure PCTCN2018094224-appb-000158
同时,控制器7还获得光学装置中的误差。在此基础上,控制器7可以通过调整第一控制相位
Figure PCTCN2018094224-appb-000159
和第二控制相位
Figure PCTCN2018094224-appb-000160
来补偿光学装置的误差。补偿光学装置的误差后,控制器7根据补偿后的第一控制相位
Figure PCTCN2018094224-appb-000161
和第二控制相 位
Figure PCTCN2018094224-appb-000162
控制第一空间光调制器1和第二空间光调制器2的相位分布。
上述非限制性例子中的补偿的具体方式可以是多样的。在一些例子中,原始设计时经过分路器后入射到空间光调制器1和2的第一调制器光强及相位和第二调制器光强及相位应该是一样的,即
Figure PCTCN2018094224-appb-000163
但在实际情况中,由于器件的误差及安装的误差,往往第一调制器光强及相位和第二调制器光强及相位并不完全相同,则此时可以通过对控制相位进行补偿来提高最终输出光场的质量。例如,由于器件的结构精度或安装精度,经过分路器后的光束1、2照射到空间光调制器1、2上的相对位置并不完全相同,则控制器7可以对第一控制相位
Figure PCTCN2018094224-appb-000164
和第二控制相位
Figure PCTCN2018094224-appb-000165
进行平移运算,并根据平移运算后的第一控制相位
Figure PCTCN2018094224-appb-000166
和第二控制相位
Figure PCTCN2018094224-appb-000167
控制第一空间光调制器1和第二空间光调制器2的相位分布。
又例如,由于原始设计或误差的原因,在分路后光线入射到空间光调制器1和2所经历的光程并不完全相同,则控制器7可以进行光程补偿。补偿的具体方法既可以是直接对第一控制相位
Figure PCTCN2018094224-appb-000168
和第二控制相位
Figure PCTCN2018094224-appb-000169
进行光程补偿。也可以是对接收到的第一调制器光强
Figure PCTCN2018094224-appb-000170
第一调制器相位
Figure PCTCN2018094224-appb-000171
第二调制器光强
Figure PCTCN2018094224-appb-000172
和第二调制器相位
Figure PCTCN2018094224-appb-000173
进行补偿。控制器7用补偿后的上述信息生成第一控制相位
Figure PCTCN2018094224-appb-000174
和第二控制相位
Figure PCTCN2018094224-appb-000175
然后控制器7根据光程补偿后的第一控制相位
Figure PCTCN2018094224-appb-000176
和第二控制相位
Figure PCTCN2018094224-appb-000177
控制第一空间光调制器1和第二空间光调制器2的相位分布。
又例如,空间光调制器1和2在安装过程中由于误差导致两个表面之间的角度与原设计有误差,则控制器7可以对第一控制相位
Figure PCTCN2018094224-appb-000178
和第二控制相位
Figure PCTCN2018094224-appb-000179
进行倾斜补偿,并根据倾斜补偿后的第一控制相位
Figure PCTCN2018094224-appb-000180
和第二控制相位
Figure PCTCN2018094224-appb-000181
控制第一空间光调制器1和第二空间光调制器2的相位分布。还例如,空间光调制器在生产制造或安装过程中可能产生形变,即表面并非一个完美的平面,从而造成最终输出光场中的误差,此时控制器7可以对第一控制相位
Figure PCTCN2018094224-appb-000182
和第二控制相位
Figure PCTCN2018094224-appb-000183
进行形变补偿,并根据形变补偿后的第一控制相位
Figure PCTCN2018094224-appb-000184
和第二控制相位
Figure PCTCN2018094224-appb-000185
控制第一空间光调制器1和第二空间光调制器2的相位分布。
值得注意的是,控制器7获得光源3发射到第一空间光调制器1和第二空间光调制器2上的第一调制器光强
Figure PCTCN2018094224-appb-000186
第一调制器相位
Figure PCTCN2018094224-appb-000187
第二调制器光强
Figure PCTCN2018094224-appb-000188
和第二调制器相位
