CN110050235B - 全息投影仪 - Google Patents

全息投影仪 Download PDF

Info

Publication number
CN110050235B
CN110050235B CN201780074459.8A CN201780074459A CN110050235B CN 110050235 B CN110050235 B CN 110050235B CN 201780074459 A CN201780074459 A CN 201780074459A CN 110050235 B CN110050235 B CN 110050235B
Authority
CN
China
Prior art keywords
image
light
projection system
holographic
holographic projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780074459.8A
Other languages
English (en)
Other versions
CN110050235A (zh
Inventor
J.克里斯特马斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dualitas Ltd
Original Assignee
Dualitas Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB1620538.7A external-priority patent/GB2559112B/en
Priority claimed from GB1620539.5A external-priority patent/GB2552851B/en
Priority claimed from GB1620537.9A external-priority patent/GB2552850B/en
Priority claimed from GB1620540.3A external-priority patent/GB2554472B/en
Application filed by Dualitas Ltd filed Critical Dualitas Ltd
Publication of CN110050235A publication Critical patent/CN110050235A/zh
Application granted granted Critical
Publication of CN110050235B publication Critical patent/CN110050235B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2249Holobject properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0808Methods of numerical synthesis, e.g. coherent ray tracing [CRT], diffraction specific
    • G03H2001/0825Numerical processing in hologram space, e.g. combination of the CGH [computer generated hologram] with a numerical optical element
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • G03H2001/2213Diffusing screen revealing the real holobject, e.g. container filed with gel to reveal the 3D holobject
    • G03H2001/2215Plane screen
    • G03H2001/2218Plane screen being perpendicular to optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2244Means for detecting or recording the holobject
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2244Means for detecting or recording the holobject
    • G03H2001/2247Means for detecting or recording the holobject for testing the hologram or holobject
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2249Holobject properties
    • G03H2001/2252Location of the holobject
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2249Holobject properties
    • G03H2001/2263Multicoloured holobject
    • G03H2001/2271RGB holobject
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/202D object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/10Spectral composition
    • G03H2222/17White light
    • G03H2222/18RGB trichrome light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2226/00Electro-optic or electronic components relating to digital holography
    • G03H2226/11Electro-optic recording means, e.g. CCD, pyroelectric sensors
    • G03H2226/13Multiple recording means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2240/00Hologram nature or properties
    • G03H2240/50Parameters or numerical values associated with holography, e.g. peel strength
    • G03H2240/51Intensity, power or luminance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Holo Graphy (AREA)
  • Liquid Crystal (AREA)

Abstract

提供了一种全息投影系统,包括光接收表面(125)、光源(110)、空间光调制器(140)和检测器。光源被设置成输出光。空间光调制器被设置成接收来自光源的光,并根据寻址到空间光调制器的计算机生成的全息图输出空间调制光,以在光接收表面上形成图像,其中图像(700)包括包含给用户的信息的主图像区域(710)和次图像区域(720)。检测器被设置成检测去往或来自图像的次图像区域的光的光功率,其中检测器的有效光检测区域和次图像区域具有对应的形状。在实施例中,该系统允许全息重建的光学对准。

