WO2019062200A1 - 一种超大功率 cob 光源及其制作工艺 - Google Patents

一种超大功率 cob 光源及其制作工艺 Download PDF

Info

Publication number
WO2019062200A1
WO2019062200A1 PCT/CN2018/090347 CN2018090347W WO2019062200A1 WO 2019062200 A1 WO2019062200 A1 WO 2019062200A1 CN 2018090347 W CN2018090347 W CN 2018090347W WO 2019062200 A1 WO2019062200 A1 WO 2019062200A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
cob light
copper
ceramic substrate
substrate
Prior art date
Application number
PCT/CN2018/090347
Other languages
English (en)
French (fr)
Inventor
屈军毅
马志华
丁涛
Original Assignee
深圳市立洋光电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市立洋光电子股份有限公司 filed Critical 深圳市立洋光电子股份有限公司
Publication of WO2019062200A1 publication Critical patent/WO2019062200A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0075Processes relating to semiconductor body packages relating to heat extraction or cooling elements

Definitions

  • the invention relates to a super-high power COB light source and a manufacturing process thereof.
  • ultra-high power COB LED light sources are usually presented in the form of COB LEDs in the industry.
  • the substrate material of the market is divided into two structures of a metal substrate and a ceramic substrate.
  • the metal substrate is divided into a copper substrate and an aluminum substrate.
  • the formal substrate is currently divided into a copper substrate structure and an aluminum substrate.
  • the current substrate of the flip-chip COB substrate is preferably a superconducting aluminum structure, the thermal conductivity is poor, and the thermal resistance is too large, resulting in 100 W. And above the high-power COB LED light source is insufficiently thermally conductive.
  • the ceramic substrate When the ceramic substrate is packaged, the ceramic substrate is fragile and difficult to fix, because the punching is difficult; the excellent thermal conductivity can cause the ceramic substrate to be difficult to be soldered, and the solder is difficult to solder on the lead, so that the large copper core cannot be soldered, and it is difficult to meet the ultra-high power. High current applications for luminaires.
  • the present invention provides an ultra-high power COB light source and a manufacturing process thereof.
  • An ultra-high power COB light source comprising a copper substrate, an aluminum nitride ceramic substrate and a flip chip, the aluminum nitride ceramic substrate comprising a ceramic substrate, a first copper layer, a metal layer and a second copper layer, the first copper Layered on an upper surface of the ceramic substrate, the metal layer covering an upper surface of the first copper layer, the flip chip being disposed above the metal layer and the metal layer, the first A copper layer is disposed on a lower surface of the ceramic substrate, and the copper substrate is disposed under the second copper layer and connected to the second copper layer.
  • the metal layer is composed of nickel, palladium, and gold.
  • the second copper layer and the copper substrate are soldered by solder paste.
  • the flip chip is connected to the metal layer by means of a eutectic.
  • the copper substrate is a thermoelectrically separated copper substrate, and the two sides are respectively electrical passages, and the middle is a hot passage.
  • the aluminum nitride ceramic substrate has a thickness of 0.38 mm to 2 mm
  • the copper substrate has a thickness of 1.0 mm to 3.0 mm.
  • Another object of the present invention is to provide a process for fabricating a super-power COB light source, including:
  • S1 preparing materials, specifically: the prepared materials include an aluminum nitride ceramic substrate, a copper substrate, and a flip chip;
  • S2 crystal expansion, specifically: expanding the flip chip to facilitate solid crystal growth
  • S3 a point eutectic solder paste, specifically: the solder paste is extruded into a dispensing disk of the die bonding machine, and the solder paste is spotted on the aluminum nitride ceramic substrate with a minimum number of solid crystal dispensing needles;
  • S4 solid crystal, specifically: placing the flip chip on top of the solder paste
  • S5 eutectic operation, specifically: using a eutectic furnace for eutectic soldering, so that the flip chip is tightly bonded to the aluminum nitride ceramic substrate;
  • S6 The first test, specifically: testing whether the photoelectric parameters of the eutectic COB light source are qualified
  • S7 spraying phosphor powder; specifically: spraying the phosphor powder with the COB light source processed by the eutectic welding operation by using a phosphor spraying machine, performing test monitoring during the spraying process to ensure the accuracy of the color temperature color region;
  • baking specifically: the baking condition of the COB light source is determined according to the baking condition of the phosphor, generally 120 degrees/2h rotation or 150 degrees/2h;
  • the second test is specifically: testing whether the photoelectric parameters of the COB light source are qualified
