WO2019061870A1 - 一种排水系统及排水控制方法 - Google Patents

一种排水系统及排水控制方法 Download PDF

Info

Publication number
WO2019061870A1
WO2019061870A1 PCT/CN2017/116929 CN2017116929W WO2019061870A1 WO 2019061870 A1 WO2019061870 A1 WO 2019061870A1 CN 2017116929 W CN2017116929 W CN 2017116929W WO 2019061870 A1 WO2019061870 A1 WO 2019061870A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
switch
monitoring
outlet pipe
drainage
Prior art date
Application number
PCT/CN2017/116929
Other languages
English (en)
French (fr)
Inventor
周超
李梓晔
Original Assignee
武汉圣禹排水系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉圣禹排水系统有限公司 filed Critical 武汉圣禹排水系统有限公司
Publication of WO2019061870A1 publication Critical patent/WO2019061870A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F1/00Methods, systems, or installations for draining-off sewage or storm water
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F3/00Sewer pipe-line systems
    • E03F3/04Pipes or fittings specially adapted to sewers
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/04Gullies inlets, road sinks, floor drains with or without odour seals or sediment traps
    • E03F5/041Accessories therefor
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/10Collecting-tanks; Equalising-tanks for regulating the run-off; Laying-up basins
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/10Collecting-tanks; Equalising-tanks for regulating the run-off; Laying-up basins
    • E03F5/101Dedicated additional structures, interposed or parallel to the sewer system
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/14Devices for separating liquid or solid substances from sewage, e.g. sand or sludge traps, rakes or grates
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F7/00Other installations or implements for operating sewer systems, e.g. for preventing or indicating stoppage; Emptying cesspools
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F7/00Other installations or implements for operating sewer systems, e.g. for preventing or indicating stoppage; Emptying cesspools
    • E03F7/02Shut-off devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D9/00Level control, e.g. controlling quantity of material stored in vessel
    • G05D9/12Level control, e.g. controlling quantity of material stored in vessel characterised by the use of electric means

