WO2018137510A1 - 数据的传输方法和装置 - Google Patents

数据的传输方法和装置 Download PDF

Info

Publication number
WO2018137510A1
WO2018137510A1 PCT/CN2018/072671 CN2018072671W WO2018137510A1 WO 2018137510 A1 WO2018137510 A1 WO 2018137510A1 CN 2018072671 W CN2018072671 W CN 2018072671W WO 2018137510 A1 WO2018137510 A1 WO 2018137510A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
packet
data
sequences
network device
Prior art date
Application number
PCT/CN2018/072671
Other languages
English (en)
French (fr)
Inventor
程猛
徐修强
吴艺群
陈雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2019538624A priority Critical patent/JP6835234B2/ja
Priority to EP18744227.2A priority patent/EP3565348A4/en
Publication of WO2018137510A1 publication Critical patent/WO2018137510A1/zh
Priority to US16/515,665 priority patent/US11108597B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0074Code shifting or hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/0036Interference mitigation or co-ordination of multi-user interference at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0021Time-frequency-code in which codes are applied as a frequency-domain sequences, e.g. MC-CDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0096Network synchronisation

Definitions

  • the present application relates to communication technologies, and in particular, to a data transmission method and apparatus.
  • Multiple access is one of the core technologies of the physical layer of wireless communication. It enables wireless base stations to differentiate and simultaneously serve multiple User Equipments (UEs) and reduce mutual interference (multi-access interference).
  • Most wireless communication systems use a simple orthogonal multiple access method, that is, multiple users access by orthogonally dividing resources in different dimensions (frequency division, time division, code division, etc.), such as Long Term Evolution (Long Term Evolution, The Orthogonal Frequency Division Multiple Access (OFDMA) technology used in the LTE system is one of them.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the total time-frequency resources of the system are divided into several parts, and each part is a time-frequency resource interval orthogonal to each other.
  • the OFDMA user equipment can select a corresponding time-frequency resource part for data transmission by scheduling, semi-static scheduling or unauthorized transmission.
  • the present application provides a data transmission method and device, which can meet the business requirements of wide-area continuous coverage, hotspot high-capacity, mass connection, and low-latency access in the future 5G era.
  • the first aspect of the present application provides a data transmission method, including:
  • the user equipment processes the at least two data packets by using a corresponding signature sequence to obtain at least two transmission sequences
  • the user equipment sends the at least two transmission sequences to the network device on the same time-frequency resource.
  • the sending device performs multiple access processing on multiple data packets by using different signature sequences to obtain multiple transmission sequences, and sends the multiple transmission sequences to the network device on the same time-frequency resource.
  • the device can receive and detect data packets through different signature sequences. This method can improve time-frequency resource utilization, save packet queuing time, and improve transmission efficiency.
  • the user equipment acquires at least two signature sequences for performing multiple access on at least two data packets to be sent, including:
  • the user equipment selects a signature sequence corresponding to the data packet one by one from the available signature sequences.
  • the user equipment acquires at least two signature sequences for performing multiple access on at least two data packets to be sent, including:
  • the user equipment sends scheduling information to the network device;
  • the scheduling information is used to indicate that the user equipment needs to upload data, and indicates the amount of data to be sent by the user equipment;
  • the user equipment determines the at least two signature sequences according to the scheduling confirmation message.
  • the manner in which the user equipment obtains the signature sequence corresponding to the data packet to be sent may be selected by the user from the available sequence, or may be notified to the user by the network device according to the amount of data to be sent by the user equipment.
  • the network device only needs to use a simple indication, and the user equipment can determine the specific use of the signature sequence according to the correspondence between the indication and the sequence, and the solution is not limited.
  • the method further includes:
  • the user equipment sends a pilot to the network device; the information of the pilot is used to indicate at least two signature sequences used by the user equipment to perform multiple access on the at least two data packets.
  • the method further includes:
  • the user equipment sends control information for indicating the at least two signature sequences to the network device through a control channel.
  • the network device needs to be notified, so that the network device can use the signature sequence to receive the detected data packet, and the specific information or control can be adopted by the pilot.
  • the control information of the channel transmission is notified to the network device, or the network device may be otherwise notified that the solution is not restricted.
  • the at least two data packets include:
  • An initial transmission packet of the first data packet and an initial transmission packet of the second data packet or, an initial transmission packet of the first data packet and a retransmission packet of the second data packet; or, a retransmission packet and a first packet of the first data packet Two packets of retransmission packets.
  • the multiple data packets sent by the user equipment at the same time frequency resource may be the initial transmission packet of each data packet, or may be the initial transmission packet of some data packets and the retransmission packet of other data packets, or all of the data packets. It is a retransmission packet of a data packet, and the number of retransmissions of each data packet may be different. This application does not limit the application.
  • a second aspect of the present application provides a data transmission method, including:
  • the network device receives at least two sending sequences sent by the user equipment
  • the network device separately detects the corresponding transmission sequence according to each signature sequence, and acquires at least two data packets.
  • the network device After receiving the at least two transmission sequences sent by the user equipment, acquires at least two signature sequences used by the user equipment to send at least two transmission sequences, and respectively performs corresponding transmission sequences according to each signature sequence. Detecting and acquiring at least two data packets, the user equipment can transmit multiple data packets on the same time-frequency resource in the same time slot, thereby improving time-frequency resource utilization, saving packet queuing time, and improving data transmission efficiency.
  • the acquiring, by the network device, the at least two signature sequences used by the user equipment to send the at least two sending sequences includes:
  • the acquiring, by the network device, the at least two signature sequences used by the user equipment to send the at least two sending sequences includes:
  • the network device receives, by using the control channel, the control information that is sent by the user equipment to indicate the at least two signature sequences, and acquires the at least two signature sequences according to the control information.
  • the method before the network device receives the at least two sending sequences sent by the user equipment, the method further includes:
  • the network device receives the scheduling information sent by the user equipment, where the scheduling information is used to indicate that the user equipment needs to upload data, and indicates the amount of data to be sent by the user equipment;
  • the network device schedules a bandwidth for the user equipment according to the scheduling information, and selects a signature sequence corresponding to the data packet indicated by the data volume from the available signature sequences;
  • the network device returns a scheduling confirmation message to the user equipment; the scheduling confirmation message is used to indicate the at least two signature sequences.
  • the multiple signature sequences used by the user equipment for multiple access may be selected by the user equipment, or may be selected and notified to the user equipment by the network device according to the data volume of the user equipment.
  • the program does not impose restrictions.
  • the at least two data packets include:
  • the first packet of the first data packet and the retransmission packet of the second data packet are identical to each other.
  • a retransmission packet of the first data packet and a retransmission packet of the second data packet are identical to each other.
  • the multiple data packets sent by the user equipment at the same time frequency resource of the user equipment may be the initial transmission packet of each data packet, or may be the retransmission of the initial transmission packet of some data packets and other data packets.
  • the packets may also be all retransmission packets of the data packet, and the number of retransmissions of each data packet may be different. This application does not limit the application.
  • a third aspect of the present application provides a data transmission apparatus, including:
  • a processing module configured to acquire at least two signature sequences for performing multiple access on at least two data packets to be sent;
  • the processing module is further configured to process the at least two data packets by using a corresponding signature sequence to obtain at least two transmission sequences;
  • a sending module configured to send the at least two sending sequences to the network device on the same time-frequency resource.
  • the processing module is specifically configured to select a signature sequence that is in one-to-one correspondence with the data packet from the available signature sequences.
  • the sending module is further configured to send a pilot to the network device, where the information of the pilot is used to instruct the user equipment to perform multiple access on the at least two data packets. At least two signature sequences used.
  • the sending module is further configured to send, by using a control channel, control information for indicating the at least two signature sequences to the network device.
  • the device further includes: a receiving module
  • the sending module is specifically configured to send scheduling information to the network device, where the scheduling information is used to indicate that the user equipment needs to upload data, and indicates the amount of data to be sent by the user equipment;
  • the receiving module is configured to receive a scheduling confirmation message returned by the network device
  • the processing module is configured to determine the at least two signature sequences according to the scheduling confirmation message.
  • the at least two data packets include:
  • the first packet of the first data packet and the retransmission packet of the second data packet are identical to each other.
  • a retransmission packet of the first data packet and a retransmission packet of the second data packet are identical to each other.
  • a fourth aspect of the present application provides a data transmission apparatus, including:
  • a receiving module configured to receive at least two sending sequences sent by the user equipment
  • a processing module configured to acquire at least two signature sequences used by the user equipment to send the at least two sending sequences
  • the processing module is further configured to separately detect corresponding transmission sequences according to each signature sequence, and acquire at least two data packets.
  • the receiving module is further configured to receive a pilot sent by the user equipment
  • the processing module is further configured to acquire the at least two signature sequence according to the pilot, where the information of the pilot is used to indicate that the user equipment sends at least two signature sequences used by the at least two sending sequences. .
  • the receiving module is further configured to receive, by using the control device, the control information that is sent by the user equipment to indicate the at least two signature sequences;
  • the processing module is further configured to acquire the at least two signature sequences according to the control information.
  • the device further includes: a sending module
  • the receiving module is further configured to receive scheduling information that is sent by the user equipment, where the scheduling information is used to indicate that the user equipment needs to upload data, and indicates the amount of data to be sent by the user equipment;
  • the processing module is further configured to: schedule, according to the scheduling information, a bandwidth for the user equipment, and select, from the available signature sequences, a signature sequence that is in one-to-one correspondence with the data packet indicated by the data volume;
  • the sending module is configured to return a scheduling confirmation message to the user equipment, where the scheduling confirmation message is used to indicate the at least two signature sequences.
  • the at least two data packets include:
  • the first packet of the first data packet and the retransmission packet of the second data packet are identical to each other.
  • a retransmission packet of the first data packet and a retransmission packet of the second data packet are identical to each other.
  • a fifth aspect of the present application provides a user equipment, including:
  • a transmitter configured to send the at least two sending sequences to the network device on the same time-frequency resource.
  • the processor is specifically configured to select a signature sequence corresponding to the data packet from the available signature sequences.
  • the transmitter is further configured to send a pilot to the network device, where the information of the pilot is used to indicate that the user equipment performs multiple access to the at least two data packets. At least two signature sequences used.
  • the transmitter is further configured to send, by using a control channel, control information for indicating the at least two signature sequences to the network device.
  • the user equipment further includes: a receiver;
  • the transmitter is specifically configured to send scheduling information to the network device, where the scheduling information is used to indicate that the user equipment needs to upload data, and indicates the amount of data to be sent by the user equipment;
  • the receiver is configured to receive a scheduling confirmation message returned by the network device
  • the processor is configured to determine the at least two signature sequences according to the scheduling acknowledgement message.
  • the at least two data packets include:
  • the first packet of the first data packet and the retransmission packet of the second data packet are identical to each other.
  • a retransmission packet of the first data packet and a retransmission packet of the second data packet are identical to each other.
  • a memory may also be included, and the number of processors is at least one, and execution instructions for executing the memory storage are performed.
  • the user equipment is caused to perform data interaction between the first aspect or the first aspect of the first aspect by performing data interaction between the user equipment and the network device.
  • a sixth aspect of the present application provides a network device, including:
  • a receiver configured to receive at least two sending sequences sent by the user equipment
  • the corresponding transmission sequence is separately detected according to each signature sequence, and at least two data packets are acquired.
  • the receiver is further configured to receive a pilot sent by the user equipment
  • the processor is further configured to acquire the at least two signature sequence according to the pilot, where the information of the pilot is used to indicate that the user equipment sends at least two signature sequences used by the at least two sending sequences. .
  • the receiver is further configured to receive, by using the control device, the control information that is sent by the user equipment to indicate the at least two signature sequences;
  • the processor is further configured to acquire the at least two signature sequences according to the control information.
  • the network device further includes: a transmitter;
  • the receiver is further configured to receive scheduling information that is sent by the user equipment, where the scheduling information is used to indicate that the user equipment needs to upload data, and indicates the amount of data to be sent by the user equipment;
  • the processor is further configured to: schedule, according to the scheduling information, a bandwidth for the user equipment, and select, from the available signature sequences, a signature sequence that is in one-to-one correspondence with the data packet indicated by the data volume;
  • the transmitter is configured to return a scheduling acknowledgement message to the user equipment, where the scheduling acknowledgement message is used to indicate the at least two signature sequences.
  • the at least two data packets include:
  • the first packet of the first data packet and the retransmission packet of the second data packet are identical to each other.
  • a retransmission packet of the first data packet and a retransmission packet of the second data packet are identical to each other.
  • a memory may also be included, and the number of processors is at least one for executing execution instructions of the memory storage.
  • the method for transmitting data provided by the second embodiment or the second embodiment of the second aspect is performed by causing the network device to perform data interaction with the user device through the communication interface.
  • a seventh aspect of the present application provides a storage medium comprising a readable storage medium and executable instructions (also referred to as a computer program), when the at least one processor of the user equipment executes the executable instruction, the user equipment performs the first aspect described above Or a method of transmitting data provided by various embodiments of the first aspect.