  • S11 attaching an aluminum nitride ceramic substrate, specifically: printing a solder paste on the copper substrate, and then attaching the cut COB light source semi-finished product to the copper substrate;
  • S12 reflowing operation, specifically: fixing the COB light source semi-finished product and the copper substrate by using a reflow soldering operation;
  • the third test is specifically: testing whether the photoelectric parameters of the COB light source are qualified
  • step S1 the aluminum nitride ceramic substrate is formed by a DPC process, wherein the first copper layer is coated on the upper surface of the ceramic substrate, and the metal layer is coated on the upper surface of the first copper layer on the ceramic substrate. The lower surface is covered with a second copper layer.
  • the metal layer is formed by a nickel-palladium-gold process.
  • step S1 the pads on the upper surface of the copper substrate are subjected to an immersion gold process or an oxidation prevention process.
  • the invention according to the above aspect has the beneficial effects that the ultra-high power COB light source provided by the invention and the manufacturing process thereof have simple structure and process, maximize the advantages of heat conduction of each structure, good thermal conductivity and superior heat.
  • the resistive structure is more suitable for applications of ultra-high current and high-density light sources, so that it is better suited to the needs of indoor and outdoor high-power lamps.
  • FIG. 1 is a view showing a eutectic structure of an aluminum nitride ceramic substrate of the present invention.
  • FIG. 2 is a schematic view showing the structure of an electrically separated copper substrate of the present invention.
  • FIG. 3 is a schematic structural view of a COB light source of the present invention.
  • Figure 4 is a side view showing the structure of the present invention.
  • Fig. 5 is a manufacturing process diagram of the COB light source of the present invention.
  • 1-copper substrate 11-electric channel; 12-hot channel; 13-positioning hole; 2-aluminum nitride ceramic substrate; 21-ceramic substrate; 22-first copper layer; 23-metal layer; Layer; 3-flip wafer.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • an ultra-high power COB light source includes a copper substrate 1, an aluminum nitride ceramic substrate 2, and a flip chip 3.
  • the aluminum nitride ceramic substrate 2 includes a ceramic substrate 21, a first copper layer 22,
  • the second copper layer 24 is attached to the lower surface of the ceramic substrate 21, and the copper substrate 1 is disposed below the second copper layer 24 and connected to the second copper layer 24.
  • the beneficial effect of the ultra-high power COB light source provided by the present embodiment is that the high-power COB light source provided by the invention has a simple structure and maximizes the advantages of heat conduction of each structure, and the aluminum nitride ceramic substrate 2 has good thermal conductivity.
  • the superior low thermal resistance structure is more suitable for the application of high current and high density light source, so as to be better suited to the needs of indoor and outdoor high power lamps.
  • the metal layer 23 is composed of nickel, palladium, and gold.
  • the flip chip 3 and the metal layer 23 are connected by eutectic. Since the temperature of the aluminum nitride ceramic substrate reaches 320 ° C or higher in the eutectic process, the first copper layer 22 and the metal layer 23 on the upper surface of the ceramic substrate 2 can well ensure the quality and stability of the eutectic process, and flip-chip
  • the wafer 3 is a gold-tin alloy substrate, and the positive and negative electrodes are gold-tin alloys.
  • a solder paste is applied between the aluminum nitride ceramic substrate 2 and the flip-chip 3 to make the two perfectly sealed and combined, and the heat conduction is conductive. The performance is improved to the extreme, the thermal resistance is reduced to the extreme, and the void ratio is reduced after the eutectic process, so that the surface of the aluminum nitride ceramic substrate 2 is not discolored and the quality is stable.
  • solder paste is a high temperature solder paste with a melting point of 217 ° C.
  • the thermal conductivity of the high temperature solder paste reaches 50 W/(m ⁇ K), the thermal conductivity is good, and it has good electrical conductivity, stability, weather resistance, etc.
  • Solder paste soldering not only ensures the integrated conductive and thermal conductivity of the light source, but also ensures a good bond between the aluminum nitride and the copper substrate.
  • the copper substrate 1 is a thermoelectrically separated copper substrate, and the two sides are respectively electrical passages 11 and the middle is a hot aisle 12.
  • the copper substrate 1 is a boss structure, the heat dissipation is directly introduced into the copper substrate 1 through the boss, and the positive and negative electrodes are in the insulating layer.