Definitions

  • the invention belongs to the technical field of drainage, and particularly relates to a drainage system and a drainage control method.
  • the drainage systems of cities and buildings mainly include diversion, confluence and mixed flow systems, the main purpose of which is to achieve the collection, transportation and treatment of water bodies.
  • a system that treats all wastewater in one way is called a combined system. It has only one drainage system, called the confluence system, and its drainage pipe is called the confluence pipe.
  • the system for treating different types of wastewater in different ways is called a split system, which generally has two drainage systems.
  • the pipeline is called a rainwater pipeline.
  • the other can be called the sewage system, collecting domestic sewage and industrial wastewater that needs to be treated before it is discharged.
  • the pipeline is called sewage pipeline.
  • the mixed flow system is a system between the split flow system and the combined flow system. It is mainly due to the fact that some pipes have different types of waste water, that is, rainwater pipes or sewage, due to the misconnection and mixing of pipes in the area of the split flow system.
  • the pipe actually becomes a merged pipe.
  • the sewage in the city's sewage pipelines and confluence pipelines are often referred to as urban sewage.
  • a pipe that connects the water outlet and intercepts the wastewater to the sewage treatment plant is called a intercepting pipe or a sewage intercepting pipe.
  • the inspection well at the intersection of the drain main and the intercepting pipe is generally replaced with a diverting well.
  • the construction of the split shaft can have different designs, but the current design is not perfect and there is no improvement for different amounts of sewage and rain.
  • the diversion well can intercept the sewage and flow to the sewage pipe.
  • part of the rainwater and sewage will intercept and flow into the sewage pipe. The rest of the rainwater will overflow through the well and continue to flow downstream.
  • the present invention provides a drainage system and a drainage control method, which are used for intercepting and diverting rainwater and/or sewage, and rationally diverting the water body to realize resources by reasonable regulation. Reasonable configuration.
  • a drainage system comprising a diversion well;
  • the diversion well comprises a diversion well body and three openings arranged in the diversion well body body, respectively being a water inlet, a first water outlet and a second outlet Water outlet
  • the drainage system further includes a first water switch and a fourth water switch; wherein a first water switch is disposed adjacent to the first water outlet for controlling a water passing through the first water outlet; A fourth water switch is arranged at the second water outlet for controlling the amount of water passing through the second water outlet;
  • the drainage system further includes a control system including a monitoring device and a control unit coupled thereto; the control unit is coupled to the first water switch and the fourth water switch signal; the monitoring device is configured to monitor the signal The monitored signal is sent to the control unit, and the control unit controls the opening degrees of the first water switch and the fourth water switch according to the received signal.
  • a control system including a monitoring device and a control unit coupled thereto; the control unit is coupled to the first water switch and the fourth water switch signal; the monitoring device is configured to monitor the signal The monitored signal is sent to the control unit, and the control unit controls the opening degrees of the first water switch and the fourth water switch according to the received signal.
  • the invention also provides a drainage control method for the above drainage system, which comprises a water level method, a water quality method, a water quality-water level method, a time method, a total amount method, a rainfall method, a time-water level method, a total amount-water level method, a rainfall amount-water level method. At least one of them.
  • the drainage system of the invention comprises a control system, which does not require human operation during use, and the automatic adjustment of the gate can be realized through the control unit, which has the characteristics of flexibility and variety, and reduces a large amount of human and material resources.
  • the drainage system of the present invention has the effect of intelligent drainage, and the reasonable discharge of the water switch in the drainage system and the reasonable control of the relevant components of the drainage system realizes the reasonable discharge of the water body, while ensuring the safety of flood discharge, Minimize the interception of dirty water or initial rainwater to the sewage treatment plant.
  • the drainage system of the invention has the advantages of small footprint and powerful functions, and the effective separation and treatment of rainwater and sewage can be realized by using a small amount of land area.
  • the use of the drainage system is not limited by the circumstances and can be applied to any of the pipe networks in the drainage network system.
  • an on-line treatment facility and/or an adjustment facility, and optionally an integrated treatment facility may be provided at the second water outlet of the drainage system of the present invention; the on-line treatment facility and/or storage facility, and optional
  • the setting of the integrated treatment facility can effectively solve the dirty water that can be polluted by the natural water body when the fourth water conservancy switch is opened, so that the initial rainwater and the middle and late rainwater flow can be thoroughly treated.
  • the drainage control method of the present invention includes a water level method, a water quality method, a water quality-water level method, a time method, a total amount method, a rainfall method, a time-water level method, a total amount-water level method, a rainfall amount-water level method, and the method
  • the regulation effectively solves the phenomenon that the sewage intercepting pipe in the prior art cannot be restricted, clean water or late rainwater can also enter the sewage intercepting pipe and transported to the sewage treatment plant.
  • the drainage of dirty water, initial rainwater and rainwater in the middle and late stages the dirty water is intercepted to the sewage treatment plant to the maximum extent, and the clean water is discharged to the natural water body.
  • FIG. 1 is a schematic structural view of a drainage system according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a drainage system according to a preferred embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a drainage system according to a preferred embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a drainage system according to a preferred embodiment of the present invention.
  • Figure 5 is a schematic structural view of a drainage system according to a preferred embodiment of the present invention.
  • Figure 6 is a schematic structural view of a drainage system according to a preferred embodiment of the present invention.
  • Figure 7 is a schematic structural view of a drainage system according to a preferred embodiment of the present invention.
  • Figure 8 is a schematic structural view of a drainage system according to a preferred embodiment of the present invention.
  • Figure 9 is a schematic structural view of a drainage system according to a preferred embodiment of the present invention.
  • Figure 10 is a schematic structural view of a drainage system according to a preferred embodiment of the present invention.
  • Figure 11 is a schematic structural view of a drainage system according to a preferred embodiment of the present invention.
  • Figure 12 is a schematic structural view of a drainage system according to a preferred embodiment of the present invention.
  • a first aspect of the present invention provides a drainage system including a diversion well;
  • the diversion well includes a diversion well body and three openings disposed in the diversion well body body, respectively a first water outlet and a second water outlet;
  • the drainage system further includes a first water switch and a fourth water switch; wherein a first water switch is disposed adjacent to the first water outlet for controlling a water passing through the first water outlet; A fourth water switch is arranged at the second water outlet for controlling the amount of water passing through the second water outlet;
  • the drainage system further includes a control system including a monitoring device and a control unit coupled thereto; the control unit is coupled to the first water switch and the fourth water switch signal; the monitoring device is configured to monitor the signal The monitored signal is sent to the control unit, and the control unit controls the opening degrees of the first water switch and the fourth water switch according to the received signal.
  • a control system including a monitoring device and a control unit coupled thereto; the control unit is coupled to the first water switch and the fourth water switch signal; the monitoring device is configured to monitor the signal The monitored signal is sent to the control unit, and the control unit controls the opening degrees of the first water switch and the fourth water switch according to the received signal.
  • the drainage system further includes a sewage intercepting pipe and an outlet pipe; the first water outlet is connected to a pipeline leading to a sewage treatment plant through a sewage intercepting pipe; the second water outlet It is connected to the pipeline leading to the natural water body through the outlet pipe.
  • the monitoring device includes a device for monitoring the water level of the water body (for example, a liquid level sensor, a liquid level meter, a liquid level switch, etc.), and a device for monitoring the water quality of the water body (for example, water quality detection) , online COD monitor, online TSS monitor, online BOD monitor, online TN monitor, online TP monitor, online NH 3 -N monitor, online ammonia nitrogen monitor, electrode, conductivity meter, etc.), monitoring water body A total amount of devices (for example, an electric hoist with a metering function, etc.), a device for monitoring rainfall (such as a rain gauge, etc.), and a device for monitoring time (such as a timer, etc.).
  • a device for monitoring the water level of the water body for example, a liquid level sensor, a liquid level meter, a liquid level switch, etc.
  • a device for monitoring the water quality of the water body for example, water quality detection
  • online COD monitor online TSS monitor, online BOD monitor, online
  • the monitoring device can be disposed in the diversion well or outside the diversion well depending on the type of demand.
  • a device for monitoring the water level of the water body and a device for monitoring the water quality of the water body are disposed in the body of the split shaft, and the device for monitoring the rainfall is disposed outside the shaft of the split shaft, and the device for monitoring the total amount of the water body is disposed on the water switch in the well body of the split shaft,
  • the monitoring time device is disposed in the diversion well body or outside the diversion well.
  • the drainage system further includes a storage facility; the storage facility is disposed on the outlet pipe or on a branch branch that is branched from the outlet pipe.
  • a sixth water switch is disposed on the outlet pipe and at the downstream end of the outlet branch branch.
  • the sixth water conservancy switch is connected to the control unit signal, and the control unit controls the opening degree of the sixth water conservancy switch according to the received signal.
  • the water body flows through the outlet pipe from the inlet end of the storage facility to the storage facility for storage.
  • the capacity of the storage facility reaches the upper limit of the storage, the water body is discharged from the storage facility.
  • the outlet end flows into the downstream end of the outlet pipe.
  • the flow direction of the water body is adjusted by adjusting the opening degree of the sixth water conservancy switch; when the sixth water conservancy switch is in the open state, part of the water body flows directly through the outlet pipe to the natural way In the pipeline of the water body, part of the water body flows through the branch road disposed beside the water outlet pipe and enters the storage facility for temporary storage; when the sixth water conservancy switch is in the intercepting state, all the water bodies flow through the branch road to enter the storage facility for temporary storage; When the capacity of the facility reaches the upper limit of the capacity, all the water bodies flow directly through the outlet pipe to the pipeline leading to the natural water body.
  • the drainage system further includes an on-line processing facility; the on-line processing facility is disposed on the outlet pipe or on a branch road that is separated from the outlet pipe and the terminal is incorporated into the outlet pipe Or set on a branch that is separated from the outlet pipe and that is connected to the natural water body.
  • a seventh water switch is disposed on the outlet pipe and between the branches of the branch and the merged position
  • a seventh water switch is disposed on the water outlet pipe and at the downstream end of the branch branching position.
  • the seventh water switch is connected to the control unit signal, and the control unit controls the opening degree of the seventh water switch according to the received signal.
  • the water flowing through the outlet pipe flows from the inlet end of the online processing facility into the online processing facility, and after being processed, flows from the outlet end of the online processing facility into the downstream end of the outlet pipe.
  • the flow direction of the water body is adjusted by adjusting the opening degree of the seventh water conservancy switch; when the seventh water conservancy switch is in the open state, part of the water body flows directly through the outlet pipe to the natural environment.
  • part of the water body flows through the inlet end of the online processing facility disposed at the outlet pipe to the online processing facility, and after being processed, flows from the outlet end of the online processing facility to the downstream end of the outlet pipe or directly discharges to the through-pipe.
  • the drainage system may further include an integrated processing facility; the integrated processing facility is connected to an outlet end of the storage facility, for example, the integrated processing facility is transported through a pipeline or a corridor The outlets of the facilities are connected.
  • the integrated processing facility can process water bodies stored in the storage facility.
  • the first water switch and the fourth water switch are independently selected from the group consisting of a valve (ball valve, gate valve, knife gate valve, butterfly valve, lift rubber sheet shut-off check valve, etc.) and a gate ( One of the upper open gate, the lower open gate, the slamming door (the upper open type slamming door, the lower opening type slamming door, the rotary slamming door, etc.), the slamming door (the intercepting flapping door, etc.).
  • a valve ball valve, gate valve, knife gate valve, butterfly valve, lift rubber sheet shut-off check valve, etc.
  • a gate One of the upper open gate, the lower open gate, the slamming door (the upper open type slamming door, the lower opening type slamming door, the rotary slamming door, etc.), the slamming door (the intercepting flapping door, etc.).
  • the first water switch can realize a maximum current limiting function, that is, to ensure that the flow rate through the first water switch does not exceed a set flow value.
  • the sixth water switch and the seventh water switch are independently selected from the group consisting of a valve (ball valve, gate valve, knife gate valve, butterfly valve, lift rubber sheet shut-off check valve, etc.) and a gate ( One of the upper open gate, the lower open gate, the slamming door (the upper open type slamming door, the lower opening type slamming door, the rotary slamming door, etc.), the slamming door (the intercepting flapping door, etc.).
  • a valve ball valve, gate valve, knife gate valve, butterfly valve, lift rubber sheet shut-off check valve, etc.
  • a gate One of the upper open gate, the lower open gate, the slamming door (the upper open type slamming door, the lower opening type slamming door, the rotary slamming door, etc.), the slamming door (the intercepting flapping door, etc.).
  • the sixth water switch can realize a maximum current limiting function, that is, ensure that the flow rate through the sixth water switch does not exceed the set flow value.
  • the seventh water switch can realize a maximum current limiting function, that is, ensure that the flow rate through the seventh water switch does not exceed the set flow value.
  • the shapes of the water inlet, the first water outlet and the second water outlet and the size of the opening are not specifically limited, and may be connected to a pipeline or a gallery connected thereto.
  • the water inlet, the first water outlet, and the second water outlet are circular in shape.
  • the arrangement order and arrangement manner of the water inlet, the first water outlet and the second water outlet in the well of the distribution well are not limited, and may be divided according to the flow.
  • the area of the well and the height of the terrain are reasonably set to the relative positions of the water inlet, the first water outlet and the second water outlet.
  • the water inlet, the first water outlet and the second water outlet are disposed on the side wall of the split shaft; or the water inlet and the second water outlet are disposed on the side wall of the split shaft and in the split shaft
  • a groove is formed at the bottom of the body, and the first water outlet is disposed in the groove.
  • the pipeline connected to the water inlet is at a high ground position, and the water inlet may be disposed at any position on the side wall of the shaft of the split shaft; and connected to the first water outlet and the second water outlet
  • the pipeline is in a low ground position, and the first water outlet and the second water outlet are disposed at a position of the side wall of the shaft of the distribution shaft near the bottom of the shaft of the distribution shaft. The purpose of this is to prevent the water from accumulating in the wells and to flow downstream.
  • the pipeline connected to the water inlet is at a high ground position, and the water inlet may be disposed at any position on the side wall of the shaft of the distribution shaft.
  • the pipeline connected to the second outlet is at a low ground position, and the second outlet is disposed at a position near the bottom of the well of the split shaft near the bottom of the well, the first outlet is at a lower position, and the water is preferred Pass the first water outlet.
  • the purpose of this is to better realize that the water body does not accumulate in the well of the split shaft and flow better downstream.
  • the shape of the shunt well body is not specifically limited, and a reasonable discharge of the water body can be achieved.
  • the shape of the shunt well body is Square or round.
  • the number and arrangement of the storage facilities in the system are not specifically limited, and may be multiple storage facilities in series or in parallel;
  • the cloth pattern can be reasonably arranged according to the area of the area in which the system is used.
  • the storage facility may be a storage facility known in the prior art, including, for example, a storage tank, a storage tank culvert, a deep tunnel or a shallow tunnel.
  • the in-line processing facility may be an in-line processing facility known in the art, including, for example, a biofilter, an in-line processing tank, a flocculation tank, a sloping plate sedimentation tank, a grit chamber, or a constructed wetland.
  • the integrated processing facility may be an integrated processing facility known in the art, including, for example, an integrated sewage treatment station or the like.
  • the number and arrangement of the integrated processing facilities in the system are not specifically limited, and may be multiple integrated processing facilities connected in series or in parallel; the specific arrangement manner may be reasonably arranged according to the area of the area in which the system is used. .
  • the invention also provides a drainage control method for the above drainage system, which comprises a water level method, a water quality method, a water quality-water level method, a time method, a total amount method, a rainfall method, a time-water level method, a total amount-water level method, a rainfall amount-water level method. At least one of them.
  • a second aspect of the present invention provides a water level controlled drainage control method based on the above-described drainage system, the drainage system including a control system, and the monitoring device in the control system includes a monitoring water body
  • the liquid level device is disposed in the split shaft body, and the warning water level H2 of the split shaft is set in the control unit of the control system; the method comprises the following steps:
  • the water body enters the diversion well from the water inlet, and the water level H of the water in the diversion well is monitored in real time by the device for monitoring the water level of the water body;
  • the first water switch is turned on or off based on the operation of the entire drain network system, that is, the first water switch can be in an open state or a closed state, and the specific selection is
  • the drainage system is required to cooperate with the entire pipe network system to achieve the most reasonable drainage effect.
  • a third aspect of the present invention provides a water quality control-controlled drainage control method based on the above-described drainage system, the drainage system including a control system, and the monitoring device in the control system includes a monitoring water body a water quality device is disposed in the diversion well body, and a pollutant concentration standard value C1 is set in a control unit of the control system; the method includes the following steps:
  • the water body enters the diversion well from the water inlet, and the water quality of the water in the well is monitored in real time by monitoring the water quality of the water;
  • the first water switch is turned on or off based on the operation of the entire drain network system, that is, the first water switch can be in an open state or a closed state, and the specific selection is
  • the drainage system is required to cooperate with the entire pipe network system to achieve the most reasonable drainage effect.
  • a fourth aspect of the present invention provides a water level-water quality method controlled drainage control method based on the above-described drainage system, the drainage system including a control system, and the monitoring device in the control system includes The device for monitoring the water level of the water body and the device for monitoring the water quality of the water body are all disposed in the body of the distribution well, and the warning water level H2 and the pollutant concentration standard value C1 of the distribution well are set in the control unit of the control system; the method includes the following step:
  • the water body enters the diversion well from the water inlet, and the water level H of the water in the diversion well is monitored in real time by monitoring the water level of the water body, and the water quality of the water in the well is monitored in real time by monitoring the water quality of the water;
  • step 4c) the method further comprises the following steps:
  • a fifth aspect of the present invention provides a total amount method controlled drainage control method based on the above-described drainage system, the drainage system including a control system, and the monitoring device in the control system includes monitoring The device for the total amount of water is disposed on the first water switch in the well of the split shaft, and the total amount of primary rain Q1 that the split shaft needs to intercept is set in the control unit of the control system; the method includes the following steps:
  • the method further includes the following steps:
  • the first water switch is turned on or off based on the operation of the entire drain network system, that is, the first water switch can be in an open state or a closed state, and the specific selection is
  • the drainage system is required to cooperate with the entire pipe network system to achieve the most reasonable drainage effect.
  • a sixth aspect of the present invention provides a total amount-water level method controlled drainage control method based on the above-described drainage system, the drainage system including a control system, and a monitoring device in the control system
  • the device includes a device for monitoring the total amount of water and is disposed on a first water switch in the well of the split shaft, and the monitoring device in the control system further includes a device for monitoring the liquid level of the water body and is disposed in the body of the split shaft, wherein the control system
  • the control unit sets the standard initial rain total Q1 and the shunt well warning water level H2 of the split shaft; the method includes the following steps:
  • step 4e the method further includes the following steps:
  • the method further includes the following steps:
  • a seventh aspect of the present invention provides a rainwater amount controlled drainage control method based on the above-described drainage system, the drainage system including a control system, and the monitoring device in the control system includes monitoring rainfall The device is disposed outside the split shaft, and a standard initial rain amount L1 that the split shaft needs to intercept is set in the control unit of the control system; the method includes the following steps:
  • the first water switch is turned on or off based on the operation of the entire drain network system, that is, the first water switch can be in an open state or a closed state, and the specific selection is
  • the drainage system is required to cooperate with the entire pipe network system to achieve the most reasonable drainage effect.
  • An eighth aspect of the present invention provides a rainfall-water level method controlled drainage control method based on the above-described drainage system, the drainage system including a control system, and the monitoring device in the control system includes a device for monitoring rainfall and disposed outside the diversion well, the monitoring device in the control system further comprising a device for monitoring the water level of the water body and disposed in the diversion well body, and the diversion well needs to be intercepted in the control unit of the control system
  • the standard initial rain rainfall L1 and the warning well water level H2; the method comprises the following steps:
  • step 5g the method further comprises the following steps:
  • a ninth aspect of the present invention provides a time-controlled controlled drainage control method based on the above-described drainage system, the drainage system including a control system, and the monitoring device in the control system includes a monitoring time The device is disposed in the shunt well body or outside the shunt well, and a standard time T1 is set in the control unit of the control system; the method includes the following steps:
  • the first water switch is turned on or off based on the operation of the entire drain network system, that is, the first water switch can be in an open state or a closed state, and the specific selection is
  • the drainage system is required to cooperate with the entire pipe network system to achieve the most reasonable drainage effect.
  • a tenth aspect of the present invention provides a time-water level controlled drainage control method based on the above-described drainage system, the drainage system including a control system, and the monitoring device in the control system includes The monitoring time device is disposed in the diversion well body or outside the diversion well body, and the monitoring device in the control system further comprises a device for monitoring the water body liquid level and is disposed in the diversion well body, and is disposed in the control unit of the control system
  • the standard time T1 and the warning water level H2 of the split shaft comprises the following steps:
  • step 5i) the method further comprises the following steps:
  • the method when the drainage system includes a storage facility, the method further includes the following steps:
  • the water body flows through the water outlet pipe from the inlet end of the storage facility to the storage facility for storage, and when the capacity of the storage facility reaches the capacity In a limited time, the water body flows into the downstream end of the water outlet pipe from the outlet end of the storage facility.
  • the flow direction of the water body is adjusted by adjusting the opening degree of the sixth water conservancy switch; when the sixth water conservancy switch is in an open state, part of the water body flows through The outlet pipe is directly discharged to the pipeline leading to the natural water body, and part of the water body flows through the branch road disposed beside the outlet pipe to the storage facility for temporary storage; when the sixth water conservancy switch is in the intercepting state, all the water body flows through the outlet pipe.
  • the bypass road is temporarily stored in the storage facility; when the capacity of the storage facility reaches the upper limit of storage, all the water flows through the outlet pipe and is directly discharged to the pipeline leading to the natural water body.
  • the drainage system comprises a storage facility and an integrated treatment facility
  • the method comprises the steps of:
  • the water body flows through the water outlet pipe from the inlet end of the storage facility to the storage facility for storage, and when the capacity of the storage facility reaches the capacity In a limited time, the water body flows into the downstream end of the water outlet pipe from the outlet end of the storage facility; at the same time, the water body stored in the storage facility is directly discharged to the pipeline leading to the natural water body after being treated by the integrated treatment facility.
  • the flow direction of the water body is adjusted by adjusting the opening degree of the sixth water conservancy switch; when the sixth water conservancy switch is in an open state, part of the water body flows through The outlet pipe is directly discharged to the pipeline leading to the natural water body, and part of the water body flows through the branch road disposed beside the outlet pipe to the storage facility for temporary storage; when the sixth water conservancy switch is in the intercepting state, all the water body flows through the outlet pipe.
  • the bypass road is temporarily stored in the storage facility; when the capacity of the storage facility reaches the upper limit of storage, all the water flows directly through the outlet pipe to the pipeline leading to the natural water body; meanwhile, the water body stored in the storage facility is The integrated treatment facility discharges directly into the pipeline to the natural water body.
  • the method when the drainage system includes an online processing facility, the method further includes the following steps:
  • the water body flows through the water outlet pipe from the inlet end of the online processing facility into the online processing facility, and after being processed, from the outlet end of the online processing facility Flow into the downstream end of the outlet pipe.
  • the flow direction of the water body is adjusted by adjusting the opening degree of the seventh water conservancy switch; when the seventh water conservancy switch is in an open state, part of the water body flows through The outlet pipe is directly discharged into the pipeline leading to the natural water body, and some of the water body flows through the inlet end of the branch processing online processing facility disposed at the outlet pipe into the online processing facility, and after being processed, flows out from the outlet end of the online processing facility.
  • the downstream end of the water pipe is directly discharged to the pipeline leading to the natural water body; when the seventh water conservancy switch is in the intercepting state, all the water body flows through the branch end of the online processing facility disposed at the outlet pipe to the online processing facility, and is processed. After that, it flows from the outlet end of the in-line treatment facility to the downstream end of the outlet pipe or directly to the pipeline leading to the natural water body.
  • the device for monitoring the water level of the water body is a liquid level sensor, a liquid level meter, a liquid level switch, and the like.
  • the device for monitoring water quality is a water quality detector, an online COD monitor, an online ammonia nitrogen monitor, an online TSS monitor, an online BOD monitor, an online NH 3 -N monitor, An online TP monitor, an online TN monitor, an electrode, a conductivity meter, etc., which monitors the concentration of contaminants in a body of water in a diversion well, including TSS, COD, BOD, NH 3 -N, TN or One or several of TP.
  • the water quality detector may be configured to detect water quality by using an electrode method, a UV optical method, an optical scattering method, or the like.
  • the environmental capacity of the natural water body discharged from the diversion well may be a natural water body such as a river, a lake or a sea; when the natural water body has a large environmental capacity (such as an ocean), the pollutant concentration standard The value C1 can be appropriately increased; when the environmental capacity of the natural water body is small (such as a lake), the standard value C1 of the pollutant concentration can be appropriately lowered.
  • the standard value of the pollutant concentration C1 may be appropriately reduced; when the water quality of the water entering the distribution well is poor, such as domestic sewage and/or initial stage Rainwater, the standard value of pollutant concentration C1 can be appropriately increased.
  • the aim is to reduce pollution to natural waters as little as possible.
  • the means for monitoring the total amount of water is selected from an electric hoist with a metering function.
  • the means for monitoring rainfall is a rain gauge.
  • the means for monitoring time is a timer.
  • the warning water level H2 of the distribution well is set in the control unit of the control system according to the height of the lowest point in the corresponding water receiving area of the distribution well in the occurrence of the water accumulation risk.
  • the pollutant concentration standard value C1 is set in the control unit of the control system based on the environmental capacity of the natural water body discharged and the water quality of the water entering the distribution well.
  • the total amount of standard primary rain Q1 that the split shaft needs to intercept is set in the control unit of the control system according to the total amount of initial rain collected in the corresponding water receiving area of the split shaft.
