WO2019062149A1 - 物理下行控制信道的处理方法及相关设备 - Google Patents

物理下行控制信道的处理方法及相关设备 Download PDF

Info

Publication number
WO2019062149A1
WO2019062149A1 PCT/CN2018/087181 CN2018087181W WO2019062149A1 WO 2019062149 A1 WO2019062149 A1 WO 2019062149A1 CN 2018087181 W CN2018087181 W CN 2018087181W WO 2019062149 A1 WO2019062149 A1 WO 2019062149A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink control
identifier
wireless network
physical downlink
network temporary
Prior art date
Application number
PCT/CN2018/087181
Other languages
English (en)
French (fr)
Inventor
才宇
曾勇波
王达
王键
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18862350.8A priority Critical patent/EP3668034B1/en
Priority to US16/651,603 priority patent/US11337200B2/en
Publication of WO2019062149A1 publication Critical patent/WO2019062149A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/02Protecting privacy or anonymity, e.g. protecting personally identifiable information [PII]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and a related device for processing a physical downlink control channel.
  • D2D communication based on cellular network (also known as Proximity Service (ProSe) in 3GPP) is a new type of communication that allows terminals to communicate directly by multiplexing cell resources.
  • Proximity Service ProSe
  • 3GPP 3rd Generation Partnership Project
  • the D2D communication includes a user equipment to network relay operation, that is, a UE-to-network relay operation. In this operation, the remote user equipment (remote UE) can connect to the network through a relay user equipment (UE).
  • UE relay user equipment
  • the remote UE may be a low-capacity device, such as a wearable device, which is characterized by small size, small battery capacity, and low radio frequency capability; the relay UE may be a high-capacity device, such as a high-capacity device.
  • the smart phone can be used as a relay node to assist low-capacity devices to communicate with the network, thereby saving the power consumption of the remote UE and extending the standby time.
  • the network device may schedule the remote UE to send and/or receive resources through the relay UE.
  • the relay UE receives the downlink control information (Downlink Control Information (DCI) sent by the network device for scheduling the remote UE, and then The DCI is forwarded to the remote UE, and the DCI contains information about the remote UE transmitting and/or receiving resources.
  • DCI Downlink Control Information
  • the relay UE needs to detect the DCI carrying the remote UE multiple times according to the wireless network temporary identifier of each remote UE in order to receive the DCI sent by the network device for scheduling the remote UE.
  • the physical downlink control channel (PDCCH) thereby greatly increasing the complexity of the relay UE decoding the PDCCH.
  • the present application provides a processing method and related device for a physical downlink control channel, which can reduce the complexity of decoding a PDCCH by a relay UE in D2D communication.
  • the present application provides a processing method of a physical downlink control channel, where the method may determine a search space according to a first wireless network temporary identifier, where the search space is a set of M candidate physical downlink control channels, where M is greater than or equal to 1.
  • An integer integer detecting a target physical downlink control channel from the search space according to the second wireless network temporary identifier; the first wireless network temporary identifier is a wireless identifier of the first device or the second device; the second wireless The network temporary identifier is a temporary identifier of the wireless network of the second device, and the first downlink control information carried by the target physical downlink control channel is used for scheduling the second by using the second wireless network temporary identifier.
  • the information for scheduling the second device may include information for scheduling resources of the second device to send and/or receive data, or may include parameters used by the second device to send and/or receive data. Information.
  • the first device may perform a processing method of the physical downlink control channel, that is, the first device determines a search space according to the wireless network temporary identifier of the first device, and the temporary identifier from the search space according to the second wireless network.
  • the target physical downlink control channel is detected.
  • the second wireless network is temporarily identified as a temporary identifier of the wireless network of the second device, and the first downlink control information carried by the target physical downlink control channel is used by the scheduling device to be scrambled by using the second wireless network temporary identifier.
  • Information about the second device the second device communicating with the network through the first device.
  • the first device may determine the same search space for all the second devices, thereby reducing the determined number of times of the search space, and reducing the range of the search space where the first device detects the physical downlink control channel, thereby reducing the first device. Detecting the complexity of the physical downlink control channel; correspondingly, in the same search space, the wireless network temporary identifiers of the second devices are separately used to respectively detect the physical downlink control channel carrying the information for scheduling the corresponding second device. .
  • the processing method of the first device performing the physical downlink control channel may include: determining, by the first device, the search space according to the wireless network temporary identifier of the second device, and detecting the target according to the wireless network temporary identifier of the second device Physical downlink control channel.
  • the first downlink control information carried by the target physical downlink control channel is information for scheduling the second device that is scrambled by using the second wireless network temporary identifier, and the second device passes the first device. Communicate with the network.
  • the second device may perform a processing method of the physical downlink control channel, that is, the second device determines the search space according to the wireless network temporary identifier of the first device, and according to the wireless network temporary identifier of the second device, The target physical downlink control channel is detected in the search space.
  • the first downlink control information carried by the target physical downlink control channel is information for scheduling the second device that is scrambled by using the second wireless network temporary identifier, and the second device passes the first device. Communicate with the network.
  • the second device further needs to receive the indication information sent by the network or the first device, where the indication information is used to indicate the wireless network temporary identifier of the first device. It can be seen that, in this implementation manner, the first device and the second device can simultaneously detect the target PDCCH, so that the detection complexity of the first device can be reduced.
  • the processing method of the second device performing the physical downlink control channel may include: determining, by the second device, the search space according to the wireless network temporary identifier of the second device, and according to the wireless network temporary identifier of the second device, Detecting a target physical downlink control channel in the search space, where the first downlink control information carried by the target physical downlink control channel is information for scheduling the second device that is scrambled by using the second wireless network temporary identifier.
  • the second device communicates with the network through the first device.
  • the processing procedure of the target PDCCH is performed by the second device, so that the detection complexity of the first device can be reduced.
  • the processing method of the physical downlink control channel may include: for each second device, the first device determines the search space according to the wireless network temporary identifier of the first device, and And detecting, by using the radio network temporary identifier of the second device, the target physical downlink control channel, where the first downlink control information carried by the target physical downlink control channel is a temporary identifier of the wireless network that uses the second device. The information used to schedule the second device.
  • the processing method of the physical downlink control channel may include: for each second device, the second device may determine the search according to the wireless network temporary identifier of the first device. a space, and detecting a target physical downlink control channel on the search space according to the wireless network temporary identifier of the second device, where the first downlink control information carried by the target physical downlink control channel is a wireless network using the second device Temporarily identifying the scrambled information used to schedule the second device.
  • the processing method of the physical downlink control channel may include, for each second device, determining, by the first device, the search according to the wireless network temporary identifier of the second device And detecting a target physical downlink control channel on the search space according to the wireless network temporary identifier of the second device, where the first downlink control information carried by the target physical downlink control channel is a wireless network using the second device Temporarily identifying the scrambled information used to schedule the second device.
  • the processing method of the physical downlink control channel may include: for each second device, the second device may determine, according to the wireless network temporary identifier of the second device Searching the space, and detecting the target physical downlink control channel on the search space according to the wireless network temporary identifier of the second device, where the first downlink control information carried by the target physical downlink control channel is wireless using the second device
  • the network temporary identifier scrambles information for scheduling the second device.
  • the search space may be a set of multiple candidate physical downlink control channels (PDCCH candidates), and one candidate PDCCH is transmitted on one or more aggregated control channel elements (CCEs), and the number of aggregated CCEs is The aggregation level of the candidate PDCCH.
  • the detection of the target PDCCH from the search space may be understood as detecting the target PDCCH on the CCE occupied by the plurality of candidate PDCCHs included in the search space, and possibly detecting the target PDCCH on the CCE occupied by one of the candidate PDCCHs.
  • the detection of the target PDCCH may be understood as decoding the PDCCH according to the downlink control information used to schedule the second device, or as detecting the downlink control information used by the PDCCH to schedule the second device.
  • the processing method of the physical downlink control channel may further determine, according to the first identifier of the second device, at least one candidate physical downlink control channel from the search space, where the at least one candidate physical downlink control channel is used.
  • the target physical downlink control channel is detected by using the second wireless network temporary identifier. It can be seen that the implementation manner can further reduce the number of candidate physical downlink control channels to be detected when detecting the target PDCCH, and use the wireless network temporary identifiers of a smaller number of second devices on one candidate physical downlink control channel to detect the bearers respectively.
  • the physical downlink control channel for scheduling information of the corresponding second device reduces the complexity of detection.
  • the implementation may detect the target PDCCH by using only the wireless network temporary identifier of the second device on each candidate physical downlink control channel, without The detection of the target PDCCH is performed using the wireless network temporary identifiers of all the second devices, which reduces the complexity of the detection.
  • the determining, according to the first identifier of the second device, the at least one candidate physical downlink control channel from the search space may be: determining, according to the first identifier of the second device, that the index meets the following formula: at least one candidate physical downlink Control channel:
  • the size of n1 may be determined by the first device or the network device according to the number of second devices communicating with the network device through the first device, and the greater the number of second devices, the larger n1 may be.
  • a smaller number of second devices' Radio Network Temporary Identifiers can be used on each candidate PDCCH.
  • the detection that is, the target PDCCH is detected using the RNTI of the second device on the lesser number of time units.
  • the scale factor is the same, which can be specified in the standard protocol, or configured by the network device, or determined by the first device itself.
  • the index mod 2 of the at least one candidate PDCCH is equal to the first identifier mod 2 of the second device.
  • the candidate PDCCHs satisfying the above formula are PDCCH 0 and PDCCH 2, respectively. It can be seen that the PDCCH can detect the target PDCCH on the PDCCH 0 and the PDCCH 2 by using the RNTI of the second device. That is, the PDCCH carrying the information for scheduling the second device is detected.
  • the at least one time unit may be determined according to the first identifier of the second device, where the at least one time unit includes the bearer for scheduling
  • the PDCCH of the information of the second device correspondingly, the first device or the second device may determine the search space on the at least one time unit according to the first wireless network temporary identifier, and further, in the search according to the second wireless network temporary identifier
  • the target PDCCH is detected spatially.
  • this embodiment does not detect the target PDCCH on all time units, thus reducing the detection complexity of the target PDCCH.
  • determining, according to the first identifier of the second device, the at least one time unit, where the at least one time unit that the index meets the following formula is determined from the plurality of time units;
  • the number is the first identifier of the second device; the n2 is predefined, configured for the network device, or determined for the first device.
  • the time unit may be any one of a subframe, a time slot, a small time slot, and an Orthogonal Frequency Division Multiplexing (OFDM) symbol, or may be other time units, etc., which is not in the embodiment of the present invention. Make a limit.
  • OFDM Orthogonal Frequency Division Multiplexing
  • N may be the number of time units in a range of time, for example, the number of non-uplink subframes in one radio frame, or the number of downlink subframes in one radio frame, or non-uplink subframes in 1024 radio frames.
  • the number, or the number of the downlink subframes in the 1024 radio frames, or the number of time slots, symbols, mini-slots, or other smaller-sized time units in one subframe is not limited in the embodiment of the present invention.
  • the size of n2 may be determined by the first device or the network device according to the number of second devices communicating with the network device through the first device, and the greater the number of second devices, the larger n2 may be.
  • a smaller number of RNTIs of the second device can be used on each time unit to detect the target PDCCH, that is, the number is smaller.
  • the target PDCCH is detected by using the RNTI of the second device on the time unit.
  • the scale factor is the same, which can be specified in the standard protocol, or configured by the network device, or determined by the first device itself.
  • the index of the at least one non-downlink subframe capable of transmitting the target PDCCH is according to the first identifier mod of the second device. 2 obtained.
  • the non-downlink subframes satisfying the above formula are respectively subframe 0 and subframe 2, and it can be seen that the implementation may detect the target PDCCH only on subframe 0 and subframe 2.
  • the target PDCCH does not need to be detected on all non-uplink subframes, which further reduces the complexity of detection.
  • one candidate PDCCH in the search space on each time unit only needs to detect or descramble the PDCCH by using a Radio Network Temporary Identifier (RNTI) of a part of the second device; that is, it can only satisfy i.
  • the PDCCH of the DCI of the device Thereby, the detection complexity of the target PDCCH is reduced.
  • the first identifier of the second device may be the second radio network temporary identifier (for example, a Cell Radio Network Temporary Identifier (C-RNTI), and a side-link wireless network temporary identifier (Sidelink Radio) Network Temporary Identifier (SL-RNTI)), an index of the second identifier of the second device in the target list reported by the first device, a local identifier (Local ID) of the second device, and the second a Proximity-services UE ID (ProSe UE ID) of the device or a Layer 2 ID of the second device; a second identifier of the second device is the second device a local identity, a proximity service terminal identity of the second device, or a layer 2 identity of the second device.
  • C-RNTI Cell Radio Network Temporary Identifier
  • SL-RNTI Side-link wireless network temporary identifier
  • an index of the second identifier of the second device in the target list reported by the first device a local identifier (Local ID
  • the first identifier of the second device is an index of the second identifier of the second device in the target list reported by the first device, and specifically, the first device indicates that the first device performs communication in the target list.
  • One or more target devices each target device being identified by a second identity. If the first device indicates one or more target destinations of the first device performing sidelink sidelink communication in the target list destinationInfoList, each target destination is identified by the ProSe UE ID, that is, the target list destinationInfoList includes one or more Each ProSe UE ID, each second device has its own ProSe UE ID.
  • the first identifier of the second device may be the second identifier of the second device in the target list reported by the first device. Index, that is, the index of the ProSe UE ID of the second device in the target list.
  • the embodiment of the present invention further provides a processing method of a physical downlink control channel, where the processing method of the physical downlink control channel may determine, by using a first identifier of the second device, at least one time unit, according to the first wireless network temporary identifier. Determining a search space on the at least one time unit, further determining at least one candidate PDCCH from the search space according to the first identifier of the second device, and further, at least the wireless network temporary identifier according to the second device A PDCCH carrying a DCI for scheduling the second device is detected on one candidate PDCCH.
  • the processing method of the physical downlink control channel may determine, by using a first identifier of the second device, at least one time unit, according to the first wireless network temporary identifier. Determining a search space on the at least one time unit, further determining at least one candidate PDCCH from the search space according to the first identifier of the second device, and further, at least the wireless network temporary identifier according to the second device A PDCCH carrying
  • the first wireless network temporary identifier may be a wireless network temporary identifier used to scramble the second downlink control information, where the second wireless network temporary identifier is a wireless network temporary identifier of the first device, where the second downlink control information is Information for scheduling uplink transmission or downlink reception of the first device, or information for scheduling first-device side-link transmission or side-link reception.
  • the load size of the downlink control information carried by the target physical downlink control channel is equal to the downlink used for scheduling the first device in the search space. Control the load size of the information.
  • the first device uses the radio network temporary identifier of the second device to detect the target PDCCH, it may be determined that the load size of the DCI carried by the target PDCCH is equal to the load size of the DCI used to schedule the first device, that is, the adoption may be determined.
  • the inverse process of the rate matching of the DCI for scheduling the first device when the target PDCCH is detected does not need to adopt the inverse of the rate matching of the plurality of optional DCIs respectively, and then uses the second process.
  • the wireless network temporarily identifies the descrambling, thereby reducing the number of detections and further reducing the complexity of the detection.
  • the present application further provides a processing method of a physical downlink control channel.
  • the network device may determine a search space according to the first wireless network temporary identifier, where the search space is M. a set of candidate physical downlink control channels, where M is an integer greater than or equal to 1; the network device sends a target physical downlink control channel in the search space according to the second wireless network temporary identifier; the first wireless network temporary identifier is a radio network temporary identifier of the device or the second device; the first downlink control information carried by the target physical downlink control channel is information for scheduling the second device that is scrambled by using the second radio network temporary identifier
  • the second wireless network temporary identifier is a wireless network temporary identifier of the second device, and the second device communicates with the network by using the first device.
  • the network device sends the target physical downlink control channel in the search space according to the second wireless network temporary identifier, which may be understood as: using the second wireless network temporary identifier to scramble the target PDCCH in the search space, or using the second in the search space.
  • the wireless network temporary identifier scrambles the DCI carried by the PDCCH for scheduling the second device.
  • the scrambling DCI may refer to the use of the radio network temporary identifier to scramble the CRC check bit after the DCI performs the Cyclic Redundancy Check (CRC) attachment, or may refer to the CRC attaching the DCI after using the RNTI.
  • CRC Cyclic Redundancy Check
  • the processing method of the physical downlink control channel may include: determining, by the network device, the search space according to the temporary identifier of the wireless network of the first device, where the search space is a set of M candidate physical downlink control channels, where M is greater than or equal to An integer of 1; the network device sends a target physical downlink control channel on the search space according to the second wireless network temporary identifier; the first downlink control information carried by the target physical downlink control channel is a wireless using the second device The network temporarily identifies the scrambled information for scheduling the second device, and the second device communicates with the network through the first device.
  • the network device determines the search space by using the wireless network temporary identifier of the first device, thereby preventing the first device from separately determining the search according to the wireless network temporary identifier of each second device.
  • the cumbersomeness of the space reduces the complexity of detecting the PDCCH by the first device.
  • the processing method of the physical downlink control channel may include: determining, by the network device, the search space according to the radio network temporary identifier of the second device, where the search space is a set of M candidate physical downlink control channels, where M is an integer greater than or equal to
  • the network device sends a target physical downlink control channel on the search space according to the second wireless network temporary identifier; the first downlink control information carried by the target physical downlink control channel is a temporary identifier of the wireless network using the second device
  • each second device corresponds to one search space, so that each second device determines a search space according to its own wireless network temporary identifier and detects a PDCCH carrying information for scheduling the second device, thereby reducing the PDCCH.
  • the detection complexity of the first device is not limited to one search space.
  • the search space may be a set of multiple candidate physical downlink control channels, and one candidate PDCCH is transmitted on one or more aggregated control channel elements (CCEs), and the number of aggregated CCEs is an aggregation of the candidate PDCCHs. grade. That is to say, the network device can transmit the target PDCCH on the search space, and the network device can transmit the target PDCCH on the CCE occupied by the multiple candidate PDCCHs included in the search space, where the target is transmitted on the CCE occupied by the candidate PDCCH.
  • the PDCCH is determined by the network device according to the relevant parameters, which is not limited in the embodiment of the present invention.
  • the transmission target PDCCH may be understood as transmitting downlink control information for scheduling the second device on the PDCCH.
  • the network device can send the PDCCH carrying the information for scheduling the second device on the search space determined based on the first wireless network temporary identifier, so that the first device can use the first wireless network temporary identifier to reduce the utilization of the second
  • the number of candidate physical downlink control channels detected by the radio network temporary identifier reduces the complexity of detecting the PDCCH by the first device.
  • the network device may determine, according to the first identifier of the second device, the at least one candidate physical downlink control channel from the search space; and correspondingly, the network device searches in the search according to the second wireless network temporary identifier.
  • the transmitting the target physical downlink control channel in the space may include: the network device transmitting the target physical downlink control channel on the at least one candidate physical downlink control channel according to the second radio network temporary identifier. That is, the network device sends the target physical downlink control channel on the CCE occupied by the at least one candidate physical downlink control channel according to the second radio network temporary identifier, where the target PDCCH is transmitted on the CCE occupied by the candidate PDCCH. It is determined by the network device according to the relevant parameters, which is not limited by the embodiment of the present invention. Thereby, the network device further reduces the number of candidate PDCCHs, further reducing the detection complexity of the PDCCH.
  • the processing method of the physical downlink control channel sends the target PDCCH on the partial candidate PDCCH in the search space; that is, the embodiment may send the second wireless network temporary identifier on the partial candidate PDCCH of the search space.
  • the network device may determine, according to the first identifier of the second device, the at least one time unit.
  • the network device determines the search space according to the first wireless network temporary identifier, where the network device is configured according to the first wireless network.
  • the temporary identification determines a search space on the at least one time unit. It can be seen that, in this implementation manner, the network device sends the target PDCCH only on the time unit determined according to the first identifier of some second devices, thereby reducing the detection complexity of the first device and the second device.
  • the determining, by the network device, the at least one time unit according to the first identifier of the second device includes: determining, by the network device, the at least one time unit that the index meets the following formula from the multiple time units;
  • the identity is a first identifier of the second device; the n2 is predefined, configured for the network device, or determined by the first device.
  • the PDCCH for scheduling the DCI of the second device is a PDCCH scrambled by the RNTI of the second device having the value of the common identity mod n2.
  • the first identifier of the second device is an index of the second wireless network temporary identifier, a second identifier of the second device in a target list reported by the first device, and a local identifier of the second device.
  • the neighboring service terminal identifier of the second device or the layer 2 identifier of the second device; the second identifier of the second device is a local identifier of the second device, and a proximity service terminal of the second device Identification or layer 2 identification of the second device.
  • the first wireless network temporary identifier may be a wireless network temporary identifier used to scramble the second downlink control information, where the second wireless network temporary identifier is a wireless network temporary identifier of the first device, where the second downlink control information is Information for scheduling uplink transmission or downlink reception of the first device, or information for scheduling first-device side-link transmission or side-link reception.
  • the load size of the downlink control information carried by the target physical downlink control channel is equal to the downlink used for scheduling the first device in the search space. Control the load size of the information. That is, the load size of the downlink control information carried by the target PDCCH sent by the network device is equal to the load size of the downlink control information used to schedule the first device in the search space.
  • the first device uses the radio network temporary identifier of the second device to detect the target PDCCH, it may be determined that the load size of the DCI carried by the target PDCCH is equal to the load size of the DCI used to schedule the first device, that is, the adoption may be determined.
  • the inverse process of the rate matching of the DCI for scheduling the first device when the target PDCCH is detected does not need to adopt the inverse of the rate matching of the plurality of optional DCIs respectively, and then uses the second process.
  • the wireless network temporarily identifies descrambling, thereby reducing the number of detections and further reducing the complexity of PDCCH detection.
  • an embodiment of the present invention further provides a device having a function of implementing the method in the first aspect of the foregoing method example.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more units or modules corresponding to the functions described above.
  • the structure of the device may include a determining unit and a detecting unit for supporting communication between the device and other devices.
  • the apparatus can also include a storage unit for coupling with the determining unit and the detecting unit, which retains program instructions and data necessary for the device.
  • the determining unit and the detecting unit may be transceivers, and the storage unit may be a memory.
  • an embodiment of the present invention provides a network device, where the network device has a function of implementing network device behavior in the foregoing method example.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more units or modules corresponding to the functions described above.
  • the structure of the network device includes a determining unit and a transmitting unit, and the determining unit and the transmitting unit are configured to support the network device to perform a corresponding function in the above method.
  • the determining unit and the transmitting unit are configured to support communication between the network device and other devices.
  • the network device may further comprise a storage unit for coupling with the determining unit and the transmitting unit, which stores program instructions and data necessary for the network device.
  • the determining unit may be a processor
  • the transmitting unit may be a transceiver
  • the storage unit may be a memory.
  • the present application provides a communication system including the first device, the second device, and/or the network device of the above aspects.
  • the system may further include other devices in the solution provided by the embodiment of the present invention that interact with the first device, the second device, or the network device.
  • the present application provides a computer storage medium for storing computer software instructions for use in the first or second device described above, including a program designed to perform the above aspects.
  • the present application provides a computer storage medium for storing computer software instructions for use in the network device described above, including a program designed to perform the above aspects.
  • the present application also provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • the present application provides a chip system including a processor for a first device or a second device to implement the functions involved in the above aspects, such as, for example, determining or detecting a method involved in the above method. Data and / or information.
  • the chip system further includes a memory for storing necessary program instructions and data of the first device or the second device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application provides a chip system including a processor for supporting a network device to implement the functions involved in the above aspects, such as, for example, receiving or processing data and/or processing in the above methods. information.
  • the chip system further includes a memory for storing necessary program instructions and data of the network device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic structural diagram of device-to-device communication based on a cellular network according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a search space according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method for processing a physical downlink control channel according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of another method for processing a physical downlink control channel according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of still another method for processing a physical downlink control channel according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a search space according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a non-uplink subframe according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of still another method for processing a physical downlink control channel according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of an apparatus according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 11 is a first schematic diagram of a device according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of another device according to an embodiment of the present disclosure.
  • FIG. 13 is a second schematic diagram of a device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of still another network device according to an embodiment of the present invention.
  • the first device may be a relay node, a base station, a terminal, a mobile station (Mobile Station, MS), or a mobile terminal. It can communicate with one or more core networks via a radio access network (such as RAN, radio access network), such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, and can also be portable, pocket-sized , handheld, computer built-in or in-vehicle mobile devices, etc., which exchange language and/or data with the wireless access network.
  • a radio access network such as RAN, radio access network
  • a mobile phone or "cellular" phone
  • a computer with a mobile terminal and can also be portable, pocket-sized , handheld, computer built-in or in-vehicle mobile devices, etc., which exchange language and/or data with the wireless access network.
  • the second device may be a terminal, a mobile station (MS) or a mobile terminal, etc., for example, a wearable device, which is characterized by small size, small battery capacity, and low radio frequency capability.
  • the network device may be a base station in GSM or CDMA, such as a base transceiver station (English: Base Transceiver Station, BTS for short), or a base station in WCDMA, such as a NodeB, or an evolved type in LTE.
  • a base station such as an eNB or an e-NodeB (evolutional Node B), or a base station in a 5G system, a new air interface (NR) system, such as a next generation node B (gNB), or a base station in a future network
  • a base station may also be an Access Point (AP), a TransNode (Trans TRP), a Central Unit (CU), or other network entity, and may include some or all of the functions of the above network entities. .
  • AP Access Point
  • Trans TRP Trans TRP
  • CU Central Unit
  • a time unit refers to a time unit for performing data transmission.
  • the time unit may refer to a subframe, or may refer to a time slot, and may also refer to a radio frame, a small/micro-slot, and multiple aggregations.
  • a time slot, a plurality of aggregated subframes, and the like may also be referred to as a Transmission Time Interval (TTI), which is not limited in this application.
  • TTI Transmission Time Interval
  • one transmission time interval is equal to several subframe lengths, or the sum of several transmission time intervals is equal to one subframe length.
  • the length of the subframe used by the carrier may be 15 kHz*2 ⁇ n (2 ⁇ n is 2 nth power), and the corresponding subframe length is 1/(2 ⁇ n) ms, that is, support Multiple transmission time units such as 0.5ms, 0.25ms, and 0.125ms.
  • n is an integer.
  • the physical downlink control channel may be replaced by an enhanced physical downlink control channel, or other control channel, which is not limited in the embodiment of the present invention; correspondingly, the downlink control information may be replaced with other control information, and the implementation of the present invention is implemented.
  • the wireless network temporary identifier of the first device or the second device may also be other identifiers, which is not limited in the embodiment of the present invention.
  • the second device communicates with the network through the first device, and the data transmitted between the second device and the network is forwarded by the first device, or the first device is linked with the second device, or the first device and the first device.
  • the two devices are associated with each other, and are not limited by the embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of device-to-device communication based on a cellular network according to an embodiment of the present invention.
  • a remote device Remote UE
  • the Relay User Equipment Relay UE
  • the Device to Device (D2D) communication technology can increase the spectrum efficiency of the cellular communication system and reduce the terminal transmit power to a certain extent. Solve the problem of lack of spectrum resources in wireless communication systems.
  • wearable devices that need to communicate with the network to transmit data or establish voice telephony services, since the distance between the wearable device and the smartphone is much smaller than the distance from the base station. If these wearable devices can be connected to the network through a smartphone relay, the power consumption of the wearable device can be reduced, and the transmission rate of the wearable device can be increased.
  • the network device may send Downlink Control Information (DCI) to the terminal, where the DCI includes scheduling information for scheduling the terminal, for example, resources used by the terminal to send data or receive data.
  • DCI Downlink Control Information
  • the DCI is transmitted on a Physical Downlink Control Channel (PDCCH), and the DCI is scrambled by using a Radio Network Temporary Identifier (RNTI) of the terminal, and can also be said to carry the DCI.
  • the PDCCH is scrambled using the RNTI of the terminal.
  • the terminal may detect, according to the RNTI, a PDCCH that the network device sends to the terminal.
  • the network device may also transmit the PDCCH of the terminal based on the RNTI.
  • the network device sends a DCI for scheduling the remote UE, where the DCI includes the transmission resource of the remote UE and/or the information of the received resource; after receiving the DCI, the Relay UE forwards the DCI to the Remote UE. Therefore, the scrambling mode used by the network device to transmit the DCI may be scrambled by the RNTI of the remote UE.
  • the Relay UE needs to receive multiple DCIs for scheduling different Remote UEs. In this case, the Relay UE needs to detect the system bandwidth by using the RNTI of each Remote UE.
  • each detection process of the Relay UE includes a reverse process of layer mapping, precoding, modulation, scrambling, rate matching, etc. on the modulation symbol sequence transmitted on the time-frequency resource occupied by each candidate PDCCH.
  • channel decoding, CRC de-checking that is, using RNTI to CRC de-check
  • the Relay UE needs to use the RNTI of each Remote UE to detect the PDCCH carrying the corresponding DCI on the system bandwidth, which greatly increases the detection complexity of the Relay UE. degree.
  • the present application provides a processing method and related device for a physical downlink control channel, which can reduce the detection complexity of the Relay UE.
  • the processing method of the physical downlink control channel reduces the detection complexity of the Relay UE by narrowing the range of the detected candidate PDCCH, that is, reducing the search space.
  • the devices that can be used as the Remote UE are collectively referred to as the second device, and the devices that can be used as the Relay UE are collectively referred to as the first device, that is, the second device can communicate with the network through the first device.
  • the search space may be a set of multiple candidate physical downlink control channels, and one candidate PDCCH is transmitted on one or more aggregated control channel elements (CCEs), and the number of aggregated CCEs is an aggregation of the candidate PDCCHs. grade.
  • CCEs aggregated control channel elements
  • FIG. 2 is a schematic diagram of a PDCCH according to an embodiment of the present invention. As shown in FIG.
  • the resource granularity of the PDCCH is CCE, and one CCE is composed of 9 Resource Element Groups (REGs).
  • each REG represents four resource elements (Resource Element, RE) other than the reference signal.
  • RE Resource Element
  • the number of CCEs included in each PDCCH varies according to the aggregation level, and therefore, the search is performed.