  • the thermoelectric separation structure has a good design and a low void ratio, which ensures the stability and consistency of the entire COB light source structure. Sex.
  • the wiring on the lower surface of the aluminum nitride ceramic substrate 2 is also a thermoelectric separation structure, and the copper substrate 1 and the aluminum nitride ceramic are ensured when the aluminum nitride ceramic substrate 2 and the copper substrate 1 are reflowed.
  • the thickness of the aluminum nitride ceramic substrate 2 is 0.38 mm to 2 mm, and the thickness of the copper substrate 1 is 1.0 mm to 3.0 mm.
  • the thickness of the aluminum nitride ceramic substrate 2 is set in the range of 0.38 mm to 2 mm, which ensures low thermal resistance and is convenient to process at the same time; the thickness setting of the copper substrate 1 is mainly based on the rigidity of the fixed light source, and the thickness is too thin. Since the thickness of the copper substrate 1 is set to be different from the area of the copper substrate 1, the thickness of the copper substrate 1 is larger, and the thickness is larger, and the smaller the area of the copper substrate 1, the thickness can be slightly lowered, which is convenient for suppliers. In the work, the thickness of the copper substrate 1 is set in the range of 1.0 mm to 3.0 mm.
  • the corner portion of the copper substrate 1 is provided with a positioning hole 13 for fixing the copper substrate 1 on the high-power lamp to ensure a perfect combination of the COB light source on the lamp.
  • another object of the present invention is to provide a process for fabricating a super-power COB light source, including:
  • S1 preparing materials, specifically: the prepared materials include an aluminum nitride ceramic substrate, a copper substrate, and a flip chip;
  • S2 crystal expansion, specifically: expanding the flip chip to facilitate solid crystal growth
  • S3 a point eutectic solder paste, specifically: the solder paste is extruded into a dispensing disk of the die bonding machine, and the solder paste is spotted on the aluminum nitride ceramic substrate with a minimum number of solid crystal dispensing needles;
  • S4 solid crystal, specifically: placing the flip chip on top of the solder paste
  • S5 eutectic operation, specifically: using a eutectic furnace for eutectic soldering, so that the flip chip is tightly bonded to the aluminum nitride ceramic substrate;
  • S6 The first test, specifically: testing whether the photoelectric parameters of the eutectic COB light source are qualified
  • S7 spraying phosphor powder; specifically: spraying the phosphor powder with the COB light source processed by the eutectic welding operation by using a phosphor spraying machine, performing test monitoring during the spraying process to ensure the accuracy of the color temperature color region;
  • baking specifically: the baking condition of the COB light source is determined according to the baking condition of the phosphor, generally 120 degrees/2h rotation or 150 degrees/2h;
  • the second test is specifically: testing whether the photoelectric parameters of the COB light source are qualified
  • S11 attaching an aluminum nitride ceramic substrate, specifically: printing a solder paste on the copper substrate, and then attaching the cut COB light source semi-finished product to the copper substrate;
  • S12 reflowing operation, specifically: fixing the COB light source semi-finished product and the copper substrate by using a reflow soldering operation;
  • the third test is specifically: testing whether the photoelectric parameters of the COB light source are qualified
  • the manufacturing process of the ultra-high-power COB light source provided by the invention has the advantages of simple structure and process, maximizes the advantages of heat conduction of each structure, good thermal conductivity and superior thermal resistance structure are more suitable for application of ultra-high current and high-density light source. Therefore, it is better suited to the needs of indoor and outdoor high-power lamps.
  • step S1 the aluminum nitride ceramic substrate is formed by a DPC process, wherein the first copper layer is coated on the upper surface of the ceramic substrate, and the metal layer is coated on the upper surface of the first copper layer on the ceramic substrate. The lower surface is covered with a second copper layer.
  • the metal layer is formed by a nickel-palladium-gold process.
  • step S1 the pads on the upper surface of the copper substrate are subjected to an immersion gold process or an oxidation prevention process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种超大功率 COB 光源,包括铜基板、氮化铝陶瓷基板及倒装晶片,氮化铝陶瓷基板包括陶瓷基板、第一铜层、金属层及第二铜层,第一铜层覆于陶瓷基板的上表面,金属层覆于第一铜层的上表面,倒装晶片设于金属层的上方并与金属层,第二铜层覆于陶瓷基板的下表面,铜基板设于第二铜层的下方并与第二铜层连接。本发明还提供了一种超大功率 COB 光源的制作工艺。本发明提供的超大功率 COB 光源及其制作工艺,其结构、工艺简单,最大限度地发挥了各结构导热的优点,良好的导热性能、优越的热阻结构更适用于超大电流高密度光源的应用,从而更好地适用于户内和户外大功率灯具的需求。