  • executable instructions also referred to as a computer program
  • An eighth aspect of the present application provides a storage medium comprising a readable storage medium and executable instructions, when the at least one processor of the network device executes the executable instruction, the network device performs the foregoing second aspect or the second aspect A method of transmitting data provided by an embodiment.
  • a ninth aspect of the present application provides a program product comprising executable instructions stored in a readable storage medium.
  • At least one processor of the user device can read the executable instructions from a readable storage medium, the at least one processor executing the executable instructions such that the user device implements transmission of data provided by the first aspect or various embodiments of the first aspect method.
  • a tenth aspect of the present application provides a program product, the program product comprising executable instructions stored in a readable storage medium.
  • At least one processor of the network device can read the execution instructions from a readable storage medium, the at least one processor executing the executable instructions to cause the network device to perform the transmission of data provided by the second aspect or the various embodiments of the second aspect method.
  • the method and device for transmitting data provided by the application acquires at least two signature sequences for performing multiple access on at least two data packets to be sent, and then processes at least two data packets by using corresponding signature sequences respectively. Obtaining at least two transmission sequences, and transmitting the at least two transmission sequences to the network device on the same time-frequency resource.
  • the network device After receiving the at least two sending sequences sent by the user equipment, the network device acquires at least two signature sequences used by the user equipment to send at least two sending sequences, and respectively detects the corresponding sending sequence according to each signature sequence to obtain at least two For each data packet, the user equipment can transmit multiple data packets on the same time-frequency resource in the same time slot, thereby improving time-frequency resource utilization, saving packet queuing time, and improving data transmission efficiency.
  • FIG. 1 is a schematic diagram of a system architecture of a data transmission method provided by the present application.
  • Embodiment 1 is a schematic flowchart of Embodiment 1 of a method for transmitting data provided by the present application;
  • FIG. 3 is a schematic diagram of transmission of an example of a method for transmitting data provided by the present application.
  • FIG. 4 is a schematic diagram of transmission of another example of a method for transmitting data provided by the present application
  • FIG. 5 is a schematic diagram of transmission of still another example of a method for transmitting data provided by the present application.
  • FIG. 6 is a schematic diagram of transmission of still another example of a method for transmitting data provided by the present application.
  • FIG. 7 is a schematic structural diagram of Embodiment 1 of a data transmission apparatus provided by the present application.
  • FIG. 8 is a schematic structural diagram of Embodiment 2 of a data transmission apparatus provided by the present application.
  • FIG. 9 is a schematic structural diagram of an embodiment of a user equipment provided by the present application.
  • FIG. 10 is a schematic structural diagram of an embodiment of a base station provided by the present application.
  • FIG. 1 is a schematic diagram of a system architecture of a data transmission method provided by the present application.
  • the system architecture includes a network device (such as a base station in the figure) and a user equipment, such as a mobile phone, a call tablet, and the like.
  • the network device is a base station on the network side or another device capable of providing a base station function, and provides communication services for the user equipment; in particular, in Chinese name: Device-to-Device (D2D) communication, the network The device can also be a terminal that assumes the function of the base station.
  • D2D Device-to-Device
  • the base station is also called a Radio Access Network (RAN) device, and is a device for accessing a terminal to a wireless network.
  • the base station in the above architecture may also be a global mobile communication (Global System of Mobile communication, GSM) or Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), or base station in Wideband Code Division Multiple Access (WCDMA) ( NodeB, NB), may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in Long Term Evolution (LTE), or a relay station or an access point, or a base station in a 5G network, etc. Not limited.
  • the data transmission method provided by the present application is based on the foregoing architecture, and can support the uplink non-orthogonal multiple access system, in which the UE transmits multiple data packets in the same time slot and on the same time-frequency resource in parallel, thereby improving time-frequency resource utilization. Save packet queuing latency and increase the potential maximum number of retransmissions to accommodate higher speed data interaction needs in the future.
  • FIG. 2 is a schematic flowchart of Embodiment 1 of a data transmission method provided by the present application.
  • a data transmission method between a network device and a user equipment specifically includes The following steps:
  • S101 The user equipment acquires at least two signature sequences for performing multiple access on at least two data packets to be sent.
  • the user equipment needs to send uplink data to the network device.
  • the data packets may be encoded through independent channels, and may be from the same number of data packets.
  • Different transport blocks (TBs) can also be from different splits of the same TB, that is, multiple signature sequences for multiple access are needed, and the corresponding data packets are processed separately, so the user needs to Get at least two signature sequences.
  • the signature sequence is used to distinguish the data layer used by the data packet on the time-frequency resource, and the signature sequence may be Sparse Code Multiple Access (SCMA) and Polarization Division Multiple Access (Polarization Division).
  • SCMA Sparse Code Multiple Access
  • PDMA Polarization Division Multiple Access
  • MUSA Multi-User Shared Access
  • the specific acquisition methods of the signature sequence include at least the following:
  • the user equipment selects a signature sequence corresponding to the data packet from among the available signature sequences. That is, the user equipment itself selects the plurality of signature sequences required as described above.
  • the network device side does not know the specific signature sequence used by the user equipment, and therefore, the UE needs to use more
  • the signature sequence informs the network device that the pilot information can be sent to the network device, and the pilot information can indicate multiple signature sequences used by the user equipment for multiple access to multiple data packets.
  • the pilot information here can be partial. A shift or index, etc., so that the network device can directly determine the signature sequence used by the user equipment according to the information of the pilot.
  • the user equipment may further send control information indicating a plurality of signature sequences to the network device through the control channel, so that the network device determines the signature sequence used by the user equipment according to the control information.
  • the user equipment sends scheduling information to the network device.
  • the scheduling information is used to indicate that the user equipment needs to upload data, and indicates the amount of data to be sent by the user equipment. For example, it can be indicated by a data scheduling request, a buffer status report, and the like.
  • the network device receives the scheduling information sent by the user equipment, performs scheduling processing according to the scheduling information of the user, schedules bandwidth for the user equipment, and selects a signature sequence corresponding to the multiple data packets to be uploaded by the user equipment from the available signature sequences.
  • the scheduling confirmation message is returned to the user equipment, where the scheduling confirmation message is used to indicate the at least two signature sequences, the user equipment receives the scheduling confirmation message returned by the network device, and determines at least two signature sequences according to the scheduling confirmation message.
  • S102 The user equipment processes at least two data packets by using a corresponding signature sequence to obtain at least two transmission sequences.
  • the user equipment independently encodes multiple data packets by different transport blocks, and then performs multiple access processing by using corresponding signature sequences to obtain modulation symbols on multiple data layers, that is, multiple transmission sequences. .
  • S103 The user equipment sends at least two sending sequences to the network device on the same time-frequency resource.
  • the user equipment awards multiple transmission sequences to be transmitted on the same time-frequency resource, and the meaning is that the time domain and the frequency domain are all transmitted on the same resource, that is, the network device can detect and receive on the same time-frequency resource.
  • S104 The network device acquires at least two signature sequences used by the user equipment to send at least two sending sequences.
  • the network device needs to know the multiple signature sequences used by the user equipment to send the data packet, and the specific acquisition manner may be:
  • the network device receives the pilot sent by the user equipment, and acquires the at least two signature signal sequences according to the pilot.
  • the information of the pilot is used to indicate that the user equipment sends the at least At least two signature sequences used by the two transmission sequences.
  • the network device receives, by using the control channel, the control information that is sent by the user equipment to indicate the at least two signature sequences, and acquires the at least two signature sequences according to the control information.
  • the network device before receiving the multiple transmission sequences, receives the scheduling information sent by the user equipment, where the scheduling information is used to indicate that the user equipment needs to upload data, and indicates the amount of data to be sent by the user equipment.
  • the network device schedules bandwidth for the user equipment according to the scheduling information, and selects a signature sequence corresponding to the data packet indicated by the data volume from the available signature sequence, and returns the selected multiple signature sequences to the user equipment by using the scheduling confirmation information. .
  • the network device separately detects the corresponding sending sequence according to each signature sequence, and acquires at least two data packets.
  • the network device performs receiving detection on the received multiple transmission sequences according to the obtained multiple signature sequences, and obtains multiple data packets sent by the user equipment.
  • multiple data packets sent by the user equipment at the same time frequency resource may be initial transmission packets of each data packet, or may be initial packets of some data packets and others.
  • the retransmission packet of the data packet may also be a retransmission packet of the data packet, and the number of retransmissions of each data packet may be different. This application does not limit the application.
  • the multiple data packets include: an initial transmission packet of the first data packet and an initial transmission packet of the second data packet; or, the first packet of the first data packet and the weight of the second data packet Passing the packet; or, the retransmission packet of the first data packet and the retransmission packet of the second data packet. And when there are multiple retransmission packets, the number of retransmissions of each data packet may be different.
  • the user equipment acquires at least two signature sequences for performing multiple access on at least two data packets to be sent, and then processes the at least two data packets by using corresponding signature sequences. At least two transmission sequences are sent to the network device on the same time-frequency resource. After receiving the at least two sending sequences sent by the user equipment, the network device acquires at least two signature sequences used by the user equipment to send at least two sending sequences, and respectively detects the corresponding sending sequence according to each signature sequence to obtain at least two For each data packet, the user equipment can transmit multiple data packets on the same time-frequency resource in the same time slot, thereby improving time-frequency resource utilization, saving packet queuing time, and improving data transmission efficiency.
  • the base station is taken as an example to describe the flow of parallel transmission of some typical data packets on the same time-frequency resource, and the possible embodiments in the standard, etc., and the data transmission method provided by the present application is performed. Description.
  • FIG. 3 is a schematic diagram of transmission of an example of a method for transmitting data provided by the present application.
  • an uplink Grant-free SCMA non-orthogonal transmission system is assumed (other forms of non-orthogonal transmission may also be used.
  • the user equipment User Equipment, UE
  • the user equipment has two initial data packets to be transmitted at a certain time, which are obtained by different TBs through independent channel coding, and are respectively represented as CB 1 (0) and CB 2 ( 0) , where the superscript 0 means that both data packets are initial packets.
  • the UE selects a corresponding transmission mode according to the number of data packets, and the transmission mode corresponds to a signature sequence set ⁇ s 1 , s 2 ⁇ , which is used for performing SCMA multiple access processing on CB 1 (0) and CB 2 (0) .
  • the transmission sequences on the two data layers are obtained and transmitted to the base station simultaneously on the same time-frequency resource.
  • the UE may inform the BS of the selected transmission mode by using a pilot p, where the correspondence between the information of the pilot and the transmission mode is previously agreed by the base station (BS) and the UE.
  • the BS according to the information of the decoded pilot p and according to the information of the agreed p and the transmission mode, so that the UE passes the two packets through the two data layers (using the signature sequence s 1 , s 2 respectively ) To be transmitted, so as to perform corresponding reception detection.
  • the optional UE may also inform the base station of the selected transmission mode through the control information without establishing a mapping relationship between the pilot and the transmission mode (signature sequence or signature sequence set).
  • FIG. 4 is a schematic diagram of transmission of another example of a method for transmitting data provided by the present application.
  • an uplink Grant-free SCMA non-orthogonal transmission system has three UEs at a certain time.
  • the packets to be transmitted are obtained by different TBs through independent channel coding, which are denoted as CB 1 (0) , CB 2 (1) and CB 3 (2), respectively .
  • CB 1 (0) is the initial transmission packet of packet 1
  • CB 2 (1) is the first retransmission packet of packet 2
  • CB 3 (2) is the second retransmission packet of packet 3.
  • the UE may select the corresponding transmission mode, and the transmission mode corresponds to the signature sequence set ⁇ s 1 , s 2 , s 3 ⁇ , for CB 1 (0) , CB 2 (1) and CB 3 (2) performs SCMA multiple access processing, and obtains transmission sequences on three data layers, and simultaneously transmits them on the same time-frequency resource.
  • the UE may inform the BS of the selected transmission mode by using a pilot p, where the correspondence between the pilot and the transmission mode is previously agreed by the BS and the UE.
  • Base station frequency information according to the solution p to the guide, and a correspondence relationship in accordance with p-agreed information transmission mode, such that the UE is aware of the three data packets through three layers (each using signature sequence s 1, s 2, s 3 ) to transmit, so as to perform corresponding reception detection.
  • the UE may also inform the base station of the selected transmission mode through the control information without establishing a mapping relationship between the pilot and the transmission mode (signature sequence or signature sequence set).
  • the UE in the uplink grant-based SCMA system, has two data packets to be transmitted at a certain time, which are respectively represented as CB 1 (1) and CB 2 (2) is the first retransmission packet of packet 1 and the second retransmission packet of packet 2, respectively.
  • the UE indicates that there is uplink transmission data through a Scheduling Request (SR), and informs the base station of the amount of data transmitted by the Buffer Status Reporting (BSR).
  • BSR Buffer Status Reporting
  • the base station schedules the required bandwidth for the UE according to the BSR and informs its transmission mode.
  • the UE performs multiple access processing on the two signature sequences (s 1 and s 2 ) corresponding to CB 1 (1) and CB 2 (2) respectively according to the transmission mode within the scheduled bandwidth, and in two data Send simultaneously on the layer.
  • the BS knows the transmission mode used by the user for uplink transmission, and can directly receive and detect the data packets transmitted on each data layer.
  • FIG. 5 is a schematic diagram of transmission of another example of a method for transmitting data provided by the present application; as shown in FIG. 5, in an uplink Grant-free SCMA non-orthogonal transmission system, the UE has two initial to be transmitted at a certain moment.