Figure PCTCN2018094224-appb-000189
等信息的具体方式可以是多样的。例如,根据一个非限制性的例子,控制器7根据至少一个测量结果,结合高斯分布的数学模型,获得光源3输入到第一空间光调制器1和第二空间光调制器2上的第一调制器光强
Figure PCTCN2018094224-appb-000190
第一调制器相位
Figure PCTCN2018094224-appb-000191
第二调制器光强
Figure PCTCN2018094224-appb-000192
和第二调制器相位
Figure PCTCN2018094224-appb-000193
中的至少一个。由于光源3发出的光线一般符合高斯分布,这样的设置能够提升上述数据的精度。
值得注意的是,控制器7在上述实施例中生成第一调制器相位
Figure PCTCN2018094224-appb-000194
和第二调制器相位
Figure PCTCN2018094224-appb-000195
时,还可以结合第一空间光调制器1和第二空间光调制器2的相关信息。例如,控制器7根据第一空间光调制器1和第二空间光调制器2的像素尺寸、分辨率等物理参数结和特征信息使用Zernike多项式或Seidel多项式生成第一调制器相位
Figure PCTCN2018094224-appb-000196
和第二调制器相位
Figure PCTCN2018094224-appb-000197
这样的设置使得生成的第一调制器相位分布
Figure PCTCN2018094224-appb-000198
和第二调制器相位分布
Figure PCTCN2018094224-appb-000199
输出到第一空间光调制器1和第二空间光调制器2后,可以达到预期的效果。
此外,控制器7还可以利用其它信息来进一步提升输出效果,例如根据一个非限制性的例子,控制器7可以获得例如用户近视情况之类的用户视力信息,并将这些用户视力信息作为特征信息的至少一部分,来生成目标相位信息。
根据一个非限制性的例子,光源3还可以被设置为,在不同的时间段内分时发出不同频段的入射光线(例如,分时发出RGB颜色的光线),控制器7把每个帧根据光源3的频率分为多个子帧。然后,针对每个子帧生成子光场分布信息
Figure PCTCN2018094224-appb-000200
在此基础上,控制器7就能为不同频段的入射光线配置不同的子光场分布信息
Figure PCTCN2018094224-appb-000201
的分辨率,或者根据入射光线频率来调整目标相位信息和/或调整第一控制相位
Figure PCTCN2018094224-appb-000202
和第二控制相位
Figure PCTCN2018094224-appb-000203
以校正色差。可选的,在当前的非限制性 例子中,控制器7还能够在时域上累加多个子光场分布信息
Figure PCTCN2018094224-appb-000204
并根据子光场分布信息
Figure PCTCN2018094224-appb-000205
同步控制第一空间光调制器1和第二空间光调制器2的相位分布。
根据一个非限制性的例子,当目相位信息包含等效透镜或透镜阵列的相位分布时,等效透镜的光学中心可以是与空间光调制器的中心对齐的,也可以是偏离的。或者,透镜阵列中每个子透镜的光学中心与空间光调制器上对应相位区域的中心是偏离的。这样做的好处是可把有效的光场输出与空间光调制器产生的无效的0级衍射分离开来,便于后续对零级做遮蔽或者通过角度滤波的方式去除0级。
在上述非限制性例子中,许多部件都能够以不同的硬件实现。例如,控制器7,是GPU芯片、FPGA芯片或订制的ASIC芯片构成的系统。使用这些芯片制成的控制器7由于具有较强的数据处理能力,可以将每一帧转换为一振幅分布信号及相位分布信号。又例如,输入信号可以通过DISPLAY PORT、MIPI、LVDS、RGB、HDMI或自定义的视频数据接口中的至少一个传输。
值得注意的是,虽然上述例子中,仅对于本发明提出的光学装置内部的结构和其本身运作方式进行了说明。但事实上,本发明提出的光学装置还可以以集成的方式运作。即,可以使多个本发明的光学装置进行协同工作,组成一个光学系统,并设置一个总控制器,来对该系统内的多套光学装置进行控制。例如使用两套本发明所述的光学装置,作为一副AR眼镜,每套光学装置输出的光场分别投入佩戴者的左眼或右眼,两套光学装置输出的光场可以不同,同时又通过控制器同步这两套光学装置输出的光场,这样能够产生更好的观看效果。
虽然本发明已参照当前的具体实施例来描述,但是本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,在没有脱离本发明精神的情况下还可做出各种等效的变化或替换。因此,只要在本发明的实质精神范围内对上述实施例的变化、变型都将落在本申请的权利要求书的范围内。