Description

一种超大功率COB光源及其制作工艺 技术领域
本发明涉及一种超大功率COB光源及其制作工艺。
背景技术
目前超大功率COB LED光源在业界通常以COB LED的形式来呈现。目前市场的基板材质分为金属基板和陶瓷基板两种结构。金属基板,分为铜基板和铝基板,正装基板目前分为铜基板结构和铝基板,倒装COB基板目前基板最好为超导铝结构,导热系数均不佳,热阻偏大,导致100W及以上的大功率COB LED光源导热不足。陶瓷基板进行封装时,陶瓷基板易碎且不易固定,因为打孔难度大;优异的导热性能会导致陶瓷基板难焊线,焊盘难上锡导致不能焊接大铜芯的电线,难以满足超大功率灯具的大电流应用。
以上不足,有待改善。
发明内容
为了克服现有的技术的不足,本发明提供一种超大功率COB光源及其制作工艺。
本发明技术方案如下所述:
一种超大功率COB光源,包括铜基板、氮化铝陶瓷基板及倒装晶片,所述氮化铝陶瓷基板包括陶瓷基板、第一铜层、金属层及第二铜层,所述第一铜层覆于所述陶瓷基板的上表面,所述金属层覆于所述第一铜层的上表面,所述倒装晶片设于所述金属层的上方并与所述金属层,所述第二铜层覆于所述陶瓷基板的下表面,所述铜基板设于所述第二铜层的下方并与所述第二铜层连接。
进一步地,所述金属层由镍、钯及金构成。
进一步地,所述第二铜层与所述铜基板通过锡膏焊接。
进一步地,所述倒装晶片与所述金属层采用共晶的方式连接。
进一步地,所述铜基板为热电分离铜基板,两边分别为电通道,中间为热通道。
进一步地,所述氮化铝陶瓷基板的厚度为0.38mm~2mm,铜基板的厚度为1.0mm~3.0mm。
本发明的另一个目的在于提供一种超大功率COB光源的制作工艺,包括:
S1:准备材料,具体为:准备的材料包括氮化铝陶瓷基板、铜基板及倒装晶片;
S2:扩晶,具体为:将倒装晶片扩开,便于固晶;
S3:点共晶助焊膏,具体为:将助焊膏挤入固晶机的点胶盘,用最小号的固晶点胶针将助焊膏点在氮化铝陶瓷基板上;
S4:固晶,具体为:将倒装晶片放置在助焊膏的上方;
S5:共晶作业,具体为:采用共晶炉进行共晶焊接作业,使倒装晶片与氮化铝陶瓷基板紧密结合;
S6:第一次测试,具体为:测试共晶COB光源各光电参数是否合格;
S7:喷涂荧光粉;具体为:用荧光粉喷涂机把共晶焊作业处理的COB光源喷涂荧光粉,在喷涂过程进行测试监控,保证色温色区的准确性;
S8:烘烤,具体为:COB光源的烘烤条件需根据荧光粉的烘烤条件而定,一般为120度/2h转或150度/2h;
S9:第二次测试,具体为:测试COB光源各光电参数是否合格;
S10:切割COB光源:具体为:氮化铝陶瓷基板为连片,需利用切割机对COB光源进行切割;
S11:贴氮化铝陶瓷基板,具体为:在铜基板上印刷锡膏,然后将已切割好的COB光源半成品贴在铜基板上;
S12:回流焊作业,具体为:采用回流焊作业将COB光源半成品和铜基板进行固定;
S13:第三次测试,具体为:测试COB光源各光电参数是否合格;
S14:包装入库,具体为:用吸塑盒进行真空包装,再装箱入库。