  • the data packet is split by the same TB and obtained through independent channel coding, which are denoted as CB 1 (0) and CB 2 (0) respectively , where the superscript 0 indicates that both packets are original packets.
  • the UE selects a corresponding transmission mode according to the number of data packets, and the transmission mode corresponds to a signature sequence set ⁇ s 1 , s 2 ⁇ , which is used for performing SCMA multiple access processing on CB 1 (0) and CB 2 (0) .
  • the transmission sequences on the two data layers are obtained and transmitted simultaneously on the same time-frequency resource.
  • the UE may inform the BS of the selected transmission mode through a pilot p, as in the foregoing scheme, where the correspondence between the pilot and the transmission mode is previously agreed by the BS and the UE.
  • the BS according to the solved pilot p and according to the agreed correspondence between the p and the transmission mode, so that the UE transmits the two data packets through the two data layers (using the signature sequence s 1 , s 2 respectively ). Therefore, the corresponding reception detection is performed.
  • the UE may also inform the base station of the selected transmission mode through the control information without establishing a mapping relationship between the pilot and the transmission mode (signature sequence or signature sequence set).
  • CB 1 and CB 2 may be from the same TB or different TBs, and the solution is not limited.
  • FIG. 6 is a schematic diagram of transmission of still another example of a method for transmitting data provided by the present application; as shown in FIG. 6, in this scheme, assuming that an uplink Grant-free MUSA non-orthogonal transmission system has two UEs at a certain time
  • the data packets to be transmitted are respectively obtained by different TBs and encoded by independent channels, which are denoted as CB 1 (1) and CB 2 (2) , which are the first retransmission packet of packet 1 and the second packet of packet 2, respectively.
  • CB 1 (1) and CB 2 (2) which are the first retransmission packet of packet 1 and the second packet of packet 2, respectively.
  • Secondary retransmission package are also a schematic diagram of transmission of still another example of a method for transmitting data provided by the present application.
  • the UE selects a corresponding transmission mode according to the number of the current transmission packets, and the transmission mode corresponds to the MUSA signature sequence set ⁇ s 1 , s 2 ⁇ , and is used for performing MUSA multiple access on CB 1 (1) and CB 2 (2) . Processing, obtaining transmission sequences on two data layers, and transmitting simultaneously on the same time-frequency resource.
  • the UE may inform the BS of the selected transmission mode by using a pilot p, where the correspondence between the information of the pilot and the transmission mode is previously agreed by the BS and the UE.
  • the BS according to the solved pilot p, and according to the information of the agreed p and the transmission mode, so that the UE transmits the two packets through two data layers (using the signature sequence s 1 , s 2 respectively ) Therefore, the corresponding reception detection is performed.
  • the UE may also inform the base station of the selected transmission mode through the control information without establishing a mapping relationship between the pilot and the transmission mode (signature sequence or signature sequence set).
  • the present application further provides a data transmission scheme.
  • the UE in an uplink Grant-free SCMA non-orthogonal transmission system, the UE has two initial transmission packets to be transmitted at a certain time, and is independent by different TBs.
  • the channel coding is obtained as CB 1 (0) and CB 2 (0) , respectively, which are all initial packets.
  • the UE selects a corresponding transmission mode according to the number of the current transmission packets, and the transmission mode corresponds to a signature sequence set. It is used for SCMA multiple access processing on CB 1 (0) and CB 2 (0) to obtain transmission sequences on two data layers and transmit simultaneously on the same time-frequency resource. among them
  • the processing includes phase rotation and power allocation.
  • the UE may inform the BS of the selected transmission mode by using a pilot p, where the correspondence between the pilot and the transmission mode is previously agreed by the BS and the UE.
  • the BS according to the solved pilot p and according to the agreed correspondence between p and the transmission mode, so that the UE knows that the UE passes two data layers (using the signature sequence respectively) ) to transmit, so as to perform corresponding reception detection.
  • the UE may also inform the base station of the selected transmission mode through the control information without establishing a mapping relationship between the pilot and the transmission mode (signature sequence or signature sequence set).
  • CB 1 and CB 2 may be from the same TB, or may be from different TBs, and the solution is not limited.
  • the data transmission method provided by any of the foregoing implementation manners can support the uplink non-orthogonal multi-stop system, in which the UE passes multiple data packets through independent channel coding, and uses different signature sequences to perform multiple access processing to obtain a transmission sequence.
  • the same time-frequency resource is sent to the base station in parallel, which can effectively improve the time-frequency resource utilization, reduce the packet queuing waiting time, increase the potential maximum retransmission times, and improve the transmission efficiency and reliability.
  • FIG. 7 is a schematic structural diagram of Embodiment 1 of a data transmission apparatus provided by the present application; as shown in FIG. 7, the data transmission apparatus 10 includes:
  • the processing module 11 is configured to acquire at least two signature sequences for performing multiple access on at least two data packets to be sent;
  • the processing module 11 is further configured to process the at least two data packets by using a corresponding signature sequence to obtain at least two transmission sequences;
  • the sending module 12 is configured to send the at least two sending sequences to the network device on the same time-frequency resource.
  • the processing module 11 is specifically configured to select a signature sequence corresponding to the data packet from among the available signature sequences.
  • the sending module 12 is further configured to send a pilot to the network device, where the information of the pilot is used to indicate that the user equipment performs at least two access to the at least two data packets. Two signature sequences.
  • the sending module 12 is further configured to send, by using a control channel, control information for indicating the at least two signature sequences to the network device.
  • the method further includes: a receiving module 13;
  • the sending module 12 is specifically configured to send scheduling information to the network device, where the scheduling information is used to indicate that the user equipment needs to upload data, and indicates the amount of data to be sent by the user equipment;
  • the receiving module 13 is configured to receive a scheduling confirmation message returned by the network device.
  • the processing module 11 is configured to determine the at least two signature sequences according to the scheduling confirmation message.
  • the at least two data packets include: an initial transmission packet of the first data packet and an initial transmission packet of the second data packet; or, an initial transmission packet of the first data packet and a retransmission packet of the second data packet Or, a retransmission packet of the first data packet and a retransmission packet of the second data packet.
  • the data transmission device provided in any of the foregoing implementation manners is used to perform the technical solution on the user equipment side in any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 8 is a schematic structural diagram of Embodiment 2 of a data transmission apparatus according to the present application. As shown in FIG. 8, the data transmission apparatus 20 includes:
  • the receiving module 21 is configured to receive at least two sending sequences sent by the user equipment
  • the processing module 22 is configured to acquire at least two signature sequences used by the user equipment to send the at least two sending sequences;
  • the processing module 22 is further configured to separately detect corresponding transmission sequences according to each signature sequence, and acquire at least two data packets.
  • the receiving module 21 is further configured to receive a pilot sent by the user equipment
  • the processing module 22 is further configured to acquire the at least two signature signal sequences according to the pilot, where the information of the pilot is used to indicate that the user equipment sends at least two signatures used by the at least two transmission sequences. sequence.
  • the receiving module 21 is further configured to receive, by using the control channel, the control information that is sent by the user equipment to indicate the at least two signature sequences;
  • the processing module 22 is further configured to acquire the at least two signature sequences according to the control information.
  • the method further includes: a sending module 23;
  • the receiving module 21 is further configured to receive scheduling information that is sent by the user equipment, where the scheduling information is used to indicate that the user equipment needs to upload data, and indicates the amount of data to be sent by the user equipment;
  • the processing module 22 is further configured to: according to the scheduling information, schedule bandwidth for the user equipment, and select a signature sequence that is in one-to-one correspondence with the data packet indicated by the data volume from the available signature sequences;
  • the sending module 23 is configured to return a scheduling acknowledgement message to the user equipment, where the scheduling acknowledgement message is used to indicate the at least two signature sequences.
  • the at least two data packets include:
  • An initial transmission packet of the first data packet and an initial transmission packet of the second data packet or, an initial transmission packet of the first data packet and a retransmission packet of the second data packet; or, a retransmission packet and a first packet of the first data packet Two packets of retransmission packets.
  • the data transmission device provided in any of the foregoing implementation manners is used to perform the technical solution on the network device side in any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 9 is a schematic structural diagram of an embodiment of a user equipment provided by the present application; as shown in FIG. 9, the user equipment 30 includes: a processor 31, configured to:
  • the transmitter 32 is configured to send the at least two sending sequences to the network device on the same time-frequency resource.
  • the processor is specifically configured to select a signature sequence corresponding to the data packet from the available signature sequences.
  • the transmitter 32 is further configured to send a pilot to the network device, where the information of the pilot is used to instruct the user equipment to perform multiple access on the at least two data packets. At least two signature sequences into use.
  • the transmitter 32 is further configured to send, by using a control channel, control information for indicating the at least two signature sequences to the network device.
  • the user equipment further includes: a receiver 33;
  • the transmitter 32 is specifically configured to send scheduling information to the network device, where the scheduling information is used to indicate that the user equipment needs to upload data, and indicates the amount of data to be sent by the user equipment;
  • the receiver 33 is configured to receive a scheduling confirmation message returned by the network device.
  • the processor 31 is configured to determine the at least two signature sequences according to the scheduling confirmation message.
  • the at least two data packets include:
  • the first packet of the first data packet and the retransmission packet of the second data packet are identical to each other.
  • a retransmission packet of the first data packet and a retransmission packet of the second data packet are identical to each other.
  • a memory may also be included, and the number of processors is at least one, and execution instructions for executing the memory storage are performed.
  • the user equipment is caused to perform data interaction between the first aspect or the first aspect of the first aspect by performing data interaction between the user equipment and the network device.
  • FIG. 10 is a schematic structural diagram of an embodiment of a network device provided by the present application.
  • the network device 40 includes: a receiver 41, configured to receive at least two sending sequences sent by the user equipment;
  • the processor 42 is configured to:
  • the corresponding transmission sequence is separately detected according to each signature sequence, and at least two data packets are acquired.
  • the receiver 41 is further configured to receive a pilot sent by the user equipment
  • the processor 42 is further configured to acquire the at least two signature signal sequences according to the pilot, where the information of the pilot is used to indicate that the user equipment sends at least two signatures used by the at least two transmission sequences. sequence.
  • the receiver 41 is further configured to receive, by using the control device, the control information that is sent by the user equipment to indicate the at least two signature sequences;
  • the processor 42 is further configured to acquire the at least two signature sequences according to the control information.
  • the network device 40 further includes: a transmitter 42;
  • the receiver 41 is further configured to receive scheduling information that is sent by the user equipment, where the scheduling information is used to indicate that the user equipment needs to upload data, and indicates the amount of data to be sent by the user equipment;
  • the processor 42 is further configured to: schedule, according to the scheduling information, a bandwidth for the user equipment, and select, from the available signature sequences, a signature sequence that is in one-to-one correspondence with the data packet indicated by the data volume;
  • the transmitter 43 is configured to return a scheduling acknowledgement message to the user equipment, where the scheduling acknowledgement message is used to indicate the at least two signature sequences.
  • the at least two data packets include:
  • the first packet of the first data packet and the retransmission packet of the second data packet are identical to each other.
  • a retransmission packet of the first data packet and a retransmission packet of the second data packet are identical to each other.
  • a memory may also be included, and the number of processors is at least one for executing execution instructions of the memory storage.
  • the method for transmitting data provided by the second embodiment or the second embodiment of the second aspect is performed by causing the network device to perform data interaction with the user device through the communication interface.
  • the application further provides a storage medium comprising: a readable storage medium and executable instructions stored in a readable storage medium, when the at least one processor of the user device executes the executable instruction, the user equipment performs The method of transmitting data provided by the various embodiments described above.
  • the application further provides a storage medium comprising: a readable storage medium and executable instructions stored in a readable storage medium, the network device executing when the at least one processor of the network device executes the executable instruction
  • a storage medium comprising: a readable storage medium and executable instructions stored in a readable storage medium, the network device executing when the at least one processor of the network device executes the executable instruction
  • the application also provides a program product comprising executable instructions stored in a readable storage medium.
  • At least one processor of the user device can read the executable instructions from a readable storage medium, and the at least one processor executes the executable instructions such that the user device implements the method of transmitting data provided by the various embodiments described above.
  • the application also provides a program product comprising executable instructions stored in a readable storage medium.
  • At least one processor of the network device can read the executable instructions from a readable storage medium, and the at least one processor executes the executable instructions such that the network device implements the method of transmitting data provided by the various embodiments described above.
  • the executable instructions in the above scheme are also referred to as computer instructions, or computer programs, etc., and the present scheme is not limited thereto.
  • the processor may be a central processing unit (English: Central Processing Unit, CPU for short), or may be other general-purpose processors, digital signal processors (English: Digital) Signal Processor (DSP), Application Specific Integrated Circuit (ASIC), etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like. The steps of the method disclosed in connection with the present application may be directly embodied by hardware processor execution or by a combination of hardware and software modules in a processor.
  • All or part of the steps of implementing the above method embodiments may be performed by hardware associated with the program instructions.
  • the aforementioned program can be stored in a readable memory.
  • the steps including the foregoing method embodiments are performed; and the foregoing memory (storage medium) includes: read-only memory (English: read-only memory, abbreviation: ROM), RAM, flash memory, hard disk, Solid state drive, magnetic tape (English: magnetic tape), floppy disk (English: floppy disk), optical disc (English: optical disc) and any combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种数据的传输方法和装置,该方法包括:用户设备获取用于对待发送的至少两个数据包进行多址接入的至少两个签名序列,然后对至少两个数据包分别采用对应签名序列进行处理得到至少两个发送序列,再将所述至少两个发送序列在同一时频资源上发送至网络设备。网络设备接收到用户设备发送的至少两个发送序列之后,获取用户设备发送至少两个发送序列使用的至少两个签名序列,并根据每个签名序列对对应的发送序列分别进行检测,获取至少两个数据包,用户设备可将多个数据包在同一个时隙同一个时频资源上进行传输,从而提高时频资源利用率,节省包排队时间,提高数据传输效率。

