WO2019061946A1 - 微流泵 - Google Patents

微流泵 Download PDF

Info

Publication number
WO2019061946A1
WO2019061946A1 PCT/CN2018/071777 CN2018071777W WO2019061946A1 WO 2019061946 A1 WO2019061946 A1 WO 2019061946A1 CN 2018071777 W CN2018071777 W CN 2018071777W WO 2019061946 A1 WO2019061946 A1 WO 2019061946A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
way valve
receiving chamber
pump
opening
Prior art date
Application number
PCT/CN2018/071777
Other languages
English (en)
French (fr)
Inventor
程鑫
陈日飞
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Publication of WO2019061946A1 publication Critical patent/WO2019061946A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0081Special features systems, control, safety measures

Definitions

  • the present disclosure relates to the field of microfluidic pumps, for example to a microfluidic pump.
  • microfluidic pumps With the development of microfluidics, microfluidic pumps with precise control of liquid flow have become a major development goal. Microfluidic pumps are gaining more and more attention in the fields of life medicine, medical health, mechanical engineering, etc., for example, for injecting drugs, 3D printing, and cell screening. For example, portable microfluidic pumps combined with microneedles can be used for real-time injection of diabetic patients. Insulin protects diabetics from the pain of frequent syringe injections.
  • the microfluidic pump of the related art mainly uses air pressure as a driving force.
  • the pneumatic micro-flow pump drives the liquid flow by directly applying the air pressure.
  • the air pressure and the air intake volume can be adjusted to adjust the liquid flow rate.
  • the overall system is bulky (need to carry a gas source, etc.), and is mainly used by scientific research institutions, companies, and hospitals.
  • the present disclosure provides a microfluidic pump, which is made into a miniaturized microfluidic pump, and the potential of the microfluidic pump in medical health and large-scale integration has been developed.
  • microfluidic pump comprising at least one microfluidic pump, the microfluidic pump comprising:
  • liquid accommodating cavity at least one side wall of the liquid accommodating cavity being a piezoelectric ceramic piece, the piezoelectric ceramic piece vibrating to cause the liquid accommodating cavity to be in a contracted or expanded state;
  • a liquid inflow passage disposed to communicate with the liquid receiving chamber through the first one-way valve
  • a liquid outflow passage disposed to communicate with the liquid receiving chamber through the second one-way valve
  • the first one-way valve When the liquid receiving chamber is in an expanded state, the first one-way valve is opened, and the second one-way valve is closed, and the liquid flows from the first one-way valve into the liquid receiving chamber;
  • the first one-way valve When the liquid receiving chamber is in a contracted state, the first one-way valve is closed, and the second one-way valve is opened, and liquid in the liquid receiving chamber flows out from the second one-way valve; or
  • the first one-way valve When the liquid receiving chamber is in an expanded state, the first one-way valve is closed, and the second one-way valve is opened, and liquid in the liquid receiving chamber flows out from the second one-way valve;
  • the first one-way valve When the liquid receiving chamber is in a contracted state, the first one-way valve is opened, and the second one-way valve is closed, and the liquid flows from the first one-way valve out of the liquid receiving chamber.
  • the microfluid pump comprises an injection molded part structure, and a liquid receiving cavity is formed between the piezoelectric ceramic piece and the injection molded part structure, the injection molded part structure comprises a channel layer and a buffer cavity layer, and the channel The layer is provided with a liquid inflow channel and a liquid outflow channel;
  • the buffer cavity layer includes an inlet buffer cavity and an outlet buffer cavity, a first opening is disposed between the inlet buffer cavity and the liquid inflow channel, and a second is disposed between the inlet buffer cavity and the liquid receiving cavity An opening is disposed between the outlet buffer chamber and the liquid receiving chamber, and a fourth opening is disposed between the outlet buffer chamber and the liquid outflow channel.
  • the first one-way valve when the liquid receiving chamber of the first micro-flow sub-pump is in an expanded state, the first one-way valve is opened, and the second one-way valve is closed The liquid flows from the first one-way valve into the liquid receiving chamber;
  • the first one-way valve When the liquid receiving chamber of the first microfluid pump is in a contracted state, the first one-way valve is closed, and the second one-way valve is opened, and the liquid in the liquid receiving chamber is from the The second one-way valve flows out;
  • the two first microfluidic pumps multiplex at least one of: the liquid inflow channel and the liquid outflow channel.
  • the first one-way valve When the liquid receiving chamber of the first microfluid pump is in an expanded state, the first one-way valve is opened, and the second one-way valve is closed, and the liquid flows in from the first one-way valve Liquid receiving chamber;
  • the first one-way valve When the liquid receiving chamber of the first microfluid pump is in a contracted state, the first one-way valve is closed, and the second one-way valve is opened, and the liquid in the liquid receiving chamber is from the The second one-way valve flows out;
  • the second microfluid pump when the liquid receiving chamber is in an expanded state, the first one-way valve is closed, and the second one-way valve is opened, and the liquid flows in from the second one-way valve
  • the liquid receiving chamber
  • the first one-way valve When the liquid receiving chamber is in a contracted state, the first one-way valve is opened, and the second one-way valve is closed, and liquid in the liquid receiving chamber flows out from the first one-way valve;
  • the first microfluidic pump and the second microfluidic pump multiplex at least one of: the channel layer and the buffer cavity layer.
  • the first one-way valve of the first micro-flow pump is connected to the first opening, and the second one-way valve is connected to the third opening.
  • the first one-way valve of the second micro-fluid pump is connected to the second opening, and the second one-way valve is connected to the fourth outlet.
  • a cross-sectional area of the first opening is smaller than a cross-sectional area of the liquid inflow channel
  • the cross-sectional area of the fourth opening is smaller than the cross-sectional area of the liquid outflow channel.
  • a driving circuit is further included, and the driving circuit is connected to the piezoelectric ceramic piece and is configured to apply a voltage to the piezoelectric ceramic piece.
  • a sealing layer is further included, and the sealing layer covers the piezoelectric ceramic sheet.
  • the first opening is two, and the fourth opening is two.
  • the micro-flow pump of the present disclosure has high sensitivity and can be made into a small and thin piece, which reduces the volume of the micro-flow pump and is beneficial to the development of the micro-flow pump in medical health and large-scale integration.
  • FIG. 1a is a schematic structural view of a micro flow pump according to an embodiment
  • FIG. 1b is a schematic structural view of still another micro flow pump according to an embodiment
  • FIG. 1c is a schematic structural diagram of still another micro flow pump according to an embodiment
  • FIG. 1d is a schematic structural diagram of still another micro flow pump according to an embodiment
  • FIG. 2a is a schematic structural view of still another microfluidic pump provided by an embodiment
  • FIG. 2b is a schematic structural view of still another microfluidic pump provided by an embodiment
  • FIG. 3 is a schematic structural view of still another micro flow pump according to an embodiment
  • FIG. 4 is a schematic structural view of still another micro flow pump according to another embodiment
  • Figure 5 is a side elevational view of the microfluidic pump of Figure 2a.
  • FIG. 1a is a schematic structural diagram of a micro-flow pump according to an embodiment.
  • the micro-flow pump in this embodiment includes at least one micro-flow pump, and the micro-flow pump includes: a liquid receiving chamber 1.