进一步地,在步骤S1中,氮化铝陶瓷基板采用DPC工艺制成,DPC的工艺为在陶瓷基板的上表面覆第一铜层,在第一铜层的上表面覆金属层,在陶瓷基板的下表面覆第二铜层。
进一步地,金属层采用沉镍钯金工艺制成。
进一步地,在步骤S1中,铜基板上表面的焊盘采用沉金工艺或采用防氧化处理。
根据上述方案的本发明,其有益效果在于,本发明提供的超大功率COB光源及其制作工艺,其结构、工艺简单,最大限度地发挥了各结构导热的优点,良好的导热性能、优越的热阻结构更适用于超大电流高密度光源的应用,从而更好地适用于户内和户外大功率灯具的需求。
附图说明
图1为本发明的氮化铝陶瓷基板共晶结构意图。
图2为本发明的电分离铜基板结构示意图。
图3为本发明的COB光源结构示意图。
图4为本发明的结构侧视图。
图5为本发明的COB光源的制作工艺图。
在图中,附图标记如下:
1-铜基板;11-电通道;12-热通道;13-定位孔;2-氮化铝陶瓷基板;21-陶瓷基板;22-第一铜层;23-金属层;24-第二铜层;3-倒装晶片。
具体实施方式
下面结合附图以及实施方式对本发明进行进一步的描述:
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
如图1至图4所示,一种超大功率COB光源,包括铜基板1、氮化铝陶瓷基板2及倒装晶片3,氮化铝陶瓷基板2包括陶瓷基板21、第一铜层22、金属层23及第二铜层24,第一铜层22覆于陶瓷基板21的上表面,金属层23覆于第一铜层22的上表面,倒装晶片3设于金属层23的上方并与金属层23连接,第二铜层24覆于陶瓷基板21的下表面,铜基板1设于第二铜层24的下方并与第二铜层24连接。
本实施例的提供的超大功率COB光源的有益效果为:本发明提供的大功率COB光源,其结构简单,最大限度地发挥了各结构导热的优点,氮化铝陶瓷基板2有良好的导热性能、优越的低热阻结构更适用于大电流高密度光源的应用,从而更好地适用于户内和户外大功率灯具的需求。
进一步地,金属层23由镍、钯及金构成。
进一步地,倒装晶片3与金属层23采用共晶的方式连接。由于共晶工艺中氮化铝陶瓷基板温度达到320℃甚至更高,陶瓷基板2上表面的第一铜层22和金属层23能够很好的保证了共晶工艺的品质和稳定性,倒装晶片3为金锡合金衬底,正负极均为金锡合金,在氮化铝陶瓷基板2与倒装晶片3之间辅以助焊膏,使两者达到完美固定并结合,将导热导电性能提升到了极致,热阻低到了极致,用共晶工艺后空洞率降低,保证氮化铝陶瓷基板2表面不变色,品质稳定。
进一步地,第二铜层24与铜基板1通过锡膏焊接。锡膏为高温锡膏,熔点在217℃,高温锡膏的导热系数达到50W/(m·K),导热系数良好,并且又有很好的导电性、稳定性、耐候性等特点,因此采用锡膏焊接不仅保证了光源的一体化导电导热性能,也保证了氮化铝与铜基板良好的结合度。
进一步地,铜基板1为热电分离铜基板,两边分别为电通道11,中间为热通道12。铜 基板1为凸台结构,散热通过凸台直接导入铜基板1,正负极焊盘在绝缘层,热电分离结构设计结合度好,空洞率低,保证了整个COB光源结构的稳定性和一致性。
在本实施例中,氮化铝陶瓷基板2的下表面的线路也为热电分离结构,在氮化铝陶瓷基板2与铜基板1进行回流焊作业时,保证了铜基板1与氮化铝陶瓷基板2的锡膏回流焊效果。