  • space The operation differs according to the aggregation level L, wherein the operation of determining the search space according to the wireless network temporary identification is detailed in the following.
  • the search space may also be a set of multiple enhanced physical downlink control channels, and one enhanced physical downlink control channel is transmitted on the aggregated one or more Enhanced Control Channel Elements (ECCEs).
  • ECCEs Enhanced Control Channel Elements
  • Each ECCE The number of Enhanced Resource Element Groups (EREGs) included is 4 or 8, and the REs included in each EREG are different from the REs contained in the REG.
  • FIG. 3 is a schematic flowchart of a method for processing a physical downlink control channel according to an embodiment of the present invention. As shown in FIG. 3, the processing method of the physical downlink control channel shown in FIG. The processing body of the physical downlink control channel may include the following steps:
  • the first device determines, according to the first wireless network temporary identifier, a search space, where the search space is a set of M candidate physical downlink control channels, where M is an integer greater than or equal to 1;
  • the first device detects a target physical downlink control channel from the search space according to the second wireless network temporary identifier.
  • the first wireless network temporary identifier is a wireless network temporary identifier of the first device or the second device; the second wireless network temporary identifier is a wireless network temporary identifier of the second device, and the target physical downlink control
  • the first downlink control information carried by the channel is information for scheduling the second device that is scrambled by using the second wireless network temporary identifier, and the second device communicates with the network by using the first device.
  • the information for scheduling the second device may include information for scheduling resources of the second device to send and/or receive data, or may include parameters used by the second device to send and/or receive data. Information.
  • the first device detects the target physical downlink control channel from the search space according to the second wireless network temporary identifier, and may also be that the first device monitors, decodes, or receives the target physical downlink control channel from the search space according to the second wireless network temporary identifier. Or information carried by the target physical downlink control channel.
  • the detecting the target PDCCH from the search space according to the second wireless network temporary identifier may be: using the second wireless network temporary identifier to descramble the PDCCH in the search space, or using the second wireless network temporary identifier to descramble the bearer in the search space DCI. In this way, if the PDCCH or DCI scrambled by the second radio network temporary identifier is detected, the PDCCH is the target PDCCH, and the DCI is information for scheduling the second device that is carried by the target PDCCH.
  • the scrambling DCI refers to “sequence scrambling after CRC attaching DCI using RNTI”
  • the sequence after CRC attachment is scrambled by the second RNTI.
  • the PDCCH is the target PDCCH.
  • the method for detecting the target PDCCH may be: using the RNTI to descramble the channel decoded sequence, if the CRC de-check result is correct, detecting the target PDCCH; if the CRC de-check result is incorrect, no target is detected. PDCCH.
  • the scrambling DCI is specifically referred to as “the scrambling of the CRC check bit by using the RNTI after the DCI performs CRC attachment”, and if the DCI carried by the PDCCH is detected, the check bit after the CRC attachment is detected. If the second RNTI is scrambled, the PDCCH is the target PDCCH.
  • the method for detecting the target PDCCH may be: using RNTI to descramble the CRC check bit in the channel decoded sequence, if the CRC de-check result is correct, detecting the target PDCCH; if the CRC is de-checking result If the error is not detected, the target PDCCH is not detected.
  • the first device may determine a search space according to the RNTI of the first device or the second device, and then detect a target PDCCH according to the RNTI of the second device, where the target PDCCH is used.
  • the information for scheduling the second device that is, the downlink control information DCI for scheduling the second device, is carried. It can be seen that compared with the RNTI that uses the second device, the PDCCH of the second device can detect the target PDCCH on the entire system bandwidth, and the method for determining the search space re-detection target PDCCH can greatly reduce the complexity of the first device detection.
  • FIG. 4 is a schematic flowchart of a method for processing a physical downlink control channel according to an embodiment of the present invention. As shown in FIG. 4, the processing method of the physical downlink control channel uses a second device as an execution subject. The processing method of the physical downlink control channel may include the following steps:
  • the second device determines, according to the first wireless network temporary identifier, a search space, where the search space is a set of M candidate physical downlink control channels, where M is an integer greater than or equal to 1;
  • the second device detects a target physical downlink control channel from the search space according to the second wireless network temporary identifier.
  • the first wireless network temporary identifier is a wireless network temporary identifier of the first device or the second device; the second wireless network temporary identifier is a wireless network temporary identifier of the second device, and the target physical downlink control
  • the first downlink control information carried by the channel is information for scheduling the second device that is scrambled by using the second wireless network temporary identifier, and the second device communicates with the network by using the first device.
  • the second device detects the target physical downlink control channel from the search space according to the second wireless network temporary identifier, and the second device may monitor, decode, or receive the target physical downlink control channel from the search space according to the second wireless network temporary identifier. Or information carried by the target physical downlink control channel.
  • the detecting the target PDCCH from the search space according to the second wireless network temporary identifier may be: using the second wireless network temporary identifier to descramble the PDCCH in the search space, or using the second wireless network temporary identifier to descramble the bearer in the search space DCI.
  • the PDCCH or DCI scrambled by the second radio network temporary identifier is detected, the PDCCH is the target PDCCH, and the DCI is information for scheduling the second device that is carried by the target PDCCH.
  • the scrambling DCI refers to: “Scitation of the sequence after the CRC is attached to the DCI by using the RNTI”, if the DCI of the PDCCH is detected, the sequence after the CRC attachment is added by the second RNTI.
  • the PDCCH is the target PDCCH.
  • the method for detecting the target PDCCH may be: using the RNTI to descramble the channel decoded sequence, if the CRC de-check result is correct, detecting the target PDCCH; if the CRC de-check result is incorrect, no target is detected. PDCCH.
  • the scrambling DCI refers to: in the case that the CRC check bit is scrambled after the DCI performs CRC attachment, if the DCI carried by the PDCCH is detected, the check bit after the CRC attachment is detected. If the second RNTI is scrambled, the PDCCH is the target PDCCH.
  • the method for detecting the target PDCCH may be: using RNTI to descramble the CRC check bit in the channel decoded sequence, if the CRC de-check result is correct, detecting the target PDCCH; if the CRC is de-checking result If the error is not detected, the target PDCCH is not detected.
  • the method for processing the physical downlink control channel shown in FIG. 4 is different from the processing method of the physical downlink control channel shown in FIG. 3, in FIG. 4, when the first wireless network is temporarily identified as the RNTI of the first device.
  • the second device further needs to receive the indication information sent by the first device, where the indication information is used to indicate the RNTI of the first device.
  • the second device can also determine the search space according to the first wireless network temporary identifier, and then detect the target PDCCH according to the RNTI of the first wireless network, thereby reducing the PDCCH range of detecting the physical downlink control channel, and reducing the detection of the physical downlink control channel.
  • the complexity can also determine the search space according to the first wireless network temporary identifier, and then detect the target PDCCH according to the RNTI of the first wireless network, thereby reducing the PDCCH range of detecting the physical downlink control channel, and reducing the detection of the physical downlink control channel.
  • FIG. 5 is a schematic flowchart of a method for processing a physical downlink control channel according to an embodiment of the present invention.
  • the processing method of the physical downlink control channel uses a network device as an execution subject, and correspondingly
  • the processing method for the network device to perform the physical downlink control channel may include the following steps:
  • the network device determines, according to the first wireless network temporary identifier, a search space, where the search space is a set of M candidate physical downlink control channels, where M is an integer greater than or equal to 1;
  • the network device sends the target physical downlink control channel on the search space according to the second wireless network temporary identifier.
  • the first wireless network temporary identifier is a wireless network temporary identifier of the first device or the second device; the first downlink control information carried by the target physical downlink control channel is scrambled by using the second wireless network temporary identifier Information for scheduling the second device, the second wireless network temporary identifier is a wireless network temporary identifier of the second device, and the second device communicates with the network by using the first device.
  • the search space may be a set of multiple candidate physical downlink control channels, and one candidate PDCCH is transmitted on one or more aggregated control channel elements (CCEs), and the number of aggregated CCEs is an aggregation of the candidate PDCCHs. grade.
  • the network device can transmit the target PDCCH on the CCE occupied by the multiple candidate PDCCHs included in the search space, where the network device transmits the target PDCCH on the CCE occupied by the candidate PDCCH.
  • the PDCCH is determined by the network device according to the relevant parameters, which is not limited in the embodiment of the present invention.
  • the transmission target PDCCH can be understood as transmitting downlink control information for scheduling the second device on the PDCCH.
  • the search space is determined according to the first wireless network temporary identifier, that is, the CCE occupied by each candidate PDCCH in the search space is determined according to the first wireless network temporary identifier.
  • the CCE corresponding to the candidate PDCCH m is:
  • L, N CCE, k and M (L) can be as shown in Table 1 below.
  • the first device, the second device, or the network device may determine, according to the first wireless network temporary identifier, a search space for detecting the target PDCCH.
  • the embodiment of the present invention further provides a processing method of a physical downlink control channel, where the processing method of the physical downlink control channel may further determine at least one candidate PDCCH from the search space according to the first identifier of the second device, That is, the number of candidate PDCCHs to be detected can be further reduced, thereby reducing the detection complexity of the target PDCCH.
  • the first device may further determine at least one candidate PDCCH from the search space according to the first identifier of the second device.
  • the first device may detect the target PDCCH from the search space according to the second radio network temporary identifier, where the first device detects the target PDCCH from the at least one candidate PDCCH according to the second radio network temporary identifier.
  • the second device may further determine at least one from the search space according to the first identifier of the second device.
  • the candidate PDCCH correspondingly, the second device detects the target PDCCH from the search space according to the second radio network temporary identifier, and the second device detects the target PDCCH from the at least one candidate PDCCH according to the second radio network temporary identifier.
  • the network device may further determine at least one candidate from the search space according to the first identifier of the second device.
  • the PDCCH correspondingly, the network device detects the target PDCCH from the at least one candidate PDCCH according to the second radio network temporary identifier, where the network device sends the target on the at least one candidate physical downlink control channel according to the second radio network temporary identifier.
  • Physical downlink control channel correspondingly, the network device specifically transmits the target PDCCH on the CCE occupied by the candidate PDCCH, and is determined by the network device according to the relevant parameters, which is not limited in the embodiment of the present invention.
  • the transmission target PDCCH may be understood as transmitting downlink control information for scheduling the second device on the PDCCH.
  • the first device, the second device, and the network device may further determine at least one candidate PDCCH from the search space according to the first identifier of the second device, where the at least one candidate PDCCH is configured.
  • the target PDCCH is detected or the target PDCCH is transmitted, thereby reducing the number of times the PDCCH is detected by the first device or the second device, that is, the detection complexity of the PDCCH is reduced.
  • the first identifier of the second device may be the second wireless network temporary identifier (eg, C-RNTI, SL-RNTI), and the second identifier of the second device is reported by the first device.
  • the index in the second device the local ID of the second device, the proximity service terminal identifier of the second device (ProSe UE ID), or the layer 2 identifier of the second device (Layer-2 ID);
  • the second identifier of the second device is a local identifier of the second device, a proximity service terminal identifier of the second device, or a layer 2 identifier of the second device.
  • the first identifier of the second device may be an index of the second identifier of the second device in the target list reported by the first device.
  • the first device indicates, in the target list, one or more target devices that the first device performs communication, and each target device is identified by the second identifier.
  • the left column in Table 2 is a target list provided by an embodiment of the present invention
  • the Relay UE indicates one or more destination destinations for performing sidelink sidelink communication in the target list destinationInfoList, and each target destination is passed through ProSe.
  • the UE ID is identified, that is, the target list destinationInfoList includes one or more ProSe UE IDs, and each remote UE has its own ProSe UE ID.
  • the first identifier of the second device may be the second device.
  • the index of the second identifier in the target list reported by the first device that is, the first identifier of the remote UE corresponding to the ProSe UE ID 5 is 0.
  • the first device may receive the indication information, where the indication information may enable the first device to determine a correspondence between the RNTI of the second device and the first identifier of the second device. It can be seen that the first device or the network device can determine the at least one candidate PDDCH from the search space by knowing the correspondence.
  • the manner in which the first device, the second device, or the network device determines at least one candidate PDCCH from the search space according to the first identifier of the second device may be determined by using the following formula:
  • the size of n1 may be determined by the first device or the network device according to the number of second devices communicating with the network device through the first device, and the greater the number of second devices, the larger n1 may be.
  • each candidate PDCCH can use less RNTI of the second device to detect, that is, on a smaller number of time units.
  • the target PDCCH is detected by using the RNTI of the second device.
  • the scale factor is the same, which can be specified in the standard protocol, or configured by the network device, or determined by the first device itself.
  • the embodiment can detect the target PDCCH by using the RNTI of the second device on PDCCH 0 and PDCCH 2. That is, the PDCCH carrying the information for scheduling the second device is detected.
  • FIG. 6 is a schematic diagram of a search space according to an embodiment of the present invention.
  • the first identifier of each second device is a consecutively numbered different identifier, such as Identity 0 to 5, and the search space determined by the first device is PDCCH 0 to 5, and the value of the first device using Identity 3 mod 6 is 3, then the first device
  • the target PDCCH carrying the information of the second device for scheduling the index 3 identifier may be detected by using the RNTI of the second device identified by the Identity 3 on the PDCCH 3; correspondingly, the value of the Identity 5 Mod 6 of the first device is 5,
  • the first device may detect, on the PDCCH 5, the target PDCCH carrying the information of the second device for scheduling the Identity 5 identifier by using the RNTI of the second device identified by the Identity 5. It can be seen that the DCI carried by each candidate PDCCH can be detected and obtained by
  • the embodiment of the present invention further provides a processing method of a physical downlink control channel, where the method may determine at least one time unit according to the first identifier of the second device, and determine a search space on the at least one time unit, The target PDCCH is detected or transmitted.
  • the processing method of the physical downlink control channel shown in FIG. 3 to FIG. 5 may further determine at least one time unit according to the first identifier of the second device before determining the search space according to the first wireless network temporary identifier.
  • the first device may determine at least one time unit according to the first identifier of the second device, and determine, according to the first wireless network temporary identifier, the at least one time unit.
  • the search space is then detected on the search space according to the second wireless network temporary identifier.
  • the second device determines at least one time unit according to the first identifier of the second device, and determines the search on the at least one time unit according to the first wireless network temporary identifier.
  • the space then detects the target PDCCH on the search space according to the second wireless network temporary identity.
  • the network device first determines at least one time unit according to the first identifier of the second device, and determines the search on the at least one time unit according to the first wireless network temporary identifier. Space, then, the target PDCCH is transmitted on the search space according to the second wireless network temporary identifier.
  • At least one time unit is determined according to the first identifier of the second device, and when the search space is determined on the at least one time unit according to the first wireless network temporary identifier, the first identifier is also required to be used.
  • the radio network temporary identifier of the corresponding second device detects, on the search space, a PDCCH carrying a DCI for scheduling the second device.
  • the first identifier of the second device may be the second wireless network temporary identifier (eg, C-RNTI, SL-RNTI), and the second identifier of the second device is reported by the first device.
  • the index in the second device the local ID of the second device, the proximity service terminal identifier of the second device (ProSe UE ID), or the layer 2 identifier of the second device (Layer-2 ID);
  • the second identifier of the second device is a local identifier of the second device, a proximity service terminal identifier of the second device, or a layer 2 identifier of the second device.
  • the first identifier of the second device may be an index of the second identifier of the second device in the target list reported by the first device.
  • the first device indicates, in the target list, one or more target devices that the first device performs communication, and each target device is identified by the second identifier.
  • the Relay UE indicates one or more destination destinations for performing sidelink sidelink communication in the target list destinationInfoList, and each target destination is identified by the ProSe UE ID, that is, the target list destinationInfoList includes one Or a plurality of ProSe UE IDs, each remote UE has its own ProSe UE ID, and the first identifier of the second device may be the target of the second identifier of the second device that is reported by the first device.
  • the index in the list that is, the first identifier of the remote UE corresponding to the ProSe UE ID 5 is 0.
  • the first device may be the receiving indication information, where the indication information may enable the first device to determine a correspondence between the RNTI of the second device and the first identifier of the second device. It can be seen that the first device or the network device knows the correspondence and can determine the time unit in which the DCI for scheduling the corresponding second device is located.
  • determining at least one time unit according to the first identifier of the second device the following formula may be adopted:
  • the identity is the first identifier of the second device;
  • the n2 is predefined, configured for the network device, or determined by the first device. If the n2 is determined by the first device, the first device needs to send indication information to the network device for indicating n2.
  • the N may be the number of time units in a range of time, for example, the number of downlink subframes in one radio frame, or the number of non-uplink subframes in 1024 radio frames, or the number of downlink subframes in 1024 radio frames.
  • the number of time slots, symbols, mini-slots, or other smaller-sized time units in one subframe is not limited in the embodiment of the present invention.
  • the size of n2 may be determined by the first device or the network device according to the number of second devices communicating with the network device through the first device, and the greater the number of second devices, the larger n2 may be.
  • a smaller number of RNTIs of the second device can be used on each time unit to detect the target PDCCH, that is, the number is smaller.
  • the target PDCCH is detected by using the RNTI of the second device on the time unit.
  • the scale factor is the same, which can be specified in the standard protocol, or configured by the network device, or determined by the first device itself.
  • the index of the at least one non-downlink subframe capable of transmitting the target PDCCH is according to the second device.
  • a logo mod 2 is obtained.
  • the non-downlink subframes satisfying the above formula are respectively subframe 0 and subframe 2, and it can be seen that the embodiment can utilize the first wireless network on subframe 0 and subframe 2.
  • the temporary identification determines the search space without determining the search space on all non-uplink subframes, further reducing the complexity of the detection.
  • FIG. 7 is a schematic diagram of a non-uplink subframe according to an embodiment of the present invention.
  • the first device uses the value of identity 0 mod 4 to 0, and the first device may determine the search space by using the first wireless network temporary identifier on the non-uplink subframe 0 and the non-uplink subframe 4, and The radio network temporary identifier of the second device that uses the identity 0 in the search space detects the PDCCH carrying the DCI for scheduling the second device; correspondingly, the first device uses the value of identity 3 mod 6 to be 3, then the first The device may determine the search space by using the first wireless network temporary identifier on the non-uplink subframe 3 and the non-uplink subframe 7, and use the wireless network temporary identifier of the second device of the identity 3 to detect the bearer on the search space. Scheduling the PDCCH of the DCI of the second device.
  • the embodiment of the present invention further provides a processing method of a physical downlink control channel, where the processing method of the physical downlink control channel may determine, by using a first identifier of the second device, at least one time unit, according to the first wireless network temporary identifier. Determining a search space on the at least one time unit, further determining at least one candidate PDCCH from the search space according to the first identifier of the second device, and further, at least the wireless network temporary identifier according to the second device A PDCCH carrying a DCI for scheduling the second device is detected on one candidate PDCCH.
  • the processing method of the physical downlink control channel may determine, by using a first identifier of the second device, at least one time unit, according to the first wireless network temporary identifier. Determining a search space on the at least one time unit, further determining at least one candidate PDCCH from the search space according to the first identifier of the second device, and further, at least the wireless network temporary identifier according to the second device A PDCCH carrying
  • the first wireless network temporary identifier when the first wireless network temporary identifier is the wireless network temporary identifier of the first device, the first wireless network temporary identifier may be a wireless network temporary identifier used to scramble the second downlink control information, where The second downlink control information is information for scheduling uplink transmission or downlink reception of the first device, or information for scheduling first-device side-link transmission or side-link reception.
  • the first wireless network is temporarily identified as a cell radio network temporary identifier C-RNTI of the first device, where the C-RNTI can be used for scrambling for scheduling the first device uplink transmission or downlink reception.
  • the first wireless network is temporarily identified as a side-link wireless network temporary identifier SL-RNTI of the first device, where the SL-RNTI can be used for scrambling for scheduling the first device side-link Information received or sent by the side link.
  • the load size of the downlink control information carried by the target physical downlink control channel is equal to that used in the scheduling space in the search space.
  • the load size of the downlink control information of the first device when the first device uses the radio network temporary identifier of the second device to detect the target PDCCH, it may be determined that the load size of the DCI carried by the target PDCCH is equal to the load size of the DCI used to schedule the first device, that is, the adoption may be determined.
  • the inverse process of the rate matching of the DCI for scheduling the first device when the target PDCCH is detected does not need to adopt the inverse of the rate matching of the plurality of optional DCIs respectively, and then uses the second process.
  • the wireless network temporarily identifies descrambling, thereby reducing the number of detections and further reducing the complexity of PDCCH detection.
  • the first device needs to detect the PDCCH carrying the DCI format 0 in the search space determined according to the C-RNTI, and the load size of the DCI carried by the target PDCCH in the search space determined according to the C-RNTI is equal to the load size of the DCI format 0. .
  • the load of the downlink control information carried by the target physical downlink control channel may have at least two sizes when the first wireless network is temporarily identified as the temporary identifier of the wireless network of the first device.
  • the first device needs to detect the PDCCH carrying the DCI format 0 and the PDCCH carrying the DCI format 1 in the search space determined according to the C-RNTI, and the load sizes of the DCI format 0 and the DCI format 1 are different according to the C-RNTI.
  • the load size of the DCI carried by the target PDCCH in the determined search space may be equal to the load size of the DCI format 0, or may be equal to the load size of the DCI format 1, that is, the DCI carried by the target PDCCH may have two load sizes.
  • the load may be equal in size by padding 0 on the basis of the information of the DCI carried by the target PDCCH.
  • the first device may determine, according to the wireless network temporary identifiers of the at least two first devices, at least two search spaces, where each search space is a set of M candidate physical downlink control channels, where M is An integer greater than or equal to 1, the value of M in each search space may be different; detecting a target physical downlink control channel from the at least two search spaces according to the second wireless network temporary identifier; the second wireless network temporary identifier is The wireless network temporary identifier of the second device, where the first downlink control information carried by the target physical downlink control channel is information for scheduling the second device that is scrambled by using the second wireless network temporary identifier, The second device communicates with the network through the first device.
  • the first device may determine two search spaces according to the C-RNTI and the SL-RNTI respectively; and detect the target physical downlink control channel from the two search spaces according to the second wireless network temporary identifier.
  • At least one candidate physical downlink control channel is determined from the at least two search spaces according to the first identifier of the second device, and the second wireless network temporary identifier is detected on the at least one candidate physical downlink control channel.
  • Target physical downlink control channel is determined from the at least two search spaces according to the first identifier of the second device, and the second wireless network temporary identifier is detected on the at least one candidate physical downlink control channel.
  • the first device may determine at least two search spaces on the at least one time unit according to the wireless network temporary identifier of the at least two first devices, and further, according to the The second wireless network temporary identifier detects the target PDCCH on the search space.
  • the load size of the downlink control information carried by the target physical downlink control channel is equal to the load size of the downlink control information used to schedule the first device in the at least two search spaces.
  • the load size of the downlink control information carried by the target physical downlink control channel in each search space is equal to the load size of the downlink control information used to schedule the first device in the search space.
  • the first device may determine two search spaces according to the C-RNTI and the SL-RNTI, respectively.
  • the first device needs to detect the PDCCH carrying the DCI format 0 in the search space determined according to the C-RNTI, and the load size of the DCI carried by the target PDCCH in the search space determined according to the C-RNTI is equal to the load size of the DCI format 0.
  • the first device needs to detect the PDCCH carrying the DCI format 5 in the search space determined according to the SL-RNTI, and the load size of the DCI carried by the target PDCCH in the search space determined according to the SL-RNTI is equal to the load size of the DCI format 5. That is to say, the DCI carried by the target PDCCH can have two payload sizes.
  • FIG. 8 is a schematic flowchart of a method for processing a physical downlink control channel according to an embodiment of the present invention.
  • the processing method shown in FIG. 8 is performed by a network device, a first device, and a second device. As shown in FIG. 8, the processing method includes the following steps:
  • the network device determines, according to the first wireless network temporary identifier, the search space, where the search space is a set of M candidate physical downlink control channels, where M is an integer greater than or equal to 1;
  • the network device sends a target physical downlink control channel on the search space according to the second wireless network temporary identifier.
  • the first device determines, according to the first wireless network temporary identifier, a search space.
  • the first device detects a target physical downlink control channel from the search space according to the second wireless network temporary identifier.
  • the first device sends information about the second physical device that is carried in the target physical downlink control channel to the second device.
  • the first wireless network temporary identifier is a wireless network temporary identifier of the first device or the second device; the second wireless network temporary identifier is a wireless network temporary identifier of the second device, and the target physical downlink control channel bearer
  • the first downlink control information is information for scheduling the second device that is scrambled by using the second wireless network temporary identifier, and the second device communicates with the network by using the first device.
  • the first device may send the scheduling information indicated by the DCI to the second device by using other control signaling, such as Sidelink Control Information (SCI); for example, sending the other information to the remote UE.
  • SCI Sidelink Control Information
  • Control signaling other control signaling indicating the scheduling information.
  • the network device may determine at least one candidate physical downlink control channel from the search space according to the first identifier of the second device according to the implementation manner of the foregoing embodiments.
  • the identifier is detected on the at least one candidate physical downlink control channel to further reduce the complexity of the detection.
  • the first device may determine at least one time unit according to the first identifier of the second device, determine a search space and the like on the at least one time unit according to the first wireless network temporary identifier, and details are not described herein.
  • the first identifier of the second device is an index of the second wireless network temporary identifier, a second identifier of the second device in a target list reported by the first device, and a local identifier of the second device.
  • the neighboring service terminal identifier of the second device or the layer 2 identifier of the second device; the second identifier of the second device is a local identifier of the second device, and a proximity service terminal of the second device Identification or layer 2 identification of the second device.
  • the first wireless network temporary identifier is a temporary identifier of the wireless network used to scramble the second downlink control information, and the second downlink control information is used. It is information for scheduling uplink transmission or downlink reception of the first device, or information for scheduling first-device side-link transmission or side-link reception.
  • the load size of the downlink control information carried by the target physical downlink control channel is equal to the downlink control information used to schedule the first device in the search space.
  • the size of the load refer to related descriptions of the embodiments of the foregoing embodiments, and details are not described herein.
  • the inventive embodiment can greatly reduce the complexity of detection compared with the current detection of the target PDCCH over the entire system bandwidth by the RNTI using the second device.
  • the embodiment of the invention further provides related content of a method for processing a physical downlink control channel when at least two second devices communicate with the network through the first device.
  • the at least two second devices are the second device A and the second device B respectively.
  • the physical downlink control channel is Detection methods can include:
  • the network device determines a search space according to the radio network temporary identifier of the first device, where the search space is a set of M candidate physical downlink control channels, where M is an integer greater than or equal to 1;
  • the network device sends the first target physical downlink control channel on the search space according to the wireless network temporary identifier of the second device A, and sends the second target physical downlink control channel on the search space according to the wireless network temporary identifier of the second device B.
  • the downlink control information carried by the first target physical downlink control channel is information for scheduling the second device A that is scrambled by the wireless network temporary identifier of the second device A; and the downlink control of the second target physical downlink control channel bearer
  • the information is information for scheduling the second device B that is scrambled by the wireless network temporary identifier of the second device B;
  • the first device detects the first target physical downlink control channel from the search space according to the wireless network temporary identifier of the second device A, and detects the second target physical downlink from the search space according to the wireless network temporary identifier of the second device B.
  • Control channel
  • the first device acquires information for scheduling the second device A from the first target physical downlink control channel, and acquires information for scheduling the second device B from the second target physical downlink control channel;
  • the first device sends information for scheduling the second device A to the second device A, and sends information for scheduling the second device B to the second device B.
  • the first device may determine the same search space for all the second devices, thereby reducing the determined number of times of the search space, and reducing the range of the search space where the first device detects the physical downlink control channel, thereby reducing the first device. Detecting the complexity of the physical downlink control channel; correspondingly, in the same search space, the wireless network temporary identifiers of the second devices are separately used to respectively detect the physical downlink control channel carrying the information for scheduling the corresponding second device. .
  • the first device or the network device may further determine, according to the first identifier of the second device, a subset that includes at least one candidate physical downlink control channel from the search space. And detecting, by the wireless network temporary identifier of the second device, a target physical downlink control channel carrying information for scheduling the second device, on the at least one candidate physical downlink control channel included in the subset.
  • This embodiment can reduce the number of PDCCHs detected by the wireless network temporary identity of the second device, and thus, the detection complexity of the first device can be reduced.
  • the first device determines, according to the first identifier of the second device A, the first subset of the at least one candidate physical downlink control channel from the search space, and then according to the wireless network temporary identifier of the second device A, the first sub The first target physical downlink control channel is detected on the at least one candidate physical downlink control channel included in the set.
  • the first device determines, according to the first identifier of the second device B, the second subset that includes the at least one candidate physical downlink control channel from the search space, and then the second identifier of the wireless network according to the second device B.
  • the second target physical downlink control channel is detected on the at least one candidate physical downlink control channel included in the subset.
  • the network device determines the first subset from the search space according to the first identifier of the second device A, and then sends the first target physical downlink control channel on the first subset according to the wireless network temporary identifier of the second device A. And determining, by the network device, the second subset from the search space according to the first identifier of the second device B, and transmitting the second target physical downlink control channel on the second subset according to the wireless network temporary identifier of the second device B.
  • the manner of determining the at least one candidate physical downlink control channel from the search space according to the first identifier of the second device may refer to the related description of the foregoing embodiment, and is not detailed herein.
  • the first device or the network device may further determine, according to the first identifier of the second device, a set of time units including at least one time unit, and then according to the first device.
  • the wireless network temporary identifier determines a search space on at least one time unit included in the set of time units.
  • the first device determines, according to the first identifier of the second device A, a first set of time units including at least one time unit, and then determines, according to the first identifier of the second device B, a second set of time units including at least one time unit, And determining, according to the wireless network temporary identifier of the first device, the first search space of the second device A on the first time unit set, and determining the second search space of the second device B on the second time unit set.
  • the first device detects the first target physical downlink control channel on the first search space according to the wireless network temporary identifier of the second device A, and detects the second search space on the second search space according to the wireless network temporary identifier of the second device B.
  • Target physical downlink control channel is the first target physical downlink control channel on the first search space according to the wireless network temporary identifier of the second device A.
