WO2018205687A1 - 数据处理方法及装置 - Google Patents

数据处理方法及装置 Download PDF

Info

Publication number
WO2018205687A1
WO2018205687A1 PCT/CN2018/074154 CN2018074154W WO2018205687A1 WO 2018205687 A1 WO2018205687 A1 WO 2018205687A1 CN 2018074154 W CN2018074154 W CN 2018074154W WO 2018205687 A1 WO2018205687 A1 WO 2018205687A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
indication information
frequency resource
terminal
tti
Prior art date
Application number
PCT/CN2018/074154
Other languages
English (en)
French (fr)
Inventor
邓一伟
李明菊
张云飞
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Priority to EP18797733.5A priority Critical patent/EP3637908B1/en
Publication of WO2018205687A1 publication Critical patent/WO2018205687A1/zh
Priority to US16/676,015 priority patent/US11659526B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/29Control channels or signalling for resource management between an access point and the access point controlling device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows

Definitions

  • the present invention relates to the field of communication technologies, and mainly relates to a data processing method and apparatus.
  • the fifth generation technology needs to support ultra-high data transmission rates, massive number of connections and low data transmission delays to meet the needs of different scenarios.
  • the new wireless technology (English: New Radio, NR), because it supports multiple services at the same time, such as enhanced mobile broadband (eMBB) services and high reliability and low latency (English: Ultra-Reliable) And Low Latency Communications, URLLC).
  • eMBB enhanced mobile broadband
  • URLLC Ultra-Reliable
  • the user equipment (English: User Equipment, UE) that agrees to the URLLC service can be occupied by the current 3rd Generation Partnership Project (3GPP).
  • 3GPP 3rd Generation Partnership Project
  • the resources of the scheduled eMBB UE UE.
  • the UE of the eMBB does not know the information of the resources occupied by the UE of the URLLC, thus affecting the efficiency and correct rate of data demodulation.
  • the embodiment of the present invention provides a data processing method and device, which are used to solve the problem that the base station allocates time-frequency resources for the terminal, and the base station needs to be part of the time-frequency resource of the terminal in order to improve the resource usage efficiency and meet the delay requirements of other terminals.
  • the resources are allocated to other terminals, and the terminal does not know the information occupied by other terminals, resulting in the problem of low efficiency and low accuracy of data demodulation.
  • a first aspect of the present invention provides a data processing method, including:
  • the terminal acquires the indication information that is sent by the base station, where the indication information is used to indicate the information of the second time-frequency resource, where the second time-frequency resource is in the first time-frequency resource that the base station will allocate to the terminal. Partial time-frequency resources are allocated to time-frequency resources of other terminals;
  • the terminal skips the second time-frequency resource according to the indication information, and performs data decoding on data transmitted by other resources than the second time-frequency resource in the first time-frequency resource.
  • the indication information is located at a symbol of a control channel where a transmission time interval TTI of the second time-frequency resource is located
  • the terminal obtains the indication information that is sent by the base station, and specifically includes:
  • the indication information is located in the control channel of the last N TTIs of the TTI of the first time-frequency resource, and the terminal obtains the indication information that is sent by the base station, and specifically includes:
  • the terminal acquires the indication information in a control channel of the last N TTIs of the TTI of the first time-frequency resource, where the N is an integer greater than or equal to 1.
  • the terminal acquires the indication information sent by the base station. Before the step, it also includes:
  • Radio resource control RRC signaling sent by the base station, where the RRC signaling is used to indicate, by the terminal, a control channel of the last N TTIs of the TTI of the first time-frequency resource or the The indication information is obtained from a symbol in which the control channel of the TTI of the second time frequency resource is located.
  • the time domain granularity is the microslot level or the symbol level.
  • the time domain granularity of the indication information is a microslot level
  • the time domain granularity of the indication information is a symbol level.
  • a second aspect of the present invention provides another data processing method, including:
  • the base station allocates the second time-frequency resource of the first time-frequency resource that has been allocated to the terminal to the other terminal, and generates indication information according to the second time-frequency resource, where the indication information is used to indicate that the terminal identifies the Information on two time-frequency resources;
  • the base station sends the indication information to the terminal.
  • the indication information is located in a symbol of a control channel of a TTI of the second time-frequency resource, and The indication information is carried in the downlink control information DCI and sent to the terminal; or
  • the indication information is located in a control channel of the last N TTIs of the TTI of the first time-frequency resource, and the indication information is transmitted by using a new air interface physical downlink control channel NR-PDCCH or an intra-group physical downlink control channel group common PDCCH.
  • the N is an integer greater than or equal to 1.
  • the method further includes:
  • Radio resource control RRC signaling is used to indicate, by the terminal, a control channel of the last N TTIs of the TTI of the first time-frequency resource or the The indication information is obtained from a symbol in which the control channel of the TTI of the second time frequency resource is located.
  • the base station sends the indication information to the terminal, specifically including :
  • the base station When the terminal supports the service of the other terminal, the base station sends the indication information by using a symbol of a control channel of the TTI of the second time-frequency resource, or the base station passes the first time-frequency And transmitting, by the control channel of the last N TTIs of the TTI of the resource, the indication information;
  • the base station When the terminal does not support the service of the other terminal, the base station sends the indication information by using a control channel of the last N TTIs of the TTI of the first time-frequency resource.
  • the base station sends the indication information to the terminal, specifically including :
  • the base station When the service level of the performing service of the terminal is higher than or equal to the level threshold, the base station sends the indication information by using a symbol of the control channel of the TTI of the second time-frequency resource;
  • the base station When the service level of the performing service of the terminal is lower than the level threshold, the base station sends the indication information by using a symbol of a control channel of the TTI of the second time-frequency resource, or the base station passes the And transmitting, by the control channel of the last N TTIs of the TTI of the first time-frequency resource, the indication information;
  • the determining factor of the service level includes at least a delay requirement of the terminal performing the service.
  • the base station sends the indication information to the terminal, specifically including :
  • the base station When the occupancy ratio is less than or equal to the occupancy threshold, the base station sends the indication information by using a symbol of a control channel of the TTI of the second time-frequency resource, or the base station passes the first time-frequency resource.
  • the indication information is sent by the control channels of the last N TTIs of the TTI;
  • the base station When the occupancy ratio is greater than the occupancy threshold, the base station sends the indication information by using a control channel of the last N TTIs of the TTI of the first time-frequency resource.
  • a third aspect of the present invention provides a data processing apparatus, including:
  • an acquiring module configured to obtain indication information that is sent by the base station, where the indication information is used to indicate information of the second time-frequency resource, where the second time-frequency resource is the first time that the base station will be allocated to the terminal Part of the time-frequency resources in the frequency resource are allocated to time-frequency resources of other terminals;
  • a decoding module configured to skip the second time-frequency resource according to the indication information, and perform data decoding on data transmitted by a resource other than the second time-frequency resource in the first time-frequency resource.
  • the indication information is located at a symbol of a control channel of the second time-frequency resource transmission time interval TTI.
  • the obtaining module is specifically configured to acquire the indication information in a symbol where a control channel of the second time-frequency resource transmission time interval TTI is located; or
  • the indication information is located in a control channel of the last N TTIs of the TTI of the first time-frequency resource, where the acquiring module is specifically used by the terminal in the last N TTIs of the TTI of the first time-frequency resource.
  • the indication information is obtained in a control channel, where N is an integer greater than or equal to 1.
  • the apparatus further includes:
  • a receiving module configured to receive radio resource control RRC signaling sent by the base station, where the RRC signaling is used to indicate, by the terminal, a control channel or a channel of the last N TTIs of the TTI of the first time-frequency resource
  • the indication information is obtained in a symbol in which a control channel of a TTI of the second time-frequency resource is located.
  • the time domain granularity is the microslot level or the symbol level.
  • the time domain granularity of the indication information is a microslot level
  • the time domain granularity of the indication information is a symbol level.
  • a fourth aspect of the present invention provides another data processing apparatus, including:
  • the indication information generating module is configured to allocate the second time-frequency resource in the first time-frequency resource that has been allocated to the terminal to the other terminal, and generate indication information according to the second time-frequency resource, where the indication information is used to indicate Determining, by the terminal, information about the second time-frequency resource;
  • the first sending module is configured to send the indication information to the terminal.
  • the indication information is located in a symbol of a control channel of a TTI of the second time-frequency resource, where The first sending module is specifically configured to carry the indication information in the downlink control information DCI and send the information to the terminal; or
  • the indication information is located in a control channel of the last N TTIs of the TTI of the first time-frequency resource, where the first sending module is specifically configured to pass the new air interface physical downlink control channel NR-PDCCH or the intra-group physical downlink control channel.
  • the group common PDCCH transmits the indication information, where N is an integer greater than or equal to 1.
  • the apparatus further includes:
  • a second sending module configured to send the radio resource control RRC signaling to the terminal, where the RRC signaling is used to indicate, by the terminal, a control channel of the last N TTIs of the TTI of the first time-frequency resource Or the indication information is obtained in a symbol in which the control channel of the TTI of the second time-frequency resource is located.
  • the first sending module is specifically configured to:
  • the indication information is sent by the symbol of the control channel of the TTI of the second time-frequency resource, or after the TTI of the first time-frequency resource And transmitting, by the control channel of the N TTIs, the indication information;
  • the indication information is sent by using a control channel of the last N TTIs of the TTI of the first time-frequency resource.
  • the first sending module is configured to:
  • the indication information is sent by using a symbol of the control channel of the TTI of the second time-frequency resource;
  • the indication information is sent by the symbol of the control channel of the TTI of the second time-frequency resource, or the first time-frequency is The indication information is sent in a control channel of the last N TTIs of the TTI of the resource;
  • the determining factor of the service level includes at least a delay requirement of the terminal performing the service.
  • the first sending module is configured to:
  • the indication information is sent by the symbol of the control channel of the TTI of the second time-frequency resource, or the back N of the TTI of the first time-frequency resource is used.
  • the indication information is sent in a control channel of the TTI;
  • the indication information is sent in a control channel of the last N TTIs of the TTI of the first time-frequency resource.
  • the second time-frequency resource is skipped according to the indication information, and other resources except the second time-frequency resource are used in the first time-frequency resource.
  • the transmitted data is decoded by data.
  • the second time-frequency resource is that the base station allocates part of the time-frequency resources in the first time-frequency resource that has been allocated to the terminal to the time-frequency resource of the other terminal. That is to say, the terminal only decodes the data for the terminal without decoding the data of other terminals, thereby improving the efficiency and correct rate of data demodulation.
  • FIG. 1 is a schematic structural diagram of a transport block
  • FIG. 2 is a schematic flowchart of a data processing method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of another data processing method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a location of different indication information according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a data processing apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another data processing apparatus according to an embodiment of the present disclosure.
  • FIG. 7 is a sequence diagram of a data processing system according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a computer device that runs a data processing method in an embodiment.
  • the TB may include a plurality of code blocks (CB), and the CB is a transmission basic unit of the TB.
  • CB code blocks
  • the main scenarios of the fifth-generation communication include the following three types: Enhanced Mobile Broad Band (eMBB), Massive Machine Type Communications (mMTC) and High Reliability Low Delay (English: Ultra-Reliable and Low Latency Communications, URLLC).
  • eMBB Enhanced Mobile Broad Band
  • mMTC Massive Machine Type Communications
  • URLLC High Reliability Low Delay
  • the three types of scenarios are different for the type of business, and the requirements are different.
  • the eMBB service is mainly for a service scenario that requires a higher data rate
  • the mMTC service is mainly for a large number of connected service scenarios
  • the URLLC service is mainly for a service scenario with a delay requirement and a high reliability.
  • the new wireless technology (English: New Radio, NR), because it wants to support multiple services at the same time, such as the diversity multiplexing of eMBB services and URLLC services.
  • the phenomenon that the diversity multiplexing may cause is to allocate one resource block (Resource Block, RB) of one slot to the UE#1 of the eMBB, and the first device In slot1, the data and control signaling related to the UE#1 are configured to be sent.
  • the UE#2 of the URL1 in the middle of the slot1 suddenly has a service, the UE needs to allocate resources to the UE#2 of the URLLC in order to meet the delay requirement of the URLLC service.
  • the middle one CB allocates resources for the UE#2 of the URLLC, but transmits the data or control signaling of the UE#2 of the URLLC.
  • the UE#1 of the eMBB does not know the information of the resources occupied by the UE of the URLLC, thus affecting the efficiency and correct rate of data demodulation.
  • the terminal may specifically be: a personal computer, a server computer, a handheld or laptop, a consumer electronic device, a mobile device (such as a smart phone, a tablet, a media player, etc.) and a multi-processor system. And so on, of course, can also be: base station.
  • a personal computer such as a personal computer, a server computer, a handheld or laptop, a consumer electronic device, a mobile device (such as a smart phone, a tablet, a media player, etc.) and a multi-processor system. And so on, of course, can also be: base station.
  • the specific embodiments of the present invention are not limited to the above terminal representation.
  • the present invention is not limited to the execution of the terminal and other terminals.
  • the terminal performs the eMBB service, and the other terminals perform the URLLC service. It should be noted that there may be multiple other terminals.
  • the first aspect of the present invention provides a data processing method for solving a problem that a base station allocates time-frequency resources for a terminal, and in order to improve resource usage efficiency and meet delay requirements of other terminals, the base station will partially allocate time-frequency resources of the terminal.