  • the standard initial rain rainfall L1 that the split shaft needs to intercept is set in the control unit of the control system according to the number of millimeters of initial rain collected in the corresponding water receiving area of the split shaft.
  • the standard time T1 is set in the control unit of the control system based on the rain time of the initial rainwater and the time required for the runoff to correspond to the total runoff of the initial rainwater in the water receiving area to the split shaft.
  • the first water switch, the sixth water switch, and the seventh water switch can realize a maximum current limiting function, and the open state means that the flow rate through the water switch is less than or equal to The set maximum flow value, which can be achieved by adjusting the opening of the water switch by a control unit in the control system.
  • the fourth water switch is in an open state, meaning that the water body can flow to the natural water body through the water switch.
  • the fourth water switch, the sixth water switch, and the seventh water switch are in a cut-off state, which means that the opening of the water switch is adjusted to ensure that the water body is intercepted upstream of the water switch. At the end, it cannot flow to the natural water body through the water switch.
  • the first water switch is in a closed state, meaning that the flow rate of the water passing through the water switch is zero.
  • the present embodiment provides a drainage system including a diversion well;
  • the diversion well includes a diversion well body 6 and three openings disposed in the diversion well body, Is the water inlet 1, the first water outlet 4 and the second water outlet 5;
  • the drainage system further includes a first water switch 2 and a fourth water switch 3; wherein a first water switch 2 is disposed adjacent to the first water outlet 4 for controlling the amount of water passing through the first water outlet 4; Providing a fourth water switch 3 near the second water outlet 5 for controlling the amount of water passing through the second water outlet 5;
  • the drainage system further includes a control system including a monitoring device 24 and a control unit (not shown) coupled thereto; the control unit is in signal connection with the first water switch 2 and the fourth water switch 3;
  • the monitoring device 24 is configured to monitor the signal and deliver the monitored signal to the control unit, and the control unit controls the opening degrees of the first water switch 2 and the fourth water switch 3 according to the received signal.
  • the drainage system further includes a sewage intercepting pipe 22 and an outlet pipe 23; the first water outlet 4 is connected to a pipeline leading to a sewage treatment plant through a sewage intercepting pipe 22; the second water outlet 5 passes through an outlet pipe 23 and Connected to the pipeline of natural water bodies;
  • the drainage system further includes an inlet pipe 21 connected to the water inlet 1.
  • the shape of the shunt well body may be square or circular; in particular, when the shape of the shunt well body is circular, as shown in FIG. 1; when the shape of the shunt well body is When square, as shown in Figures 2 and 3.
  • the shape of the well of the split shaft is also different.
  • the shape of the well of the split shaft is circular, it is especially suitable for a small area, and the area of the circular split shaft is generally small. By saving land area, the installation and arrangement of other drainage equipment can be realized.
  • a square-shaped split shaft can be used, which can accommodate a large space inside, and a plurality of devices having different functions, such as a device for removing sand and/or removing, can be disposed in the space. Devices for floating objects and suspended matter, etc.
  • the water inlet, the first water outlet and the second water outlet may have a relative position of the water inlet, the first water outlet and the second water outlet according to the area of the distribution well and the terrain height.
  • the water inlet, the first water outlet and the second water outlet are disposed on the side wall of the split shaft; or the water inlet and the second water outlet are disposed on the side wall of the split shaft and in the split shaft
  • a groove is formed at the bottom of the body, and the first water outlet is disposed in the groove.
  • the pipeline connected to the water inlet is at a high ground position, and the water inlet may be disposed at any position on the side wall of the split shaft; the pipeline connected to the first water outlet and the second water outlet is at a low ground potential Position, the first water outlet and the second water outlet are disposed at a position of the side wall of the shaft of the distribution well near the bottom of the shaft of the distribution shaft. The purpose of this is to prevent the water from accumulating in the wells and to flow downstream.
  • the second water outlet of the water inlet is not specifically limited to the height of the bottom of the split shaft.
  • the pipeline connected to the water inlet is at a high ground position, and the water inlet may be disposed at any position on the side wall of the shaft of the split shaft; and connected to the second water outlet
  • the pipeline is in a low-terrain position, and the second outlet is disposed at a position near the bottom of the shaft of the distribution shaft, and the first outlet is at a lower ground position, and the water body preferentially passes through the first outlet. The purpose of this is to better realize that the water body does not accumulate in the well of the split shaft and flow better downstream.
  • the first water switch and the fourth water switch are independently selected from the group consisting of a valve (ball valve, gate valve, knife gate valve, butterfly valve, lift rubber plate shut-off check valve, etc.), gate (upper open gate, lower open gate, etc.) ), one of the slamming door (opening type slamming door, lower opening type slamming door, rotary slamming door, etc.), shooting door (cutting door, etc.).
  • a valve ball valve, gate valve, knife gate valve, butterfly valve, lift rubber plate shut-off check valve, etc.
  • gate upper open gate, lower open gate, etc.
  • slamming door opening type slamming door, lower opening type slamming door, rotary slamming door, etc.
  • shooting door cutting door, etc.
  • the first water switch can realize a maximum current limiting function, that is, ensure that the flow rate through the first water switch does not exceed the set flow value.
  • the monitoring device includes a device for monitoring the water level of the water body (for example, a liquid level sensor, a liquid level meter, a liquid level switch, etc.), and a device for monitoring the water quality of the water body (for example, water quality detection) , online COD monitor, online TSS monitor, online BOD monitor, online TN monitor, online TP monitor, online NH 3 -N monitor, online ammonia nitrogen monitor, electrode, conductivity meter, etc.), monitoring water body A total amount of devices (for example, an electric hoist with a metering function, etc.), a device for monitoring rainfall (such as a rain gauge, etc.), and a device for monitoring time (such as a timer, etc.).
  • a device for monitoring the water level of the water body for example, a liquid level sensor, a liquid level meter, a liquid level switch, etc.
  • a device for monitoring the water quality of the water body for example, water quality detection
  • online COD monitor online TSS monitor, online BOD monitor, online
  • the monitoring device can be disposed in the diversion well or outside the diversion well depending on the type of demand.
  • a device for monitoring the water level of the water body and a device for monitoring the water quality of the water body are disposed in the body of the split shaft, and the device for monitoring the rainfall is disposed outside the shaft of the split shaft, and the device for monitoring the total amount of the water body is disposed on the water switch in the well body of the split shaft,
  • the monitoring time device is disposed in the diversion well body or outside the diversion well.
  • the monitoring device 24 is disposed in the diversion well body, which may be a device for monitoring the water level of the water body or a device for monitoring the water quality of the water body.
  • the drainage system includes the drainage system described in Embodiment 1, and further includes a storage facility 31.
  • the storage facility 31 is disposed on a branch road branched from the outlet pipe 23; at this time, on the outlet pipe 23 and at the downstream end of the outlet pipe branch branching position.
  • a sixth water conserving switch 32 is provided, the sixth water conserving switch 32 is connected to the control unit signal, and the control unit controls the opening degree of the sixth water conserving switch 32 according to the received signal; when the regulating and storing device 32 is disposed on the outlet pipe branch Adjusting the flow direction of the water body by adjusting the opening degree of the sixth water conservancy switch; when the sixth water conservancy switch is in the open state, part of the water body flows directly through the outlet pipe to the pipeline leading to the natural water body, and part of the water body flows through the outlet pipe
  • the bypass road enters the storage facility for temporary storage; when the sixth water conservancy switch is in the intercepted state, all the water bodies flow through the branch road to the storage facility for temporary storage; when the capacity of the storage facility reaches the upper limit of storage, all the water bodies flow out.
  • the storage facility 31 is disposed on the outlet pipe 23; when the storage facility is disposed on the outlet pipe, the water flows through the outlet pipe from the inlet end of the storage facility to the storage facility.
  • the water body flows into the downstream end of the water outlet pipe from the outlet end of the storage facility.
  • the number and arrangement of the storage facilities in the system are not specifically limited, and may be a plurality of storage facilities connected in series or in parallel; the specific arrangement manner may be reasonably arranged according to the area of the area in which the system is used.
  • the storage facility may be a storage facility known in the prior art, including, for example, a storage tank, a storage tank culvert, a deep tunnel or a shallow tunnel.
  • the sixth water switch is selected from the group consisting of a valve (ball valve, gate valve, knife gate valve, butterfly valve, lift rubber plate shut-off check valve, etc.), gate (upper open gate, lower open gate, etc.), and door (open type) One of the slamming door, the lower opening type of the door, the rotary slamming door, etc., and the door (cutting door, etc.).
  • a valve ball valve, gate valve, knife gate valve, butterfly valve, lift rubber plate shut-off check valve, etc.
  • gate upper open gate, lower open gate, etc.
  • door open type
  • the sixth water conserving switch can realize a maximum current limiting function, that is, the flow rate through the sixth water conservancy switch does not exceed the set flow value.
  • FIG 7 - Figure 10 shows a drainage system, the drainage system includes the drainage system described in Embodiment 1, and further includes an in-line processing facility 41;
  • the online processing facility 41 is disposed on the outlet pipe; when the online processing facility is disposed on the outlet pipe; the water flowing through the outlet pipe flows from the inlet end of the online processing facility into the online processing facility, and is processed. After that, it flows into the downstream end of the outlet pipe from the outlet end of the in-line processing facility.
  • the in-line processing facility 41 is disposed on a branch that is separated from the outlet pipe and that is terminated by the outlet pipe; when the on-line processing facility is disposed at the outlet pipe And when the terminal is incorporated into the branch of the outlet pipe, a seventh water switch 42 is provided on the outlet pipe and between the branching and incorporation positions.
  • the seventh water switch is connected to the control unit signal, and the control unit controls the opening degree of the seventh water switch according to the received signal;
  • the online processing facility 41 is disposed on a branch road that is separated from the water outlet pipe and that is connected to the natural water body; when the online processing facility is disposed at the outlet pipe and the terminal is connected to the natural water body.
  • a seventh water switch 42 is provided on the outlet pipe and at the downstream end of the branch branching position.
  • the seventh water switch is connected to the control unit signal, and the control unit controls the opening degree of the seventh water switch according to the received signal; when the online processing facility is disposed on the water outlet branch, the opening of the seventh water switch is adjusted Adjusting the flow direction of the water body; when the seventh water conservancy switch is in the open state, part of the water body flows directly through the outlet pipe to the pipeline leading to the natural water body, and some of the water body flows through the inlet of the branch processing online processing facility disposed along the outlet pipe The end enters the online processing facility, and after being processed, flows from the outlet end of the online processing facility into the downstream end of the outlet pipe or directly to the pipeline leading to the natural water body; when the seventh water conservancy switch is in the intercepting state, all the water flows through the branch route The inlet end of the in-line processing facility enters the in-line processing facility and, after processing, flows from the outlet end of the in-line processing facility to the downstream end of the outlet pipe or directly to the line leading to the natural body of water.
  • the number and arrangement of the online processing facilities in the system are not specifically limited, and may be a plurality of online processing facilities connected in series or in parallel; the specific arrangement manner may be reasonably arranged according to the area of the area in which the system is used.
  • the in-line processing facility may be an in-line processing facility known in the art, including, for example, a biofilter, an in-line treatment tank, a flocculation tank, a sloping plate sedimentation tank, a grit chamber, or a constructed wetland.
  • the seventh water switch is selected from the group consisting of a valve (ball valve, gate valve, knife gate valve, butterfly valve, lift rubber plate shut-off check valve, etc.), gate (upper open gate, lower open gate, etc.), and door (open type) One of the slamming door, the lower opening type of the door, the rotary slamming door, etc., and the door (cutting door, etc.).
  • a valve ball valve, gate valve, knife gate valve, butterfly valve, lift rubber plate shut-off check valve, etc.
  • gate upper open gate, lower open gate, etc.
  • door open type
  • the seventh water conserving switch can realize a maximum current limiting function, that is, the flow rate through the seventh water conservancy switch does not exceed a set flow value.
  • the drainage system includes the drainage system described in Embodiment 2, and further includes an integrated treatment facility 51; the integrated treatment facility 51 and the storage facility 31 The outlet ends are connected, and the integrated processing facility 51 can process the water bodies stored in the storage facility 31.
  • the number and arrangement of the integrated processing facilities in the system are not specifically limited, and may be multiple integrated processing facilities connected in series or in parallel; the specific arrangement manner may be reasonably arranged according to the area of the area in which the system is used.
  • the integrated processing facility may be an integrated processing facility known in the art, including, for example, an integrated sewage treatment station.
  • a water level method controlled drainage control method is based on the drainage system described in Embodiment 1, the drainage system comprising a control system, and the monitoring device in the control system includes a device for monitoring a water body level and
  • the warning water level H2 of the distribution well is set in the control unit of the control system according to the height of the lowest point in the corresponding water receiving area of the distribution well according to the height of the water level in the distribution well; the method comprises the following steps:
  • the water body enters the diversion well from the water inlet, and the water level H of the water in the diversion well is monitored in real time by the device for monitoring the water level of the water body;
  • the first water switch is turned on or off based on the operation of the entire drain network system, that is, the first water switch can be in an open state or in a closed state, and the specific selection is that the drain is required.
  • the system works with the entire pipe network system to achieve the most reasonable drainage effect. If the first water switch is turned on, part of the water body can also flow through the first water outlet through the first water switch to the pipeline connected to the sewage treatment plant.
  • the device for monitoring the water level of the water body is a liquid level sensor, a liquid level meter, a liquid level switch and the like.
  • a water quality method controlled drainage control method is based on the drainage system described in Embodiment 1, the drainage system including a control system, and the monitoring device in the control system includes a device for monitoring water quality and setting In the diversion well body, the pollutant concentration standard value C1 is set in the control unit of the control system according to the environmental capacity of the discharged natural water body and the water quality of the water entering the diversion well; the method comprises the following steps:
  • the water body enters the diversion well from the water inlet, and the water quality of the water in the well is monitored in real time by monitoring the water quality of the water;
  • the first water switch is turned on or off based on the operation of the entire drain network system, that is, the first water switch can be in an open state or in a closed state, and the specific selection is that the drain is required.
  • the system works with the entire pipe network system to achieve the most reasonable drainage effect. If the first water switch is turned on, part of the water body can also flow through the first water outlet through the first water switch to the pipeline connected to the sewage treatment plant.
  • the device for monitoring water quality is a water quality detector, an online COD monitor, an online ammonia nitrogen monitor, an online TSS monitor, an online BOD monitor, an online NH 3 -N monitor, an online TP monitor, an online TN monitor, electrodes, conductivity meter, etc., which is split monitoring wells pollutant concentration in the body, the contaminant comprises one or more TSS, COD, BOD, NH 3 -N, TN or TP in.
  • the water quality detector may be configured to detect water quality by using an electrode method, a UV optical method, an optical scattering method, or the like.
  • a water level-water quality method controlled drainage control method is based on the drainage system described in Embodiment 1, the drainage system comprising a control system, and the monitoring device in the control system includes monitoring a water body level
  • the device and the device for monitoring the water quality of the water body are all disposed in the diversion well body, and the warning water level of the diversion well is set in the control unit of the control system according to the height of the lowest point in the corresponding water receiving area of the diversion well in the occurrence of the water accumulation risk H2, setting a pollutant concentration standard value C1 in a control unit of the control system according to the environmental capacity of the discharged natural water body and the water quality of the water entering the distribution well; the method comprises the following steps:
  • the water body enters the diversion well from the water inlet, and the water level H of the water in the diversion well is monitored in real time by monitoring the water level of the water body, and the water quality of the water in the well is monitored in real time by monitoring the water quality of the water;
  • the first water switch When the water quality of the well water C ⁇ the standard value of the pollutant concentration C1, the first water switch is in an open state; part of the water body can also flow through the first water outlet through the first water switch to the pipeline connected to the sewage treatment plant; When the water quality of the well water C ⁇ contaminant concentration standard value C1, the first water conservancy switch is in the closed state.
  • the device for monitoring the water level of the water body is a liquid level sensor, a liquid level meter, a liquid level switch and the like.
  • the device for monitoring water quality is a water quality detector, an online COD monitor, an online ammonia nitrogen monitor, an online TSS monitor, an online BOD monitor, an online NH 3 -N monitor, an online TP monitor, an online TN monitor, electrodes, conductivity meter, etc., which is split monitoring wells pollutant concentration in the body, the contaminant comprises one or more TSS, COD, BOD, NH 3 -N, TN or TP in.
  • the water quality detector may be configured to detect water quality by using an electrode method, a UV optical method, an optical scattering method, or the like.
  • a total amount method controlled drainage control method is based on the drainage system described in Embodiment 1, the drainage system including a control system, and the monitoring device in the control system includes a device for monitoring the total amount of water And disposed on the first water switch in the well of the split shaft, the total amount of initial rain that needs to be intercepted by the split shaft is set in the control unit of the control system according to the number of millimeters of initial rain collected in the corresponding water receiving area of the split shaft Q1;
  • the method includes the following steps:
  • the first water switch is turned on or off based on the operation of the entire drain network system, that is, the first water switch can be in an open state or in a closed state, and the specific selection is that the drain is required.
  • the system works with the entire pipe network system to achieve the most reasonable drainage effect. If the first water switch is turned on, part of the water body can also flow through the first water outlet through the first water switch to the pipeline connected to the sewage treatment plant;
  • the means for monitoring the total amount of water is selected from an electric hoist with a metering function.
  • a total amount-water level controlled drainage control method is based on the drainage system described in Embodiment 1, the drainage system comprising a control system, and the monitoring device in the control system includes monitoring the total amount of water And the device is disposed on the first water switch in the well body, the monitoring device in the control system further comprises a device for monitoring the water level of the water body and is disposed in the body of the distribution well, according to the corresponding water receiving area in the distribution well
  • the total amount of initial rain to be collected is set in the control unit of the control system.
  • the total amount of standard primary rain Q1 to be intercepted by the split shaft is determined according to the height of the lowest point in the corresponding catchment area of the split well at the risk of water accumulation.
  • the warning water level H2 of the split shaft is set in the control unit of the control system; the method comprises the following steps:
  • the first water switch When the total amount of water passing through the first water switch Q ⁇ the standard initial rain amount Q1, the first water switch is in an open state; the water body can also flow through the first water outlet to the sewage treatment plant through the first water switch. In the pipeline; when the total amount of water passing through the first water switch Q ⁇ the standard initial rain amount Q1, the first water switch is in a closed state;
  • the device for monitoring the water level of the water body is a liquid level sensor, a liquid level meter, a liquid level switch and the like.
  • the means for monitoring the total amount of water is selected from an electric hoist with a metering function.
  • a rainfall control method for controlling drainage is based on the drainage system described in Embodiment 1, the drainage system including a control system, the monitoring device in the control system includes a device for monitoring rainfall and is disposed at In the outside of the diversion well, the standard initial rainfall L1 that needs to be intercepted by the diversion well is set in the control unit of the control system according to the number of initial rain millimeters to be collected in the corresponding collection area of the diversion well; the method comprises the following steps:
  • the first water switch is turned on or off based on the operation of the entire drain network system, that is, the first water switch can be in an open state or in a closed state, and the specific selection is that the drain is required.
  • the system works with the entire pipe network system to achieve the most reasonable drainage effect. If the first water switch is turned on, part of the water body can also flow through the first water outlet through the first water switch to the pipeline connected to the sewage treatment plant.
  • the device for monitoring rainfall is a rain gauge.
  • a rainfall-water level controlled drainage control method being based on the drainage system of Embodiment 1, the drainage system comprising a control system, the monitoring device in the control system comprising a device for monitoring rainfall and The monitoring device in the control system further comprises a device for monitoring the water level of the water body and is disposed in the body of the distribution well, according to the number of millimeters of initial rain collected in the corresponding water receiving area of the distribution well.
  • the standard initial rainfall L1 of the diversion well that needs to be intercepted is set in the control unit of the system; the diversion well is set in the control unit of the control system according to the height of the lowest point in the corresponding reclaimed area of the diversion well in the occurrence of the water accumulation risk Warning water level H2; the method comprises the following steps:
  • the first water conservancy switch is in an open state; the water body can also flow through the first water outlet through the first water conservancy switch In the pipeline connected to the sewage treatment plant; when the initial rain and rainfall L ⁇ the standard initial rainfall L1, the first water conservancy switch is in the closed state.
  • the device for monitoring the water level of the water body is a liquid level sensor, a liquid level meter, a liquid level switch and the like.
  • the device for monitoring rainfall is a rain gauge.
  • a time-controlled controlled drainage control method the drainage control method being based on the drainage system described in Embodiment 1, the drainage system comprising a control system, the monitoring device in the control system comprising a device for monitoring time and being disposed at In the shunt well or in the well outside the well, the standard time T1 is set in the control unit of the control system according to the rainfall time of the initial rainwater and the time required for the initial rainwater to flow to the split well in the corresponding water receiving area;
  • the method includes the following steps:
  • the first water switch is turned on or off based on the operation of the entire drain network system, that is, the first water switch can be in an open state or in a closed state, and the specific selection is that the drain is required.
  • the system works with the entire pipe network system to achieve the most reasonable drainage effect. If the first water switch is turned on, part of the water body can also flow through the first water outlet through the first water switch to the pipeline connected to the sewage treatment plant.
  • the device for monitoring the time is a timer.
  • a time-water level controlled drainage control method being based on the drainage system of Embodiment 1, the drainage system comprising a control system, the monitoring device in the control system comprising a device for monitoring time and The monitoring device in the control system further includes a device for monitoring the liquid level of the water body and is disposed in the body of the diversion well, according to the rainfall time of the initial rainwater and the corresponding water receiving area of the diversion well.
  • the time required for all the initial rainwater to flow to the split shaft is set in the control unit of the control system by the standard time T1; according to the height of the lowest point in the area corresponding to the water receiving area of the distribution well in the occurrence of the water accumulation risk in the control system
  • the warning water level H2 of the split shaft is set in the control unit; the method comprises the following steps:
  • the rain time T is continuously monitored; when the rain time T ⁇ standard time T1, the first water switch is turned on; the water body can also flow through the first water outlet through the first water switch to the pipe connected to the sewage treatment plant. In the road; when the rain time T ⁇ the standard time T1, the first water switch is in the closed state.
  • the device for monitoring the water level of the water body is a liquid level sensor, a liquid level meter, a liquid level switch and the like.
  • the device for monitoring the time is a timer.
  • the drainage system includes the storage facility, that is, corresponding to the drainage system of Embodiment 2, the drainage control methods of Embodiments 5-13 above are respectively adopted, and further comprising the following steps:
  • the water body flows through the water outlet pipe from the inlet end of the storage facility to the storage facility for storage, and when the capacity of the storage facility reaches the capacity In a limited time, the water body flows into the downstream end of the water outlet pipe from the outlet end of the storage facility.
  • the flow direction of the water body is adjusted by adjusting the opening degree of the sixth water conservancy switch; when the sixth water conservancy switch is in an open state, part of the water body flows through The outlet pipe is directly discharged to the pipeline leading to the natural water body, and part of the water body flows through the branch road disposed beside the outlet pipe to the storage facility for temporary storage; when the sixth water conservancy switch is in the intercepting state, all the water body flows through the outlet pipe.
  • the bypass road is temporarily stored in the storage facility; when the capacity of the storage facility reaches the upper limit of storage, all the water flows through the outlet pipe and is directly discharged to the pipeline leading to the natural water body.
  • the drainage system includes the storage facility and the integrated treatment facility, that is, corresponding to the drainage system of Embodiment 4, the drainage control methods of Embodiments 5-13 above are respectively adopted, and further comprising the following steps:
  • the water body flows through the water outlet pipe from the inlet end of the storage facility to the storage facility for storage, and when the capacity of the storage facility reaches the capacity In a limited time, the water body flows into the downstream end of the water outlet pipe from the outlet end of the storage facility; at the same time, the water body stored in the storage facility is directly discharged to the pipeline leading to the natural water body after being treated by the integrated treatment facility.
  • the flow direction of the water body is adjusted by adjusting the opening degree of the sixth water conservancy switch; when the sixth water conservancy switch is in an open state, part of the water body flows through The outlet pipe is directly discharged to the pipeline leading to the natural water body, and part of the water body flows through the branch road disposed beside the outlet pipe to the storage facility for temporary storage; when the sixth water conservancy switch is in the intercepting state, all the water body flows through the outlet pipe The bypass road is temporarily stored in the storage facility; when the capacity of the storage facility reaches the upper limit of storage, all the water flows directly through the outlet pipe to the pipeline leading to the natural water body; meanwhile, the water body stored in the storage facility is The integrated treatment facility discharges directly into the pipeline to the natural water body.
  • the drainage control method of Embodiment 5-13 described above is employed, and further includes the following steps:
  • the water body flows through the water outlet pipe from the inlet end of the online processing facility into the online processing facility, and after being processed, from the outlet end of the online processing facility Flow into the downstream end of the outlet pipe.
  • the flow direction of the water body is adjusted by adjusting the opening degree of the seventh water conservancy switch; when the seventh water conservancy switch is in an open state, part of the water body flows through The outlet pipe is directly discharged into the pipeline leading to the natural water body, and some of the water body flows through the inlet end of the branch processing online processing facility disposed at the outlet pipe into the online processing facility, and after being processed, flows out from the outlet end of the online processing facility.
  • the downstream end of the water pipe is directly discharged to the pipeline leading to the natural water body; when the seventh water conservancy switch is in the intercepting state, all the water body flows through the branch end of the online processing facility disposed at the outlet pipe to the online processing facility, and is processed. After that, it flows from the outlet end of the in-line treatment facility to the downstream end of the outlet pipe or directly to the pipeline leading to the natural water body.
  • the first water switch, the sixth water switch, and the seventh water switch can realize a maximum current limiting function, and the open state means that the flow value of the water switch is less than or equal to the set value.
  • the maximum flow value which can be achieved by adjusting the opening of the water switch by a control unit in the control system.
  • the fourth water switch is in an open state, that is, the water body can flow to the natural water body through the water switch.
  • the fourth water switch, the sixth water switch, and the seventh water switch are in a cut-off state, which means that the opening of the water switch is adjusted to ensure that the water body is intercepted at the upstream end of the water switch. It is not possible to flow to the natural water body through the water switch.
  • the first water switch is in a closed state, that is, the flow rate of the water passing through the water switch is zero.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Sewage (AREA)