  • the network device determines the first time unit set according to the first identifier of the second device A, and determines the second time unit set according to the first identifier of the second device B, and then, according to the wireless network temporary identifier of the first device, Determining a first search space on the first time unit set, and transmitting a first target physical downlink control channel on the first search space according to the wireless network temporary identifier of the second device A; and according to the wireless network temporary identifier of the first device Determining a second search space on the second set of time units, and transmitting a second target physical downlink control channel on the second search space according to the wireless network temporary identifier of the second device B.
  • the manner of determining the at least one time unit according to the first identifier of the second device may refer to the related description of the foregoing embodiment, and is not detailed herein.
  • the first identifier of the second device may be the second wireless network temporary identifier (eg, C-RNTI, SL-RNTI), and the second identifier of the second device is reported by the first device.
  • the index in the second device the local ID of the second device, the proximity service terminal identifier of the second device (ProSe UE ID), or the layer 2 identifier of the second device (Layer-2 ID);
  • the second identifier of the second device is a local identifier of the second device, a proximity service terminal identifier of the second device, or a layer 2 identifier of the second device.
  • this embodiment can refer to the related description of the foregoing embodiment, and is not described in detail herein.
  • the first wireless network temporary identifier may be a wireless network temporary identifier used to scramble the second downlink control information, where the second wireless network temporary identifier is a wireless network temporary identifier of the first device, where the second downlink control information is Information for scheduling uplink transmission or downlink reception of the first device, or information for scheduling first-device side-link transmission or side-link reception.
  • this embodiment can refer to the related description of the foregoing embodiment, and is not described in detail herein.
  • the load size of the downlink control information carried by the target physical downlink control channel is equal to the downlink used for scheduling the first device in the search space. Control the load size of the information.
  • the first device uses the radio network temporary identifier of the second device to detect the target PDCCH, it may be determined that the load size of the DCI carried by the target PDCCH is equal to the load size of the DCI used to schedule the first device, that is, the adoption may be determined.
  • the inverse process of the rate matching of the DCI for scheduling the first device when the target PDCCH is detected does not need to adopt the inverse of the rate matching of the plurality of optional DCIs respectively, and then uses the second process.
  • the wireless network temporarily identifies the descrambling, thereby reducing the number of detections and further reducing the complexity of the detection.
  • this embodiment can refer to the related description of the foregoing embodiment, and is not described in detail herein.
  • the at least two second devices are the second device A and the second device B respectively.
  • the physical downlink control is performed.
  • the method for detecting a channel may include:
  • the network device determines a search space according to the radio network temporary identifier of the first device, where the search space is a set of M candidate physical downlink control channels, where M is an integer greater than or equal to 1;
  • the network device sends the first target physical downlink control channel on the search space according to the wireless network temporary identifier of the second device A, and sends the second target physical downlink control channel on the search space according to the wireless network temporary identifier of the second device B.
  • the downlink control information carried by the first target physical downlink control channel is information for scheduling the second device A that is scrambled by the wireless network temporary identifier of the second device A; and the downlink control of the second target physical downlink control channel bearer
  • the information is information for scheduling the second device B that is scrambled by the wireless network temporary identifier of the second device B;
  • the second device A and the second device B respectively obtain the wireless network temporary identifier of the first device
  • the second device A and the second device B respectively determine a search space according to the wireless network temporary identifier of the first device
  • the second device A detects the first target physical downlink control channel from the search space according to the wireless network temporary identifier of the second device A; the second device B detects the first space from the search space according to the wireless network temporary identifier of the second device B.
  • the second device A acquires information for scheduling the second device A from the first target physical downlink control channel
  • the second device B acquires information for scheduling the second device B from the second target physical downlink control channel.
  • the foregoing two implementation manners may first determine a search space and then detect a corresponding PDCCH, thereby reducing the detection complexity of the PDCCH.
  • the second device or the network device may determine, according to the first identifier of the second device, a subset of the at least one candidate physical downlink control channel from the search space, and then And detecting, by the wireless network temporary identifier of the second device, a target physical downlink control channel carrying information for scheduling the second device, on the at least one candidate physical downlink control channel included in the subset.
  • This embodiment can reduce the number of PDCCHs detected by the wireless network temporary identity of the second device, and thus, the detection complexity of the second device can be reduced.
  • the second device A determines, according to the first identifier of the second device A, the first subset of the at least one candidate physical downlink control channel from the search space, and then according to the wireless network temporary identifier of the second device A, the first The first target physical downlink control channel is detected on at least one candidate physical downlink control channel included in the subset.
  • the second device B determines, according to the first identifier of the second device B, the second subset that includes the at least one candidate physical downlink control channel from the search space, and then according to the wireless network temporary identifier of the second device B.
  • the second target physical downlink control channel is detected on at least one candidate physical downlink control channel included in the second subset.
  • the network device determines the first subset from the search space according to the first identifier of the second device A, and then sends the first target physical downlink control channel on the first subset according to the wireless network temporary identifier of the second device A. And determining, by the network device, the second subset from the search space according to the first identifier of the second device B, and transmitting the second target physical downlink control channel on the second subset according to the wireless network temporary identifier of the second device B.
  • the implementation manner of determining the at least one candidate physical downlink control channel from the search space according to the first identifier of the second device may refer to related descriptions of the foregoing embodiments, where details are not detailed herein. Said.
  • the second device or the network device may further determine, according to the first identifier of the second device, a set of time units including at least one time unit, and then according to the first device
  • the wireless network temporary identifier determines a search space of the second device on at least one time unit included in the set of time units.
  • the second device A determines a first time unit set including at least one time unit according to the first identifier of the second device A, and determines the second device A on the first time unit set according to the wireless network temporary identifier of the first device.
  • the first search space then detects the first target physical downlink control channel on the first search space according to the wireless network temporary identifier of the second device A.
  • the second device B determines the second time unit set including the at least one time unit according to the first identifier of the second device B, and determines the second device on the second time unit set according to the wireless network temporary identifier of the first device.
  • the second search space of B detects the second target physical downlink control channel on the second search space according to the wireless network temporary identifier of the second device B.
  • the network device determines the first time unit set according to the first identifier of the second device A, determines the first search space on the first time unit set according to the wireless network temporary identifier of the first device, and according to the second device A
  • the wireless network temporary identifier transmits the first target physical downlink control channel on the first search space.
  • the network device determines the second time unit set according to the first identifier of the second device B, and determines the second search space on the second time unit set according to the wireless network temporary identifier of the first device, and according to the wireless network of the second device B
  • the temporary identifier transmits a second target physical downlink control channel on the second search space.
  • the manner of determining the at least one time unit according to the first identifier of the second device may refer to the related description of the foregoing embodiment, and is not detailed herein.
  • the first identifier of the second device may be the second wireless network temporary identifier (eg, C-RNTI, SL-RNTI), and the second identifier of the second device is reported by the first device.
  • the index in the second device the local ID of the second device, the proximity service terminal identifier of the second device (ProSe UE ID), or the layer 2 identifier of the second device (Layer-2 ID);
  • the second identifier of the second device is a local identifier of the second device, a proximity service terminal identifier of the second device, or a layer 2 identifier of the second device.
  • this embodiment can refer to the related description of the foregoing embodiment, and is not described in detail herein.
  • the first wireless network temporary identifier may be a wireless network temporary identifier used to scramble the second downlink control information, where the second wireless network temporary identifier is a wireless network temporary identifier of the first device, where the second downlink control information is Information for scheduling uplink transmission or downlink reception of the first device, or information for scheduling first-device side-link transmission or side-link reception.
  • this embodiment can refer to the related description of the foregoing embodiment, and is not described in detail herein.
  • the load size of the downlink control information carried by the target physical downlink control channel is equal to the downlink used for scheduling the first device in the search space. Control the load size of the information.
  • the first device uses the radio network temporary identifier of the second device to detect the target PDCCH, it may be determined that the load size of the DCI carried by the target PDCCH is equal to the load size of the DCI used to schedule the first device, that is, the adoption may be determined.
  • the inverse process of the rate matching of the DCI for scheduling the first device when the target PDCCH is detected does not need to adopt the inverse of the rate matching of the plurality of optional DCIs respectively, and then uses the second process.
  • the wireless network temporarily identifies the descrambling, thereby reducing the number of detections and further reducing the complexity of the detection.
  • this embodiment can refer to the related description of the foregoing embodiment, and is not described in detail herein.
  • the at least two second devices are the second device A and the second device B respectively.
  • the first device determines the search space according to the wireless network temporary identifier of the second device.
  • the method for detecting the physical downlink control channel may include:
  • the network device determines a first search space according to the wireless network temporary identifier of the second device A, and determines a second search space according to the wireless network temporary identifier of the second device B, where the first search space is M1 candidate physical downlinks a set of control channels, M1 is an integer greater than or equal to 1, the second search space is a set of M2 candidate physical downlink control channels, and M2 is an integer greater than or equal to 1;
  • the network device sends the first target physical downlink control channel on the first search space according to the wireless network temporary identifier of the second device A, and sends the second target physical downlink on the second search space according to the wireless network temporary identifier of the second device B.
  • a control channel where the downlink control information carried by the first target physical downlink control channel is information for scheduling the second device A that is scrambled by the wireless network temporary identifier of the second device A; and the second target physical downlink control channel carries the information
  • the downlink control information is information for scheduling the second device B that is scrambled by using the wireless network temporary identifier of the second device B;
  • the first device detects the first target physical downlink control channel from the first search space according to the wireless network temporary identifier of the second device A, and detects from the second search space according to the wireless network temporary identifier of the second device B. a second target physical downlink control channel;
  • the first device acquires information for scheduling the second device A from the first target physical downlink control channel, and acquires information for scheduling the second device B from the second target physical downlink control channel;
  • the first device sends information for scheduling the second device A to the second device A, and sends information for scheduling the second device B to the second device B.
  • the first device or the network device may further determine, according to the first identifier of the second device, a subset of the at least one candidate physical downlink control channel from the search space of the second device. And detecting, by the wireless network temporary identifier of the second device, a target physical downlink control channel carrying information for scheduling the second device, on the at least one candidate physical downlink control channel included in the subset.
  • This embodiment can reduce the number of PDCCHs detected by the wireless network temporary identity of the second device, and thus, the detection complexity of the first device can be reduced.
  • the first device determines, according to the first identifier of the second device A, the first subset that includes the at least one candidate physical downlink control channel from the first search space, and then the first identifier of the wireless network according to the second device A.
  • the first target physical downlink control channel is detected on at least one candidate physical downlink control channel included in the subset.
  • the first device determines, according to the first identifier of the second device B, the second subset that includes the at least one candidate physical downlink control channel from the second search space, and then according to the wireless network temporary identifier of the second device B.
  • the second target physical downlink control channel is detected on at least one candidate physical downlink control channel included in the second subset.
  • the network device determines the first subset from the first search space according to the first identifier of the second device A, and then sends the first target physical downlink control on the first subset according to the wireless network temporary identifier of the second device A. channel. And determining, by the network device, the second subset from the second search space according to the first identifier of the second device B, and sending the second target physical downlink control channel on the second subset according to the wireless network temporary identifier of the second device B .
  • the manner of determining the at least one candidate physical downlink control channel from the search space of the second device according to the first identifier of the second device may refer to the related description of the foregoing embodiment, where details are not detailed herein. Said.
  • the first device or the network device may further determine, according to the first identifier of the second device, a set of time units including at least one time unit, and then according to the second device The wireless network temporary identifier determines the search space of the second device on at least one time unit included in the time unit set.
  • the target PDCCH carrying the information for scheduling the second device is detected on a part of the time unit, thereby reducing the detection complexity of the first device.
  • the first device determines, according to the first identifier of the second device A, the first time unit set that includes the at least one time unit, and determines the second device on the first time unit set according to the wireless network temporary identifier of the second device A.
  • the first device determines, according to the first identifier of the second device B, a second set of time units including at least one time unit, and the wireless network temporary identifier of the second device B determines the second device B on the second set of time units.
  • the second search space is the first search space.
  • the first device detects the first target physical downlink control channel on the first search space according to the wireless network temporary identifier of the second device A, and the first device is in the second search space according to the wireless network temporary identifier of the second device B. Detecting a second target physical downlink control channel.
  • the network device determines the first time unit set according to the first identifier of the second device A, and then determines the first search space on the first time unit set according to the wireless network temporary identifier of the second device A, and then according to the second device.
  • the wireless network temporary identifier of A transmits the first target physical downlink control channel on the first search space.
  • the wireless network temporary identifier transmits a second target physical downlink control channel on the second search space.
  • the manner of determining the at least one time unit according to the first identifier of the second device may refer to the related description of the foregoing embodiment, and is not detailed herein.
  • the first identifier of the second device may be the second wireless network temporary identifier (eg, C-RNTI, SL-RNTI), and the second identifier of the second device is reported by the first device.
  • the index in the second device the local ID of the second device, the proximity service terminal identifier of the second device (ProSe UE ID), or the layer 2 identifier of the second device (Layer-2 ID);
  • the second identifier of the second device is a local identifier of the second device, a proximity service terminal identifier of the second device, or a layer 2 identifier of the second device.
  • this embodiment can refer to the related description of the foregoing embodiment, and is not described in detail herein.
  • the first wireless network temporary identifier may be a wireless network temporary identifier used to scramble the second downlink control information, where the second wireless network temporary identifier is a wireless network temporary identifier of the first device, where the second downlink control information is Information for scheduling uplink transmission or downlink reception of the first device, or information for scheduling first-device side-link transmission or side-link reception.
  • this embodiment can refer to the related description of the foregoing embodiment, and is not described in detail herein.
  • the load size of the downlink control information carried by the target physical downlink control channel is equal to the downlink used for scheduling the first device in the search space. Control the load size of the information.
  • the first device uses the radio network temporary identifier of the second device to detect the target PDCCH, it may be determined that the load size of the DCI carried by the target PDCCH is equal to the load size of the DCI used to schedule the first device, that is, the adoption may be determined.
  • the inverse process of the rate matching of the DCI for scheduling the first device when the target PDCCH is detected does not need to adopt the inverse of the rate matching of the plurality of optional DCIs respectively, and then uses the second process.
  • the wireless network temporarily identifies the descrambling, thereby reducing the number of detections and further reducing the complexity of the detection.
  • this embodiment can refer to the related description of the foregoing embodiment, and is not described in detail herein.
  • the at least two second devices are the second device A and the second device B respectively.
  • the second device determines the search space according to the wireless network temporary identifier of the second device.
  • the method for detecting the physical downlink control channel may include:
  • the network device Determining, by the network device, the first search space according to the wireless network temporary identifier of the second device A, and determining, according to the wireless network temporary identifier of the second device B, the first search space, where the first search space is M1 candidate physical downlinks a set of control channels, M1 is an integer greater than or equal to 1, the second search space is a set of M2 candidate physical downlink control channels, and M2 is an integer greater than or equal to 1;
  • the network device sends the first target physical downlink control channel on the search space according to the wireless network temporary identifier of the second device A, and sends the second target physical downlink control channel on the search space according to the wireless network temporary identifier of the second device B.
  • the downlink control information carried by the first target physical downlink control channel is information for scheduling the second device A that is scrambled by the wireless network temporary identifier of the second device A; and the downlink control of the second target physical downlink control channel bearer
  • the information is information for scheduling the second device B that is scrambled by the wireless network temporary identifier of the second device B;
  • the second device A determines the first search space according to the wireless network temporary identifier of the second device A, and the second device B determines the second search space according to the wireless network temporary identifier of the second device B;
  • the second device A detects the first target physical downlink control channel from the first search space according to the wireless network temporary identifier of the second device A; the second device B is from the second device according to the wireless network temporary identifier of the second device B. Detecting a second target physical downlink control channel in the search space;
  • the second device A acquires information for scheduling the second device A from the first target physical downlink control channel
  • the second device B acquires information for scheduling the second device B from the second target physical downlink control channel.
  • the second device or the network device may further determine, according to the first identifier of the second device, a subset of the at least one candidate physical downlink control channel from the search space of the second device. And detecting, by the wireless network temporary identifier of the second device, a target physical downlink control channel carrying information for scheduling the second device, on the at least one candidate physical downlink control channel included in the subset.
  • This embodiment can reduce the number of PDCCHs detected by the wireless network temporary identity of the second device, and thus, the detection complexity of the first device can be reduced.
  • the second device A determines, according to the first identifier of the second device A, the first subset of the at least one candidate physical downlink control channel from the first search space, and then according to the wireless network temporary identifier of the second device A.
  • the first target physical downlink control channel is detected on at least one candidate physical downlink control channel included in a subset.
  • the second device B determines, according to the first identifier of the second device B, the second subset that includes the at least one candidate physical downlink control channel from the second search space, and then according to the wireless network temporary identifier of the second device B,
  • the second target physical downlink control channel is detected on the at least one candidate physical downlink control channel included in the second subset.
  • the network device determines the first subset from the first search space according to the first identifier of the second device A, and then sends the first target physical downlink control on the first subset according to the wireless network temporary identifier of the second device A. And determining, by the network device, the second subset from the second search space according to the first identifier of the second device B, and transmitting the second target physical downlink control on the second subset according to the wireless network temporary identifier of the second device B channel.
  • the manner of determining the at least one candidate physical downlink control channel from the search space of the second device according to the first identifier of the second device may refer to the related description of the foregoing embodiment, where details are not detailed herein. Said.
  • the second device or the network device may further determine, according to the first identifier of the second device, a set of time units including at least one time unit, and then according to the second device
  • the wireless network temporary identifier determines the search space of the second device on at least one time unit included in the time unit set.
  • the second device A determines a first time unit set including at least one time unit according to the first identifier of the second device A, and determines a second on the first time unit set according to the wireless network temporary identifier of the second device A.
  • the first search space of device A corresponds to the second device B.
  • the second device B determines, according to the first identifier of the second device B, a second set of time units including at least one time unit, and the wireless network temporary identifier of the second device B determines the second device on the second set of time units. B's second search space.
  • the second device A detects the first target physical downlink control channel on the first search space according to the wireless network temporary identifier of the second device A, and the second device B searches for the second search according to the wireless network temporary identifier of the second device B.
  • the second target physical downlink control channel is spatially detected.
  • the network device determines the first time unit set according to the first identifier of the second device A, and then determines the first search space on the first time unit set according to the wireless network temporary identifier of the second device A, and then according to the second device.
  • the wireless network temporary identifier of A transmits the first target physical downlink control channel on the first search space.
  • the wireless network temporary identifier transmits a second target physical downlink control channel on the second search space.
  • the manner of determining the at least one time unit according to the first identifier of the second device may refer to the related description of the foregoing embodiment, and is not detailed herein.
  • the first identifier of the second device may be the second wireless network temporary identifier (eg, C-RNTI, SL-RNTI), and the second identifier of the second device is reported by the first device.
  • the index in the second device the local ID of the second device, the proximity service terminal identifier of the second device (ProSe UE ID), or the layer 2 identifier of the second device (Layer-2 ID);
  • the second identifier of the second device is a local identifier of the second device, a proximity service terminal identifier of the second device, or a layer 2 identifier of the second device.
  • this embodiment can refer to the related description of the foregoing embodiment, and is not described in detail herein.
  • the first wireless network temporary identifier may be a wireless network temporary identifier used to scramble the second downlink control information, where the second wireless network temporary identifier is a wireless network temporary identifier of the first device, where the second downlink control information is Information for scheduling uplink transmission or downlink reception of the first device, or information for scheduling first-device side-link transmission or side-link reception.
  • this embodiment can refer to the related description of the foregoing embodiment, and is not described in detail herein.
  • the load size of the downlink control information carried by the target physical downlink control channel is equal to the downlink used for scheduling the first device in the search space. Control the load size of the information.
  • the first device uses the radio network temporary identifier of the second device to detect the target PDCCH, it may be determined that the load size of the DCI carried by the target PDCCH is equal to the load size of the DCI used to schedule the first device, that is, the adoption may be determined.
  • the inverse process of the rate matching of the DCI for scheduling the first device when the target PDCCH is detected does not need to adopt the inverse of the rate matching of the plurality of optional DCIs respectively, and then uses the second process.
  • the wireless network temporarily identifies the descrambling, thereby reducing the number of detections and further reducing the complexity of the detection.
  • this embodiment can refer to the related description of the foregoing embodiment, and is not described in detail herein.
  • FIG. 9 is a schematic structural diagram of a device according to an embodiment of the present invention.
  • the terminal device may include a determining unit and a detecting unit, where:
  • a determining unit 501 configured to determine, according to the first wireless network temporary identifier, a search space, where the search space is a set of M candidate physical downlink control channels, where M is an integer greater than or equal to 1;
  • the detecting unit 502 is configured to detect a target physical downlink control channel from the search space according to the second wireless network temporary identifier
  • the first wireless network is temporarily identified as a wireless network temporary identifier of the first device or the second device; the second wireless network temporary identifier is a wireless network temporary identifier of the second device, and the target physical downlink control channel bearer
  • the first downlink control information is information for scheduling the second device that is scrambled by using the second wireless network temporary identifier, and the second device communicates with the network by using the first device.
  • the determining unit 501 and the detecting unit 502 can perform the corresponding operations in the foregoing various embodiments and the first device or the second device in the foregoing embodiments, and details are not described herein again.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • the network device may include a determining unit 601 and a sending unit 602, where
  • the determining unit 601 is configured to determine, according to the first wireless network temporary identifier, the search space, where the search space is a set of M candidate physical downlink control channels, where M is an integer greater than or equal to 1;
  • the sending unit 602 is configured to send, according to the second wireless network temporary identifier, the target physical downlink control channel on the search space.
  • the first wireless network temporary identifier is a wireless network temporary identifier of the first device or the second device; the first downlink control information carried by the target physical downlink control channel is scrambled by using the second wireless network temporary identifier Information for scheduling the second device, the second wireless network temporary identifier is a wireless network temporary identifier of the second device, and the second device communicates with the network by using the first device.
  • the determining unit 601 and the sending unit 602 can perform the steps or operations performed by the network device in the foregoing various embodiments and implementation manners, and details are not described herein again.
  • Figure 11 is a schematic diagram of a device according to an embodiment of the present invention.
  • the device may be a first device, a second device, or a chip or a circuit.
  • the device may correspond to the first device or the second device in the above method.
  • the device can include a processor 110 and a memory 120.
  • the memory 120 is for storing instructions for executing the instructions stored by the memory 120 to implement the steps and embodiments in the methods corresponding to Figures 3 through 8 above.
  • the device may further include an input port 140 and an output port 150. Further, the device may further include a bus system 130, wherein the processor 110, the memory 120, the input port 140, and the output port 150 may be connected by the bus system 130.
  • the processor 110 is configured to execute instructions stored in the memory 120 to control the input port 140 to receive signals, and control the output port 150 to send signals to complete the steps of the first device or the second device in the above method.
  • the input port 140 and the output port 150 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the memory 220 may be integrated in the processor 210 or may be provided separately from the processor 210.
  • the functions of the input port 140 and the output port 150 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 110 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • the device provided by the embodiment of the present application may be implemented by using a general-purpose computer.
  • the program code for the functions of the processor 110, the input port 140 and the output port 150 is stored in a memory, and the general purpose processor implements the functions of the processor 110, the input port 140 and the output port 150 by executing code in the memory.
  • FIG. 12 is a schematic structural diagram of another device according to an embodiment of the present invention.
  • the device can be adapted for use in the system shown in FIG.
  • FIG. 12 only shows the main components when the device is a terminal device, but in the embodiment of the present invention, the device may also be a base station or the like.
  • the terminal device includes a processor, a memory, a control circuit, an antenna, and an input/output device.
  • the processor is mainly used for processing the communication protocol and the communication data, and controlling the entire terminal device, executing the software program, and processing the data of the software program, for example, for supporting the first device or the second device to execute the physical downlink control channel.
  • the actions described in the method embodiments are processed.
  • the memory is mainly used for storing software programs and data, for example, storing the first wireless network temporary identifier or the second wireless network temporary identifier in the foregoing embodiment, or the first identifier of the second device.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit together with the antenna can also be called a transceiver, and is mainly used for transmitting and receiving RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 12 shows only one memory and processor for ease of illustration. In an actual user device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process the communication protocol and the communication data, and the central processing unit is mainly used to control and execute the entire terminal device.
  • the processor in Figure 12 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be separate processors connected by techniques such as a bus.
  • the user equipment may include a plurality of baseband processors to accommodate different network standards, and the user equipment may include a plurality of central processors to enhance its processing capabilities, and various components of the user equipment may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and control circuit having the transceiving function can be regarded as the transceiving unit 101 of the user equipment, and the processor having the processing function is regarded as the processing unit 102 of the user equipment.
  • the user equipment includes a transceiver unit 101 and a processing unit 102.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 101 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 101 is regarded as a sending unit, that is, the transceiver unit 101 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, an input port, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit.
  • FIG. 13 is a schematic diagram 2 of a device according to an embodiment of the present invention.
  • the device may be a network device 20, or may be a chip or a circuit, such as a chip or a circuit that can be disposed in a network device.
  • the network device 20 corresponds to the network device in the above method.
  • the device can include a processor 210 and a memory 220.
  • the memory 220 is configured to store instructions for executing the instructions stored by the memory 220 to cause the apparatus to implement the method corresponding to the foregoing FIG. 3-8.
  • the network may further include an input port 240 and an output port 250. Still further, the network can also include a bus system 230.
  • the processor 210, the memory 220, the input port 240 and the output port 250 are connected by a bus system 230.
  • the processor 210 is configured to execute the instructions stored in the memory 220 to control the input port 240 to receive signals, and control the output port 250 to send signals.
  • the steps of the network device in the above method are completed.
  • the input port 240 and the output port 250 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as input and output ports.
  • the memory 220 may be integrated in the processor 210 or may be provided separately from the processor 210.
  • the functions of the input port 240 and the output port 250 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 210 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • a network device provided by an embodiment of the present application may be implemented by using a general-purpose computer.
  • the program code that implements the functions of the processor 210, the input port 240 and the output port 250 is stored in a memory, and the general purpose processor implements the functions of the processor 210, the input port 240, and the output port 250 by executing code in the memory.
  • FIG. 14 is a schematic structural diagram of another network device according to an embodiment of the present invention, which may be a schematic structural diagram of a base station.
  • the base station can be applied to the system as shown in FIG. 1.
  • the base station 20 includes one or more radio frequency units, such as a remote radio unit (RRU) 201 and one or more baseband units (BBUs) (also referred to as digital units, DUs) 202.
  • RRU remote radio unit
  • BBUs baseband units
  • the RRU 201 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 2011 and a radio frequency unit 2012.
  • the RRU 201 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting the signaling messages described in the foregoing embodiments to the terminal device.
  • the BBU 202 part is mainly used for performing baseband processing, controlling a base station, and the like.
  • the RRU 201 and the BBU 202 may be physically disposed together or physically separated, that is, distributed base stations.
  • the BBU 202 is a control center of a base station, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, spread spectrum, and the like.
  • the BBU processing unit
  • the BBU can be used to control the base station to perform an operation procedure about the network device in the foregoing method embodiment.
  • the BBU 202 may be composed of one or more boards, and multiple boards may jointly support a single access standard radio access network (such as an LTE network), or may separately support different access modes of wireless. Access Network.
  • the BBU 202 also includes a memory 2021 and a processor 2022.
  • the memory 2021 is used to store necessary instructions and data.
  • the memory 2021 stores the first wireless network temporary identifier in the above embodiment, or the second wireless network temporary identifier, or the first identifier of the second device, and the like.
  • the processor 2022 is configured to control the base station to perform necessary actions, for example, to control the base station to perform an operation procedure about the network device in the foregoing method embodiment.
  • the memory 2021 and the processor 2022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • the embodiment of the present application further provides a communication system including the foregoing network device and one or more terminal devices.
  • the processor may be a central processing unit (“CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration. Circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor.
  • a portion of the memory may also include a non-volatile random access memory.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • a power bus may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are labeled as bus systems in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the size of the serial numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, i.e., may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Abstract