  • the resources are allocated to other terminals, and the terminal does not know the information occupied by other terminals, resulting in the problem of low efficiency and low accuracy of data demodulation.
  • a data processing method includes:
  • Step S102 The terminal acquires the indication information sent by the base station.
  • the indication information is used to indicate that the terminal identifies the information of the second time-frequency resource. That is, the terminal can obtain the information of the second time-frequency resource occupied by the other terminal by acquiring the indication information, so that the data corresponding to the second time-frequency resource may not be demodulated when demodulating the data transmitted by the first time-frequency resource, thereby improving the data. The efficiency and correct rate of demodulation.
  • the second time-frequency resource is that the base station allocates part of the time-frequency resources in the first time-frequency resource that has been allocated to the terminal to the time-frequency resources of other terminals. That is, the base station allocates time-frequency resources allocated to other terminals in the first time-frequency resource of the terminal as the second time-frequency resource, in order to satisfy the multi-service multiplexing. As shown in FIG. 1, the resource occupied by the URLLC service is used as the second time-frequency resource.
  • the indication information is located in a symbol of a control channel in which a transmission time interval (TTI) of the second time-frequency resource is located, and the terminal acquires the indication information sent by the base station, where the terminal includes: Obtaining the indication information in the symbol of the control channel where the TTI is located in the transmission time interval of the frequency resource, or the indication information is located in the control channel of the last N TTIs of the TTI of the first time-frequency resource, and the terminal acquires the indication information sent by the base station, specifically including The terminal acquires indication information in a control channel of the last N TTIs of the TTI of the first time-frequency resource, where N is an integer greater than or equal to 1.
  • TTI transmission time interval
  • the indication information may be in a symbol in which the control channel of the TTI of the second time-frequency resource is located, or in a control channel of the last N TTIs of the TTI of the first time-frequency resource. That is to say, when receiving the control signaling and data sent by the base station, the terminal first needs to monitor the location of the indication information that may appear in the control channel, and after receiving the location of the indication information, obtain the indication information.
  • the method further includes: receiving, by the terminal, radio resource control (RRC) signaling sent by the base station, where the RRC signaling is used to indicate that the terminal is from the first time
  • RRC radio resource control
  • the indication information is obtained in a symbol in which the control channel of the last N TTIs of the TTI of the frequency resource or the control channel of the TTI of the second time-frequency resource is located.
  • the terminal can obtain the location information of the indication information according to the RRC signaling, thereby improving the efficiency of acquiring the indication information and reducing the power consumption of the terminal.
  • the time domain granularity of the indication information is a microslot level or a symbol level. That is to say, the time domain granularity of the indication information may be a minislot mini-slot level or a symbol level. Since the time domain granularity at the microslot level is larger than the time domain granularity at the symbol level, the flexibility of data decoding is further improved, and power consumption is reduced.
  • the time domain granularity of the indication information is a microslot level; when the second time-frequency resource is a symbol length in the time domain, the indication information The time domain granularity is the symbol level.
  • the time-domain granularity transmission indication information of the mini-slot level is used, and the second time-frequency resource is one in the time domain.
  • the indication information is transmitted at the symbol level of the time domain granularity. Since the time domain granularity at the microslot level is larger than the time domain granularity at the symbol level, signaling overhead is reduced.
  • the control information occupies one symbol. If the indication information is transmitted at the symbol level, 6 bits are required to indicate, wherein the feedback character is 0 means no use, and the feedback character is 1 means use; and if the second time-frequency resource is 2 symbols in the time domain, the micro-slot level is used. For the time domain granularity transmission indication information, 5 bits are required to indicate, thereby reducing signaling overhead.
  • Step S104 The terminal skips the second time-frequency resource according to the indication information, and performs data decoding on the data transmitted by the resources other than the second time-frequency resource in the first time-frequency resource.
  • This embodiment does not limit the specific data decoding process.
  • the information about the second time-frequency resource is included in the indication information, and the terminal only needs to decode the data transmitted by the resources other than the second time-frequency resource in the first time-frequency resource when decoding the data, without decoding.
  • the data transmitted by the second time-frequency resource thereby improving the efficiency and correct rate of data demodulation.
  • a data processing method includes:
  • Step S202 The base station allocates the second time-frequency resource in the first time-frequency resource that has been allocated to the terminal to the other terminal, and generates indication information according to the second time-frequency resource.
  • the second time-frequency resource is that the base station allocates part of the time-frequency resources in the first time-frequency resource that has been allocated to the terminal to the time-frequency resources of other terminals. That is, the base station allocates time-frequency resources allocated to other terminals in the first time-frequency resource of the terminal as the second time-frequency resource, in order to satisfy the multi-service multiplexing. As shown in FIG. 1, the resource occupied by the URLLC service is used as the second time-frequency resource.
  • the indication information is generated according to the second time-frequency resource.
  • the information of the second time-frequency resource can be identified, and the terminal only needs to decode the data transmitted by the resources other than the second time-frequency resource in the first time-frequency resource when performing data decoding, without The data transmitted by the second time-frequency resource is decoded, thereby improving the efficiency and correct rate of data demodulation.
  • the base station sends the radio resource control RRC signaling to the terminal, where the RRC signaling is used to indicate the control channel of the last N TTIs of the TTI of the first time-frequency resource or the TTI of the second time-frequency resource. Get the indication information in the symbol where you are.
  • the terminal can obtain the location information of the indication information according to the RRC signaling, thereby improving the efficiency of acquiring the indication information and reducing the power consumption of the terminal.
  • the time domain granularity of the indication information is a microslot level or a symbol level. That is to say, the time domain granularity of the indication information may be a minislot mini-slot level or a symbol level. Since the time domain granularity at the microslot level is larger than the time domain granularity at the symbol level, the flexibility of data decoding is further improved, and power consumption is reduced.
  • the time domain granularity of the indication information is a microslot level; when the second time-frequency resource is a symbol length in the time domain, the indication information The time domain granularity is the symbol level.
  • the time-domain granularity transmission indication information of the mini-slot level is used, and the second time-frequency resource is one in the time domain.
  • the indication information is transmitted at the symbol level of the time domain granularity. Since the time domain granularity at the microslot level is larger than the time domain granularity at the symbol level, the flexibility of data decoding is further improved, and power consumption is reduced.
  • Step S204 The base station sends the indication information to the terminal.
  • the base station sends the indication information for indicating the second time-frequency resource to the terminal. Because the indication information includes the information of the second time-frequency resource, the terminal only needs to decode the first time-frequency resource except the second when performing data decoding. The data transmitted by other resources than the time-frequency resource can be used without decoding the data transmitted by the second time-frequency resource, thereby improving the efficiency and correct rate of data demodulation.
  • the base station may configure the indication information in a symbol of the control channel of the TTI of the second time-frequency resource, and carry the indication information in the downlink control information DCI to be sent to the terminal; the base station may also send the indication information.
  • Configured in the control channel of the last N TTIs of the TTI of the first time-frequency resource, and passes the new radio physical downlink control channel (NR-PDCCH) or the intra-group physical downlink control channel (English: New Radio Physical Downlink Control Channel, NR-PDCCH) : group common Physical Downlink Control Channel, group common PDCCH) transmits indication information, where N is an integer greater than or equal to 1.
  • the location of the indication information is shown in FIG. 4, and the indication information sent by the base station to the terminal may be the first indication information or the second indication information shown in FIG. 4, where the first indication information is occupied by the URLLC1 service.
  • the information indicating the time-frequency resource occupied by the URLLC1 service is sent to the terminal by the time-frequency resource assigned to the URLLC1, and the terminal can demodulate the URLLC1.
  • the second indication information In the control channel of the TTI of the next eMBB service, the information indicating the time-frequency resource occupied by the URLLC2 service, that is, the control channel of the last N TTIs of the TTI of the first time-frequency resource, can be solved in the second time.
  • the frequency resource does not support the problem of sending the indication information, and the pressure of the second time-frequency resource to send the indication information can be alleviated, and the terminal can skip the second time-frequency resource by using the indication information.
  • Data decoding is performed on data transmitted by resources other than the second time-frequency resource in the first time-frequency resource, thereby improving the efficiency and accuracy of data demodulation.
  • the location of the indication information may be determined by a service support capability of the terminal, a service level of the terminal performing the service, and an occupation ratio between the second time-frequency resource and the first time-frequency resource, and may further include other determining manners.
  • the embodiment of the invention is not limited.
  • the base station When the terminal supports the service of the other terminal, the base station sends the indication information by using the symbol of the control channel of the TTI of the second time-frequency resource, or the base station passes the control channel of the last N TTIs of the TTI of the first time-frequency resource.
  • the indication information is sent; when the terminal does not support the service of the other terminal, the base station sends the indication information by using the control channel of the last N TTIs of the TTI of the first time-frequency resource.
  • the indication information is transmitted to the terminal through the DCI or the multiplexed NR-PDCCH or the PDCCH, and the terminal is in the symbol of the control channel of the TTI of the second time-frequency resource. Or the indication information is obtained in a control channel of the last N TTIs of the TTI of the first time-frequency resource.
  • the indication information can only be multiplexed to the NR-PDCCH or the PDCCH is transmitted to the terminal, and the terminal acquires the indication information in the last N TTIs of the TTI of the first time-frequency resource.
  • the base station When the service level of the performing service of the terminal is higher than or equal to the level threshold, the base station sends the indication information by using the symbol of the control channel of the TTI of the second time-frequency resource; when the service level of the performing service of the terminal is lower than the level threshold The base station sends the indication information by using the symbol of the control channel of the TTI of the second time-frequency resource, or the base station sends the indication information by using the control channel of the last N TTIs of the TTI of the first time-frequency resource.
  • the determining factor of the service level includes at least the delay requirement of the terminal performing the service.
  • the service level is determined according to the delay requirement of the execution service of the terminal, where the higher the service delay requirement, the higher the service level.
  • other determining factors may be included, and the present invention is not limited to the determining factors of the service level.
  • the indication information is transmitted to the terminal through the DCI, and the terminal is in the TTI of the second time-frequency resource.
  • the indication information is obtained from the symbol in which the control channel is located.
  • the indication information may be transmitted to the terminal through the DCI, or may be transmitted to the terminal by multiplexing the NR-PDCCH or the PDCCH, and the terminal is in the control channel of the last N TTIs of the TTI of the first time-frequency resource. Get instructions in .
  • the implementation of the terminal and other terminals is not limited in this embodiment.
  • the terminal performs the eMBB service
  • the other terminals perform the URLLC service. That is to say, the service level of the terminal performing the service is the service level of the eMBB service.
  • the second time-frequency resource is occupied by one or more other terminals, and there is no influence on data demodulation with or without indication information. That is, when the occupancy ratio is greater than the occupancy threshold, it is assumed to be K, that is, when the occupancy ratio is greater than K, the indication information may be obtained in the control channel of the last N TTIs of the TTI of the first time-frequency resource, and the occupation ratio is smaller than In the case of K, the indication information may be obtained in the symbol of the control channel of the TTI of the second time-frequency resource or the control channel of the last N TTIs of the TTI of the first time-frequency resource, thereby improving the efficiency and accuracy of data demodulation. .
  • the indication information may be in a symbol in which the control channel of the TTI of the second time-frequency resource is located, or in a control channel of the last N TTIs of the TTI of the first time-frequency resource. That is to say, when receiving the control signaling and data sent by the base station, the terminal first needs to monitor the location of the indication information that may appear in the control channel, and after receiving the location of the indication information, obtain the indication information.
  • a third aspect of the present invention provides a data processing apparatus.
  • a data processing apparatus includes: an obtaining module 102 and a decoding module 104, wherein:
  • the obtaining module 102 is configured to obtain indication information that is sent by the base station, where the indication information is used to indicate information of the second time-frequency resource, and the second time-frequency resource is a part of the first time-frequency resource that the base station allocates to the terminal. Time-frequency resources allocated to other terminals;
  • the decoding module 104 is configured to: according to the indication information, skip the second time-frequency resource, and perform data decoding on the data transmitted by the resources other than the second time-frequency resource in the first time-frequency resource.
  • the indication information is located in a symbol of the control channel where the transmission time interval TTI of the second time-frequency resource is located, and the obtaining module 102 is specifically configured to obtain the symbol of the control channel where the transmission time interval TTI of the second time-frequency resource is located.
  • the indication information is located in the control channel of the last N TTIs of the TTI of the first time-frequency resource, and the acquiring module is specifically configured to obtain the indication information in the control channel of the last N TTIs of the TTI of the first time-frequency resource, where N is An integer greater than or equal to 1.
  • the device further includes:
  • the receiving module 106 is configured to receive radio resource control RRC signaling sent by the base station, where the RRC signaling is used to indicate the TTI of the control channel of the last TTI of the TTI of the first time-frequency resource or the TTI of the second time-frequency resource.