在本实施例中,氮化铝陶瓷基板2的厚度为0.38mm~2mm,铜基板1的厚度为1.0mm~3.0mm。氮化铝陶瓷基板2设置的厚度为0.38mm~2mm范围,保证了低热阻,同时加工也方便;铜基板1厚度的设定,主要是从固定光源的刚度出发,厚度太薄铜基板1易翘曲,因此设定铜基板1的厚度与铜基板1的面积大小有关系,铜基板1面积较大,则厚度越大,铜基板1面积越小,则厚度可稍降低,为方便供应商作业,将铜基板1的厚度设置在1.0mm~3.0mm范围内。
在本实施例中,铜基板1的角部设有定位孔13,用于将铜基板1固定在大功率灯具上,保证COB光源在灯具上的完美结合。
如图5所示,本发明的另一个目的在于提供一种超大功率COB光源的制作工艺,包括:
S1:准备材料,具体为:准备的材料包括氮化铝陶瓷基板、铜基板及倒装晶片;
S2:扩晶,具体为:将倒装晶片扩开,便于固晶;
S3:点共晶助焊膏,具体为:将助焊膏挤入固晶机的点胶盘,用最小号的固晶点胶针将助焊膏点在氮化铝陶瓷基板上;
S4:固晶,具体为:将倒装晶片放置在助焊膏的上方;
S5:共晶作业,具体为:采用共晶炉进行共晶焊接作业,使倒装晶片与氮化铝陶瓷基板紧密结合;
S6:第一次测试,具体为:测试共晶COB光源各光电参数是否合格;
S7:喷涂荧光粉;具体为:用荧光粉喷涂机把共晶焊作业处理的COB光源喷涂荧光粉, 在喷涂过程进行测试监控,保证色温色区的准确性;
S8:烘烤,具体为:COB光源的烘烤条件需根据荧光粉的烘烤条件而定,一般为120度/2h转或150度/2h;
S9:第二次测试,具体为:测试COB光源各光电参数是否合格;
S10:切割COB光源:具体为:氮化铝陶瓷基板为连片,需利用切割机对COB光源进行切割;
S11:贴氮化铝陶瓷基板,具体为:在铜基板上印刷锡膏,然后将已切割好的COB光源半成品贴在铜基板上;
S12:回流焊作业,具体为:采用回流焊作业将COB光源半成品和铜基板进行固定;
S13:第三次测试,具体为:测试COB光源各光电参数是否合格;
S14:包装入库,具体为:用吸塑盒进行真空包装,再装箱入库。
本发明提供的超大功率COB光源的制作工艺,其结构、工艺简单,最大限度地发挥了各结构导热的优点,良好的导热性能、优越的热阻结构更适用于超大电流高密度光源的应用,从而更好地适用于户内和户外大功率灯具的需求。
进一步地,在步骤S1中,氮化铝陶瓷基板采用DPC工艺制成,DPC的工艺为在陶瓷基板的上表面覆第一铜层,在第一铜层的上表面覆金属层,在陶瓷基板的下表面覆第二铜层。
进一步地,金属层采用沉镍钯金工艺制成。
进一步地,在步骤S1中,铜基板上表面的焊盘采用沉金工艺或采用防氧化处理。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。
上面结合附图对本发明专利进行了示例性的描述,显然本发明专利的实现并不受上述方式的限制,只要采用了本发明专利的方法构思和技术方案进行的各种改进,或未经改进将本发明专利的构思和技术方案直接应用于其它场合的,均在本发明的保护范围内。