Description

全息投影仪
技术领域
本公开涉及一种投影仪。更具体地,本公开涉及一种全息投影仪、全息投影系统、一种控制投影的方法和一种控制全息投影系统的方法。一些实施例涉及一种平视显示器和一种头戴式显示器。一些实施例涉及一种在全息投影系统中控制图像亮度的方法。一些实施例涉及一种控制复合彩色全息投影系统的色彩平衡的方法。一些实施例涉及一种在全息投影系统中对准全息重建的方法。
背景技术
从物体散射的光包含振幅和相位信息。该振幅和相位信息可以通过众所周知的干涉技术在例如感光板上而被捕获,以形成包括干涉条纹的全息记录或“全息图”。全息图可以通过用合适的光照明来重建,以形成代表原始物体的二维(重放图像)或三维全息重建。
计算机生成全息术可以数值模拟干涉过程。计算机生成的全息图“CGH”可以通过基于数学变换如菲涅耳或傅里叶变换的技术来计算。这些类型的全息图可以称为菲涅耳全息图或傅里叶全息图。傅里叶全息图可以被认为是物体的傅里叶域表示或者物体的频域表示。例如,也可以通过相干光线跟踪或点云技术来计算CGH。
CGH可以被编码在空间光调制器“SLM”上,该空间光调制器被设置成调制入射光的振幅和/或相位。例如,光调制可以使用电可寻址液晶、光可寻址液晶或微镜来实现。
SLM可以包括多个可单独寻址的像素,这些像素也可以被称为单元或元件。光调制方案可以是二元的、多级的或连续的。
替代地,该设备可以是连续的(即不是由像素组成的),因此光调制可以在整个设备上是连续的。SLM可以是反射性的,这意味着调制光从SLM反射输出。SLM同样可以是透射的,这意味着调制光从SLM透射输出。
可以使用所描述的技术来提供全息投影仪。这种投影仪已经在视频投影仪、平视显示器、“HUD”和头戴显示器“HMD”例如包括近眼设备中得到应用。
这里公开了一种改进的全息投影系统。
发明内容
本公开的各方面在所附独立权利要求中定义。
提供了一种投影方法,其包括:用来自光源的光照射空间光调制器,以在光接收表面上形成图像,其中该图像包括次图像区域和包含给用户的信息的主图像区域;以及检测来自次图像区域的光。该方法可以包括检测来自次图像区域的光的属性。该方法可以包括例如通过响应于来自次图像区域的光的检测属性改变来自光源的光的光学属性来改变图像。
提供了一种全息投影方法,其包括:在空间光调制器上表示计算机生成的全息图;用来自光源的光照射全息图以在光接收表面上形成图像,其中图像包括次图像区域和包含给用户的信息的主图像区域;以及检测次图像区域的光功率。该方法还可以包括响应于检测到的次图像区域的光功率来改变来自光源的光的光功率。
发明人认识到,本公开的全息投影仪可以提供闭环功率反馈系统,以便解决如果图像内容量变化,全息重建的图像亮度不恒定的问题。次图像区域的光功率可以被视为图像亮度的表示(例如,作为明度测量),并且被用作控制整体图像亮度的反馈信号,特别是如果次图像区域的面积是固定的或者光功率是根据辐射通量测量的,即归一化到单位面积。
该方法还可以包括:在空间光调制器上表示第二计算机生成的全息图;用来自光源的第二光照射第二全息图,以在光接收表面上形成第二图像,其中第二图像包括次图像区域和包含给用户的信息的主图像区域,并且其中第一图像和第二图像基本重合;以及检测第二图像的次图像区域的光功率。该方法还可以包括响应于检测到的第一和/或第二图像的次图像区域的光功率来改变第一和/或第二光的光功率,以便改变第一和/或第二图像的各自亮度,从而改变复合图像的色彩平衡。该方法可以扩展到任何数量的全息图和相应的图像。在一些实施例中,通过叠加由三个相应全息图形成的红色、绿色和蓝色图像来提供复合彩色全息重建。虽然相应的主图像区域应该对准到足够的程度以允许观察者感知复合图像,但是相应的次图像区域不需要对准(尽管它们可以对准),并且可以在空间上不同。
发明人认识到,本公开的复合彩色全息投影仪可以提供闭环功率反馈系统,以便解决如果单色图像内容的相对量变化则全息重建的色彩平衡不恒定的问题。
该方法还可以包括执行光学对准过程,该过程包括改变图像在屏幕上的位置,并检测在图像的多个位置处截取的去往或来自次图像区域的光的光功率。该方法还可以包括确定产生最大检测光功率的图像的位置。发明人在此公开了一种使用闭环功率反馈系统对准投影图像的便利的方法。
贯穿本公开内容,参考图像的图像区域的光功率。可以理解,更具体地,这种参考涉及图像的图像区域的光,更具体地,从图像区域发出或传播到图像区域的光的光功率。光功率可以通过检测器来测量,该检测器通过截取分别从图像区域或向图像区域传播的光而检测从图像区域发出的光或被导向图像区域的光。检测到的光功率可以被直接用作反馈信号,或者可以被适当地缩放,例如用于图像区域的面积归一化,这在例如图像区域的面积随时间变化时可能是有用的。光功率被理解为指传播到所讨论的图像区域或者从所讨论的图像区域传播的光子的能量,因此用绝对量的W(或Js-1)或归一化为面积的Wm-2(或Js-1m-2)来测量。可以应用其他比例因子来测量光功率,例如根据感知加权的明度,视情况以cd或cdm-2为单位。光功率也可以根据立体角进行归一化,因此可以用Js-1m-2sr-1单位或相应的感知比例单位cdm-2sr-1测量为辐射强度。
术语“全息图”用于指包含关于物体的振幅和/或相位信息的记录。术语“全息重建”用于指通过照射全息图形成的物体的光学重建。术语“重放场”用于指形成全息重建的空间中的平面。当提到图像(或图像区域)时,这通常不与重放场的整个区域一致,而是指重放场的那些区域,即其中图像(或图像区域)的光与重放场相交,例如入射到与重放场一致的光接收表面或屏幕上的区域。
术语“编码”、“写入”或“寻址”用于描述向SLM的多个像素提供分别确定每个像素的调制水平的相应多个控制值的过程。可以说,SLM的像素被配置成响应于接收到多个控制值而“显示”光调制分布。
术语“光”在这里以其最广泛的意义使用。一些实施例同样适用于可见光、红外光和紫外光及其任意组合。
一些实施例仅通过示例的方式描述了1D和2D全息重建。在其他实施例中,全息重建是3D全息重建。也就是说,在一些实施例中,每个计算机生成的全息图形成3D全息重建。
附图说明
仅参考以下附图通过示例的方式描述具体实施例:
图1是示出在屏幕上产生全息重建的反射型SLM的示意图;
图2A示出了示例格希贝格-萨克斯顿型(Gerchberg-Saxton)算法的第一次迭代;
图2B示出了示例格希贝格-萨克斯顿型算法的第二次和后续迭代;
图3是反射型LCOSSLM的示意图;
图4示出了根据实施例的全息投影系统;
图5示出了根据实施例的激光驱动器;
图6示出了根据实施例的LCOS驱动器;
图7示出了根据实施例的示例图像;
图8示出了根据进一步实施例的全息投影系统;
图9示出了根据进一步实施例的激光驱动器;
图10示出了根据进一步实施例的LCOS驱动器;
图11示出了根据实施例的第一、第二和第三检测器的配置;和
图12示出了用于确定全息重建焦平面的对准方法。
在所有附图中,相同的附图标记将用于指代相同或相似的部件。
具体实施方式
本发明不限于下面描述的实施例,而是延伸到所附权利要求的全部范围。也就是说,本发明可以以不同的形式具体实施,并且不应该被解释为限于所描述的实施例,这些实施例是为了说明的目的而阐述的。
除非另有说明,单数形式的术语可以包括复数形式。
被描述为形成在另一结构的上部/下部或者在另一结构之上/之下的结构应当被解释为包括结构彼此接触的情况,并且还包括第三结构设置在它们之间的情况。
在描述时间关系时,例如,当事件的时间顺序被描述为“之后”、“后续”、“下一个”、“之前”等时,除非另有说明,否则本公开应当被认为包括连续和非连续事件。例如,除非使用“恰好”、“立即”或“直接”等措辞,否则描述应理解为包括不连续的情况。
虽然术语“第一”、“第二”等可以在此用于描述各种元素,这些元素不受这些术语的限制。这些术语仅用于区分一种元素和另一种元素。例如,在不脱离所附权利要求的范围的情况下,第一元素可以被称为第二元素,并且类似地,第二元素可以被称为第一元素。
不同实施例的特征可以部分或全部彼此连接或组合,并且可以彼此不同地相互操作。一些实施例可以彼此独立地执行,或者可以以相互依赖的关系一起执行。
已经发现,可接受质量的全息重建可以由仅包含与原始物体相关的相位信息的“全息图”形成。这种全息记录可以被称为仅相位全息图。一些实施例仅通过示例的方式涉及仅相位全息术。也就是说,在一些实施例中,空间光调制器仅对入射光应用相位延迟分布。在一些实施例中,每个像素施加的相位延迟是多级的。也就是说,每个像素可以被设置在离散数量的相位水平之一。离散数量的相位水平可以从一组大得多的相位水平或“调色板”中选择。
在一些实施例中,计算机生成的全息图是用于重建的物体的傅里叶变换。在这些实施例中,可以说全息图是物体的傅里叶域或频域表示。图1示出了一个实施例,该实施例使用反射型SLM来显示仅相位傅里叶全息图,并在重放场,例如在诸如屏幕或漫射体的光接收表面上产生全息重建。
光源110,例如激光器或激光二极管,被设置成通过准直透镜111照射SLM 140。准直透镜使得光的大致平坦的波前入射到SLM上。波前的方向是不垂直的(例如,偏离透明层平面的真正正交方向两到三度)。在其他实施例中,例如,使用分束器以垂直入射提供大致平面的波前。在图1所示的示例中,该设置使得来自光源的光从SLM的镜射后表面反射,并与相位调制层相互作用以形成出射波前112。出射波前112应用于包括傅里叶变换透镜120的光学设备,其焦点在光接收表面125,例如漫射体或屏幕上。
傅里叶变换透镜120接收来自SLM的相位调制光束,并执行频率空间变换以在光接收表面125产生全息重建。
光入射穿过SLM的相位调制层(即相位调制元件阵列)。离开相位调制层的调制光分布在重放场中。值得注意的是,在这种全息术中,全息图的每个像素都有助于整个重建。也就是说,重放场的特定点和特定相位调制元件之间没有一对一的相关性。
在这些实施例中,全息重建在空间中的位置(深度)由傅里叶变换透镜的屈光(聚焦)度决定。在图1所示的实施例中,傅里叶变换透镜是物理透镜。即,傅里叶变换透镜是光学傅里叶变换透镜,并且傅里叶变换是光学执行的。任何透镜都可以充当傅里叶变换透镜,但是透镜的性能会限制其执行傅里叶变换的精度。本领域技术人员理解如何使用透镜来执行光学傅里叶变换。然而,在其他实施例中,傅里叶变换通过在全息数据中包括透镜数据来计算执行。也就是说,全息图包括代表透镜的数据以及代表物体的数据。在计算机生成的全息图的领域中,已知如何计算代表透镜的全息数据,使得所得全息重建的光就仿佛在SLM之后的光束路径中存在透镜一样传播。代表透镜的全息数据可以被称为软件透镜、全息图的透镜分量或透镜数据。例如,可以通过计算透镜的每个点由于其折射率和空间变化的光程长度而引起的相位延迟来形成仅相位全息透镜。例如,凸透镜中心的光程长度大于透镜边缘的光程长度。仅振幅全息透镜可以由菲涅耳波带片形成。在计算机生成的全息图的领域中,还已知如何将代表透镜的全息数据(透镜分量)与代表物体的全息数据相结合,使得傅里叶变换可以在不需要物理傅里叶透镜的情况下执行。在一些实施例中,透镜数据通过简单的矢量相加与全息数据相结合。在一些实施例中,物理透镜与软件透镜结合使用来执行傅里叶变换。替代地,在其他实施例中,傅里叶变换透镜被完全省略,使得全息重建发生在远场中。在进一步的实施例中,全息图可以附加地或替代地包括光栅数据,即,被设置成执行光栅函数(如光束控制)的数据,以影响图像在重放场中的位置。同样,在计算机生成的全息图的领域中,已知如何计算这种全息数据并将其与代表物体的全息数据相结合。例如,可以通过为闪耀光栅表面上每个点引起的相位延迟建模来形成仅相位全息光栅。仅振幅全息光栅可以简单地叠加在代表物体的仅振幅全息图上,以提供仅振幅全息图的角度控制。
2D图像的傅里叶全息图可以用多种方法计算,包括使用诸如格希贝格-萨克斯顿算法的算法。格希贝格-萨克斯顿算法可用于从空间域(例如2D图像)中的振幅信息导出傅里叶域中的相位信息。也就是说,可以仅从空间域中的强度或振幅信息中“检索”与物体相关的相位信息。因此,可以计算物体的仅相位傅里叶变换。
在一些实施例中,使用格希贝格-萨克斯顿算法或其变体从振幅信息计算计算机生成的全息图。格希贝格-萨克斯顿算法考虑了当光束在平面A和平面B中的强度截面IA(x,y)和IB(x,y)分别已知并且IA(x,y)和IB(x,y)通过单个傅里叶变换相关时的相位检索问题。对于给定的强度截面,分别找到平面A和平面B中的相位分布的近似值ψA(x,y)和ψB(x,y)。格希贝格-萨克斯顿算法通过遵照迭代过程找到这个问题的解决方案。
格希贝格-萨克斯顿算法迭代地应用空间和频谱约束,同时在空间域和傅里叶(频谱)域之间重复传输代表IA(x,y)和IB(x,y)的数据集(振幅和相位)。空间和频谱约束分别是IA(x,y)和IB(x,y)。空间域或频谱域中的约束被施加到数据集的振幅上。通过一系列迭代检索相应的相位信息。
在一些实施例中,全息图是使用基于格希贝格-萨克斯顿算法的算法来计算的,例如在英国专利2,498,170或2,501,112中描述的算法,在此这些专利通过引用将其全部并入。
根据一些实施例,基于格希贝格-萨克斯顿算法的算法检索数据集的傅里叶变换的相位信息ψ[u,v],这产生已知的振幅信息T[x,y]。振幅信息T[x,y]代表目标图像(例如照片)。相位信息ψ[u,v]用于在图像平面上产生目标图像的全息代表。