Description

数据的传输方法和装置
本申请要求于2017年1月24日提交中国专利局、申请号为201710060332.2、申请名称为“数据的传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种数据的传输方法和装置。
背景技术
多址接入是无线通信物理层最核心的技术之一,它使得无线基站能区分且同时服务多个终端用户(User Equipment,UE),并减小其互相干扰(多址干扰)。无线通信系统大多采用简单的正交多址接入方式,即多个用户通过在不同维度上(频分、时分、码分等)正交划分资源来接入,如长期演进(Long Term Evolution,LTE)系统中采用的正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)技术就是其中之一。
对于LTE系统,OFDMA的系统的设计中(如URLLC业务),系统总时频资源被分成若干个部分,每个部分都是相互正交的时频资源区间。当需要传输上行数据时OFDMA用户设备可通过调度,半静态调度或者免授权传输等方式,为每个数据包选择相应的时频资源部分进行数据传输。
然而,使用OFDMA传输机制进行数据传输时,由于正交多址技术其可容纳的接入用户数与正交资源成正比,而正交资源数量受限于正交性要求,因此不能满足未来5G时代广域连续覆盖,热点高容量、海量连接、低延时接入等业务需求。
发明内容
本申请提供一种数据的传输方法和装置,可满足未来5G时代广域连续覆盖,热点高容量、海量连接、低延时接入等业务需求。
本申请第一方面提供一种数据的传输方法,包括:
用户设备获取用于对待发送的至少两个数据包进行多址接入的至少两个签名序列;
所述用户设备对所述至少两个数据包分别采用对应签名序列进行处理得到至少两个发送序列;
所述用户设备将所述至少两个发送序列在同一时频资源上发送至网络设备。
该方案中,发送设备将多个数据包分别采用不同的签名序列进行多址接入处理,得到多个发送序列,将该些多个发送序列在同一个时频资源上发送给网络设备,网络设备可通过不同的签名序列接收检测获取数据包,通过该方式可提高时频资源利用率,节省包排队等待时间,提高传输效率。
在一种实现方式中,所述用户设备获取用于对待发送的至少两个数据包进行多址接入 的至少两个签名序列,包括:
所述用户设备从可用的签名序列中选择与数据包一一对应的签名序列。
在另一种实现方式中,所述用户设备获取用于对待发送的至少两个数据包进行多址接入的至少两个签名序列,包括:
所述用户设备向所述网络设备发送调度信息;所述调度信息用于指示所述用户设备需要上传数据,并指示所述用户设备待发送的数据量;
所述用户设备接收所述网络设备返回的调度确认消息;
所述用户设备根据所述调度确认消息确定所述至少两个签名序列。
在上述方案中,用户设备获取与待发送的数据包一一对应的签名序列的方式可以是自己从可用序列中选择的,也可以是网络设备根据用户设备要发送的数据量选择后通知给用户设备的,网络设备只需要通过简单的指示,用户设备即可根据指示与序列的对应关系确定出具体使用那些签名序列,对此本方案不做限制。
可选的,所述方法还包括:
所述用户设备向所述网络设备发送导频;所述导频的信息用于指示所述用户设备对所述至少两个数据包进行多址接入使用的至少两个签名序列。
可选的,所述方法还包括:
所述用户设备通过控制信道向所述网络设备发送用于指示所述至少两个签名序列的控制信息。
在上述方案中,用户设备选择用于多址接入的签名序列之后,需要告知网络设备,以使网络设备可以使用该些签名序列接受检测得到数据包,具体的可以通过导频的信息或者控制信道传输的控制信息通知给网络设备,或者可通过别的方式告知网络设备本方案不做限制。
可选的,所述至少两个数据包包括:
第一数据包的初传包和第二数据包的初传包;或者,第一数据包的初传包和第二数据包的重传包;或者,第一数据包的重传包和第二数据包的重传包。
在上述方案中,用户设备同时频资源发送的多个数据包可以是每个数据包的初传包,也可以是一些数据包的初传包和另一些数据包的重传包,也可全部是数据包的重传包,且每个数据包的重传次数可不相同,对此本申请均不做限制。
本申请第二方面提供一种数据的传输方法,包括:
网络设备接收用户设备发送的至少两个发送序列;
所述网络设备获取所述用户设备发送所述至少两个发送序列使用的至少两个签名序列;
所述网络设备根据每个签名序列对对应的发送序列分别进行检测,获取至少两个数据包。
在本方案中,网络设备接收到用户设备发送的至少两个发送序列之后,获取用户设备发送至少两个发送序列使用的至少两个签名序列,并根据每个签名序列对对应的发送序列分别进行检测,获取至少两个数据包,用户设备可将多个数据包在同一个时隙同一个时频资源上进行传输,从而提高时频资源利用率,节省包排队时间,提高数据传输效率。
在一种实现方式中,所述网络设备获取所述用户设备发送所述至少两个发送序列使用 的至少两个签名序列,包括:
所述网络设备接收所述用户设备发送的导频,并根据所述导频获取所述至少两个签名信序列;其中,所述导频的信息用于指示用户设备发送所述至少两个发送序列使用的至少两个签名序列。
可选的,所述网络设备获取所述用户设备发送所述至少两个发送序列使用的至少两个签名序列,包括:
所述网络设备接收所述用户设备通过控制信道发送的用于指示所述至少两个签名序列的控制信息,并根据所述控制信息获取所述至少两个签名序列。
可选的,所述网络设备接收用户设备发送的至少两个发送序列之前,所述方法还包括:
所述网络设备接收所述用户设备发送的调度信息,所述调度信息用于指示所述用户设备需要上传数据,并指示所述用户设备待发送的数据量;
所述网络设备根据所述调度信息,为所述用户设备调度带宽,并从可用签名序列中选择与所述数据量指示的数据包一一对应的签名序列;
所述网络设备向所述用户设备返回调度确认消息;所述调度确认消息用于指示所述至少两个签名序列。
有上述几个方案可知,用户设备用于进行多址接入的多个签名序列可以是用户设备选择的,也可以是网络设备根据用户设备的数据量选择并通知给用户设备的,对此本方案不做限制。
可选的,所述至少两个数据包包括:
第一数据包的初传包和第二数据包的初传包;
或者,
第一数据包的初传包和第二数据包的重传包;
或者,
第一数据包的重传包和第二数据包的重传包。
在该方案中,网络设备接收到的用户设备同时频资源发送的多个数据包可以是每个数据包的初传包,也可以是一些数据包的初传包和另一些数据包的重传包,也可全部是数据包的重传包,且每个数据包的重传次数可不相同,对此本申请均不做限制。
本申请第三方面提供一种数据的传输装置,包括:
处理模块,用于获取用于对待发送的至少两个数据包进行多址接入的至少两个签名序列;
所述处理模块还用于对所述至少两个数据包分别采用对应签名序列进行处理得到至少两个发送序列;
发送模块,用于将所述至少两个发送序列在同一时频资源上发送至网络设备。
在一种实现方式中,所述处理模块具体用于从可用的签名序列中选择与数据包一一对应的签名序列。
在另一种实现方式中,所述发送模块还用于向所述网络设备发送导频;所述导频的信息用于指示所述用户设备对所述至少两个数据包进行多址接入使用的至少两个签名序列。
可选的,所述发送模块还用于通过控制信道向所述网络设备发送用于指示所述至少两个签名序列的控制信息。
可选的,所述装置还包括:接收模块;
所述发送模块具体用于向所述网络设备发送调度信息;所述调度信息用于指示所述用户设备需要上传数据,并指示所述用户设备待发送的数据量;
所述接收模块用于接收所述网络设备返回的调度确认消息;
所述处理模块用于根据所述调度确认消息确定所述至少两个签名序列。
可选的,所述至少两个数据包包括:
第一数据包的初传包和第二数据包的初传包;
或者,
第一数据包的初传包和第二数据包的重传包;
或者,
第一数据包的重传包和第二数据包的重传包。
本申请第四方面提供一种数据的传输装置,包括:
接收模块,用于接收用户设备发送的至少两个发送序列;
处理模块,用于获取所述用户设备发送所述至少两个发送序列使用的至少两个签名序列;
所述处理模块还用于根据每个签名序列对对应的发送序列分别进行检测,获取至少两个数据包。
在一种实现方式中,所述接收模块还用于接收所述用户设备发送的导频;
所述处理模块还用于根据所述导频获取所述至少两个签名信序列;其中,所述导频的信息用于指示用户设备发送所述至少两个发送序列使用的至少两个签名序列。
在另一种实现方式中,所述接收模块还用于接收所述用户设备通过控制信道发送的用于指示所述至少两个签名序列的控制信息;
所述处理模块还用于根据所述控制信息获取所述至少两个签名序列。
可选的,所述装置还包括:发送模块;
所述接收模块还用于接收所述用户设备发送的调度信息,所述调度信息用于指示所述用户设备需要上传数据,并指示所述用户设备待发送的数据量;
所述处理模块还用于根据所述调度信息,为所述用户设备调度带宽,并从可用签名序列中选择与所述数据量指示的数据包一一对应的签名序列;
所述发送模块用于向所述用户设备返回调度确认消息;所述调度确认消息用于指示所述至少两个签名序列。
可选的,所述至少两个数据包包括:
第一数据包的初传包和第二数据包的初传包;
或者,
第一数据包的初传包和第二数据包的重传包;
或者,
第一数据包的重传包和第二数据包的重传包。
本申请第五方面提供一种用户设备,包括:
处理器,用于:
获取用于对待发送的至少两个数据包进行多址接入的至少两个签名序列;
对所述至少两个数据包分别采用对应签名序列进行处理得到至少两个发送序列;
发送器,用于将所述至少两个发送序列在同一时频资源上发送至网络设备。
在一种实现方式中,所述处理器具体用于从可用的签名序列中选择与数据包一一对应的签名序列。
在另一种实现方式中,所述发送器还用于向所述网络设备发送导频;所述导频的信息用于指示所述用户设备对所述至少两个数据包进行多址接入使用的至少两个签名序列。
可选的,所述发送器还用于通过控制信道向所述网络设备发送用于指示所述至少两个签名序列的控制信息。
可选的,所述用户设备还包括:接收器;
所述发送器具体用于向所述网络设备发送调度信息;所述调度信息用于指示所述用户设备需要上传数据,并指示所述用户设备待发送的数据量;
所述接收器用于接收所述网络设备返回的调度确认消息;
所述处理器用于根据所述调度确认消息确定所述至少两个签名序列。
可选的,所述至少两个数据包包括:
第一数据包的初传包和第二数据包的初传包;
或者,
第一数据包的初传包和第二数据包的重传包;
或者,
第一数据包的重传包和第二数据包的重传包。
在上述用户设备的方案中,还可包括存储器,且处理器的数量为至少一个,用来执行存储器存储的执行指令。使得所述用户设备通过通信接口与网络设备之间进行数据交互来执行上述第一方面或者第一方面的各种实施方式提供的数据的传输方法。
本申请第六方面提供一种网络设备,包括:
接收器,用于接收用户设备发送的至少两个发送序列;
处理器,用于:
获取所述用户设备发送所述至少两个发送序列使用的至少两个签名序列;
根据每个签名序列对对应的发送序列分别进行检测,获取至少两个数据包。
在一种实现方式中,所述接收器还用于接收所述用户设备发送的导频;
所述处理器还用于根据所述导频获取所述至少两个签名信序列;其中,所述导频的信息用于指示用户设备发送所述至少两个发送序列使用的至少两个签名序列。
在另一种实现方式中,所述接收器还用于接收所述用户设备通过控制信道发送的用于指示所述至少两个签名序列的控制信息;
所述处理器还用于根据所述控制信息获取所述至少两个签名序列。
可选的,所述网络设备还包括:发送器;
所述接收器还用于接收所述用户设备发送的调度信息,所述调度信息用于指示所述用户设备需要上传数据,并指示所述用户设备待发送的数据量;
所述处理器还用于根据所述调度信息,为所述用户设备调度带宽,并从可用签名序列中选择与所述数据量指示的数据包一一对应的签名序列;
所述发送器用于向所述用户设备返回调度确认消息;所述调度确认消息用于指示所述 至少两个签名序列。
可选的,所述至少两个数据包包括:
第一数据包的初传包和第二数据包的初传包;
或者,
第一数据包的初传包和第二数据包的重传包;
或者,
第一数据包的重传包和第二数据包的重传包。
在上述网络设备中,还可包括存储器,且处理器的数量为至少一个,用来执行存储器存储的执行指令。使得所述网络设备通过通信接口与用户设备之间进行数据交互来执行上述第二方面或者第二方面的各种实施方式提供的数据的传输方法。