Claims (42)

  1. 一种光学装置,包括光源、第一空间光调制器、第二空间光调制器,所述光源向所述第一空间光调制器和所述第二空间光调制器发射入射光线;
    所述第一空间光调制器和所述第二空间光调制器调制所述入射光线并将调制后的所述入射光线作为输出光线输出,输出自所述第一空间光调制器和第二空间光调制器的输出光线相互叠加形成目标光场。
  2. 根据权利要求1所述的光学装置,其特征在于:还包括分/合路器,所述光源适于向所述分/合路器发出所述入射光线;
    所述分/合路器适于将来自所述光源的所述入射光线传输至所述第一空间光调制器和第二空间光调制器,所述分/合路器适于将来自所述第一空间光调制器和第二空间光调制器的输出光线互叠加,并将相互叠加的所述输出光线输出。
  3. 根据权利要求2所述的光学装置,其特征在于:还包括第一透镜系统,所述第一透镜系统设置在所述光源和所述分/合路器之间,所述第一透镜系统适于调制来自所述光源的所述入射光线,并将调制后所述入射光线输入所述分/合路器。
  4. 根据权利要求2所述的光学装置,其特征在于:还包括波导器件,所述波导器件具有第一端和第二端,所述第一端设置在所述分/合路器的输出位置并适于接收来自所述分/合路器的输出光线;
    所述波导器件传输所述输出光线,并在所述第二端输出所述输出光线形成目标光场。
  5. 根据权利要求4所述的光学装置,其特征在于:所述波导器件对所述目标光场进行放大视场和/或扩展出瞳。
  6. 根据权利要求2所述的光学装置,其特征在于:还包括光栅器件,对所述目标光场进行放大视场和/或扩展出瞳。
  7. 根据权利要求1所述的光学装置,其特征在于:还包括滤波器件,所述滤波器对输出自所述第一空间光调制器和第二空间光调制器的所述输出光线进行滤波;
    所述滤波器使所述输出光线中的至少一部分具有预设角度的光线无法透过所述滤波器。
  8. 根据权利要求1所述的光学装置,其特征在于:还包括一遮光器件,所述光学装置在其内部形成一个中间像面,所述遮光器件设置在所述中间像面的位置;
    所述遮光器遮挡用于形成所述目标光场的一部分像素的光线。
  9. 根据权利要求1所述的光学装置,其特征在于:还包括控制器,所述控制器与所述光源连接并适于控制所述光源的发光强度。
  10. 根据权利要求1所述的光学装置,其特征在于:还包括控制器,所述控制器生成第一控制相位
    Figure PCTCN2018094224-appb-100001
    和第二控制相位
    Figure PCTCN2018094224-appb-100002
    并根据所述第一控制相位
    Figure PCTCN2018094224-appb-100003
    和第二控制相位
    Figure PCTCN2018094224-appb-100004
    控制所述第一空间光调制器和所述第二空间光调制器的相位分布。
  11. 根据权利要求10所述的光学装置,其特征在于:所述控制器具有接口,且适于通过所述接口接收输入信号,所述输入信号包括一个或多个帧,所述输入信号的每个所述帧包括强度信息,所述强度信息是振幅分布信息A xy或光能分布信息A xy 2,所述控制器将所述输入信号转化为输入光场分布信息
    Figure PCTCN2018094224-appb-100005
    其中
    Figure PCTCN2018094224-appb-100006
    是代表所述输入信号的目标相位信息;
    所述控制器中获得所述光源发射到所述第一空间光调制器上的光的第一调制器光强
    Figure PCTCN2018094224-appb-100007
    和第一调制器相位
    Figure PCTCN2018094224-appb-100008
    所述控制器获得所述光源发射到所述第二空间光调制器上的光的第二调制器光强
    Figure PCTCN2018094224-appb-100009
    和第二调制器相位
    Figure PCTCN2018094224-appb-100010
    所述控制器以公式
    Figure PCTCN2018094224-appb-100011
    计算出第一控制相位
    Figure PCTCN2018094224-appb-100012
    和第二控制相位
    Figure PCTCN2018094224-appb-100013
    所述控制器根据所述第一控制相位
    Figure PCTCN2018094224-appb-100014
    和所述第二控制相位
    Figure PCTCN2018094224-appb-100015
    控制所述第一空间光调制器和所述第二空间光调制器的相位分布。
  12. 根据权利要求10所述的光学装置,其特征在于:所述控制器具有接口,所述控制器通过所述接口接收输入信号,所述输入信号包括强度信息,所述强度信息是振幅分布信息A xy或光能分布信息A xy 2
    所述控制器根据公式
    Figure PCTCN2018094224-appb-100016