  • At least one side wall of the liquid accommodating chamber 1 is a piezoelectric ceramic sheet 2 that vibrates to cause the liquid accommodating chamber 1 to be in a contracted or expanded state; the liquid flows into the passage 3 through the first one-way valve 4 and the liquid accommodating chamber 1 is connected; the liquid flows out of the passage 5 and communicates with the liquid accommodating chamber 1 through the second check valve 6.
  • the micro-flow pump is mainly used for high-precision and micro-fluid manipulation, and can automatically control the opening and closing of the fluid in the channel through manual control or programmatic control, thereby realizing free control of fluid flow.
  • the first check valve 4 is opened, and the second check valve 6 is closed, and the liquid is discharged from the first check valve. 4 flowing into the liquid accommodating chamber 1; see Fig. 1b, when the liquid accommodating chamber 1 is in a contracted state (the air pressure in the liquid accommodating chamber is lower than the outside atmospheric pressure), the first check valve 4 is closed, and the second check valve 6 is opened, The liquid in the liquid accommodating chamber 1 flows out of the second check valve 6.
  • the first check valve 4 when the liquid accommodating chamber 1 is in a contracted state (the air pressure in the liquid accommodating chamber is higher than the outside atmospheric pressure), the first check valve 4 is opened, and the second check valve 6 is closed, and the liquid accommodating chamber 1 is closed.
  • the liquid flows out of the first check valve 4; see Fig. 1d, when the liquid accommodating chamber 1 is in an expanded state (the air pressure in the liquid accommodating chamber is lower than the outside atmospheric pressure), the first check valve 4 is closed, and the second one-way The valve 6 is opened and liquid flows from the second check valve 6 into the liquid accommodating chamber 1.
  • the piezoelectric ceramic sheet 2 vibrates up and down.
  • a liquid is formed in the liquid containing chamber 1.
  • the pressure in the accommodating chamber 1 is smaller than the outside atmospheric pressure. Referring to Fig. 1a, the liquid accommodating chamber 1 is in an expanded state, the first one-way valve 4 is opened, and the second one-way valve 6 is closed, and the liquid flows from the first one-way valve 4 into the liquid accommodating chamber. Cavity 1.
  • the expanded state of the liquid accommodating chamber 1 is a state in which the pressure in the liquid accommodating chamber 1 is smaller than the outside atmospheric pressure and the liquid accommodating chamber is located.
  • the contracted state of the liquid accommodating chamber 1 means that the pressure in the liquid accommodating chamber 1 is greater than the outside atmospheric pressure, and the state in which the liquid accommodating chamber is located.
  • Piezoelectric ceramic sheets are highly sensitive and can be made very thin, thus reducing the overall size of the microfluidic pump.
  • the channel 3 is a liquid inflow channel and the channel 5 is a liquid outflow channel.
  • the microfluidic pump channel 5 shown in Figures 1c and 1d is a liquid inflow channel and 3 is a liquid outflow channel.
  • the piezoelectric ceramic sheet is deformed to drive the contraction or expansion state of the liquid accommodating chamber under the driving of the voltage, so that the liquid flows out from the liquid inflow passage through the liquid accommodating chamber and out from the liquid outflow passage.
  • the relationship between the atmospheric pressure in the liquid receiving chamber and the external atmospheric pressure can be adjusted, thereby controlling the flow of liquid from the liquid inflow passage, flowing out from the liquid outflow passage and controlling the flow rate of the liquid, and due to the sensitivity of the piezoelectric ceramic sheet. It is very high, and can be made into small and thin pieces to make a miniaturized microfluidic pump. It has great potential in medical health and large-scale integration, and solves the problem of the microfluidic pump in the related art. Microfluidic pumps are not easy to carry around.
  • the micro-flow pump comprises an injection molded part structure, and the liquid-accepting cavity 1 is formed between the piezoelectric ceramic piece 2 and the injection-molded part structure, and the injection-molded part structure comprises a channel layer and a buffer cavity layer, and the channel layer Provided with a liquid inflow channel 3 and a liquid outflow channel 5;
  • the buffer chamber layer includes an inlet buffer chamber 7 and an outlet buffer chamber 8, a first opening 9 is disposed between the inlet buffer chamber 7 and the liquid inflow channel 3, and a second opening 10 is disposed between the inlet buffer chamber 7 and the liquid receiving chamber 1; A third opening 11 is disposed between the outlet buffer chamber 8 and the liquid receiving chamber 1, and a fourth opening 12 is disposed between the outlet buffer chamber 8 and the liquid outflow channel 5.
  • the sub-microfluidic pump shown in Figures 2a and 2b, the sub-microfluidic pump shown in Figures 1a, 1b, 1c and 1d differs in that a buffer cavity layer is added in Figures 2a and 2b, i.
  • the advantage of providing the buffer cavity layer is to temporarily store the liquid flowing in from the first check valve 4, so as to ensure sufficient liquid source in the liquid accommodating chamber 1, and the liquid can be controlled by controlling the degree of opening of the second check valve 6.
  • the liquid flows out of the passage 5 to control the flow rate of the liquid flow.
  • Figure 2a shows a microfluidic pump with channel 3 being a liquid inflow channel and channel 5 being a liquid outflow channel.
  • the microfluidic pump channel 5 shown in Figure 2b is a liquid inflow channel and the channel 3 is a liquid outflow channel.
  • the sub-microfluidic pump shown in FIG. 2a is referred to as a first sub-microfluidic pump
  • the sub-microfluidic pump illustrated in FIG. 2b is referred to as a second sub-microfluidic pump.
  • FIG. 2a when the liquid accommodating chamber 1 is in an expanded state (the air pressure in the liquid accommodating chamber is lower than the outside atmospheric pressure), the first check valve 4 is opened, and the second check valve 6 is closed, and the liquid passes through the liquid input passage 3, Flowing into the liquid accommodating chamber 1 from the first opening 9 and the second opening 10; when the liquid accommodating chamber 1 is in a contracted state (the air pressure in the liquid accommodating chamber is lower than the outside atmospheric pressure), the first check valve 4 is closed, and the second single Opening to the valve 6, the liquid in the liquid accommodating chamber 1 flows out through the third opening 11, from the fourth opening 12, from the liquid outflow pipe 5.
  • the submicrofluidic pump shown in Figure 2b is similar to the process of liquid in and out of Figures 1c and 1d.
  • the first check valve 4 is opened, and the second check valve 6 is closed, and the liquid passes from the liquid accommodating chamber 1 through the second opening and The first opening flows out from the passage 3; see Fig. 2b, when the liquid accommodating chamber 1 is in an expanded state (the air pressure in the liquid accommodating chamber is lower than the outside atmospheric pressure), the first check valve 4 is closed, and the second check valve 6 is closed.
  • the liquid in the liquid accommodating chamber 1 passes through the liquid outflow passage 5, passes through the third opening and the fourth opening, and flows into the liquid accommodating chamber 1.
  • the microfluidic pump shown in FIG. 3 includes two first microfluidic pumps, which are called microfluidic pumps 2A, and optionally, the first of the first first microfluidic pumps.
  • the one-way valve 4 is connected to the first opening 9, and the second one-way valve 6 is connected to the third opening 11.
  • the piezoelectric ceramic sheets 2 When two piezoelectric ceramic sheets 2 are applied with a voltage signal, the piezoelectric ceramic sheets vibrate up and down.
  • a low pressure is formed in the liquid accommodating chamber 1, and the liquid accommodating chamber 1 is filled.
  • the pressure of the first microfluidic pump is lower than the outside atmospheric pressure.