本申请第七方面提供一种存储介质,包括可读存储介质和可执行指令(也称为计算机程序),当用户设备的至少一个处理器执行该可执行指令时,用户设备执行上述第一方面或者第一方面的各种实施方式提供的数据的传输方法。
本申请第八方面提供一种存储介质,包括可读存储介质和可执行指令,当网络设备的至少一个处理器执行该可执行指令时,网络设备执行上述第二方面或者第二方面的各种实施方式提供的数据的传输方法。
本申请第九方面提供一种程序产品,该程序产品包括可执行指令,该可执行指令存储在可读存储介质中。用户设备的至少一个处理器可以从可读存储介质读取该可执行指令,至少一个处理器执行该可执行指令使得用户设备实施第一方面或者第一方面的各种实施方式提供的数据的传输方法。
本申请第十方面提供一种程序产品,该程序产品包括可执行指令,该可执行指令存储在可读存储介质中。网络设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该可执行指令使得网络设备实施上述第二方面或者第二方面的各种实施方式提供的数据的传输方法。
本申请提供的数据的传输方法和装置,用户设备获取用于对待发送的至少两个数据包进行多址接入的至少两个签名序列,然后对至少两个数据包分别采用对应签名序列进行处理得到至少两个发送序列,再将所述至少两个发送序列在同一时频资源上发送至网络设备。网络设备接收到用户设备发送的至少两个发送序列之后,获取用户设备发送至少两个发送序列使用的至少两个签名序列,并根据每个签名序列对对应的发送序列分别进行检测,获取至少两个数据包,用户设备可将多个数据包在同一个时隙同一个时频资源上进行传输,从而提高时频资源利用率,节省包排队时间,提高数据传输效率。
附图说明
图1为本申请提供的数据的传输方法的一种系统架构示意图;
图2为本申请提供的数据的传输方法实施例一的流程示意图;
图3为本申请提供的数据的发送方法的一实例的传输示意图;
图4为本申请提供的数据的发送方法的另一实例的传输示意图
图5为本申请提供的数据的发送方法的又一实例的传输示意图;
图6为本申请提供的数据的发送方法的再一实例的传输示意图;
图7为本申请提供的数据的传输装置实施例一的结构示意图;
图8为本申请提供的数据的传输装置实施例二的结构示意图;
图9为本申请提供的用户设备实施例的结构示意图;
图10为本申请提供的基站实施例的结构示意图。
具体实施方式
本申请的技术方案可应用于5G等蜂窝通信系统中。图1为本申请提供的数据的传输方法的一种系统架构示意图,如图1所示,该系统架构中包括网络设备(例如图中的基站)以及用户设备,例如手机、通话平板等。上述架构中,网络设备为网络侧的基站或者其他能够提供基站功能的设备,为用户设备提供通信服务;特别地,在中文名称:设备到设备(Device-to-Device,D2D)通信中,网络设备还可以是承担基站功能的终端。除此之外,基站又称为无线接入网(Radio Access Network,RAN)设备,是一种将终端接入到无线网络的设备,上述架构中的基站还可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者5G网络中的基站等,在此并不限定。
本申请提供的数据的传输方法基于上述架构,能够支持上行非正交多址系统中,UE将多个数据包在同一时隙,相同时频资源上并行发送,从而提高时频资源利用率,节省包排队等待时间,增加潜在的最大重传次数,以适应将来更高速的数据交互需求。
图2为本申请提供的数据的传输方法实施例一的流程示意图,如图2所示,在图1所示的架构示意图的基础上,网络设备和用户设备之间的数据的传输方法具体包括以下步骤:
S101:用户设备获取用于对待发送的至少两个数据包进行多址接入的至少两个签名序列。
在本步骤中,用户设备需要向网络设备发送上行数据,例如需要发送多个数据包给网络设备,则可将该些数据包经过独立信道进行编码,可以分别来自与数据包个数相同的多个不同的传输块(Transport Block,TB),也可以来自对同一个TB的不同分割,即需要多个用于多址接入的签名序列,分别对对应的数据包进行处理,因此用户需要先获取至少两个签名序列。该方案中,签名序列用于区分数据包在时频资源上所使用的数据层,签名序列可以为稀疏码多址接入(Sparse Code Multiple Access,SCMA)和偏振分割多路接入(Polarization Division Multiple Access,PDMA)中的码本,或基于多用户共享接入(Multi-User Shared Access,MUSA)中的扩频序列。
签名序列的具体获取方式至少包括以下几种:
第一种方式,用户设备从可用的签名序列中选择与数据包一一对应的签名序列。即用户设备自己选择得到上述需要的多个签名序列。
可选的,在该第一种获取签名序列的方式中,由于用户设备是自身获取的多个签名序 列,网络设备侧并不知道用户设备使用的具体签名序列,因此,UE需要将使用的多个签名序列通知网络设备,可通过向网络设备发送导频,导频的信息可以指示用户设备对多个数据包进行多址接入使用的多个签名序列,这里的导频的信息可以是偏移量或者索引等,以使网络设备可直接根据导频的信息确定用户设备使用的签名序列。
用户设备还可以通过控制信道向网络设备发送用于指示多个签名序列的控制信息,以使网络设备根据控制信息确定用户设备使用的签名序列。
第二种方式,用户设备向网络设备发送调度信息;调度信息用于指示用户设备需要上传数据,并指示用户设备待发送的数据量。例如可以通过数据调度请求和缓冲区状态报告等进行指示。网络设备接收用户设备发送的调度信息,并根据用户的调度信息进行调度处理,为用户设备调度带宽,并从可用签名序列中选择与用户设备要上传的多个数据包一一对应的签名序列,并通过调度确认消息返回给用户设备,调度确认消息用于指示所述至少两个签名序列,用户设备接收网络设备返回的调度确认消息,并根据所述调度确认消息确定至少两个签名序列。
S102:用户设备对至少两个数据包分别采用对应签名序列进行处理得到至少两个发送序列。
在本步骤中,用户设备对多个数据包由不同的传输块进行独立编码,然后分别采用对应的签名序列进行多址接入处理,得到多个数据层上的调制符号,即多个发送序列。
S103:用户设备将至少两个发送序列在同一时频资源上发送至网络设备。
在本步骤中,用户设备奖多个发送序列在同一个时频资源上进行传输,其含义是时域和频域均相同的资源上进行发送,即网络设备可在同一时频资源上检测接收到多个用户设备发送的发送序列。
S104:网络设备获取用户设备发送至少两个发送序列使用的至少两个签名序列。
在本步骤中,网络设备为了进行接收检测得到数据包,需要知道用户设备发送数据包使用的多个签名序列,具体的获取方式可以是:
第一种方式,网络设备接收所述用户设备发送的导频,并根据所述导频获取所述至少两个签名信序列;其中,所述导频的信息用于指示用户设备发送所述至少两个发送序列使用的至少两个签名序列。
第二种方式,网络设备接收所述用户设备通过控制信道发送的用于指示所述至少两个签名序列的控制信息,并根据所述控制信息获取所述至少两个签名序列。
第三种方式,网络设备在接收到多个发送序列之前,网络设备接收用户设备发送的调度信息,调度信息用于指示用户设备需要上传数据,并指示用户设备待发送的数据量。网络设备根据调度信息为用户设备调度带宽,并从可用签名序列中选择与所述数据量指示的数据包一一对应的签名序列,并将选择的多个签名序列通过调度确认信息返回给用户设备。
S105:网络设备根据每个签名序列对对应的发送序列分别进行检测,获取至少两个数据包。
在本步骤中,网络设备根据获取到的多个签名序列,对接收到的多个发送序列分别进行接收检测,得到用户设备发送的多个数据包。
在上述方案中,用户设备发送的多个数据包中,用户设备同时频资源发送的多个数据包可以是每个数据包的初传包,也可以是一些数据包的初传包和另一些数据包的重传包, 也可全部是数据包的重传包,且每个数据包的重传次数可不相同,对此本申请均不做限制。
以两个数据包为例,该多个数据包包括:第一数据包的初传包和第二数据包的初传包;或者,第一数据包的初传包和第二数据包的重传包;或者,第一数据包的重传包和第二数据包的重传包。并且在存在多个重传包时,每个数据包的重传次数可以不相同。
本实施例提供的数据的传输方法,用户设备获取用于对待发送的至少两个数据包进行多址接入的至少两个签名序列,然后对至少两个数据包分别采用对应签名序列进行处理得到至少两个发送序列,再将所述至少两个发送序列在同一时频资源上发送至网络设备。网络设备接收到用户设备发送的至少两个发送序列之后,获取用户设备发送至少两个发送序列使用的至少两个签名序列,并根据每个签名序列对对应的发送序列分别进行检测,获取至少两个数据包,用户设备可将多个数据包在同一个时隙同一个时频资源上进行传输,从而提高时频资源利用率,节省包排队时间,提高数据传输效率。
在上述实施例的基础上,下面以基站为例,列举了一些典型的数据包在同一时频资源上并行传输的流程,以及标准中可能的体现形式等,对本申请提供的数据的传输方法进行说明。
图3为本申请提供的数据的发送方法的一实例的传输示意图,如图3所示,本方案中,假设上行Grant-free SCMA非正交传输系统(也可以是其他形式的非正交传输方式)中,用户设备(User Equipment,UE)在某一时刻有2个待传输的初传数据包,由不同的TB经过独立的信道编码得到,分别表示为CB 1 (0)和CB 2 (0),其中上标0表示两个数据包都是初传包。UE根据本次数据包个数,选择对应传输模式,此传输模式对应签名序列集{s 1,s 2},用于对CB 1 (0)和CB 2 (0)进行SCMA多址接入处理,得到2个数据层上的发送序列,并在同一时频资源上同时传输至基站。
在上述过程中,引入传输模式的概念,不同的传输模式对应不同的签名序列集,因此在指示多个签名序列时,可以直接指示传输模式,可确定出对应的签名序列集,从而得到需要的多个签名序列。UE可通过一个导频p将所选传输模式告知BS,其中导频的信息和传输模式的对应关系由基站(Base Station,BS)和UE事先约定。BS根据解到的导频p的信息,并根据约定好的p的信息与传输模式对应关系,从而知道该UE是将两个包通过两个数据层(分别使用签名序列s 1,s 2)来传输的,从而进行相应的接收检测。
可选的UE还可以通过控制信息将所选传输模式告知基站,而不必建立导频和传输模式(签名序列或签名序列集)的映射关系。
图4为本申请提供的数据的发送方法的另一实例的传输示意图,如图4所示,本方案中,假设上行Grant-free SCMA非正交传输系统中,UE在某一时刻有3个待传输的包,由不同的TB经过独立的信道编码得到,分别表示为CB 1 (0),CB 2 (1)和CB 3 (2)。其中CB 1 (0)是数据包1的初传包,CB 2 (1)是数据包2的第一次重传包,CB 3 (2)是数据包3的第二次重传包。UE根据本次数据包个数,同样的可选择对应传输模式,此传输模式对应签名序列集{s 1,s 2,s 3},用于对CB 1 (0),CB 2 (1)和CB 3 (2)进行SCMA多址接入处理,得到3个数据层上的发送序列,并在同一时频资源上同时传输。
UE可通过一个导频p将所选传输模式告知BS,其中导频和传输模式的对应关系由BS和UE事先约定。基站根据解到的导频p的信息,并根据约定好的p的信息与传输模式对应关系,从而知道该UE是将3个包通过3个数据层(分别使用签名序列s 1,s 2,s 3) 来传输的,从而进行相应的接收检测。
UE还可以通过控制信息将所选传输模式告知基站,而不必建立导频和传输模式(签名序列或签名序列集)的映射关系。
可选的,本方案的另一种具体实现中,假设上行授权传输(grant-based)SCMA系统中,UE在某一时刻有2个待传输的数据包,分别表示为CB 1 (1)和CB 2 (2),分别是包1的第一次重传包和包2的第二次重传包。UE通过调度请求(Scheduling Request,SR)指示有上行传输数据,并通过缓冲区状态报告(Buffer Status Reporting,BSR)告知基站本次传输的数据量。基站根据BSR为UE调度所需带宽,并告知其传输模式。UE在调度的带宽内根据传输模式,将CB 1 (1)和CB 2 (2)分别用所对应的两个签名序列(s 1和s 2)进行多址接入处理,并在两个数据层上同时发送。