本申请提供一种物理下行控制信道的处理方法及相关设备,该方法可以根据第一无线网络临时标识确定搜索空间,搜索空间为M个候选物理下行控制信道的集合,M为大于等于1的整数;根据第二无线网络临时标识从搜索空间中检测目标物理下行控制信道;第一无线网络临时标识为第一设备或者第二设备的无线网络临时标识;第二无线网络临时标识为第二设备的无线网络临时标识,目标物理下行控制信道承载的第一下行控制信息为利用第二无线网络临时标识加扰的用于调度第二设备的信息,第二设备通过第一设备与网络通信。可见,本申请可以利用第一无线网络临时标识减少利用第二无线网络临时标识检测的候选物理下行控制信道的数量,从而降低检测的复杂度。

Description

物理下行控制信道的处理方法及相关设备 技术领域
本申请涉及通信技术领域,尤其涉及一种物理下行控制信道的处理方法及相关设备。
背景技术
基于蜂窝网络的设备对设备(Device-to-Device,D2D)通信(在3GPP中又称为邻近服务(Proximity Service,ProSe))是一种允许终端之间通过复用小区资源直接进行通信的新型技术,该技术能够增加蜂窝通信系统的频谱效率。该D2D通信中包括一种用户设备到网络中继的操作,也就是UE-to-network relay操作。该操作中,远端用户设备(remote UE)可以通过中继用户设备(relay User Equipment,UE)连接到网络。其中,remote UE可以是一种低能力的设备,如可穿戴设备,其特点为体积小、电池容量小以及射频能力较低等;relay UE可以是一种高能力的设备,如,高能力的智能手机,其可以作为中继节点辅助低能力的设备与网络通信,从而节省了remote UE的功率消耗,延长了待机时间。
在该D2D通信中,网络设备可以通过relay UE调度remote UE发送和/或接收资源,例如,relay UE接收网络设备发送的用于调度remote UE的下行控制信息(Downlink Control Information,DCI),再将该DCI转发给remote UE,该DCI包含了remote UE发送和/或接收资源的信息。然而,当relay UE连接了多个remote UE时,relay UE为了接收网络设备发送的用于调度remote UE的DCI,需要根据每个remote UE的无线网络临时标识多次检测携带了remote UE的DCI的物理下行控制信道(Physical Downlink Control Channel,PDCCH),从而,大大增加了relay UE解码PDCCH的复杂度。
发明内容
本申请提供了一种物理下行控制信道的处理方法及相关设备,可以降低D2D通信中relay UE解码PDCCH的复杂度。
一方面,本申请提供一种物理下行控制信道的处理方法,该方法可以根据第一无线网络临时标识确定搜索空间,所述搜索空间为M个候选物理下行控制信道的集合,M为大于等于1的整数;根据第二无线网络临时标识从所述搜索空间中检测目标物理下行控制信道;所述第一无线网络临时标识为第一设备或者第二设备的无线网络临时标识;所述第二无线网络临时标识为所述第二设备的无线网络临时标识,所述目标物理下行控制信道承载的第一下行控制信息为利用所述第二无线网络临时标识加扰的用于调度所述第二设备的信息,所述第二设备通过所述第一设备与网络通信。可见,该方法可以利用第一无线网络临时标识减少检测的候选物理下行控制信道的数量,从而降低检测的复杂度。
其中,用于调度所述第二设备的信息可以包括调度所述第二设备发送和/或接收数据的资源的信息,或者可以包括指示所述第二设备发送和/或接收数据所使用的参数的信息。
作为一种实施方式,第一设备可以执行该物理下行控制信道的处理方法,即第一设备根据第一设备的无线网络临时标识确定搜索空间,根据第二无线网络临时标识从所述搜索空间中检测目标物理下行控制信道。所述第二无线网络临时标识为第二设备的无线网络临时标识, 所述目标物理下行控制信道承载的第一下行控制信息为利用所述第二无线网络临时标识加扰的用于调度所述第二设备的信息,所述第二设备通过所述第一设备与网络通信。该实施方式中,第一设备针对所有的第二设备可以确定相同的搜索空间,从而降低搜索空间的确定次数,并减少第一设备检测物理下行控制信道的搜索空间的范围,从而降低第一设备检测物理下行控制信道的复杂度;相应地,在该相同的搜索空间中需要分别利用各第二设备的无线网络临时标识来分别检测携带了用于调度相应第二设备的信息的物理下行控制信道。
作为另一种实施方式,第一设备执行该物理下行控制信道的处理方法可以包括:第一设备根据第二设备的无线网络临时标识确定搜索空间,以及根据第二设备的无线网络临时标识检测目标物理下行控制信道。所述目标物理下行控制信道承载的第一下行控制信息为利用所述第二无线网络临时标识加扰的用于调度所述第二设备的信息,所述第二设备通过所述第一设备与网络通信。
作为又一种实施方式,第二设备可以执行该物理下行控制信道的处理方法,即第二设备根据第一设备的无线网络临时标识确定搜索空间,以及根据第二设备的无线网络临时标识从该搜索空间中检测目标物理下行控制信道。所述目标物理下行控制信道承载的第一下行控制信息为利用所述第二无线网络临时标识加扰的用于调度所述第二设备的信息,所述第二设备通过所述第一设备与网络通信。该实施方式中,第二设备还需要接收网络或第一设备发送的指示信息,该指示信息用于指示第一设备的该无线网络临时标识。可见,该实施方式中,第一设备和第二设备可以同时检测目标PDCCH,从而,可以降低第一设备的检测复杂度。
作为又一种实施方式,第二设备执行物理下行控制信道的处理方法,可以包括:第二设备根据第二设备的无线网络临时标识确定搜索空间,以及根据第二设备的无线网络临时标识从该搜索空间中检测目标物理下行控制信道,所述目标物理下行控制信道承载的第一下行控制信息为利用所述第二无线网络临时标识加扰的用于调度所述第二设备的信息,所述第二设备通过所述第一设备与网络通信。该实施方式中,目标PDCCH的处理过程由第二设备执行,从而可以降低第一设备的检测复杂度。
当至少两个第二设备通过第一设备与网络通信时,物理下行控制信道的处理方法可以包括:针对每个第二设备,第一设备根据第一设备的无线网络临时标识确定搜索空间,以及根据该第二设备的无线网络临时标识在该搜索空间上检测目标物理下行控制信道,其中,该目标物理下行控制信道承载的第一下行控制信息为利用该第二设备的无线网络临时标识加扰的用于调度该第二设备的信息。
或者,当至少两个第二设备通过第一设备与网络通信时,物理下行控制信道的处理方法可以包括:针对每个第二设备,第二设备可以根据第一设备的无线网络临时标识确定搜索空间,以及根据该第二设备的无线网络临时标识在该搜索空间上检测目标物理下行控制信道,其中,该目标物理下行控制信道承载的第一下行控制信息为利用该第二设备的无线网络临时标识加扰的用于调度该第二设备的信息。
或者,当至少两个第二设备通过第一设备与网络通信时,物理下行控制信道的处理方法可以包括:针对每个第二设备,第一设备根据该第二设备的无线网络临时标识确定搜索空间,再根据该第二设备的无线网络临时标识在该搜索空间上检测目标物理下行控制信道,其中,该目标物理下行控制信道承载的第一下行控制信息为利用该第二设备的无线网络临时标识加扰的用于调度该第二设备的信息。
或者,当至少两个第二设备通过第一设备与网络通信时,物理下行控制信道的处理方法可以包括:针对每个第二设备,第二设备可以根据该第二设备的无线网络临时标识确定搜索空间,再根据该第二设备的无线网络临时标识在该搜索空间上检测目标物理下行控制信道,其中,该目标物理下行控制信道承载的第一下行控制信息为利用该第二设备的无线网络临时标识加扰的用于调度该第二设备的信息。
其中,搜索空间可以为多个候选物理下行控制信道(PDCCH candidates)的集合,一个候选PDCCH在聚合的一个或多个控制信道单元(Control Channel Elements,CCE)上传输,聚合的CCE的数量为该候选PDCCH的聚合等级。从搜索空间中检测目标PDCCH可以理解为在搜索空间包含的多个候选PDCCH占用的CCE上检测目标PDCCH,并且可能在其中一个候选PDCCH占用的CCE上检测到目标PDCCH。检测目标PDCCH可以理解为根据用于调度第二设备的下行控制信息解码PDCCH,或者理解为检测PDCCH承载的用于调度第二设备的下行控制信息。
可选的,上述各实施方式所述的物理下行控制信道的处理方法还可以根据第二设备的第一标识从搜索空间中确定至少一个候选物理下行控制信道,在该至少一个候选物理下行控制信道上利用第二无线网络临时标识检测目标物理下行控制信道。可见,该实施方式可以进一步减少在检测目标PDCCH时所要检测的候选物理下行控制信道的数量,在一个候选物理下行控制信道上使用更少数量的第二设备的无线网络临时标识分别检测承载了用于调度相应第二设备的信息的物理下行控制信道,降低了检测的复杂度。
相应的,至少两个第二设备通过第一设备与网络通信时,该实施方式在每个候选物理下行控制信道上可以只利用部分第二设备的无线网络临时标识来检测目标PDCCH,而不需要使用所有第二设备的无线网络临时标识一一检测目标PDCCH,降低了检测的复杂度。
其中,根据第二设备的第一标识从搜索空间中确定至少一个候选物理下行控制信道可以为:根据第二设备的第一标识从所述搜索空间中确定索引满足如下公式的至少一个候选物理下行控制信道:
m mod n1=(identity mod n1);
其中,所述n1为整数且所述n1<=M,所述m为所述搜索空间中各候选物理下行控制信道的索引,m=0,1,…,M-1;所述identity为所述第二设备的第一标识;所述n1为预先定义的,为网络设备配置的或者为所述第一设备确定的。
例如,n1的大小可以是第一设备或网络设备根据通过第一设备与网络设备通信的第二设备的数量来确定,当第二设备的数量越多,n1可以越大。其中,在一定的第二设备的数量的情况下,若n1越大,则在每个候选PDCCH上就可以使用越少数量的第二设备的无线网络临时标识(Radio Network Temporary Identifier,RNTI)去检测,也就是,在数量越少的时间单元上采用第二设备的RNTI检测目标PDCCH。
可选的,对于不同聚合等级的搜索空间,n1的取值可以是不同的,例如,n1可以为M乘以一个比例因子k,0<k<=1。对于不同的聚合等级,该比例因子是相同的,可以是标准协议中规定的,或者是网络设备配置的,或者是第一设备自己确定的。
例如,假设n1=2,m=0,1,2,3,则在检测目标PDCCH时,该至少一个候选PDCCH的索 引mod 2等于该第二设备的第一标识mod 2。假设第二设备的第一标识mod 2等于0,则满足上述公式的候选PDCCH分别为PDCCH 0以及PDCCH 2,可见,该实施方式可以在PDCCH0以及PDCCH 2上利用第二设备的RNTI检测目标PDCCH,即检测携带了用于调度第二设备的信息的PDCCH。
也就是说,该实施方式中,物理下行控制信道的处理方法只需要在搜索空间的部分候选PDCCH上检测目标PDCCH,而不需要在所有的候选PDCCH上检测目标PDCCH;也就是说,该实施方式在候选PDCCH m上只需要利用满足identity mod n1=m mod n1的identity标识的第二设备的RNTI检测目标PDCCH,而不需要利用所有第二设备的RNTI检测目标PDCCH。从而,降低了目标PDCCH的检测复杂度。
可选的,第一设备或第二设备根据第一无线网络临时标识确定搜索空间之前,还可以根据第二设备的第一标识确定至少一个时间单元,该至少一个时间单元包含承载了用于调度第二设备的信息的PDCCH,相应地,第一设备或第二设备可以根据第一无线网络临时标识在该至少一个时间单元上确定搜索空间,进一步的,根据第二无线网络临时标识在该搜索空间上检测目标PDCCH。
可见,该实施方式并不是在所有时间单元上都来检测目标PDCCH,因此降低了目标PDCCH的检测复杂度。
可选的,根据第二设备的第一标识确定至少一个时间单元,可以为:从多个时间单元中确定索引满足如下公式的至少一个时间单元;
i mod n2=(identity mod n2);
其中,所述n2为整数且所述n2<=N,所述i为所述多个时间单元的索引,i=0,1,…,N-1,所述N为所述多个时间单元的数量;所述identity为所述第二设备的第一标识;所述n2为预先定义的,为网络设备配置的或者为所述第一设备确定的。
其中,该时间单元可以为子帧、时隙、小时隙以及正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号中的任一种,也可以为其他时间单元等,本发明实施例不做限定。
相应的,N可以为一段时间范围内时间单元的数量,例如,一个无线帧中非上行子帧的数量,或者一个无线帧中下行子帧的数量,或者1024个无线帧中非上行子帧的数量,或者1024个无线帧中下行子帧的数量,或者一个子帧中的时隙、符号、小时隙或其他更小粒度的时间单元的数量,本发明实施例不做限定。
例如,n2的大小可以是第一设备或网络设备根据通过第一设备与网络设备通信的第二设备的数量来确定,当第二设备的数量越多,n2可以越大。其中,在一定的第二设备的数量的情况下,若n2越大,则在每个时间单元上可以使用越少数量的第二设备的RNTI去检测目标PDCCH,也就是,在数量越少的时间单元上采用第二设备的RNTI检测目标PDCCH。
可选的,对于不同聚合等级的搜索空间,n2的取值可以是不同的,例如,n2可以为M乘以一个比例因子k,0<k<=1。对于不同的聚合等级,该比例因子是相同,可以是标准协议中规定的,或者是网络设备配置的,或者是第一设备自己确定的。
例如,假设n2=2,i=0,1,2,3,则在检测目标PDCCH时,能够传输该目标PDCCH的该 至少一个非下行子帧的索引是根据该第二设备的第一标识mod 2获得。假设第二设备的第一标识mod 2等于0,则满足上述公式的非下行子帧分别为子帧0和子帧2,可见,该实施方式可以只在子帧0和子帧2上检测目标PDCCH,而不需要在所有的非上行子帧上检测目标PDCCH,进一步降低检测的复杂度。
可见,每个时间单元上搜索空间中的一个候选PDCCH只需要使用部分第二设备的无线网络临时标识(Radio Network Temporary Identifier,RNTI)来检测或解扰PDCCH;也就是说,可以只在满足i mod n2=(identity mod n2)的时间单元上检测承载了用于调度该identity标识的第二设备的DCI的PDCCH,而不需要在所有时间单元上检测承载了用于调度该identity标识的第二设备的DCI的PDCCH。从而,降低了目标PDCCH的检测复杂度。
其中,第二设备的第一标识可以为所述第二无线网络临时标识(例如,小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI),侧行链路无线网络临时标识(Sidelink Radio Network Temporary Identifier,SL-RNTI))、所述第二设备的第二标识在所述第一设备报告的目标列表中的索引、所述第二设备的本地标识(Local ID)、所述第二设备的邻近服务终端标识(Proximity-services UE ID,ProSe UE ID)或者所述第二设备的层2标识(Layer-2 ID);所述第二设备的第二标识为所述第二设备的本地标识、所述第二设备的邻近服务终端标识或者所述第二设备的层2标识。
例如,第二设备的第一标识为所述第二设备的第二标识在所述第一设备报告的目标列表中的索引,具体的,第一设备在目标列表中指示了第一设备进行通信的一个或多个目标设备,每个目标设备通过第二标识被识别。如第一设备在目标列表destinationInfoList中指示了第一设备进行侧行链路sidelink通信的一个或多个目标destination,每个目标destination通过ProSe UE ID被识别,即该目标列表destinationInfoList中包含一个或多个ProSe UE ID,每个第二设备都有一个自己的ProSe UE ID,此时,第二设备的第一标识可以为该第二设备的第二标识在该第一设备报告的目标列表中的索引,即该第二设备的ProSe UE ID在该目标列表中的索引。
可选的,本发明实施例还提供一种物理下行控制信道的处理方法,该物理下行控制信道的处理方法可以采用第二设备的第一标识确定至少一个时间单元,根据第一无线网络临时标识在该至少一个时间单元上确定搜索空间,进一步的,根据该第二设备的第一标识从该搜索空间中确定至少一个候选PDCCH,进一步的,根据该第二设备的无线网络临时标识在该至少一个候选PDCCH上检测承载了用于调度该第二设备的DCI的PDCCH。具体的,可以参考上述两个实施方式阐述的内容,此处不再详述。
其中,第一无线网络临时标识为第一设备的无线网络临时标识时,第一无线网络临时标识可以为用于加扰第二下行控制信息的无线网络临时标识,所述第二下行控制信息为用于调度所述第一设备上行链路发送或下行链路接收的信息,或者为用于调度所述第一设备侧行链路发送或侧行链路接收的信息。
其中,第一无线网络临时标识为第一设备的无线网络临时标识时,所述目标物理下行控制信道承载的下行控制信息的负载大小等于所述搜索空间中用于调度所述第一设备的下行控制信息的负载大小。这样,第一设备采用第二设备的无线网络临时标识检测目标PDCCH时, 可以确定该目标PDCCH携带的DCI的负载大小等于用于调度第一设备的DCI的负载大小,也就是说,可以确定采用用于调度第一设备的DCI的负载大小在检测目标PDCCH时进行速率匹配的逆过程,而不需要分别采用多个可选的DCI的负载大小逐个进行速率匹配的逆过程后,再利用第二无线网络临时标识解扰,从而降低了检测的次数,进一步的降低检测的复杂度。
另一方面,本申请还提供了一种物理下行控制信道的处理方法,该物理下行控制信道的处理方法中,网络设备可以根据第一无线网络临时标识确定搜索空间,所述搜索空间为M个候选物理下行控制信道的集合,M为大于等于1的整数;所述网络设备根据第二无线网络临时标识在所述搜索空间上发送目标物理下行控制信道;所述第一无线网络临时标识为第一设备或者第二设备的无线网络临时标识;所述目标物理下行控制信道承载的第一下行控制信息为利用所述第二无线网络临时标识加扰的用于调度所述第二设备的信息,所述第二无线网络临时标识为所述第二设备的无线网络临时标识,所述第二设备通过所述第一设备与网络通信。
其中,网络设备根据第二无线网络临时标识在搜索空间上发送目标物理下行控制信道,可以理解为:在搜索空间上使用第二无线网络临时标识加扰目标PDCCH,或者在搜索空间上使用第二无线网络临时标识加扰PDCCH承载的用于调度第二设备的DCI。相应的,加扰DCI可以指DCI进行循环冗余校验(Cyclic Redundancy Check,CRC)附着之后,使用无线网络临时标识对CRC校验位进行加扰;或者可以指使用RNTI对DCI进行CRC附着之后的序列加扰。
也就是说,一种物理下行控制信道的处理方法可以包括:网络设备根据第一设备的无线网络临时标识确定搜索空间,所述搜索空间为M个候选物理下行控制信道的集合,M为大于等于1的整数;所述网络设备根据第二无线网络临时标识在所述搜索空间上发送目标物理下行控制信道;所述目标物理下行控制信道承载的第一下行控制信息为利用第二设备的无线网络临时标识加扰的用于调度所述第二设备的信息,所述第二设备通过所述第一设备与网络通信。该实施方式中,针对所有的第二设备,网络设备均采用第一设备的无线网络临时标识确定搜索空间,从而,避免了第一设备需要根据每个第二设备的无线网络临时标识分别确定搜索空间的繁琐性,降低了第一设备检测PDCCH的复杂度。
另一种物理下行控制信道的处理方法可以包括:网络设备根据第二设备的无线网络临时标识确定搜索空间,所述搜索空间为M个候选物理下行控制信道的集合,M为大于等于1的整数;所述网络设备根据第二无线网络临时标识在所述搜索空间上发送目标物理下行控制信道;所述目标物理下行控制信道承载的第一下行控制信息为利用第二设备的无线网络临时标识加扰的用于调度所述第二设备的信息,所述第二设备通过所述第一设备与网络通信。该实施方式,每个第二设备对应一个搜索空间,使得每个第二设备根据自身的无线网络临时标识确定搜索空间并检测承载了用于调度该第二设备的信息的PDCCH,从而,降低了第一设备的检测复杂度。
其中,搜索空间可以为多个候选物理下行控制信道的集合,一个候选PDCCH在聚合的一个或多个控制信道单元(Control Channel Elements,CCE)上传输,聚合的CCE的数量为该候选PDCCH的聚合等级。也就是说,网络设备在搜索空间上发送目标PDCCH可以理解为,网络设备可以在搜索空间包含的多个候选PDCCH占用的CCE上传输目标PDCCH,其中, 具体在哪个候选PDCCH占用的CCE上传输目标PDCCH,由网络设备根据相关参数确定,本发明实施例不做限定。传输目标PDCCH可以理解为在PDCCH上传输用于调度第二设备的下行控制信息。
可见,网络设备可以在基于第一无线网络临时标识确定的搜索空间上发送承载了用于调度第二设备的信息的PDCCH,从而,使得第一设备可以利用第一无线网络临时标识减少利用第二无线网络临时标识检测的候选物理下行控制信道的数量,降低了第一设备检测PDCCH的复杂度。
可选的,网络设备可以根据所述第二设备的第一标识从所述搜索空间中确定至少一个候选物理下行控制信道;相应的,所述网络设备根据第二无线网络临时标识在所述搜索空间上发送目标物理下行控制信道,可以包括:所述网络设备根据第二无线网络临时标识在所述至少一个候选物理下行控制信道上发送目标物理下行控制信道。也就是说,所述网络设备根据第二无线网络临时标识在所述至少一个候选物理下行控制信道占用的CCE上发送目标物理下行控制信道,其中,具体在哪个候选PDCCH占用的CCE上传输目标PDCCH,由网络设备根据相关参数确定,本发明实施例不做限定。从而,网络设备进一步减少了候选PDCCH的数量,进一步降低了PDCCH的检测复杂度。
可选的,网络设备根据所述第二设备的第一标识从所述搜索空间中确定至少一个候选物理下行控制信道,可以为:网络设备从所述搜索空间中确定索引满足如下公式的至少一个候选物理下行控制信道;
m mod n1=(identity mod n1);
其中,所述n1为整数且所述n1<=M,所述m为所述搜索空间中各候选物理下行控制信道的索引,m=0,1,…,M-1;所述identity为所述第二设备的第一标识;所述n1为预先定义的,为网络设备配置的或者为所述第一设备确定的。
可见,该实施方式中,物理下行控制信道的处理方法在搜索空间的部分候选PDCCH上发送目标PDCCH;也就是说,该实施方式可以在搜索空间的部分候选PDCCH上利用第二无线网络临时标识发送目标PDCCH;也就是说,该实施方式只需要在满足m mod n1=identity mod n1的候选PDCCH上将利用第二设备的RNTI加扰的DCI发送给第一设备。从而,降低了第一设备或第二设备的检测复杂度。
可选的,网络设备可以根据第二设备的第一标识确定至少一个时间单元;相应的,所述网络设备根据第一无线网络临时标识确定搜索空间,包括:所述网络设备根据第一无线网络临时标识在所述至少一个时间单元上确定搜索空间。可见,该实施方式中,网络设备只在根据某些第二设备的第一标识确定的时间单元上发送目标PDCCH,从而,降低了第一设备和第二设备的检测复杂度。
可选的,网络设备根据第二设备的第一标识确定至少一个时间单元,包括:网络设备从多个时间单元中确定索引满足如下公式的至少一个时间单元;
i mod n2=(identity mod n2);
其中,所述n2为整数且所述n2<=N,所述i为所述多个时间单元的索引,i=0,1,…,N-1,所述N为多个时间单元的数量;所述identity为所述第二设备的第一标识;所述n2为预先定义 的,为所述网络设备配置的或者为所述第一设备确定的。
可见,该实施方式中,网络设备发送的目标PDCCH所在的时间单元是根据第二设备的第一标识确定的,而不是在所有子帧上都有可能发送目标PDCCH;也就是说,网络设备只在满足i mod n2=(identity mod n2)的时间单元上发送承载了用于调度该identity标识的第二设备的DCI的PDCCH;也就是说,网络设备在每个时间单元上发送的承载了用于调度第二设备的DCI的PDCCH为使用有共同identity mod n2的值的第二设备的RNTI加扰的PDCCH。从而,降低了目标PDCCH的检测复杂度。
其中,第二设备的第一标识为所述第二无线网络临时标识、所述第二设备的第二标识在所述第一设备报告的目标列表中的索引、所述第二设备的本地标识、所述第二设备的邻近服务终端标识或者所述第二设备的层2标识;所述第二设备的第二标识为所述第二设备的本地标识、所述第二设备的邻近服务终端标识或者所述第二设备的层2标识。
其中,第一无线网络临时标识为第一设备的无线网络临时标识时,第一无线网络临时标识可以为用于加扰第二下行控制信息的无线网络临时标识,所述第二下行控制信息为用于调度所述第一设备上行链路发送或下行链路接收的信息,或者为用于调度所述第一设备侧行链路发送或侧行链路接收的信息。
其中,第一无线网络临时标识为第一设备的无线网络临时标识时,所述目标物理下行控制信道承载的下行控制信息的负载大小等于所述搜索空间中用于调度所述第一设备的下行控制信息的负载大小。也就是说,网络设备发送的目标PDCCH承载的下行控制信息的负载大小等于所述搜索空间中用于调度所述第一设备的下行控制信息的负载大小。这样,第一设备采用第二设备的无线网络临时标识检测目标PDCCH时,可以确定该目标PDCCH携带的DCI的负载大小等于用于调度第一设备的DCI的负载大小,也就是说,可以确定采用用于调度第一设备的DCI的负载大小在检测目标PDCCH时进行速率匹配的逆过程,而不需要分别采用多个可选的DCI的负载大小逐个进行速率匹配的逆过程后,再利用第二无线网络临时标识解扰,从而降低了检测的次数,进一步的降低PDCCH检测的复杂度。
其中,该方面的相关解释可以参考上一方面或者实施例中的相关举例和解释,这里不再详述。
又一方面,本发明实施例还提供了一种设备,该设备具有实现上述方法示例中第一方面所述方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该设备的结构中可包括确定单元和检测单元,所述确定单元和检测单元用于支持该设备与其他设备之间的通信。该设备还可以包括存储单元,所述存储单元用于与确定单元和检测单元耦合,其保存该设备必要的程序指令和数据。作为示例,确定单元和检测单元可以为收发器,存储单元可以为存储器。
又一方面,本发明实施例提供一种网络设备,该网络设备具有实现上述方法示例中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,网络设备的结构中包括确定单元和发送单元,所述确定单元和发送单元被配置为支持网络设备执行上述方法中相应的功能。所述确定单元和发送单元用于支持网络设备与其他设备之间的通信。所述网络设备还可以包括存储单元,所述存储单元用于与确定单元和发送单元耦合,其保存网络设备必要的程序指令和数据。作为示例,确定单元可以为处理器,发送单元可以为收发器,存储单元可以为存储器。
又一方面,本申请提供了一种通信系统,该系统包括上述方面的第一设备、第二设备和/ 或网络设备。在另一种可能的设计中,该系统还可以包括本发明实施例提供的方案中与该第一设备、第二设备或网络设备进行交互的其他设备。
又一方面,本申请提供了一种计算机存储介质,用于储存为上述第一设备或第二设备所用的计算机软件指令,其包括用于执行上述方面所设计的程序。
又一方面,本申请提供了一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包括用于执行上述方面所设计的程序。
又一方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