  • the first one-way valve 4 When the liquid accommodating chamber 1 is in the expanded state, the first one-way valve 4 is opened, and the second one-way valve 6 is closed, and the liquid flows from the liquid into the passage 3 through the first opening. 9 and the second opening 10 flow into the liquid accommodating chamber 1; when the piezoelectric ceramic sheet 2 vibrates in the direction of the liquid accommodating chamber, a high pressure is formed in the liquid accommodating chamber 1, and the pressure in the liquid accommodating chamber 1 is greater than the external atmospheric pressure, when the liquid When the accommodating chamber 1 is in the contracted state, the first one-way valve 4 is closed, and the second one-way valve 6 is opened, and the liquid in the liquid accommodating chamber 1 flows out from the third opening 11 and the fourth opening 12, and then from the liquid outflow channel 5.
  • the two first microfluidic pumps multiplex at least one of the following: liquid inflow through channel 3 and liquid outflow channel 5.
  • the first one-way valve 15 of the second first micro-fluid pump is connected to the first opening 19, and the second one-way valve 16 is connected to the third opening 21, and further includes an inlet buffer chamber 17 and an outlet buffer chamber 18.
  • the piezoelectric ceramic sheet 14 When the piezoelectric ceramic sheet 14 is applied with a voltage signal, the piezoelectric ceramic sheet vibrates up and down.
  • the piezoelectric ceramic sheet vibrates in a direction other than the liquid accommodating chamber, a low pressure is formed in the liquid accommodating chamber 13, and the pressure in the liquid accommodating chamber 13 is formed.
  • the first one-way valve 15 is opened, and the second one-way valve 16 is closed, and the liquid flows from the liquid into the passage 3 and flows through the first opening 19 when the liquid accommodating chamber 13 is in an expanded state.
  • the second opening 20 flows into the liquid accommodating chamber 13; when the piezoelectric ceramic sheet 14 is applied with a voltage signal to vibrate in the direction of the liquid accommodating chamber, a high pressure is formed in the liquid accommodating chamber 13, and the pressure in the liquid accommodating chamber 13 is greater than the outside At atmospheric pressure, when the liquid accommodating chamber 13 is in the contracted state, the first one-way valve 15 is closed, and the second one-way valve 16 is opened, the liquid in the liquid accommodating chamber 13 is from the third opening 21 and the fourth opening 22, and then from the liquid The outflow channel 5 flows out.
  • the microfluidic pump 2A shown in Fig. 3 can double the amount of the microfluidic pump shown in Figs. 2a and 2b when the two piezoelectric ceramic sheets 2 and 14 simultaneously apply the same voltage, amplitude and frequency. Liquid flow.
  • two piezoelectric ceramic sheets 2 and 14 of the two first sub-microfluidic pumps are respectively applied with opposite voltages (the opposite amplitudes and the same frequency), and two pumps can be realized.
  • the first pump is in the liquid while the second pump is outputting the liquid, so that a continuous output of the liquid from the liquid into the channel 3 to the liquid outflow channel 5 can be achieved.
  • the microfluidic pump shown in FIG. 4 is called a microfluidic pump AB, and includes a first microfluid pump and a second microfluid pump; A check valve 4 is connected to the first opening 9, and a second check valve 6 is connected to the third opening 11.
  • the piezoelectric ceramic sheet 2 of the first microfluid pump When the piezoelectric ceramic sheet 2 of the first microfluid pump is applied with a voltage signal, when the piezoelectric ceramic sheet vibrates in a direction other than the liquid accommodating chamber, a low pressure is formed in the liquid accommodating chamber 1, and the pressure in the liquid accommodating chamber 1 is less than
  • the first check valve 4 When the liquid accommodating chamber 1 in the first micro-fluid pump is in an expanded state, the first check valve 4 is opened, and the second check valve 6 is closed, and the liquid flows from the liquid inflow passage 3 through the first opening 9 and the first atmospheric pressure.
  • the two openings 10 flow into the liquid accommodating chamber 1; when the piezoelectric ceramic sheets vibrate in the direction of the liquid accommodating chamber, a high pressure is formed in the liquid accommodating chamber 1, and the pressure in the liquid accommodating chamber 1 is greater than the external atmospheric pressure, and when the liquid accommodating chamber is contracted In the state, the first check valve 4 is closed, and the second check valve 6 is opened, and the liquid in the liquid accommodating chamber 1 flows out from the liquid outflow passage 5 from the third opening 11 and the fourth opening 12.
  • the first one-way valve 15 of the second micro-fluid pump is connected to the second opening 20, and the second one-way valve 16 is connected to the fourth outlet 22, and further includes an inlet buffer chamber 17 and an outlet buffer chamber 18.
  • the piezoelectric ceramic sheet 14 of the second micro-pump pump is applied with a voltage signal, when the piezoelectric ceramic sheet 14 vibrates in the direction of the liquid accommodating chamber, a high pressure is formed in the liquid accommodating chamber 13, and the pressure in the liquid accommodating chamber 14 is formed.
  • the first one-way valve 15 is opened, and the second one-way valve 16 is closed, and the liquid passes from the liquid accommodating chamber 13 through the first opening 19 and the second opening 20 through the passage.
  • the channel 4 can realize that the channel 3 is a liquid input channel, the channel 5 serves as a liquid output channel, or the channel 3 serves as a liquid output channel, and the channel 5 serves as a liquid input channel, compared to the microfluidic pump shown in FIG. , that is, the realization of bidirectional input and output.
  • the first microfluidic pump and the second microfluidic pump multiplex at least one of: a channel layer and a buffer cavity layer.
  • FIG. 2 is a side view
  • FIG. 5 is a side view of FIG. 2 a
  • the cross-sectional area of the first opening 9 is smaller than the cross-sectional area of the liquid inflow channel 1 ;
  • the cross-sectional area is smaller than the cross-sectional area of the liquid outflow channel 5, respectively.
  • the first opening 9 is two
  • the fourth opening 12 is two.
  • the liquid flows through the two fourth openings and flows out from the liquid outflow passage, which can be increased compared with the solution of one fourth opening, and the flow rate of the liquid flows out.
  • a person skilled in the art can specifically set the number, cross-sectional area and positional relationship of the first opening 9 and the fourth opening 12 according to actual needs.
  • the flow rate of the liquid can also be controlled by controlling the switching amplitudes of the first check valve 4 and the second check valve 6.
  • the switching amplitudes of the first one-way valve 4 and the second one-way valve 6 are determined by the voltage applied to the piezoelectric ceramic sheet, and the voltage applied to the piezoelectric ceramic sheet is larger, the liquid accommodating chamber and the outside atmospheric pressure. The greater the pressure difference between them, the greater the switching amplitude of the first check valve 4 and the second check valve 6, and therefore the greater the flow rate of the liquid.
  • a driving circuit is further included, and the driving circuit is connected to the piezoelectric ceramic piece for applying a voltage to the piezoelectric ceramic piece.
  • the voltage signal provided by the driving circuit is an alternating signal.
  • the microfluidic pump of the present embodiment further includes a sealing layer covering the piezoelectric ceramic sheet, and the sealing layer seals the piezoelectric ceramic sheet to prevent the piezoelectric ceramic sheet from being short-circuited by exposure to humid air for a long time. Device damage, etc.
  • 3 and 5 in the drawings of the present embodiment represent passages through which liquid flows, and in Figs. 1a and 1b, the passage 3 serves as a liquid inflow passage, and the passage 5 serves as a liquid outflow passage.
  • the conduction 3 acts as a liquid outflow channel and the channel 5 acts as a liquid inflow channel.
  • channel 3 acts as a liquid inflow channel and channel 5 acts as a liquid outflow channel.
  • the conduction 3 acts as a liquid outflow channel and the channel 5 acts as a liquid inflow channel.
  • the channel 3 acts as a liquid inflow channel and the channel 5 acts as a liquid outflow channel.
  • the first microfluidic pump of Figure 4 channel 3 acts as a liquid inflow channel and channel 5 acts as a liquid outflow channel.
  • the microfluidic pump of the present disclosure reduces the volume of the microfluidic pump and has great potential in medical health and large-scale integration.