  • the indication information is obtained from the symbol in which the control channel is located.
  • the time domain granularity of the indication information is a microslot level or a symbol level.
  • the time domain granularity of the indication information is a microslot level; when the second time-frequency resource is a symbol length in the time domain, the indication The time domain granularity of the information is the symbol level.
  • a fourth aspect of the present invention provides another data processing apparatus.
  • a data processing apparatus includes: an indication information generating module 202 and a first sending module 204, wherein:
  • the indication information generating module 202 is configured to allocate the second time-frequency resource in the first time-frequency resource that has been allocated to the terminal to the other terminal, and generate indication information according to the second time-frequency resource, where the indication information is used to indicate that the terminal identifies the second Information on time-frequency resources;
  • the first sending module 204 is configured to send the indication information to the terminal.
  • the indication information is located in a symbol of a control channel of the TTI of the second time-frequency resource, where the first sending module 204 is specifically configured to carry the indication information in the downlink control information DCI and send the information to the terminal; or
  • the indication information is located in the control channel of the last N TTIs of the TTI of the first time-frequency resource, and the first sending module 204 is specifically configured to use the new air interface physical downlink control channel NR-PDCCH or the intra-group physical downlink control channel group common PDCCH transmission indication.
  • N is an integer greater than or equal to 1
  • the device further includes:
  • the second sending module 206 is configured to send the RRC signaling to the terminal, where the RRC signaling is used to indicate the control channel or the second time-frequency resource of the last N TTIs of the TTI of the first time-frequency resource.
  • the indication information is obtained from the symbol in which the control channel of the TTI is located.
  • the first sending module 204 is specifically configured to:
  • the indication information is sent by the control channel of the TTI of the second time-frequency resource, or the control information of the last N TTIs of the TTI of the first time-frequency resource is sent.
  • the indication information is sent by the control channel of the last N TTIs of the TTI of the first time-frequency resource.
  • the first sending module 204 is specifically configured to:
  • the indication information is sent in the symbol of the control channel of the TTI of the second time-frequency resource
  • the indication information is sent by the symbol of the control channel of the TTI of the second time-frequency resource, or the control of the last N TTIs of the TTI of the first time-frequency resource is used. Sending indication information in the channel;
  • the determining factor of the service level includes at least the delay requirement of the terminal performing the service.
  • the first sending module 204 is specifically configured to:
  • the indication information is sent in the symbol of the control channel of the TTI of the second time-frequency resource, or is sent in the control channel of the last N TTIs of the TTI of the first time-frequency resource. Indication information;
  • the indication information is sent in the control channel of the last N TTIs of the TTI of the first time-frequency resource.
  • a fifth aspect of the invention provides a data processing system comprising the data processing apparatus of the first aspect and the second aspect of the invention.
  • Figure 7 the sequence diagram of system execution is shown in Figure 7, including:
  • Step S702 The base station allocates the second time-frequency resource in the first time-frequency resource that has been allocated to the terminal to the other terminal, and generates indication information according to the second time-frequency resource.
  • the second time-frequency resource is that the base station allocates part of the time-frequency resources in the first time-frequency resource that has been allocated to the terminal to the time-frequency resources of other terminals. That is, the base station allocates time-frequency resources allocated to other terminals in the first time-frequency resource of the terminal as the second time-frequency resource, in order to satisfy the multi-service multiplexing.
  • the indication information is generated according to the second time-frequency resource.
  • the information of the second time-frequency resource can be identified, and the terminal only needs to decode the data transmitted by the resources other than the second time-frequency resource in the first time-frequency resource when performing data decoding, without The data transmitted by the second time-frequency resource is decoded, thereby improving the efficiency and correct rate of data demodulation.
  • Step S704 The base station sends the indication information to the terminal.
  • the indication information is located in a symbol in which the control channel of the TTI of the second time-frequency resource is located, and the base station carries the indication information in the downlink control information DCI and sends the indication information to the terminal, or the indication information is located in the first time-frequency resource.
  • the base station transmits the indication information through the new air interface physical downlink control channel NR-PDCCH or the intra-group physical downlink control channel group common PDCCH, where N is an integer greater than or equal to 1.
  • the location of the indication information may be determined by a service support capability of the terminal, a service level of the terminal performing the service, and an occupation ratio between the second time-frequency resource and the first time-frequency resource, and may further include other determining manners.
  • the embodiment of the invention is not limited.
  • the base station When the terminal supports the service of the other terminal, the base station sends the indication information by using the symbol of the control channel of the TTI of the second time-frequency resource, or the base station passes the control channel of the last N TTIs of the TTI of the first time-frequency resource.
  • the indication information is sent; when the terminal does not support the service of the other terminal, the base station sends the indication information by using the control channel of the last N TTIs of the TTI of the first time-frequency resource.
  • the indication information is transmitted to the terminal through the DCI or the multiplexed NR-PDCCH or the PDCCH, and the terminal is in the symbol of the control channel of the TTI of the second time-frequency resource. Or the indication information is obtained in a control channel of the last N TTIs of the TTI of the first time-frequency resource.
  • the indication information can only be multiplexed to the NR-PDCCH or the PDCCH is transmitted to the terminal, and the terminal acquires the indication information in the last N TTIs of the TTI of the first time-frequency resource.
  • the base station When the service level of the performing service of the terminal is higher than or equal to the level threshold, the base station sends the indication information by using the symbol of the control channel of the TTI of the second time-frequency resource; when the service level of the performing service of the terminal is lower than the level threshold The base station sends the indication information by using the symbol of the control channel of the TTI of the second time-frequency resource, or the base station sends the indication information by using the control channel of the last N TTIs of the TTI of the first time-frequency resource.
  • the determining factor of the service level includes at least the delay requirement of the terminal performing the service.
  • the service level is determined according to the delay requirement of the execution service of the terminal, where the higher the service delay requirement, the higher the service level.
  • other determining factors may be included, and the present invention is not limited to the determining factors of the service level.
  • the indication information is transmitted to the terminal through the DCI, and the terminal is in the TTI of the second time-frequency resource.
  • the indication information is obtained from the symbol in which the control channel is located.
  • the indication information may be transmitted to the terminal through the DCI, or may be transmitted to the terminal by multiplexing the NR-PDCCH or the PDCCH, and the terminal is in the control channel of the last N TTIs of the TTI of the first time-frequency resource. Get instructions in .
  • the implementation of the terminal and other terminals is not limited in this embodiment.
  • the terminal performs the eMBB service
  • the other terminals perform the URLLC service. That is to say, the service level of the terminal performing the service is the service level of the eMBB service.
  • the second time-frequency resource is occupied by one or more other terminals, and there is no influence on data demodulation with or without indication information. That is, when the occupancy ratio is greater than the occupancy threshold, it is assumed to be K, that is, when the occupancy ratio is greater than K, the indication information may be obtained in the control channel of the last N TTIs of the TTI of the first time-frequency resource, and the occupation ratio is smaller than In the case of K, the indication information may be obtained in the symbol of the control channel of the TTI of the second time-frequency resource or the control channel of the last N TTIs of the TTI of the first time-frequency resource, thereby improving the efficiency and accuracy of data demodulation. .
  • the indication information may be in a symbol in which the control channel of the TTI of the second time-frequency resource is located, or in a control channel of the last N TTIs of the TTI of the first time-frequency resource. That is to say, when receiving the control signaling and data sent by the base station, the terminal first needs to monitor the location of the indication information that may appear in the control channel, and after receiving the location of the indication information, obtain the indication information.
  • the base station sends the radio resource control RRC signaling to the terminal, where the RRC signaling is used to indicate the control channel of the last N TTIs of the TTI of the first time-frequency resource or the TTI of the second time-frequency resource. Get the indication information in the symbol where you are.
  • the terminal can obtain the location information of the indication information according to the RRC signaling, thereby improving the efficiency of acquiring the indication information and reducing the power consumption of the terminal.
  • the time domain granularity of the indication information is a microslot level or a symbol level. That is to say, the time domain granularity of the indication information may be a minislot mini-slot level or a symbol level. Since the time domain granularity at the microslot level is larger than the time domain granularity at the symbol level, the flexibility of data decoding is further improved, and power consumption is reduced.
  • the time domain granularity of the indication information is a microslot level; when the second time-frequency resource is a symbol length in the time domain, the indication information The time domain granularity is the symbol level.
  • the time-domain granularity transmission indication information of the mini-slot level is used, and the second time-frequency resource is one in the time domain.
  • the indication information is transmitted at the symbol level of the time domain granularity. Since the time domain granularity at the microslot level is larger than the time domain granularity at the symbol level, the flexibility of data decoding is further improved, and power consumption is reduced.
  • the control information occupies one symbol. If the indication information is transmitted at the symbol level, 6 bits are required to indicate, wherein the feedback character is 0 means no use, and the feedback character is 1 means use; and if the second time-frequency resource is 2 symbols in the time domain, the micro-slot level is used. For the time domain granularity transmission indication information, 5 bits are required to indicate, thereby reducing signaling overhead.
  • Step S706 The terminal acquires the indication information sent by the base station.
  • the indication information may be in a symbol in which the control channel of the TTI of the second time-frequency resource is located, or in a control channel of the last N TTIs of the TTI of the first time-frequency resource. That is to say, when receiving the control signaling and data sent by the base station, the terminal first needs to monitor the location of the indication information that may appear in the control channel, and after receiving the location of the indication information, obtain the indication information.
  • the method further includes: the terminal receiving the radio resource control RRC signaling sent by the base station, where the RRC signaling is used to indicate the last N times of the TTI of the first time-frequency resource.
  • the indication information is obtained in a symbol in which the control channel of the TTI or the control channel of the TTI of the second time-frequency resource is located.
  • the terminal can obtain the location information of the indication information according to the RRC signaling, thereby improving the efficiency of acquiring the indication information and reducing the power consumption of the terminal.
  • Step S708 The terminal skips the second time-frequency resource according to the indication information, and performs data decoding on the data transmitted by the resources other than the second time-frequency resource in the first time-frequency resource.
  • This embodiment does not limit the specific data decoding process.
  • the base station sends the indication information for indicating the second time-frequency resource to the terminal. Because the indication information includes the information of the second time-frequency resource, the terminal only needs to decode the first time-frequency resource except the second when performing data decoding. The data transmitted by other resources than the time-frequency resource can be used without decoding the data transmitted by the second time-frequency resource, thereby improving the efficiency and correct rate of data demodulation.
  • the second time-frequency resource is skipped according to the indication information, and other resources except the second time-frequency resource are used in the first time-frequency resource.
  • the transmitted data is decoded by data.
  • the second time-frequency resource is that the base station allocates part of the time-frequency resources in the first time-frequency resource that has been allocated to the terminal to the time-frequency resource of the other terminal. That is to say, the terminal only decodes the data for the terminal without decoding the data of other terminals, thereby improving the efficiency and correct rate of data demodulation.
  • an embodiment of the present invention further provides a device 600, including but not limited to: a smart phone, a smart watch, a tablet computer, a personal computer, a notebook computer, or a computer group, as shown in FIG. 600 includes a processor 601, a memory 602, a transceiver 603, and a bus 604.
  • the transceiver 603 is configured to transmit and receive data with and from an external device.
  • the number of processors 601 in device 600 can be one or more.
  • processor 601, memory 602, and transceiver 603 may be connected by a bus system or other means.
  • Apparatus 600 can be used to perform the methods illustrated in Figures 2 and 3. For the meanings and examples of the terms involved in the embodiment, reference may be made to the corresponding descriptions of FIGS. 2 and 3. I will not repeat them here.
  • the program code is stored in the memory 602.
  • the processor 601 is configured to call program code stored in the memory 602 for performing the steps shown in Figs. 2 and 3.
  • the processor 601 herein may be a processing component or a general term of multiple processing components.
  • the processing component may be a central processing unit (CPU), an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present application.
  • DSPs digital signal processors
  • FPGAs Field Programmable Gate Arrays
  • the memory 602 may be a storage device or a collective name of a plurality of storage elements, and is used to store executable program code or parameters, data, and the like required for the application running device to operate.
  • the memory 603 may include random access memory (RAM), and may also include non-volatile memory such as a magnetic disk memory, a flash memory, or the like.
  • the bus 604 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 8, but it does not mean that there is only one bus or one type of bus.
  • the device may also include input and output devices coupled to bus 604 for connection to other portions, such as processor 601, via a bus.
  • the input/output device can provide an input interface for the operator, so that the operator can select the control item through the input interface, and can also be other interfaces through which other devices can be externally connected.
  • a computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be wired from a website site, computer, server or data center (eg Coax, fiber, digital subscriber line (DSL) or wireless (eg, infrared, wireless, microwave, etc.) is transmitted to another website, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • Useful media can be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)).