由于幅度和相位在傅里叶变换中本质上是结合的,所以变换后的幅度(以及相位)包含关于所计算的数据集的精度的有用信息。因此,该算法可以提供幅度和相位信息的反馈。
下面参照图2描述根据本公开的一些实施例的基于格希贝格-萨克斯顿算法的示例算法。该算法迭代收敛。该算法被设置来产生表示输入图像的全息图。该算法可用于确定仅振幅全息图、仅相位全息图或完全复合全息图。这里公开的示例仅通过示例涉及产生仅相位全息图。图2A展示了算法的第一次迭代,代表了算法的核心。图2B示出了算法的后续迭代。
出于描述的目的,振幅和相位信息被分开考虑,尽管它们本质上被组合以形成复合复数数据集。参考图2A,该算法的核心可以被认为是具有包括第一复数数据的输入和包括第四复数数据的输出。第一复数数据包括第一振幅分量201和第一相位分量203。第四复数数据包括第四振幅分量211和第四相位分量213。在这个示例中,输入图像是二维的。因此,振幅和相位信息是远场图像中空间坐标(x,y)的函数和全息图场的(u,v)的函数。也就是说,每个平面上的振幅和相位是每个平面上的振幅和相位分布。
在该第一次迭代中,第一振幅分量201是计算全息图的输入图像210。在该第一次迭代中,第一相位分量203是仅用作算法起点的随机相位分量230。处理框250对第一复数数据执行傅里叶变换,以形成具有第二振幅分量(未示出)和第二相位信息205的第二复数数据。在该示例中,处理框252丢弃第二振幅分量,并用第三振幅分量207代替。在其他示例中,处理框252执行不同的函数来产生第三振幅分量207。在该示例中,第三振幅分量207是代表光源的分布。第二相位分量205由处理框254量化,以产生第三相位分量209。第三振幅分量207和第三相位分量209形成第三复数数据。第三复数数据被输入到执行傅里叶逆变换的处理框256。处理框256输出具有第四振幅分量211和第四相位分量213的第四复数数据。第四复数数据用于形成下一次迭代的输入。也就是说,第n次迭代的第四复数数据用于形成第(n+1)次迭代的第一复数数据集。
图2B显示了该算法的第二次和后续迭代。处理框250接收第一复数数据,该第一复数数据具有从先前迭代的第四振幅分量211导出的第一振幅分量201和对应于先前迭代的第四相位分量的第一相位分量213。
在该示例中,如下所述,第一振幅分量201从先前迭代的第四振幅分量211中导出。处理框258从先前迭代的第四振幅分量211中减去输入图像210,以形成第五振幅分量215。处理框260将第五振幅分量215缩放增益因子α,并从输入图像210中减去它。这通过以下等式数学表达:
Rn+1[x,y]=F’{exp(iΨn[u,v])}
Ψn[u,v]=∠F{η·exp(i∠[x,y])}
η=T[x,y]-α(|Rn[x,y]|-T[x,y])
其中:
F’是傅里叶逆变换;
F是正向傅里叶变换;
R是重放场;
T是目标图像;
∠是角度信息;
ψ是角度信息的量化版本;
ε是新的目标幅度,ε≥0;并且
α是增益元素~1。
增益元素α可以是固定的或可变的。在示例中,增益元素α基于输入目标图像数据的大小和速率来确定。
处理框250、252、254和256的功能如参考图2A所述。在最后一次迭代中,输出代表输入图像210的仅相位全息图ψ(u,v)。可以说,仅相位全息图ψ(u,v)包括频率或傅里叶域中的相位分布。
在其他示例中,第二振幅分量没有被丢弃。相反,从第二振幅分量中减去输入图像210,并且从输入图像210中减去该振幅分量的倍数,以产生第三振幅分量307。在其他示例中,第四相位分量没有被完全反馈,并且仅反馈与其例如最后两次迭代的变化成比例的一部分。
在一些实施例中,提供了实时引擎,该实时引擎被设置成接收图像数据并使用该算法实时计算全息图。在一些实施例中,图像数据是包括图像帧序列的视频。在其他实施例中,全息图是预先计算的,存储在计算机存储器中,并且根据需要被调用以显示在SLM上。也就是说,在一些实施例中,提供了预定全息图的储存库。
然而,一些实施例仅作为示例涉及傅里叶全息术和格希贝格-萨克斯顿型算法。本公开同样适用于菲涅耳全息术和通过其他技术计算的全息图,例如基于点云法的技术。
本公开可以使用多种不同类型的SLM中的任何一种来实施。SLM可以输出反射或透射的空间调制光。在一些实施例中,该SLM是硅基液晶(LCOS)SLM,但是本公开不限于这种类型的SLM。
LCOS设备能够在小孔径中显示大阵列的仅相位元素。小元素(通常约为10微米或更小)产生实际衍射角(几度),因此光学系统不需要很长的光路。相对于较大的液晶设备的孔径,更容易充分照亮LCOS SLM的小孔径(几平方厘米)。LCOS SLM也有很大的孔径比,像素之间几乎没有死区(因为驱动它们的电路埋在镜子下面)。这是降低重放场中光学噪声的重要问题。使用硅背板的优点为像素是光学平坦的,这对相位调制设备很重要。
下面参考图3,仅通过示例的方式描述合适的LCOS SLM。使用单晶硅衬底302形成LCOS设备。它具有方形平面铝电极301的2D阵列,由间隙301a隔开,设置在衬底的上表面上。每个电极301可以通过埋在衬底302中的电路302a寻址。每个电极形成各自的平面镜。对准层303设置在电极阵列上,液晶层304设置在对准层303上。第二对准层305设置在液晶层304上,例如玻璃制成的平面透明层306设置在第二对准层305上。例如ITO制成的单个透明电极307设置在透明层306和第二对准层305之间。
每个方形电极301与透明电极307的覆盖区域和中间液晶材料一起限定可控相位调制元件308,通常称为像素。考虑到像素301a之间的空间,有效像素面积或填充因子是光学有效的总像素的百分比。通过相对于透明电极307控制施加到每个电极301的电压,可以改变各个相位调制元件的液晶材料的属性,从而为入射到其上的光提供可变延迟。其效果是为波前提供仅相位调制,即没有振幅效应发生。
所描述的LCOS SLM输出反射的空间调制光,但是本公开同样适用于透射型LCOSSLM。反射型LCOS SLM的优势在于信号线、栅极线和晶体管位于镜面之下,这导致高填充因子(通常大于90%)和高分辨率。使用反射型LCOS空间光调制器的另一个优点是,液晶层的厚度可以是使用透射设备时所需厚度的一半。这大大提高了液晶的切换速度(运动视频图像投影的关键点)。
图4示出了根据实施例的全息投影系统400。全息投影系统400包括用于USB控制信号的第一输入401、用于输入功率的第二输入402和用于HDMI的第三输入403。全息投影系统400包括激光控制器410、LCOS驱动器420、电力变压器430、环境光传感器440、光接收表面450(例如漫射体或屏幕)、光传感器460、激光器470和SLM 480。
到全息投影系统400的用于USB控制信号的第一输入401由激光控制器410的第一输入端接收。激光控制器410还被设置成接收来自电力变压器430的第一电力431、来自LCOS驱动器420的同步信号421、来自环境光传感器440的环境光信号441和来自光传感器460的光检测信号461。激光驱动器输出411连接到激光器470。
全息投影系统400的用于电力的第二输入402由电力变压器430的输入端接收。电力变压器430包括:向激光控制器410提供第一电力431的第一输出端;向漫射体450提供第二电力432的第二输出端;和向LCOS驱动器420提供第三电力433的第三输出端。在一些实施例中,漫射体不通电,并且可以省略第二电力432。
到全息投影系统400的用于HDMI的第三输入403由LCOS驱动器420的第一输入端接收。如上所述,LCOS驱动器420还被设置成从电力变压器430接收第三电力433。LCOS驱动器被设置成将同步信号421输出到激光控制器410,并将控制信号422(包括光调制数据)输出到SLM 480。
激光器470被设置成根据激光驱动器输出411照射SLM 480。SLM的每个像素接收一部分入射光。根据控制信号422控制SLM 480,以空间调制接收的光。控制信号422包括表示全息图的指令。也就是说,控制信号422包括全息数据。SLM的每个像素被单独寻址,以独立调制入射光的相应部分。像素共同代表全息图案。因此,光调制图案或分布被应用于接收的波前。在一些实施例中,相位延迟分布被应用于波前。可以说,SLM“显示”全息图。
来自SLM的空间调制光在光接收表面450上形成图像,提供重放场。该图像是全息重建。全息重建形成在全息重放平面上的全息重放区域内。全息重建可能需要光学设备,例如图3中未示出的傅里叶变换透镜。替代地,控制信号422还包括附加全息数据,该附加全息数据被设置成执行重建,而不需要物理光学器件。
图5示出了根据实施例的全息投影系统的激光驱动器510。激光驱动器510包括微控制器520,微控制器520被设置成接收用于USB控制信号的第一输入501。本公开仅作为示例涉及USB控制信号,并且可以使用任何信号标准。激光驱动器510还被设置成接收来自LCOS驱动器的同步信号521、来自环境光传感器的环境光信号541(经由ADC 543)和来自光传感器的光检测信号561(经由ADC 563)。激光驱动器输出511连接到DAC 530的输入。DAC530的输出连接到激光驱动器550的输入。激光驱动器550的输出连接到激光器570的驱动器。激光驱动器550向微控制器520的ADC 580提供电流反馈560。
图6示出了根据实施例的全息投影系统的LCOS驱动器620。LCOS驱动器620包括HDMI接收器芯片650、现场可编程门阵列(FPGA)660和多个局部变压器670a-670f。HDMI接收器芯片650具有被设置成接收全息投影系统的第三输入603的输入端和连接到FPGA 660的输入端的输出。FPGA 660的输出连接到LCOS 680。
该图像具有包含给用户的信息的主图像区域和不同于主图像区域(例如与主图像区域隔开)的次图像区域。在一些实施例中,图像的任何剩余区域可以用作噪声转储区(noise dump)。主图像区域可以包括增强现实信息,例如指示速度或位置的信息。光传感器460被设置成测量次图像区域的光功率。也就是说,光传感器460被设置成接收由光接收表面450的对应于次图像区域的部分漫反射(或透射)的光或传播到该部分的被拦截的光。光传感器可以位于光接收表面的前面或后面。在一些未示出的实施例中,光传感器位于光接收表面后面,以提供降低噪声的降斑效果。光传感器可以相对于光路定位在光接收表面之前或之后。在一些实施例中,次图像区域包括主要不打算给用户的信息。在一些实施例中,光传感器460被设置成使得它不接收来自主图像区域的任何光。
发明人认识到,利用全息投影系统,可以对全息图中的附加信息进行计算编码,这些附加信息可以专用于向系统提供反馈的目的。该反馈可用于提供改进的全息重建。在一些实施例中,反馈用于实时控制投影系统的参数。
发明人发现,利用全息投影系统,图像的亮度取决于显示多少图像内容。具体地,发现如果图像中显示更多内容,则图像的亮度随着明度的降低而降低。这是因为,与传统的显示技术不同,输入光通过衍射全息过程在图像上被分割(可以回忆起来,它是接收光的重放场的一部分)。可以认为信息量和光功率之间存在反比关系。例如,一个单位面积的全息图像将比由十个单位面积形成的图像亮十倍。由于全息过程的这些结果,可以通过将一些光引导到次图像区域并监控次图像区域的光功率来提供关于主图像区域亮度的信息。这是因为次图像区域的光功率直接代表图像的辐射通量(Js-1m2)或明度(cdm-2),从而代表图像的亮度(重放场被照亮的那些部分)。如果次图像区域是固定区域或者考虑了次图像区域的区域,则尤其如此。有利的是,通过本公开的计算机生成的全息图,光可以容易地被引导到次图像区域,而不会不利地影响主图像区域或者模糊用户对主图像区域中显示的信息的视野。
因此,在一些实施例中,例如如上具体描述的全息投影系统,被设置成向用户显示信息。投影系统包括光接收表面,例如屏幕或漫射体,以及被设置成输出第一波长的第一光的第一光源。第一空间光调制器被设置成接收来自第一光源的第一光,并根据第一空间光调制器上表示的第一计算机生成的全息图输出空间调制光,以在光接收表面上形成第一图像。第一图像包括包含给用户的信息的主图像区域和不同于主图像区域的次图像区域。例如,次图像区域可以与主图像区域隔开。第一检测器被设置成检测第一图像的次图像区域的光功率。
全息图可以包括将光引导到主图像区域和次图像区域的信息。被引导到主图像区域的光结合以形成对用户有用的信息或数据。次图像区域可以包括光点或其他形状的光,但是任何优选的光图案可以被引导到次图像区域。
在一些实施例中,第一计算机生成的全息图包括代表图像主区域的第一全息图分量。第一计算机生成的全息图还可以包括代表被引导到次图像区域的光图案的第二全息图分量。次图像区域可以被提供用于向投影系统提供有用的反馈。为此,在一些实施例中,次图像区域包括用于全息投影系统的控制信息。术语“控制信息”用于反映内容由投影系统使用,而不是由图像的用户或观看者使用。也就是说,控制信息可能不会向用户或观看者提供有用的视觉信息。
有利的是,本公开的全息技术允许控制信息(次图像区域)被定位成远离任何打算给用户的内容。因此,控制信息可以在物理上与打算给观看者的内容隔开,以便不妨碍用户的视野。