Abstract

一种微流泵,包括至少一个微流子泵,微流子泵包括:液体容纳腔(1),液体容纳腔(1)的至少一个侧壁为压电陶瓷片(2),压电陶瓷片(2)振动以使液体容纳腔(1)处于收缩或膨胀状态;液体流入通道(3),通过第一单向阀(4)与液体容纳腔(1)连通;液体流出通道(5),通过第二单向阀(6)与液体容纳腔(1)连通;当液体容纳腔(1)处于膨胀状态时,第一单向阀(4)打开,且第二单向阀(6)关闭,液体从第一单向阀(4)流入液体容纳腔(1);当液体容纳腔(1)处于收缩状态时,第一单向阀(4)关闭,且第二单向阀(6)打开,液体容纳腔(1)内的液体从第二单向阀(6)流出。

Description

微流泵 技术领域
本公开涉及微流泵领域,例如涉及一种微流泵。
背景技术
随着微流体技术的发展,具有能精确控制液体流动的微流泵成为一大发展目标。微流泵在生命医学,医药健康,机械工程等领域越来越得到人们的重视,例如用于注射药物,3D打印以及细胞筛选等,例如便携式微流泵结合微针可应用于糖尿病患者实时注射胰岛素,使糖尿病患者免于频繁用针筒注射药物带来的痛苦。
相关技术中的微流泵主要采用气压作为驱动力。气压微流泵通过直接施加气压来驱动液体流动,调节气压大小和进气量可调节液体流量流速,但其整体系统庞大(需要携带气源等),主要适用于科研机构、公司以及医院使用。
发明内容
本公开提供了一种微流泵,做成了小型化微流泵,对该微流泵在医药健康及大规模集成方面的潜力进行了开发。
本公开提供了一种微流泵,包括至少一个微流子泵,所述微流子泵包括:
液体容纳腔,所述液体容纳腔的至少一个侧壁为压电陶瓷片,所述压电陶瓷片振动以使所述液体容纳腔处于收缩或膨胀状态;
液体流入通道,设置为通过第一单向阀与所述液体容纳腔连通;
液体流出通道,设置为通过第二单向阀与所述液体容纳腔连通;
当所述液体容纳腔处于膨胀状态时,所述第一单向阀打开,且第二单向阀关闭,所述液体从所述第一单向阀流入所述液体容纳腔;
当所述液体容纳腔处于收缩状态时,所述第一单向阀关闭,且所述第二单向阀打开,所述液体容纳腔内的液体从所述第二单向阀流出;或者,
当所述液体容纳腔处于膨胀状态时,所述第一单向阀关闭,且所述第二单向阀打开,所述液体容纳腔内的液体从所述第二单向阀流出入;
当所述液体容纳腔处于收缩状态时,所述第一单向阀打开,且所述第二单向阀关闭,所述液体从所述第一单向阀流入出所述液体容纳腔。
可选的,所述微流子泵包括注塑件结构,所述压电陶瓷片与所述注塑件结构之间形成液体容纳腔,所述注塑件结构包括通道层和缓冲腔层,所述通道层设置有液体流入通道和液体流出通道;
所述缓冲腔层包括入口缓冲腔和出口缓冲腔,所述入口缓冲腔与所述液体流入通道之间设置有第一开口,所述入口缓冲腔与所述液体容纳腔之间设置有第二开口;所述出口缓冲腔与所述液体容纳腔之间设置有第三开口,所述出口缓冲腔与所述液体流出通道之间设置有第四开口。
可选的,包括两个第一微流子泵,当所述第一微流子泵的所述液体容纳腔处于膨胀状态时,所述第一单向阀打开,且第二单向阀关闭,所述液体从所述第一单向阀流入所述液体容纳腔;
当所述第一微流子泵的所述液体容纳腔处于收缩状态时,所述第一单向阀关闭,且所述第二单向阀打开,所述液体容纳腔内的液体从所述第二单向阀流出;
所述两个第一微流子泵复用以下至少之一:所述液体流入通道和所述液体流出通道。
可选的,包括一个第一微流子泵和一个第二微流子泵;
当所述第一微流子泵的所述液体容纳腔处于膨胀状态时,所述第一单向阀打开,且第二单向阀关闭,所述液体从所述第一单向阀流入所述液体容纳腔;
当所述第一微流子泵的所述液体容纳腔处于收缩状态时,所述第一单向阀关闭,且所述第二单向阀打开,所述液体容纳腔内的液体从所述第二单向阀流出;
所述第二微流子泵当所述液体容纳腔处于膨胀状态时,所述第一单向阀关闭,且所述第二单向阀打开,所述液体从所述第二单向阀流入所述液体容纳腔;
当所述液体容纳腔处于收缩状态时,所述第一单向阀打开,且第二单向阀关闭,所述液体容纳腔内的液体从所述第一单向阀流出;
所述第一微流子泵和所述第二微流子泵复用以下至少之一:所述通道层和所述缓冲腔层。
可选的,所述第一微流子泵的所述第一单向阀与所述第一开口相连,所述第二单向阀与所述第三开口相连。
可选的,所述第二微流子泵的所述第一单向阀与所述第二开口相连,所述第二单向阀与所述第四出口相连。
可选的,所述第一开口的横截面积小于所述液体流入通道的横截面积;
所述第四开口的横截面积小于所述液体流出通道的横截面积。
可选的,还包括驱动电路,所述驱动电路与所述压电陶瓷片相连,设置为对所述压电陶瓷片施加电压。
可选的,还包括密封层,所述密封层覆盖所述压电陶瓷片。
可选的,所述第一开口为两个,所述第四开口为两个。
本公开的微流泵,压电陶瓷片灵敏度很高,可以做成尺寸小且薄的片,缩小了微流泵的体积,有利于微流泵在医药健康及大规模集成方面的发展。
附图说明
图1a为一实施例提供的一种微流泵的结构示意图;
图1b为一实施例提供的又一种微流泵的结构示意图;
图1c为一实施例提供的又一种微流泵的结构示意图;
图1d为一实施例提供的又一种微流泵的结构示意图;
图2a为一实施例提供的又一种微流泵的结构示意图;
图2b为一实施例提供的又一种微流泵的结构示意图;
图3为一实施例提供的又一种微流泵的结构示意图;
图4为另一实施例提供的又一种微流泵的结构示意图;
图5为图2a所示的微流泵的侧视图。
具体实施方式
图1a为一实施例提供的一种微流泵的结构示意图,如图1a所示,本实施例中的微流泵包括至少一个微流子泵,微流子泵包括:液体容纳腔1,液体容纳腔1的至少一个侧壁为压电陶瓷片2,压电陶瓷片2振动以使液体容纳腔1处于收缩或膨胀状态;液体流入通道3,通过第一单向阀4与液体容纳腔1连通;液体流出通道5,通过第二单向阀6与液体容纳腔1连通。本实施例中微流泵主要用于高精度和微量流体操控,可通过手动控制或程序化自动控制操控通道内流体的通断,实现流体流量的自由控制。