Abstract

本发明实施例公开了一种数据处理方法及装置,所述方法包括:终端获取基站下发的指示信息,所述指示信息用于指示所述第二时频资源的信息,所述第二时频资源为所述基站将已分配给所述终端的第一时频资源中的部分时频资源分配给其他终端的时频资源;所述终端根据所述指示信息跳过所述第二时频资源,对所述第一时频资源中除所述第二时频资源以外的其他资源所传输的数据进行数据解码。采用本发明实施例,可提高数据解调的效率和正确率。

Description

数据处理方法及装置 技术领域
本发明涉及通信技术领域,主要涉及了一种数据处理方法及装置。
背景技术
随着移动业务的飞速发展,在学术界和工业界都大力的开展了对于第五代通信技术的研究。第五代技术需要支持超高的数据传输速率,海量的连接数以及较低的数据传输的时延以满足对于不同场景的需求。
在新的无线技术(英文:New Radio,NR)中,因为要同时支持多种业务,比如增强的移动宽带(英文:enhanced Mobile BroadBand,eMBB)业务和高可靠低时延(英文:Ultra-Reliable and Low Latency Communications,URLLC)的分集复用。为提高资源使用效率和满足URLLC业务的时延需求,当前第三代合作伙伴计划(英文:3rd Generation Partnership Project,3GPP)讨论中同意URLLC业务的用户设备(英文:User Equipment,UE)可以占用正在被调度的eMBB UE的资源。然而URLLC的UE占用eMBB的资源之后,eMBB的UE并不知道被URLLC的UE占用资源的信息,因此影响数据解调的效率和正确率。
发明内容
本发明实施例提供了一种数据处理方法及装置,用于解决基站为终端分配时频资源后,为了提高资源使用效率和满足其它终端的时延需求,基站在终端的时频资源上将部分资源分配给其他终端,而终端并不知道被其他终端占用资源的信息,造成数据解调的效率和正确率低的问题。
本发明第一方面提供了一种数据处理方法,包括:
终端获取基站下发的指示信息,所述指示信息用于指示第二时频资源的信息,所述第二时频资源为所述基站将已分配给所述终端的第一时频资源中的部分时频资源分配给其他终端的时频资源;
所述终端根据所述指示信息跳过所述第二时频资源,对所述第一时频资源中除所述第二时频资源以外的其他资源所传输的数据进行数据解码。
结合本发明实施例第一方面,在本发明实施例第一方面的第一种可能的实现方式中,所述指示信息位于所述第二时频资源的传输时间间隔TTI的控制信道所在的符号中,所述终端获取基站下发的指示信息,具体包括:
所述终端在所述第二时频资源的传输时间间隔TTI的控制信道所在的符号中获取所述指示信息;或
所述指示信息位于所述第一时频资源的TTI的后N个TTI的控制信道中,所述终端获取基站下发的指示信息,具体包括:
所述终端在所述第一时频资源的TTI的后N个TTI的控制信道中获取所述指示信息,所述N为大于等于1的整数。
结合本发明实施例第一方面和第一方面的第一种可能的实现方式,在本发明实施例第一方面的第二种可能的实现方式中,所述终端获取基站下发的指示信息的步骤之前,还包括:
所述终端接收所述基站下发的无线资源控制RRC信令,所述RRC信令用于指示所述终端从所述第一时频资源的TTI的后N个TTI的控制信道或所述第二时频资源的TTI的控制信道所在的符号中获取所述指示信息。
结合本发明实施例第一方面、第一方面的第一种可能和第一方面的第二种可能,在本发明实施例第一方面的第三种可能的实现方式中,所述指示信息的时域粒度为微时隙级别或符号级别。
结合本发明实施例第一方面的第三种可能的实现方式,在本发明实施例第一方面的第四种可能的实现方式中,当所述第二时频资源在时域上大于或等于两个符号,所述指示信息的时域粒度为微时隙级别;
当所述第二时频资源在时域上为一个符号长度时,所述指示信息的时域粒度为符号级别。
本发明第二方面提出另一种数据处理方法,包括:
基站将已分配给终端的第一时频资源中的第二时频资源分配给其他终端,根据所述第二时频资源生成指示信息,所述指示信息用于指示所述终端识别所述第二时频资源的信息;
所述基站将所述指示信息下发给所述终端。
结合本发明实施例第二方面,在本发明实施例第二方面的第一种可能的实现方式中,所述指示信息位于所述第二时频资源的TTI的控制信道所在的符号中,将所述指示信息携带在下行链路控制信息DCI中下发给所述终端;或
所述指示信息位于所述第一时频资源的TTI的后N个TTI的控制信道中,通过新空口物理下行控制信道NR-PDCCH或组内物理下行控制信道group common PDCCH传输所述指示信息,所述N为大于等于1的整数。
结合本发明实施例第二方面和第二方面的第一种可能的实现方式,在本发明实施例第二方面的第二种可能的实现方式中,所述方法还包括:
所述基站将无线资源控制RRC信令下发给所述终端,所述RRC信令用于指示所述终端从所述第一时频资源的TTI的后N个TTI的控制信道或所述第二时频资源的TTI的控制信道所在的符号中获取所述指示信息。
结合本发明实施例第二方面的第一种可能的实现方式,在本发明实施例第二方面的第三种可能的实现方式中,所述基站将所述指示信息下发给终端,具体包括:
当所述终端支持所述其他终端的业务时,所述基站通过所述第二时频资源 的TTI的控制信道所在的符号下发所述指示信息,或所述基站通过所述第一时频资源的TTI的后N个TTI的控制信道下发所述指示信息;
当所述终端不支持所述其他终端的业务时,所述基站通过所述第一时频资源的TTI的后N个TTI的控制信道下发所述指示信息。
结合本发明实施例第二方面的第一种可能的实现方式,在本发明实施例第二方面的第四种可能的实现方式中,所述基站将所述指示信息下发给终端,具体包括:
当所述终端的执行业务的业务等级高于或等于等级阈值时,所述基站通过所述第二时频资源的TTI的控制信道所在的符号下发所述指示信息;
当所述终端的执行业务的业务等级低于所述等级阈值时,所述基站通过所述第二时频资源的TTI的控制信道所在的符号下发所述指示信息,或所述基站通过所述第一时频资源的TTI的后N个TTI的控制信道下发所述指示信息;
所述业务等级的确定因素至少包括所述终端的执行业务的时延需求。
结合本发明实施例第二方面的第一种可能的实现方式,在本发明实施例第二方面的第五种可能的实现方式中,所述基站将所述指示信息下发给终端,具体包括:
确定所述第二时频资源与所述第一时频资源之间的占用比;
当所述占用比小于或等于占用阈值时,所述基站通过所述第二时频资源的TTI的控制信道所在的符号下发所述指示信息,或所述基站通过所述第一时频资源的TTI的后N个TTI的控制信道下发所述指示信息;
当所述占用比大于所述占用阈值时,所述基站通过所述第一时频资源的TTI的后N个TTI的控制信道下发所述指示信息。
本发明第三方面提出一种数据处理装置,包括:
获取模块,用于获取基站下发的指示信息,所述指示信息用于指示第二时频资源的信息,所述第二时频资源为所述基站将已分配给所述终端的第一时频资源中的部分时频资源分配给其他终端的时频资源;
解码模块,用于根据所述指示信息跳过所述第二时频资源,对所述第一时频资源中除所述第二时频资源以外的其他资源所传输的数据进行数据解码。
结合本发明实施例第三方面,在本发明实施例第三方面的第一种可能的实现方式中,所述指示信息位于所述第二时频资源的传输时间间隔TTI的控制信道所在的符号中,所述获取模块具体用于在所述第二时频资源的传输时间间隔TTI的控制信道所在的符号中获取所述指示信息;或
所述指示信息位于所述第一时频资源的TTI的后N个TTI的控制信道中,所述获取模块具体用于所述终端在所述第一时频资源的TTI的后N个TTI的控制信道中获取所述指示信息,所述N为大于等于1的整数。
结合本发明实施例第三方面和第三方面的第一种可能的实现方式,在本发 明实施例第三方面的第二种可能的实现方式中,所述装置还包括:
接收模块,用于接收所述基站下发的无线资源控制RRC信令,所述RRC信令用于指示所述终端从所述第一时频资源的TTI的后N个TTI的控制信道或所述第二时频资源的TTI的控制信道所在的符号中获取所述指示信息。
结合本发明实施例第三方面、第三方面的第一种可能和第三方面的第二种可能,在本发明实施例第三方面的第三种可能的实现方式中,所述指示信息的时域粒度为微时隙级别或符号级别。
结合本发明实施例第三方面的第三种可能的实现方式,在本发明实施例第三方面的第四种可能的实现方式中,当所述第二时频资源在时域上大于或等于两个符号,所述指示信息的时域粒度为微时隙级别;
当所述第二时频资源在时域上为一个符号长度时,所述指示信息的时域粒度为符号级别。
本发明第四方面提出另一种数据处理装置,包括:
指示信息生成模块,用于将已分配给终端的第一时频资源中的第二时频资源分配给其他终端,根据所述第二时频资源生成指示信息,所述指示信息用于指示所述终端识别所述第二时频资源的信息;
第一发送模块,用于将所述指示信息下发给所述终端。
结合本发明实施例第四方面,在本发明实施例第四方面的第一种可能的实现方式中,所述指示信息位于所述第二时频资源的TTI的控制信道所在的符号中,所述第一发送模块具体用于将所述指示信息携带在下行链路控制信息DCI中下发给所述终端;或
所述指示信息位于所述第一时频资源的TTI的后N个TTI的控制信道中,所述第一发送模块具体用于通过新空口物理下行控制信道NR-PDCCH或组内物理下行控制信道group common PDCCH传输所述指示信息,所述N为大于等于1的整数。
结合本发明实施例第四方面和第四方面的第一种可能的实现方式,在本发明实施例第四方面的第二种可能的实现方式中,所述装置还包括:
第二发送模块,用于将无线资源控制RRC信令下发给所述终端,所述RRC信令用于指示所述终端从所述第一时频资源的TTI的后N个TTI的控制信道或所述第二时频资源的TTI的控制信道所在的符号中获取所述指示信息。
结合本发明实施例第四方面的第一种可能的实现方式,在本发明实施例第四方面的第三种可能的实现方式中,所述第一发送模块具体用于:
当所述终端支持所述其他终端的业务时,通过所述第二时频资源的TTI的控制信道所在的符号中下发所述指示信息,或通过所述第一时频资源的TTI的后N个TTI的控制信道下发所述指示信息;
当所述终端不支持所述其他终端的业务时,通过所述第一时频资源的TTI的后N个TTI的控制信道下发所述指示信息。
结合本发明实施例第四方面的第一种可能的实现方式,在本发明实施例第四方面的第四种可能的实现方式中,所述第一发送模块用于:
当所述终端的执行业务的业务等级高于或等于等级阈值时,通过所述第二时频资源的TTI的控制信道所在的符号中下发所述指示信息;
当所述终端的执行业务的业务等级低于所述等级阈值时,通过所述第二时频资源的TTI的控制信道所在的符号中下发所述指示信息,或通过所述第一时频资源的TTI的后N个TTI的控制信道中下发所述指示信息;
所述业务等级的确定因素至少包括所述终端的执行业务的时延需求。
结合本发明实施例第四方面的第一种可能的实现方式,在本发明实施例第四方面的第五种可能的实现方式中,所述第一发送模块用于:
确定所述第二时频资源与所述第一时频资源之间的占用比;
当所述占用比小于或等于占用阈值时,通过所述第二时频资源的TTI的控制信道所在的符号中下发所述指示信息,或通过所述第一时频资源的TTI的后N个TTI的控制信道中下发所述指示信息;
当所述占用比大于所述占用阈值时,通过所述第一时频资源的TTI的后N个TTI的控制信道中下发所述指示信息。
实施本发明实施例,将具有如下有益效果:
采用了上述的数据处理方法及装置之后,当终端获取基站下发的指示信息时,根据指示信息跳过第二时频资源,对第一时频资源中除第二时频资源以外的其他资源所传输的数据进行数据解码。其中,第二时频资源为基站将已分配给终端的第一时频资源中的部分时频资源分配给其他终端的时频资源。也就是说,终端只解码针对终端的数据,而不需解码其他终端的数据,从而提高了数据解调的效率和正确率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
其中:
图1为一种传输块的结构示意图;
图2为本发明实施例提供的一种数据处理方法的流程示意图;
图3为本发明实施例提供的另一种数据处理方法的流程示意图;
图4为本发明实施例提供的一种不同指示信息的位置示意图;
图5为本发明实施例提供的一种数据处理装置的结构示意图;
图6为本发明实施例提供的另一种数据处理装置的结构示意图;
图7为本发明实施例提供的一种数据处理系统的时序图;
图8为一个实施例中运行数据处理方法的计算机设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
现有长期演进(英文:Long Term Evolution,LTE)情况下,数据发送都是以传输块(英文:transport block,TB)为单位。其中TB可包括多个码块(英文:code block,CB),CB为TB的发送基本单元。