Claims (10)

  1. 一种超大功率COB光源,其特征在于,包括铜基板、氮化铝陶瓷基板及倒装晶片,所述氮化铝陶瓷基板包括陶瓷基板、第一铜层、金属层及第二铜层,所述第一铜层覆于所述陶瓷基板的上表面,所述金属层覆于所述第一铜层的上表面,所述倒装晶片设于所述金属层的上方并与所述金属层,所述第二铜层覆于所述陶瓷基板的下表面,所述铜基板设于所述第二铜层的下方并与所述第二铜层连接。
  2. 根据权利要求1所述的超大功率COB光源,其特征在于,所述金属层由镍、钯及金构成。
  3. 根据权利要求1所述的超大功率COB光源,其特征在于,所述第二铜层与所述铜基板通过锡膏焊接。
  4. 根据权利要求1所述的超大功率COB光源,其特征在于,所述倒装晶片与所述金属层采用共晶的方式连接。
  5. 根据权利要求1所述的超大功率COB光源,其特征在于,所述铜基板为热电分离铜基板,两边分别为电通道,中间为热通道。
  6. 根据权利要求1所述的超大功率COB光源,其特征在于,所述氮化铝陶瓷基板的厚度为0.38mm~2mm,铜基板的厚度为1.0mm~3.0mm。
  7. 一种超大功率COB光源的制作工艺,其特征在于,包括:
    S1:准备材料,具体为:准备的材料包括氮化铝陶瓷基板、铜基板及倒装晶片;
    S2:扩晶,具体为:将倒装晶片扩开,便于固晶;
    S3:点共晶助焊膏,具体为:将助焊膏挤入固晶机的点胶盘,用最小号的固晶点胶针将助焊膏点在氮化铝陶瓷基板上;
    S4:固晶,具体为:将倒装晶片放置在助焊膏的上方;
    S5:共晶作业,具体为:采用共晶炉进行共晶焊接作业,使倒装晶片与氮化铝陶瓷基板紧密结合;
    S6:第一次测试,具体为:测试共晶COB光源各光电参数是否合格;
    S7:喷涂荧光粉;具体为:用荧光粉喷涂机把共晶焊作业处理的COB光源喷涂荧光粉,在喷涂过程进行测试监控,保证色温色区的准确性;
    S8:烘烤,具体为:COB光源的烘烤条件需根据荧光粉的烘烤条件而定,一般为120度/2h转或150度/2h;
    S9:第二次测试,具体为:测试COB光源各光电参数是否合格;
    S10:切割COB光源:具体为:氮化铝陶瓷基板为连片,需利用切割机对COB光源进行切割;
    S11:贴氮化铝陶瓷基板,具体为:在铜基板上印刷锡膏,然后将已切割好的COB光源半成品贴在铜基板上;
    S12:回流焊作业,具体为:采用回流焊作业将COB光源半成品和铜基板进行固定;
    S13:第三次测试,具体为:测试COB光源各光电参数是否合格;
    S14:包装入库,具体为:用吸塑盒进行真空包装,再装箱入库。
  8. 根据权利要求7所述的超大功率COB光源的制作工艺,其特征在于,在步骤S1中,氮化铝陶瓷基板采用DPC工艺制成,DPC的工艺为在陶瓷基板的上表面覆第一铜层,在第一铜层的上表面覆金属层,在陶瓷基板的下表面覆第二铜层。
  9. 根据权利要求8所述的超大功率COB光源的制作工艺,其特征在于,金属层采用沉镍钯金工艺制成。
  10. 根据权利要求7所述的超大功率COB光源的制作工艺,其特征在于,在步骤S1中,铜基板上表面的焊盘采用沉金工艺或采用防氧化处理。
PCT/CN2018/090347 2017-09-26 2018-06-08 一种超大功率 cob 光源及其制作工艺 WO2019062200A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710879498.7 2017-09-26
CN201710879498.7A CN107482001A (zh) 2017-09-26 2017-09-26 一种超大功率cob光源及其制作工艺

Publications (1)

Publication Number Publication Date
WO2019062200A1 true WO2019062200A1 (zh) 2019-04-04

Family

ID=60586373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090347 WO2019062200A1 (zh) 2017-09-26 2018-06-08 一种超大功率 cob 光源及其制作工艺

Country Status (2)

Country Link
CN (1) CN107482001A (zh)
WO (1) WO2019062200A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171644A (zh) * 2021-11-17 2022-03-11 广东索亮智慧科技有限公司 一种特殊应用超高密度纳米级导热全色域nk瓦级cob光源封装技术

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107482001A (zh) * 2017-09-26 2017-12-15 深圳市立洋光电子股份有限公司 一种超大功率cob光源及其制作工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040026708A1 (en) * 2002-08-09 2004-02-12 United Epitaxy Co., Ltd. Sub-mount for high power light emitting diode
CN202221759U (zh) * 2011-09-07 2012-05-16 惠州市西顿工业发展有限公司 具有高导热基板的led光源装置
CN103682035A (zh) * 2012-08-28 2014-03-26 东芝照明技术株式会社 配线基板、发光装置及配线基板的制造方法
CN104505454A (zh) * 2014-12-06 2015-04-08 深圳市格天光电有限公司 高光效路灯覆晶cob光源及其生产工艺
CN107482001A (zh) * 2017-09-26 2017-12-15 深圳市立洋光电子股份有限公司 一种超大功率cob光源及其制作工艺
CN207250511U (zh) * 2017-09-26 2018-04-17 深圳市立洋光电子股份有限公司 一种超大功率cob光源