参见图1a,当液体容纳腔1处于膨胀状态时(液体容纳腔内的气压低于外界大气压),第一单向阀4打开,且第二单向阀6关闭,液体从第一单向阀4流入液体容纳腔1;参见图1b,当液体容纳腔1处于收缩状态时(液体容纳腔内 的气压低于外界大气压),第一单向阀4关闭,且第二单向阀6打开,液体容纳腔内1的液体从第二单向阀6流出。
或者,参见图1c,当液体容纳腔1处于收缩状态时(液体容纳腔内的气压高于外界大气压),第一单向阀4打开,且第二单向阀6关闭,液体容纳腔1内的液体从第一单向阀4流出;参见图1d,当液体容纳腔1处于膨胀状态时(液体容纳腔内的气压低于外界大气压),第一单向阀4关闭,且第二单向阀6打开,液体从第二单向阀6流入液体容纳腔1。
可选地,当电压作用于压电陶瓷片2时,压电陶瓷片2会上下振动,当压电陶瓷片2向液体容纳腔以外的方向振动时,液体容纳腔1内形成一个低压,液体容纳腔1内的压力小于外界大气压,参见图1a,液体容纳腔1处于膨胀状态,第一单向阀4打开,且第二单向阀6关闭,液体从第一单向阀4流入液体容纳腔1。当压电陶瓷片在电压的驱动下,向液体容纳腔以内的方向振动时,液体容纳腔1内形成一个高压,液体容纳腔1内的压力大于外界大气压。参见图1b,以使液体容纳腔1处于收缩状态,第一单向阀4关闭,且第二单向阀6打开,液体容纳腔内1的液体从第二单向阀6流出。
或者,参见图1c,压电陶瓷片在电压的驱动下,当压电陶瓷片向液体容纳腔以内的方向振动时,液体容纳腔1内形成一个高压,液体容纳腔1内的压力大于外界大气压,当液体容纳腔1处于收缩状态时,第一单向阀4打开,且第二单向阀6关闭,液体容纳腔1内的液体从第一单向阀4流出。当压电陶瓷片向液体容纳腔以外的方向振动时,液体容纳腔1内形成一个低压,液体容纳腔1内的压力小于外界大气压,当液体容纳腔1处于膨胀状态时,第一单向阀4关闭,且第二单向阀6打开,液体从第二单向阀6流入液体容纳腔1。
液体容纳腔1的膨胀状态是液体容纳腔1内的压力小于外界大气压,液体容纳腔所处的状态。液体容纳腔1的收缩状态是指液体容纳腔1内的压力大于外界大气压,液体容纳腔所处的状态。
压电陶瓷片的灵敏度较高,可以做的很薄,因此可以减小微流泵的整体尺寸。
若给压电陶瓷片2施加交流方波信号,即可重复以上过程,并且还可以通过调节信号电压的幅值和频率,来实现不同的流速。
如图1a和图1b示出的微流泵,通道3为液体流入通道,通道5为液体流出通道。图1c和图1d示出的微流泵通道5为液体的流入通道,3为液体流出通 道。
本实施例中,压电陶瓷片在电压的驱动下,产生形变来控制液体容纳腔的收缩或者膨胀状态,以使液体从液体流入通道经过液体容纳腔,从液体流出通道流出。通过调节电压大小和频率可调节液体容纳腔内的大气压力与外界大气压的大小关系,从而控制液体流量从液体流入通道流入,从液体流出通道流出并且控制液体的流速,而且由于压电陶瓷片灵敏度很高,可以做成尺寸小且薄的片,以做成小型化微流泵,在医药健康及大规模集成方面具有很大的潜力,解决了相关技术中的微流泵的尺寸较大,微流泵不便于随身携带的问题。
可选的,参见图2a和图2b,微流子泵包括注塑件结构,压电陶瓷片2与注塑件结构之间形成液体容纳腔1,注塑件结构包括通道层和缓冲腔层,通道层设置有液体流入通道3和液体流出通道5;
缓冲腔层包括入口缓冲腔7和出口缓冲腔8,入口缓冲腔7与液体流入通道3之间设置有第一开口9,入口缓冲腔7与液体容纳腔1之间设置有第二开口10;出口缓冲腔8与液体容纳腔1之间设置有第三开口11,出口缓冲腔8与液体流出通道5之间设置有第四开口12。
图2a和图2b示出的子微流泵,图1a、图1b、图1c和图1d示出的子微流泵不同的地方在于,图2a和图2b中增设了缓冲腔层,即图2a和图2b中的入口缓冲腔7和出口缓冲腔8。设置缓冲腔层好处在于:暂存从第一单向阀4流入的液体,这样可以保证液体容纳腔1中的液体来源充足,通过控制第二单向阀6的张开程度便可以控制液体从液体流出通道5,以控制液体流量流速。图2a示出的微流泵,通道3为液体流入通道,通道5为液体流出通道。图2b示出的微流泵通道5为液体的流入通道,通道3为液体流出通道。在本实施例中,将图2a示出的子微流泵称为第一子微流泵,将图2b示出的子微流泵称之为第二子微流泵。
图2a示出的子微流泵和图1a与图1b,液体进出的过程相似。参见图2a,当液体容纳腔1处于膨胀状态时(液体容纳腔内的气压低于外界大气压),第一单向阀4打开,且第二单向阀6关闭,液体经过液体输入通道3,从第一开口9、第二开口10流入液体容纳腔1;当液体容纳腔1处于收缩状态时(液体容纳腔内的气压低于外界大气压),第一单向阀4关闭,且第二单向阀6打开,液体容纳腔内1的液体经过第三开口11、从第四开口12,从液体流出管道5流出。
图2b示出的子微流泵与图1c和图1d液体进出的过程相似。当液体容纳腔 1处于收缩状态时(液体容纳腔内的气压高于外界大气压),第一单向阀4打开,且第二单向阀6关闭,液体从液体容纳腔1经过第二开口以及第一开口,从通道3流出;参见图2b,当液体容纳腔1处于膨胀状态时(液体容纳腔内的气压低于外界大气压),第一单向阀4关闭,且第二单向阀6打开,液体容纳腔1内的液体经过液体流出通道5,经过第三开口以及第四开口,流入液体容纳腔1。
可选的,参见图3,图3示出的微流泵包括两个第一微流子泵,称之为微流泵2A,可选的,第一个第一微流子泵的第一单向阀4与第一开口9相连,第二单向阀6与第三开口11相连。当两个压电陶瓷片2被施加电压信号,压电陶瓷片会上下振动,当压电陶瓷片向液体容纳腔以外的方向振动时,液体容纳腔1内形成一个低压,液体容纳腔1内的压力小于外界大气压,第一微流子泵当液体容纳腔1处于膨胀状态时,第一单向阀4打开,且第二单向阀6关闭,液体从液体流入通道3,经过第一开口9和第二开口10流入液体容纳腔1;当压电陶瓷片2向液体容纳腔以内的方向振动时,液体容纳腔1内形成一个高压,液体容纳腔1内的压力大于外界大气压,当液体容纳腔1处于收缩状态时,第一单向阀4关闭,且第二单向阀6打开,液体容纳腔内1的液体从第三开口11和第四开口12,继而从液体流出通道5流出;两个第一微流子泵复用以下至少之一:液体流入通3道和液体流出通道5。