目前第五代通信主要场景包括以下三种:增强的移动宽带(英文:enhanced Mobile Broad Band,eMBB),大量机器类通信(英文:massive Machine Type Communications,mMTC)和高可靠低时延(英文:Ultra-Reliable and Low Latency Communications,URLLC)。而这三种场景所针对的业务类型不一样,其需求也不一样。比如eMBB业务主要是针对需要较高的数据速率的业务场景;mMTC业务主要是针对大量连接的业务场景;URLLC业务主要是针对时延要求以及可靠性较高的业务场景。
在新的无线技术(英文:New Radio,NR)中,因为要同时支持多种业务,比如eMBB业务和URLLC业务的分集复用。为提高资源使用效率和满足URLLC业务的时延需求,该分集复用可能导致的现象是给eMBB的UE#1分配了1个slot的N个资源块(Resource Block,RB),且第一设备在slot1中配置发送与UE#1相关的数据和控制信令,当slot1中间URLLC的UE#2突然有业务到达,那么为了满足URLLC业务的时延要求,需要立刻给URLLC的UE#2分配资源,那么就可能将slot中间的部分符号分配给URLLC的UE#2,即这N个RB的全部或者部分在这部分符号时间时不再传送eMBBUE#1的数据或控制信令(如图1所示,中间一个CB为URLLC的UE#2分配资源),而是发送URLLC的UE#2的数据或控制信令。然而URLLC的UE占用eMBB的资源之后,eMBB的UE#1并不知道被URLLC的UE占用的资源的信息,因此影响数据解调的效率和正确率。
在本实施例中,终端具体可以为:个人计算机、服务器计算机、手持式或膝上型、消费型电子设备、移动设备(比如智能手机、平板电脑、媒体播放器等等)和多处理器系统等等,当然也可以为:基站。本发明具体实施方式并不局限上述终端表现形式。
本发明对于终端和其他终端的执行业务不作限定,优选的为终端执行eMBB业务,其他终端执行URLLC业务。需要说明的是,其他终端可以有多个。
基于此,本发明第一方面提供一种数据处理方法用于解决基站为终端分配时频资源后,为了提高资源使用效率和满足其它终端的时延需求,基站在终端的时频资源上将部分资源分配给其他终端,而终端并不知道被其他终端占用资源的信息,造成数据解调的效率和正确率低的问题。具体的,如图2所示,一种数据处理方法,包括:
步骤S102:终端获取基站下发的指示信息。
在本实施例中,指示信息用于指示终端识别第二时频资源的信息。即终端通过获取指示信息可获取其他终端占用的第二时频资源的信息,这样在解调第一时频资源传输的数据时可以不解调第二时频资源对应的数据,从而提高了数据解调的效率和正确率。
在本实施例中,第二时频资源为基站将已分配给终端的第一时频资源中的部分时频资源分配给其他终端的时频资源。也就是说,基站为了满足多业务复用,将终端的第一时频资源中为其他终端分配的时频资源作为第二时频资源。如图1所示,将URLLC业务所占用的资源作为第二时频资源。
可选的,指示信息位于第二时频资源的传输时间间隔(英文:Transmission Time Interval,TTI)的控制信道所在的符号中,终端获取基站下发的指示信息,具体包括:终端在第二时频资源的传输时间间隔TTI的控制信道所在的符号中获取指示信息,或指示信息位于第一时频资源的TTI的后N个TTI的控制信道中,终端获取基站下发的指示信息,具体包括:终端在第一时频资源的TTI的后N个TTI的控制信道中获取指示信息,N为大于等于1的整数。
在本实施例中,指示信息可在第二时频资源的TTI的控制信道所在的符号中,也可在第一时频资源的TTI的后N个TTI的控制信道中。也就是说,终端在接收基站下发的控制信令和数据时,先要监听控制信道中可能出现的指示信息的位置,当监听到指示信息的位置后,获取指示信息。
优选的,终端获取基站下发的指示信息的步骤之前,还包括:终端接收基站下发的无线资源控制(英文:Radio Resource Control,RRC)信令,RRC信令用于指示终端从第一时频资源的TTI的后N个TTI的控制信道或第二时频资源的TTI的控制信道所在的符号中获取指示信息。
也就是说,终端根据RRC信令即可获取指示信息的位置信息,从而提高了获取指示信息的效率,并降低终端的功耗。
优选的,指示信息的时域粒度为微时隙级别或符号级别。也就是说,指示信息的时域粒度可为微时隙mini-slot级别,也可以为符号级别。由于微时隙级别的时域粒度大于符号级别的时域粒度,从而进一步提高数据解码的灵活性,并降低功耗。
具体的,当第二时频资源在时域上大于或等于两个符号时,指示信息的时域粒度为微时隙级别;当第二时频资源在时域上为一个符号长度,指示信息的 时域粒度为符号级别。
也就是说,当第二时频资源在时域上大于或等于两个符号时,采用微时隙mini-slot级别的时域粒度传输指示信息,而第二时频资源在时域上为一个符号时,采用符号级别的时域粒度传输指示信息。由于微时隙级别的时域粒度大于符号级别的时域粒度,从而减少信令开销。
举例来说,假设TTI中共有7个符号,控制信息占用一个符号。若以符号级别传输指示信息,需要6bit来指示,其中,反馈字符为0表示不用,反馈字符为1表示使用;而第二时频资源在时域若为2个符号,则以微时隙级别为时域粒度传输指示信息,需要5bit来指示,从而减少信令开销。
步骤S104:终端根据指示信息跳过第二时频资源,对第一时频资源中除第二时频资源以外的其他资源所传输的数据进行数据解码。
本实施例对于具体的数据解码过程不作限定。
由于指示信息中包含第二时频资源的信息,则终端在进行数据解码时只需解码第一时频资源中除第二时频资源以外的其他资源所传输的数据即可,而不需要解码第二时频资源所传输的数据,从而提高数据解调的效率和正确率。
本发明第二方面提供另一种数据处理方法,请参照图3,如图3所示,一种数据处理方法,包括:
步骤S202:基站将已分配给终端的第一时频资源中的第二时频资源分配给其他终端,根据第二时频资源生成指示信息。
在本实施例中,第二时频资源为基站将已分配给终端的第一时频资源中的部分时频资源分配给其他终端的时频资源。也就是说,基站为了满足多业务复用,将终端的第一时频资源中为其他终端分配的时频资源作为第二时频资源。如图1所示,将URLLC业务所占用的资源作为第二时频资源。
在本实施例中,指示信息是根据第二时频资源生成的。根据指示信息终端就可以识别第二时频资源的信息,终端在进行数据解码时只需解码第一时频资源中除第二时频资源以外的其他资源所传输的数据即可,而不需要解码第二时频资源所传输的数据,从而提高了数据解调的效率和正确率。
优选的,基站将无线资源控制RRC信令下发给终端,RRC信令用于指示终端从第一时频资源的TTI的后N个TTI的控制信道或第二时频资源的TTI的控制信道所在的符号中获取指示信息。
也就是说,终端根据RRC信令即可获取指示信息的位置信息,从而提高了获取指示信息的效率,并降低终端的功耗。
优选的,指示信息的时域粒度为微时隙级别或符号级别。也就是说,指示信息的时域粒度可为微时隙mini-slot级别,也可以为符号级别。由于微时隙级别的时域粒度大于符号级别的时域粒度,从而进一步提高数据解码的灵活性,并降低功耗。
具体的,当第二时频资源在时域上大于或等于两个符号时,指示信息的时域粒度为微时隙级别;当第二时频资源在时域上为一个符号长度,指示信息的时域粒度为符号级别。
也就是说,当第二时频资源在时域上大于或等于两个符号时,采用微时隙mini-slot级别的时域粒度传输指示信息,而第二时频资源在时域上为一个符号时,采用符号级别的时域粒度传输指示信息。由于微时隙级别的时域粒度大于符号级别的时域粒度,从而进一步提高数据解码的灵活性,并降低功耗。
步骤S204:基站将指示信息下发给终端。
基站将用于指示第二时频资源的指示信息下发给终端,由于指示信息中包含第二时频资源的信息,则终端在进行数据解码时只需解码第一时频资源中除第二时频资源以外的其他资源所传输的数据即可,而不需要解码第二时频资源所传输的数据,从而提高了数据解调的效率和正确率。
可选的,基站可以将指示信息配置在第二时频资源的TTI的控制信道所在的符号中,并将指示信息携带在下行链路控制信息DCI中下发给终端;基站也可以将指示信息配置在第一时频资源的TTI的后N个TTI的控制信道中,并通过新空口物理下行控制信道(英文:New Radio Physical Downlink Control Channel,NR-PDCCH)或组内物理下行控制信道(英文:group common Physical Downlink Control Channel,group common PDCCH)传输指示信息,N为大于等于1的整数。
图4中示出了指示信息的位置,基站下发给终端的指示信息可以是图4所示的第一指示信息也可以是第二指示信息,其中,第一指示信息是位于URLLC1业务占用的第二时频资源的TTI的控制信道所在的符号中,用于指示URLLC1业务占用的时频资源的信息,将指示信息跟随分配给URLLC1时频资源下发给终端,则终端可在解调URLLC1业务占用的时频资源所传输的数据之前,获取指示信息,从而不需要对URLLC1业务占用的时频资源所传输的数据进行解调,提高了数据解调的效率和正确率;第二指示信息是位于下一个eMBB业务的TTI的控制信道中,用于指示URLLC2业务占用的时频资源的信息,也就是第一时频资源的TTI的后N个TTI的控制信道中,可解决第二时频资源不支持下发指示信息的问题,此外也可缓解第二时频资源下发指示信息的压力,终端通过指示信息可跳过第二时频资源,对第一时频资源中除第二时频资源以外的其他资源所传输的数据进行数据解码,提高了数据解调的效率和正确率。
可选的,指示信息的位置可通过终端的业务支持能力、终端的执行业务的业务等级和第二时频资源与第一时频资源之间的占用比来确定,此外可能还包括其它确定方式,本发明实施例不作限定。
其中,当终端支持其他终端的业务时,基站通过第二时频资源的TTI的控制信道所在的符号下发指示信息,或基站通过第一时频资源的TTI的后N个TTI 的控制信道下发指示信息;当终端不支持其他终端的业务时,基站通过第一时频资源的TTI的后N个TTI的控制信道下发指示信息。
由于终端必然支持终端的业务,当终端支持其他终端的业务时,指示信息通过DCI或复用NR-PDCCH或PDCCH传输给终端,则终端在第二时频资源的TTI的控制信道所在的符号中或第一时频资源的TTI的后N个TTI的控制信道中获取指示信息。而终端不支持其他终端的业务时,指示信息只能复用NR-PDCCH或PDCCH传输给终端,则终端在第一时频资源的TTI的后N个TTI中获取指示信息。
其中,当终端的执行业务的业务等级高于或等于等级阈值时,基站通过第二时频资源的TTI的控制信道所在的符号下发指示信息;当终端的执行业务的业务等级低于等级阈值时,基站通过第二时频资源的TTI的控制信道所在的符号下发指示信息,或基站通过第一时频资源的TTI的后N个TTI的控制信道下发指示信息。
在本实施例中,业务等级的确定因素至少包括终端的执行业务的时延需求。根据终端的执行业务的时延需求确定业务等级,其中,业务时延需求越高业务等级越高。此外还可包括其它确定因素,对于业务等级的确定因素本发明不作限定。
也就是说,当终端的执行业务的业务等级高于或等于等级阈值时,为了提高数据解调的效率和正确率,指示信息通过DCI传输给终端,则终端在第二时频资源的TTI的控制信道所在的符号中获取指示信息。而业务等级低于等级阈值时,指示信息可通过DCI传输给终端,也可通过复用NR-PDCCH或PDCCH传输给终端,则终端在第一时频资源的TTI的后N个TTI的控制信道中获取指示信息。
需要说明的是,本实施例对于终端和其他终端的执行业务不作限定。但优选的是,终端执行eMBB业务,其他终端执行URLLC业务。也就是说,终端的执行业务的业务等级是eMBB业务的业务等级。
其中,确定第二时频资源与第一时频资源之间的占用比;当占用比小于或等于占用阈值时,基站通过第二时频资源的TTI的控制信道所在的符号下发指示信息,或基站通过第一时频资源的TTI的后N个TTI的控制信道下发指示信息;当占用比大于占用阈值时,基站通过第一时频资源的TTI的后N个TTI的控制信道下发指示信息。
也就是说,第二时频资源被一个或多个其他终端占用,则无论有没有指示信息,对数据解调没有影响。也就是说,当占用比大于占用阈值时,假设为K,即当占用比大于K时,可在第一时频资源的TTI的后N个TTI的控制信道中获取指示信息,而占用比小于K时,可在第二时频资源的TTI的控制信道所在的符号中或第一时频资源的TTI的后N个TTI的控制信道中获取指示信息,从而 提高数据解调的效率和正确率。
在本实施例中,指示信息可在第二时频资源的TTI的控制信道所在的符号中,也可在第一时频资源的TTI的后N个TTI的控制信道中。也就是说,终端在接收基站下发的控制信令和数据时,先要监听控制信道中可能出现的指示信息的位置,当监听到指示信息的位置后,获取指示信息。
本发明第三方面提供一种数据处理装置,如图5所示,一种数据处理装置包括:获取模块102以及解码模块104,其中:
获取模块102,用于获取基站下发的指示信息,指示信息用于指示第二时频资源的信息,第二时频资源为基站将已分配给终端的第一时频资源中的部分时频资源分配给其他终端的时频资源;
解码模块104,用于根据指示信息跳过第二时频资源,对第一时频资源中除第二时频资源以外的其他资源所传输的数据进行数据解码。