图7示出了根据一些实施例的图像700的示例,图像700包括主图像区域710和次图像区域720。
在一些实施例中,次图像区域在空间上与主图像区域分离,例如设置在主图像区域的外围。也就是说,次图像区域设置在主图像区域之外或远离主图像区域,例如靠近全息重放场的周界或边缘。因此,次图像区域可以与主图像区域隔开,例如邻接主图像区域,与主图像区域具有公共边界,或者与主图像区域和次图像区域之间的中间图像或非图像区域进一步隔开。
在一些实施例中,第一计算机生成的全息图对应于图像的数学变换,可选地,傅里叶或菲涅耳变换。也就是说,在一些实施例中,第一计算机生成的全息图是傅里叶或菲涅耳全息图。在这些实施例中,第一计算机生成的全息图可以包括被设置成执行傅里叶透镜函数的第二全息图分量。然而,在其他实施例中,计算机生成的全息图通过其他数学技术来计算,例如基于光线跟踪或点云法的那些技术。
次图像区域的光功率的测量可以用于提供改进的全息重建。具体地,在一些实施例中,全息投影系统还包括光控制器,该光控制器被设置成响应于检测到的次图像区域的光功率来改变第一光源输出的光的光功率,例如提供图像亮度的闭环反馈控制。对光控制器(例如激光控制器)的这种反馈使得能够基于检测到的光功率来控制光源发射的光功率、因此控制全息图像的亮度。可以相信,次图像区域的光功率直接代表主图像区域的亮度,该亮度与单位面积的光功率相关。
可以相信,作为使用全息术投影图像的结果,图像的亮度取决于显示多少内容。这可能导致动态变化图像显示期间图像亮度的可见变化。在一些实施例中,基于次图像区域的光功率的测量,通过使用闭环反馈控制来解决这个问题。具体而言,通过相应地将次图像区域的期望光功率设置成负误差校正反馈回路的参数,可以使用反馈来保持主图像区域中基本恒定的亮度。在一些实施例中,光控制器被设置成响应于检测到的次图像区域的光功率,将主图像区域的光功率保持在基本恒定的值。
主图像区域的亮度可以通过使用次图像区域的参考光功率来保持。具体地,主图像区域的亮度可以保持在次区域的光功率处于参考值的水平。在一些实施例中,光控制器被设置成如果检测到的次图像区域的光功率大于参考光功率,则降低光源输出的光功率,和/或如果检测到的次图像区域的光功率小于参考光功率,则增加光源输出的光功率。
次图像的参考光功率可以通过任何方式确定,以对应于期望的亮度,例如根据明度,通过考虑次图像区域的面积和可能的其他因素(例如感知波长缩放)的计算来测量。例如,参考光功率可以在系统中硬连线,由用户预先确定或由用户选择。在一些实施例中,参考光功率由次图像区域在较早时间的光功率确定,例如,以保持图像亮度随时间的恒定。
在一些实施例中,关于参考值的反馈控制可以包括负反馈回路,例如光控制器与通过从参考光功率中减去检测到的光功率而获得的值成比例地改变光输出的光功率,以提供比例控制项。增益因子可用于乘以该差值,以将反馈信号转换成与亮度(例如明度)相关的单位。也可以使用其他控制项,例如微分和积分项或其他例如非线性项。在一些实施例中,反馈控制可以结合滞后元素,例如,如果检测到的光功率比参考光功率低超过第一阈值量,则光输出的光功率可以增加,如果检测到的光功率比参考光功率高超过第二阈值量,则光输出的光功率可以减少。
在一些实施例中,基于光功率反馈的增益因子G被应用于光源的驱动输入,并且通过改变增益因子来改变主图像区域的光功率。在一些实施例中,增益因子由以下等式确定:
Figure BDA0002079871080000161
其中,T=图像的期望最大明度(cd/m2),P=次图像区域的第一波长的明度(cd/m2)(例如,通过将检测到的光功率除以次图像区域的面积并按比例缩放以从Js-1m-2转换为cdm-2,这是众所周知的),x=图像中使用的灰度级的总数,y=次图像区域的光的灰度级。例如,图像可以包括256个灰度级:灰度级0可以是黑色,灰度级255可以是白色。应当理解,对“灰度级”的引用并不意味着图像的特定色彩或没有色彩,而是指给定图像区域(例如数字化图像的像素)的离散亮度级(明度、强度等)。
如何将光检测器的辐射/光功率(Js-1)或辐射强度(Js-1sr-1)测量值转换为明度是众所周知的。在显示工业中,还已知可以指定期望的最大明度(cd/m2)。增益G因此可用于确保显示器提供期望的最大明度,而不管显示多少图像内容或图像特别是主图像区域的面积范围。
在一些实施例中,第一检测器被设置成对检测到的光的光功率提供非线性电响应。有利的是,这意味着激光驱动器中使用的ADC和DAC可能不需要超过8位就能提供高动态范围,例如1:10,000。在一些实施例中,第一检测器包括非线性电子器件。在一些实施例中,非线性电子器件包括对数放大器。在一些实施例中,非线性电子器件包括放大器,该放大器包括自动增益控制或可切换增益电阻器。在其他实施例中,通过使用包括具有不同灵敏度的多个光电检测器的检测器来提供非线性响应。
发明人发现,利用复合彩色全息投影系统,图像的色温(或色彩平衡)取决于每个分量色彩中包含多少图像内容,或者每个分量彩色图像的图像区域。也就是说,信息内容量或图像面积与光功率之间的反比关系独立地延伸到每种色彩。因此,如果红色内容量或面积相对于蓝色和/或绿色下降,复合彩色图像将显得更红。换句话说,当图像中的红色区域减小时,图像中的红色区域将变得更亮。同样,如果蓝色内容量或面积相对于红色和/或绿色下降,则复合图像可能显得更蓝。发明人发现这会影响复合彩色图像的感知色彩平衡或色温。这是因为,与传统的显示技术不同,如上所述,每种色彩的输入光通过衍射全息过程在图像区域中均匀地划分,并且每种色彩的光的光功率独立于其它色彩的光的光功率。因此,随着每种色彩的信息内容不断变化,图像的色温也可能不断变化。然而,可以通过将每种色彩的一些光引导到次图像区域并监控次图像区域中每种色彩的光功率来提供关于主图像区域的色彩平衡的信息。这是因为如上所述,次图像区域的光功率代表主图像的亮度。有利的是,根据本公开,每种色彩的光可以通过全息术容易地被引导到次图像区域,而不会不利地影响主图像区域或者模糊用户对主图像区域中显示的信息的视野。对于每种色彩,次图像区域可以是相同的,或者可以对一种、一些或所有色彩使用单独的相应次图像区域。
图8示出了根据实施例的复合彩色全息投影系统800。图8很大程度上对应于图4,本领域技术人员将理解图4的描述如何延伸到图8。图8示出了两个附加激光器470’和470”,两个附加SLM 480’和480”,以及相应的附加光路和电路。例如,激光器470可以是红色的,激光器470’可以是绿色的,激光器470”可以是蓝色的。类似地,可将SLM 470分配给形成红色图像,可将SLM 480’分配给形成绿色图像,并将SLM 480”分配给形成蓝色图像。为了重建复合彩色图像,在三个SLM上表示不同的计算机生成的全息图。相应的光路对读者来说是显而易见的。单色图像的主图像区域在光接收表面上很大程度上重合。如前所述,每个彩色图像包括主图像区域和次图像区域。次图像区域可以重合,也可以不重合。图8仅以举例的方式示出了三个色彩通道。本公开不限于三个色彩通道,并且同样适用于任何多个色彩通道,以及如下所述的帧顺序色彩技术。
图9和图10对应于图5和图6,并且示出了使用三个单色通道(例如红色、绿色和蓝色)来提供复合色彩所需的附加组件、电通道和光通道。同样,仅通过示例的方式示出了三个色彩通道,并且本公开同样适用于任何多个单色通道。本领域技术人员将理解图5和图6的描述如何延伸到图9和图10,以便提供复合色彩。
因此,在例如如上所述配置的一些实施例中,如上所述的全息投影系统还包括:第二光源,其被设置成输出具有第二波长的第二光,其中第二波长不同于由第一光源输出的第一光的波长。第二空间光调制器被设置成接收来自第二光源的第二光,并根据第二空间光调制器上表示的第二计算机生成的全息图输出第二空间调制光,以在光接收表面上形成第二图像。第二图像包括:包含给用户的信息的主图像区域,和次图像区域。第二图像的主图像区域基本上与第一图像的主图像区域重合,以形成复合图像。第二检测器被设置成检测第二图像的次图像区域的光功率。
第一和第二图像的次图像区域可以基本重合,请注意相应的光具有不同的相应波长,因此可以由检测器使用适当的滤光器或检测器的波长响应来分别检测。然而,第一和第二图像的次区域的重合不是必需的,并且这些区域可以在空间上分开,例如重叠、彼此相邻或者进一步分开。
第一图像和/或第二图像的次图像区域的光功率的测量可以用于提供改进的全息重建。具体地,在一些实施例中,光控制器还被设置成响应于图像的次图像区域的检测光功率和/或第二图像的次图像的检测光功率,改变由第一光源输出的第一光的光功率和/或由第二光源输出的第二光的光功率,从而改变复合图像的色彩平衡。应当理解,对于具有不止两个色彩通道(例如三个色彩通道)的实施例,可以对所有色彩通道复制这种设置,例如通过如上所述独立地保持所有色彩通道的亮度基本恒定。
因此,向光控制器(例如激光控制器)提供反馈,这使得复合彩色全息图像的色彩平衡能够被动态调节。据信这是可能的,因为由于衍射全息过程,每个次图像区域的光功率直接代表相应主图像区域的光功率。例如,如果红色图像的次图像区域的光功率下降,则可以增加对红色光源的驱动功率。例如,如果绿色图像的次图像区域的光功率增加,则对绿色光源的驱动功率可能降低。这种过程,例如负反馈过程,如上述过程,可以用于持续监控和独立调节每个光源输出的光功率。
使用全息术投影多个单色图像的结果是,在以每帧为基础显示动态变化的彩色图像的过程中,复合图像的色彩平衡会发生可见的变化。然而,在一些实施例中解决了这个问题,其中基于每个次图像区域的光功率的测量,使用闭环功率反馈在主图像区域中保持基本恒定的色彩平衡。也就是说,在一些实施例中,光控制器被设置成响应于检测到的每个次图像区域的光功率,将主图像区域的色彩平衡保持在基本恒定的值。
由于与激光驱动器和光反馈传感器相关的组件不同,所谓的白点将因设备而异。这种白点差异可以通过改变在一个或多个波长下被引导到次图像区域的功率量来补偿,从而改变从次图像区域发出的响应光的光功率。例如,人为地将更多的红色光功率添加到次图像区域将导致图像中的红色光功率整体降低,这是由于作为结果反馈的红色光功率增加。由于全息图不限于标称数量的灰度级,例如256个灰度级,所以白点的微调是可能的。
在一些实施例中,第二增益因子G’被应用于第二光源的驱动输入,并且通过改变第二增益因子来改变主图像区域的色彩平衡。在一些实施例中,第二增益因子由以下等式确定:
Figure BDA0002079871080000191
其中,T’=第二图像的第二波长下的期望最大明度,P’=第二图像的第二图像区域的第二波长下的明度,x’=第二图像中使用的灰度级总数,y’=第二图像的次图像区域的光的灰度级。
在一些实施例中,第二检测器被设置成对第二波长下的光的光功率提供非线性电响应。有利的是,这意味着激光驱动器中使用的ADC和DAC不需要超过8位,以便提供高动态范围,例如1:10,000。在一些实施例中,第二检测器包括非线性电子器件。在一些实施例中,非线性电子器件包括对数放大器。在一些实施例中,非线性电子器件包括放大器,该放大器包括自动增益控制或可切换增益电阻器。在其他实施例中,通过使用具有不同灵敏度的多个光电检测器来提供非线性响应。
在一些与复合色彩相关的实施例中,为每种色彩提供检测器。也就是说,在一些实施例中,检测器装置包括多个空间分离的单色检测器。然而,在其他实施例中,检测器装置包括RGB传感器或CMY传感器。也就是说,在一些实施例中,第一检测器和第二检测器是同一复合色彩检测器的一部分。在这些实施例中,可以理解,复合色彩检测器的输出包括对应于第一波长的第一检测信号和对应于第二波长的第二检测信号,等等。
图11示出了包括第一检测器1110、第二检测器1120和第三检测器1130的示例。第一检测器1110对第一波长(例如红色)的光敏感。第二检测器1120对第二波长(例如绿色)的光敏感。第三检测器1130对第三波长(例如蓝色)的光敏感。第一、第二和第三检测器各自具有基本一维的形状。在这些实施例中,每个检测器可以被描述为具有狭缝形状。在一些实施例中,相应图像的次图像区域基本一致。图11显示了基本重合的次图像区域。次图像区域形成光的复合色点1150。本领域技术人员将意识到,检测器可以采用本领域已知的不同形式,并且可以根据需要包括窄带滤光器,以提供三种不同波长的检测。例如,对于每种复合色彩(例如,RGB),三个宽带光电二极管可以与三个相应的单色滤光器一起使用。在一些实施例中,全息过程可以用于将次图像区域空间分离到相应的空间分离的检测器上。
在一些实施例中,每个检测器(更具体地,检测器的检测区域或限制检测区域的孔)具有限定的形状,例如一维形状。定义的形状可以对应于相应的次图像区域的形状。在一些实施例中,每个检测器-次图像区域对具有相应的例如一维形状。也就是说,检测器的检测区域的形状和/或大小基本上等于或对应于相应的次图像区域的形状和/或大小。例如,红光检测器的检测区域的形状和/或大小基本上等于红色图像的相应次图像区域的形状和/或大小。
有利的是,这种几何形状允许改善图像的光学对准。可以理解,当次图像区域和检测器完全对准时(即重合),来自检测器的信号将是最大值。因为图像是计算机生成的,所以主图像区域和次图像区域的相对位置被很好地定义。因此,可以通过监测来自次图像区域的来自检测器的信号在系统内评估主图像区域(当然,它包含用户的信息)的光学对准。