第二个第一微流子泵的第一单向阀15与第一开口19相连,第二单向阀16与第三开口21相连,还包括入口缓冲腔17和出口缓冲腔18。当压电陶瓷片14被施加电压信号,压电陶瓷片会上下振动,当压电陶瓷片向液体容纳腔以外的方向振动时,液体容纳腔13内形成一个低压,液体容纳腔13内的压力小于外界大气压,第一微流子泵当液体容纳腔13处于膨胀状态时,第一单向阀15打开,且第二单向阀16关闭,液体从液体流入通道3,流经第一开口19和第二开口20,流入液体容纳腔13;当压电陶瓷片14被施加电压信号向液体容纳腔以内的方向振动时,液体容纳腔13内形成一个高压,液体容纳腔13内的压力大于外界大气压,当液体容纳腔13处于收缩状态时,第一单向阀15关闭,且第二单向阀16打开,液体容纳腔内13的液体从第三开口21和第四开口22,继而从液体流出通道5流出。
图3示出的微流泵2A,在两个压电陶瓷片2和14同时施加相同电压、幅值和频率时,相比图2a和图2b示出的微流泵,可以提高一倍的液体流量。当图3示出的微流泵2A中,两个第一子微流泵的两个压电陶瓷片2和14分别被 施加相反的电压(幅值相反,频率相同),可以实现两个泵中第一个泵在输入液体的同时第二个泵在输出液体,因此可以实现液体从液体流入通道3至液体流出通道5的连续输出。
可选的,参见图4,图4示出的微流泵,称之为微流泵AB,包括一个第一微流子泵和一个第二微流子泵;第一微流子泵的第一单向阀4与第一开口9相连,第二单向阀6与第三开口11相连。当第一微流子泵的压电陶瓷片2被施加电压信号,当压电陶瓷片向液体容纳腔以外的方向振动时,液体容纳腔1内形成一个低压,液体容纳腔1内的压力小于外界大气压,第一微流子泵中的液体容纳腔1处于膨胀状态时,第一单向阀4打开,且第二单向阀6关闭,液体从液体流入通道3经过第一开口9和第二开口10流入液体容纳腔1;当压电陶瓷片向液体容纳腔以内的方向振动时,液体容纳腔1内形成一个高压,液体容纳腔1内的压力大于外界大气压,当液体容纳腔处于收缩状态时,第一单向阀4关闭,且第二单向阀6打开,液体容纳腔1内的液体从第三开口11和第四开口12,从液体流出通道5流出。
第二微流子泵的第一单向阀15与第二开口20相连,第二单向阀16与第四出口22相连,还包括入口缓冲腔17和出口缓冲腔18。当第二微流子泵的压电陶瓷片14被施加电压信号,当压电陶瓷片14向液体容纳腔以内的方向振动时,液体容纳腔13内形成一个高压,液体容纳腔14内的压力大于外界大气压,当液体容纳腔13处于收缩状态时,第一单向阀15打开,且第二单向阀16关闭,液体从液体容纳腔13经过第一开口19和第二开口20,通过通道3流出;当第二微流子泵的压电陶瓷片14被施加电压信号,当压电陶瓷片向液体容纳腔以外的方向振动时,液体容纳腔13内形成一个低压,液体容纳腔13内的压力小于外界大气压,第二微流子泵中的液体容纳腔13处于膨胀状态时,第一单向阀15关闭,且第二单向阀16打开,液体从5流入,经过第三开口21和第四开口22流入液体容纳腔13内。图4示出的微流泵,相比图3示出的微流泵,可以实现通道3为液体输入通道,通道5作为液体输出通道,或者通道3作为液体输出通道,通道5作为液体输入通道,即实现了双向输入输出。
第一微流子泵和第二微流子泵复用以下至少之一:通道层和缓冲腔层。
可选的,以图2a为例,图5为图2a的侧视图,如图5,第一开口9的横截面积小于所述液体流入通道1的横截面积;所述第四开口12的横截面积分别小于液体流出通道5的横截面积。可选的,所述第一开口9为两个,所述第四开 口12为两个。当第一单向阀4打开,第二单向阀关闭时,液体经过横截面积较大的液体流入通道后,再经过横截面积较小的第一开口9,相比1个第一开口9的方案,可以增大进入到液体容纳腔1的流量。当第一单向阀4关闭,第二单向阀打开时,液体流经2个第四开口,从液体流出通道流出,相比1个第四开口的方案,可以增大,液体流出的流量。本领域相关技术人员可以根据实际需求,具体设定第一开口9和第四开口12的个数、横截面积以及位置关系。
本实施例中,还可以通过控制第一单向阀4和第二单向阀6的开关幅度,来控制液体的进出流量。实际上,第一单向阀4和第二单向阀6的开关幅度是由施加在压电陶瓷片上的电压决定的,施加在压电陶瓷片上的电压越大,液体容纳腔内和外界大气压之间的压差越大,第一单向阀4和第二单向阀6的开关幅度就越大,因此液体的进出流量也就越大。
可选的,还包括驱动电路,所述驱动电路与所述压电陶瓷片相连,用于对所述压电陶瓷片施加电压。驱动电路提供的电压信号为交变信号。
可选的,本实施中的微流泵还包括密封层,密封层覆盖压电陶瓷片,密封层将压电陶瓷片密封起来,避免压电陶瓷片长期暴露于潮湿的空气中而发生短路,器件损坏等。
需要说明的是,本实施例附图中的3和5代表的是液体的流经的通道,在图1a和图1b中,通道3作为液体流入通道,通道5作为液体流出通道。在图1c和图1d中,导通3作为液体流出通道,通道5作为液体流入通道。
图2a中,通道3作为液体流入通道,通道5作为液体流出通道。
图2b中,导通3作为液体流出通道,通道5作为液体流入通道。
图3的第一微流子泵和第二微流子泵,通道3作为液体流入通道,通道5作为液体流出通道。
图4的第一微流子泵,通道3作为液体流入通道,通道5作为液体流出通道。第二微流子泵,导通3作为液体流出通道,通道5作为液体流入通道。
工业实用性
本公开的微流泵,缩小了微流泵的体积,在医药健康及大规模集成方面具有很大的潜力。