又一方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于第一设备或第二设备实现上述方面中所涉及的功能,例如,例如确定或检测上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存第一设备或第二设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
又一方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备实现上述方面中所涉及的功能,例如,例如接收或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1是本发明实施例提供的一种基于蜂窝网络的设备对设备通信的结构示意图;
图2是本发明实施例提供的一种搜索空间的示意图;
图3是本发明实施例提供的一种物理下行控制信道的处理方法的流程示意图;
图4是本发明实施例提供的另一种物理下行控制信道的处理方法的流程示意图;
图5是本发明实施例提供的又一种物理下行控制信道的处理方法的流程示意图;
图6为本发明实施例提供的一种搜索空间的示意图;
图7为本发明实施例提供的一种非上行子帧的示意图;
图8是本发明实施例提供的又一种物理下行控制信道的处理方法的流程示意图;
图9是本发明实施例提供的一种设备的结构示意图;
图10是本发明实施例提供的一种网络设备的结构示意图;
图11是本发明实施例提供的设备的示意图一;
图12是本发明实施例提供的另一种设备的结构示意图;
图13为本发明实施例提供的设备的示意图二;
图14为本发明实施例提供的又一种网络设备的结构示意图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
在本申请中,第一设备可以为中继节点(Relay node)、基站、终端、移动台(Mobile Station,MS)或移动终端等。其可以经无线接入网(如RAN,radio access network)与一个或多个核心网进行通信,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置等,它们与无线接入网交换语言和/或数据。
在本申请中,第二设备可以为终端、移动台(Mobile Station,MS)或移动终端等,例 如,可穿戴设备,其特点是体积小、电池容量小以及射频能力较低等。
在本申请中,网络设备可以是GSM或CDMA中的基站,如基站收发台(英文:Base Transceiver Station,简称BTS),也可以是WCDMA中的基站,如NodeB,还可以是LTE中的演进型基站,如eNB或e-NodeB(evolutional Node B),或以及5G系统、新空口(NR)系统中的基站,如下一代节点B(next generation node B,gNB),或未来网络中的基站,本发明实施例不做限定。另外,基站也可以为接入点(Access Point,AP)、传输节点(Trans TRP)、中心单元(Central Unit,CU)或其他网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。
在本申请中,时间单元是指用于进行数据传输的时间单位,例如该时间单元可以是指子帧,也可以是指时隙,还可是指无线帧、小/微时隙、多个聚合的时隙、多个聚合的子帧等等,还可以是指传输时间间隔(Transmission Time Interval,TTI),本申请不做限定。其中,一个传输时间间隔等于若干个子帧长度和,或者若干个传输时间间隔之和等于一个子帧长度。以子帧为例,载波使用的子帧长度可以为15kHz*2^n(2^n即为2的n次方),其对应的子帧长度为1/(2^n)ms,即支持0.5ms、0.25ms、0.125ms等多种传输时间单元。其中,n为整数。
在本申请中,物理下行控制信道还可以替换为增强型物理下行控制信道,或者其他控制信道,本发明实施例不做限定;相应的,下行控制信息也可以替换为其他控制信息,本发明实施例不做限定;第一设备或第二设备的无线网络临时标识也可以为其他标识,本发明实施例不做限定。
其中,第二设备通过第一设备与网络通信,可以是第二设备与网络之间传输的数据是通过第一设备转发的,或者第一设备与第二设备相链接,或者第一设备与第二设备相关联等,本发明实施例不做限定。
请参阅图1,图1是本发明实施例提供的一种基于蜂窝网络的设备对设备通信的结构示意图,如图1所示,远端设备(Remote User Equipment,Remote UE)与中继设备(Relay User Equipment,Relay UE)之间可以通过复用小区资源直接进行通信,该设备对设备(Device to Device,D2D)通信技术可以增加蜂窝通信系统的频谱效率,降低终端发射功率,在一定程度上解决无线通信系统频谱资源匮乏的问题。
例如,未来每个人身上都会带各种各样的可穿戴设备,这些设备需要与网络通信传输数据或建立语音电话业务,由于可穿戴设备与智能手机之间的距离远小于与基站之间的距离,如果这些可穿戴设备可以通过智能手机中继连接到网络,那么可以降低可穿戴设备的功耗,并且可以提高可穿戴设备的传输速率。
然而,Remote UE与Relay UE之间通信采用的资源需要通过网络设备,如基站,进行下发。例如,网络设备可以向终端发送下行控制信息(Downlink Control Information,DCI),该DCI中包含用于调度终端的调度信息,例如,终端发送数据或接收数据所采用的资源。其中,DCI是在物理下行控制信道(Physical Downlink Control Channel,PDCCH)上传输的,该DCI是采用终端的无线网络临时标识(Radio Network Temporary Identifier,RNTI)进行加扰的,也可以说携带该DCI的PDCCH是采用终端的RNTI加扰的。终端可以基于该RNTI检测网络设备发送给终端的PDCCH。网络设备也可以基于该RNTI发送该终端的PDCCH。
在D2D通信中,网络设备发送用于调度remote UE的DCI,该DCI包含remote UE的发送资源和/或接收资源的信息;Relay UE接收该DCI后,向Remote UE转发该DCI。因此,网络设备发送该DCI时采用的加扰方式可以为采用remote UE的RNTI加扰。然而,如果同时有多个Remote UE通过Relay UE与网络通信,则Relay UE需要接收多个用于调度不同 Remote UE的DCI,此时,Relay UE需要采用每个Remote UE的RNTI在系统带宽上检测携带对应DCI的PDCCH,由于Relay UE的每个检测过程包括了对每一个候选PDCCH占用的时频资源上传输的调制符号序列进行层映射、预编码、调制、扰码、速率匹配等的逆过程以及信道解码、CRC解校验(即采用RNTI对CRC解校验)等,因此,Relay UE需要采用每个Remote UE的RNTI在系统带宽上检测携带对应DCI的PDCCH会大大增加Relay UE的检测复杂度。
为了解决该问题,本申请提供了一种物理下行控制信道的处理方法及相关设备,可以降低Relay UE的检测复杂度。
该物理下行控制信道的处理方法通过缩小检测的候选PDCCH的范围,即缩小搜索空间的方式,降低Relay UE的检测复杂度。
其中,可以作为Remote UE的设备统称为第二设备,可以作为Relay UE的设备统称为第一设备,即第二设备可以通过第一设备与网络通信。其中,搜索空间可以为多个候选物理下行控制信道的集合,一个候选PDCCH在聚合的一个或多个控制信道单元(Control Channel Elements,CCE)上传输,聚合的CCE的数量为该候选PDCCH的聚合等级。例如,请参阅图2,图2是本发明实施例提供的一种PDCCH的示意图,如图2所示,PDCCH的资源粒度为CCE,一个CCE由9个资源元素组(Resource Element Group,REG)组成,每个REG表示除了参考信号之外的4个资源元素(Resource Element,RE),如图2所示,每个PDCCH根据聚合等级的不同所包括的CCE的个数也不同,因此,搜索空间
Figure PCTCN2018087181-appb-000001
根据聚合等级L的不同而不同,其中,根据无线网络临时标识确定搜索空间的操作在以下内容进行详述。
其中,搜索空间还可以为多个增强型物理下行控制信道的集合,一个增强型物理下行控制信道在聚合的一个或多个增强控制信道单元(Enhanced Control Channel Element,ECCE)上传输.每个ECCE包含的增强资源元素组(Enhanced Resource Element Group,EREG)的个数为4或8,每个EREG包含的RE与REG包含的RE的定义也不同。
请参阅图3,图3是本发明实施例提供的一种物理下行控制信道的处理方法的流程示意图,如图3所示,图3所示的物理下行控制信道的处理方法以第一设备为执行主体,该物理下行控制信道的处理方法可以包括以下步骤:
S101、第一设备根据第一无线网络临时标识确定搜索空间,所述搜索空间为M个候选物理下行控制信道的集合,M为大于等于1的整数;
S102、第一设备根据第二无线网络临时标识从所述搜索空间中检测目标物理下行控制信道;
其中,所述第一无线网络临时标识为第一设备或者第二设备的无线网络临时标识;所述第二无线网络临时标识为所述第二设备的无线网络临时标识,所述目标物理下行控制信道承载的第一下行控制信息为利用所述第二无线网络临时标识加扰的用于调度所述第二设备的信息,所述第二设备通过所述第一设备与网络通信。
其中,用于调度所述第二设备的信息可以包括调度所述第二设备发送和/或接收数据的资源的信息,或者可以包括指示所述第二设备发送和/或接收数据所使用的参数的信息。
其中,第一设备根据第二无线网络临时标识从搜索空间中检测目标物理下行控制信道,还可以是第一设备根据第二无线网络临时标识从搜索空间中监测、解码或者接收目标物理下行控制信道或者目标物理下行控制信道携带的信息。其中,根据第二无线网络临时标识从搜 索空间中检测目标PDCCH可以为,使用第二无线网络临时标识解扰搜索空间中的PDCCH,或者使用第二无线网络临时标识解扰搜索空间中PDCCH上承载的DCI。这样,若检测到使用第二无线网络临时标识加扰的PDCCH或DCI时,则该PDCCH为目标PDCCH,该DCI为目标PDCCH承载的用于调度第二设备的信息。
在一种实施方式中,加扰DCI指“使用RNTI对DCI进行CRC附着之后的序列加扰”的情况下,若检测到该PDCCH承载的DCI进行CRC附着之后的序列是用第二RNTI加扰的,则该PDCCH是目标PDCCH。
相应的,检测目标PDCCH的方法可以为:使用RNTI对信道解码后的序列进行解扰,如果CRC解校验结果正确,则检测到目标PDCCH;如果CRC解校验结果错误,则没有检测到目标PDCCH。
在另一种实施方式中,加扰DCI具体指“DCI进行CRC附着之后,使用RNTI对CRC校验位进行加扰”的情况下,若检测到该PDCCH承载的DCI进行CRC附着之后的检验比特是用第二RNTI加扰的,则该PDCCH是目标PDCCH。
相应的,检测目标PDCCH的方法可以为:使用RNTI对信道解码后的序列中的CRC校验比特进行解扰,如果CRC解校验结果正确,则是检测到目标PDCCH;如果CRC解校验结果错误,则没有检测到目标PDCCH。
图3所示的物理下行控制信道处理方法中,第一设备可以根据第一设备或第二设备的RNTI确定搜索空间,再根据第二设备的RNTI在该搜索空间上检测目标PDCCH,该目标PDCCH携带了用于调度第二设备的信息,即用于调度第二设备的下行控制信息DCI。可见,与目前单纯采用第二设备的RNTI在整个系统带宽上检测目标PDCCH相比,该发明实施例确定搜索空间再检测目标PDCCH可以大大降低第一设备检测的复杂度。
请参阅图4,图4是本发明实施例提供的另一种物理下行控制信道的处理方法的流程示意图,如图4所示,该物理下行控制信道的处理方法以第二设备作为执行主体,该物理下行控制信道的处理方法可以包括以下步骤:
S201、第二设备根据第一无线网络临时标识确定搜索空间,该搜索空间为M个候选物理下行控制信道的集合,M为大于等于1的整数;
S202、第二设备根据第二无线网络临时标识从所述搜索空间中检测目标物理下行控制信道;
其中,所述第一无线网络临时标识为第一设备或者第二设备的无线网络临时标识;所述第二无线网络临时标识为所述第二设备的无线网络临时标识,所述目标物理下行控制信道承载的第一下行控制信息为利用所述第二无线网络临时标识加扰的用于调度所述第二设备的信息,所述第二设备通过所述第一设备与网络通信。
其中,第二设备根据第二无线网络临时标识从搜索空间中检测目标物理下行控制信道,还可以是第二设备根据第二无线网络临时标识从搜索空间中监测、解码或者接收目标物理下行控制信道或者目标物理下行控制信道携带的信息。
其中,根据第二无线网络临时标识从搜索空间中检测目标PDCCH可以为,使用第二无线网络临时标识解扰搜索空间中的PDCCH,或者使用第二无线网络临时标识解扰搜索空间中 PDCCH上承载的DCI。这样,若检测到使用第二无线网络临时标识加扰的PDCCH或DCI时,则该PDCCH为目标PDCCH,该DCI为目标PDCCH承载的用于调度第二设备的信息。
在一种实施方式中,加扰DCI指:“使用RNTI对DCI进行CRC附着之后的序列加扰”的情况下,若检测到该PDCCH承载的DCI进行CRC附着之后的序列是用第二RNTI加扰的,则该PDCCH是目标PDCCH。
相应的,检测目标PDCCH的方法可以为:使用RNTI对信道解码后的序列进行解扰,如果CRC解校验结果正确,则检测到目标PDCCH;如果CRC解校验结果错误,则没有检测到目标PDCCH。
在另一种实施方式中,加扰DCI指:“DCI进行CRC附着之后,使用RNTI对CRC校验位进行加扰”的情况下,若检测到该PDCCH承载的DCI进行CRC附着之后的检验比特是用第二RNTI加扰的,则该PDCCH是目标PDCCH。
相应的,检测目标PDCCH的方法可以为:使用RNTI对信道解码后的序列中的CRC校验比特进行解扰,如果CRC解校验结果正确,则是检测到目标PDCCH;如果CRC解校验结果错误,则没有检测到目标PDCCH。
其中,图4所示的物理下行控制信道的处理方法与图3所示的物理下行控制信道的处理方法的不同之处在于,图4中,第一无线网络临时标识为第一设备的RNTI时,第二设备还需要接收第一设备发送的指示信息,该指示信息用于指示第一设备的RNTI。
可见,与图3类似,第二设备也可以根据第一无线网络临时标识确定搜索空间,再根据自身的RNTI检测目标PDCCH,从而减少检测物理下行控制信道的PDCCH范围,降低了检测物理下行控制信道的复杂度。
请参阅图5,图5是本发明实施例提供的又一种物理下行控制信道的处理方法的流程示意图,如图5所示,该物理下行控制信道的处理方法以网络设备作为执行主体,相应的,网络设备执行物理下行控制信道的处理方法可以包括以下步骤:
S301、网络设备根据第一无线网络临时标识确定搜索空间,所述搜索空间为M个候选物理下行控制信道的集合,M为大于等于1的整数;
S302、网络设备根据第二无线网络临时标识在所述搜索空间上发送目标物理下行控制信道;
所述第一无线网络临时标识为第一设备或者第二设备的无线网络临时标识;所述目标物理下行控制信道承载的第一下行控制信息为利用所述第二无线网络临时标识加扰的用于调度所述第二设备的信息,所述第二无线网络临时标识为所述第二设备的无线网络临时标识,所述第二设备通过所述第一设备与网络通信。
其中,搜索空间可以为多个候选物理下行控制信道的集合,一个候选PDCCH在聚合的一个或多个控制信道单元(Control Channel Elements,CCE)上传输,聚合的CCE的数量为该候选PDCCH的聚合等级。也就是说,网络设备在搜索空间上发送目标PDCCH可以理解为,网络设备可以在搜索空间包含的多个候选PDCCH占用的CCE上传输目标PDCCH,其中,具体在哪个候选PDCCH占用的CCE上传输目标PDCCH,由网络设备根据相关参数确定,本发明实施例不做限定。传输目标PDCCH可以理解为在PDCCH上传输用于调度第二设备 的下行控制信息。
其中,在图3至图5的实施例中,根据第一无线网络临时标识确定搜索空间,也就是根据第一无线网络临时标识确定搜索空间中每一个候选PDCCH占用的CCE。例如,采用如下公式来确定搜索空间
Figure PCTCN2018087181-appb-000002
中候选PDCCH m对应的CCE为:
Figure PCTCN2018087181-appb-000003
其中,L为聚合等级(Aggregation level)的大小,其取值可以为1、2、4或8,或者还可以取其他值;i=0,L,L-1;N CCE,k为子帧k时控制区域的CCE个数(Size);m=0,L,M (L)-1;M (L)为该搜索空间
Figure PCTCN2018087181-appb-000004
内候选PDCCH的数目。其中,搜索空间可分为公共搜索空间(Common)和用户设备特定的搜索空间(UE-specific,即UE特定的搜索空间)。对于公共搜索空间,m′=m,Y k为0。对于用户设备特定的搜索空间,Y k定义为:Y k=(A·Y k-1)mod D,其中,Y -1=n RNTI≠0,A=39827,D=65537,
Figure PCTCN2018087181-appb-000005
n s为一个子帧中的时隙(slot)编号(取值范围可以为0~19);当用户设备没有被配置为跨载波调度时,m′=m;其中mod是取模运算符。例如,该L、N CCE,k和M (L)的对应关系可以如下表一所示。
表一
Figure PCTCN2018087181-appb-000006
也就是说,图3至图5对应的实施例中,第一设备、第二设备或者网络设备可以根据第一无线网络临时标识确定用于检测目标PDCCH的搜索空间。
可选的,本发明实施例还提供一种物理下行控制信道的处理方法,该物理下行控制信道的处理方法还可以根据第二设备的第一标识从搜索空间中进一步确定至少一个候选PDCCH,也就是可以进一步减少要检测的候选PDCCH的数量,从而降低目标PDCCH的检测复杂度。
例如,图3对应的物理下行控制信道的处理方法中,第一设备根据第一无线网络临时标识确定搜索空间后,还可以根据第二设备的第一标识从该搜索空间中确定至少一个候选PDCCH,相应的,第一设备根据第二无线网络临时标识从搜索空间中检测目标PDCCH就可以为:第一设备根据第二无线网络临时标识从该至少一个候选PDCCH中检测目标PDCCH。
再例如,图4对应的物理下行控制信道的处理方法中,第二设备可以根据第一无线网络 临时标识确定搜索空间后,还可以根据第二设备的第一标识从该搜索空间中确定至少一个候选PDCCH,相应的,第二设备根据第二无线网络临时标识从搜索空间中检测目标PDCCH就可以为:第二设备根据第二无线网络临时标识从该至少一个候选PDCCH中检测目标PDCCH。
再例如,图5对应的物理下行控制信道的处理方法中,网络设备可以根据第一无线网络临时标识确定搜索空间后,还可以根据第二设备的第一标识从该搜索空间中确定至少一个候选PDCCH,相应的,网络设备根据第二无线网络临时标识从该至少一个候选PDCCH中检测目标PDCCH就可以为:网络设备根据第二无线网络临时标识在所述至少一个候选物理下行控制信道上发送目标物理下行控制信道。相应的,网络设备具体在哪个候选PDCCH占用的CCE上传输目标PDCCH,由网络设备根据相关参数确定,本发明实施例不做限定。传输目标PDCCH可以理解为在PDCCH上传输用于调度第二设备的下行控制信息。
可见,该实施方式中,第一设备、第二设备以及网络设备在确定搜索空间后,还可以根据第二设备的第一标识从搜索空间中确定至少一个候选PDCCH,在该至少一个候选PDCCH上检测目标PDCCH或者发送目标PDCCH,从而,降低了第一设备或第二设备检测PDCCH的次数,也就是降低了PDCCH的检测复杂度。
其中,第二设备的第一标识可以为所述第二无线网络临时标识(例如,C-RNTI,SL-RNTI)、所述第二设备的第二标识在所述第一设备报告的目标列表中的索引、所述第二设备的本地标识(Local ID)、所述第二设备的邻近服务终端标识(ProSe UE ID)或者所述第二设备的层2标识(Layer-2 ID);所述第二设备的第二标识为所述第二设备的本地标识、所述第二设备的邻近服务终端标识或者所述第二设备的层2标识。
其中,第二设备的第一标识可以为所述第二设备的第二标识在所述第一设备报告的目标列表中的索引。具体的,第一设备在目标列表中指示了第一设备进行通信的一个或多个目标设备,每个目标设备通过第二标识被识别。例如,表二中的左边一列为本发明实施例提供的一种目标列表,Relay UE在目标列表destinationInfoList中指示了进行侧行链路sidelink通信的一个或多个目标destination,每个目标destination通过ProSe UE ID被识别,即该目标列表destinationInfoList中包含一个或多个ProSe UE ID,每个remote UE都有一个自己的ProSe UE ID,此时,第二设备的第一标识可以为所述第二设备的第二标识在所述第一设备报告的目标列表中的索引,即ProSe UE ID 5对应的remote UE的第一标识就为0.
表二
Figure PCTCN2018087181-appb-000007
其中,第一设备可以接收指示信息,该指示信息可以使得第一设备确定第二设备的RNTI与第二设备的第一标识之间的对应关系。可见,第一设备或网络设备知道了该对应关系就可以从搜索空间中确定至少一个候选PDDCH。
其中,第一设备、第二设备或者网络设备根据第二设备的第一标识从搜素空间中确定至少一个候选PDCCH的方式,可以采用如下公式来确定:
m mod n1=(identity mod n1);
其中,所述n1为整数且所述n1<=M,所述m为所述搜索空间中各候选物理下行控制信道的索引,m=0,1,…,M-1;所述identity为所述第二设备的第一标识;所述n1为预先定义的,为网络设备配置的或者为所述第一设备确定的。
例如,n1的大小可以是第一设备或网络设备根据通过第一设备与网络设备通信的第二设备的数量来确定,当第二设备的数量越多,n1可以越大。其中,在一定的第二设备的数量的情况下,若n1越大,则每个候选PDCCH就可以使用越少数量的第二设备的RNTI去检测,也就是,在数量越少的时间单元上采用第二设备的RNTI检测目标PDCCH。
可选的,对于不同聚合等级的搜索空间,n1的取值可以是不同的,例如,n1可以为M乘以一个比例因子k,0<k<=1。对于不同的聚合等级,该比例因子是相同,可以是标准协议中规定的,或者是网络设备配置的,或者是第一设备自己确定的。
例如,假设n1=2,m=0,1,2,3,则用于检测第二设备的目标PDCCH时,该至少一个候选PDCCH的索引是根据该第二设备的第一标识mod 2获得。假设第二设备的第一标识mod 2等于0,则满足上述公式的候选PDCCH分别为PDCCH 0以及PDCCH 2,可见,该实施方式可以在PDCCH 0以及PDCCH 2上利用第二设备的RNTI检测目标PDCCH,即检测携带了用于调度第二设备的信息的PDCCH。
再例如,如图6所示,图6为本发明实施例提供的一种搜索空间的示意图,如图6所示,假设m=0,1,2,3,4,5;n1=6;各第二设备的第一标识为连续编号的不同标识如Identity 0至5,则第一设备确定的搜索空间为PDCCH 0至5,第一设备利用Identity 3mod 6的值为3,则第一设备可以在PDCCH 3上利用Identity 3标识的第二设备的RNTI检测携带了用于调度该index 3标识的第二设备的信息的目标PDCCH;相应的,第一设备利用Identity 5mod 6的值为5,则第一设备可以在PDCCH 5上利用Identity 5标识的第二设备的RNTI检测携带了用于调度该Identity 5标识的第二设备的信息的目标PDCCH。可见,每个候选PDCCH携带的DCI都可以采用不同的RNTI来检测获得。
可见,该实施方式中,物理下行控制信道的处理方法在搜索空间的部分候选PDCCH上检测目标PDCCH,而不需要在所有的候选PDCCH上检测目标PDCCH;也就是说,该实施方式在候选PDCCH m上只需要利用满足identity mod n1=m mod n1的identity标识的第二设备的RNTI检测目标PDCCH,而不需要利用所有第二设备的RNTI检测目标PDCCH。从而,降低了目标PDCCH的检测复杂度。
可选的,本发明实施例还提供一种物理下行控制信道的处理方法,该处理方法中可以根据第二设备的第一标识确定至少一个时间单元,在该至少一个时间单元上确定搜索空间、检测或发送目标PDCCH。
也就是说,图3至图5所示的物理下行控制信道的处理方法在根据第一无线网络临时标识确定搜索空间之前,还可以根据第二设备的第一标识确定至少一个时间单元。
例如,图3所示的物理下行控制信道的处理方法中,第一设备可以根据第二设备的第一标识确定至少一个时间单元,再根据第一无线网络临时标识在该至少一个时间单元上确定搜索空间,然后根据第二无线网络临时标识在该搜索空间上检测目标PDCCH。
例如,图4所示的物理下行控制信道的处理方法中,第二设备根据第二设备的第一标识确定至少一个时间单元,再根据第一无线网络临时标识在该至少一个时间单元上确定搜索空间,然后根据第二无线网络临时标识在该搜索空间上检测目标PDCCH。
例如,图5所示的物理下行控制信道的处理方法中,网络设备先根据第二设备的第一标识确定至少一个时间单元,再根据第一无线网络临时标识在该至少一个时间单元上确定搜索空间,然后,根据第二无线网络临时标识在该搜索空间上发送目标PDCCH。
其中,本发明实施例中,根据第二设备的第一标识确定至少一个时间单元,根据第一无线网络临时标识在该至少一个时间单元上确定搜索空间时,还需要对应的采用该第一标识对应的第二设备的无线网络临时标识在该搜索空间上检测承载了用于调度该第二设备的DCI的PDCCH。
其中,第二设备的第一标识可以为所述第二无线网络临时标识(例如,C-RNTI,SL-RNTI)、所述第二设备的第二标识在所述第一设备报告的目标列表中的索引、所述第二设备的本地标识(Local ID)、所述第二设备的邻近服务终端标识(ProSe UE ID)或者所述第二设备的层2标识(Layer-2 ID);所述第二设备的第二标识为所述第二设备的本地标识、所述第二设备的邻近服务终端标识或者所述第二设备的层2标识。
其中,第二设备的第一标识可以为所述第二设备的第二标识在所述第一设备报告的目标列表中的索引。具体的,第一设备在目标列表中指示了第一设备进行通信的一个或多个目标设备,每个目标设备通过第二标识被识别。例如,表二所示,Relay UE在目标列表destinationInfoList中指示了进行侧行链路sidelink通信的一个或多个目标destination,每个目标destination通过ProSe UE ID被识别,即该目标列表destinationInfoList中包含一个或多个ProSe UE ID,每个remote UE都有一个自己的ProSe UE ID,此时,第二设备的第一标识可以为所述第二设备的第二标识在所述第一设备报告的目标列表中的索引,即ProSe UE ID 5对应的remote UE的第一标识就为0.
其中,第一设备可以为接收指示信息,该指示信息可以使得第一设备确定第二设备的RNTI与第二设备的第一标识之间的对应关系。可见,第一设备或网络设备知道了该对应关系就可以确定包含了用于调度相应第二设备的DCI所在的时间单元。
可选的,该实施方式中,根据第二设备的第一标识确定至少一个时间单元,可以采用如下公式:
i mod n2=(identity mod n2);
其中,所述n2为整数且所述n2<=N,所述i为多个时间单元的索引,i=0,1,…,N-1,所述N为多个时间单元的数量;所述identity为所述第二设备的第一标识;所述n2为预先定义的,为网络设备配置的或者为所述第一设备确定的。其中,该n2若为第一设备确定的,第一设备需要向网络设备发送指示信息,用于指示n2。