    计算所述第一空间光调制器的第一控制相位
    Figure PCTCN2018094224-appb-100017
    和所述第二空间光调制器第二控制相位
    Figure PCTCN2018094224-appb-100018
    所述控制器根据所述第一控制相位
    Figure PCTCN2018094224-appb-100019
    和所述第二控制相位
    Figure PCTCN2018094224-appb-100020
    控制所述第一空间光调制器和所述第二空间光调制器的相位分布。
  13. 根据权利要求11或12所述的光学装置,其特征在于:对于输入光场分布信息
    Figure PCTCN2018094224-appb-100021
    做光学变换,并将变换后的结果作为新的光场分布信息
    Figure PCTCN2018094224-appb-100022
  14. 根据权利要求11或12所述的光学装置,其特征在于:所述输入信号还包括所述目标相位信息φ xy,所述控制器读取所述强度信息和所述目标相位信息φ xy,获得所述输入光场分布信息
    Figure PCTCN2018094224-appb-100023
  15. 根据权利要求11或12所述的光学装置,其特征在于:所述输入信号包括输入信号主体和特征信息B,所述信号主体包括所述强度信息,所述控制器根据所述强度信息获得所述振幅分布信息A xy
    所述控制器根据所述振幅分布信息A xy和/或特征信息B生成所述目标相位信息
    Figure PCTCN2018094224-appb-100024
  16. 根据权利要求15中任一项所述的光学装置,其特征在于:所述控制器使用Zernike多项式或Seidel多项式,根据所述特征信息B生成所述目标相位信息
    Figure PCTCN2018094224-appb-100025
  17. 根据权利要求11所述的光学装置,其特征在于:所述控制器中预存有至少一个预存特征信息B 0,所述控制器根据所述预存特征信息B 0生成所述目标相位信息
    Figure PCTCN2018094224-appb-100026
  18. 根据权利要求11所述的光学装置,其特征在于:所述控制器根据所述输入光场分布信息
    Figure PCTCN2018094224-appb-100027
    所述第一调制器光强
    Figure PCTCN2018094224-appb-100028
    所述第二调制器光强
    Figure PCTCN2018094224-appb-100029
    所述第一调制器相位
    Figure PCTCN2018094224-appb-100030
    和所述第二调制器相位
    Figure PCTCN2018094224-appb-100031
    以公式
    Figure PCTCN2018094224-appb-100032
    计算出所述第一控制相位
    Figure PCTCN2018094224-appb-100033
    以公式
    Figure PCTCN2018094224-appb-100034
    计算出所述第二控制相位
    Figure PCTCN2018094224-appb-100035
    所述控制器将所述第一控制相位
    Figure PCTCN2018094224-appb-100036
    和所述第二控制相位
    Figure PCTCN2018094224-appb-100037
    离散化,根据离散化后的φ 1 xy和φ 2 xy控制所述第一空间光调制器和所述第二空间光调制器的相位分布。
  19. 根据权利要求11所述的光学装置,其特征在于:所述控制器根据所述输入信号,获得所述振幅分布信息A xy的最大值A max
    所述控制器将输入光场分布
    Figure PCTCN2018094224-appb-100038
    以所述最大值A max归一化,获得归一化振幅信息
    Figure PCTCN2018094224-appb-100039
    所述控制器根据公式
    Figure PCTCN2018094224-appb-100040
    计算出第一控制相位
    Figure PCTCN2018094224-appb-100041
    和第二控制相位
    Figure PCTCN2018094224-appb-100042
  20. 根据权利要求19所述的光学装置,其特征在于:所述控制器根据所述归一化振幅信息
    Figure PCTCN2018094224-appb-100043
    所述第一调制器相位
    Figure PCTCN2018094224-appb-100044
    所述第二调制器相位
    Figure PCTCN2018094224-appb-100045
    以公 式
    Figure PCTCN2018094224-appb-100046
    计算出第一控制相位