此外,由于图像是计算机生成的,所以可以在区域中移动图像,并通过确定来自检测器的信号何时最大来确定系统何时光学对准。也就是说,在一些实施例中,全息控制器被设置成执行光学对准过程,包括改变图像在屏幕上的位置,并在图像的多个位置检测第二图像区域的光功率,以找到检测到的光功率最大的位置作为对准位置。
应当理解,检测器(或孔径)和次图像区域的限定形状通知功率/位置反馈的方向精度,并因此通知可实现的调整。例如,基本一维或狭缝形状在跨过整个形状/狭缝上比沿着它提供更好的精度。因此,根据需要,其他形状如点、圆、圆盘、正方形、菱形、斜方形、十字等可以用于检测器的有效区域和次图像区域。还应当理解,为了对准彩色图像的分量,如果次图像区域相互重合,则有利于对准,如果检测器的有效区域也重合,则进一步有利于对准。最后,虽然对准的好处对于彩色分量图像的相互对准是最明显的,但是所公开的对准技术同样适用于单色图像,以便将图像相对于由检测器位置和配置定义的参照系定位在精确的位置。
在一些实施例中,计算机生成的全息图包括提供光栅效果的分量,并且通过改变光栅的参数来移动图像。计算机生成全息术领域的技术人员知道如何将代表图像的全息数据与提供光学功能(如透镜化和/或角度控制)的全息数据相结合。例如,这种全息数据可以通过简单的矢量相加来组合。在一些实施例中,计算机生成的全息图包括第三全息图分量,其设置成执行光栅函数,并且在光学对准过程中通过改变第三全息图分量的光栅函数而改变图像的位置。在一些实施例中,光学对准过程还包括通过例如水平和/或垂直扫描来确定光栅函数,该光栅函数产生次图像区域的最大检测光功率。本领域技术人员将理解可以如何扩展上述方法以在复合图像中对准所有单色图像,或者相对于参照系对准单个图像。
此外,除了扫描以找到x轴和y轴上的最佳空间位置之外,或者独立地,通过在向全息图添加透镜函数的同时监控功率,可以确定期望的,例如最佳的焦平面。这样之所以奏效,是因为光的相干干涉,如下所述。在期望的焦平面上,相长干涉和相消干涉被最小化。
图12示出了空间光调制器1210,其被设置成在焦平面1240上形成第一图像点1225和第二图像点1235,其中第一图像点1225和第二图像点1235相邻。发明人发现,第一图像点1225可以被认为形成在第一束腰1220的最小值处。同样,第二图像点1235可以被认为形成在第二束腰1230的最小值处。从图12可以看出,在焦平面1240附近的区域1250中,第一束腰1220和第二束腰1230之间没有重叠。发明人发现,在区域1250之外,光场是有噪声的。据信,这是因为光是空间调制的(例如相位调制的),并且区域1250的第一束腰1220和第二束腰1230之间的重叠因此导致局部相长干涉和相消干涉。这种相长干涉和相消干涉会在光场中产生一些特征,例如条纹或亮/暗区域。在区域1250中,发明人发现这种干扰基本上被消除了。因此,可以使用光检测器(例如空间光检测器)探测区域1250,以确定光场“最干净”的平面(光学上平行于空间光调制器1210)。在一些实施例中,通过确定其中由干涉引起的光场中的局部图案最小化的平面来识别该平面,例如通过在平面中的光接收表面上形成的图像来判断。
例如,全息重建中的特征在失焦时模糊(光接收表面不在聚焦/重建平面中),导致原本分离的特征之间出现重叠。给定光的相干性,这种重叠倾向于导致图像中特征之间不希望的干扰,从而降低图像质量,图像质量例如通过对比度或轮廓的锐度或噪声来测量。这可以理解为图像特征(例如图像点)之间的串扰,并导致图像的斑点。在一些实施例中,全息重建可以包含图像点,类似于显示像素,以在光接收表面上形成图像,并且图像点在不聚焦时的模糊会导致相邻点的光干涉并产生所讨论的干涉图案。
在一些实施例中,通过识别包含最大对比度或锐度或最小噪声的平面来找到正确的平面,最大对比度或锐度或最小噪声根据从光接收表面捕获的图像来判断。通过改变全息图的透镜分量或移动物理透镜装置来移动焦平面。光接收表面上的光图案例如使用数字图像传感器或照相机而被成像。期望的焦平面被发现为其中捕获图像具有最大对比度或锐度或最小噪声,或者噪声、锐度或对比度优于阈值水平的平面。
在一些实施例中,例如在如上所述的次图像区域中,不是使用图像传感器,而是使用如上所述的点传感器或检测器,例如光电二极管或光电倍增管。在这些实施例中,对比度、锐度或噪声的测量是通过在点传感器上扫描成像区域(例如次图像区域的全部或一部分),并在扫描图像区域时记录检测到的强度随时间的变化来获得的。可以通过移动传感器或者通过将光栅函数与全息图结合并改变光栅来移动图像区域的重建以扫描图像区域,借此扫描图像区域。
仅出于说明的目的,图12中示出了相对较大的区域1250。实际上,区域1250的长度可以是几毫米,因此允许焦平面以相应的精度定位。
在一些实施例中,为用户显示信息的全息投影系统包括光接收表面、光源和空间光调制器,例如如上所述。该系统还可以包括根据以上公开的任何实施例的检测器。除了这个检测器之外,或者代替这个检测器,该系统包括这样的检测器,该检测器被设置成检测区域(该区域是图像的全部或部分)的图像质量的度量,例如图像对比度或锐度或者图像中噪声的度量。在一些实施例中,检测器包括图像传感器和处理器,该处理器被配置成根据由图像传感器捕获的信号来计算图像质量的度量。在一些实施例中,该系统还可以包括控制器,该控制器被配置成垂直于图像平面移动图像,并基于图像质量的度量来选择图像的焦平面。在一些实施例中,控制器被配置成在记录图像质量度量的同时在多个候选焦平面之间移动图像,并且选择图像质量度量相对于其他候选焦平面指示最佳图像质量的候选焦平面作为图像的焦平面。例如,在一些实施例中,计算机生成的全息图可以包括被设置成执行透镜函数(例如包括透镜数据)的全息图分量。控制器可以被配置成通过改变透镜函数或数据来垂直于焦平面移动图像。
提供了一种全息投影系统,其被设置成向用户显示信息。投影系统包括光接收表面、光源、空间光调制器、全息控制器和检测器。光源被设置成输出光。空间光调制器被设置成接收来自光源的光,并根据空间光调制器上表示的计算机生成的全息图输出空间调制光,以在光接收表面上形成图像。每个计算机生成的全息图包括全息图分量,该分量包括代表透镜的数据,以影响图像形成的深度位置。全息控制器被设置成改变代表透镜的数据以改变深度位置。代表透镜的数据也可以称为透镜函数。检测器被设置成针对多个不同的聚焦度(focusing power)来确定图像的测量区域中的图像质量。
在一些实施例中,提供了设置成改变透镜函数的聚焦度的全息控制器(或处理器)和设置成针对多个不同聚焦度确定图像测量区域中的图像质量的检测器。全息投影系统可以包括这样的处理器或控制器。如上所述,全息数据可以包括提供透镜函数的透镜数据,该透镜函数可以例如简单地添加到代表图像的全息数据中。由透镜数据表示的透镜的聚焦度或屈光度决定全息重建的焦平面的位置,从而决定重建(图像)的深度位置。应当理解,图像的深度位置对应于由透镜数据/函数模拟的透镜的焦距,因此对应于由透镜数据/函数模拟的透镜的聚焦度,因此这些概念可以在本说明书中互换使用。
全息控制器被设置成改变透镜函数的聚焦度,使得从空间光调制器到焦平面的距离可以在软件中动态改变。在一些实施例中,检测器针对透镜函数的多个不同聚焦度评估全息重建质量。因此,提供了反馈系统,并且可以确定透镜函数的最佳聚焦度。具体而言,确定这样的聚焦度,在该聚焦度上,屏幕上的图像被聚焦并且全息重建形成在光接收表面上。从图12可以理解,这发生在图像的光场“最干净”的时候——例如,光场表现出最大的对比度或最小的噪声。检测器被设置成评估图像质量。
在一些实施例中,诸如CCD设备或照相机的空间光检测器用于通过例如本领域已知的视觉检查或图像处理技术来评估图像质量。在一些实施例中,图像质量被量化为质量度量,例如噪声、平滑度、锐度或对比度的度量。
在其他实施例中,检测器是不具有空间分辨率的低视场检测器,诸如光电二极管。检测器可以是积分检测器。在这些实施例中,检测器(例如光电二极管)的视场小于重放场中图像的空间范围。在一些实施例中,屏幕上检测器的视场具有小于测量面积20%的面积,可选地,小于10%,进一步可选地,小于5%。在一些实施例中,在光电二极管上扫描图像,并且在每个聚焦度下评估从检测器接收的时变信号。在一些实施例中,这是通过使用全息数据在光接收表面的平面内(即,在焦平面内或在平行于光接收表面或焦平面的平面内)移动图像来实现的。同样,如上所述,全息数据可以包括提供光栅函数的数据,该光栅函数可以用于将图像定位在屏幕平面中。在一些实施例中,全息控制器被设置成实时改变光栅函数,以在光电二极管上实时扫描图像。在一些实施例中,图像在屏幕平面中以恒定速度移动。可以理解,全息控制器和检测器可能需要同步。将测量信号中的时间点与相应的图像位置相关联。图像可以在图像平面上沿一个方向或两个方向移动。随时间从非空间检测器接收的信号可以包含关于噪声、对比度等以及例如在每个图像中干涉条纹的存在的信息,并且可以被处理以从图像中提取这些量中的一个或多个量的相应度量,如本领域所公知的。为此,信号的时间坐标可以任意地或者使用图像位置的时间同步来转换成空间坐标。
在一些实施例中,处理器被设置成当图像在屏幕平面中移动时,基于从检测器接收的信号的变化来确定图像质量。空间光调制器的像素具有几微米的尺寸,因此在该反馈过程中,屏幕上的图像可以以小的增量移动。通过将从检测器获得的时变信号中提取的质量度量与透镜函数的不同相应聚焦度进行比较,可以将最接近光接收表面的焦平面识别为获得最佳质量度量的焦平面。
提供了一种被配置成使用诸如固定位置光电二极管的简单检测器来测量图像质量的系统。还提供了一种使用简单检测器确保图像聚焦在屏幕上的软件方法。图像质量可以通过视觉检查或信号处理来评估。在一些实施例中,图像质量被量化。根据这里描述的其他实施例,检测器可以固定在适当的位置,并且被设置成测量重放场的固定大小的子区域的亮度,该子区域可以被称为测量区域。
总之,一些实施例确定使图像聚焦在光接收表面上的软件透镜的焦距,即意味着光接收表面基本上在焦平面上的焦距。值得注意的是,可以使用相同的非空间检测器(或者多个检测器,如果是彩色全息术)来执行这里公开的所有闭环功能。
在一些实施例中,可以针对上述一些实施例中提到的全部或部分次区域检测图像质量的度量。在其他实施例中,可以在图像中的任何地方检测该度量,而不管是否使用如上所述的次图像区域。
所描述的实施例使用检测器来检测次图像区域中的光。现在参照图13描述这种检测器的设置的一个示例,其中检测器1310设置在光接收表面125后面(沿着光轴)。透镜1320设置在光接收表面125和检测器1310之间。特别地,在一些实施例中,如上所述,光接收表面125是漫射体,并且透镜1320用于将由漫射体漫射的光集中(例如聚焦)到检测器1310上。在一些实施例中,可以省略透镜。在一些实施例中,检测器1310(和透镜1320,如果存在的话)可以与光接收表面中的切口对准,或者可以远离光轴靠近光接收表面设置。在一些实施例中,特别是那些不存在透镜1320的实施例中,检测器1310可以设置在光接收表面125的平面中,例如靠近光接收表面125或者在切口中。在一些实施例中,检测器1310(以及透镜1320,如果存在的话)可以设置在检测器的前面。检测器可以是这里针对任何实施例所描述的检测器,例如上面参考图11所描述的。类似地,在具有多个检测器的实施例中,每个检测器可以如上所述设置。根据情况,一个或多个检测器可以是光电检测器,例如电荷耦合设备或光电倍增管,并且可以具有光敏元件阵列以提供落在检测器区域上的光的空间分辨率,例如采用图像传感器芯片的形式。
在一些实施例中,空间光调制器是仅相位空间光调制器。这些实施例是有利的,因为调制振幅没有光能损失。因此,提供了一种有效的全息投影系统。然而,本公开可以等同地实施在仅振幅空间光调制器或振幅和相位调制器上。可以理解,全息图将相应地是仅相位、仅振幅或完全复合的。
在一些实施例中,光源是激光器。在一些实施例中,光接收表面是屏幕或漫射体。本公开的全息投影系统可用于提供改进的平视显示器(HUD)或头戴式显示器。在一些实施例中,提供了一种包括安装在车辆中的全息投影系统以提供HUD的车辆。车辆可以是汽车、摩托车、火车、飞机、船或轮船。
尽管成组实施例已经在很大程度上单独公开,但是任何实施例或成组实施例的任何特征可以与任何实施例或成组实施例的任何其他特征或特征的组合相组合。也就是说,设想了本公开中公开的特征的所有可能的组合和置换。
全息重建的质量可能受到所谓的零阶问题的影响,该问题是使用像素化空间光调制器的衍射性质的结果。这种零阶光可以被视为“噪声”,并且包括例如镜像反射光和来自SLM的其他不想要的光。
在傅里叶全息术的示例中,这种“噪声”聚焦在傅里叶透镜的焦点上,在全息重建的中心产生亮点。零阶光可能会被简单地遮挡,但是这意味着用暗点代替亮点。一些实施例包括角度选择性滤光器,以仅去除零阶准直光线。实施例还包括欧洲专利2,030,072中描述的管理零阶的方法,该专利在此全文引入作为参考。