BS已知该用户上行传输所使用的传输模式,可直接对各数据层上传输的数据包进行接收检测。
图5为本申请提供的数据的发送方法的又一实例的传输示意图;如图5所示,假设上行Grant-free SCMA非正交传输系统中,UE在某一时刻有2个待传输的初传数据包,由同一TB拆分并经过独立的信道编码得到,分别表示为CB 1 (0)和CB 2 (0),其中上标0表示两个包都是初传的包。UE根据本次数据包个数,选择对应传输模式,此传输模式对应签名序列集{s 1,s 2},用于对CB 1 (0)和CB 2 (0)进行SCMA多址接入处理,得到2个数据层上的发送序列,并在同一时频资源上同时传输。
在本实例中,与前述方案同样的,UE可通过一个导频p将所选传输模式告知BS,其中导频和传输模式的对应关系由BS和UE事先约定。BS根据解到的导频p,并根据约定好的p与传输模式对应关系,从而知道该UE是将两个数据包通过两个数据层(分别使用签名序列s 1,s 2)来传输的,从而进行相应的接收检测。
UE还可以通过控制信息将所选传输模式告知基站,而不必建立导频和传输模式(签名序列或签名序列集)的映射关系。
根据上述实施例可知,在本方案的具体实现中,CB 1和CB 2可以来自同一个TB,也可以来自于不同的TB,对此本方案不做限制。
图6为本申请提供的数据的发送方法的再一实例的传输示意图;如图6所示,该方案中,假设上行Grant-free MUSA非正交传输系统中,UE在某一时刻有2个待传输的数据包,分别由不同TB并经过独立的信道编码得到,表示为CB 1 (1)和CB 2 (2),分别是数据包1的第一次重传包和数据包2的第二次重传包。UE根据本次传输包个数,选择对应传输模式,此传输模式对应MUSA签名序列集{s 1,s 2},用于对CB 1 (1)和CB 2 (2)进行MUSA多址接入处理,得到2个数据层上的发送序列,并在同一时频资源上同时传输。
同样的,UE可通过一个导频p将所选传输模式告知BS,其中导频的信息和传输模式的对应关系由BS和UE事先约定。BS根据解到的导频p,并根据约定好的p的信息与传输模式对应关系,从而知道该UE是将两个包通过两个数据层(分别使用签名序列s 1,s 2)来传输的,从而进行相应的接收检测。UE还可以通过控制信息将所选传输模式告知基站,而不必建立导频和传输模式(签名序列或签名序列集)的映射关系。
除了上述方案,本申请还提供一种数据的传输方案,假设上行Grant-free SCMA非正交传输系统中,UE在某一时刻有2个待传输的初传数据包,由不同的TB经过独立的信 道编码得到,分别表示为CB 1 (0)和CB 2 (0),都是初传数据包。UE根据本次传输包个数,选择对应传输模式,此传输模式对应签名序列集
Figure PCTCN2018072671-appb-000001
用于对CB 1 (0)和CB 2 (0)进行SCMA多址接入处理,得到2个数据层上的发送序列,并在同一时频资源上同时传输。其中
Figure PCTCN2018072671-appb-000002
为对原始签名序列s 1,s 2进行处理结果,处理过程包括相位旋转和功率分配等方式。
UE可通过一个导频p将所选传输模式告知BS,其中导频和传输模式的对应关系由BS和UE事先约定。BS根据解到的导频p,并根据约定好的p与传输模式对应关系,从而知道该UE是将两个包通过两个数据层(分别使用签名序列
Figure PCTCN2018072671-appb-000003
)来传输的,从而进行相应的接收检测。UE还可以通过控制信息将所选传输模式告知基站,而不必建立导频和传输模式(签名序列或签名序列集)的映射关系。
同样的在该实现方式中,CB 1和CB 2可以来自同一个TB,也可以来自于不同的TB,对此本方案不做限制。
上述任一实现方式提供的数据的传输方法,能够支持上行非正交多止系统中,UE将多个数据包经过独立的信道编码,分别使用不同的签名序列进行多址接入处理得到发送序列,在同一个时隙,同一个时频资源上并行发送给基站,能够有效的提高时频资源利用率,减少包排队等待时间,增加潜在的最大重传次数,提高传输效率和可靠性。
图7为本申请提供的数据的传输装置实施例一的结构示意图;如图7所示,该数据的传输装置10包括:
处理模块11,用于获取用于对待发送的至少两个数据包进行多址接入的至少两个签名序列;
所述处理模块11还用于对所述至少两个数据包分别采用对应签名序列进行处理得到至少两个发送序列;
发送模块12,用于将所述至少两个发送序列在同一时频资源上发送至网络设备。
在该数据的传输装置10的一种实现方式中,所述处理模块11具体用于从可用的签名序列中选择与数据包一一对应的签名序列。
可选的,所述发送模块12还用于向所述网络设备发送导频;所述导频的信息用于指示所述用户设备对所述至少两个数据包进行多址接入使用的至少两个签名序列。
可选的,所述发送模块12还用于通过控制信道向所述网络设备发送用于指示所述至少两个签名序列的控制信息。
在该数据的传输装置10的另一种实现方式中,还包括:接收模块13;
所述发送模块12具体用于向所述网络设备发送调度信息;所述调度信息用于指示所述用户设备需要上传数据,并指示所述用户设备待发送的数据量;
所述接收模块13用于接收所述网络设备返回的调度确认消息;
所述处理模块11用于根据所述调度确认消息确定所述至少两个签名序列。
可选的,所述至少两个数据包包括:第一数据包的初传包和第二数据包的初传包;或者,第一数据包的初传包和第二数据包的重传包;或者,第一数据包的重传包和第二数据包的重传包。
上述图7任一实现方式提供的数据的传输装置,用于执行前述任一方法实施例中用户设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图8为本申请提供的数据的传输装置实施例二的结构示意图,如图8所示,该数据 的传输装置20,包括:
接收模块21,用于接收用户设备发送的至少两个发送序列;
处理模块22,用于获取所述用户设备发送所述至少两个发送序列使用的至少两个签名序列;
所述处理模块22还用于根据每个签名序列对对应的发送序列分别进行检测,获取至少两个数据包。
在该数据的传输装置20的一种实现方式中,所述接收模块21还用于接收所述用户设备发送的导频;
所述处理模块22还用于根据所述导频获取所述至少两个签名信序列;其中,所述导频的信息用于指示用户设备发送所述至少两个发送序列使用的至少两个签名序列。
可选的,所述接收模块21还用于接收所述用户设备通过控制信道发送的用于指示所述至少两个签名序列的控制信息;
所述处理模块22还用于根据所述控制信息获取所述至少两个签名序列。
在该数据的传输装置20的另一种实现方式中,还包括:发送模块23;
所述接收模块21还用于接收所述用户设备发送的调度信息,所述调度信息用于指示所述用户设备需要上传数据,并指示所述用户设备待发送的数据量;
所述处理模块22还用于根据所述调度信息,为所述用户设备调度带宽,并从可用签名序列中选择与所述数据量指示的数据包一一对应的签名序列;
所述发送模块23用于向所述用户设备返回调度确认消息;所述调度确认消息用于指示所述至少两个签名序列。
可选的,所述至少两个数据包包括:
第一数据包的初传包和第二数据包的初传包;或者,第一数据包的初传包和第二数据包的重传包;或者,第一数据包的重传包和第二数据包的重传包。
上述图8所示任一实现方式提供的数据的传输装置,用于执行前述任一方法实施例中网络设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图9为本申请提供的用户设备实施例的结构示意图;如图9所示,该用户设备30包括:处理器31,用于:
获取用于对待发送的至少两个数据包进行多址接入的至少两个签名序列;
对所述至少两个数据包分别采用对应签名序列进行处理得到至少两个发送序列;
发送器32,用于将所述至少两个发送序列在同一时频资源上发送至网络设备。
在一种实现方式中,所述处理器具体用于从可用的签名序列中选择与数据包一一对应的签名序列。
在另一种实现方式中,所述发送器32还用于向所述网络设备发送导频;所述导频的信息用于指示所述用户设备对所述至少两个数据包进行多址接入使用的至少两个签名序列。
可选的,所述发送器32还用于通过控制信道向所述网络设备发送用于指示所述至少两个签名序列的控制信息。
可选的,所述用户设备还包括:接收器33;
所述发送器32具体用于向所述网络设备发送调度信息;所述调度信息用于指示所述 用户设备需要上传数据,并指示所述用户设备待发送的数据量;
所述接收器33用于接收所述网络设备返回的调度确认消息;
所述处理器31用于根据所述调度确认消息确定所述至少两个签名序列。
可选的,所述至少两个数据包包括:
第一数据包的初传包和第二数据包的初传包;
或者,
第一数据包的初传包和第二数据包的重传包;
或者,
第一数据包的重传包和第二数据包的重传包。
在上述用户设备的方案中,还可包括存储器,且处理器的数量为至少一个,用来执行存储器存储的执行指令。使得所述用户设备通过通信接口与网络设备之间进行数据交互来执行上述第一方面或者第一方面的各种实施方式提供的数据的传输方法。
图10为本申请提供的网络设备实施例的结构示意图。如图10所示,该网络设备40包括:接收器41,用于接收用户设备发送的至少两个发送序列;
处理器42,用于:
获取所述用户设备发送所述至少两个发送序列使用的至少两个签名序列;
根据每个签名序列对对应的发送序列分别进行检测,获取至少两个数据包。
在一种实现方式中,所述接收器41还用于接收所述用户设备发送的导频;
所述处理器42还用于根据所述导频获取所述至少两个签名信序列;其中,所述导频的信息用于指示用户设备发送所述至少两个发送序列使用的至少两个签名序列。
在另一种实现方式中,所述接收器41还用于接收所述用户设备通过控制信道发送的用于指示所述至少两个签名序列的控制信息;
所述处理器42还用于根据所述控制信息获取所述至少两个签名序列。
可选的,所述网络设备40还包括:发送器42;
所述接收器41还用于接收所述用户设备发送的调度信息,所述调度信息用于指示所述用户设备需要上传数据,并指示所述用户设备待发送的数据量;
所述处理器42还用于根据所述调度信息,为所述用户设备调度带宽,并从可用签名序列中选择与所述数据量指示的数据包一一对应的签名序列;
所述发送器43用于向所述用户设备返回调度确认消息;所述调度确认消息用于指示所述至少两个签名序列。
可选的,所述至少两个数据包包括:
第一数据包的初传包和第二数据包的初传包;
或者,
第一数据包的初传包和第二数据包的重传包;
或者,
第一数据包的重传包和第二数据包的重传包。
在上述网络设备中,还可包括存储器,且处理器的数量为至少一个,用来执行存储器存储的执行指令。使得所述网络设备通过通信接口与用户设备之间进行数据交互来执行上述第二方面或者第二方面的各种实施方式提供的数据的传输方法。
本申请还提供一种存储介质,包括:可读存储介质和可执行指令,该可执行指令存储在可读存储介质中,当用户设备的至少一个处理器执行该可执行指令时,用户设备执行上述的各种实施方式提供的数据的传输方法。
本申请还提供一种存储介质,包括:可读存储介质和可执行指令,该可执行指令存储在可读存储介质中,当网络设备的至少一个处理器执行该可执行指令时,网络设备执行上述各种实施方式提供的数据的传输方法。
本申请还提供一种程序产品,该程序产品包括可执行指令,该可执行指令存储在可读存储介质中。用户设备的至少一个处理器可以从可读存储介质读取该执可行指令,至少一个处理器执行该可执行指令使得用户设备实施前述各种实施方式提供的数据的传输方法。
本申请还提供一种程序产品,该程序产品包括可执行指令,该可执行指令存储在可读存储介质中。网络设备的至少一个处理器可以从可读存储介质读取该可执行指令,至少一个处理器执行该可执行指令使得网络设备实施上述各种实施方式提供的数据的传输方法。
上述方案中的可执行指令也称为计算机指令,或者计算机程序等,对此本方案不做限制。
在上述用户设备或者网络设备的实施例中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,缩写:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制。