Abstract

一种排水系统及排水控制方法,排水系统具有智能排水的效果,通过控制系统对该排水系统中的水利开关的开度及相关组件的合理控制实现水体的合理排放,在保证了行洪安全的同时,最大程度的对脏水或初期雨水进行截流至污水处理厂。排水控制方法包括水位法、水质法、水质-水位法、时间法、总量法、雨量法、时间-水位法、总量-水位法、雨量-水位法,所述方法的调控有效解决了现有技术中截污管无法进行限流、干净的水或后期雨水也会进入截污管输送至污水处理厂的现象。通过合理的控制脏水、初期雨水和中后期雨水的排放途径,最大限度的把脏水和初期雨水截流至污水处理厂,把较干净的水排至自然水体。

Description

一种排水系统及排水控制方法 技术领域
本发明属于排水技术领域,具体涉及一种排水系统及排水控制方法。
背景技术
当前,城市和建筑群的排水系统主要包括分流制、合流制和混流制,其主要的目的是实现水体的收集、输送和处理。比如,采用一种方式对待所有废水的体制称合流制。它只有一个排水系统,称合流系统,其排水管道称合流管道。采用不同方式对待不同性质的废水的体制称分流制,它一般有两个排水系统。一个可以称为雨水系统,用于收集雨水和污染程度很低的、不经过处理直接排放水体的工业废水,其管道称雨水管道。另一个可以称为污水系统,收集生活污水和需要处理后才能排放的工业废水,其管道称污水管道。混流制是一种介于分流制和合流制之间的体制,其主要是由于在分流制的区域内管路错接、混接等导致部分管道出现了不同性质的废水,即雨水管道或污水管道实际上变成了合流管道。城市的污水管道和合流管道中的废水常统称城市污水。
随着现代房屋卫生设备和高层建筑的出现,人口密集,粪便用水流输送,大大增加城市污水的强度;再加上工业发达,工业废水大量增加,城市附近的河流湖泊就出现不能容忍的污染情况。于是增设污水处理厂,并用管道连接各个出水口,把各排水干管中的废水汇集污水处理厂进行处理,形成截流式合流系统。连接出水口并截流废水至污水处理厂的管道称截流管道或截污管道。
降雨时废水量骤增,如果把所有废水都截留,则截流管道和污水处理厂必然需要很大规模,过分增加工程费用。所以一般将排水干管和截流管相交处的检查井替换为分流井。分流井的构造可以有不同的设计,但是目前的设计并不完善,且针对不同的污水量和雨水量也没有做出改进。旱季时因管中只有污水,分流井可以将污水截住,流往污水管;雨季时将部分雨水与污水截住并流入污水管,其余雨水溢流通过井中堰,继续流向下游。对于雨水和污水的流向,目前的控制方法中多数是采用水位或雨量来控制的,但现有的水位控制法或雨量控制法,对雨水和污水的分流控制并不是很好,从而失去了分流井存在的意义。
发明内容
为了解决现有技术的不足,本发明提供了一种排水系统及排水控制方法,所述排水系统用于雨水和/或污水的截流和分流,通过合理的调控,使得水体合理分流,实现资源的合理配置。
本发明提出如下技术方案:
一种排水系统,所述排水系统包括分流井;所述分流井包括分流井井体和设置于所述分流井井体中的三个开口,分别是入水口、第一出水口和第二出水口;
所述排水系统还包括第一水利开关和第四水利开关;其中,在靠近所述第一出水口处设置第一水利开关,用于控制通过第一出水口的过水量;在靠近所述第二出水口处设置第四水利开关,用于控制通过第二出水口的过水量;
所述排水系统还包括控制系统,所述控制系统包括监测装置和与其信号连接的控制单元;所述控制单元与第一水利开关和第四水利开关信号连接;所述监测装置用于监测信号并将监测的信号输送给控制单元,控制单元根据接收的信号控制第一水利开关和第四水利开关的开度。
本发明还提供上述排水系统的排水控制方法,其包括水位法、水质法、水质-水位法、时间法、总量法、雨量法、时间-水位法、总量-水位法、雨量-水位法中的至少一种。
本发明的有益效果:
1)本发明的排水系统包括控制系统,在使用过程中无需人为操作,通过控制单元,可以实现闸门的自动调节,具有灵活多变等特点,减少了大量的人力物力。具体而言,本发明的排水系统具有智能排水的效果,通过控制系统对该排水系统中的水利开关的开度及相关组件的合理控制实现水体的合理排放,在保证了行洪安全的同时,最大程度的对脏水或初期雨水进行截流至污水处理厂。
2)本发明的排水系统具有占地面积小,功能强大等优点,使用少量的土地面积就可以实现雨水和污水的有效分离处理。所述排水系统的使用不受场合的限定,可以适用于排水管网系统中的任一条管网。
3)本发明的排水系统的第二出水口处还可以设置在线处理设施和/或调蓄设施,以及任选的一体化处理设施;所述在线处理设施和/或调蓄设施,以及任选的一体化处理设施的设置,可以有效解决第四水利开关开启时仍混有的可污染自然水体的脏水,做到彻底地将初期雨水和中后期雨水分流处理。
4)本发明的排水控制方法包括水位法、水质法、水质-水位法、时间法、总量法、雨量 法、时间-水位法、总量-水位法、雨量-水位法,所述方法的调控有效解决了现有技术中截污管无法进行限流、干净的水或后期雨水也会进入截污管输送至污水处理厂的现象。通过合理的控制脏水、初期雨水和中后期雨水的排放途径,最大限度的把脏水截流至污水处理厂,把较干净的水排至自然水体。
附图说明
图1为本发明一个优选实施方式中所述的排水系统的结构示意图;
图2为本发明一个优选实施方式中所述的排水系统的结构示意图;
图3为本发明一个优选实施方式中所述的排水系统的结构示意图;
图4为本发明一个优选实施方式中所述的排水系统的结构示意图;
图5为本发明一个优选实施方式中所述的排水系统的结构示意图;
图6为本发明一个优选实施方式中所述的排水系统的结构示意图;
图7为本发明一个优选实施方式中所述的排水系统的结构示意图;
图8为本发明一个优选实施方式中所述的排水系统的结构示意图;
图9为本发明一个优选实施方式中所述的排水系统的结构示意图;
图10为本发明一个优选实施方式中所述的排水系统的结构示意图;
图11为本发明一个优选实施方式中所述的排水系统的结构示意图;
图12为本发明一个优选实施方式中所述的排水系统的结构示意图;
其中,1为入水口;2为第一水利开关;3为第四水利开关;4为第一出水口;5为第二出水口;6为分流井井体;21为入水管;22为截污管;23为出水管;24为监测装置;31为调蓄设施;32为第六水利开关;41为在线处理设施;42为第七水利开关;51为一体化处理设施。
具体实施方式
[排水系统]
本发明的第一方面是提供一种排水系统,所述排水系统包括分流井;所述分流井包括分流井井体和设置于所述分流井井体中的三个开口,分别是入水口、第一出水口和第二出水口;
所述排水系统还包括第一水利开关和第四水利开关;其中,在靠近所述第一出水口处设置第一水利开关,用于控制通过第一出水口的过水量;在靠近所述第二出水口处设置第四水利开关,用于控制通过第二出水口的过水量;
所述排水系统还包括控制系统,所述控制系统包括监测装置和与其信号连接的控制单元;所述控制单元与第一水利开关和第四水利开关信号连接;所述监测装置用于监测信号并将监 测的信号输送给控制单元,控制单元根据接收的信号控制第一水利开关和第四水利开关的开度。
在本发明的一个优选实施方式中,所述排水系统还包括截污管和出水管;所述第一出水口通过截污管与通往污水处理厂的管路相连;所述第二出水口通过出水管与通往自然水体的管路相连。
在本发明的一个优选实施方式中,所述监测装置包括监测水体液位的装置(例如可以是液位传感器、液位计、液位开关等),监测水体水质的装置(例如可以是水质检测器、在线COD监测仪、在线TSS监测仪、在线BOD监测仪、在线TN监测仪、在线TP监测仪、在线NH 3-N监测仪、在线氨氮监测仪、电极、电导率仪等),监测水体总量的装置(例如可以是带有计量功能的电动启闭机等),监测雨量的装置(如雨量计等),监测时间的装置(如计时器等)中的至少一种。
在本发明的一个优选实施方式中,所述监测装置根据类型需求可设置在分流井井体内或分流井井体外。例如,监测水体液位的装置和监测水体水质的装置设置在分流井井体内,监测雨量的装置设置在分流井井体外,监测水体总量的装置设置在分流井井体中的水利开关上,监测时间的装置设置在分流井井体内或分流井井体外。
在本发明的一个优选实施方式中,所述排水系统还包括调蓄设施;所述调蓄设施设置在出水管管路上或设置在从出水管管路分出的支路上。
当所述调蓄设施设置在出水管支路上时,在出水管管路上且在出水管支路分出位置的下游端设置第六水利开关。所述第六水利开关与控制单元信号连接,控制单元根据接收的信号控制第六水利开关的开度。
当所述调蓄设施设置在出水管管路上时,水体流经出水管从调蓄设施的入口端流入调蓄设施进行存储,当调蓄设施的容量达到容纳上限时,水体从调蓄设施的出口端流入出水管下游端。
当所述调蓄设施设置在出水管支路上时;通过调节第六水利开关的开度调整水体的流向;当第六水利开关处于开启状态时,部分水体流经出水管直接排放至通往自然水体的管路,部分水体流经设置在出水管旁的支路进入调蓄设施暂时存储;当第六水利开关处于截流状态时,全部水体流经支路进入调蓄设施暂时存储;当调蓄设施的容量达到容纳上限时,水体全部流经出水管直接排放至通往自然水体的管路。
在本发明的一个优选实施方式中,所述排水系统还包括在线处理设施;所述在线处理设施设置在出水管上或设置在从出水管管路分出且终端并入出水管管路的支路上;或设置在从 出水管管路分出且终端连通自然水体的支路上。
当所述在线处理设施设置在从出水管管路分出且终端并入出水管管路的支路上时,在出水管管路上且在支路分出和并入的位置之间设置第七水利开关;或者,当所述在线处理设施设置在从出水管管路分出且终端连通自然水体的支路上时,在出水管管路上且在支路分出位置的下游端设置第七水利开关。所述第七水利开关与控制单元信号连接,控制单元根据接收的信号控制第七水利开关的开度。
当所述在线处理设施设置在出水管管路上;水体流经出水管从在线处理设施的入口端流入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端。
当所述在线处理设施设置在出水管支路上时,通过调节第七水利开关的开度调整水体的流向;当第七水利开关处于开启状态时,部分水体流经出水管直接排放至通往自然水体的管路中,部分水体流经设置在出水管旁的支路由在线处理设施的入口端进入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端或直接排放至通往自然水体的管路;当第七水利开关处于截流状态时,全部水体流经支路由在线处理设施的入口端进入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端或直接排放至通往自然水体的管路。
所述排水系统包括上述调蓄设施时,其还可以包括一体化处理设施;所述一体化处理设施与调蓄设施的出口端相连,例如所述一体化处理设施通过管道或廊道与调蓄设施的出口端相连。所述一体化处理设施可以处理存储在调蓄设施中的水体。
在本发明的一个优选实施方式中,所述第一水利开关和第四水利开关分别独立地选自阀门(球阀、闸阀、刀闸阀、蝶阀、升降式橡胶板截流止回阀等)、闸门(上开式闸门、下开式闸门等)、堰门(上开式堰门、下开式堰门、旋转式堰门等)、拍门(截流拍门等)中的一种。
在本发明的一个优选实施方式中,所述第一水利开关可以实现最大限流功能,即保证通过所述第一水利开关的流量不会超过设定的流量值。
在本发明的一个优选实施方式中,所述第六水利开关和第七水利开关分别独立地选自阀门(球阀、闸阀、刀闸阀、蝶阀、升降式橡胶板截流止回阀等)、闸门(上开式闸门、下开式闸门等)、堰门(上开式堰门、下开式堰门、旋转式堰门等)、拍门(截流拍门等)中的一种。
在本发明的一个优选实施方式中,所述第六水利开关可以实现最大限流功能,即保证通过所述第六水利开关的流量不会超过设定的流量值。
在本发明的一个优选实施方式中,所述第七水利开关可以实现最大限流功能,即保证通过所述第七水利开关的流量不会超过设定的流量值。
在本发明的一个优选实施方式中,本领域技术人员可以理解,所述入水口、第一出水口和第二出水口的形状和开口大小没有具体的限定,可以和与其相连的管路或廊道的形状或与其设置的水利开关的形状相匹配即可。例如所述入水口、第一出水口和第二出水口的形状为圆形。
在本发明的一个优选实施方式中,本领域技术人员可以理解,所述入水口、第一出水口和第二出水口在分流井井体中的排列顺序和排布方式没有限定,可以根据分流井设置的区域面积和地势高度合理的设置入水口、第一出水口和第二出水口的相对位置。例如,所述入水口、第一出水口和第二出水口设置在分流井井体侧壁;或者,所述入水口和第二出水口设置在分流井井体侧壁,并在分流井井体底部开设沟槽,将第一出水口设置在沟槽中。
当所述入水口、第一出水口和第二出水口设置在分流井井体侧壁时,本领域技术人员可以理解,所述入水口、第一出水口和第二出水口的底部距离分流井井底的高度没有具体限定,例如与入水口连接的管路处于高地势的位置,入水口可以设置在分流井井体侧壁上的任意位置;与第一出水口和第二出水口连接的管路处于低地势的位置,第一出水口和第二出水口设置在分流井井体侧壁靠近分流井井体底部的位置。这样做的目的是为了水体不会在分流井井体中积攒,更好地流向下游。
当所述入水口和第二出水口设置在分流井井体侧壁,并在分流井井体底部开设沟槽,将第一出水口设置在沟槽中时,本领域技术人员可以理解,所述入水口和第二出水口的底部距离分流井井底的高度没有具体限定,例如与入水口连接的管路处于高地势的位置,入水口可以设置在分流井井体侧壁上的任意位置;与第二出水口连接的管路处于低地势的位置,第二出水口设置在分流井井体侧壁靠近分流井井体底部的位置,第一出水口处于更低地势的位置,水体优先通过第一出水口。这样做的目的是能更好地实现在分流井井体中水体不积攒,更好地流向下游。
在本发明的一个优选实施方式中,本领域技术人员可以理解,所述分流井井体的形状没有具体的限定,可以实现对水体的合理排放即可,例如所述分流井井体的形状为方形或圆形。
在本发明的一个优选实施方式中,本领域技术人员可以理解,所述调蓄设施在系统中的数量和排布没有具体的限定,可以是串联或并联的多个调蓄设施;其具体排布方式可以根据使用该系统的区域面积进行合理的排布。所述调蓄设施可以是现有技术已知的调蓄设施,例如包括调蓄池、调蓄箱涵、深隧或浅隧等。
在本发明的一个优选实施方式中,本领域技术人员可以理解,所述在线处理设施在系统中的数量和排布没有具体的限定,可以是串联或并联的多个在线处理设施;其具体排布方式可以根据使用该系统的区域面积进行合理的排布。所述在线处理设施可以是现有技术已知的在线处理设施,例如包括生物滤池、在线处理池、絮凝池、斜板沉淀池、沉砂池或人工湿地等。
在本发明的一个优选实施方式中,本领域技术人员可以理解,所述一体化处理设施可以是现有技术已知的一体化处理设施,例如包括一体化污水处理站等。所述一体化处理设施在系统中的数量和排布没有具体的限定,可以是串联或并联的多个一体化处理设施;其具体排布方式可以根据使用该系统的区域面积进行合理的排布。
[排水控制方法]
本发明还提供上述排水系统的排水控制方法,其包括水位法、水质法、水质-水位法、时间法、总量法、雨量法、时间-水位法、总量-水位法、雨量-水位法中的至少一种。
[水位法]
本发明的第二个方面是提供一种水位法控制的排水控制方法,所述排水控制方法是基于上述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测水体液位的装置且设置在分流井井体内,在该控制系统的控制单元中设定分流井的警戒水位H2;所述方法包括如下步骤:
1a)水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H;
2a)当H<H2时,第一水利开关处于开启状态,第四水利开关处于截流状态;
3a)当H≥H2时,第四水利开关处于开启状态。
本发明中,步骤3a)中,基于整个排水管网体系的运行控制所述第一水利开关的开启或关闭,即所述第一水利开关可以处于开启状态,也可以处于关闭状态,具体选择是需要所述排水系统与整个管网体系相配合,从而达到最合理的排水效果。
[水质法]
本发明的第三个方面是提供一种水质法控制的排水控制方法,所述排水控制方法是基于上述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测水体水质的装置且设置在分流井井体内,在该控制系统的控制单元中设定污染物浓度标准值C1;所 述方法包括如下步骤:
1b)水体从入水口进入分流井,通过监测水体水质的装置实时监测井内水体水质C;
2b)当C≥C1时,第一水利开关处于开启状态,第四水利开关处于截流状态;
3b)当C<C1时,第四水利开关处于开启状态。
本发明中,步骤3b)中,基于整个排水管网体系的运行控制所述第一水利开关的开启或关闭,即所述第一水利开关可以处于开启状态,也可以处于关闭状态,具体选择是需要所述排水系统与整个管网体系相配合,从而达到最合理的排水效果。
[水位-水质法]
本发明的第四个方面是提供一种水位-水质法控制的排水控制方法,所述排水控制方法是基于上述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测水体液位的装置和监测水体水质的装置且均设置在分流井井体内,在该控制系统的控制单元中设定分流井的警戒水位H2和污染物浓度标准值C1;所述方法包括如下步骤:
1c)水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H,通过监测水体水质的装置实时监测井内水体水质C;
2c)当C≥C1且H<H2时,第一水利开关处于开启状态,第四水利开关处于截流状态;
3c)当C<C1且H<H2时,第四水利开关处于开启状态,第一水利开关处于关闭状态;
4c)当H≥H2时,第四水利开关处于开启状态。
在本发明的一个优选实施方式中,步骤4c)中,还包括如下步骤:
4c-1)当C≥C1时,第一水利开关处于开启状态;
4c-2)当C<C1时,第一水利开关处于关闭状态。
[总量法]
本发明的第五个方面是提供一种总量法控制的排水控制方法,所述排水控制方法是基于上述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测水体总量的装置且设置在分流井井体中的第一水利开关上,在该控制系统的控制单元中设定分流井需要截流的初雨总量Q1;所述方法包括如下步骤:
1d)雨天时,水体从入水口进入分流井,通过监测水体总量的装置实时监测通过第一水利开关的水体总量Q;
2d)当Q<Q1时,第一水利开关处于开启状态,第四水利开关处于截流状态;
3d)当Q≥Q1时,第四水利开关处于开启状态。
在本发明的一个优选实施方式中,所述方法还包括如下步骤:
4d)晴天时,水体从入水口进入分流井,第一水利开关处于开启状态,第四水利开关处于截流状态。
本发明中,步骤3d)中,基于整个排水管网体系的运行控制所述第一水利开关的开启或关闭,即所述第一水利开关可以处于开启状态,也可以处于关闭状态,具体选择是需要所述排水系统与整个管网体系相配合,从而达到最合理的排水效果。
[总量-水位法]
本发明的第六个方面是提供一种总量-水位法控制的排水控制方法,所述排水控制方法是基于上述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测水体总量的装置且设置在分流井井体中的第一水利开关上,所述控制系统中的监测装置还包括监测水体液位的装置且设置在分流井井体内,在该控制系统的控制单元中设定分流井需要截流的标准初雨总量Q1和分流井的警戒水位H2;所述方法包括如下步骤:
1e)雨天时,水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H,通过监测水体总量的装置实时监测通过第一水利开关的水体总量Q;
2e)当Q<Q1且H<H2时,第一水利开关处于开启状态,第四水利开关处于截流状态;
3e)当Q≥Q1且H<H2时,第四水利开关处于开启状态,第一水利开关处于关闭状态;
4e)当H≥H2时,第四水利开关处于开启状态。
在本发明的一个优选实施方式中,步骤4e)中,还包括如下步骤:
4e-1)当Q<Q1时,第一水利开关处于开启状态;
4e-2)当Q≥Q1时,第一水利开关处于关闭状态。
在本发明的一个优选实施方式中,所述方法还包括如下步骤:
5e)晴天时,水体从入水口进入分流井,第一水利开关处于开启状态,第四水利开关处于截流状态。
[雨量法]