可选的,指示信息位于第二时频资源的传输时间间隔TTI的控制信道所在的符号中,获取模块102具体用于在第二时频资源的传输时间间隔TTI的控制信道所在的符号中获取指示信息;或
指示信息位于第一时频资源的TTI的后N个TTI的控制信道中,获取模块102具体用于终端在第一时频资源的TTI的后N个TTI的控制信道中获取指示信息,N为大于等于1的整数。
可选的,装置还包括:
接收模块106,用于接收基站下发的无线资源控制RRC信令,RRC信令用于指示终端从第一时频资源的TTI的后N个TTI的控制信道或第二时频资源的TTI的控制信道所在的符号中获取指示信息。
可选的,指示信息的时域粒度为微时隙级别或符号级别。
可选的,当第二时频资源在时域上大于或等于两个符号,指示信息的时域粒度为微时隙级别;当第二时频资源在时域上为一个符号长度时,指示信息的时域粒度为符号级别。
本发明第四方面提供另一种数据处理装置,如图6所示,一种数据处理装置包括:指示信息生成模块202和第一发送模块204,其中:
指示信息生成模块202,用于将已分配给终端的第一时频资源中的第二时频资源分配给其他终端,根据第二时频资源生成指示信息,指示信息用于指示终端识别第二时频资源的信息;
第一发送模块204,用于将指示信息下发给终端。
可选的,指示信息位于第二时频资源的TTI的控制信道所在的符号中,第一发送模块204具体用于将指示信息携带在下行链路控制信息DCI中下发给终端;或
指示信息位于第一时频资源的TTI的后N个TTI的控制信道中,第一发送 模块204具体用于通过新空口物理下行控制信道NR-PDCCH或组内物理下行控制信道group common PDCCH传输指示信息,N为大于等于1的整数
可选的,装置还包括:
第二发送模块206,用于将无线资源控制RRC信令下发给终端,RRC信令用于指示终端从第一时频资源的TTI的后N个TTI的控制信道或第二时频资源的TTI的控制信道所在的符号中获取指示信息。
可选的,第一发送模块204具体用于:
当终端支持其他终端的业务时,通过第二时频资源的TTI的控制信道所在的符号中下发指示信息,或通过第一时频资源的TTI的后N个TTI的控制信道下发指示信息;
当终端不支持其他终端的业务时,通过第一时频资源的TTI的后N个TTI的控制信道下发指示信息。
可选的,第一发送模块204具体用于:
当终端的执行业务的业务等级高于或等于等级阈值时,通过第二时频资源的TTI的控制信道所在的符号中下发指示信息;
当终端的执行业务的业务等级低于等级阈值时,通过第二时频资源的TTI的控制信道所在的符号中下发指示信息,或通过第一时频资源的TTI的后N个TTI的控制信道中下发指示信息;
业务等级的确定因素至少包括终端的执行业务的时延需求。
可选的,第一发送模块204具体用于:
确定第二时频资源与第一时频资源之间的占用比;
当占用比小于或等于占用阈值时,通过第二时频资源的TTI的控制信道所在的符号中下发指示信息,或通过第一时频资源的TTI的后N个TTI的控制信道中下发指示信息;
当占用比大于占用阈值时,通过第一时频资源的TTI的后N个TTI的控制信道中下发指示信息。
本发明第五方面提出一种数据处理系统,该系统包括本发明第一方面和第二方面提出的数据处理装置。
具体的,系统执行的时序图如图7所示,包括:
步骤S702:基站将已分配给终端的第一时频资源中的第二时频资源分配给其他终端,根据第二时频资源生成指示信息。
在本实施例中,第二时频资源为基站将已分配给终端的第一时频资源中的部分时频资源分配给其他终端的时频资源。也就是说,基站为了满足多业务复用,将终端的第一时频资源中为其他终端分配的时频资源作为第二时频资源。
在本实施例中,指示信息是根据第二时频资源生成的。根据指示信息终端就可以识别第二时频资源的信息,终端在进行数据解码时只需解码第一时频资 源中除第二时频资源以外的其他资源所传输的数据即可,而不需要解码第二时频资源所传输的数据,从而提高了数据解调的效率和正确率。
步骤S704:基站将指示信息下发给终端。
可选的,指示信息位于第二时频资源的TTI的控制信道所在的符号中,基站将指示信息携带在下行链路控制信息DCI中下发给终端,或指示信息位于第一时频资源的TTI的后N个TTI的控制信道中,基站通过新空口物理下行控制信道NR-PDCCH或组内物理下行控制信道group common PDCCH传输指示信息,N为大于等于1的整数。
可选的,指示信息的位置可通过终端的业务支持能力、终端的执行业务的业务等级和第二时频资源与第一时频资源之间的占用比来确定,此外可能还包括其它确定方式,本发明实施例不作限定。
其中,当终端支持其他终端的业务时,基站通过第二时频资源的TTI的控制信道所在的符号下发指示信息,或基站通过第一时频资源的TTI的后N个TTI的控制信道下发指示信息;当终端不支持其他终端的业务时,基站通过第一时频资源的TTI的后N个TTI的控制信道下发指示信息。
由于终端必然支持终端的业务,当终端支持其他终端的业务时,指示信息通过DCI或复用NR-PDCCH或PDCCH传输给终端,则终端在第二时频资源的TTI的控制信道所在的符号中或第一时频资源的TTI的后N个TTI的控制信道中获取指示信息。而终端不支持其他终端的业务时,指示信息只能复用NR-PDCCH或PDCCH传输给终端,则终端在第一时频资源的TTI的后N个TTI中获取指示信息。
其中,当终端的执行业务的业务等级高于或等于等级阈值时,基站通过第二时频资源的TTI的控制信道所在的符号下发指示信息;当终端的执行业务的业务等级低于等级阈值时,基站通过第二时频资源的TTI的控制信道所在的符号下发指示信息,或基站通过第一时频资源的TTI的后N个TTI的控制信道下发指示信息。
在本实施例中,业务等级的确定因素至少包括终端的执行业务的时延需求。根据终端的执行业务的时延需求确定业务等级,其中,业务时延需求越高业务等级越高。此外还可包括其它确定因素,对于业务等级的确定因素本发明不作限定。
也就是说,当终端的执行业务的业务等级高于或等于等级阈值时,为了提高数据解调的效率和正确率,指示信息通过DCI传输给终端,则终端在第二时频资源的TTI的控制信道所在的符号中获取指示信息。而业务等级低于等级阈值时,指示信息可通过DCI传输给终端,也可通过复用NR-PDCCH或PDCCH传输给终端,则终端在第一时频资源的TTI的后N个TTI的控制信道中获取指示信息。
需要说明的是,本实施例对于终端和其他终端的执行业务不作限定。但优选的是,终端执行eMBB业务,其他终端执行URLLC业务。也就是说,终端的执行业务的业务等级是eMBB业务的业务等级。
其中,确定第二时频资源与第一时频资源之间的占用比;当占用比小于或等于占用阈值时,基站通过第二时频资源的TTI的控制信道所在的符号下发指示信息,或基站通过第一时频资源的TTI的后N个TTI的控制信道下发指示信息;当占用比大于占用阈值时,基站通过第一时频资源的TTI的后N个TTI的控制信道下发指示信息。
也就是说,第二时频资源被一个或多个其他终端占用,则无论有没有指示信息,对数据解调没有影响。也就是说,当占用比大于占用阈值时,假设为K,即当占用比大于K时,可在第一时频资源的TTI的后N个TTI的控制信道中获取指示信息,而占用比小于K时,可在第二时频资源的TTI的控制信道所在的符号中或第一时频资源的TTI的后N个TTI的控制信道中获取指示信息,从而提高数据解调的效率和正确率。
在本实施例中,指示信息可在第二时频资源的TTI的控制信道所在的符号中,也可在第一时频资源的TTI的后N个TTI的控制信道中。也就是说,终端在接收基站下发的控制信令和数据时,先要监听控制信道中可能出现的指示信息的位置,当监听到指示信息的位置后,获取指示信息。
优选的,基站将无线资源控制RRC信令下发给终端,RRC信令用于指示终端从第一时频资源的TTI的后N个TTI的控制信道或第二时频资源的TTI的控制信道所在的符号中获取指示信息。
也就是说,终端根据RRC信令即可获取指示信息的位置信息,从而提高了获取指示信息的效率,并降低终端的功耗。
优选的,指示信息的时域粒度为微时隙级别或符号级别。也就是说,指示信息的时域粒度可为微时隙mini-slot级别,也可以为符号级别。由于微时隙级别的时域粒度大于符号级别的时域粒度,从而进一步提高数据解码的灵活性,并降低功耗。
具体的,当第二时频资源在时域上大于或等于两个符号时,指示信息的时域粒度为微时隙级别;当第二时频资源在时域上为一个符号长度,指示信息的时域粒度为符号级别。
也就是说,当第二时频资源在时域上大于或等于两个符号时,采用微时隙mini-slot级别的时域粒度传输指示信息,而第二时频资源在时域上为一个符号时,采用符号级别的时域粒度传输指示信息。由于微时隙级别的时域粒度大于符号级别的时域粒度,从而进一步提高数据解码的灵活性,并降低功耗。
举例来说,假设TTI中共有7个符号,控制信息占用一个符号。若以符号级别传输指示信息,需要6bit来指示,其中,反馈字符为0表示不用,反馈字 符为1表示使用;而第二时频资源在时域若为2个符号,则以微时隙级别为时域粒度传输指示信息,需要5bit来指示,从而减少信令开销。
步骤S706:终端获取基站下发的指示信息。
在本实施例中,指示信息可在第二时频资源的TTI的控制信道所在的符号中,也可在第一时频资源的TTI的后N个TTI的控制信道中。也就是说,终端在接收基站下发的控制信令和数据时,先要监听控制信道中可能出现的指示信息的位置,当监听到指示信息的位置后,获取指示信息。
优选的,终端获取基站下发的指示信息的步骤之前,还包括:终端接收基站下发的无线资源控制RRC信令,RRC信令用于指示终端从第一时频资源的TTI的后N个TTI的控制信道或第二时频资源的TTI的控制信道所在的符号中获取指示信息。
也就是说,终端根据RRC信令即可获取指示信息的位置信息,从而提高了获取指示信息的效率,并降低终端的功耗。
步骤S708:终端根据指示信息跳过第二时频资源,对第一时频资源中除第二时频资源以外的其他资源所传输的数据进行数据解码。
本实施例对于具体的数据解码过程不作限定。
基站将用于指示第二时频资源的指示信息下发给终端,由于指示信息中包含第二时频资源的信息,则终端在进行数据解码时只需解码第一时频资源中除第二时频资源以外的其他资源所传输的数据即可,而不需要解码第二时频资源所传输的数据,从而提高数据解调的效率和正确率。
实施本发明实施例,将具有如下有益效果:
采用了上述的数据处理方法及装置之后,当终端获取基站下发的指示信息时,根据指示信息跳过第二时频资源,对第一时频资源中除第二时频资源以外的其他资源所传输的数据进行数据解码。其中,第二时频资源为基站将已分配给终端的第一时频资源中的部分时频资源分配给其他终端的时频资源。也就是说,终端只解码针对终端的数据,而不需解码其他终端的数据,从而提高了数据解调的效率和正确率。
参见图8,本发明实施例还提供一种设备600,该设备600包括但不限于:智能手机、智能手表、平板电脑、个人计算机、笔记本电脑或计算机群组,如图8所示,该设备600包括:处理器601、存储器602、收发器603和总线604。收发器603用于与外部设备之间收发数据。设备600中的处理器601的数量可以是一个或多个。本申请的一些实施例中,处理器601、存储器602和收发器603可通过总线系统或其它方式连接。设备600可以用于执行图2、图3所示的方法。关于本实施例涉及的术语的含义以及举例,可以参考图2、图3对应的说明。此处不再赘述。
其中,存储器602中存储程序代码。处理器601用于调用存储器602中存 储的程序代码,用于执行如图2、图3所示的步骤。
需要说明的是,这里的处理器601可以是一个处理元件,也可以是多个处理元件的统称。例如,该处理元件可以是中央处理器(Central Processing Unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
存储器602可以是一个存储装置,也可以是多个存储元件的统称,且用于存储可执行程序代码或应用程序运行装置运行所需要参数、数据等。且存储器603可以包括随机存储器(RAM),也可以包括非易失性存储器(non-volatile memory),例如磁盘存储器,闪存(Flash)等。
总线604可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
该设备还可以包括输入输出装置,连接于总线604,以通过总线与处理器601等其它部分连接。该输入输出装置可以为操作人员提供一输入界面,以便操作人员通过该输入界面选择布控项,还可以是其它接口,可通过该接口外接其它设备。
在上述实施例中,可以全部或部分的通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本发明实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其它可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或者数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (22)