其中,N可以为一段时间范围内时间单元的数量,例如,一个无线帧中下行子帧的数量,或者1024个无线帧中非上行子帧的数量,或者1024个无线帧中下行子帧的数量,或者一个子帧中时隙、符号、小时隙或其他更小粒度的时间单元的数量,本发明实施例不做限定。
例如,n2的大小可以是第一设备或网络设备根据通过第一设备与网络设备通信的第二设备的数量来确定,当第二设备的数量越多,n2可以越大。其中,在一定的第二设备的数量的情况下,若n2越大,则在每个时间单元上可以使用越少数量的第二设备的RNTI去检测目标PDCCH,也就是,在数量越少的时间单元上采用第二设备的RNTI检测目标PDCCH。
可选的,对于不同聚合等级的搜索空间,n2的取值可以是不同的,例如,n2可以为M乘以一个比例因子k,0<k<=1。对于不同的聚合等级,该比例因子是相同,可以是标准协议 中规定的,或者是网络设备配置的,或者是第一设备自己确定的。
例如,假设n2=2,i=0,1,2,3,用于检测第二设备的目标PDCCH时,能够传输该目标PDCCH的至少一个非下行子帧的索引是根据该第二设备的第一标识mod 2获得。假设第二设备的第一标识mod 2等于0,则满足上述公式的非下行子帧分别为子帧0和子帧2,可见,该实施方式可以在子帧0和子帧2上利用第一无线网络临时标识确定搜索空间,而不需要在所有的非上行子帧上确定搜索空间,进一步降低检测的复杂度。
再例如,如图7所示,图7为本发明实施例提供的一种非上行子帧的示意图,如图7所示,假设i=0,1,2,3,4,5,6,7;n2=4;第一设备利用identity 0 mod 4的值为0,第一设备可以在非上行子帧0和非上行子帧4上利用第一无线网络临时标识确定搜索空间,并在该搜索空间上利用该identity 0的第二设备的无线网络临时标识检测承载了用于调度该第二设备的DCI的PDCCH;相应的,第一设备利用identity 3 mod 6的值为3,则第一设备可以在非上行子帧3和非上行子帧7上利用第一无线网络临时标识确定搜索空间,并在该搜索空间上利用该identity 3的第二设备的无线网络临时标识检测承载了用于调度该第二设备的DCI的PDCCH。
可见,每个时间单元上搜索空间中的一个候选PDCCH只需要使用有共同identity mod n2的值的第二设备的RNTI来检测或解扰PDCCH;也就是说,可以只在满足i mod n2=(identity mod n2)的时间单元上检测承载了用于调度该identity标识的第二设备的DCI的PDCCH,而不需要在所有时间单元上检测承载了用于调度该identity标识的第二设备的DCI的PDCCH。从而,降低了PDCCH的检测复杂度。
可选的,本发明实施例还提供一种物理下行控制信道的处理方法,该物理下行控制信道的处理方法可以采用第二设备的第一标识确定至少一个时间单元,根据第一无线网络临时标识在该至少一个时间单元上确定搜索空间,进一步的,根据该第二设备的第一标识从该搜索空间中确定至少一个候选PDCCH,进一步的,根据该第二设备的无线网络临时标识在该至少一个候选PDCCH上检测承载了用于调度该第二设备的DCI的PDCCH。具体的,可以参考上述两个实施方式阐述的内容,此处不再详述。
其中,上述各实施例中,第一无线网络临时标识为第一设备的无线网络临时标识时,第一无线网络临时标识可以为用于加扰第二下行控制信息的无线网络临时标识,所述第二下行控制信息为用于调度所述第一设备上行链路发送或下行链路接收的信息,或者为用于调度所述第一设备侧行链路发送或侧行链路接收的信息。例如,第一无线网络临时标识为第一设备的小区无线网络临时标识C-RNTI,其中,C-RNTI可以用于加扰用于调度所述第一设备上行链路发送或下行链路接收的信息;又如,第一无线网络临时标识为第一设备的侧行链路无线网络临时标识SL-RNTI,其中,SL-RNTI可以用于加扰用于调度所述第一设备侧行链路发送或侧行链路接收的信息。
其中,上述各实施例中,第一无线网络临时标识为第一设备的无线网络临时标识时,所述目标物理下行控制信道承载的下行控制信息的负载大小等于所述搜索空间中用于调度所述第一设备的下行控制信息的负载大小。这样,第一设备采用第二设备的无线网络临时标识检测目标PDCCH时,可以确定该目标PDCCH携带的DCI的负载大小等于用于调度第一设备的DCI的负载大小,也就是说,可以确定采用用于调度第一设备的DCI的负载大小在检测目标PDCCH时进行速率匹配的逆过程,而不需要分别采用多个可选的DCI的负载大小逐个进行速率匹配的逆过程后,再利用第二无线网络临时标识解扰,从而降低了检测的次数,进一 步的降低PDCCH检测的复杂度。例如,第一设备在根据C-RNTI确定的搜索空间中需要检测承载DCI format 0的PDCCH,则在根据C-RNTI确定的搜索空间中目标PDCCH承载的DCI的负载大小等于DCI format 0的负载大小。
其中,上述各实施例中,第一无线网络临时标识为第一设备的无线网络临时标识时,所述目标物理下行控制信道承载的下行控制信息的负载可以有至少两种大小。例如,第一设备在根据C-RNTI确定的搜索空间中需要检测承载DCI format 0的PDCCH及承载DCI format 1的PDCCH,且DCI format 0和DCI format 1的负载大小不同,则在根据C-RNTI确定的搜索空间中目标PDCCH承载的DCI的负载大小可以等于DCI format 0的负载大小,也可以等于DCI format 1的负载大小,也就是说,目标PDCCH承载的DCI可以有两种负载大小。可以通过在目标PDCCH承载的DCI的信息的基础上填充0,使得负载大小相等。
作为又一种实施方式,第一设备可以根据至少两个第一设备的无线网络临时标识分别确定至少两个搜索空间,所述每个搜索空间为M个候选物理下行控制信道的集合,M为大于等于1的整数,每个搜索空间中M的取值可以不同;根据第二无线网络临时标识从所述至少两个搜索空间中检测目标物理下行控制信道;所述第二无线网络临时标识为所述第二设备的无线网络临时标识,所述目标物理下行控制信道承载的第一下行控制信息为利用所述第二无线网络临时标识加扰的用于调度所述第二设备的信息,所述第二设备通过所述第一设备与网络通信。
例如,第一设备可以根据C-RNTI和SL-RNTI分别确定两个搜索空间;根据第二无线网络临时标识从两个搜索空间中检测目标物理下行控制信道。
可选的,可以根据第二设备的第一标识分别从所述至少两个搜索空间中确定至少一个候选物理下行控制信道,在该至少一个候选物理下行控制信道上利用第二无线网络临时标识检测目标物理下行控制信道。
可选的,第一设备根据至少两个第一设备的无线网络临时标识确定至少两个搜索空间之前,还可以根据第二设备的第一标识确定至少一个时间单元,该至少一个时间单元包含承载了用于调度第二设备的信息的PDCCH,相应地,第一设备可以根据至少两个第一设备的无线网络临时标识在该至少一个时间单元上确定至少两个搜索空间,进一步的,根据第二无线网络临时标识在该搜索空间上检测目标PDCCH。
可选的,所述目标物理下行控制信道承载的下行控制信息的负载大小等于所述至少两个搜索空间中用于调度所述第一设备的下行控制信息的负载大小。每个搜索空间中的目标物理下行控制信道承载的下行控制信息的负载大小等于该搜索空间中用于调度所述第一设备的下行控制信息的负载大小。
例如,第一设备可以根据C-RNTI和SL-RNTI分别确定两个搜索空间。第一设备在根据C-RNTI确定的搜索空间中需要检测承载DCI format 0的PDCCH,则在根据C-RNTI确定的搜索空间中目标PDCCH承载的DCI的负载大小等于DCI format 0的负载大小。第一设备在根据SL-RNTI确定的搜索空间中需要检测承载DCI format 5的PDCCH,则在根据SL-RNTI确定的搜索空间中目标PDCCH承载的DCI的负载大小等于DCI format 5的负载大小。也就是说,目标PDCCH承载的DCI可以有两种负载大小。
请参阅图8,图8是本发明实施例提供的又一种物理下行控制信道的处理方法的流程示 意图,图8所示的处理方法是网络设备、第一设备以及第二设备交互执行的,如图8所示,该处理方法包括以下步骤:
S401、网络设备根据第一无线网络临时标识确定搜索空间,所述搜索空间为M个候选物理下行控制信道的集合,M为大于等于1的整数;
S402、所述网络设备根据第二无线网络临时标识在所述搜索空间上发送目标物理下行控制信道;
S403、第一设备根据第一无线网络临时标识确定搜索空间;
S404、第一设备根据第二无线网络临时标识从所述搜索空间中检测目标物理下行控制信道;
S405、第一设备将该目标物理下行控制信道中携带的用于调度第二设备的信息发送给第二设备。
其中,第一无线网络临时标识为第一设备或者第二设备的无线网络临时标识;所述第二无线网络临时标识为所述第二设备的无线网络临时标识,所述目标物理下行控制信道承载的第一下行控制信息为利用所述第二无线网络临时标识加扰的用于调度所述第二设备的信息,所述第二设备通过所述第一设备与网络通信。
其中,第一设备获得DCI后,可以将DCI指示的调度信息通过其他控制信令发给第二设备,比如侧行链路控制信息(Sidelink Control Information,SCI);再比如,向remote UE发送其他控制信令,其他控制信令指示所述调度信息。
其中,该实施例的实施方式可以参考上述各实施例的实施方式,例如,网络设备可以根据第二设备的第一标识从搜索空间中确定至少一个候选物理下行控制信道,根据第二无线网络临时标识在该至少一个候选物理下行控制信道上检测目标物理下行控制信道,来进一步降低检测的复杂度。
再例如,相应地,第一设备也可以根据第二设备第一标识确定至少一个时间单元,根据第一无线网络临时标识在该至少一个时间单元上确定搜索空间等等,这里不再详述。
其中,第二设备的第一标识为所述第二无线网络临时标识、所述第二设备的第二标识在所述第一设备报告的目标列表中的索引、所述第二设备的本地标识、所述第二设备的邻近服务终端标识或者所述第二设备的层2标识;所述第二设备的第二标识为所述第二设备的本地标识、所述第二设备的邻近服务终端标识或者所述第二设备的层2标识。具体的可以参考上述各实施例的实施方式的相关阐述,这里不再详述。
其中,第一无线网络临时标识为第一设备的无线网络临时标识时,所述第一无线网络临时标识为用于加扰第二下行控制信息的无线网络临时标识,所述第二下行控制信息为用于调度所述第一设备上行链路发送或下行链路接收的信息,或者为用于调度所述第一设备侧行链路发送或侧行链路接收的信息。具体的可以参考上述各实施例的实施方式的相关阐述,这里不再详述。
其中,第一无线网络临时标识为第一设备的无线网络临时标识时,目标物理下行控制信道承载的下行控制信息的负载大小等于所述搜索空间中用于调度所述第一设备的下行控制信息的负载大小。具体的可以参考上述各实施例的实施方式的相关阐述,这里不再详述。
可见,与目前单纯采用第二设备的RNTI在整个系统带宽上检测目标PDCCH相比,该发明实施例可以大大降低检测的复杂度。
本发明实施例还提供一种至少两个第二设备通过第一设备与网络通信时,物理下行控制信道的处理方法的相关内容。
例如,至少两个第二设备分别为第二设备A和第二设备B,作为一种实施方式,由第一设备根据第一设备的无线网络临时标识确定搜索空间时,该物理下行控制信道的检测方法可以包括:
网络设备根据第一设备的无线网络临时标识确定搜索空间,所述搜索空间为M个候选物理下行控制信道的集合,M为大于等于1的整数;
网络设备根据第二设备A的无线网络临时标识在该搜索空间上发送第一目标物理下行控制信道,以及根据第二设备B的无线网络临时标识在该搜索空间上发送第二目标物理下行控制信道,其中,第一目标物理下行控制信道承载的下行控制信息为利用第二设备A的无线网络临时标识加扰的用于调度第二设备A的信息;第二目标物理下行控制信道承载的下行控制信息为利用第二设备B的无线网络临时标识加扰的用于调度第二设备B的信息;
第一设备根据第一设备的无线网络临时标识确定搜索空间;
第一设备根据第二设备A的无线网络临时标识从所述搜索空间中检测第一目标物理下行控制信道,以及根据第二设备B的无线网络临时标识从该搜索空间中检测第二目标物理下行控制信道;
第一设备从第一目标物理下行控制信道中获取用于调度第二设备A的信息,以及从第二目标物理下行控制信道中获取用于调度第二设备B的信息;
第一设备分别将用于调度第二设备A的信息发送给第二设备A,将用于调度第二设备B的信息发送给第二设备B。
该实施方式中,第一设备针对所有的第二设备可以确定相同的搜索空间,从而降低搜索空间的确定次数,并减少第一设备检测物理下行控制信道的搜索空间的范围,从而降低第一设备检测物理下行控制信道的复杂度;相应地,在该相同的搜索空间中需要分别利用各第二设备的无线网络临时标识来分别检测携带了用于调度相应第二设备的信息的物理下行控制信道。
可选的,该实施例中,针对每个第二设备,第一设备或网络设备还可以根据该第二设备的第一标识从搜索空间中确定包含至少一个候选物理下行控制信道的子集,再根据该第二设备的无线网络临时标识在该子集包含的至少一个候选物理下行控制信道上检测承载了用于调度该第二设备的信息的目标物理下行控制信道。该实施方式可以减少利用第二设备的无线网络临时标识所检测的PDCCH的数量,因此,可以降低第一设备的检测复杂度。
例如,第一设备根据第二设备A的第一标识从该搜索空间中确定包含至少一个候选物理下行控制信道的第一子集,再根据第二设备A的无线网络临时标识在该第一子集包含的至少一个候选物理下行控制信道上检测第一目标物理下行控制信道。相应的,第一设备根据第二设备B的第一标识从该搜索空间中确定包含至少一个候选物理下行控制信道的第二子集,再根据第二设备B的无线网络临时标识在该第二子集包含的至少一个候选物理下行控制信道上检测第二目标物理下行控制信道。相应的,网络设备根据第二设备A的第一标识从该搜索空 间中确定第一子集,再根据第二设备A的无线网络临时标识在第一子集上发送第一目标物理下行控制信道;以及网络设备根据第二设备B的第一标识从该搜索空间中确定第二子集,再根据第二设备B的无线网络临时标识在第二子集上发送第二目标物理下行控制信道。
可选的,根据第二设备的第一标识从搜索空间中确定至少一个候选物理下行控制信道的方式可以参考上述实施例的相关描述,这里不再详述。
可选的,该实施例中,针对每个第二设备,第一设备或网络设备还可以根据该第二设备的第一标识确定包含至少一个时间单元的时间单元集,再根据第一设备的无线网络临时标识在该时间单元集包含的至少一个时间单元上确定搜索空间。
例如,第一设备根据第二设备A的第一标识确定包含至少一个时间单元的第一时间单元集,再根据第二设备B的第一标识确定包含至少一个时间单元的第二时间单元集,再根据第一设备的无线网络临时标识在第一时间单元集上确定第二设备A的第一搜索空间,在第二时间单元集上确定第二设备B的第二搜索空间。相应的,第一设备根据第二设备A的无线网络临时标识在第一搜索空间上检测第一目标物理下行控制信道,根据第二设备B的无线网络临时标识在第二搜索空间上检测第二目标物理下行控制信道。
相应的,网络设备根据第二设备A的第一标识确定第一时间单元集,再根据第二设备B的第一标识确定第二时间单元集,然后,根据第一设备的无线网络临时标识在第一时间单元集上确定第一搜索空间,并根据第二设备A的无线网络临时标识在该第一搜索空间上发送第一目标物理下行控制信道;以及根据第一设备的无线网络临时标识在第二时间单元集上确定第二搜索空间,并根据第二设备B的无线网络临时标识在该第二搜索空间上发送第二目标物理下行控制信道。
可见,该实施方式中,针对每个第二设备,只需在部分时间单元上检测承载了用于调度该第二设备的信息的目标PDCCH,从而,降低了第一设备的检测复杂度。
可选的,根据第二设备的第一标识确定至少一个时间单元的方式可以参考上述实施例的相关描述,这里不再详述。
其中,第二设备的第一标识可以为所述第二无线网络临时标识(例如,C-RNTI,SL-RNTI)、所述第二设备的第二标识在所述第一设备报告的目标列表中的索引、所述第二设备的本地标识(Local ID)、所述第二设备的邻近服务终端标识(ProSe UE ID)或者所述第二设备的层2标识(Layer-2 ID);所述第二设备的第二标识为所述第二设备的本地标识、所述第二设备的邻近服务终端标识或者所述第二设备的层2标识。相应的,该实施方式可以参考上述实施例的相关描述,这里不再详述。
其中,第一无线网络临时标识为第一设备的无线网络临时标识时,第一无线网络临时标识可以为用于加扰第二下行控制信息的无线网络临时标识,所述第二下行控制信息为用于调度所述第一设备上行链路发送或下行链路接收的信息,或者为用于调度所述第一设备侧行链路发送或侧行链路接收的信息。相应的,该实施方式可以参考上述实施例的相关描述,这里不再详述。
其中,第一无线网络临时标识为第一设备的无线网络临时标识时,所述目标物理下行控制信道承载的下行控制信息的负载大小等于所述搜索空间中用于调度所述第一设备的下行控制信息的负载大小。这样,第一设备采用第二设备的无线网络临时标识检测目标PDCCH时, 可以确定该目标PDCCH携带的DCI的负载大小等于用于调度第一设备的DCI的负载大小,也就是说,可以确定采用用于调度第一设备的DCI的负载大小在检测目标PDCCH时进行速率匹配的逆过程,而不需要分别采用多个可选的DCI的负载大小逐个进行速率匹配的逆过程后,再利用第二无线网络临时标识解扰,从而降低了检测的次数,进一步的降低检测的复杂度。相应的,该实施方式可以参考上述实施例的相关描述,这里不再详述。
上述操作可以参考上述各实施例的实施方式的相关阐述,这里不再详述。
再例如,至少两个第二设备分别为第二设备A和第二设备B,作为另一种实施方式,由第二设备根据第一设备的无线网络临时标识确定搜索空间时,该物理下行控制信道的检测方法可以包括:
网络设备根据第一设备的无线网络临时标识确定搜索空间,所述搜索空间为M个候选物理下行控制信道的集合,M为大于等于1的整数;
网络设备根据第二设备A的无线网络临时标识在该搜索空间上发送第一目标物理下行控制信道,以及根据第二设备B的无线网络临时标识在该搜索空间上发送第二目标物理下行控制信道,其中,第一目标物理下行控制信道承载的下行控制信息为利用第二设备A的无线网络临时标识加扰的用于调度第二设备A的信息;第二目标物理下行控制信道承载的下行控制信息为利用第二设备B的无线网络临时标识加扰的用于调度第二设备B的信息;
第二设备A和第二设备B分别获取第一设备的无线网络临时标识;
第二设备A和第二设备B分别根据第一设备的无线网络临时标识确定搜索空间;
第二设备A根据第二设备A的无线网络临时标识从所述搜索空间中检测第一目标物理下行控制信道;第二设备B根据第二设备B的无线网络临时标识从该搜索空间中检测第二目标物理下行控制信道;
第二设备A从第一目标物理下行控制信道中获取用于调度第二设备A的信息,第二设备B从第二目标物理下行控制信道中获取用于调度第二设备B的信息。
可见,在至少两个第二设备通过第一设备与网络通信时,上述两种实施方式都可以先确定搜索空间,再检测对应的PDCCH,从而,降低了PDCCH的检测复杂度。
可选的,该实施例中,针对每个第二设备,第二设备或网络设备可以根据该第二设备的第一标识从搜索空间中确定包含至少一个候选物理下行控制信道的子集,再根据该第二设备的无线网络临时标识在该子集包含的至少一个候选物理下行控制信道上检测承载了用于调度该第二设备的信息的目标物理下行控制信道。该实施方式可以减少利用第二设备的无线网络临时标识所检测的PDCCH的数量,因此,可以降低第二设备的检测复杂度。
例如,第二设备A根据第二设备A的第一标识从该搜索空间中确定包含至少一个候选物理下行控制信道的第一子集,再根据第二设备A的无线网络临时标识在该第一子集包含的至少一个候选物理下行控制信道上检测第一目标物理下行控制信道。相应的,第二设备B根据第二设备B的第一标识从该搜索空间中确定包含至少一个候选物理下行控制信道的第二子集,再根据第二设备B的无线网络临时标识在该第二子集包含的至少一个候选物理下行控制信道上检测第二目标物理下行控制信道。相应的,网络设备根据第二设备A的第一标识从该 搜索空间中确定第一子集,再根据第二设备A的无线网络临时标识在第一子集上发送第一目标物理下行控制信道;以及网络设备根据第二设备B的第一标识从该搜索空间中确定第二子集,再根据第二设备B的无线网络临时标识在第二子集上发送第二目标物理下行控制信道。
可选的,该实施例中,根据所述第二设备的第一标识从所述搜索空间中确定至少一个候选物理下行控制信道的实施方式可以参考上述各实施例的相关阐述,这里不再详述。
可选的,该实施例中,针对每个第二设备,第二设备或网络设备还可以根据该第二设备的第一标识确定包含至少一个时间单元的时间单元集,再根据第一设备的无线网络临时标识在该时间单元集包含的至少一个时间单元上确定该第二设备的搜索空间。可见,该实施方式中,针对每个第二设备,只需在部分时间单元上检测承载了用于调度该第二设备的信息的目标PDCCH,从而,降低了第一设备的检测复杂度。
例如,第二设备A根据第二设备A的第一标识确定包含至少一个时间单元的第一时间单元集,再根据第一设备的无线网络临时标识在第一时间单元集上确定第二设备A的第一搜索空间,然后根据第二设备A的无线网络临时标识在第一搜索空间上检测第一目标物理下行控制信道。相应的,第二设备B根据第二设备B的第一标识确定包含至少一个时间单元的第二时间单元集,再根据第一设备的无线网络临时标识在第二时间单元集上确定第二设备B的第二搜索空间,然后根据第二设备B的无线网络临时标识在第二搜索空间上检测第二目标物理下行控制信道。
相应的,网络设备根据第二设备A的第一标识确定第一时间单元集,根据第一设备的无线网络临时标识在第一时间单元集上确定第一搜索空间,并根据第二设备A的无线网络临时标识在该第一搜索空间上发送第一目标物理下行控制信道。网络设备根据第二设备B的第一标识确定第二时间单元集,再根据第一设备的无线网络临时标识在第二时间单元集上确定第二搜索空间,并根据第二设备B的无线网络临时标识在该第二搜索空间上发送第二目标物理下行控制信道。
可选的,根据第二设备的第一标识确定至少一个时间单元的方式可以参考上述实施例的相关描述,这里不再详述。
其中,第二设备的第一标识可以为所述第二无线网络临时标识(例如,C-RNTI,SL-RNTI)、所述第二设备的第二标识在所述第一设备报告的目标列表中的索引、所述第二设备的本地标识(Local ID)、所述第二设备的邻近服务终端标识(ProSe UE ID)或者所述第二设备的层2标识(Layer-2 ID);所述第二设备的第二标识为所述第二设备的本地标识、所述第二设备的邻近服务终端标识或者所述第二设备的层2标识。相应的,该实施方式可以参考上述实施例的相关描述,这里不再详述。
其中,第一无线网络临时标识为第一设备的无线网络临时标识时,第一无线网络临时标识可以为用于加扰第二下行控制信息的无线网络临时标识,所述第二下行控制信息为用于调度所述第一设备上行链路发送或下行链路接收的信息,或者为用于调度所述第一设备侧行链路发送或侧行链路接收的信息。相应的,该实施方式可以参考上述实施例的相关描述,这里不再详述。
其中,第一无线网络临时标识为第一设备的无线网络临时标识时,所述目标物理下行控制信道承载的下行控制信息的负载大小等于所述搜索空间中用于调度所述第一设备的下行控 制信息的负载大小。这样,第一设备采用第二设备的无线网络临时标识检测目标PDCCH时,可以确定该目标PDCCH携带的DCI的负载大小等于用于调度第一设备的DCI的负载大小,也就是说,可以确定采用用于调度第一设备的DCI的负载大小在检测目标PDCCH时进行速率匹配的逆过程,而不需要分别采用多个可选的DCI的负载大小逐个进行速率匹配的逆过程后,再利用第二无线网络临时标识解扰,从而降低了检测的次数,进一步的降低检测的复杂度。相应的,该实施方式可以参考上述实施例的相关描述,这里不再详述。
具体的,上述操作可以参考上述各实施例的实施方式的相关阐述,这里不再详述。
又例如,至少两个第二设备分别为第二设备A和第二设备B,作为又一种实施方式,针对每个第二设备,第一设备根据第二设备的无线网络临时标识确定搜索空间时,该物理下行控制信道的检测方法可以包括:
网络设备根据第二设备A的无线网络临时标识确定第一搜索空间,以及,根据第二设备B的无线网络临时标识确定第二搜索空间,其中,所述第一搜索空间为M1个候选物理下行控制信道的集合,M1为大于等于1的整数,所述第二搜索空间为M2个候选物理下行控制信道的集合,M2为大于等于1的整数;
网络设备根据第二设备A的无线网络临时标识在第一搜索空间上发送第一目标物理下行控制信道,以及根据第二设备B的无线网络临时标识在第二搜索空间上发送第二目标物理下行控制信道,其中,第一目标物理下行控制信道承载的下行控制信息为利用第二设备A的无线网络临时标识加扰的用于调度第二设备A的信息;第二目标物理下行控制信道承载的下行控制信息为利用第二设备B的无线网络临时标识加扰的用于调度第二设备B的信息;
第一设备根据第二设备A的无线网络临时标识确定第一搜索空间,以及根据第二设备B的无线网络临时标识确定第二搜索空间;
第一设备根据第二设备A的无线网络临时标识从所述第一搜索空间中检测第一目标物理下行控制信道,以及根据第二设备B的无线网络临时标识从所述第二搜索空间中检测第二目标物理下行控制信道;
第一设备从第一目标物理下行控制信道中获取用于调度第二设备A的信息,以及从第二目标物理下行控制信道中获取用于调度第二设备B的信息;
第一设备分别将用于调度第二设备A的信息发送给第二设备A,将用于调度第二设备B的信息发送给第二设备B。
该实施例中,针对每个第二设备,第一设备或网络设备还可以根据该第二设备的第一标识从该第二设备的搜索空间中确定包含至少一个候选物理下行控制信道的子集,再根据该第二设备的无线网络临时标识在该子集包含的至少一个候选物理下行控制信道上检测承载了用于调度该第二设备的信息的目标物理下行控制信道。该实施方式可以减少利用第二设备的无线网络临时标识所检测的PDCCH的数量,因此,可以降低第一设备的检测复杂度。
例如,第一设备根据第二设备A的第一标识从第一搜索空间中确定包含至少一个候选物理下行控制信道的第一子集,再根据第二设备A的无线网络临时标识在该第一子集包含的至少一个候选物理下行控制信道上检测第一目标物理下行控制信道。相应的,第一设备根据第 二设备B的第一标识从第二搜索空间中确定包含至少一个候选物理下行控制信道的第二子集,再根据第二设备B的无线网络临时标识在该第二子集包含的至少一个候选物理下行控制信道上检测第二目标物理下行控制信道。
相应的,网络设备根据第二设备A的第一标识从第一搜索空间中确定第一子集,再根据第二设备A的无线网络临时标识在第一子集上发送第一目标物理下行控制信道。以及,网络设备根据第二设备B的第一标识从第二搜索空间中确定第二子集,再根据第二设备B的无线网络临时标识在第二子集上发送第二目标物理下行控制信道。
可选的,针对每个第二设备,根据第二设备的第一标识从第二设备的搜索空间中确定至少一个候选物理下行控制信道的方式可以参考上述实施例的相关描述,这里不再详述。
可选的,该实施例中,针对每个第二设备,第一设备或网络设备还可以根据该第二设备的第一标识确定包含至少一个时间单元的时间单元集,再根据该第二设备的无线网络临时标识在该时间单元集包含的至少一个时间单元上确定该第二设备的搜索空间。该实施方式中,针对每个第二设备,只需在部分时间单元上检测承载了用于调度该第二设备的信息的目标PDCCH,从而,降低了第一设备的检测复杂度。
例如,第一设备根据第二设备A的第一标识确定包含至少一个时间单元的第一时间单元集,再根据第二设备A的无线网络临时标识在该第一时间单元集上确定第二设备A的第一搜索空间。相应的,第一设备根据第二设备B的第一标识确定包含至少一个时间单元的第二时间单元集,再第二设备B的无线网络临时标识在第二时间单元集上确定第二设备B的第二搜索空间。相应的,第一设备根据第二设备A的无线网络临时标识在第一搜索空间上检测第一目标物理下行控制信道,第一设备根据第二设备B的无线网络临时标识在第二搜索空间上检测第二目标物理下行控制信道。