    Figure PCTCN2018094224-appb-100047
    以公式
    Figure PCTCN2018094224-appb-100048
    计算出第二控制相位
    Figure PCTCN2018094224-appb-100049
    所述控制器将所述第一控制相位
    Figure PCTCN2018094224-appb-100050
    和所述第二控制相位
    Figure PCTCN2018094224-appb-100051
    离散化,根据离散化后的φ 1 xy和φ 2 xy控制所述第一空间光调制器和所述第二空间光调制器的相位分布。
  21. 根据权利要求11所述的光学装置,其特征在于:所述控制器获得所述光学装置中的误差;
    所述控制器调整所述第一控制相位
    Figure PCTCN2018094224-appb-100052
    和所述第二控制相位
    Figure PCTCN2018094224-appb-100053
    补偿所述光学装置的误差;
    所述控制器根据补偿后的所述第一控制相位
    Figure PCTCN2018094224-appb-100054
    和所述第二控制相位
    Figure PCTCN2018094224-appb-100055
    控制所述第一空间光调制器和所述第二空间光调制器的相位分布。
  22. 根据权利要求21所述的光学装置,其特征在于:所述控制器对所述第一控制相位
    Figure PCTCN2018094224-appb-100056
    和所述第二控制相位
    Figure PCTCN2018094224-appb-100057
    进行平移运算;
    所述控制器根据平移运算后的所述第一控制相位
    Figure PCTCN2018094224-appb-100058
    和所述第二控制相位
    Figure PCTCN2018094224-appb-100059
    控制所述第一空间光调制器和所述第二空间光调制器的相位分布。
  23. 根据权利要求21所述的光学装置,其特征在于:所述控制器对所述第一控制相位
    Figure PCTCN2018094224-appb-100060
    和所述第二控制相位
    Figure PCTCN2018094224-appb-100061
    进行光程补偿;
    或所述控制器对获取的所述第一调制器光强
    Figure PCTCN2018094224-appb-100062
    所述第一调制器相位
    Figure PCTCN2018094224-appb-100063
    所述第二调制器光强
    Figure PCTCN2018094224-appb-100064
    和所述第二调制器相位
    Figure PCTCN2018094224-appb-100065
    进行光程补偿,生成所述第一控制相位
    Figure PCTCN2018094224-appb-100066
    和所述第二控制相位
    Figure PCTCN2018094224-appb-100067
    所述控制器根据光程补偿后的所述第一控制相位
    Figure PCTCN2018094224-appb-100068
    和所述第二控制相 位
    Figure PCTCN2018094224-appb-100069
    控制所述第一空间光调制器和所述第二空间光调制器的相位分布。
  24. 根据权利要求21所述的光学装置,其特征在于:所述控制器对所述第一控制相位
    Figure PCTCN2018094224-appb-100070
    和所述第二控制相位
    Figure PCTCN2018094224-appb-100071
    进行倾斜补偿;
    所述控制器根据倾斜补偿后的所述第一控制相位
    Figure PCTCN2018094224-appb-100072
    和所述第二控制相位
    Figure PCTCN2018094224-appb-100073
    控制所述第一空间光调制器和所述第二空间光调制器的相位分布。
  25. 根据权利要求21所述的光学装置,其特征在于:所述控制器对所述相位分布
    Figure PCTCN2018094224-appb-100074
    进行针对空间光调制器的形变进行形变补偿;
    所述控制器根据形变补偿后的所述第一控制相位
    Figure PCTCN2018094224-appb-100075
    和所述第二控制相位
    Figure PCTCN2018094224-appb-100076
    控制所述第一空间光调制器和所述第二空间光调制器的相位分布。
  26. 根据权利要求21所述的光学装置,其特征在于:所述控制器根据高斯分布和至少一个测量结果获得所述光源发射到所述第一空间光调制器和所述第二空间光调制器上的所述第一调制器光强
    Figure PCTCN2018094224-appb-100077