本发明的第七个方面是提供一种雨量法控制的排水控制方法,所述排水控制方法是基于上述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测雨量的装置且设置在分流井井体外,在该控制系统的控制单元中设定分流井需要截流的标准初雨雨 量L1;所述方法包括如下步骤:
1f)通过监测雨量的装置实时监测初雨雨量L;
2f)当L=0时,此时为晴天,水体从入水口进入分流井,第一水利开关处于开启状态,第四水利开关处于截流状态;
3f)当0<L<L1时,此时为雨天,水体从入水口进入分流井,第一水利开关处于开启状态,第四水利开关处于截流状态;
4f)当L≥L1时,第四水利开关处于开启状态。
本发明中,步骤4f)中,基于整个排水管网体系的运行控制所述第一水利开关的开启或关闭,即所述第一水利开关可以处于开启状态,也可以处于关闭状态,具体选择是需要所述排水系统与整个管网体系相配合,从而达到最合理的排水效果。
[雨量-水位法]
本发明的第八个方面是提供一种雨量-水位法控制的排水控制方法,所述排水控制方法是基于上述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测雨量的装置且设置在分流井井体外,所述控制系统中的监测装置还包括监测水体液位的装置且设置在分流井井体内,在该控制系统的控制单元中设定分流井需要截流的标准初雨雨量L1和分流井的警戒水位H2;所述方法包括如下步骤:
1g)通过监测雨量的装置实时监测初雨雨量L;当L=0时,此时为晴天,水体从入水口进入分流井,第一水利开关处于开启状态,第四水利开关处于截流状态;
2g)当L>0时,此时为雨天,水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H;
3g)当0<L<L1且H<H2时,第一水利开关处于开启状态,第四水利开关处于截流状态;
4g)当L≥L1且H<H2时,第四水利开关处于开启状态,第一水利开关处于关闭状态;
5g)当H≥H2时,第四水利开关处于开启状态。
在本发明的一个优选实施方式中,步骤5g)中,还包括如下步骤:
5g-1)当0<L<L1时,第一水利开关处于开启状态;
5g-2)当L≥L1时,第一水利开关处于关闭状态。
[时间法]
本发明的第九个方面是提供一种时间法控制的排水控制方法,所述排水控制方法是基于 上述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测时间的装置且设置在分流井井体内或分流井井体外,在该控制系统的控制单元中设定标准时间T1;所述方法包括如下步骤:
1h)晴天时,水体从入水口进入分流井,第一水利开关处于开启状态,第四水利开关处于截流状态;
2h)雨天时,水体从入水口进入分流井,通过监测时间的装置实时监测降雨时间T;
3h)当T<T1时,第一水利开关处于开启状态,第四水利开关处于截流状态;
4h)当T≥T1时,第四水利开关处于开启状态。
本发明中,步骤4h)中,基于整个排水管网体系的运行控制所述第一水利开关的开启或关闭,即所述第一水利开关可以处于开启状态,也可以处于关闭状态,具体选择是需要所述排水系统与整个管网体系相配合,从而达到最合理的排水效果。
[时间-水位法]
本发明的第十个方面是提供一种时间-水位法控制的排水控制方法,所述排水控制方法是基于上述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测时间的装置且设置在分流井井体内或分流井井体外,所述控制系统中的监测装置还包括监测水体液位的装置且设置在分流井井体内,在该控制系统的控制单元中设定标准时间T1和分流井的警戒水位H2;所述方法包括如下步骤:
1i)晴天时,水体从入水口进入分流井,第一水利开关处于开启状态,第四水利开关处于截流状态;
2i)雨天时,水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井内水体液位高度H,通过监测时间的装置实时监测降雨时间T;
3i)当T<T1且H<H2时,第一水利开关处于开启状态,第四水利开关处于截流状态;
4i)当T≥T1且H<H2时,第四水利开关处于开启状态,第一水利开关处于关闭状态;
5i)当H≥H2时,第四水利开关处于开启状态。
在本发明的一个优选实施方式中,步骤5i)中,还包括如下步骤:
5i-1)当T<T1时,第一水利开关处于开启状态;
5i-2)当T≥T1时,第一水利开关处于关闭状态。
[上述方法的具体限定]
在本发明的一个优选实施方式中,所述排水系统包括调蓄设施时,所述方法还包括如下步骤:
当第四水利开关处于开启状态且所述调蓄设施设置在出水管管路上时,水体流经出水管从调蓄设施的入口端流入调蓄设施进行存储,当调蓄设施的容量达到容纳上限时,水体从调蓄设施的出口端流入出水管下游端。
当第四水利开关处于开启状态且所述调蓄设施设置在出水管支路上时,通过调节第六水利开关的开度调整水体的流向;当第六水利开关处于开启状态时,部分水体流经出水管直接排放至通往自然水体的管路,部分水体流经设置在出水管旁的支路进入调蓄设施暂时存储;当第六水利开关处于截流状态时,全部水体流经设置在出水管旁的支路进入调蓄设施暂时存储;当调蓄设施的容量达到容纳上限时,全部水体流经出水管直接排放至通往自然水体的管路。
在本发明的一个优选实施方式中,所述排水系统包括调蓄设施和一体化处理设施时,所述方法包括如下步骤:
当第四水利开关处于开启状态且所述调蓄设施设置在出水管管路上时,水体流经出水管从调蓄设施的入口端流入调蓄设施进行存储,当调蓄设施的容量达到容纳上限时,水体从调蓄设施的出口端流入出水管下游端;同时,存储在调蓄设施中的水体经一体化处理设施处理后直接排放至通往自然水体的管路。
当第四水利开关处于开启状态且所述调蓄设施设置在出水管支路上时,通过调节第六水利开关的开度调整水体的流向;当第六水利开关处于开启状态时,部分水体流经出水管直接排放至通往自然水体的管路,部分水体流经设置在出水管旁的支路进入调蓄设施暂时存储;当第六水利开关处于截流状态时,全部水体流经设置在出水管旁的支路进入调蓄设施暂时存储;当调蓄设施的容量达到容纳上限时,全部水体流经出水管直接排放至通往自然水体的管路;同时,存储在调蓄设施中的水体经一体化处理设施处理后直接排放至通往自然水体的管路。
在本发明的一个优选实施方式中,所述排水系统包括在线处理设施时,所述方法还包括如下步骤:
当第四水利开关处于开启状态且所述在线处理设施设置在出水管管路上时;水体流经出水管从在线处理设施的入口端流入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端。
当第四水利开关处于开启状态且所述在线处理设施设置在出水管支路上时,通过调节第 七水利开关的开度调整水体的流向;当第七水利开关处于开启状态时,部分水体流经出水管直接排放至通往自然水体的管路中,部分水体流经设置在出水管旁的支路由在线处理设施的入口端进入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端或直接排放至通往自然水体的管路;当第七水利开关处于截流状态时,全部水体流经设置在出水管旁的支路由在线处理设施的入口端进入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端或直接排放至通往自然水体的管路。
在本发明的一个优选实施方式中,所述监测水体液位的装置为液位传感器、液位计、液位开关等。
在本发明的一个优选实施方式中,所述监测水体水质的装置为水质检测器、在线COD监测仪、在线氨氮监测仪、在线TSS监测仪、在线BOD监测仪、在线NH 3-N监测仪、在线TP监测仪、在线TN监测仪、电极、电导率仪等,其监测的是分流井井体内水体中污染物的浓度,所述污染物包括TSS、COD、BOD、NH 3-N、TN或TP中的一种或几种。
在本发明的一个优选实施方式中,所述水质检测器可以是采用电极法、UV光学法、光学散射法等实现对水体水质的检测。
在本发明的一个优选实施方式中,所述分流井排放到的自然水体的环境容量可以是自然水体如江河湖海;当所述自然水体的环境容量较大(如海洋),污染物浓度标准值C1可以适当提高;当所述自然水体的环境容量较小(如湖泊),污染物浓度标准值C1可以适当降低。当所述进入分流井的水体水质较好时,如为中后期雨水,污染物浓度标准值C1可以适当降低;当所述进入分流井的水体水质较差时,如为生活污水和/或初期雨水,污染物浓度标准值C1可以适当提高。其目的是尽可能少的减少对自然水体的污染。
在本发明的一个优选实施方式中,所述监测水体总量的装置选自带有计量功能的电动启闭机。
在本发明的一个优选实施方式中,所述监测雨量的装置为雨量计。
在本发明的一个优选实施方式中,所述监测时间的装置为计时器。
在本发明的一个优选实施方式中,根据分流井对应收水区域内地势最低点在发生积水风险时的高度在该控制系统的控制单元中设定分流井的警戒水位H2。
在本发明的一个优选实施方式中,根据排放到的自然水体的环境容量和进入分流井的水体水质在该控制系统的控制单元中设定污染物浓度标准值C1。
在本发明的一个优选实施方式中,根据分流井对应收水区域内所需要收集的初雨总量在该控制系统的控制单元中设定分流井需要截流的标准初雨总量Q1。
在本发明的一个优选实施方式中,根据分流井对应收水区域内所需要收集的初雨毫米数在该控制系统的控制单元中设定分流井需要截流的标准初雨雨量L1。
在本发明的一个优选实施方式中,根据初期雨水的降雨时间和分流井对应收水区域内初期雨水全部径流到分流井所需要的时间在该控制系统的控制单元中设定标准时间T1。
在本发明的一个优选实施方式中,所述第一水利开关、第六水利开关和第七水利开关可以实现最大限流功能,其处于开启状态是指通过所述水利开关的流量值小于等于设定的最大流量值,这可以通过控制系统中的控制单元调节所述水利开关的开度来实现。
在本发明的一个优选实施方式中,所述第四水利开关处于开启状态是指水体可以通过所述水利开关流向自然水体。
在本发明的一个优选实施方式中,所述第四水利开关、第六水利开关和第七水利开关处于截流状态是指调节所述水利开关的开度,保证水体截流在所述水利开关的上游端,不能通过所述水利开关流向自然水体。
在本发明的一个优选实施方式中,所述第一水利开关处于关闭状态是指通过所述水利开关的水体的流量值为零。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外,应理解,在阅读了本发明所记载的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本发明所限定的范围。
在本发明的描述中,需要说明的是,术语“第一”、“第二”、“第四”、“第六”和“第七”仅用于描述目的,而并非为指示或暗示相对重要性。
实施例1
如图1-3所示,本实施例提供一种排水系统,所述排水系统包括分流井;所述分流井包括分流井井体6和设置于所述分流井井体中的三个开口,分别是入水口1、第一出水口4和第二出水口5;
所述排水系统还包括第一水利开关2和第四水利开关3;其中,在靠近所述第一出水口4处设置第一水利开关2,用于控制通过第一出水口4的过水量;在靠近所述第二出水口5处设置第四水利开关3,用于控制通过第二出水口5的过水量;
所述排水系统还包括控制系统,所述控制系统包括监测装置24和与其信号连接的控制单元(未示出);所述控制单元与第一水利开关2和第四水利开关3信号连接;所述监测装置24 用于监测信号并将监测的信号输送给控制单元,控制单元根据接收的信号控制第一水利开关2和第四水利开关3的开度。
所述排水系统还包括截污管22和出水管23;所述第一出水口4通过截污管22与通往污水处理厂的管路相连;所述第二出水口5通过出水管23与通往自然水体的管路相连;
所述排水系统还包括入水管21,其与所述入水口1相连。
所述分流井井体的形状可以是方形的或者是圆形的;具体地,当所述分流井井体的形状为圆形,如图1所示;当所述分流井井体的形状为方形时,如图2和图3所示。
在不同场所使用时,所述分流井井体形状的选择也不同,所述分流井井体形状为圆形时,特别适用于面积较小的区域,圆形分流井的占地面积一般较小,通过节省土地面积,实现其他排水设备的安装和排布。当不受使用区域面积的限制时,可以使用方形结构的分流井,其内部可容纳的空间大,可以在该空间内设置多个具有不同功能的设备,如除去泥沙的装置和/或除去漂浮物和悬浮物的装置等。
所述入水口、第一出水口和第二出水口可以根据分流井设置的区域面积和地势高度合理的设置入水口、第一出水口和第二出水口的相对位置。例如,所述入水口、第一出水口和第二出水口设置在分流井井体侧壁;或者,所述入水口和第二出水口设置在分流井井体侧壁,并在分流井井体底部开设沟槽,将第一出水口设置在沟槽中。
当所述入水口、第一出水口和第二出水口设置在分流井井体侧壁时,所述入水口、第一出水口和第二出水口的底部距离分流井井底的高度没有具体限定,例如与入水口连接的管路处于高地势的位置,入水口可以设置在分流井井体侧壁上的任意位置;与第一出水口和第二出水口连接的管路处于低地势的位置,第一出水口和第二出水口设置在分流井井体侧壁靠近分流井井体底部的位置。这样做的目的是为了水体不会在分流井井体中积攒,更好地流向下游。
当所述入水口和第二出水口设置在分流井井体侧壁,并在分流井井体底部开设沟槽,将第一出水口设置在沟槽中时,所述入水口第二出水口的底部距离分流井井底的高度没有具体限定,例如与入水口连接的管路处于高地势的位置,入水口可以设置在分流井井体侧壁上的任意位置;与第二出水口连接的管路处于低地势的位置,第二出水口设置在分流井井体侧壁靠近分流井井体底部的位置,第一出水口处于更低地势的位置,水体优先通过第一出水口。这样做的目的是能更好地实现在分流井井体中水体不积攒,更好地流向下游。
所述第一水利开关和第四水利开关分别独立地选自阀门(球阀、闸阀、刀闸阀、蝶阀、升降式橡胶板截流止回阀等)、闸门(上开式闸门、下开式闸门等)、堰门(上开式堰门、 下开式堰门、旋转式堰门等)、拍门(截流拍门等)中的一种。
所述第一水利开关可以实现最大限流功能,即保证通过所述第一水利开关的流量不会超过设定的流量值。
在本发明的一个优选实施方式中,所述监测装置包括监测水体液位的装置(例如可以是液位传感器、液位计、液位开关等),监测水体水质的装置(例如可以是水质检测器、在线COD监测仪、在线TSS监测仪、在线BOD监测仪、在线TN监测仪、在线TP监测仪、在线NH 3-N监测仪、在线氨氮监测仪、电极、电导率仪等),监测水体总量的装置(例如可以是带有计量功能的电动启闭机等),监测雨量的装置(如雨量计等),监测时间的装置(如计时器等)中的至少一种。
在本发明的一个优选实施方式中,所述监测装置根据类型需求可设置在分流井井体内或分流井井体外。例如,监测水体液位的装置和监测水体水质的装置设置在分流井井体内,监测雨量的装置设置在分流井井体外,监测水体总量的装置设置在分流井井体中的水利开关上,监测时间的装置设置在分流井井体内或分流井井体外。如图3所示,所述监测装置24设置在分流井井体内,其可以是监测水体液位的装置或监测水体水质的装置。
实施例2
如图4-图6所示的一种排水系统,所述排水系统包括实施例1所述的排水系统外,还包括调蓄设施31。
如图4-图5所示,所述调蓄设施31设置在从出水管23管路分出的支路上;此时,在出水管23管路上且在出水管支路分出位置的下游端设置第六水利开关32,所述第六水利开关32与控制单元信号连接,控制单元根据接收的信号控制第六水利开关32的开度;当所述调蓄设施32设置在出水管支路上时;通过调节第六水利开关的开度调整水体的流向;当第六水利开关处于开启状态时,部分水体流经出水管直接排放至通往自然水体的管路,部分水体流经设置在出水管旁的支路进入调蓄设施暂时存储;当第六水利开关处于截流状态时,全部水体流经支路进入调蓄设施暂时存储;当调蓄设施的容量达到容纳上限时,水体全部流经出水管直接排放至通往自然水体的管路。
如图6所示,所述调蓄设施31设置在出水管23管路上;当所述调蓄设施设置在出水管管路上时,水体流经出水管从调蓄设施的入口端流入调蓄设施进行存储,当调蓄设施的容量达到容纳上限时,水体从调蓄设施的出口端流入出水管下游端。
所述调蓄设施在系统中的数量和排布没有具体的限定,可以是串联或并联的多个调蓄设 施;其具体排布方式可以根据使用该系统的区域面积进行合理的排布。所述调蓄设施可以是现有技术已知的调蓄设施,例如包括调蓄池、调蓄箱涵、深隧或浅隧等。
所述第六水利开关选自阀门(球阀、闸阀、刀闸阀、蝶阀、升降式橡胶板截流止回阀等)、闸门(上开式闸门、下开式闸门等)、堰门(上开式堰门、下开式堰门、旋转式堰门等)、拍门(截流拍门等)中的一种。
所述第六水利开关可以实现最大限流功能,即保证通过所述第六水利开关的流量不会超过设定的流量值。
实施例3
如图7-图10所示的一种排水系统,所述排水系统包括实施例1所述的排水系统外,还包括在线处理设施41;
如图7所示,所述在线处理设施41设置在出水管上;当所述在线处理设施设置在出水管管路上;水体流经出水管从在线处理设施的入口端流入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端。
如图8-图9所示,所述在线处理设施41设置在从出水管管路分出且终端并入出水管管路的支路上;当所述在线处理设施设置在从出水管管路分出且终端并入出水管管路的支路上时,在出水管管路上且在支路分出和并入的位置之间设置第七水利开关42。所述第七水利开关与控制单元信号连接,控制单元根据接收的信号控制第七水利开关的开度;
如图10所示,所述在线处理设施41设置在从出水管管路分出且终端连通自然水体的支路上;当所述在线处理设施设置在从出水管管路分出且终端连通自然水体的支路上时,在出水管管路上且在支路分出位置的下游端设置第七水利开关42。所述第七水利开关与控制单元信号连接,控制单元根据接收的信号控制第七水利开关的开度;当所述在线处理设施设置在出水管支路上时,通过调节第七水利开关的开度调整水体的流向;当第七水利开关处于开启状态时,部分水体流经出水管直接排放至通往自然水体的管路中,部分水体流经设置在出水管旁的支路由在线处理设施的入口端进入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端或直接排放至通往自然水体的管路;当第七水利开关处于截流状态时,全部水体流经支路由在线处理设施的入口端进入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端或直接排放至通往自然水体的管路。
所述在线处理设施在系统中的数量和排布没有具体的限定,可以是串联或并联的多个在线处理设施;其具体排布方式可以根据使用该系统的区域面积进行合理的排布。所述在线处 理设施可以是现有技术已知的在线处理设施,例如包括生物滤池、在线处理池、絮凝池、斜板沉淀池、沉砂池或人工湿地等。
所述第七水利开关选自阀门(球阀、闸阀、刀闸阀、蝶阀、升降式橡胶板截流止回阀等)、闸门(上开式闸门、下开式闸门等)、堰门(上开式堰门、下开式堰门、旋转式堰门等)、拍门(截流拍门等)中的一种。
所述第七水利开关可以实现最大限流功能,即保证通过所述第七水利开关的流量不会超过设定的流量值。
实施例4
如图11-图12所示的一种排水系统,所述排水系统包括实施例2所述的排水系统外,还包括一体化处理设施51;所述一体化处理设施51与调蓄设施31的出口端相连,所述一体化处理设施51可以处理存储在调蓄设施31中的水体。
所述一体化处理设施在系统中的数量和排布没有具体的限定,可以是串联或并联的多个一体化处理设施;其具体排布方式可以根据使用该系统的区域面积进行合理的排布;所述一体化处理设施可以是现有技术已知的一体化处理设施,例如包括一体化污水处理站等。
实施例5
一种水位法控制的排水控制方法,所述排水控制方法是基于实施例1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测水体液位的装置且设置在分流井井体内,根据分流井对应收水区域内地势最低点在发生积水风险时的高度在该控制系统的控制单元中设定分流井的警戒水位H2;所述方法包括如下步骤:
1a)水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H;