  1. 一种数据处理方法,其特征在于,包括:
    终端获取基站下发的指示信息,所述指示信息用于指示第二时频资源的信息,所述第二时频资源为所述基站将已分配给所述终端的第一时频资源中的部分时频资源分配给其他终端的时频资源;
    所述终端根据所述指示信息跳过所述第二时频资源,对所述第一时频资源中除所述第二时频资源以外的其他资源所传输的数据进行数据解码。
  2. 根据权利要求1所述的方法,其特征在于,所述指示信息位于所述第二时频资源传输时间间隔TTI的控制信道所在的符号中,所述终端获取基站下发的指示信息,具体包括:所述终端在所述第二时频资源的传输时间间隔TTI的控制信道所在的符号中获取所述指示信息;或
    所述指示信息位于所述第一时频资源的TTI的后N个TTI的控制信道中,所述终端获取基站下发的指示信息,具体包括:所述终端在所述第一时频资源的TTI的后N个TTI的控制信道中获取所述指示信息,所述N为大于等于1的整数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端获取基站下发的指示信息的步骤之前,还包括:
    所述终端接收所述基站下发的无线资源控制RRC信令,所述RRC信令用于指示所述终端从所述第一时频资源的TTI的后N个TTI的控制信道或所述第二时频资源的TTI的控制信道所在的符号中获取所述指示信息。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述指示信息的时域粒度为微时隙级别或符号级别。
  5. 根据权利要求4所述的方法,其特征在于,当所述第二时频资源在时域上大于或等于两个符号,所述指示信息的时域粒度为微时隙级别;
    当所述第二时频资源在时域上为一个符号长度时,所述指示信息的时域粒度为符号级别。
  6. 一种数据处理方法,其特征在于,包括:
    基站将已分配给终端的第一时频资源中的第二时频资源分配给其他终端, 根据所述第二时频资源生成指示信息,所述指示信息用于指示所述终端识别所述第二时频资源的信息;
    所述基站将所述指示信息下发给所述终端。
  7. 根据权利要求6所述的方法,其特征在于,所述指示信息位于所述第二时频资源的TTI的控制信道所在的符号中,所述基站将所述指示信息下发给所述终端,具体包括:将所述指示信息携带在下行链路控制信息DCI中下发给所述终端;或
    所述指示信息位于所述第一时频资源的TTI的后N个TTI的控制信道中,所述N为大于等于1的整数,所述基站将所述指示信息下发给所述终端,具体包括:通过新空口物理下行控制信道NR-PDCCH或组内物理下行控制信道group common PDCCH传输所述指示信息。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    所述基站将无线资源控制RRC信令下发给所述终端,所述RRC信令用于指示所述终端从所述第一时频资源的TTI的后N个TTI的控制信道或所述第二时频资源的TTI的控制信道所在的符号中获取所述指示信息。
  9. 根据权利要求7所述的方法,其特征在于,所述基站将所述指示信息下发给终端,具体包括:
    当所述终端支持所述其他终端的业务时,所述基站通过所述第二时频资源的TTI的控制信道所在的符号下发所述指示信息,或所述基站通过所述第一时频资源的TTI的后N个TTI的控制信道下发所述指示信息;
    当所述终端不支持所述其他终端的业务时,所述基站通过所述第一时频资源的TTI的后N个TTI的控制信道下发所述指示信息。
  10. 根据权利要求7所述的方法,其特征在于,所述基站将所述指示信息下发给终端,具体包括:
    当所述终端的执行业务的业务等级高于或等于等级阈值时,所述基站通过所述第二时频资源的TTI的控制信道所在的符号下发所述指示信息;
    当所述终端的执行业务的业务等级低于所述等级阈值时,所述基站通过所述第二时频资源的TTI的控制信道所在的符号下发所述指示信息,或所述基站通过所述第一时频资源的TTI的后N个TTI的控制信道下发所述指示信息;
    所述业务等级的确定因素至少包括所述终端的执行业务的时延需求。
  11. 根据权利要求7所述的方法,其特征在于,所述基站将所述指示信息下发给终端,具体包括:
    确定所述第二时频资源与所述第一时频资源之间的占用比;
    当所述占用比小于或等于占用阈值时,所述基站通过所述第二时频资源的TTI的控制信道所在的符号下发所述指示信息,或所述基站通过所述第一时频资源的TTI的后N个TTI的控制信道下发所述指示信息;
    当所述占用比大于所述占用阈值时,所述基站通过所述第一时频资源的TTI的后N个TTI的控制信道下发所述指示信息。
  12. 一种数据处理装置,其特征在于,包括:
    获取模块,用于获取基站下发的指示信息,所述指示信息用于指示第二时频资源的信息,所述第二时频资源为所述基站将已分配给终端的第一时频资源中的部分时频资源分配给其他终端的时频资源;
    解码模块,用于根据所述指示信息跳过所述第二时频资源,对所述第一时频资源中除所述第二时频资源以外的其他资源所传输的数据进行数据解码。
  13. 根据权利要求12所述的装置,其特征在于,所述指示信息位于所述第二时频资源的传输时间间隔TTI的控制信道所在的符号中,所述获取模块具体用于在所述第二时频资源的传输时间间隔TTI的控制信道所在的符号中获取所述指示信息;或
    所述指示信息位于所述第一时频资源的TTI的后N个TTI的控制信道中,所述获取模块具体用于在所述第一时频资源的TTI的后N个TTI的控制信道中获取所述指示信息,所述N为大于等于1的整数。
  14. 根据权利要求12或13所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述基站下发的无线资源控制RRC信令,所述RRC信令用于指示所述终端从所述第一时频资源的TTI的后N个TTI的控制信道或所述第二时频资源的TTI的控制信道所在的符号中获取所述指示信息。
  15. 根据权利要求12-14任一项所述的装置,其特征在于,所述指示信息的时域粒度为微时隙级别或符号级别。
  16. 根据权利要求15所述的装置,其特征在于,当所述第二时频资源在时域上大于或等于两个符号,所述指示信息的时域粒度为微时隙级别;
    当所述第二时频资源在时域上为一个符号长度时,所述指示信息的时域粒度为符号级别。
  17. 一种数据处理装置,其特征在于,包括:
    指示信息生成模块,用于将已分配给终端的第一时频资源中的第二时频资源分配给其他终端,根据所述第二时频资源生成指示信息,所述指示信息用于指示所述终端识别所述第二时频资源的信息;
    第一发送模块,用于将所述指示信息下发给所述终端。
  18. 根据权利要求17所述的装置,其特征在于,所述指示信息位于所述第二时频资源的TTI的控制信道所在的符号中,所述发送模块具体用于将所述指示信息携带在下行链路控制信息DCI中下发给所述终端;或
    所述指示信息位于所述第一时频资源的TTI的后N个TTI的控制信道中,所述发送模块具体用于通过新空口物理下行控制信道NR-PDCCH或组内物理下行控制信道group common PDCCH传输所述指示信息,所述N为大于等于1的整数。
  19. 根据权利要求17或18所述的装置,其特征在于,所述装置还包括:
    第二发送模块,用于将无线资源控制RRC信令下发给所述终端,所述RRC信令用于指示所述终端从所述第一时频资源的TTI的后N个TTI的控制信道或所述第二时频资源的TTI的控制信道所在的符号中获取所述指示信息。
  20. 根据权利要求18所述的装置,其特征在于,所述第一发送模块具体用于:
    当所述终端支持所述其他终端的业务时,通过所述第二时频资源的TTI的控制信道所在的符号中下发所述指示信息,或通过所述第一时频资源的TTI的后N个TTI的控制信道下发所述指示信息;
    当所述终端不支持所述其他终端的业务时,通过所述第一时频资源的TTI的后N个TTI的控制信道下发所述指示信息。
  21. 根据权利要求18所述的装置,其特征在于,所述第一发送模块具体用于:
    当所述终端的执行业务的业务等级高于或等于等级阈值时,通过所述第二时频资源的TTI的控制信道所在的符号中下发所述指示信息;
    当所述终端的执行业务的业务等级低于所述等级阈值时,通过所述第二时频资源的TTI的控制信道所在的符号中下发所述指示信息,或通过所述第一时频资源的TTI的后N个TTI的控制信道中下发所述指示信息;
    所述业务等级的确定因素至少包括所述终端的执行业务的时延需求。
  22. 根据权利要求18所述的装置,其特征在于,所述第一发送模块具体用于:
    确定所述第二时频资源与所述第一时频资源之间的占用比;
    当所述占用比小于或等于占用阈值时,通过所述第二时频资源的TTI的控制信道所在的符号中下发所述指示信息,或通过所述第一时频资源的TTI的后N个TTI的控制信道中下发所述指示信息;
    当所述占用比大于所述占用阈值时,通过所述第一时频资源的TTI的后N个TTI的控制信道中下发所述指示信息。
PCT/CN2018/074154 2017-05-09 2018-01-25 数据处理方法及装置 WO2018205687A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18797733.5A EP3637908B1 (en) 2017-05-09 2018-01-25 Data processing method and device
US16/676,015 US11659526B2 (en) 2017-05-09 2019-11-06 Method and device for processing data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710323109.2 2017-05-09
CN201710323109.2A CN106941724B (zh) 2017-05-09 2017-05-09 数据处理方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/676,015 Continuation US11659526B2 (en) 2017-05-09 2019-11-06 Method and device for processing data