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201877461U (zh) * 2010-10-27 2011-06-22 上海卓凯电子科技有限公司 发光二极管模块的系统电路载板
TWM427673U (en) * 2011-09-27 2012-04-21 Syratek Corp Surface light source module with multipoint-type COB
CN202712182U (zh) * 2012-06-20 2013-01-30 钟才华 一种高光效高导热的led cob光源封装结构
CN203434195U (zh) * 2013-07-30 2014-02-12 郑州森源新能源科技有限公司 一种热电分离的cob封装结构
CN104869757B (zh) * 2015-06-02 2018-01-30 遂宁市广天电子有限公司 一种cob热电分离铜基板的生产工艺
CN205508881U (zh) * 2015-09-18 2016-08-24 东芝照明技术株式会社 发光模块
CN107146788A (zh) * 2017-05-22 2017-09-08 华中科技大学鄂州工业技术研究院 一种大功率深紫外led光源模组及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040026708A1 (en) * 2002-08-09 2004-02-12 United Epitaxy Co., Ltd. Sub-mount for high power light emitting diode
CN202221759U (zh) * 2011-09-07 2012-05-16 惠州市西顿工业发展有限公司 具有高导热基板的led光源装置
CN103682035A (zh) * 2012-08-28 2014-03-26 东芝照明技术株式会社 配线基板、发光装置及配线基板的制造方法
CN104505454A (zh) * 2014-12-06 2015-04-08 深圳市格天光电有限公司 高光效路灯覆晶cob光源及其生产工艺
CN107482001A (zh) * 2017-09-26 2017-12-15 深圳市立洋光电子股份有限公司 一种超大功率cob光源及其制作工艺
CN207250511U (zh) * 2017-09-26 2018-04-17 深圳市立洋光电子股份有限公司 一种超大功率cob光源

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171644A (zh) * 2021-11-17 2022-03-11 广东索亮智慧科技有限公司 一种特殊应用超高密度纳米级导热全色域nk瓦级cob光源封装技术

Also Published As

Publication number Publication date
CN107482001A (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
JP2010109132A (ja) 熱電モジュールを備えたパッケージおよびその製造方法
CN107275319B (zh) 一种led芯片平板热管集成封装结构及其制备方法
CN101532612A (zh) 一种集成led芯片光源的制造方法
US9082760B2 (en) Dual layered lead frame
CN108922869A (zh) 一种带tec-氮化铝-金属三元结构的smd封装基座
CN107546131A (zh) 一种用于封装电子组件的金属外壳的制作方法
WO2019062200A1 (zh) 一种超大功率 cob 光源及其制作工艺
JP2016167480A (ja) 電力用半導体装置
WO2016019720A1 (zh) 宽禁带半导体器件及其制备方法
CN106764560B (zh) 一种led灯的制造方法
US9847279B2 (en) Composite lead frame structure
CN203351644U (zh) 覆晶式led支架和表面贴装led
CN103247742B (zh) 一种led散热基板及其制造方法
WO2017107399A1 (zh) 一种集成led光源导热结构及其实现方法
CN205543689U (zh) 一种高功率半导体激光器
TW201214909A (en) Conduction cooled package laser and packaging method thereof
CN202454612U (zh) 芯片封装结构
CN207250511U (zh) 一种超大功率cob光源
CN211151047U (zh) 一种便于光斑整形的高功率半导体激光器
TWI484604B (zh) 金屬熱界面材料以及含該材料的構裝半導體
TWI296839B (en) A package structure with enhancing layer and manufaturing the same
CN209708967U (zh) 一种led发光模块
CN205335297U (zh) 一种集成led光源导热结构
CN103247751A (zh) 芯片封装结构及其方法
CN220963386U (zh) 一种350w高功率影视灯光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862609

Country of ref document: EP

Kind code of ref document: A1