2a)当分流井井体内水体液位高度H<警戒水位H2时,第一水利开关处于开启状态,第四水利开关处于截流状态;水体通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中;
3a)当分流井井体内水体液位高度H≥警戒水位H2时,第四水利开关处于开启状态;水体通过第二出水口流经第四水利开关排向与自然水体相连的管路中。
步骤3a)中,基于整个排水管网体系的运行控制所述第一水利开关的开启或关闭,即所述第一水利开关可以处于开启状态,也可以处于关闭状态,具体选择是需要所述排水系统与 整个管网体系相配合,从而达到最合理的排水效果。若开启第一水利开关时,部分水体还可以通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中。
所述监测水体液位的装置为液位传感器、液位计、液位开关等。
实施例6
一种水质法控制的排水控制方法,所述排水控制方法是基于实施例1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测水体水质的装置且设置在分流井井体内,根据排放到的自然水体的环境容量和进入分流井的水体水质在该控制系统的控制单元中设定污染物浓度标准值C1;所述方法包括如下步骤:
1b)水体从入水口进入分流井,通过监测水体水质的装置实时监测井内水体水质C;
2b)当井内水体水质C≥污染物浓度标准值C1时,第一水利开关处于开启状态,第四水利开关处于截流状态;水体通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中;
3b)当井内水体水质C<污染物浓度标准值C1时,第四水利开关处于开启状态;水体通过第二出水口流经第四水利开关排向与自然水体相连的管路中。
步骤3b)中,基于整个排水管网体系的运行控制所述第一水利开关的开启或关闭,即所述第一水利开关可以处于开启状态,也可以处于关闭状态,具体选择是需要所述排水系统与整个管网体系相配合,从而达到最合理的排水效果。若开启第一水利开关时,部分水体还可以通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中。
所述监测水体水质的装置为水质检测器、在线COD监测仪、在线氨氮监测仪、在线TSS监测仪、在线BOD监测仪、在线NH 3-N监测仪、在线TP监测仪、在线TN监测仪、电极、电导率仪等,其监测的是分流井井体内水体中污染物的浓度,所述污染物包括TSS、COD、BOD、NH 3-N、TN或TP中的一种或几种。所述水质检测器可以是采用电极法、UV光学法、光学散射法等实现对水体水质的检测。
实施例7
一种水位-水质法控制的排水控制方法,所述排水控制方法是基于实施例1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测水体液位的装置和监测水体水质的装置且均设置在分流井井体内,根据分流井对应收水区域内地势最低点在发生积水风险时的高度在该控制系统的控制单元中设定分流井的警戒水位H2,根据排放到的自然水体的环境容量和进入分流井的水体水质在该控制系统的控制单元中设定污染物浓度标准值 C1;所述方法包括如下步骤:
1c)水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H,通过监测水体水质的装置实时监测井内水体水质C;
2c)当井内水体水质C≥污染物浓度标准值C1且分流井井体内水体液位高度H<警戒水位H2时,第一水利开关处于开启状态,第四水利开关处于截流状态;水体通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中;
3c)当井内水体水质C<污染物浓度标准值C1且分流井井体内水体液位高度H<警戒水位H2时,第四水利开关处于开启状态,第一水利开关处于关闭状态;水体通过第二出水口流经第四水利开关排向与自然水体相连的管路中;
4c)当分流井井体内水体液位高度H≥警戒水位H2时,第四水利开关处于开启状态;此时,还继续监测井内水体水质C;
当井内水体水质C≥污染物浓度标准值C1时,第一水利开关处于开启状态;部分水体还可以通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中;当井内水体水质C<污染物浓度标准值C1时,第一水利开关处于关闭状态。
所述监测水体液位的装置为液位传感器、液位计、液位开关等。
所述监测水体水质的装置为水质检测器、在线COD监测仪、在线氨氮监测仪、在线TSS监测仪、在线BOD监测仪、在线NH 3-N监测仪、在线TP监测仪、在线TN监测仪、电极、电导率仪等,其监测的是分流井井体内水体中污染物的浓度,所述污染物包括TSS、COD、BOD、NH 3-N、TN或TP中的一种或几种。所述水质检测器可以是采用电极法、UV光学法、光学散射法等实现对水体水质的检测。
实施例8
一种总量法控制的排水控制方法,所述排水控制方法是基于实施例1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测水体总量的装置且设置在分流井井体中的第一水利开关上,根据分流井对应收水区域内所需要收集的初雨毫米数在该控制系统的控制单元中设定分流井需要截流的初雨总量Q1;所述方法包括如下步骤:
1d)雨天时,水体从入水口进入分流井,通过监测水体总量的装置实时监测通过第一水利开关的水体总量Q;
2d)当通过第一水利开关的水体总量Q<Q1时,第一水利开关处于开启状态,第四水利开关处于截流状态;水体通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中;
3d)当通过第一水利开关的水体总量Q≥Q1时,第四水利开关处于开启状态;水体通过第二出水口流经第四水利开关排向与自然水体相连的管路中;
步骤3d)中,基于整个排水管网体系的运行控制所述第一水利开关的开启或关闭,即所述第一水利开关可以处于开启状态,也可以处于关闭状态,具体选择是需要所述排水系统与整个管网体系相配合,从而达到最合理的排水效果。若开启第一水利开关时,部分水体还可以通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中;
4d)晴天时,水体从入水口进入分流井,第一水利开关处于开启状态,第四水利开关处于截流状态;水体通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中。
所述监测水体总量的装置选自带有计量功能的电动启闭机。
实施例9
一种总量-水位法控制的排水控制方法,所述排水控制方法是基于实施例1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测水体总量的装置且设置在分流井井体中的第一水利开关上,所述控制系统中的监测装置还包括监测水体液位的装置且设置在分流井井体内,根据分流井对应收水区域内所需要收集的初雨总量在该控制系统的控制单元中设定分流井需要截流的标准初雨总量Q1,根据分流井对应收水区域内地势最低点在发生积水风险时的高度在该控制系统的控制单元中设定分流井的警戒水位H2;所述方法包括如下步骤:
1e)雨天时,水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H,通过监测水体总量的装置实时监测通过第一水利开关的水体总量Q;
2e)当通过第一水利开关的水体总量Q<标准初雨总量Q1且分流井井体内水体液位高度H<警戒水位H2时,第一水利开关处于开启状态,第四水利开关处于截流状态;水体通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中;
3e)当通过第一水利开关的水体总量Q≥标准初雨总量Q1且分流井井体内水体液位高度H<警戒水位H2时,第四水利开关处于开启状态,第一水利开关处于关闭状态;水体通过第二出水口流经第四水利开关排向与自然水体相连的管路中;
4e)当分流井井体内水体液位高度H≥警戒水位H2时,第四水利开关处于开启状态;此时,继续监测通过第一水利开关的水体总量Q;
当通过第一水利开关的水体总量Q<标准初雨总量Q1时,第一水利开关处于开启状态;水体还可以通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中;当通过第一水 利开关的水体总量Q≥标准初雨总量Q1时,第一水利开关处于关闭状态;
5e)晴天时,水体从入水口进入分流井,第一水利开关处于开启状态,第四水利开关处于截流状态;水体通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中。
所述监测水体液位的装置为液位传感器、液位计、液位开关等。
所述监测水体总量的装置选自带有计量功能的电动启闭机。
实施例10
一种雨量法控制的排水控制方法,所述排水控制方法是基于实施例1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测雨量的装置且设置在分流井井体外,根据分流井对应收水区域内所需要收集的初雨毫米数在该控制系统的控制单元中设定分流井需要截流的标准初雨雨量L1;所述方法包括如下步骤:
1f)通过监测雨量的装置实时监测初雨雨量L;
2f)当L=0时,此时为晴天,水体从入水口进入分流井,第一水利开关处于开启状态,第四水利开关处于截流状态;水体通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中;
3f)当0<初雨雨量L<标准初雨雨量L1时,此时为雨天,水体从入水口进入分流井,第一水利开关处于开启状态,第四水利开关处于截流状态;水体通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中;
4f)当初雨雨量L≥标准初雨雨量L1时,第四水利开关处于开启状态;水体通过第二出水口流经第四水利开关排向与自然水体相连的管路中;
步骤4f)中,基于整个排水管网体系的运行控制所述第一水利开关的开启或关闭,即所述第一水利开关可以处于开启状态,也可以处于关闭状态,具体选择是需要所述排水系统与整个管网体系相配合,从而达到最合理的排水效果。若开启第一水利开关时,部分水体还可以通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中。
所述监测雨量的装置为雨量计。
实施例11
一种雨量-水位法控制的排水控制方法,所述排水控制方法是基于实施例1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测雨量的装置且设置在分流井井体外,所述控制系统中的监测装置还包括监测水体液位的装置且设置在分流井井体 内,根据分流井对应收水区域内所需要收集的初雨毫米数在该控制系统的控制单元中设定分流井需要截流的标准初雨雨量L1;根据分流井对应收水区域内地势最低点在发生积水风险时的高度在该控制系统的控制单元中设定分流井的警戒水位H2;所述方法包括如下步骤:
1g)通过监测雨量的装置实时监测初雨雨量L;当L=0时,此时为晴天,水体从入水口进入分流井,第一水利开关处于开启状态,第四水利开关处于截流状态;水体通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中;
2g)当L>0时,此时为雨天,水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H;
3g)当0<初雨雨量L<标准初雨雨量L1且分流井井体内水体液位高度H<警戒水位H2时,第一水利开关处于开启状态,第四水利开关处于截流状态;水体通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中;
4g)当初雨雨量L≥标准初雨雨量L1且分流井井体内水体液位高度H<警戒水位H2时,第四水利开关处于开启状态,第一水利开关处于关闭状态;水体通过第二出水口流经第四水利开关排向与自然水体相连的管路中;
5g)当分流井井体内水体液位高度H≥警戒水位H2时,第四水利开关处于开启状态;水体通过第二出水口流经第四水利开关排向与自然水体相连的管路中;
此时,还需要监测初雨雨量L;当0<初雨雨量L<标准初雨雨量L1时,第一水利开关处于开启状态;水体还可以通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中;当初雨雨量L≥标准初雨雨量L1时,第一水利开关处于关闭状态。
所述监测水体液位的装置为液位传感器、液位计、液位开关等。
所述监测雨量的装置为雨量计。
实施例12
一种时间法控制的排水控制方法,所述排水控制方法是基于实施例1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测时间的装置且设置在分流井井体内或分流井井体外,根据初期雨水的降雨时间和分流井对应收水区域内初期雨水全部径流到分流井所需要的时间在该控制系统的控制单元中设定标准时间T1;所述方法包括如下步骤:
1h)晴天时,水体从入水口进入分流井,第一水利开关处于开启状态,第四水利开关处于截流状态;水体通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中;
2h)雨天时,水体从入水口进入分流井,通过监测时间的装置实时监测降雨时间T;
3h)当降雨时间T<标准时间T1时,第一水利开关处于开启状态,第四水利开关处于截流状态;水体通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中;
4h)当降雨时间T≥标准时间T1时,第四水利开关处于开启状态;水体通过第二出水口流经第四水利开关排向与自然水体相连的管路中;
步骤4h)中,基于整个排水管网体系的运行控制所述第一水利开关的开启或关闭,即所述第一水利开关可以处于开启状态,也可以处于关闭状态,具体选择是需要所述排水系统与整个管网体系相配合,从而达到最合理的排水效果。若开启第一水利开关时,部分水体还可以通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中。
所述监测时间的装置为计时器。
实施例13
一种时间-水位法控制的排水控制方法,所述排水控制方法是基于实施例1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测时间的装置且设置在分流井井体内或分流井井体外,所述控制系统中的监测装置还包括监测水体液位的装置且设置在分流井井体内,根据初期雨水的降雨时间和分流井对应收水区域内初期雨水全部径流到分流井所需要的时间在该控制系统的控制单元中设定标准时间T1;根据分流井对应收水面积区域内地势最低点在发生积水风险时的高度在该控制系统的控制单元中设定分流井的警戒水位H2;所述方法包括如下步骤:
1i)晴天时,水体从入水口进入分流井,第一水利开关处于开启状态,第四水利开关处于截流状态;水体通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中;
2i)雨天时,水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H,通过监测时间的装置实时监测降雨时间T;
3i)当降雨时间T<标准时间T1且分流井井体内水体液位高度H<警戒水位H2时,第一水利开关处于开启状态,第四水利开关处于截流状态;水体通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中;
4i)当降雨时间T≥标准时间T1且分流井井体内水体液位高度H<警戒水位H2时,第四水利开关处于开启状态,第一水利开关处于关闭状态;水体通过第二出水口流经第四水利开关排向与自然水体相连的管路中;
5i)当分流井井体内水体液位高度H≥警戒水位H2时,第四水利开关处于开启状态;水体 通过第二出水口流经第四水利开关排向与自然水体相连的管路中;
此时,继续监测降雨时间T;当降雨时间T<标准时间T1时,第一水利开关处于开启状态;水体还可以通过第一出水口流经第一水利开关排向与污水处理厂相连的管路中;当降雨时间T≥标准时间T1时,第一水利开关处于关闭状态。
所述监测水体液位的装置为液位传感器、液位计、液位开关等。
所述监测时间的装置为计时器。
实施例14
当所述排水系统包括调蓄设施时,即对应实施例2的排水系统时,分别采用上述实施例5-13的排水控制方法,且进一步还包括如下步骤:
当第四水利开关处于开启状态且所述调蓄设施设置在出水管管路上时,水体流经出水管从调蓄设施的入口端流入调蓄设施进行存储,当调蓄设施的容量达到容纳上限时,水体从调蓄设施的出口端流入出水管下游端。
当第四水利开关处于开启状态且所述调蓄设施设置在出水管支路上时,通过调节第六水利开关的开度调整水体的流向;当第六水利开关处于开启状态时,部分水体流经出水管直接排放至通往自然水体的管路,部分水体流经设置在出水管旁的支路进入调蓄设施暂时存储;当第六水利开关处于截流状态时,全部水体流经设置在出水管旁的支路进入调蓄设施暂时存储;当调蓄设施的容量达到容纳上限时,全部水体流经出水管直接排放至通往自然水体的管路。
实施例15
当所述排水系统包括调蓄设施和一体化处理设施时,即对应实施例4的排水系统时,分别采用上述实施例5-13的排水控制方法,且进一步还包括如下步骤:
当第四水利开关处于开启状态且所述调蓄设施设置在出水管管路上时,水体流经出水管从调蓄设施的入口端流入调蓄设施进行存储,当调蓄设施的容量达到容纳上限时,水体从调蓄设施的出口端流入出水管下游端;同时,存储在调蓄设施中的水体经一体化处理设施处理后直接排放至通往自然水体的管路。
当第四水利开关处于开启状态且所述调蓄设施设置在出水管支路上时,通过调节第六水利开关的开度调整水体的流向;当第六水利开关处于开启状态时,部分水体流经出水管直接排放至通往自然水体的管路,部分水体流经设置在出水管旁的支路进入调蓄设施暂时存储; 当第六水利开关处于截流状态时,全部水体流经设置在出水管旁的支路进入调蓄设施暂时存储;当调蓄设施的容量达到容纳上限时,全部水体流经出水管直接排放至通往自然水体的管路;同时,存储在调蓄设施中的水体经一体化处理设施处理后直接排放至通往自然水体的管路。
实施例16
当所述排水系统包括在线处理设施时,即对应实施例3的排水系统时,采用上述实施例5-13的排水控制方法,且进一步还包括如下步骤:
当第四水利开关处于开启状态且所述在线处理设施设置在出水管管路上时;水体流经出水管从在线处理设施的入口端流入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端。
当第四水利开关处于开启状态且所述在线处理设施设置在出水管支路上时,通过调节第七水利开关的开度调整水体的流向;当第七水利开关处于开启状态时,部分水体流经出水管直接排放至通往自然水体的管路中,部分水体流经设置在出水管旁的支路由在线处理设施的入口端进入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端或直接排放至通往自然水体的管路;当第七水利开关处于截流状态时,全部水体流经设置在出水管旁的支路由在线处理设施的入口端进入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端或直接排放至通往自然水体的管路。
上述实施例5-16中,所述第一水利开关、第六水利开关和第七水利开关可以实现最大限流功能,其处于开启状态是指通过所述水利开关的流量值小于等于设定的最大流量值,这可以通过控制系统中的控制单元调节所述水利开关的开度来实现。
上述实施例5-16中,所述第四水利开关处于开启状态是指水体可以通过所述水利开关流向自然水体。
上述实施例5-16中,所述第四水利开关、第六水利开关和第七水利开关处于截流状态是指调节所述水利开关的开度,保证水体截流在所述水利开关的上游端,不能通过所述水利开关流向自然水体。
上述实施例5-16中,所述第一水利开关处于关闭状态是指通过所述水利开关的水体的流量值为零。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本 发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种排水系统,其特征在于,所述排水系统包括分流井;所述分流井包括分流井井体和设置于所述分流井井体中的三个开口,分别是入水口、第一出水口和第二出水口;