Publications (1)

Publication Number Publication Date
WO2018205687A1 true WO2018205687A1 (zh) 2018-11-15

Family

ID=59463405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074154 WO2018205687A1 (zh) 2017-05-09 2018-01-25 数据处理方法及装置

Country Status (4)

Country Link
US (1) US11659526B2 (zh)
EP (1) EP3637908B1 (zh)
CN (1) CN106941724B (zh)
WO (1) WO2018205687A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108259150B (zh) * 2016-12-29 2020-09-11 华为技术有限公司 一种信息传输方法及装置
CN106941724B (zh) * 2017-05-09 2020-12-22 宇龙计算机通信科技(深圳)有限公司 数据处理方法及装置
CN109451853B (zh) * 2017-08-03 2022-07-29 北京小米移动软件有限公司 指示多业务数据复用传输的方法及装置、终端和基站
CN108401528B (zh) * 2017-08-03 2021-12-03 北京小米移动软件有限公司 指示多业务数据复用传输的方法及装置、终端和基站
CA3066829C (en) 2017-08-10 2022-06-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method, network device and terminal device
CN109673050B (zh) * 2017-10-13 2022-09-30 中国电信股份有限公司 数据复用传输方法、网络侧设备及通信系统
CN109729596B (zh) * 2017-10-27 2021-01-29 华为技术有限公司 一种数据发送、接收方法及设备
CN110945937B (zh) * 2017-12-01 2023-06-20 Oppo广东移动通信有限公司 用于数据传输时隙中数据符号的确定
CN110166189A (zh) 2018-02-11 2019-08-23 索尼公司 电子设备、无线通信方法和计算机可读存储介质
CN110167156B (zh) * 2018-02-13 2023-07-25 北京紫光展锐通信技术有限公司 上行复用时频资源确定方法、用户终端及可读存储介质
KR102449687B1 (ko) * 2018-04-03 2022-10-04 후지쯔 가부시끼가이샤 기지국 장치, 단말 장치, 통신 방법 및 통신 시스템
CN110351008B (zh) 2018-04-04 2020-10-02 北京紫光展锐通信技术有限公司 上行时频资源集合的配置、接收方法及装置
CN110392438A (zh) * 2018-04-23 2019-10-29 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
CN114422099A (zh) * 2019-04-10 2022-04-29 北京小米移动软件有限公司 资源指示方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130242926A1 (en) * 2008-12-18 2013-09-19 Nec Laboratories America, Inc. Methods and systems for conveying scheduling information of overlapping co-scheduled users in an ofdma-mu-mimo system
CN106465319A (zh) * 2014-05-19 2017-02-22 高通股份有限公司 用于利用薄控制的针对不同的时延目标的同步复用和多址的装置和方法
CN106455103A (zh) * 2016-11-30 2017-02-22 宇龙计算机通信科技(深圳)有限公司 资源配置方法和资源配置装置
CN106455081A (zh) * 2016-10-31 2017-02-22 宇龙计算机通信科技(深圳)有限公司 资源配置方法及资源配置装置
CN106941723A (zh) * 2017-05-05 2017-07-11 宇龙计算机通信科技(深圳)有限公司 一种数据传输方法及基站
CN106941724A (zh) * 2017-05-09 2017-07-11 宇龙计算机通信科技(深圳)有限公司 数据处理方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107295646B (zh) * 2016-03-31 2021-08-31 华为技术有限公司 一种资源分配方法及网络设备
CN105979597B (zh) * 2016-06-27 2020-02-21 宇龙计算机通信科技(深圳)有限公司 通信资源的分配方法、分配装置、基站和终端
CN115379587A (zh) * 2016-07-29 2022-11-22 三星电子株式会社 用于处理下一代通信系统中的冲突的方法和设备
CN106102180B (zh) * 2016-08-05 2019-12-10 宇龙计算机通信科技(深圳)有限公司 一种上行传输的方法及基站
US11252717B2 (en) * 2016-09-02 2022-02-15 Huawei Technologies Co., Ltd. Co-existence of latency tolerant and low latency communications
WO2018064360A1 (en) * 2016-09-30 2018-04-05 Intel IP Corporation Multi-services coexistence in new radio (nr) systems
KR102156668B1 (ko) * 2016-11-16 2020-09-17 주식회사 케이티 차세대 무선망에서 하향링크 신호를 송수신하는 방법 및 그 장치
KR20190099071A (ko) * 2017-01-06 2019-08-23 콘비다 와이어리스, 엘엘씨 Nr에서의 효율적인 액세스 및 전송을 위한 메커니즘들

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130242926A1 (en) * 2008-12-18 2013-09-19 Nec Laboratories America, Inc. Methods and systems for conveying scheduling information of overlapping co-scheduled users in an ofdma-mu-mimo system
CN106465319A (zh) * 2014-05-19 2017-02-22 高通股份有限公司 用于利用薄控制的针对不同的时延目标的同步复用和多址的装置和方法
CN106455081A (zh) * 2016-10-31 2017-02-22 宇龙计算机通信科技(深圳)有限公司 资源配置方法及资源配置装置
CN106455103A (zh) * 2016-11-30 2017-02-22 宇龙计算机通信科技(深圳)有限公司 资源配置方法和资源配置装置
CN106941723A (zh) * 2017-05-05 2017-07-11 宇龙计算机通信科技(深圳)有限公司 一种数据传输方法及基站
CN106941724A (zh) * 2017-05-09 2017-07-11 宇龙计算机通信科技(深圳)有限公司 数据处理方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3637908A4 *

Also Published As

Publication number Publication date
US20200077392A1 (en) 2020-03-05
EP3637908A1 (en) 2020-04-15
EP3637908B1 (en) 2022-10-26
CN106941724A (zh) 2017-07-11
US11659526B2 (en) 2023-05-23
EP3637908A4 (en) 2021-01-13
CN106941724B (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
WO2018205687A1 (zh) 数据处理方法及装置
WO2018171640A1 (zh) 一种数据传输方法、终端设备及基站系统
WO2020200162A1 (zh) 确定反馈信息的方法和通信装置
WO2020221021A1 (zh) 通信方法和通信装置
WO2019029425A1 (zh) 信息上报及信息处理方法、终端及网络设备
WO2019028771A1 (zh) 传输数据的方法和终端设备
WO2019037695A1 (zh) 一种通信方法及装置
CN109587729B (zh) 物理下行控制信道的处理方法及相关设备
CN111865478B (zh) 侧行链路控制信息的发送方法及设备
US10873430B2 (en) Signal sending method and apparatus
WO2020063838A1 (zh) 传输数据的方法及装置
WO2018059253A1 (zh) 参考信号发送方法、参考信号处理方法及设备
US11202294B2 (en) Methods and devices for determining downlink resource set and sending resource position information
US11770833B2 (en) Communication method, terminal device, and network device
CN111418248A (zh) 增强移动通信中用于urllc的新无线电pusch
CN107154835B (zh) 数据的发送方法及装置
WO2020200176A1 (zh) 确定传输资源的方法及装置
CN112399586A (zh) 配置时域资源的方法和装置
WO2021031668A1 (zh) 一种通信方法及装置
WO2018141091A1 (zh) 发送信息的方法、接收信息的方法和装置
CN111294940A (zh) 发射功率的分配方法及装置、存储介质、终端
WO2021147112A1 (zh) 通信方法和通信装置
WO2021155604A1 (zh) 信息处理方法及设备
WO2018137510A1 (zh) 数据的传输方法和装置
RU2803424C1 (ru) Способ связи и аппаратный компонент связи

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18797733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018797733

Country of ref document: EP

Effective date: 20191209