相应的,网络设备根据第二设备A的第一标识确定第一时间单元集,再根据第二设备A的无线网络临时标识在第一时间单元集上确定第一搜索空间,然后根据第二设备A的无线网络临时标识在该第一搜索空间上发送第一目标物理下行控制信道。以及,网络设备根据第二设备B的第一标识确定第二时间单元集,再根据第二设备B的无线网络临时标识在第二时间单元集上确定第二搜索空间,然后根据第二设备B的无线网络临时标识在该第二搜索空间上发送第二目标物理下行控制信道。
可选的,根据第二设备的第一标识确定至少一个时间单元的方式可以参考上述实施例的相关描述,这里不再详述。
其中,第二设备的第一标识可以为所述第二无线网络临时标识(例如,C-RNTI,SL-RNTI)、所述第二设备的第二标识在所述第一设备报告的目标列表中的索引、所述第二设备的本地标识(Local ID)、所述第二设备的邻近服务终端标识(ProSe UE ID)或者所述第二设备的层2标识(Layer-2 ID);所述第二设备的第二标识为所述第二设备的本地标识、所述第二设备的邻近服务终端标识或者所述第二设备的层2标识。相应的,该实施方式可以参考上述实施例的相关描述,这里不再详述。
其中,第一无线网络临时标识为第一设备的无线网络临时标识时,第一无线网络临时标识可以为用于加扰第二下行控制信息的无线网络临时标识,所述第二下行控制信息为用于调度所述第一设备上行链路发送或下行链路接收的信息,或者为用于调度所述第一设备侧行链 路发送或侧行链路接收的信息。相应的,该实施方式可以参考上述实施例的相关描述,这里不再详述。
其中,第一无线网络临时标识为第一设备的无线网络临时标识时,所述目标物理下行控制信道承载的下行控制信息的负载大小等于所述搜索空间中用于调度所述第一设备的下行控制信息的负载大小。这样,第一设备采用第二设备的无线网络临时标识检测目标PDCCH时,可以确定该目标PDCCH携带的DCI的负载大小等于用于调度第一设备的DCI的负载大小,也就是说,可以确定采用用于调度第一设备的DCI的负载大小在检测目标PDCCH时进行速率匹配的逆过程,而不需要分别采用多个可选的DCI的负载大小逐个进行速率匹配的逆过程后,再利用第二无线网络临时标识解扰,从而降低了检测的次数,进一步的降低检测的复杂度。相应的,该实施方式可以参考上述实施例的相关描述,这里不再详述。
具体的,上述操作可以参考上述各实施例的实施方式的相关阐述,这里不再详述。
又例如,至少两个第二设备分别为第二设备A和第二设备B,作为又一种实施方式,针对每个第二设备,第二设备根据第二设备的无线网络临时标识确定搜索空间时,该物理下行控制信道的检测方法可以包括:
网络设备根据第二设备A的无线网络临时标识确定第一搜索空间,以及,根据第二设备B的无线网络临时标识确定第一搜索空间,其中,所述第一搜索空间为M1个候选物理下行控制信道的集合,M1为大于等于1的整数,所述第二搜索空间为M2个候选物理下行控制信道的集合,M2为大于等于1的整数;
网络设备根据第二设备A的无线网络临时标识在该搜索空间上发送第一目标物理下行控制信道,以及根据第二设备B的无线网络临时标识在该搜索空间上发送第二目标物理下行控制信道,其中,第一目标物理下行控制信道承载的下行控制信息为利用第二设备A的无线网络临时标识加扰的用于调度第二设备A的信息;第二目标物理下行控制信道承载的下行控制信息为利用第二设备B的无线网络临时标识加扰的用于调度第二设备B的信息;
第二设备A根据第二设备A的无线网络临时标识确定第一搜索空间,第二设备B根据第二设备B的无线网络临时标识确定第二搜索空间;
第二设备A根据第二设备A的无线网络临时标识从所述第一搜索空间中检测第一目标物理下行控制信道;第二设备B根据第二设备B的无线网络临时标识从所述第二搜索空间中检测第二目标物理下行控制信道;
第二设备A从第一目标物理下行控制信道中获取用于调度第二设备A的信息,第二设备B从第二目标物理下行控制信道中获取用于调度第二设备B的信息。
该实施例中,针对每个第二设备,第二设备或网络设备还可以根据该第二设备的第一标识从该第二设备的搜索空间中确定包含至少一个候选物理下行控制信道的子集,再根据该第二设备的无线网络临时标识在该子集包含的至少一个候选物理下行控制信道上检测承载了用于调度该第二设备的信息的目标物理下行控制信道。该实施方式可以减少利用第二设备的无线网络临时标识所检测的PDCCH的数量,因此,可以降低第一设备的检测复杂度。
例如,第二设备A根据第二设备A的第一标识从第一搜索空间中确定包含至少一个候选 物理下行控制信道的第一子集,再根据第二设备A的无线网络临时标识在该第一子集包含的至少一个候选物理下行控制信道上检测第一目标物理下行控制信道。相应的,第二设备B根据第二设备B的第一标识从第二搜索空间中确定包含至少一个候选物理下行控制信道的第二子集,再根据第二设备B的无线网络临时标识在该第二子集包含的至少一个候选物理下行控制信道上检测第二目标物理下行控制信道。相应的,网络设备根据第二设备A的第一标识从第一搜索空间中确定第一子集,再根据第二设备A的无线网络临时标识在第一子集上发送第一目标物理下行控制信道;以及网络设备根据第二设备B的第一标识从第二搜索空间中确定第二子集,再根据第二设备B的无线网络临时标识在第二子集上发送第二目标物理下行控制信道。
可选的,针对每个第二设备,根据第二设备的第一标识从第二设备的搜索空间中确定至少一个候选物理下行控制信道的方式可以参考上述实施例的相关描述,这里不再详述。
可选的,该实施例中,针对每个第二设备,第二设备或网络设备还可以根据该第二设备的第一标识确定包含至少一个时间单元的时间单元集,再根据该第二设备的无线网络临时标识在该时间单元集包含的至少一个时间单元上确定该第二设备的搜索空间。
例如,第二设备A根据第二设备A的第一标识确定包含至少一个时间单元的第一时间单元集,再根据第二设备A的无线网络临时标识在该第一时间单元集上确定第二设备A的第一搜索空间。相应的,第二设备B根据第二设备B的第一标识确定包含至少一个时间单元的第二时间单元集,再第二设备B的无线网络临时标识在第二时间单元集上确定第二设备B的第二搜索空间。相应的,第二设备A根据第二设备A的无线网络临时标识在第一搜索空间上检测第一目标物理下行控制信道,第二设备B根据第二设备B的无线网络临时标识在第二搜索空间上检测第二目标物理下行控制信道。
相应的,网络设备根据第二设备A的第一标识确定第一时间单元集,再根据第二设备A的无线网络临时标识在第一时间单元集上确定第一搜索空间,然后根据第二设备A的无线网络临时标识在该第一搜索空间上发送第一目标物理下行控制信道。以及,网络设备根据第二设备B的第一标识确定第二时间单元集,再根据第二设备B的无线网络临时标识在第二时间单元集上确定第二搜索空间,然后根据第二设备B的无线网络临时标识在该第二搜索空间上发送第二目标物理下行控制信道。
可见,该实施方式中,针对每个第二设备,只需在部分时间单元上检测承载了用于调度该第二设备的信息的目标PDCCH,从而,降低了第一设备的检测复杂度。
可选的,根据第二设备的第一标识确定至少一个时间单元的方式可以参考上述实施例的相关描述,这里不再详述。
其中,第二设备的第一标识可以为所述第二无线网络临时标识(例如,C-RNTI,SL-RNTI)、所述第二设备的第二标识在所述第一设备报告的目标列表中的索引、所述第二设备的本地标识(Local ID)、所述第二设备的邻近服务终端标识(ProSe UE ID)或者所述第二设备的层2标识(Layer-2 ID);所述第二设备的第二标识为所述第二设备的本地标识、所述第二设备的邻近服务终端标识或者所述第二设备的层2标识。相应的,该实施方式可以参考上述实施例的相关描述,这里不再详述。
其中,第一无线网络临时标识为第一设备的无线网络临时标识时,第一无线网络临时标 识可以为用于加扰第二下行控制信息的无线网络临时标识,所述第二下行控制信息为用于调度所述第一设备上行链路发送或下行链路接收的信息,或者为用于调度所述第一设备侧行链路发送或侧行链路接收的信息。相应的,该实施方式可以参考上述实施例的相关描述,这里不再详述。
其中,第一无线网络临时标识为第一设备的无线网络临时标识时,所述目标物理下行控制信道承载的下行控制信息的负载大小等于所述搜索空间中用于调度所述第一设备的下行控制信息的负载大小。这样,第一设备采用第二设备的无线网络临时标识检测目标PDCCH时,可以确定该目标PDCCH携带的DCI的负载大小等于用于调度第一设备的DCI的负载大小,也就是说,可以确定采用用于调度第一设备的DCI的负载大小在检测目标PDCCH时进行速率匹配的逆过程,而不需要分别采用多个可选的DCI的负载大小逐个进行速率匹配的逆过程后,再利用第二无线网络临时标识解扰,从而降低了检测的次数,进一步的降低检测的复杂度。相应的,该实施方式可以参考上述实施例的相关描述,这里不再详述。
具体的,上述操作可以参考上述各实施例的实施方式的相关阐述,这里不再详述。
请参阅图9,图9是本发明实施例提供的一种设备的结构示意图,如图9所示,该终端设备可以包括确定单元和检测单元,其中:
确定单元501,用于根据第一无线网络临时标识确定搜索空间,所述搜索空间为M个候选物理下行控制信道的集合,M为大于等于1的整数;
检测单元502,用于根据第二无线网络临时标识从所述搜索空间中检测目标物理下行控制信道;
所述第一无线网络临时标识为第一设备或者第二设备的无线网络临时标识;所述第二无线网络临时标识为所述第二设备的无线网络临时标识,所述目标物理下行控制信道承载的第一下行控制信息为利用所述第二无线网络临时标识加扰的用于调度所述第二设备的信息,所述第二设备通过所述第一设备与网络通信。
其中,确定单元501和检测单元502可以执行上述各个实施例以及实施方式中第一设备或第二设备执行相应的操作,这里也不再赘述。
请参阅图10,图10是本发明实施例提供的一种网络设备的结构示意图,如图10所示,该网络设备可以包括确定单元601和发送单元602,其中,
确定单元601,用于根据第一无线网络临时标识确定搜索空间,所述搜索空间为M个候选物理下行控制信道的集合,M为大于等于1的整数;
发送单元602,用于根据第二无线网络临时标识在所述搜索空间上发送目标物理下行控制信道;
所述第一无线网络临时标识为第一设备或者第二设备的无线网络临时标识;所述目标物理下行控制信道承载的第一下行控制信息为利用所述第二无线网络临时标识加扰的用于调度所述第二设备的信息,所述第二无线网络临时标识为所述第二设备的无线网络临时标识,所述第二设备通过所述第一设备与网络通信。
其中,确定单元601、发送单元602可以执行上述各个实施例以及实施方式中网络设备执行的步骤或操作,这里也不再赘述。
根据前述方法,图11是本发明实施例提供的设备的示意图一,如图11所示,该设备可以为第一设备,也可以为第二设备,也可以为芯片或电路,比如可设置于第一设备或第二设备的芯片或电路。该设备可以对应上述方法中的第一设备或第二设备。
该设备可以包括处理器110和存储器120。该存储器120用于存储指令,该处理器110用于执行该存储器120存储的指令,以实现如上图3至8对应的方法中的步骤以及实施例。
进一步的,该设备还可以包括输入口140和输出口150。进一步的,该设备还可以进一步包括总线系统130,其中,处理器110、存储器120、输入口140和输出口150可以通过总线系统130相连。
处理器110用于执行该存储器120存储的指令,以控制输入口140接收信号,并控制输出口150发送信号,完成上述方法中第一设备或第二设备的步骤。其中,输入口140和输出口150可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。所述存储器220可以集成在所述处理器210中,也可以与所述处理器210分开设置。
作为一种实现方式,输入口140和输出口150的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器110可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的设备。即将实现处理器110,输入口140和输出口150功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器110,输入口140和输出口150的功能。
该设备所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图12是本发明实施例提供的另一种设备的结构示意图。该设备可适用于图1所示出的系统中。为了便于说明,图12仅示出了设备为终端设备时的主要部件,但本发明实施例中,该设备还可以为基站等。如图12所示,终端设备包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持第一设备或第二设备执行上述物理下行控制信道的处理方法实施例中所描述的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中第一无线网络临时标识、或者第二无线网络临时标识,或者第二设备的第一标识等。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图12仅示出了一个存储器和处理器。在实际的用户设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图12中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线 等技术互联。本领域技术人员可以理解,用户设备可以包括多个基带处理器以适应不同的网络制式,用户设备可以包括多个中央处理器以增强其处理能力,用户设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在发明实施例中,可以将具有收发功能的天线和控制电路视为用户设备的收发单元101,将具有处理功能的处理器视为用户设备的处理单元102。如图12所示,用户设备包括收发单元101和处理单元102。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元101中用于实现接收功能的器件视为接收单元,将收发单元101中用于实现发送功能的器件视为发送单元,即收发单元101包括接收单元和发送单元示例性的,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
根据前述方法,图13为本发明实施例提供的设备的示意图二,如图13所示,该设备可以为网络设备20,也可以为芯片或电路,如可设置于网络设备内的芯片或电路。该网络设备20对应上述方法中的网络设备。该设备可以包括处理器210和存储器220。该存储器220用于存储指令,该处理器210用于执行该存储器220存储的指令,以使所述设备实现前述如图3-8对应的方法。
进一步的,该网络还可以包括输入口240和输出口250。再进一步的,该网络还可以包括总线系统230。
其中,处理器210、存储器220、输入口240和输出口250通过总线系统230相连,处理器210用于执行该存储器220存储的指令,以控制输入口240接收信号,并控制输出口250发送信号,完成上述方法中网络设备的步骤。其中,输入口240和输出口250可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为输入输出口。所述存储器220可以集成在所述处理器210中,也可以与所述处理器210分开设置。
作为一种实现方式,输入口240和输出口250的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器210可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的网络设备。即将实现处理器210,输入口240和输出口250功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器210,输入口240和输出口250的功能。
所述设备所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据前述方法,图14为本发明实施例提供的又一种网络设备的结构示意图,如可以为基站的结构示意图。如图14所示,该基站可应用于如图1所示的系统中。基站20包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)201和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)202。所述RRU201可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线2011和射频单元2012。所述RRU201部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的信令消息。所述BBU202部分主要用于进行基带处理,对基站进行控制等。所述RRU201与BBU202可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU202为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU202可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网。所述BBU202还包括存储器2021和处理器2022。所述存储器2021用以存储必要的指令和数据。例如存储器2021存储上述实施例中的第一无线网络临时标识,或者第二无线网络临时标识,或者第二设备的第一标识等。所述处理器2022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器2021和处理器2022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的网络设备和一个或多于一个终端设备。
应理解,在本申请实施例中,处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本发明实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部 件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种物理下行控制信道的处理方法,其特征在于,包括:
    根据第一无线网络临时标识确定搜索空间,所述搜索空间为M个候选物理下行控制信道的集合,M为大于等于1的整数;
    根据第二无线网络临时标识从所述搜索空间中检测目标物理下行控制信道;
    所述第一无线网络临时标识为第一设备或者第二设备的无线网络临时标识;所述第二无线网络临时标识为所述第二设备的无线网络临时标识,所述目标物理下行控制信道承载的第一下行控制信息为利用所述第二无线网络临时标识加扰的用于调度所述第二设备的信息,所述第二设备通过所述第一设备与网络通信。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述第二设备的第一标识从所述搜索空间中确定至少一个候选物理下行控制信道;
    所述根据第二无线网络临时标识从所述搜索空间中检测目标物理下行控制信道,包括:
    根据第二无线网络临时标识从所述至少一个候选物理下行控制信道中检测目标物理下行控制信道。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第二设备的第一标识从所述搜索空间中确定至少一个候选物理下行控制信道,包括:
    从所述搜索空间中确定索引满足如下公式的至少一个候选物理下行控制信道;
    m mod n1=(identity mod n1);
    其中,所述n1为整数且所述n1<=M,所述m为所述搜索空间中各候选物理下行控制信道的索引,所述m=0,1,…,M-1;所述identity为所述第二设备的第一标识;所述n1为预先定义的,为网络设备配置的或者为所述第一设备确定的。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
    根据第二设备的第一标识确定至少一个时间单元;
    所述根据第一无线网络临时标识确定搜索空间,包括:
    根据第一无线网络临时标识在所述至少一个时间单元上确定搜索空间。
  5. 根据权利要求4所述的方法,其特征在于,所述根据第二设备的第一标识确定至少一个时间单元,包括:
    从多个时间单元中确定索引满足如下公式的至少一个时间单元;
    i mod n2=(identity mod n2);
    其中,所述n2为整数且所述n2<=N,所述i为所述多个时间单元的索引,所述i=0,1,…,N-1,所述N为所述多个时间单元的数量;所述identity为所述第二设备的第一标识;所述n2为预先定义的,为网络设备配置的或者为所述第一设备确定的。
  6. 根据权利要求2至5任一项所述的方法,其特征在于,
    所述第二设备的第一标识为所述第二无线网络临时标识、所述第二设备的第二标识在所述第一设备报告的目标列表中的索引、所述第二设备的本地标识、所述第二设备的邻近服务终端标识或者所述第二设备的层2标识;
    所述第二设备的第二标识为所述第二设备的本地标识、所述第二设备的邻近服务终端标识或者所述第二设备的层2标识。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述第一无线网络临时标识为用于加扰第二下行控制信息的无线网络临时标识,所述第二下行控制信息为用于调度所述第一设备上行链路发送或下行链路接收的信息,或者为用于调度所述第一设备侧行链路发送或侧行链路接收的信息。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述目标物理下行控制信道承载的下行控制信息的负载大小等于所述搜索空间中用于调度所述第一设备的下行控制信息的负载大小。
  9. 一种物理下行控制信道的处理方法,其特征在于,包括:
    网络设备根据第一无线网络临时标识确定搜索空间,所述搜索空间为M个候选物理下行控制信道的集合,M为大于等于1的整数;
    所述网络设备根据第二无线网络临时标识在所述搜索空间上发送目标物理下行控制信道;
    所述第一无线网络临时标识为第一设备或者第二设备的无线网络临时标识;所述目标物理下行控制信道承载的第一下行控制信息为利用所述第二无线网络临时标识加扰的用于调度所述第二设备的信息,所述第二无线网络临时标识为所述第二设备的无线网络临时标识,所述第二设备通过所述第一设备与网络通信。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述第二设备的第一标识从所述搜索空间中确定至少一个候选物理下行控制信道;
    所述网络设备根据第二无线网络临时标识在所述搜索空间上发送目标物理下行控制信道,包括:
    所述网络设备根据第二无线网络临时标识在所述至少一个候选物理下行控制信道上发送目标物理下行控制信道。
  11. 根据权利要求10所述的方法,其特征在于,所述网络设备根据所述第二设备的第一标识从所述搜索空间中确定至少一个候选物理下行控制信道,包括:
    所述网络设备从所述搜索空间中确定索引满足如下公式的至少一个候选物理下行控制信道;
    m mod n1=(identity mod n1);
    其中,所述n1为整数且所述n1<=M,所述m为所述搜索空间中各候选物理下行控制信道 的索引,所述m=0,1,…,M-1;所述identity为所述第二设备的第一标识;所述n1为预先定义的,为网络设备配置的或者为所述第一设备确定的。
  12. 根据权利要求9至11任一项所述的方法,其特征在于,所述方法还包括:
    网络设备根据第二设备的第一标识确定至少一个时间单元;
    所述网络设备根据第一无线网络临时标识确定搜索空间,包括:
    所述网络设备根据第一无线网络临时标识在所述至少一个时间单元上确定搜索空间。
  13. 根据权利要求12所述的方法,其特征在于,所述网络设备根据第二设备的第一标识确定至少一个时间单元,包括:
    网络设备从多个时间单元中确定索引满足如下公式的至少一个时间单元;
    i mod n2=(identity mod n2);
    其中,所述n2为整数且所述n2<=N,所述i为所述多个时间单元的索引,i=0,1,…,N-1,所述N为所述多个时间单元的数量;所述identity为所述第二设备的第一标识;所述n2为预先定义的,为所述网络设备配置的或者为所述第一设备确定的。
  14. 根据权利要求10至13任一项所述的方法,其特征在于,
    所述第二设备的第一标识为所述第二无线网络临时标识、所述第二设备的第二标识在所述第一设备报告的目标列表中的索引、所述第二设备的本地标识、所述第二设备的邻近服务终端标识或者所述第二设备的层2标识;
    所述第二设备的第二标识为所述第二设备的本地标识、所述第二设备的邻近服务终端标识或者所述第二设备的层2标识。
  15. 根据权利要求9至14任一项所述的方法,其特征在于,所述第一无线网络临时标识为用于加扰第二下行控制信息的无线网络临时标识,所述第二下行控制信息为用于调度所述第一设备上行链路发送或下行链路接收的信息,或者为用于调度所述第一设备侧行链路发送或侧行链路接收的信息。
  16. 根据权利要求9至15任一项所述的方法,其特征在于,所述目标物理下行控制信道承载的下行控制信息的负载大小等于所述搜索空间中用于调度所述第一设备的下行控制信息的负载大小。
  17. 一种设备,其特征在于,包括处理器、存储器以及收发器,
    所述存储器中存储指令,当所述指令被所述处理器运行时,使得所述设备执行或通过所述收发器执行所述权利要求1至8中任一项所述的方法。
  18. 一种网络设备,其特征在于,包括处理器、存储器以及收发器,
    所述存储器中存储指令,当所述指令被所述处理器运行时,使得所述网络设备执行或通过所述收发器执行所述权利要求9至16中任一项所述的方法。
  19. 一种计算机存储介质,所述计算机存储介质用于储存为上述第一设备或第二设备所用的计算机软件指令,其包括用于执行所述权利要求1至8中任一项所述的方法所设计的程序。
  20. 一种计算机存储介质,所述计算机存储介质用于储存为上述网络设备所用的计算机软件指令,其包括用于执行所述权利要求9至16中任一项所述的方法所设计的程序。
PCT/CN2018/087181 2017-09-29 2018-05-16 物理下行控制信道的处理方法及相关设备 WO2019062149A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18862350.8A EP3668034B1 (en) 2017-09-29 2018-05-16 Method for processing physical downlink control channel, and related devices
US16/651,603 US11337200B2 (en) 2017-09-29 2018-05-16 Physical downlink control channel processing method and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710911805.5A CN109587729B (zh) 2017-09-29 2017-09-29 物理下行控制信道的处理方法及相关设备
CN201710911805.5 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019062149A1 true WO2019062149A1 (zh) 2019-04-04