Claims (39)

  1. 一种数据的传输方法,其特征在于,包括:
    用户设备获取用于对待发送的至少两个数据包进行多址接入的至少两个签名序列;
    所述用户设备对所述至少两个数据包分别采用对应签名序列进行处理得到至少两个发送序列;
    所述用户设备将所述至少两个发送序列在同一时频资源上发送至网络设备。
  2. 根据权利要求1所述的方法,其特征在于,所述用户设备获取用于对待发送的至少两个数据包进行多址接入的至少两个签名序列,包括:
    所述用户设备从可用的签名序列中选择与数据包一一对应的签名序列。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述用户设备向所述网络设备发送导频;所述导频的信息用于指示所述用户设备对所述至少两个数据包进行多址接入使用的至少两个签名序列。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述用户设备通过控制信道向所述网络设备发送用于指示所述至少两个签名序列的控制信息。
  5. 根据权利要求1所述的方法,其特征在于,所述用户设备获取用于对待发送的至少两个数据包进行多址接入的至少两个签名序列,包括:
    所述用户设备向所述网络设备发送调度信息;所述调度信息用于指示所述用户设备需要上传数据,并指示所述用户设备待发送的数据量;
    所述用户设备接收所述网络设备返回的调度确认消息;
    所述用户设备根据所述调度确认消息确定所述至少两个签名序列。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述至少两个数据包包括:
    第一数据包的初传包和第二数据包的初传包;
    或者,
    第一数据包的初传包和第二数据包的重传包;
    或者,
    第一数据包的重传包和第二数据包的重传包。
  7. 一种数据的传输方法,其特征在于,包括:
    网络设备接收用户设备发送的至少两个发送序列;
    所述网络设备获取所述用户设备发送所述至少两个发送序列使用的至少两个签名序列;
    所述网络设备根据每个签名序列对对应的发送序列分别进行检测,获取至少两个数据包。
  8. 根据权利要求7所述的方法,其特征在于,所述网络设备获取所述用户设备发送所述至少两个发送序列使用的至少两个签名序列,包括:
    所述网络设备接收所述用户设备发送的导频,并根据所述导频获取所述至少两个签名信序列;其中,所述导频的信息用于指示用户设备发送所述至少两个发送序列使用的至少两个签名序列。
  9. 根据权利要求7所述的方法,其特征在于,所述网络设备获取所述用户设备发送所述至少两个发送序列使用的至少两个签名序列,包括:
    所述网络设备接收所述用户设备通过控制信道发送的用于指示所述至少两个签名序列的控制信息,并根据所述控制信息获取所述至少两个签名序列。
  10. 根据权利要求7所述的方法,其特征在于,所述网络设备接收用户设备发送的至少两个发送序列之前,所述方法还包括:
    所述网络设备接收所述用户设备发送的调度信息,所述调度信息用于指示所述用户设备需要上传数据,并指示所述用户设备待发送的数据量;
    所述网络设备根据所述调度信息,为所述用户设备调度带宽,并从可用签名序列中选择与所述数据量指示的数据包一一对应的签名序列;
    所述网络设备向所述用户设备返回调度确认消息;所述调度确认消息用于指示所述至少两个签名序列。
  11. 根据权利要求7至10任一项所述的方法,其特征在于,所述至少两个数据包包括:
    第一数据包的初传包和第二数据包的初传包;
    或者,
    第一数据包的初传包和第二数据包的重传包;
    或者,
    第一数据包的重传包和第二数据包的重传包。
  12. 一种数据的传输装置,其特征在于,包括:
    处理模块,用于获取用于对待发送的至少两个数据包进行多址接入的至少两个签名序列;
    所述处理模块还用于对所述至少两个数据包分别采用对应签名序列进行处理得到至少两个发送序列;
    发送模块,用于将所述至少两个发送序列在同一时频资源上发送至网络设备。
  13. 根据权利要求12所述的装置,其特征在于,所述处理模块具体用于从可用的签名序列中选择与数据包一一对应的签名序列。
  14. 根据权利要求13所述的装置,其特征在于,所述发送模块还用于向所述网络设备发送导频;所述导频的信息用于指示所述用户设备对所述至少两个数据包进行多址接入使用的至少两个签名序列。
  15. 根据权利要求12所述的装置,其特征在于,所述发送模块还用于通过控制信道向所述网络设备发送用于指示所述至少两个签名序列的控制信息。
  16. 根据权利要求12所述的装置,其特征在于,所述装置还包括:接收模块;
    所述发送模块具体用于向所述网络设备发送调度信息;所述调度信息用于指示所述用户设备需要上传数据,并指示所述用户设备待发送的数据量;
    所述接收模块用于接收所述网络设备返回的调度确认消息;
    所述处理模块用于根据所述调度确认消息确定所述至少两个签名序列。
  17. 根据权利要求12至16任一项所述的装置,其特征在于,所述至少两个数据包包括:
    第一数据包的初传包和第二数据包的初传包;
    或者,
    第一数据包的初传包和第二数据包的重传包;
    或者,
    第一数据包的重传包和第二数据包的重传包。
  18. 一种数据的传输装置,其特征在于,包括:
    接收模块,用于接收用户设备发送的至少两个发送序列;
    处理模块,用于获取所述用户设备发送所述至少两个发送序列使用的至少两个签名序列;
    所述处理模块还用于根据每个签名序列对对应的发送序列分别进行检测,获取至少两个数据包。
  19. 根据权利要求18所述的装置,其特征在于,所述接收模块还用于接收所述用户设备发送的导频;
    所述处理模块还用于根据所述导频获取所述至少两个签名信序列;其中,所述导频的信息用于指示用户设备发送所述至少两个发送序列使用的至少两个签名序列。
  20. 根据权利要求18所述的装置,其特征在于,所述接收模块还用于接收所述用户设备通过控制信道发送的用于指示所述至少两个签名序列的控制信息;
    所述处理模块还用于根据所述控制信息获取所述至少两个签名序列。
  21. 根据权利要求18所述的装置,其特征在于,所述装置还包括:发送模块;
    所述接收模块还用于接收所述用户设备发送的调度信息,所述调度信息用于指示所述用户设备需要上传数据,并指示所述用户设备待发送的数据量;
    所述处理模块还用于根据所述调度信息,为所述用户设备调度带宽,并从可用签名序列中选择与所述数据量指示的数据包一一对应的签名序列;
    所述发送模块用于向所述用户设备返回调度确认消息;所述调度确认消息用于指示所述至少两个签名序列。
  22. 根据权利要求18至21任一项所述的装置,其特征在于,所述至少两个数据包包括:
    第一数据包的初传包和第二数据包的初传包;
    或者,
    第一数据包的初传包和第二数据包的重传包;
    或者,
    第一数据包的重传包和第二数据包的重传包。
  23. 一种用户设备,其特征在于,包括:
    处理器,用于:
    获取用于对待发送的至少两个数据包进行多址接入的至少两个签名序列;
    对所述至少两个数据包分别采用对应签名序列进行处理得到至少两个发送序列;
    发送器,用于将所述至少两个发送序列在同一时频资源上发送至网络设备。
  24. 根据权利要求23所述的用户设备,其特征在于,所述处理器具体用于从可用的签名序列中选择与数据包一一对应的签名序列。
  25. 根据权利要求24所述的用户设备,其特征在于,所述发送器还用于向所述网络设备发送导频;所述导频的信息用于指示所述用户设备对所述至少两个数据包进行多址接入使用的至少两个签名序列。
  26. 根据权利要求24所述的用户设备,其特征在于,所述发送器还用于通过控制信道向所述网络设备发送用于指示所述至少两个签名序列的控制信息。
  27. 根据权利要求23所述的用户设备,其特征在于,所述用户设备还包括:接收器;
    所述发送器具体用于向所述网络设备发送调度信息;所述调度信息用于指示所述用户设备需要上传数据,并指示所述用户设备待发送的数据量;
    所述接收器用于接收所述网络设备返回的调度确认消息;
    所述处理器用于根据所述调度确认消息确定所述至少两个签名序列。
  28. 根据权利要求23至27任一项所述的用户设备,其特征在于,所述至少两个数据包包括:
    第一数据包的初传包和第二数据包的初传包;
    或者,
    第一数据包的初传包和第二数据包的重传包;
    或者,
    第一数据包的重传包和第二数据包的重传包。
  29. 根据权利要求23至27任一项所述的用户设备,其特征在于,所述用户设备还包括存储器,用于存储由所述处理器执行的执行指令。
  30. 一种网络设备,其特征在于,包括:
    接收器,用于接收用户设备发送的至少两个发送序列;
    处理器,用于:
    获取所述用户设备发送所述至少两个发送序列使用的至少两个签名序列;
    根据每个签名序列对对应的发送序列分别进行检测,获取至少两个数据包。
  31. 根据权利要求30所述的网络设备,其特征在于,所述接收器还用于接收所述用户设备发送的导频;
    所述处理器还用于根据所述导频获取所述至少两个签名信序列;其中,所述导频的信息用于指示用户设备发送所述至少两个发送序列使用的至少两个签名序列。
  32. 根据权利要求30所述的网络设备,其特征在于,所述接收器还用于接收所述用户设备通过控制信道发送的用于指示所述至少两个签名序列的控制信息;
    所述处理器还用于根据所述控制信息获取所述至少两个签名序列。
  33. 根据权利要求30所述的网络设备,其特征在于,所述网络设备还包括:发送器;
    所述接收器还用于接收所述用户设备发送的调度信息,所述调度信息用于指示所述用户设备需要上传数据,并指示所述用户设备待发送的数据量;
    所述处理器还用于根据所述调度信息,为所述用户设备调度带宽,并从可用签名序列中选择与所述数据量指示的数据包一一对应的签名序列;
    所述发送器用于向所述用户设备返回调度确认消息;所述调度确认消息用于指示所述至少两个签名序列。
  34. 根据权利要求30至33任一项所述的网络设备,其特征在于,所述至少两个数据 包包括:
    第一数据包的初传包和第二数据包的初传包;
    或者,
    第一数据包的初传包和第二数据包的重传包;
    或者,
    第一数据包的重传包和第二数据包的重传包。
  35. 根据权利要求30至34任一项所述的网络设备,其特征在于,所述网络设备还包括存储器,用于存储由所述处理器执行的执行指令。
  36. 一种存储介质,其特征在于,包括:可读存储介质和可执行指令,所述可执行指令用于实现权利要求1至6任一项所述的数据的传输方法。
  37. 一种存储介质,其特征在于,包括:可读存储介质和可执行指令,所述可执行指令用于实现权利要求7至11任一项所述的数据的传输方法。
  38. 一种程序产品,其特征在于,所述程序产品包括执行指令,所述执行指令用于用户设备执行权利要求1到6任一项所述的方法。
  39. 一种程序产品,其特征在于,所述程序产品包括执行指令,所述执行指令用于网络设备执行权利要求7到11任一项所述的方法。
PCT/CN2018/072671 2017-01-24 2018-01-15 数据的传输方法和装置 WO2018137510A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019538624A JP6835234B2 (ja) 2017-01-24 2018-01-15 データ伝送方法及びデータ伝送装置
EP18744227.2A EP3565348A4 (en) 2017-01-24 2018-01-15 DATA TRANSFER METHOD AND DEVICE
US16/515,665 US11108597B2 (en) 2017-01-24 2019-07-18 Data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710060332.2 2017-01-24
CN201710060332.2A CN108347774B (zh) 2017-01-24 2017-01-24 数据的传输方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/515,665 Continuation US11108597B2 (en) 2017-01-24 2019-07-18 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2018137510A1 true WO2018137510A1 (zh) 2018-08-02