Claims (10)

  1. 一种微流泵,包括至少一个微流子泵,所述微流子泵包括:
    液体容纳腔,所述液体容纳腔的至少一个侧壁为压电陶瓷片,所述压电陶瓷片振动以使所述液体容纳腔处于收缩或膨胀状态;
    液体流入通道,设置为通过第一单向阀与所述液体容纳腔连通;
    液体流出通道,设置为通过第二单向阀与所述液体容纳腔连通;
    当所述液体容纳腔处于膨胀状态时,所述第一单向阀打开,且所述第二单向阀关闭,所述液体从所述第一单向阀流入所述液体容纳腔,当所述液体容纳腔处于收缩状态时,所述第一单向阀关闭,且所述第二单向阀打开,所述液体容纳腔内的液体从所述第二单向阀流出;或者,
    当所述液体容纳腔处于膨胀状态时,所述第一单向阀关闭,且所述第二单向阀打开,所述液体容纳腔内的液体从所述第二单向阀流入,当所述液体容纳腔处于收缩状态时,所述第一单向阀打开,且所述第二单向阀关闭,所述液体从所述第一单向阀流出。
  2. 根据权利要求1所述的微流泵,其中,
    所述微流子泵包括注塑件结构,所述压电陶瓷片与所述注塑件结构之间形成所述液体容纳腔,所述注塑件结构包括通道层和缓冲腔层,所述通道层设置有所述液体流入通道和所述液体流出通道;
    所述缓冲腔层包括入口缓冲腔和出口缓冲腔,所述入口缓冲腔与所述液体流入通道之间设置有第一开口,所述入口缓冲腔与所述液体容纳腔之间设置有第二开口;
    所述出口缓冲腔与所述液体容纳腔之间设置有第三开口,所述出口缓冲腔与所述液体流出通道之间设置有第四开口。
  3. 根据权利要求2所述的微流泵,包括两个第一微流子泵,当所述第一微流子泵的所述液体容纳腔处于膨胀状态时,所述第一单向阀打开,且第二单向阀关闭,所述液体从所述第一单向阀流入所述液体容纳腔;
    当所述第一微流子泵的所述液体容纳腔处于收缩状态时,所述第一单向阀关闭,且所述第二单向阀打开,所述液体容纳腔内的液体从所述第二单向阀流出;
    所述两个第一微流子泵复用以下至少之一:所述液体流入通道和所述液体流出通道。
  4. 根据权利要求2所述的微流泵,包括一个第一微流子泵和一个第二微流 子泵;
    当所述第一微流子泵的所述液体容纳腔处于膨胀状态时,所述第一单向阀打开,且第二单向阀关闭,所述液体从所述第一单向阀流入所述液体容纳腔;
    当所述第一微流子泵的所述液体容纳腔处于收缩状态时,所述第一单向阀关闭,且所述第二单向阀打开,所述液体容纳腔内的液体从所述第二单向阀流出;
    当所述第二微流子泵的所述液体容纳腔处于膨胀状态时,所述第一单向阀关闭,且所述第二单向阀打开,所述液体从所述第二单向阀流入所述液体容纳腔;
    当所述第二微流子泵的所述液体容纳腔处于收缩状态时,所述第一单向阀打开,且第二单向阀关闭,所述液体容纳腔内的液体从所述第一单向阀流出;
    所述第一微流子泵和所述第二微流子泵复用以下至少之一:所述通道层和所述缓冲腔层。
  5. 根据权利要求3或4所述的微流泵,其中,
    所述第一微流子泵的所述第一单向阀与所述第一开口相连,所述第二单向阀与所述第三开口相连。
  6. 根据权利要求3或4所述的微流泵,其中,
    所述第二微流子泵的所述第一单向阀与所述第二开口相连,所述第二单向阀与所述第四出口相连。
  7. 根据权利要求1所述的微流泵,其中,
    所述第一开口的横截面积小于所述液体流入通道的横截面积;
    所述第四开口的横截面积小于所述液体流出通道的横截面积。
  8. 根据权利要求1所述的微流泵,还包括驱动电路,所述驱动电路与所述压电陶瓷片相连,设置为对所述压电陶瓷片施加电压。
  9. 根据权利要求1所述的微流泵,
    还包括密封层,所述密封层覆盖所述压电陶瓷片。
  10. 根据权利要求2所述的微流泵,其中,
    所述第一开口为两个,所述第四开口为两个。
PCT/CN2018/071777 2017-09-30 2018-01-08 微流泵 WO2019061946A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710923269.0 2017-09-30
CN201710923269.0A CN107514355B (zh) 2017-09-30 2017-09-30 一种微流泵