Family

ID=65900514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087181 WO2019062149A1 (zh) 2017-09-29 2018-05-16 物理下行控制信道的处理方法及相关设备

Country Status (4)

Country Link
US (1) US11337200B2 (zh)
EP (1) EP3668034B1 (zh)
CN (1) CN109587729B (zh)
WO (1) WO2019062149A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7117403B6 (ja) * 2018-06-29 2022-10-03 オッポ広東移動通信有限公司 サイドリンクタイプを決定する方法、端末装置、及びネットワーク装置
CN110830920B (zh) * 2018-08-08 2020-12-29 上海朗帛通信技术有限公司 一种被用于无线通信节点中的方法和装置
WO2022152962A1 (en) * 2021-01-12 2022-07-21 Nokia Technologies Oy Facilitating downlink control information (dci) repetition on linked physical downlink control channel (pdcch) candidates of different search space sets
WO2022232959A1 (en) 2021-05-03 2022-11-10 Qualcomm Incorporated Relay node identifier update
CN112994849B (zh) * 2021-05-17 2021-07-30 广州慧睿思通科技股份有限公司 确定移动通信终端信息的方法、装置、设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102844994A (zh) * 2010-04-14 2012-12-26 Lg电子株式会社 在无线通信系统中设置中继节点的搜索空间的方法及其装置
CN105357758A (zh) * 2014-08-19 2016-02-24 中兴通讯股份有限公司 资源调度信息的指示、分配方法及装置
WO2016130341A1 (en) * 2015-02-10 2016-08-18 Qualcomm Incorporated Relay signaling between ue and network

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8385268B2 (en) * 2009-03-25 2013-02-26 Qualcomm Incorporated Method and apparatus for efficient control decoding for transparent relaying operation in a wireless communication system
CN102036262A (zh) 2009-09-25 2011-04-27 中兴通讯股份有限公司 一种下行控制信息的检测方法和装置
US9276722B2 (en) * 2010-05-05 2016-03-01 Qualcomm Incorporated Expanded search space for R-PDCCH in LTE-A
TWI620459B (zh) * 2012-05-31 2018-04-01 內數位專利控股公司 在蜂巢式通訊系統中賦能直鏈通訊排程及控制方法
KR20140079525A (ko) 2012-12-14 2014-06-27 한국전자통신연구원 중계기를 포함한 통신 시스템에서 기지국과 단말의 통신 방법
CN110876190B (zh) * 2014-01-29 2022-03-25 交互数字专利控股公司 用于设备到设备发现或通信的资源选择
CN105846882A (zh) * 2015-01-14 2016-08-10 北京三星通信技术研究有限公司 一种d2d通信的中继方法和设备
WO2016186059A1 (ja) * 2015-05-15 2016-11-24 京セラ株式会社 基地局及び無線端末
US10264442B2 (en) * 2015-12-10 2019-04-16 Lg Electronics Inc. Method for transmitting or receiving a signal in a wireless communication system and apparatus for the same
WO2018174670A1 (ko) * 2017-03-24 2018-09-27 엘지전자 주식회사 무선 통신 시스템에서 단말 간 직접 통신을 이용한 신호 중계 방법 및 이를 위한 장치
CN110785952B (zh) * 2017-06-14 2022-10-25 Idac控股公司 用于极化编码的pdcch传输的两阶段加扰

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102844994A (zh) * 2010-04-14 2012-12-26 Lg电子株式会社 在无线通信系统中设置中继节点的搜索空间的方法及其装置
CN105357758A (zh) * 2014-08-19 2016-02-24 中兴通讯股份有限公司 资源调度信息的指示、分配方法及装置
WO2016130341A1 (en) * 2015-02-10 2016-08-18 Qualcomm Incorporated Relay signaling between ue and network

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3668034A4 *
ZTE: "Resource scheme of FeD2D Relay", 3GPP TSG RAN WG1 MEETING #90, R1-1712918, 20 August 2017 (2017-08-20), XP051315728 *

Also Published As

Publication number Publication date
EP3668034B1 (en) 2022-02-23
CN109587729A (zh) 2019-04-05
CN109587729B (zh) 2021-05-07
US20200288444A1 (en) 2020-09-10
US11337200B2 (en) 2022-05-17
EP3668034A1 (en) 2020-06-17
EP3668034A4 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
WO2020164404A1 (en) Systems and methodsfor multicast resource allocation
US11122555B2 (en) Data transmission method, terminal device, and base station system
WO2019062149A1 (zh) 物理下行控制信道的处理方法及相关设备
US11924141B2 (en) Communication method, network device, and terminal device
WO2018205687A1 (zh) 数据处理方法及装置
WO2018171667A1 (zh) 一种信道传输方法及网络设备
WO2019096235A1 (zh) 接收参考信号的方法和发送参考信号的方法
WO2020001607A1 (zh) 数据加扰方法及相关设备
CN109729594B (zh) 控制信息的处理方法及系统、第一设备、第二设备
WO2019029269A1 (zh) 信息指示方法及相关设备
WO2019037695A1 (zh) 一种通信方法及装置
WO2018157756A1 (zh) 数据处理方法及装置
WO2019028770A1 (zh) 通信方法、终端设备和网络设备
JP2018064253A (ja) ユーザ装置及び信号受信方法
US11272547B2 (en) Communication method, network device, and user equipment
JP6847241B2 (ja) 情報送信方法および装置、ならびに情報受信方法および装置
WO2020169063A1 (zh) 一种数据传输方法及通信装置
CN115104277A (zh) 用于无线通信中的多分量载波物理下行链路共享信道调度的方法和装置
WO2018196657A1 (zh) 一种干扰消除方法、用户设备及网络设备
WO2018201850A1 (zh) 资源配置方法、装置和系统
CN107548099B (zh) 数据传输方法与设备
WO2021228130A1 (zh) 一种广播信号的资源配置方法以及相关装置
CN107615794B (zh) 用户装置
US20200374885A1 (en) Data Transmission Method and Device
CN113812195A (zh) 物理下行控制信道的配置方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018862350

Country of ref document: EP

Effective date: 20200309

NENP Non-entry into the national phase

Ref country code: DE