    所述排水系统还包括第一水利开关和第四水利开关;其中,在靠近所述第一出水口处设置第一水利开关,用于控制通过第一出水口的过水量;在靠近所述第二出水口处设置第四水利开关,用于控制通过第二出水口的过水量;
    所述排水系统还包括控制系统,所述控制系统包括监测装置和与其信号连接的控制单元;所述控制单元与第一水利开关和第四水利开关信号连接;所述监测装置用于监测信号并将监测的信号输送给控制单元,控制单元根据接收的信号控制第一水利开关和第四水利开关的开度。
    优选地,所述排水系统还包括截污管和出水管;所述第一出水口通过截污管与通往污水处理厂的管路相连;所述第二出水口通过出水管与通往自然水体的管路相连。
    优选地,所述监测装置包括监测水体液位的装置(例如可以是液位传感器、液位计、液位开关等),监测水体水质的装置(例如可以是水质检测器、在线COD监测仪、在线TSS监测仪、在线BOD监测仪、在线TN监测仪、在线TP监测仪、在线NH 3-N监测仪、在线氨氮监测仪、电极、电导率仪等),监测水体总量的装置(例如可以是带有计量功能的电动启闭机等),监测雨量的装置(如雨量计等),监测时间的装置(如计时器等)中的至少一种。
    优选地,所述监测装置根据类型需求可设置在分流井井体内或分流井井体外。例如,监测水体液位的装置和监测水体水质的装置设置在分流井井体内,监测雨量的装置设置在分流井井体外,监测水体总量的装置设置在分流井井体中的水利开关上,监测时间的装置设置在分流井井体内或分流井井体外。
    优选地,所述排水系统还包括调蓄设施;所述调蓄设施设置在出水管管路上或设置在从出水管管路分出的支路上。
    优选地,当所述调蓄设施设置在出水管支路上时,在出水管管路上且在出水管支路分出位置的下游端设置第六水利开关。
    优选地,所述第六水利开关与控制单元信号连接,控制单元根据接收的信号控制第六水利开关的开度。
    优选地,所述排水系统还包括在线处理设施;所述在线处理设施设置在出水管上或设置在从出水管管路分出且终端并入出水管管路的支路上;或设置在从出水管管路分出且终端连 通自然水体的支路上。
    优选地,当所述在线处理设施设置在从出水管管路分出且终端并入出水管管路的支路上时,在出水管管路上且在支路分出和并入的位置之间设置第七水利开关;或者,当所述在线处理设施设置在从出水管管路分出且终端连通自然水体的支路上时,在出水管管路上且在支路分出位置的下游端设置第七水利开关。所述第七水利开关与控制单元信号连接,控制单元根据接收的信号控制第七水利开关的开度。
    优选地,所述排水系统包括调蓄设施时,其还可以包括一体化处理设施;所述一体化处理设施与调蓄设施的出口端相连,所述一体化处理设施可以处理存储在调蓄设施中的水体。
    优选地,所述第一水利开关和第四水利开关分别独立地选自阀门(球阀、闸阀、刀闸阀、蝶阀、升降式橡胶板截流止回阀等)、闸门(上开式闸门、下开式闸门等)、堰门(上开式堰门、下开式堰门、旋转式堰门等)、拍门(截流拍门等)中的一种。
    优选地,所述第一水利开关可以实现最大限流功能,即保证通过所述第一水利开关的流量不会超过设定的流量值。
    优选地,所述第六水利开关和第七水利开关分别独立地选自阀门(球阀、闸阀、刀闸阀、蝶阀、升降式橡胶板截流止回阀等)、闸门(上开式闸门、下开式闸门等)、堰门(上开式堰门、下开式堰门、旋转式堰门等)、拍门(截流拍门等)中的一种。
    优选地,所述第六水利开关可以实现最大限流功能,即保证通过所述第六水利开关的流量不会超过设定的流量值。
    优选地,所述第七水利开关可以实现最大限流功能,即保证通过所述第七水利开关的流量不会超过设定的流量值。
    优选地,所述入水口、第一出水口和第二出水口的形状为圆形。
    优选地,所述入水口、第一出水口和第二出水口设置在分流井井体侧壁;或者,所述入水口和第二出水口设置在分流井井体侧壁,并在分流井井体底部开设沟槽,将第一出水口设置在沟槽中。
    优选地,所述分流井井体的形状为方形或圆形。
    优选地,所述调蓄设施可以是串联或并联的多个调蓄设施。
    优选地,所述调蓄设施包括调蓄池、调蓄箱涵、深隧或浅隧。
    优选地,所述在线处理设施可以是串联或并联的多个在线处理设施。
    优选地,所述在线处理设施包括生物滤池、在线处理池、絮凝池、斜板沉淀池、沉砂池或人工湿地。
    优选地,所述一体化处理设施包括一体化污水处理站。
    优选地,所述一体化处理设施可以是串联或并联的多个一体化处理设施。
  2. 一种水位法控制的排水控制方法,所述排水控制方法是基于权利要求1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测水体液位的装置且设置在分流井井体内,在该控制系统的控制单元中设定分流井的警戒水位H2;所述方法包括如下步骤:
    1a)水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H;
    2a)当H<H2时,第一水利开关处于开启状态,第四水利开关处于截流状态;
    3a)当H≥H2时,第四水利开关处于开启状态。
    优选地,根据分流井对应收水区域内地势最低点在发生积水风险时的高度在该控制系统的控制单元中设定分流井的警戒水位H2。
    优选地,所述监测水体液位的装置为液位传感器、液位计、液位开关等。
  3. 一种水质法控制的排水控制方法,所述排水控制方法是基于权利要求1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测水体水质的装置且设置在分流井井体内,在该控制系统的控制单元中设定污染物浓度标准值C1;所述方法包括如下步骤:
    1b)水体从入水口进入分流井,通过监测水体水质的装置实时监测井内水体水质C;
    2b)当C≥C1时,第一水利开关处于开启状态,第四水利开关处于截流状态;
    3b)当C<C1时,第四水利开关处于开启状态。
    优选地,根据排放到的自然水体的环境容量和进入分流井的水体水质在该控制系统的控制单元中设定污染物浓度标准值C1。
    优选地,所述监测水体水质的装置为水质检测器、在线COD监测仪、在线氨氮监测仪、在线TSS监测仪、在线BOD监测仪、在线NH 3-N监测仪、在线TP监测仪、在线TN监测仪、电极、电导率仪等,其监测的是分流井井体内水体中污染物的浓度,所述污染物包括TSS、COD、BOD、NH 3-N、TN或TP中的一种或几种。
    优选地,所述水质检测器可以是采用电极法、UV光学法、光学散射法等实现对水体水质的检测。
  4. 一种水位-水质法控制的排水控制方法,所述排水控制方法是基于权利要求1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测水体液位的装置 和监测水体水质的装置且均设置在分流井井体内,在该控制系统的控制单元中设定分流井的警戒水位H2和污染物浓度标准值C1;所述方法包括如下步骤:
    1c)水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H,通过监测水体水质的装置实时监测井内水体水质C;
    2c)当C≥C1且H<H2时,第一水利开关处于开启状态,第四水利开关处于截流状态;
    3c)当C<C1且H<H2时,第四水利开关处于开启状态,第一水利开关处于关闭状态;
    4c)当H≥H2时,第四水利开关处于开启状态。
    优选地,步骤4c)中,还包括如下步骤:
    4c-1)当C≥C1时,第一水利开关处于开启状态;
    4c-2)当C<C1时,第一水利开关处于关闭状态。
    优选地,根据分流井对应收水区域内地势最低点在发生积水风险时的高度在该控制系统的控制单元中设定分流井的警戒水位H2。
    优选地,所述监测水体液位的装置为液位传感器、液位计、液位开关等。
    优选地,根据排放到的自然水体的环境容量和进入分流井的水体水质在该控制系统的控制单元中设定污染物浓度标准值C1。
    优选地,所述监测水体水质的装置为水质检测器、在线COD监测仪、在线氨氮监测仪、在线TSS监测仪、在线BOD监测仪、在线NH 3-N监测仪、在线TP监测仪、在线TN监测仪、电极、电导率仪等,其监测的是分流井井体内水体中污染物的浓度,所述污染物包括TSS、COD、BOD、NH 3-N、TN或TP中的一种或几种。
    优选地,所述水质检测器可以是采用电极法、UV光学法、光学散射法等实现对水体水质的检测。
  5. 一种总量法控制的排水控制方法,所述排水控制方法是基于权利要求1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测水体总量的装置且设置在分流井井体中的第一水利开关上,在该控制系统的控制单元中设定分流井需要截流的初雨总量Q1;所述方法包括如下步骤:
    1d)雨天时,水体从入水口进入分流井,通过监测水体总量的装置实时监测通过第一水利开关的水体总量Q;
    2d)当Q<Q1时,第一水利开关处于开启状态,第四水利开关处于截流状态;
    3d)当Q≥Q1时,第四水利开关处于开启状态。
    优选地,所述方法还包括如下步骤:
    4d)晴天时,水体从入水口进入分流井,第一水利开关处于开启状态,第四水利开关处于截流状态。
    优选地,根据分流井对应收水区域内所需要收集的初雨总量在该控制系统的控制单元中设定分流井需要截流的标准初雨总量Q1。
    优选地,所述监测水体总量的装置选自带有计量功能的电动启闭机。
  6. 一种总量-水位法控制的排水控制方法,所述排水控制方法是基于权利要求1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测水体总量的装置且设置在分流井井体中的第一水利开关上,所述控制系统中的监测装置还包括监测水体液位的装置且设置在分流井井体内,在该控制系统的控制单元中设定分流井需要截流的标准初雨总量Q1和分流井的警戒水位H2;所述方法包括如下步骤:
    1e)雨天时,水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H,通过监测水体总量的装置实时监测通过第一水利开关的水体总量Q;
    2e)当Q<Q1且H<H2时,第一水利开关处于开启状态,第四水利开关处于截流状态;
    3e)当Q≥Q1且H<H2时,第四水利开关处于开启状态,第一水利开关处于关闭状态;
    4e)当H≥H2时,第四水利开关处于开启状态。
    优选地,步骤4e)中,还包括如下步骤:
    4e-1)当Q<Q1时,第一水利开关处于开启状态;
    4e-2)当Q≥Q1时,第一水利开关处于关闭状态。
    优选地,所述方法还包括如下步骤:
    5e)晴天时,水体从入水口进入分流井,第一水利开关处于开启状态,第四水利开关处于截流状态。
    优选地,根据分流井对应收水区域内地势最低点在发生积水风险时的高度在该控制系统的控制单元中设定分流井的警戒水位H2。
    优选地,所述监测水体液位的装置为液位传感器、液位计、液位开关等。
    优选地,根据分流井对应收水区域内所需要收集的初雨总量在该控制系统的控制单元中设定分流井需要截流的标准初雨总量Q1。
    优选地,所述监测水体总量的装置选自带有计量功能的电动启闭机。
  7. 一种雨量法控制的排水控制方法,所述排水控制方法是基于权利要求1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测雨量的装置且设置在分流井井体外,在该控制系统的控制单元中设定分流井需要截流的标准初雨雨量L1;所述方 法包括如下步骤:
    1f)通过监测雨量的装置实时监测初雨雨量L;
    2f)当L=0时,此时为晴天,水体从入水口进入分流井,第一水利开关处于开启状态,第四水利开关处于截流状态;
    3f)当0<L<L1时,此时为雨天,水体从入水口进入分流井,第一水利开关处于开启状态,第四水利开关处于截流状态;
    4f)当L≥L1时,第四水利开关处于开启状态。
    优选地,根据分流井对应收水区域内所需要收集的初雨毫米数在该控制系统的控制单元中设定分流井需要截流的标准初雨雨量L1。
    优选地,所述监测雨量的装置为雨量计。
  8. 一种雨量-水位法控制的排水控制方法,所述排水控制方法是基于权利要求1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测雨量的装置且设置在分流井井体外,所述控制系统中监测装置还包括监测水体液位的装置且设置在分流井井体内,在该控制系统的控制单元中设定分流井需要截流的标准初雨雨量L1和分流井的警戒水位H2;所述方法包括如下步骤:
    1g)通过监测雨量的装置实时监测初雨雨量L;当L=0时,此时为晴天,水体从入水口进入分流井,第一水利开关处于开启状态,第四水利开关处于截流状态;
    2g)当L>0时,此时为雨天时,水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H;
    3g)当0<L<L1且H<H2时,第一水利开关处于开启状态,第四水利开关处于截流状态;
    4g)当L≥L1且H<H2时,第四水利开关处于开启状态,第一水利开关处于关闭状态;
    5g)当H≥H2时,第四水利开关处于开启状态。
    优选地,步骤5g)中,还包括如下步骤:
    5g-1)当L<L1时,第一水利开关处于开启状态;
    5g-2)当L≥L1时,第一水利开关处于关闭状态。
    优选地,根据分流井对应收水区域内地势最低点在发生积水风险时的高度在该控制系统的控制单元中设定分流井的警戒水位H2。
    优选地,所述监测水体液位的装置为液位传感器、液位计、液位开关等。
    优选地,根据分流井对应收水区域内所需要收集的初雨毫米数在该控制系统的控制单元中设定分流井需要截流的标准初雨雨量L1。
    优选地,所述监测雨量的装置为雨量计。
  9. 一种时间法控制的排水控制方法,所述排水控制方法是基于权利要求1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测时间的装置且设置在分流井井体内或设置在分流井井体外,在该控制系统的控制单元中设定标准时间T1;所述方法包括如下步骤:
    1h)晴天时,水体从入水口进入分流井,第一水利开关处于开启状态,第四水利开关处于截流状态;
    2h)雨天时,水体从入水口进入分流井,通过监测时间的装置实时监测降雨时间T;
    3h)当T<T1时,第一水利开关处于开启状态,第四水利开关处于截流状态;
    4h)当T≥T1时,第四水利开关处于开启状态。
    优选地,根据初期雨水的降雨时间和分流井对应收水区域内初期雨水全部径流到分流井所需要的时间在该控制系统的控制单元中设定标准时间T1。
    优选地,所述监测时间的装置为计时器。
  10. 一种时间-水位法控制的排水控制方法,所述排水控制方法是基于权利要求1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的监测装置包括监测时间的装置且设置在分流井井体内或设置在分流井井体外,所述控制系统中的监测装置还包括监测水体液位的装置且设置在分流井井体内,在该控制系统的控制单元中设定标准时间T1和分流井的警戒水位H2;所述方法包括如下步骤:
    1i)晴天时,水体从入水口进入分流井,第一水利开关处于开启状态,第四水利开关处于截流状态;
    2i)雨天时,水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H,通过监测时间的装置实时监测降雨时间T;
    3i)当T<T1且H<H2时,第一水利开关处于开启状态,第四水利开关处于截流状态;
    4i)当T≥T1且H<H2时,第四水利开关处于开启状态,第一水利开关处于关闭状态;
    5i)当H≥H2时,第四水利开关处于开启状态。
    优选地,步骤5i)中,还包括如下步骤:
    5i-1)当T<T1时,第一水利开关处于开启状态;
    5i-2)当T≥T1时,第一水利开关处于关闭状态。
    优选地,根据分流井对应收水区域内地势最低点在发生积水风险时的高度在该控制系统的控制单元中设定分流井的警戒水位H2。
    优选地,所述监测水体液位的装置为液位传感器、液位计、液位开关等。
    优选地,根据初期雨水的降雨时间和分流井对应收水区域内初期雨水全部径流到分流井所需要的时间在该控制系统的控制单元中设定标准时间T1。
    优选地,所述监测时间的装置为计时器。
  11. 权利要求2-10中任一项所述的方法,其特征在于,所述排水系统包括调蓄设施时,所述方法还包括如下步骤:
    当第四水利开关处于开启状态且所述调蓄设施设置在出水管管路上时,水体流经出水管从调蓄设施的入口端流入调蓄设施进行存储,当调蓄设施的容量达到容纳上限时,水体从调蓄设施的出口端流入出水管下游端。
    当第四水利开关处于开启状态且所述调蓄设施设置在出水管支路上时,通过调节第六水利开关的开度调整水体的流向;当第六水利开关处于开启状态时,部分水体流经出水管直接排放至通往自然水体的管路,部分水体流经设置在出水管旁的支路进入调蓄设施暂时存储;当第六水利开关处于截流状态时,全部水体流经设置在出水管旁的支路进入调蓄设施暂时存储;当调蓄设施的容量达到容纳上限时,全部水体流经出水管直接排放至通往自然水体的管路。
    优选地,所述排水系统包括调蓄设施和一体化处理设施时,所述方法包括如下步骤:
    当第四水利开关处于开启状态且所述调蓄设施设置在出水管管路上时,水体流经出水管从调蓄设施的入口端流入调蓄设施进行存储,当调蓄设施的容量达到容纳上限时,水体从调蓄设施的出口端流入出水管下游端;同时,存储在调蓄设施中的水体经一体化处理设施处理后直接排放至通往自然水体的管路。
    当第四水利开关处于开启状态且所述调蓄设施设置在出水管支路上时,通过调节第六水利开关的开度调整水体的流向;当第六水利开关处于开启状态时,部分水体流经出水管直接排放至通往自然水体的管路,部分水体流经设置在出水管旁的支路进入调蓄设施暂时存储;当第六水利开关处于截流状态时,全部水体流经设置在出水管旁的支路进入调蓄设施暂时存储;当调蓄设施的容量达到容纳上限时,全部水体流经出水管直接排放至通往自然水体的管路;同时,存储在调蓄设施中的水体经一体化处理设施处理后直接排放至通往自然水体的管路。
    优选地,所述排水系统包括在线处理设施时,所述方法还包括如下步骤:
    当第四水利开关处于开启状态且所述在线处理设施设置在出水管管路上时;水体流经出水管从在线处理设施的入口端流入在线处理设施,经处理后,从在线处理设施的出口端流入 出水管下游端。
    当第四水利开关处于开启状态且所述在线处理设施设置在出水管支路上时,通过调节第七水利开关的开度调整水体的流向;当第七水利开关处于开启状态时,部分水体流经出水管直接排放至通往自然水体的管路中,部分水体流经设置在出水管旁的支路由在线处理设施的入口端进入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端或直接排放至通往自然水体的管路;当第七水利开关处于截流状态时,全部水体流经设置在出水管旁的支路由在线处理设施的入口端进入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端或直接排放至通往自然水体的管路。
PCT/CN2017/116929 2017-09-30 2017-12-18 一种排水系统及排水控制方法 WO2019061870A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710917078.3 2017-09-30
CN201710917078.3A CN107605006B (zh) 2017-09-30 2017-09-30 一种排水系统及排水控制方法