    所述第一调制器相位
    Figure PCTCN2018094224-appb-100078
    所述第二调制器光强
    Figure PCTCN2018094224-appb-100079
    和所述第二调制器相位
    Figure PCTCN2018094224-appb-100080
    中的至少一个。
  27. 根据权利要求21-26中任一项所述的光学装置,其特征在于:所述控制器根据所述第一空间光调制器和所述第二空间光调制器的物理参数和特征信息使用Zernike多项式或Seidel多项式生成所述第一调制器相位
    Figure PCTCN2018094224-appb-100081
    和所述第二调制器相位
    Figure PCTCN2018094224-appb-100082
  28. 根据权利要求11所述的光学装置,其特征在于:所述控制器获得用户视力信息,并将所述用户视力信息作为特征信息的至少一部分生成所述目标相位信息。
  29. 根据权利要求11所述的光学装置,其特征在于:所述光源分时发出不同 频段的入射光线,所述控制器将每个所述帧根据光源的频率分为多个子帧,并针对每个所述子帧生成子光场分布信息
    Figure PCTCN2018094224-appb-100083
    至少有一个所述子光场分布信息
    Figure PCTCN2018094224-appb-100084
    的分辨率与其他子光场分布信息
    Figure PCTCN2018094224-appb-100085
    的分辨率不同。
  30. 根据权利要求29所述的光学装置,其特征在于:所述控制器在时域上累加所述多个子光场分布信息
    Figure PCTCN2018094224-appb-100086
    并根据所述子光场分布信息
    Figure PCTCN2018094224-appb-100087
    同步控制所述第一空间光调制器和所述第二空间光调制器的相位分布。
  31. 根据权利要求15所述的光学装置,其特征在于:所述输入信号包括信号主体和一个特征信息B n,所述输入信号的每个所述帧的振幅信息和/或相位信息对应所述特征信息B n
    或所述输入信号包括信号主体和多个特征信息B n,所述输入信号的每个所述帧的振幅信息和/或相位信息对应所述多个特征信息B n中的一个或者多个。
  32. 根据权利要求11所述的光学装置,其特征在于:所述控制器与所述光源连接并适于控制所述光源的发光强度;
    所述控制器提取所述输入信号的振幅分布信息A xy或光能分布信息A xy 2,将每个所述帧的振幅分布信息或光能分布信息求和,并根据所述求和的结果控制所光源的输出。
  33. 根据权利要求31所述的光学装置,其特征在于:所述特征信息B包括代表用户和所述目标光场中所包含的图像的空间位置之间的距离的空间距离信息,代表用户的观看角度的角度信息、光学系统像差信息、观看者视力信息中的至少一个。
  34. 根据权利要求11所述的光学装置,其特征在于:当目标相位信息包含等效透镜或透镜阵列的相位分布时,所述等效透镜的光学中心与空间光调制器中心 偏离;或所述透镜阵列中每个子透镜的光学中心与所述空间光调制器上对应相位区域的中心偏离。
  35. 根据权利要求9-11中任意一项所述的光学装置,其特征在于:所述控制器,是GPU芯片、FPGA芯片或ASIC芯片,所述控制器将每一所述帧转换为一振幅分布信号及相位分布信号。
  36. 根据权利要求11或12所述的光学装置,其特征在于:所述输入信号通过DISPLAY PORT、MIPI、LVDS、RGB或HDMI的视频数据接口中的至少一个传输。
  37. 根据权利要求31所述的光学装置,其特征在于:特征信息B和/或目标相位信息
    Figure PCTCN2018094224-appb-100088
    通过至少一根特定数据线传输,所述输入信号主体以所述特定数据线以外的方式传输。
  38. 根据权利要求9、10或11所述的光学装置,其特征在于:所述控制器在启动后,同步所述第一空间光调制器、所述第二空间光调制器和所述光源。
  39. 根据权利要求1所述的光学装置,其中所述空间光调制器使用相位调制器件。
  40. 根据权利要求1所述的光学装置,其中所述空间光调制器使用相位调制的硅基液晶器件。
  41. 根据权利要求2所述的光学装置,还包括二次合光系统,将合光后未导入输出光路的光线与已进入输出光路的光线再次合路并共同输出。
  42. 一种光学系统,包括多套如权利要求1-26、28-34、37和39-41中任意一项的光学装置和一总控制器,所述总控制器控制所述多套光学装置协同工作。
PCT/CN2018/094224 2017-09-29 2018-07-03 光学系统 WO2019062248A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710910308.3 2017-09-29
CN201710910308.3A CN109581697A (zh) 2017-09-29 2017-09-29 光学系统