Publications (1)

Publication Number Publication Date
WO2019061946A1 true WO2019061946A1 (zh) 2019-04-04

Family

ID=60726427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071777 WO2019061946A1 (zh) 2017-09-30 2018-01-08 微流泵

Country Status (2)

Country Link
CN (1) CN107514355B (zh)
WO (1) WO2019061946A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107514355B (zh) * 2017-09-30 2019-07-16 瞬知(广州)健康科技有限公司 一种微流泵
CN108703483A (zh) * 2018-08-02 2018-10-26 上海保柏日化有限公司 一种挤压式液体分配装置
CN112305237A (zh) * 2019-07-23 2021-02-02 南方科技大学 微流泵尿液取样系统
CN112305233A (zh) * 2019-07-23 2021-02-02 南方科技大学 尿液自动采集检测方法以及尿液检测控制器
CN114127247A (zh) * 2019-09-24 2022-03-01 深圳华大智造科技股份有限公司 流体运输系统、方法及应用该系统、方法的流体使用装置
CN113944615A (zh) * 2021-10-26 2022-01-18 上海应用技术大学 一种一体化微压电液体泵送装置及其制造和驱动方法
CN116293000B (zh) * 2023-05-19 2023-07-21 常州威图流体科技有限公司 流体输送装置及液冷散热模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1399070A (zh) * 2002-09-03 2003-02-26 吉林大学 多腔压电薄膜驱动泵
CN2623906Y (zh) * 2003-04-11 2004-07-07 华中科技大学 无阀薄膜驱动型微泵
CN101608610A (zh) * 2008-06-20 2009-12-23 微创医疗器械(上海)有限公司 一种微型泵
CN203051061U (zh) * 2012-12-06 2013-07-10 浙江师范大学 一种自测量压电泵
WO2015015625A1 (ja) * 2013-08-01 2015-02-05 京セラ株式会社 圧電ポンプ
CN107514355A (zh) * 2017-09-30 2017-12-26 南方科技大学 一种微流泵

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02308988A (ja) * 1989-05-23 1990-12-21 Seiko Epson Corp 圧電マイクロポンプ
CN202579119U (zh) * 2012-06-04 2012-12-05 浙江师范大学 一种新型自感知压电隔膜泵
CN203892161U (zh) * 2014-05-04 2014-10-22 吉林大学 一种多振子压电泵

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1399070A (zh) * 2002-09-03 2003-02-26 吉林大学 多腔压电薄膜驱动泵
CN2623906Y (zh) * 2003-04-11 2004-07-07 华中科技大学 无阀薄膜驱动型微泵
CN101608610A (zh) * 2008-06-20 2009-12-23 微创医疗器械(上海)有限公司 一种微型泵
CN203051061U (zh) * 2012-12-06 2013-07-10 浙江师范大学 一种自测量压电泵
WO2015015625A1 (ja) * 2013-08-01 2015-02-05 京セラ株式会社 圧電ポンプ
CN107514355A (zh) * 2017-09-30 2017-12-26 南方科技大学 一种微流泵

Also Published As

Publication number Publication date
CN107514355A (zh) 2017-12-26
CN107514355B (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
WO2019061946A1 (zh) 微流泵
JP5032493B2 (ja) マイクロ流体システム
Au et al. Microvalves and micropumps for BioMEMS
Forouzandeh et al. A review of peristaltic micropumps
TWI306490B (en) Apparatus for driving microfluid driving the method thereof
JP4403000B2 (ja) マイクロチップ及びマイクロポンプ
JP4372616B2 (ja) マイクロバルブ、マイクロポンプ及びこれらを内蔵するマイクロチップ
US9073054B2 (en) Fluid-controlling device for microchip and use thereof
Berg et al. Peristaltic pumps
TW201043786A (en) Microfluidic pump, fluid guiding module, and fluid transporting system
Liu et al. An electromagnetic microvalve for pneumatic control of microfluidic systems
Chen et al. A normally-closed piezoelectric micro-valve with flexible stopper
CN103511230B (zh) 一种双腔式电致动无阀微泵
US7509906B2 (en) Microfluidic driving and speed controlling apparatus and application thereof
CN108180135B (zh) 一种基于二级对称式柔性铰链放大机构的压电叠堆微泵
Kim et al. Effect of phase shift on optimal operation of serial-connected valveless micropumps
Trenkle et al. Normally-closed peristaltic micropump with re-usable actuator and disposable fluidic chip
CN109351367A (zh) 一种气压驱动精密微泵
Barua et al. Advances in MEMS and Micro-Scale technologies for application in controlled Drug-Dosing systems: MEMS-Based drug delivery systems
Ni et al. A pneumatic PDMS micropump with in-plane check valves for disposable microfluidic systems
Tracey et al. Dual independent displacement-amplified micropumps with a single actuator
KR101635459B1 (ko) 프로그래밍 가능한 마이크로 펌프
CN102588256A (zh) 一种具有自关闭单向阀的单层双腔真空驱动的蠕动泵
Perdigones et al. Pneumatically actuated positive gain microvalve with n-channel metal-oxide semiconductor-like behaviour
KR20150135613A (ko) 미세유체 구동을 위한 마이크로 펌프

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861160

Country of ref document: EP

Kind code of ref document: A1