虽然这里描述的一些实施例包括在空间光调制器上每帧显示一个全息图,但是本公开在这一方面绝不受到限制,并且可以在任何时候在SLM上显示不止一个全息图。例如,实施例实施了“平铺”技术,其中SLM的表面积被进一步分成多个平铺块,每个平铺块被设置成与原始平铺块相似或相同的相位分布。因此,与将SLM的整个分配区域用作一个大相位图案相比,每个平铺块的表面积更小。平铺块中频率分量的数量越小,并且平铺块的数量分别越大,则当产生图像时,重建图像区域分离得越远。图像可以在零级衍射阶内形成,并且优选的是,第一阶和后续阶位移足够远,以便不与图像重叠,并且它们可以通过空间滤光器被阻挡。
如上所述,通过该方法产生的全息重建(无论有无平铺)可以包括可以被称为图像像素的点。使用的平铺块数量越多,这些点变得越小。以无穷大正弦波的傅里叶变换为例,会产生单一频率。这是最佳输出。实际上,如果只使用一个平铺块,这对应于正弦波的单个周期的输入,零值从正弦波的末端节点沿正负方向延伸到无穷大。不是从傅里叶变换产生单一频率,而是所产生的主要频率分量两边都有一系列相邻的频率分量。平铺的使用降低了这些相邻频率分量的幅度,并且作为直接结果,相邻图像像素之间发生较少的干扰(相长的或相消的),从而提高了图像质量。优选地,每个平铺块是整个平铺块,尽管一些实施例使用平铺块的部分。
在这里公开的示例中,使用三个不同色彩的光源和三个相应的SLM来提供复合色彩。这些示例可以被称为空间分离的色彩“SSC”。在本公开所包含的变型中,每种色彩的不同全息图显示在同一SLM的不同区域上,然后被组合以形成复合彩色图像。然而,本领域技术人员将理解,本公开的至少一些设备和方法同样适用于其他提供复合彩色全息图像的方法。
其中一种方法被称为帧序列色彩,“FSC”。在示例FSC系统中,使用三个激光器(红色、绿色和蓝色),并且每个激光器在单个SLM上连续发射,以产生视频的每个帧。色彩(红色、绿色、蓝色、红色、绿色、蓝色等)以足够快的速度循环,使得人类观察者从三个激光器形成的图像组合中看到多色图像。因此,每个全息图都是特定色彩的。例如,在每秒25帧的视频中,第一帧将通过将红色激光发射1/75秒来产生,然后将绿色激光发射1/75秒,最后将蓝色激光发射1/75秒。然后产生下一帧,从红色激光开始,依此类推。在基于FSC的实施例中,除了通过位置或波长将光从每种色彩的相应(或单个)次图像区域分离之外,如果检测器具有足够的时间分辨率,则可以通过利用分量彩色图像的时间分离来实现分离。
FSC方法的优点是每种色彩都使用整个SLM。这意味着所产生的三个彩色图像的质量不会受到影响,因为SLM上的所有像素都用于每个彩色图像。然而,FSC方法的缺点是产生的整体图像比SSC方法产生的相应图像暗约3倍,因为每个激光器仅使用三分之一的时间。这个缺点可以通过过度驱动激光器或者使用更强的激光器来解决,但是这将需要使用更多的功率,将涉及更高的成本并且将使系统不那么紧凑。
SSC方法的优点是图像更亮,因为所有三个激光器同时发射。然而,如果由于空间限制,只需要使用一个SLM,则SLM的表面积可分为三个部分,实际上作为三个独立的SLM。这样做的缺点是,由于每个单色图像可用的SLM面积减少,每个单色图像的质量降低了。多色图像的质量因此相应降低。可用SLM表面积的减少意味着可以使用SLM上更少的像素,从而降低图像质量。图像的质量会因为分辨率降低而降低。
实施例描述了用可见光照射SLM,但是本领域技术人员将理解,光源和SLM同样可以用于引导红外光或紫外光,例如,如本文所公开的。例如,本领域技术人员将意识到为了向用户提供信息而将红外光和紫外光转换成可见光的技术。例如,本公开延伸到为此目的使用磷光体和/或量子点技术。
这里描述的方法和过程可以在计算机可读介质上具体实施。术语“计算机可读介质”包括被设置成临时或永久存储数据的介质,例如随机存取存储器(RAM)、只读存储器(ROM)、缓冲存储器、闪存和高速缓冲存储器。术语“计算机可读介质”还应被理解为包括能够存储供机器执行的指令的任何介质或多种介质的组合,使得当指令被一个或多个处理器执行时,使得机器整体或部分地执行这里描述的任何一种或多种方法。
术语“计算机可读介质”也包括基于云的存储系统。术语“计算机可读介质”包括但不限于固态存储芯片、光盘、磁盘或其任何合适组合的示例形式的一个或多个有形和非暂时性数据储存库(例如,数据卷)。在一些示例实施例中,用于执行的指令可以由载体介质传送。这种载体介质的示例包括瞬态介质(例如,传送指令的传播信号)。
对于本领域技术人员来说,很明显,在不脱离所附权利要求的范围的情况下,可以进行各种修改和变化。本公开涵盖所附权利要求及其等同物范围内的所有修改和变化。
公开了以下实施例:
1.一种被设置成为用户显示信息的全息投影系统,所述投影系统包括:
光接收表面;
光源,其被设置成输出光;
空间光调制器,其被设置成接收来自所述光源的光,并根据所述空间光调制器上表示的计算机生成的全息图输出空间调制光,以在所述光接收表面上形成图像。
2.根据第1项所述的全息投影系统,其中,所述图像包括包含给用户的信息的主图像区域和不同于所述主图像区域的次图像区域;以及
检测器,其被设置成检测所述图像的次图像区域的光功率。
3.根据第2项所述的全息投影系统,其还包括光控制器,所述光控制器被设置成响应于所述检测到的次图像区域的光功率来改变所述光源输出的光的光功率。
4.根据第3项所述的全息投影系统,其中,所述光控制器被设置成响应于检测到的次图像区域的光功率,将所述图像的主图像区域的亮度保持在基本恒定的值。
5.根据第3或4项所述的全息投影系统,其中,所述光控制器被设置成如果所述检测到的次图像区域的光功率大于参考光功率,则降低所述光源输出的光的光功率,和/或如果所述检测到的次图像区域的光功率小于所述参考光功率,则增加所述光源输出的光的光功率。
6.根据第5项所述的全息投影系统,其中,所述参考光功率由较早时间的所述次图像区域的光功率确定。
7.根据第3至6项所述的全息投影系统,其中,所述光控制器被设置成通过将增益因子G应用于所述光源的驱动输入来改变所述光源输出的光的光功率,其中
Figure BDA0002079871080000301
并且T是所述图像的期望最大明度(cd/m2),P是所述次图像区域的明度,x是所述图像中使用的灰度级总数,y是所述次图像区域的光的灰度级。
8.根据前述任一项所述的全息投影系统,其中,所述检测器被设置成提供对所述图像的次图像区域的光功率的非线性电响应。
9.一种用于为用户显示信息的全息投影系统,所述投影系统包括:
光接收表面;
第一光源,其被设置成输出第一波长的第一光;
第一空间光调制器,其被设置成接收来自所述第一光源的第一光,并根据所述第一空间光调制器上表示的第一计算机生成的全息图输出第一空间调制光,以在所述光接收表面上形成第一图像,其中,所述图像包括包含给用户的信息的主图像区域和不同于所述主图像区域的次图像区域;
第一检测器,其被设置成检测所述第一图像的次图像区域的光功率;
第二光源,其被设置成输出第二波长的第二光,其中,所述第二波长不同于所述光源输出的光的第一波长;
第二空间光调制器,其被设置成接收来自所述第二光源的第二光,并根据所述第二空间光调制器上表示的第二计算机生成的全息图输出第二空间调制光,以在所述光接收表面上形成第二图像,其中,所述第二图像包括:包含给用户的信息的主图像区域和不同于所述主图像区域的次图像区域,并且其中,所述第二图像的主区域基本上与所述第一图像的主区域重合以形成复合图像;以及
第二检测器,其被设置成检测所述第二图像的次图像区域的光功率。
10.根据第9项所述的全息投影系统,其包括光控制器,所述光控制器被设置成响应于检测到的第一图像的次图像区域的光功率和检测到的第二图像的次图像的光功率改变所述第一光源输出的第一光的光功率和/或所述第二光源输出的第二光的光功率,从而改变所述复合图像的色彩平衡。
11.根据第10项所述的全息投影仪系统,其中,所述光控制器被设置成响应于所述检测到的第一图像的次图像区域的光功率和所述检测到的第二图像的次图像区域的光功率,将所述复合图像的色彩平衡保持在基本恒定的值。
12.根据第10或11项所述的全息投影系统,其中,所述光控制器被设置成通过将相应的增益因子G应用于所述第一和第二光源中的一个或两个的驱动输入来改变所述第一和第二光源中的一个或两个输出的光的光功率,其中
Figure BDA0002079871080000311
并且T是相应图像的期望最大光功率,P是相应检测器检测到的光功率,x是在相应图像中使用的灰度级总数,y是相应图像的次图像区域的光的灰度级。
13.根据第3至12项所述的全息投影系统,其中,所述第一和第二检测器中的一个或两个被设置成提供对相应光功率的非线性响应。
14.根据第9至13项所述的全息投影系统,其包括复合色彩检测器,所述复合色彩检测器包括第一检测器和第二检测器。
15.根据前述任一项所述的全息投影系统,其中,每个计算机生成的全息图包括代表相应图像的第一全息图分量。
16.根据前述任一项所述的全息投影系统,其中,每个图像的次图像区域包括所述全息投影系统的控制信息。
17.根据前述任一项所述的全息投影系统,其中,每个次图像区域与所述主图像隔开,例如设置在相应主图像区域的外围。
18.根据前述任一项所述的全息投影系统,其中,所述图像或每个图像包括包含给用户的信息的主图像区域和次图像区域;以及
检测器,其被设置成检测去往或来自所述图像的次图像区域并被所述检测器接收的光的光功率,其中,所述检测器的有效光检测区域和所述次图像区域具有相应的形状,可选地,一维或狭缝形状。对于项目1至17,检测器可以相同或不同,次区域可以相同或不同。
19.根据第18项所述的全息投影系统,其还包括全息控制器,所述全息控制器被设置成执行光学对准过程,所述光学对准过程包括改变图像在屏幕上的位置并检测图像的多个位置处的接收到的光的光功率。
20.根据第19项所述的全息投影系统,其中,所述计算机生成的全息图包括被设置成执行光栅函数的全息图分量,并且其中,在光学对准过程期间,通过改变光栅函数来改变图像的位置。
21.根据第20项所述的全息投影系统,其中,所述光学对准过程还包括确定产生最大检测光功率的光栅函数。
22.根据前述任一项所述的全息投影系统,其中,所述计算机生成的全息图包括代表图像的全息图分量。
23.根据前述任一项所述的全息投影系统,其中,所述次图像区域包括全息投影系统的控制信息。
24.根据前述任一项所述的全息投影系统,其中,所述次图像区域或每个次图像区域在所述或相应的主图像区域的外围,例如与主图像隔开,例如设置在对应的主图像区域的外围。
25.根据前述任一项所述的全息投影系统,其中,每个计算机生成的全息图包括全息图分量,所述全息图分量被设置成执行与聚焦度相关联并且对应于使空间调制光通过具有该聚焦度的透镜的透镜函数,其中控制器被设置成将聚焦度设置成多个值,以在对应的焦平面中形成多个相应的图像;以及
检测器,其被设置成针对多个不同聚焦度值中的每一个,在图像的测量区域中检测图像的光,其中控制器还被配置成根据从检测器接收的信号,针对每个聚焦度值确定图像质量的度量。检测器可以与前述项目相同或不同。
26.根据第25项所述的全息投影系统,其中,质量的度量是图像对比度或锐度的度量或者图像中噪声的度量。
27.根据第25或26项所述的全息投影系统,其中,所述图像包括包含给用户的信息的主图像区域,和次图像区域,其中,所述图像的测量区域是图像的次图像区域。次图像区域可以与前述项目中的次图像区域相同。
28.根据第25至27项所述的全息投影系统,其中,所述全息控制器还被设置成在平行于光接收表面的平面中移动图像,同时检测器检测图像的光以产生信号。
29.根据第28项所述的全息投影系统,其中,所述控制器被设置成当图像平行于光接收表面移动时,基于从图像传感器接收的信号的变化来确定图像质量的度量。
30.根据第25至29项所述的全息投影系统,其中,所述全息控制器被设置成基于图像质量的测量从多个聚焦度值中选择聚焦度值以设置聚焦度。
31.根据第30项所述的全息投影系统,其中,所选择的聚焦度对应于相对于多个聚焦度中的其他候选聚焦度的最佳图像质量。
32.根据第27至31项所述的全息投影系统,其中,所述次图像区域包括全息投影系统的控制信息。
33.根据第27至32项所述的全息投影系统,其中,所述次图像区域在所述主图像区域的外围。
34.根据前述任一项所述的全息投影系统,其中,通过空间调制光在光接收表面的干涉形成图像。
35.根据前述任一项所述的全息投影系统,其中,图像是全息重建。
36.根据前述任一项所述的全息投影系统,其中,计算机生成的全息图对应于图像的数学变换,可选地是傅里叶或菲涅耳变换。
37.根据前述任一项所述的全息投影系统,其中,计算机生成的全息图是傅里叶或菲涅耳全息图。
38.根据前述任一项所述的全息投影系统,其中,计算机生成的全息图包括被设置成执行傅里叶透镜函数的全息图分量。
39.根据前述任一项所述的全息投影系统,其中,所述空间光调制器被设置成对来自光源的光的相位进行空间调制。
40.根据前述任一项所述的全息投影系统,其中,所述空间光调制器被设置成对来自光源的光的振幅进行空间调制。
41.根据前述任一项所述的全息投影系统,其中,光源是激光器。
42.根据前述任一项所述的全息投影系统,其中,空间光调制器是硅基液晶“LCoS”空间光调制器。
43.根据前述任一项所述的全息投影系统,其中,光接收表面是漫射体。
44.根据前述任一项所述的全息投影系统,其中,检测器是光电二极管或光电二极管阵列。
45.根据前述任一项所述的全息投影,其中,投影系统是平视显示器或头戴式显示器。