Publications (1)

Publication Number Publication Date
WO2019062248A1 true WO2019062248A1 (zh) 2019-04-04

Family

ID=65900496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094224 WO2019062248A1 (zh) 2017-09-29 2018-07-03 光学系统

Country Status (2)

Country Link
CN (1) CN109581697A (zh)
WO (1) WO2019062248A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7468828B2 (en) * 2006-10-19 2008-12-23 Alcatel-Lucent Usa Inc. Spot array generation using a MEMS light modulator
CN104216209A (zh) * 2012-09-28 2014-12-17 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统
WO2015068834A1 (ja) * 2013-11-11 2015-05-14 国立大学法人北海道大学 複素振幅像生成装置および複素振幅像生成方法
JP2017045496A (ja) * 2015-08-28 2017-03-02 国立大学法人宇都宮大学 光情報記録装置及び光情報記録方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3378032B2 (ja) * 1992-08-28 2003-02-17 浜松ホトニクス株式会社 人物照合装置
US5416618A (en) * 1992-11-10 1995-05-16 The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration Full complex modulation using two one-parameter spatial light modulators
US6769772B2 (en) * 2002-10-11 2004-08-03 Eastman Kodak Company Six color display apparatus having increased color gamut

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7468828B2 (en) * 2006-10-19 2008-12-23 Alcatel-Lucent Usa Inc. Spot array generation using a MEMS light modulator
CN104216209A (zh) * 2012-09-28 2014-12-17 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统
WO2015068834A1 (ja) * 2013-11-11 2015-05-14 国立大学法人北海道大学 複素振幅像生成装置および複素振幅像生成方法
JP2017045496A (ja) * 2015-08-28 2017-03-02 国立大学法人宇都宮大学 光情報記録装置及び光情報記録方法

Also Published As

Publication number Publication date
CN109581697A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
US11558590B2 (en) Efficient, dynamic, high contrast lensing with applications to imaging, illumination and projection
CN106842880B (zh) 全息图像生成方法、处理器及全息图像显示装置、设备
JP6845203B2 (ja) 非機械的ミラービームステアリングを備えたプロジェクタ表示システム
CN108107579B (zh) 一种基于空间光调制器的全息光场大视域大出瞳的近眼显示系统
US7527201B2 (en) Method of forming an optical pattern, optical pattern formation system, and optical tweezer
KR20200009062A (ko) 다층의 높은 동적 범위 헤드 마운티드 디스플레이
JP2021526236A (ja) 光視野均一性の改善のための光学システムと方法
CN108957746B (zh) 近眼装置
CN110308566B (zh) 显示系统及双目系统
KR20150072151A (ko) Slm을 이용하여 홀로그램 엘리먼트 이미지들을 기록하는 홀로그램 기록 장치 및 방법
US11016442B2 (en) Apparatus for displaying holographic images and method of controlling the same
US9756317B2 (en) Holographic display method and apparatus using optical fiber array backlight for portable device
WO2019041812A1 (zh) 显示系统和显示方法
KR101577096B1 (ko) 광 제어 장치 및 광 제어 방법
JP2007506988A (ja) 複数の位相コントラストフィルタによる所望波面の生成
KR101605219B1 (ko) 광 제어 장치 및 광 제어 방법
CN108762033B (zh) 成像方法和光学系统及其存储介质、芯片与组合
KR20210078421A (ko) 홀로그래픽 이미지 정렬
US12092820B2 (en) Holographic virtual reality display
WO2019062248A1 (zh) 光学系统
JP2011095839A (ja) 補正画像データ生成方法及び表示装置
TWI790969B (zh) 適用液晶覆矽面板的投影裝置與投射方法
JP2003015079A (ja) 立体像表示方法及び表示装置
JP6614636B2 (ja) ホログラムスクリーンの製造方法
CN107797435A (zh) 一种基于光衰减原理的彩色全息显示系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862137

Country of ref document: EP

Kind code of ref document: A1