Publications (1)

Publication Number Publication Date
WO2019061870A1 true WO2019061870A1 (zh) 2019-04-04

Family

ID=61068159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116929 WO2019061870A1 (zh) 2017-09-30 2017-12-18 一种排水系统及排水控制方法

Country Status (2)

Country Link
CN (2) CN117051934A (zh)
WO (1) WO2019061870A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110952647A (zh) * 2019-12-26 2020-04-03 江苏迈科道环境科技有限公司 一种污水流量可控及拦渣防倒灌一体化智能截流井
CN112482536A (zh) * 2020-11-05 2021-03-12 上海市政工程设计研究总院(集团)有限公司 一种具有自清洁功能的高效节地调蓄池
CN115571971A (zh) * 2022-09-27 2023-01-06 安徽中源锦天环境科技股份有限公司 一种组合式污水处理系统
CN116216817A (zh) * 2023-04-24 2023-06-06 悉地(苏州)勘察设计顾问有限公司 一种污水互联互通和调蓄系统
CN116905634A (zh) * 2023-07-28 2023-10-20 上海勘测设计研究院有限公司 一种排水管用闸门控制系统
CN117035234A (zh) * 2023-08-10 2023-11-10 南京新高智联信息技术有限公司 一种基于降雨预报的区域积水深度监测方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108385809B (zh) * 2018-03-21 2019-05-24 扬州蓝翔机电工程有限公司 一种智能化截污系统的控制方法
CN109339188A (zh) * 2018-08-28 2019-02-15 武汉圣禹排水系统有限公司 带有气动分流井的分流系统及控制方法
CN109339187A (zh) * 2018-08-28 2019-02-15 武汉圣禹排水系统有限公司 一种带有气动分流井的分流系统及控制方法
CN109356257A (zh) * 2018-10-30 2019-02-19 武汉圣禹排水系统有限公司 一种分流井的有效排水方法及排放系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2992776B2 (ja) * 1991-06-11 1999-12-20 株式会社日立製作所 地下排水施設及びその運転方法
JP2003306960A (ja) * 2002-04-15 2003-10-31 Taisei Corp 雨水分離装置
CN107190842A (zh) * 2017-05-27 2017-09-22 武汉圣禹排水系统有限公司 一种用于雨水精确清污分流的控制方法
CN107587581A (zh) * 2017-10-30 2018-01-16 武汉圣禹排水系统有限公司 一种带有雨水处理系统的排水系统及排水控制方法
CN107620367A (zh) * 2017-09-30 2018-01-23 武汉圣禹排水系统有限公司 一种带有截污管和调蓄设施的排水系统及排水控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2789320B2 (ja) * 1995-11-27 1998-08-20 株式会社日立製作所 排水システム
JP2005248484A (ja) * 2004-03-02 2005-09-15 Jfe Engineering Kk 雨水・下水処理水の送排水システム
CN103850327B (zh) * 2014-02-21 2015-12-09 武汉圣禹排水系统有限公司 合流制管网截流井系统及其控制方法
CN105507415B (zh) * 2015-12-31 2017-12-05 武汉美华禹水环境有限公司 一种带有升降式截流橡胶瓣止回阀的雨水弃流井
CN105780906B (zh) * 2016-04-19 2018-11-30 武汉圣禹排水系统有限公司 一种分片弃流截污排放系统
CN107060036A (zh) * 2017-04-05 2017-08-18 上海勘测设计研究院有限公司 一种用于排放雨水和污水的排水系统及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2992776B2 (ja) * 1991-06-11 1999-12-20 株式会社日立製作所 地下排水施設及びその運転方法
JP2003306960A (ja) * 2002-04-15 2003-10-31 Taisei Corp 雨水分離装置
CN107190842A (zh) * 2017-05-27 2017-09-22 武汉圣禹排水系统有限公司 一种用于雨水精确清污分流的控制方法
CN107620367A (zh) * 2017-09-30 2018-01-23 武汉圣禹排水系统有限公司 一种带有截污管和调蓄设施的排水系统及排水控制方法
CN107587581A (zh) * 2017-10-30 2018-01-16 武汉圣禹排水系统有限公司 一种带有雨水处理系统的排水系统及排水控制方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110952647A (zh) * 2019-12-26 2020-04-03 江苏迈科道环境科技有限公司 一种污水流量可控及拦渣防倒灌一体化智能截流井
CN112482536A (zh) * 2020-11-05 2021-03-12 上海市政工程设计研究总院(集团)有限公司 一种具有自清洁功能的高效节地调蓄池
CN112482536B (zh) * 2020-11-05 2024-01-26 上海市政工程设计研究总院(集团)有限公司 一种具有自清洁功能的高效节地调蓄池
CN115571971A (zh) * 2022-09-27 2023-01-06 安徽中源锦天环境科技股份有限公司 一种组合式污水处理系统
CN116216817A (zh) * 2023-04-24 2023-06-06 悉地(苏州)勘察设计顾问有限公司 一种污水互联互通和调蓄系统
CN116905634A (zh) * 2023-07-28 2023-10-20 上海勘测设计研究院有限公司 一种排水管用闸门控制系统
CN117035234A (zh) * 2023-08-10 2023-11-10 南京新高智联信息技术有限公司 一种基于降雨预报的区域积水深度监测方法
CN117035234B (zh) * 2023-08-10 2024-05-14 南京新高智联信息技术有限公司 一种基于降雨预报的区域积水深度监测方法

Also Published As

Publication number Publication date
CN107605006A (zh) 2018-01-19
CN107605006B (zh) 2023-09-05
CN117051934A (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
WO2019061870A1 (zh) 一种排水系统及排水控制方法
WO2019061871A1 (zh) 一种带有调蓄设施的排水系统及排水控制方法
CN107747345B (zh) 一种用于合流制排水管网系统的面污染控制系统及其控制方法
CN107587580B (zh) 一种带液动下开式堰门和泵排的排水系统及排水控制方法
CN107842088A (zh) 一种带有调蓄设施和在线处理设施的排水系统及排水控制方法
CN207959445U (zh) 一种带有调蓄设施和在线处理设施的排水系统
CN107806150B (zh) 一种控制污水和初期雨水污染的完全分流制系统及其控制方法
CN107605005A (zh) 一种带水力止回堰门和泵排的排水系统及排水控制方法
CN107558593B (zh) 一种包括一进四出式分流井的排水系统及排水控制方法
CN207761004U (zh) 一种带有溢流堰的分流井及包括该分流井的排水系统
CN207436169U (zh) 一种控制污水和初期雨水污染的分流制排水管网系统
CN107587579B (zh) 带有截污管和雨水处理设施的排水系统及排水控制方法
WO2019085189A1 (zh) 一种降雨时控制排水系统中的污水汇入污水干管的方法
CN107620367B (zh) 一种带有截污管和调蓄设施的排水系统及排水控制方法
CN107806154B (zh) 一种带有在线处理设施的排水系统及排水控制方法
CN207760985U (zh) 一种带液动下开式堰门和泵排的排水系统
CN207761003U (zh) 一种带有调蓄设施和一体化处理设施的排水系统
CN208280275U (zh) 一种道路雨水分流处理系统
CN107605003B (zh) 一种控制污水和初期雨水污染的不完全分流制系统及其控制方法
WO2019061872A1 (zh) 一种带有调蓄设施的排水系统及排水控制方法
CN107780509B (zh) 一种带有调蓄设施和一体化处理设施的排水系统及排水控制方法
CN107587581B (zh) 一种带有雨水处理系统的排水系统及排水控制方法
CN107806162A (zh) 一种降雨时控制排水系统中各个分流设施截污管中的污水汇入污水干管的方法
CN107761902B (zh) 一种带有截污管和在线处理设施的排水系统及排水控制方法
CN207436176U (zh) 一种带有在线处理设施的排水系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927553

Country of ref document: EP

Kind code of ref document: A1