Claims (17)

1.一种全息投影系统,其被设置成对用户显示信息,所述全息投影系统包括:
光接收表面;
光源,其被设置成输出光;
空间光调制器,其被设置成接收来自所述光源的光,并根据所述空间光调制器上表示的计算机生成的全息图输出空间调制光,以在所述光接收表面上形成图像,其中,所述图像包括次图像区域和包含给用户的信息的主图像区域,其中所述次图像区域在空间上与所述主图像区域分离;以及
检测器,其被设置成检测去往或来自所述图像的所述次图像区域并被所述检测器接收的光的光功率,其中,所述检测器的有效光检测区域和所述次图像区域具有对应的形状,并且所述主图像区域和所述次图像区域由相同的空间调制光同时形成。
2.根据权利要求1所述的全息投影系统,还包括全息控制器,所述全息控制器被设置成执行光学对准过程,所述光学对准过程包括改变所述图像在所述光接收表面上的位置,并检测所述图像的多个位置处的接收光的光功率。
3.根据权利要求2所述的全息投影系统,其中,所述计算机生成的全息图包括被设置成执行光栅函数的全息图分量,并且其中,在所述光学对准过程中,通过改变所述光栅函数来改变所述图像的位置。
4.根据权利要求3所述的全息投影系统,其中,所述光学对准过程还包括确定产生最大检测光功率的光栅函数。
5.根据所述权利要求1-4中任一项所述的全息投影系统,其中,所述计算机生成的全息图包括代表所述图像的全息图分量。
6.根据所述权利要求1-4中任一项所述的全息投影系统,其中,所述次图像区域包括所述全息投影系统的控制信息。
7.根据所述权利要求1-4中任一项所述的全息投影系统,其中,所述次图像区域在所述主图像区域的外围。
8.根据所述权利要求1-4中任一项所述的全息投影系统,其中,所述图像是全息重建。
9.根据所述权利要求1-4中任一项所述的全息投影系统,其中,所述计算机生成的全息图对应于所述图像的数学变换。
10.根据所述权利要求1-4中任一项所述的全息投影系统,其中,所述计算机生成的全息图是傅里叶全息图或菲涅耳全息图。
11.根据所述权利要求1-4中任一项所述的全息投影系统,其中,所述计算机生成的全息图包括被设置成执行傅里叶透镜函数的全息图分量。
12.根据所述权利要求1-4中任一项所述的全息投影系统,其中,所述光源是激光器。
13.根据所述权利要求1-4中任一项所述的全息投影系统,其中,所述空间光调制器是硅基液晶“LCoS”空间光调制器。
14.根据所述权利要求1-4中任一项所述的全息投影系统,其中,所述光接收表面是漫射体。
15.根据所述权利要求1-4中任一项所述的全息投影系统,其中,所述检测器是光电二极管或光电二极管阵列。
16.根据所述权利要求1-4中任一项所述的全息投影系统,其中,所述投影系统是平视显示器或头戴式显示器。
17.根据所述权利要求9所述的全息投影系统,其中,所述图像的数学变换是傅里叶变换或菲涅耳变换。
CN201780074459.8A 2016-12-02 2017-12-01 全息投影仪 Active CN110050235B (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
GB1620538.7A GB2559112B (en) 2016-12-02 2016-12-02 Holographic projector
GB1620539.5A GB2552851B (en) 2016-12-02 2016-12-02 Holographic projector
GB1620539.5 2016-12-02
GB1620537.9A GB2552850B (en) 2016-12-02 2016-12-02 Holographic projector
GB1620538.7 2016-12-02
GB1620540.3A GB2554472B (en) 2016-12-02 2016-12-02 Holographic projector
GB1620537.9 2016-12-02
GB1620540.3 2016-12-02
PCT/GB2017/053635 WO2018100394A1 (en) 2016-12-02 2017-12-01 Holographic projector