Family

ID=62962819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072671 WO2018137510A1 (zh) 2017-01-24 2018-01-15 数据的传输方法和装置

Country Status (5)

Country Link
US (1) US11108597B2 (zh)
EP (1) EP3565348A4 (zh)
JP (1) JP6835234B2 (zh)
CN (1) CN108347774B (zh)
WO (1) WO2018137510A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020001274A1 (en) * 2018-06-29 2020-01-02 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for multiple access transmission

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106211235A (zh) * 2016-06-16 2016-12-07 中国科学技术大学 一种无线网络中的小包数据传输方法及系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090042916A (ko) * 2006-08-17 2009-05-04 파나소닉 주식회사 무선 송신 장치 및 무선 송신 방법
US20090042561A1 (en) * 2007-08-09 2009-02-12 Brian Abraham Jackson Asset management system
US10098095B2 (en) * 2012-05-25 2018-10-09 Qualcomm Incorporated Feedback to enhance rate prediction with bursty interference
WO2014092370A1 (ko) * 2012-12-14 2014-06-19 엘지전자 주식회사 무선 통신 시스템에서 단말 간 직접 통신을 위한 스케줄링 방법 및 이를 위한 장치
WO2014126442A1 (en) * 2013-02-18 2014-08-21 Lg Electronics Inc. Method and apparatus for transmitting indication in wireless communication system
WO2014185695A1 (en) * 2013-05-13 2014-11-20 Lg Electronics Inc. Method and apparatus for allocating physical cell identities in wireless communication system
US9509379B2 (en) * 2013-06-17 2016-11-29 Huawei Technologies Co., Ltd. System and method for designing and using multidimensional constellations
WO2014208925A1 (en) * 2013-06-24 2014-12-31 Lg Electronics Inc. Method and apparatus for transmitting split availability of cell in wireless communication system
US10285083B2 (en) * 2013-07-12 2019-05-07 Lg Electronics Inc. Method and apparatus for transmitting indication of cell coverage in wireless communication system
JP6441925B2 (ja) * 2013-08-09 2018-12-19 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるセル形成指示を送信する方法及び装置
KR101881426B1 (ko) * 2014-01-29 2018-07-24 후아웨이 테크놀러지 컴퍼니 리미티드 업링크 액세스 방법, 장치, 및 시스템
US10700803B2 (en) * 2014-08-15 2020-06-30 Huawei Technologies Co., Ltd. System and method for generating codebooks with small projections per complex dimension and utilization thereof
BR112017027337A2 (pt) * 2015-06-17 2018-09-04 Hughes Network Systems Llc técnica de aquisição de sinais de acesso múltiplo baseada em palavra única (uw)
CN106331984A (zh) * 2015-07-01 2017-01-11 中兴通讯股份有限公司 多用户共享接入过程中的重传控制方法、装置、终端
US10367677B2 (en) * 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106211235A (zh) * 2016-06-16 2016-12-07 中国科学技术大学 一种无线网络中的小包数据传输方法及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP3565348A4
ZTE: "Contention-based Non-orthogonal Multiple Access for UL mMTC", 3GPP TSG RAN WG 1 MEETING #85, R1-164269, 14 May 2016 (2016-05-14), XP051096507, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_85/Docs/> *
ZTE: "Discussion on Multiple Access for New Radio Interface", 3GPP TSG RAN WG 1 MEETING #84BIS, R1-162226, 1 April 2016 (2016-04-01), XP051079526, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_84b/Docs/> *

Also Published As

Publication number Publication date
JP2020507260A (ja) 2020-03-05
US20190342121A1 (en) 2019-11-07
CN108347774A (zh) 2018-07-31
US11108597B2 (en) 2021-08-31
CN108347774B (zh) 2021-10-15
EP3565348A4 (en) 2020-01-22
EP3565348A1 (en) 2019-11-06
JP6835234B2 (ja) 2021-02-24

Similar Documents

Publication Publication Date Title
JP7148208B2 (ja) 伝送方法、端末デバイス、コンピュータ可読記憶媒体及びプログラム
JP7032576B2 (ja) フィードバック情報送信方法および通信デバイス
WO2020243966A1 (en) Methods for communication, devices, and computer readable medium
WO2020094025A1 (zh) 一种上行控制信息的传输方法及装置
WO2019096243A1 (zh) 信息传输方法及装置
WO2018228395A1 (zh) 一种控制信息发送、接收方法及装置
WO2018027918A1 (zh) 上行信道发送方法和装置
CN113785520A (zh) 已配置许可上行链路控制信息(uci)映射规则
WO2020200014A1 (zh) 通信方法及装置
WO2018228537A1 (zh) 信息发送、接收方法及装置
US11006438B2 (en) Signal transmission method, related apparatus, and system
WO2020143696A1 (en) Multiple physical uplink control channel (pucch) resources for an uplink control information (uci) report
US10873430B2 (en) Signal sending method and apparatus
US20180014312A1 (en) Base station apparatus and method of allocating a radio resource
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
WO2020201118A1 (en) Configured uplink control information mapping
JP2020519080A (ja) 無線通信方法、端末装置及び送受信ノード
WO2018121150A1 (zh) 一种信息传输方法及装置
WO2018141091A1 (zh) 发送信息的方法、接收信息的方法和装置
JP2023542690A (ja) ユーザ装置及びユーザ装置の方法
CN116325611A (zh) 通信方法、终端设备、网络设备以及计算机可读介质
WO2013139259A1 (zh) 正交频分多址接入系统中的编码传输方法和系统
WO2018137510A1 (zh) 数据的传输方法和装置
WO2020073283A1 (en) Method, device and computer readable medium for uplink control information transmission
WO2021155604A1 (zh) 信息处理方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538624

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018744227

Country of ref document: EP

Effective date: 20190729