Publications (2)

Publication Number Publication Date
CN110050235A CN110050235A (zh) 2019-07-23
CN110050235B true CN110050235B (zh) 2020-10-09

Family

ID=60702832

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780074459.8A Active CN110050235B (zh) 2016-12-02 2017-12-01 全息投影仪

Country Status (7)

Country Link
EP (4) EP3408711B1 (zh)
JP (1) JP6860669B2 (zh)
KR (1) KR102088199B1 (zh)
CN (1) CN110050235B (zh)
ES (1) ES2730558T3 (zh)
PL (1) PL3408710T3 (zh)
WO (3) WO2018100394A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10802440B2 (en) 2015-12-30 2020-10-13 Dualitas Ltd. Dynamic holography non-scanning printing device
WO2017115081A1 (en) 2015-12-30 2017-07-06 Daqri Holographics Ltd Near eye dynamic holography
KR102047545B1 (ko) 2015-12-30 2019-11-21 듀얼리타스 리미티드 동적 홀로그래피 포커스트-뎁스 인쇄장치
JP6676782B2 (ja) 2016-12-15 2020-04-08 アルプスアルパイン株式会社 画像表示装置
US10347030B2 (en) 2017-05-15 2019-07-09 Envisics Ltd Adjusting depth of augmented reality content on a heads up display
GB2567408B (en) 2017-08-02 2020-12-02 Dualitas Ltd Holographic projector
US11231583B2 (en) 2017-08-02 2022-01-25 Envisics Ltd. Display device and system
GB2568021B (en) 2017-09-08 2021-12-01 Dualitas Ltd Holographic projector
GB2569208B (en) 2018-07-19 2019-12-04 Envisics Ltd A head-up display
GB2580012A (en) 2018-09-28 2020-07-15 Envisics Ltd Head-up display
GB2578785C (en) 2018-11-09 2023-08-09 Dualitas Ltd Pixel mapping onto a display device for holographic projection
GB2580298B (en) * 2018-11-12 2021-08-11 Dualitas Ltd A spatial light modulator for holographic projection
GB2579234B (en) 2018-11-27 2023-07-19 Dualitas Ltd Hologram calculation
GB2580696B (en) 2019-01-25 2022-04-27 Dualitas Ltd A method for a holographic projector
GB2580441B (en) 2019-03-14 2022-03-16 Dualitas Ltd Laser modulation
GB2582370B (en) 2019-03-22 2022-11-02 Dualitas Ltd Holographic projector
CN110058507B (zh) * 2019-03-29 2020-08-28 北京航空航天大学 一种光强可调的高质量全息显示系统
GB2582965B (en) 2019-04-11 2021-09-15 Dualitas Ltd A diffuser assembly
GB2586511B (en) 2019-08-23 2021-12-01 Dualitas Ltd Holographic projector
GB2586512B (en) 2019-08-23 2021-12-08 Dualitas Ltd Holographic projection
GB2578523B (en) 2019-09-25 2021-08-11 Dualitas Ltd Holographic projection
GB2587400B (en) 2019-09-27 2022-02-16 Dualitas Ltd Hologram display using a liquid crystal display device
GB2589575B (en) 2019-12-02 2022-01-12 Envisics Ltd Pupil expander
GB2587245B (en) * 2019-12-18 2022-03-16 Envisics Ltd Holographic image alignment
CN111880390B (zh) * 2020-03-04 2021-06-04 北京航空航天大学 一种基于白光照明的彩色全息3d显示系统
GB2598088B (en) * 2020-08-05 2022-08-24 Envisics Ltd Holographic fingerprint
GB2598604B (en) * 2020-09-04 2023-01-18 Envisics Ltd A holographic projector
GB2599436B (en) * 2020-10-02 2022-10-26 Envisics Ltd Holographic projection
US11393179B2 (en) 2020-10-09 2022-07-19 Open Space Labs, Inc. Rendering depth-based three-dimensional model with integrated image frames

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070273889A1 (en) * 2006-05-17 2007-11-29 Samsung Electro-Mechanics Co. Ltd. Calibration method for optical modulator
CN101646043A (zh) * 2008-08-05 2010-02-10 先进微系统科技股份有限公司 具有相位检测及补偿功能的扫描投射显示装置
WO2011044464A1 (en) * 2009-10-09 2011-04-14 Massahussetts Institute Of Technology System, method and apparatus for wavelength-coded multi-focal microscopy
WO2015173558A1 (en) * 2014-05-16 2015-11-19 Two Trees Photonics Limited Head-up display with diffuser

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07261125A (ja) * 1994-03-24 1995-10-13 Olympus Optical Co Ltd 投影型画像表示装置
EP0817157A3 (en) * 1996-06-28 1998-08-12 Texas Instruments Incorporated Improvements in or relating to image display system
GB0121308D0 (en) * 2001-09-03 2001-10-24 Thomas Swan & Company Ltd Optical processing
GB0329012D0 (en) * 2003-12-15 2004-01-14 Univ Cambridge Tech Hologram viewing device
JP4761432B2 (ja) * 2004-10-13 2011-08-31 株式会社リコー レーザ加工装置
JP4690066B2 (ja) * 2005-02-07 2011-06-01 株式会社リコー 加工方法、加工装置、回折光学素子の加工方法及びフォトニック結晶の加工方法
JP2006301020A (ja) * 2005-04-15 2006-11-02 Ricoh Co Ltd 立体映像表示装置とそれを備えた通話装置ならびに輸送用移動体
GB2438026A (en) * 2006-05-11 2007-11-14 Univ Cambridge Tech Phase retrevial in hologram generation using amplitude and phase feedback
GB2438458A (en) 2006-05-11 2007-11-28 Univ Cambridge Tech Blocking zero-order light in phase shift hologram generation
JP5312748B2 (ja) 2007-03-02 2013-10-09 オリンパス株式会社 ホログラフィックプロジェクション方法及びホログラフィックプロジェクション装置
GB2468911A (en) 2009-03-27 2010-09-29 Light Blue Optics Ltd Aberration correction methods using wavefront sensing hologram patches and mapping of phase aberration corrections
LU91737B1 (en) * 2010-09-17 2012-03-19 Iee Sarl Lidar imager
GB2498170B (en) 2011-10-26 2014-01-08 Two Trees Photonics Ltd Frame inheritance
GB2501112B (en) * 2012-04-12 2014-04-16 Two Trees Photonics Ltd Phase retrieval
GB2509180B (en) * 2012-12-21 2015-04-08 Two Trees Photonics Ltd Projector
GB2526158B (en) * 2014-05-16 2017-12-20 Two Trees Photonics Ltd Imaging device for moving a virtual image

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070273889A1 (en) * 2006-05-17 2007-11-29 Samsung Electro-Mechanics Co. Ltd. Calibration method for optical modulator
CN101646043A (zh) * 2008-08-05 2010-02-10 先进微系统科技股份有限公司 具有相位检测及补偿功能的扫描投射显示装置
WO2011044464A1 (en) * 2009-10-09 2011-04-14 Massahussetts Institute Of Technology System, method and apparatus for wavelength-coded multi-focal microscopy
WO2015173558A1 (en) * 2014-05-16 2015-11-19 Two Trees Photonics Limited Head-up display with diffuser

Also Published As

Publication number Publication date
EP3408710B1 (en) 2019-05-15
EP4246244A3 (en) 2023-11-22
WO2018100397A1 (en) 2018-06-07
EP4246244A2 (en) 2023-09-20
EP3408711A1 (en) 2018-12-05
EP3408711B1 (en) 2019-06-12
JP6860669B2 (ja) 2021-04-21
PL3408710T3 (pl) 2019-09-30
JP2020503538A (ja) 2020-01-30
EP3408709B1 (en) 2024-06-05
WO2018100395A1 (en) 2018-06-07
WO2018100394A1 (en) 2018-06-07
ES2730558T3 (es) 2019-11-11
KR20190076056A (ko) 2019-07-01
EP3408709A1 (en) 2018-12-05
KR102088199B1 (ko) 2020-03-12
CN110050235A (zh) 2019-07-23
EP3408710A1 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
CN110050235B (zh) 全息投影仪
CN112987298B (zh) 光瞳扩展器
CN112154379B (zh) 平视显示器
GB2552851A (en) Holographic projector
CN111295624A (zh) 全息光检测和测距
CN111486975B (zh) 用于全息投影仪的方法
CN111176092B (zh) 全息投影显示设备上的像素映射
KR102512258B1 (ko) 홀로그래픽 이미지 정렬
KR102481541B1 (ko) 홀로그램 프로젝터
GB2559112A (en) Holographic projector
GB2554472A (en) Holographic projector
CN113009710A (zh) 用于在多个平面上形成图像的投影仪
KR102575669B1 (ko) 프로젝션
GB2552850A (en) Holographic projector
US11829106B2 (en) Conjugate suppression
US11940759B2 (en) Holographic projector
KR102612516B1 (ko) 홀로그램 프로젝션
CN115113509A (zh) 图像投影

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant