WO2019061872A1 - 一种带有调蓄设施的排水系统及排水控制方法 - Google Patents

一种带有调蓄设施的排水系统及排水控制方法 Download PDF

Info

Publication number
WO2019061872A1
WO2019061872A1 PCT/CN2017/116933 CN2017116933W WO2019061872A1 WO 2019061872 A1 WO2019061872 A1 WO 2019061872A1 CN 2017116933 W CN2017116933 W CN 2017116933W WO 2019061872 A1 WO2019061872 A1 WO 2019061872A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
monitoring
switch
level
state
Prior art date
Application number
PCT/CN2017/116933
Other languages
English (en)
French (fr)
Inventor
周超
李梓晔
Original Assignee
武汉圣禹排水系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉圣禹排水系统有限公司 filed Critical 武汉圣禹排水系统有限公司
Publication of WO2019061872A1 publication Critical patent/WO2019061872A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F1/00Methods, systems, or installations for draining-off sewage or storm water
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F3/00Sewer pipe-line systems
    • E03F3/02Arrangement of sewer pipe-lines or pipe-line systems
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/04Gullies inlets, road sinks, floor drains with or without odour seals or sediment traps
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/04Gullies inlets, road sinks, floor drains with or without odour seals or sediment traps
    • E03F5/041Accessories therefor
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/04Gullies inlets, road sinks, floor drains with or without odour seals or sediment traps
    • E03F5/041Accessories therefor
    • E03F5/0411Devices for temporarily blocking inflow into a gully
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/10Collecting-tanks; Equalising-tanks for regulating the run-off; Laying-up basins
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F7/00Other installations or implements for operating sewer systems, e.g. for preventing or indicating stoppage; Emptying cesspools

Definitions

  • the invention belongs to the technical field of drainage, and particularly relates to a drainage system with a storage facility and a drainage control method.
  • the drainage systems of cities and buildings mainly include diversion, confluence and mixed flow systems, the main purpose of which is to achieve the collection, transportation and treatment of water bodies.
  • a system that treats all wastewater in one way is called a combined system. It has only one drainage system, called the confluence system, and its drainage pipe is called the confluence pipe.
  • the system for treating different types of wastewater in different ways is called a split system, which generally has two drainage systems.
  • the pipeline is called a rainwater pipeline.
  • the other can be called the sewage system, collecting domestic sewage and industrial wastewater that needs to be treated before it is discharged.
  • the pipeline is called sewage pipeline.
  • the mixed flow system is a system between the split flow system and the combined flow system. It is mainly due to the fact that some pipes have different types of waste water, that is, rainwater pipes or sewage, due to the misconnection and mixing of pipes in the area of the split flow system.
  • the pipe actually becomes a merged pipe.
  • the sewage in the city's sewage pipelines and confluence pipelines are often referred to as urban sewage.
  • a pipe that connects the water outlet and intercepts the wastewater to the sewage treatment plant is called a intercepting pipe or a sewage intercepting pipe.
  • the inspection well at the intersection of the drain main and the intercepting pipe is generally replaced with a diverting well.
  • the construction of the split shaft can have different designs, but the current design is not perfect and there is no improvement for different amounts of sewage and rain.
  • the diversion well can intercept the sewage and flow to the sewage pipe.
  • part of the rainwater and sewage will intercept and flow into the sewage pipe. The rest of the rainwater will overflow through the well and continue to flow downstream.
  • the present invention provides a drainage system with a storage facility for draining and diverting rainwater and/or sewage, and a water body by reasonable regulation. Reasonable diversion to achieve rational allocation of resources.
  • the present invention provides a drainage system, the drainage system comprising a diversion well comprising a diversion well body and three openings disposed in the diversion well body, respectively a water inlet and a first water outlet And a second outlet;
  • the drainage system further includes a second water switch and a fourth water switch; wherein a second water switch is disposed adjacent to the first water outlet for controlling the amount of water passing through the first water outlet; A fourth water switch is arranged at the second water outlet for controlling the amount of water passing through the second water outlet;
  • the drainage system further includes an adjustment facility connected to the first water outlet.
  • the invention also provides a drainage control method for the above drainage system, which comprises a water level method, a water quality method, a water quality-water level method, a time method, a total amount method, a rainfall method, a time-water level method, a total amount-water level method, a rainfall amount-water level At least one of the laws.
  • the drainage system of the invention has the advantages of small footprint and powerful functions, and the effective separation and treatment of rainwater and sewage can be realized by using a small amount of land area.
  • the use of the drainage system is not limited by the circumstances and can be applied to any of the pipe networks in the drainage network system.
  • the control system is provided in the drainage system of the invention, and no manual operation is required in the use process. Through the control unit, the automatic adjustment of the water switch can be realized, and the utility model has the characteristics of flexibility and variety, and reduces a large amount of human and material resources.
  • the drainage system of the present invention has the effect of intelligent drainage, and the reasonable discharge of the water switch in the drainage system and the reasonable control of the relevant components of the drainage system realizes the reasonable discharge of the water body, while ensuring the safety of flood discharge, Maximum drainage of dirty water or initial rainwater to the storage facility.
  • the on-line processing facility can also be disposed at the second water outlet of the drainage system of the present invention; the online processing facility can effectively solve the dirty water that can be polluted by the natural water body when the fourth water conservancy switch is opened, and completely The initial rainwater and the mid-late rainwater flow are treated.
  • the drainage control method of the present invention includes a water level method, a water quality method, a water quality-water level method, a time method, a total amount method, a rainfall method, a time-water level method, a total amount-water level method, a rainfall amount-water level method, and the method
  • the regulation effectively solves the phenomenon that the sewage intercepting pipe in the prior art cannot be restricted, clean water or late rainwater can also enter the sewage intercepting pipe and transported to the sewage treatment plant.
  • the dirty water will be intercepted to the storage facilities to the maximum extent, and the clean water will be discharged to the natural water body.
  • the drainage control method of the present invention is that during the rainfall, due to the large rainfall intensity, the initial rainwater that cannot be intercepted to the sewage treatment plant in time is sent to the storage facility for storage, and the later clean rainwater is directly discharged to the natural water body. Reduce the number of overflows and overflows during rainfall, thus reducing the overflow pollution of rainwater.
  • FIG. 1 is a schematic structural view of a drainage system according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a drainage system according to a preferred embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a drainage system according to a preferred embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a drainage system according to a preferred embodiment of the present invention.
  • Figure 5 is a schematic structural view of a drainage system according to a preferred embodiment of the present invention.
  • Figure 6 is a schematic structural view of a drainage system according to a preferred embodiment of the present invention.
  • 1-inlet nozzle 2-first outlet; 3-second outlet; 4-second water switch; 5-four water switch; 6-split well body; 7-reservoir facility; Initial rain pipe; 41-online processing facility; 42-seventh water conservancy switch.
  • a first aspect of the present invention provides a drainage system including a diversion well including a diversion well body and three openings disposed in the diversion well body, respectively , the first water outlet and the second water outlet;
  • the drainage system further includes a second water switch and a fourth water switch; wherein a second water switch is disposed adjacent to the first water outlet for controlling the amount of water passing through the first water outlet; A fourth water switch is arranged at the second water outlet for controlling the amount of water passing through the second water outlet;
  • the drainage system further includes an adjustment facility connected to the first water outlet.
  • the drainage system further includes a control system including a first monitoring device, a second monitoring device, and a control unit coupled to the two; the control unit and the second The water switch and the fourth water switch signal are connected; the first monitoring device and the second monitoring device are used for monitoring signals and transmitting the monitored signals to the control unit, and the control unit controls the second water switch and the fourth water resource according to the received signals.
  • a control system including a first monitoring device, a second monitoring device, and a control unit coupled to the two; the control unit and the second The water switch and the fourth water switch signal are connected; the first monitoring device and the second monitoring device are used for monitoring signals and transmitting the monitored signals to the control unit, and the control unit controls the second water switch and the fourth water resource according to the received signals.
  • the opening of the switch is not limited to the switch.
  • the storage facility is connected to the first water outlet through a pipe or a gallery, for example, through an initial rain pipe to the first water outlet.
  • the drainage system further includes an outlet pipe; the second outlet is connected to the pipeline leading to the natural water body through the outlet pipe.
  • the first monitoring device includes a device for monitoring the water level of the water body (for example, a liquid level sensor, a liquid level meter, a liquid level switch, etc.), and a device for monitoring the water quality of the water body (for example, Water quality detector, online COD monitor, online TSS monitor, online BOD monitor, online TN monitor, online TP monitor, online NH 3 -N monitor, online ammonia nitrogen monitor, electrode, conductivity meter, etc.)
  • a device for monitoring the total amount of water for example, an electric hoist with a metering function, etc.
  • a device for monitoring rainfall such as a rain gauge, etc.
  • at least one of a device for monitoring time such as a timer.
  • the first monitoring device may be disposed in the diversion well body or outside the diversion well according to the type requirement, for example, a device for monitoring the water level of the water body and a device for monitoring the water quality of the water body are disposed in the diversion well.
  • the device for monitoring the rainfall is disposed outside the split shaft
  • the device for monitoring the total amount of water is disposed on the water switch in the well of the split shaft
  • the device for monitoring the time is disposed in the body of the split well or outside the well.
  • the second monitoring device comprises means for monitoring the level of the water body (for example, may be a level sensor, a level gauge, a level switch, etc.).
  • the second monitoring device is disposed within the conditioning facility.
  • the shapes of the water inlet, the first water outlet and the second water outlet and the size of the opening are not specifically limited, and may be connected to a pipeline or a gallery connected thereto.
  • the water inlet, the first water outlet, and the second water outlet are circular in shape.
  • the arrangement order and arrangement manner of the water inlet, the first water outlet and the second water outlet in the well of the distribution well are not limited, and may be divided according to the flow.
  • the area of the well and the height of the terrain are reasonably set.
  • the water inlet, the first water outlet and the second outlet The relative position of the nozzle.
  • the water inlet, the first water outlet, and the second water outlet are disposed on the side wall of the split shaft.
  • the pipeline connected to the water inlet is at a high ground position, and the water inlet may be disposed at any position on the side wall of the shaft of the split shaft; and connected to the first water outlet and the second water outlet
  • the pipeline is in a low ground position, and the first water outlet and the second water outlet are disposed at a position of the side wall of the shaft of the distribution shaft near the bottom of the shaft of the distribution shaft. The purpose of this is to prevent the water from accumulating in the wells and to flow downstream.
  • the shape of the shunt well body is not specifically limited, and a reasonable discharge of the water body can be achieved.
  • the shape of the shunt well body is Square or round.
  • the number and arrangement of the storage facilities in the drainage system are not specifically limited, and can be reasonably arranged according to the area of the area in which the system is used.
  • a plurality of storage facilities may be connected in series or in parallel.
  • the storage facility may be a storage facility known in the prior art, including, for example, a storage tank, a storage tank culvert, a deep tunnel or a shallow tunnel.
  • the second water switch and the fourth water switch are independently selected from the group consisting of a valve (ball valve, gate valve, knife gate valve, butterfly valve, lift rubber sheet shut-off check valve, etc.) and a gate ( One of the upper open gate, the lower open gate, the slamming door (the upper open type slamming door, the lower opening type slamming door, the rotary slamming door, etc.), the slamming door (the intercepting flapping door, etc.).
  • a valve ball valve, gate valve, knife gate valve, butterfly valve, lift rubber sheet shut-off check valve, etc.
  • a gate One of the upper open gate, the lower open gate, the slamming door (the upper open type slamming door, the lower opening type slamming door, the rotary slamming door, etc.), the slamming door (the intercepting flapping door, etc.).
  • the second water switch can realize a maximum current limiting function, that is, to ensure that the flow rate through the second water switch does not exceed the set flow value.
  • the drainage system further includes an on-line processing facility; the on-line processing facility is disposed on the outlet pipe or on a branch road that is separated from the outlet pipe and the terminal is incorporated into the outlet pipe Or set on a branch that is separated from the outlet pipe and that is connected to the natural water body.
  • a seventh water switch is disposed on the outlet pipe and between the branches of the branch and the merged position
  • a seventh water switch is disposed on the water outlet pipe and at the downstream end of the branch branching position.
  • the seventh water switch is connected to the control unit signal, and the control unit controls the opening of the seventh water switch according to the received signal. degree.
  • the water flowing through the outlet pipe flows from the inlet end of the online processing facility into the online processing facility, and after being processed, flows from the outlet end of the online processing facility into the downstream end of the outlet pipe.
  • the flow direction of the water body is adjusted by adjusting the opening degree of the seventh water conservancy switch; when the seventh water conservancy switch is in the open state, part of the water body flows directly through the outlet pipe to the natural environment.
  • part of the water body flows through the inlet end of the online processing facility disposed at the outlet pipe to the online processing facility, and after being processed, flows from the outlet end of the online processing facility to the downstream end of the outlet pipe or directly discharges to the through-pipe.
  • the in-line processing facility may be an in-line processing facility known in the art, including, for example, a biofilter, an in-line processing tank, a flocculation tank, a sloping plate sedimentation tank, a grit chamber, or a constructed wetland.
  • the seventh water switch is selected from the group consisting of a valve (ball valve, gate valve, knife gate valve, butterfly valve, lift rubber plate shut-off check valve, etc.), gate (upper open gate, lower open type) One of the gates, etc., the slamming door (opening type slamming door, lower opening type slamming door, rotary slamming door, etc.), shooting door (cutting door, etc.).
  • a valve ball valve, gate valve, knife gate valve, butterfly valve, lift rubber plate shut-off check valve, etc.
  • gate upper open gate, lower open type
  • the slamming door opening type slamming door, lower opening type slamming door, rotary slamming door, etc.
  • shooting door cutting door, etc.
  • the seventh water switch can realize a maximum current limiting function, that is, ensure that the flow rate through the seventh water switch does not exceed the set flow value.
  • the invention also provides a drainage control method for the above drainage system, which comprises a water level method, a water quality method, a water quality-water level method, a time method, a total amount method, a rainfall method, a time-water level method, a total amount-water level method, a rainfall amount-water level method. At least one of them.
  • a second aspect of the present invention provides a water level controlled drainage control method, the drainage control The method is based on the drainage system described above, the drainage system comprising a control system, the first monitoring device in the control system comprising means for monitoring the level of the water body and disposed in the body of the distribution well, the second monitoring in the control system
  • the device includes means for monitoring the level of the water body and is disposed in the storage facility, and the warning water level H2 of the distribution well and the highest water storage level H3 of the regulating facility are set in the control unit of the control system; the method comprises the following steps:
  • the water body enters the diversion well from the water inlet, and the water level H of the water in the diversion well is monitored in real time by the device for monitoring the water level; the water level H' in the storage facility is monitored in real time by the device for monitoring the water level;
  • a third aspect of the present invention provides a water quality control-controlled drainage control method based on the above-described drainage system, the drainage system including a control system, and the first monitoring device in the control system includes a device for monitoring the water quality of the water body and disposed in the shaft of the distribution well, the second monitoring device in the control system includes a device for monitoring the liquid level of the water body and is disposed in the storage facility, and the pollutant is set in the control unit of the control system
  • the concentration standard value C1 and the highest water storage level H3 of the storage facility comprises the following steps:
  • the water body enters the diversion well from the water inlet, and the water quality of the water in the diversion well is monitored in real time by monitoring the water quality of the water; the water level H' in the storage facility is monitored in real time by the device for monitoring the water level;
  • a fourth aspect of the present invention provides a water level-water quality method controlled drainage control method, the drainage control method being based on the above drainage system, the drainage system including a control system, the first monitoring in the control system
  • the device comprises means for monitoring the level of the water body and means for monitoring the water quality of the water body and both are disposed in the body of the distribution well
  • the second monitoring device in the control system comprises means for monitoring the level of the water body and is disposed in the storage facility
  • the control unit of the control system sets the warning water level H2 of the split shaft, the standard value C1 of the pollutant concentration, and the highest water level H3 of the storage facility; the method includes the following steps:
  • the water body enters the diversion well from the water inlet, and the water level H of the water in the diversion well is monitored in real time by monitoring the water level of the water body.
  • the water quality of the water in the diversion well is monitored in real time by monitoring the water quality of the water body;
  • the device monitors the water level H' in the storage facility in real time;
  • a fifth aspect of the present invention provides a total amount method controlled drainage control method, the drainage control method being based on the above drainage system, the drainage system including a control system, and a first monitoring device in the control system Included in the apparatus for monitoring the total amount of water and disposed on a second water switch in the well of the split shaft, the second monitoring device in the control system includes means for monitoring the level of the water body and is disposed in the storage facility, in the control
  • the control unit of the system sets the total amount of initial rain Q1 that the split shaft needs to intercept and the highest water level H3 of the storage facility; the method includes the following steps:
  • the method further includes the following steps:
  • a sixth aspect of the present invention provides a total amount-water level method controlled drainage control method, the drainage control method being based on the above-described drainage system, the drainage system including a control system, the first of the control systems
  • the monitoring device includes a device for monitoring the total amount of water and is disposed on a second water switch in the well of the split shaft, and the first monitoring device in the control system further includes a device for monitoring the liquid level of the water body and is disposed in the body of the split shaft.
  • the second monitoring device in the control system includes a device for monitoring the water level of the water body and is disposed in the regulating facility, and in the control unit of the control system, the total amount of standard primary rain that needs to be intercepted by the splitting well is set Q1, the dividing well Warning water level H2 and maximum storage level H3 of the storage facility; the method comprises the following steps:
  • the method further includes the following steps:
  • a seventh aspect of the present invention provides a rainfall control method for controlling drainage, the drainage control method being based on the above-described drainage system, the drainage system including a control system, and the first monitoring device in the control system includes a device for monitoring rainfall and disposed outside the split shaft, the second monitoring device in the control system includes a device for monitoring the level of the water body and is disposed in the regulating facility, and the need for setting the split shaft in the control unit of the control system
  • the standard initial rain rainfall L1 of the interception and the highest water storage level H3 of the storage facility; the method comprises the following steps:
  • the water body enters the diversion well from the water inlet, and the initial rain rainfall L is monitored in real time by the device for monitoring the rainfall;
  • An eighth aspect of the present invention provides a rainfall-water level controlled drainage control method based on the above-described drainage system, the drainage system including a control system, and the first monitoring in the control system
  • the device includes a device for monitoring rainfall and is disposed outside the split shaft, the first monitoring device of the control system further includes a device for monitoring the level of the water body and disposed in the body of the split well, the second monitoring device in the control system
  • the device includes a device for monitoring the level of the water body and is disposed in the storage facility.
  • the standard initial rain rainfall L1 of the diversion well and the warning water level H2 of the diversion well and the highest storage capacity of the storage facility are set.
  • Water level H3 the method comprises the following steps:
  • the water body enters the diversion well from the water inlet, and the initial rain rainfall L is monitored in real time by the device for monitoring the rainfall;
  • a ninth aspect of the present invention provides a time-controlled controlled drainage control method based on the above-described drainage system, the drainage system including a control system, and the first monitoring device in the control system includes a device for monitoring time and disposed in or outside the split shaft, the second monitoring device in the control system includes means for monitoring the level of the water body and is disposed in the control unit in the control unit of the control system
  • the standard time T1 and the highest water level H3 of the storage facility are set; the method comprises the following steps:
  • a tenth aspect of the present invention provides a time-water level controlled drainage control method based on the above-described drainage system, the drainage system including a control system, the first monitoring in the control system
  • the device includes a device for monitoring time and is disposed in the body of the diversion well or outside the shunt well.
  • the first monitoring device in the control system further includes a device for monitoring the level of the water body and is disposed in the shaft of the distribution well
  • the second monitoring device in the control system includes a device for monitoring the liquid level of the water body and is disposed in the storage facility
  • the standard time T1, the warning water level H2 of the distribution well, and the highest water storage level H3 of the storage facility are set in the control unit of the control system; the method includes the following steps:
  • the method when the drainage system includes an online processing facility, the method further includes the following steps:
  • the water body flows through the water outlet pipe from the inlet end of the online processing facility into the online processing facility, and after being processed, from the outlet end of the online processing facility Flow into the downstream end of the outlet pipe.
  • the flow direction of the water body is adjusted by adjusting the opening degree of the seventh water conservancy switch; when the seventh water conservancy switch is in an open state, part of the water body flows through The outlet pipe is directly discharged into the pipeline leading to the natural water body, and some of the water body flows through the inlet end of the branch processing online processing facility disposed at the outlet pipe into the online processing facility, and after being processed, flows out from the outlet end of the online processing facility.
  • the downstream end of the water pipe is directly discharged to the pipeline leading to the natural water body; when the seventh water conservancy switch is in the intercepting state, all the water bodies flow through the branch route disposed on the side of the outlet pipe.
  • the inlet end of the plant enters the in-line processing facility and, after processing, flows from the outlet end of the in-line treatment facility into the downstream end of the outlet pipe or directly to the line leading to the natural body of water.
  • the warning water level H2 of the distribution well is set in the control unit of the control system according to the height of the lowest point in the corresponding water receiving area of the distribution well in the occurrence of the water accumulation risk.
  • the highest water level H3 of the storage facility is set in the control unit of the control system based on the accommodation capacity of the storage facility.
  • the device for monitoring the water level of the water body is a liquid level sensor, a liquid level meter, a liquid level switch, and the like.
  • the pollutant concentration standard value C1 is set in the control unit of the control system based on the environmental capacity of the natural water body discharged and the water quality of the water entering the distribution well.
  • the device for monitoring water quality is a water quality detector, an online COD monitor, an online ammonia nitrogen monitor, an online TSS monitor, an online BOD monitor, an online NH 3 -N monitor, An online TP monitor, an online TN monitor, an electrode, a conductivity meter, etc., which monitors the concentration of contaminants in a body of water in a diversion well, including TSS, COD, BOD, NH 3 -N, TN or One or several of TP.
  • the water quality detector may be configured to detect water quality by using an electrode method, a UV optical method, an optical scattering method, or the like.
  • the environmental capacity of the natural water body discharged from the diversion well may be a natural water body such as a river, a lake or a sea; when the natural water body has a large environmental capacity (such as an ocean), the pollutant concentration standard The value C1 can be appropriately increased; when the environmental capacity of the natural water body is small (such as a lake), the standard value C1 of the pollutant concentration can be appropriately lowered.
  • the standard value of the pollutant concentration C1 may be appropriately reduced; when the water quality of the water entering the distribution well is poor, such as domestic sewage and/or initial stage Rainwater, the standard value of pollutant concentration C1 can be appropriately increased.
  • the aim is to reduce pollution to natural waters as little as possible.
  • the total amount of standard primary rain Q1 that the split shaft needs to intercept is set in the control unit of the control system according to the total amount of initial rain collected in the corresponding water receiving area of the split shaft.
  • the means for monitoring the total amount of water is selected from an electric hoist with a metering function.
  • the standard initial rainfall required to be intercepted by the split shaft is set in the control unit of the control system according to the number of millimeters of initial rain collected in the corresponding water receiving area of the split shaft. L1.
  • the means for monitoring rainfall is a rain gauge.
  • the standard time T1 is set in the control unit of the control system based on the rain time of the initial rainwater and the time required for the runoff to correspond to the total runoff of the initial rainwater in the water receiving area to the split shaft.
  • the means for monitoring time is a timer.
  • the second water switch and the seventh water switch can realize a maximum current limiting function, and the open state means that the flow rate through the water switch is less than or equal to the set maximum flow value. This can be achieved by adjusting the opening of the water switch by a control unit in the control system.
  • the fourth water switch is in an open state, meaning that the water body can flow to the natural water body through the water switch.
  • the fourth water switch and the seventh water switch are in a closed state, which means that the opening of the water switch is adjusted to ensure that the water body is intercepted at the upstream end of the water switch, and cannot pass through The water switch is turned to the natural water body.
  • the second water switch is in a closed state, meaning that the flow rate of the water passing through the second water switch is zero.
  • the present invention provides a drainage system including a diversion well including a diversion well body 6 and three openings disposed in the diversion well body 6 , respectively, the water inlet 1, the first water outlet 2 and the second water outlet 3;
  • the drainage system further includes a second water switch 4 and a fourth water switch 5; wherein, near the first a second water switch 4 is disposed at a water outlet 2 for controlling the amount of water passing through the first water outlet 2; and a fourth water switch 5 is disposed adjacent to the second water outlet 3 for controlling the passage of the second water outlet 3 of the amount of water;
  • the drainage system further includes an adjustment facility 7, which is connected to the first water outlet 2.
  • the drainage system further comprises a control system, the drainage system further comprising a control system, the control system comprising a first monitoring device, a second monitoring device and a signal connection with the two a unit; the control unit is coupled to the second water switch 4 and the fourth water switch 5; the first monitoring device and the second monitoring device are configured to monitor signals and transmit the monitored signals to the control unit, and the control unit receives the signals according to the receiving The signal controls the opening of the second water switch 4 and the fourth water switch 5.
  • the inlet end of the storage facility 7 is connected to the first water outlet 2 via an initial rain pipe 8.
  • the drainage system further comprises an outlet pipe 9; the second outlet 3 is connected to the pipeline leading to the natural body of water through the outlet pipe 9.
  • the first monitoring device includes a device for monitoring the water level of the water body (for example, a liquid level sensor, a liquid level meter, a liquid level switch, etc.), and a device for monitoring the water quality of the water body (for example, Water quality detector, online COD monitor, online TSS monitor, online BOD monitor, online TN monitor, online TP monitor, online NH 3 -N monitor, online ammonia nitrogen monitor, electrode, conductivity meter, etc.)
  • a device for monitoring the total amount of water for example, an electric hoist with a metering function, etc.
  • a device for monitoring rainfall such as a rain gauge, etc.
  • at least one of a device for monitoring time such as a timer.
  • the first monitoring device may be disposed in the diversion well body or outside the diversion well according to the type requirement, for example, a device for monitoring the water level of the water body and a device for monitoring the water quality of the water body are disposed in the diversion well.
  • the device for monitoring the rainfall is disposed outside the split shaft
  • the device for monitoring the total amount of water is disposed on the water switch in the well of the split shaft
  • the device for monitoring the time is disposed in the body of the split well or outside the well.
  • the second monitoring device includes a device for monitoring the water level of the water body (for example, may be a liquid level sensor, a liquid level meter, a liquid level switch, etc.); the second monitoring device is set in the tone In the storage facility.
  • a device for monitoring the water level of the water body for example, may be a liquid level sensor, a liquid level meter, a liquid level switch, etc.
  • the arrangement order and arrangement manner of the water inlet, the first water outlet and the second water outlet in the well of the distribution well are not limited, and may be divided according to the flow.
  • the area of the well and the height of the terrain are reasonably set to the relative positions of the water inlet, the first water outlet and the second water outlet.
  • the water inlet, the first water outlet, and the second water outlet are disposed in the split shaft Body side wall.
  • the pipeline connected to the water inlet is at a high ground position, and the water inlet may be disposed at any position on the side wall of the shaft of the split shaft; and connected to the first water outlet and the second water outlet
  • the pipeline is in a low ground position, and the first water outlet and the second water outlet are disposed at a position of the side wall of the shaft of the distribution shaft near the bottom of the shaft of the distribution shaft. The purpose of this is to prevent the water from accumulating in the wells and to flow downstream.
  • the number and arrangement of the storage facilities in the drainage system are not specifically limited, and can be reasonably arranged according to the area of the area in which the system is used.
  • a plurality of storage facilities may be connected in series or in parallel; the storage facilities may be storage facilities known in the prior art, including, for example, a storage tank, a storage tank culvert, a deep tunnel or a shallow tunnel.
  • a drainage system with a storage facility includes the drainage system of Embodiment 1, the drainage system further includes an online processing facility 41;
  • the online processing facility is disposed on the water outlet pipe 9;
  • the water flowing through the outlet pipe flows from the inlet end of the online processing facility into the online processing facility, and after being processed, flows from the outlet end of the online processing facility into the downstream end of the outlet pipe.
  • the on-line processing facility is disposed on a branch road which is branched from the outlet pipe 9 and the terminal is incorporated into the outlet pipe 9 pipe; or is disposed at the outlet pipe 9 and is connected to the terminal.
  • a branch of natural water is disposed on a branch road which is branched from the outlet pipe 9 and the terminal is incorporated into the outlet pipe 9 pipe; or is disposed at the outlet pipe 9 and is connected to the terminal.
  • a seventh water switch is disposed on the outlet pipe and between the branches of the branch and the merged position 42; or, when the online processing facility is disposed on a branch road that is separated from the water outlet pipe and the terminal is connected to the natural water body, the seventh water switch 42 is disposed on the water outlet pipe and at the downstream end of the branch branching position. .
  • the seventh water switch is connected to the control unit signal, and the control unit controls the opening degree of the seventh water switch according to the received signal.
  • the in-line processing facility may be an in-line processing facility known in the art, including, for example, a biofilter, an in-line processing tank, a flocculation tank, a sloping plate sedimentation tank, a grit chamber, or a constructed wetland.
  • the shape of the well of the split shaft is different when used in different places.
  • the shape of the well of the split shaft is circular, it is particularly suitable for area comparison. In small areas, the area of the circular diversion well is generally small, and the installation and arrangement of other drainage equipment can be realized by saving the land area.
  • a square-shaped split shaft can be used, which can accommodate a large space inside, and a plurality of devices having different functions, such as a device for removing sediment and removing floating matter, can be disposed in the space. And suspended matter devices, etc.
  • the shape of the shunt well body is circular, as shown in FIG. 1 , FIG. 3 and FIG. 5 ; or the shape of the shunt well body is square, as shown in FIG. 2 , FIG. 4 and FIG. 6 . Show.
  • the present embodiment provides a water level control drainage control method, the drainage control method is based on the drainage system described in Embodiment 1, the drainage system includes a control system, and the first monitoring device in the control system
  • the device includes a device for monitoring the level of the water body and is disposed in the body of the diversion well, and sets a warning water level H2 of the diversion well in the control unit of the control system according to the height of the lowest point in the corresponding water receiving area of the diversion well in the occurrence of the water accumulation risk.
  • the second monitoring device in the control system includes a device for monitoring the water level of the water body and is disposed in the storage facility, and the highest of the storage facility is set in the control unit of the control system according to the capacity of the storage facility.
  • the water storage level H3; the method comprises the following steps:
  • the water body enters the diversion well from the water inlet, and the water level H in the diversion well body is monitored in real time by the device for monitoring the water level; the water level in the storage facility is monitored in real time by the device for monitoring the water level. Degree H’;
  • the device for monitoring the water level of the water body is a liquid level sensor, a liquid level meter, a liquid level switch and the like.
  • the present embodiment provides a water quality control drainage control method, the drainage control method is based on the drainage system described in Embodiment 1, the drainage system includes a control system, and the first monitoring device in the control system
  • the device for monitoring the water quality of the water body is disposed in the distribution well body, and the pollutant concentration standard value C1 is set in the control unit of the control system according to the environmental capacity of the discharged natural water body and the water quality of the water entering the distribution well
  • the control The second monitoring device of the system includes a device for monitoring the level of the water body and is disposed in the storage facility, and the highest water level H3 of the storage facility is set in the control unit of the control system according to the capacity of the storage facility;
  • the method includes the following steps:
  • the water body enters the diversion well from the water inlet, and the water quality of the water in the diversion well is monitored in real time by monitoring the water quality of the water; the water level H' in the storage facility is monitored in real time by the device for monitoring the water level;
  • the fourth water conservancy switch In the open state, the second water switch is in a closed state; the water body flows through the pipe connecting the water pipe to the natural water body, and is discharged into the natural water body.
  • the device for monitoring water quality is a water quality detector, an online COD monitor, an online ammonia nitrogen monitor, an online TSS monitor, an online BOD monitor, an online NH 3 -N monitor, an online TP monitor, an online TN monitor, electrodes, conductivity meter, etc., which is split monitoring wells pollutant concentration in the body, the contaminant comprises one or more TSS, COD, BOD, NH 3 -N, TN or TP in.
  • the water quality detector may be configured to detect water quality by using an electrode method, a UV optical method, an optical scattering method, or the like.
  • the device for monitoring the water level of the water body is a liquid level sensor, a liquid level meter, a liquid level switch and the like.
  • the present embodiment provides a water level-water quality control drainage control method, the drainage control method is based on the drainage system described in Embodiment 1, the drainage system includes a control system, and the first of the control systems
  • the monitoring device comprises a device for monitoring the water level of the water body and a device for monitoring the water quality of the water body, and both are arranged in the body of the diversion well, according to the height of the lowest point in the corresponding water receiving area of the diversion well in the control unit of the control system Setting the warning water level H2 of the splitting well; setting the pollutant concentration standard value C1 in the control unit of the control system according to the environmental capacity of the discharged natural water body and the water quality entering the splitting well; the second of the control system
  • the monitoring device includes means for monitoring the level of the water body and is disposed in the storage facility, and the highest water level H3 of the storage facility is set in the control unit of the control system according to the capacity of the storage facility; The following steps:
  • the water body enters the diversion well from the water inlet, and the water level H of the water in the diversion well is monitored in real time by monitoring the water level of the water body.
  • the water quality of the water in the diversion well is monitored in real time by monitoring the water quality of the water body;
  • the device monitors the water level H' in the storage facility in real time;
  • H is the warning level H2 and the water quality in the well is diverted
  • C the standard value of pollutant concentration C1
  • the second water conservancy switch is in the on state
  • the fourth water conservancy switch is in the interception state
  • the storage facility is temporarily stored; if the water level in the storage facility is H' ⁇ the highest water level H3 of the storage facility, the second water switch is in the closed state, and the fourth water switch is in the open state; the water flows through the outlet pipe and In the pipeline connected to the natural water body, and then discharged into the natural water body;
  • the device for monitoring the water level of the water body is a liquid level sensor, a liquid level meter, a liquid level switch and the like.
  • the device for monitoring water quality is a water quality detector, an online COD monitor, an online ammonia nitrogen monitor, an online TSS monitor, an online BOD monitor, an online NH 3 -N monitor, an online TP monitor, an online TN monitor, electrodes, conductivity meter, etc., which is split monitoring wells pollutant concentration in the body, the contaminant comprises one or more TSS, COD, BOD, NH 3 -N, TN or TP in.
  • the water quality detector may be configured to detect water quality by using an electrode method, a UV optical method, an optical scattering method, or the like.
  • the present embodiment provides a total amount method controlled drainage control method, the drainage control method is based on the drainage system described in Embodiment 1, the drainage system includes a control system, and the first monitoring in the control system
  • the device comprises means for monitoring the total amount of water body and is arranged on the second water switch in the well body of the distribution well, and the diversion is set in the control unit of the control system according to the number of millimeters of initial rain collected in the corresponding water receiving area of the distribution well
  • the well needs a total amount of initial rain Q1 to be intercepted;
  • the second monitoring device of the control system includes a device for monitoring the level of the water body and is disposed in the storage facility, according to the capacity of the storage facility in the control unit of the control system Setting a maximum water storage level H3 of the storage facility; the method includes the following steps:
  • the means for monitoring the total amount of water is selected from an electric hoist with a metering function.
  • the device for monitoring the water level of the water body is a liquid level sensor, a liquid level meter, a liquid level switch and the like.
  • the embodiment provides a drainage control method controlled by a total amount-water level method, the drainage control method is based on the drainage system described in Embodiment 1, the drainage system includes a control system, and the control system A monitoring device includes a device for monitoring the total amount of water and is disposed on a second water switch in the well body, the first monitoring device of the control system further includes a device for monitoring the water level of the water body and is disposed in the shaft of the distribution well According to the total amount of primary rain collected in the corresponding water collection area of the distribution well, the standard initial rainfall total Q1 of the distribution well to be intercepted is set in the control unit of the control system; according to the lowest point in the corresponding collection area of the distribution well Setting the warning water level H2 of the distribution well in the control unit of the control system at the height at which the water accumulation risk occurs; the second monitoring device of the control system includes a device for monitoring the water level of the water body and is disposed in the storage facility, according to The capacity of the storage facility is set in the control unit of the control system to
  • the device for monitoring the water level of the water body is a liquid level sensor, a liquid level meter, a liquid level switch and the like.
  • the means for monitoring the total amount of water is selected from an electric hoist with a metering function.
  • the present embodiment provides a rainfall control method for controlling drainage, the drainage control method is based on the drainage system described in Embodiment 1, the drainage system includes a control system, and the first monitoring device in the control system
  • the device includes a device for monitoring rainfall and is disposed outside the split shaft, and sets a standard initial rain rainfall L1 that needs to be intercepted in the control unit of the control system according to the number of millimeters of initial rain collected in the corresponding water receiving region of the split well;
  • the second monitoring device of the control system includes a device for monitoring the water level of the water body and is disposed in the storage facility, and the highest water storage capacity of the storage facility is set in the control unit of the control system according to the capacity of the storage facility.
  • Water level H3 the method comprises the following steps:
  • the water body enters the diversion well from the water inlet, and the initial rain rainfall L is monitored in real time by the device for monitoring the rainfall;
  • the device for monitoring rainfall is a rain gauge.
  • the device for monitoring the water level of the water body is a liquid level sensor, a liquid level meter, a liquid level switch and the like.
  • the embodiment provides a drainage-water level control drainage control method, the drainage control method is based on the drainage system described in Embodiment 1, the drainage system includes a control system, and the first of the control systems
  • the monitoring device includes a device for monitoring rainfall and is disposed outside the diversion well.
  • the first monitoring device in the control system further includes a device for monitoring the water level of the water body and is disposed in the diversion well body according to the corresponding water receiving area of the diversion well. The number of initial rain millimeters to be collected is set in the control unit of the control system.
  • the warning water level H2 of the split shaft is set in the control unit of the system;
  • the second monitoring device of the control system includes a device for monitoring the liquid level of the water body and is disposed in the storage facility, according to the capacity of the storage facility in the control system
  • the highest water level H3 of the storage facility is set in the control unit; the method includes the following steps:
  • the water body enters the diversion well from the water inlet, and the initial rain rainfall L is monitored in real time by the device for monitoring the rainfall;
  • the device for monitoring the water level of the water body is a liquid level sensor, a liquid level meter, a liquid level switch and the like.
  • the device for monitoring rainfall is a rain gauge.
  • the present embodiment provides a time-controlled drainage control method, the drainage control method is based on the drainage system described in Embodiment 1, the drainage system includes a control system, and the first monitoring device in the control system The device including the monitoring time is disposed in the body of the diversion well or outside the diversion well, and the control unit of the control system is based on the rainfall time of the initial rainwater and the time required for the initial rainwater to flow to the diversion well in the corresponding water receiving area of the diversion well.
  • the second monitoring device of the control system includes a device for monitoring the water level of the water body and is disposed in the storage facility, and is set in the control unit of the control system according to the capacity of the storage facility The highest water level H3 of the storage facility; the method comprises the following steps:
  • the device for monitoring the time is a timer.
  • the device for monitoring the water level of the water body is a liquid level sensor, a liquid level meter, a liquid level switch and the like.
  • the present embodiment provides a time-water level controlled drainage control method, which is based on the drainage system described in Embodiment 1, the drainage system including a control system, the first of the control systems
  • the monitoring device includes a device for monitoring time and is disposed in the body of the diversion well or outside the diversion well.
  • the first monitoring device in the control system further includes a device for monitoring the liquid level of the water body and is disposed in the diversion well body according to the initial rainwater.
  • the time required for the rainfall time and the split well corresponding to the initial runoff of the initial rainwater to the split well is set in the control unit of the control system.
  • the standard time T1 is set according to the control unit of the control system.
  • the height of the water risk is set in the control unit of the control system to set the warning water level H2 of the distribution well;
  • the second monitoring device of the control system includes a device for monitoring the water level of the water body and is disposed in the storage facility, according to the storage The capacity of the facility sets the highest water level H3 of the storage facility in the control unit of the control system; Steps:
  • the device for monitoring the time is a timer.
  • the device for monitoring the water level of the water body is a liquid level sensor, a liquid level meter, a liquid level switch and the like.
  • the drainage control method of Embodiments 3-11 described above is respectively adopted, and further comprising the following steps:
  • the water body flows through the water outlet pipe from the inlet end of the online processing facility into the online processing facility, and after being processed, from the outlet end of the online processing facility Flow into the downstream end of the outlet pipe.
  • the flow direction of the water body is adjusted by adjusting the opening degree of the seventh water conservancy switch; when the seventh water conservancy switch is in an open state, part of the water body flows through The outlet pipe is directly discharged into the pipeline leading to the natural water body, and some of the water body flows through the inlet end of the branch processing online processing facility disposed at the outlet pipe into the online processing facility, and after being processed, flows out from the outlet end of the online processing facility.
  • the downstream end of the water pipe is directly discharged to the pipeline leading to the natural water body; when the seventh water conservancy switch is in the intercepting state, all the water body flows through the branch end of the online processing facility disposed at the outlet pipe to the online processing facility, and is processed. After that, it flows from the outlet end of the in-line treatment facility to the downstream end of the outlet pipe or directly to the pipeline leading to the natural water body.
  • the second water switch and the seventh water switch can realize a maximum current limiting function, and the open state means that the flow rate through the water switch is less than or equal to the set maximum flow value, which is This can be achieved by adjusting the opening of the water switch by a control unit in the control system.
  • the fourth water switch is in an open state, meaning that the water body can pass the The water switch flows to the natural water body.
  • the fourth water switch and the seventh water switch are in a closed state, which means that the opening of the water switch is adjusted to ensure that the water body is intercepted at the upstream end of the water switch, and cannot pass the water conservancy.
  • the switch flows to the natural body of water.
  • the second water switch is in a closed state, that is, the flow rate of the water passing through the second water switch is zero.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Sewage (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

一种排水系统,包括分流井、第二水利开关(4)和第四水利开关(5)、调蓄设施(7)。分流井包括分流井井体(6)和设置于分流井井体(6)中的三个开口,分别是入水口(1)、第一出水口(2)、第二出水口(3);在靠近第一出水口(2)处设置第二水利开关(4),用于控制通过第一出水口(2)的过水量;在靠近第二出水口(3)处设置第四水利开关(5),用于控制通过第二出水口(3)的过水量;调蓄设施(7)与第一出水口(2)相连。还公开了该排水系统的排水控制方法。

Description

一种带有调蓄设施的排水系统及排水控制方法 技术领域
本发明属于排水技术领域,具体涉及一种带有调蓄设施的排水系统及排水控制方法。
背景技术
当前,城市和建筑群的排水系统主要包括分流制、合流制和混流制,其主要的目的是实现水体的收集、输送和处理。比如,采用一种方式对待所有废水的体制称合流制。它只有一个排水系统,称合流系统,其排水管道称合流管道。采用不同方式对待不同性质的废水的体制称分流制,它一般有两个排水系统。一个可以称为雨水系统,用于收集雨水和污染程度很低的、不经过处理直接排放水体的工业废水,其管道称雨水管道。另一个可以称为污水系统,收集生活污水和需要处理后才能排放的工业废水,其管道称污水管道。混流制是一种介于分流制和合流制之间的体制,其主要是由于在分流制的区域内管路错接、混接等导致部分管道出现了不同性质的废水,即雨水管道或污水管道实际上变成了合流管道。城市的污水管道和合流管道中的废水常统称城市污水。
随着现代房屋卫生设备和高层建筑的出现,人口密集,粪便用水流输送,大大增加城市污水的强度;再加上工业发达,工业废水大量增加,城市附近的河流湖泊就出现不能容忍的污染情况。于是增设污水处理厂,并用管道连接各个出水口,把各排水干管中的废水汇集污水处理厂进行处理,形成截流式合流系统。连接出水口并截流废水至污水处理厂的管道称截流管道或截污管道。
降雨时废水量骤增,如果把所有废水都截留,则截流管道和污水处理厂必然需要很大规模,过分增加工程费用。所以一般将排水干管和截流管相交处的检查井替换为分流井。分流井的构造可以有不同的设计,但是目前的设计并不完善,且针对不同的污水量和雨水量也没有做出改进。旱季时因管中只有污水,分流井可以将污水截住,流往污水管;雨季时将部分雨水与污水截住并流入污水管,其余雨水溢流通过井中堰,继续流向下游。对于雨水和污水的流向,目前的控制方 法中多数是采用水位或雨量来控制的,但现有的水位控制法或雨量控制法,对雨水和污水的分流控制并不是很好,从而失去了分流井存在的意义。
发明内容
为了解决现有技术的不足,本发明提供了一种带有调蓄设施的排水系统及排水控制方法,所述排水系统用于雨水和/或污水的截流和分流,通过合理的调控,使得水体合理分流,实现资源的合理配置。
本发明提供了一种排水系统,所述排水系统包括分流井,所述分流井包括分流井井体和设置于所述分流井井体中的三个开口,分别是入水口、第一出水口和第二出水口;
所述排水系统还包括第二水利开关和第四水利开关;其中,在靠近所述第一出水口处设置第二水利开关,用于控制通过第一出水口的过水量;在靠近所述第二出水口处设置第四水利开关,用于控制通过第二出水口的过水量;
所述排水系统还包括调蓄设施,所述调蓄设施与第一出水口相连。
本发明还提供了上述排水系统的排水控制方法,其包括水位法、水质法、水质-水位法、时间法、总量法、雨量法、时间-水位法、总量-水位法、雨量-水位法中的至少一种。
本发明的有益效果:
1)本发明的排水系统具有占地面积小,功能强大等优点,使用少量的土地面积就可以实现雨水和污水的有效分离处理。所述排水系统的使用不受场合的限定,可以适用于排水管网系统中的任一条管网。
2)本发明的排水系统中设置控制系统,在使用过程中无需人为操作,通过控制单元,可以实现水利开关的自动调节,具有灵活多变等特点,减少了大量的人力物力。具体而言,本发明的排水系统具有智能排水的效果,通过控制系统对该排水系统中的水利开关的开度及相关组件的合理控制实现水体的合理排放,在保证了行洪安全的同时,最大程度的对脏水或初期雨水进行截流至调蓄设施。
3)本发明的排水系统的第二出水口处还可以设置在线处理设施;所述在线处理设施可以有效解决第四水利开关开启时仍混有的可污染自然水体的脏水,做到彻底地将初期雨水和中后期雨水分流处理。
4)本发明的排水控制方法包括水位法、水质法、水质-水位法、时间法、总量法、雨量法、时间-水位法、总量-水位法、雨量-水位法,所述方法的调控有效解决了现有技术中截污管无法进行限流、干净的水或后期雨水也会进入截污管输送至污水处理厂的现象。通过合理的控制脏水、初期雨水和中后期雨水的排放途径,最大限度的把脏水截流至调蓄设施,把较干净的水排至自然水体。
5)本发明的排水控制方法是在降雨时,由于降雨强度较大,把不能及时截流到污水处理厂的初期雨水送至调蓄设施储存,后期较干净的雨水再直接排放到自然水体,可以减少在降雨时发生溢流的次数和溢流量,从而减少了雨水的溢流污染。
附图说明
图1为本发明一个优选实施方式中所述的排水系统的结构示意图;
图2为本发明一个优选实施方式中所述的排水系统的结构示意图;
图3为本发明一个优选实施方式中所述的排水系统的结构示意图;
图4为本发明一个优选实施方式中所述的排水系统的结构示意图;
图5为本发明一个优选实施方式中所述的排水系统的结构示意图;
图6为本发明一个优选实施方式中所述的排水系统的结构示意图;
其中,1-入水口;2-第一出水口;3-第二出水口;4-第二水利开关;5-第四水利开关;6-分流井井体;7-调蓄设施;8-初雨管;41-在线处理设施;42-第七水利开关。
具体实施方式
[排水系统]
本发明的第一个方面是提供一种排水系统,所述排水系统包括分流井,所述分流井包括分流井井体和设置于所述分流井井体中的三个开口,分别是入水口、第一出水口和第二出水口;
所述排水系统还包括第二水利开关和第四水利开关;其中,在靠近所述第一出水口处设置第二水利开关,用于控制通过第一出水口的过水量;在靠近所述第二出水口处设置第四水利开关,用于控制通过第二出水口的过水量;
所述排水系统还包括调蓄设施,所述调蓄设施与第一出水口相连。
在本发明的一个优选实施方式中,所述排水系统还包括控制系统,所述控制系统包括第一监测装置、第二监测装置和与二者信号连接的控制单元;所述控制单元与第二水利开关和第四水利开关信号连接;所述第一监测装置和第二监测装置用于监测信号并将监测的信号输送给控制单元,控制单元根据接收的信号控制第二水利开关和第四水利开关的开度。
在本发明的一个优选实施方式中,所述调蓄设施通过管道或廊道与第一出水口相连,例如通过初雨管与第一出水口相连。
在本发明的一个优选实施方式中,所述排水系统还包括出水管;所述第二出水口通过出水管与通往自然水体的管路相连。
在本发明的一个优选实施方式中,所述第一监测装置包括监测水体液位的装置(例如可以是液位传感器、液位计、液位开关等),监测水体水质的装置(例如可以是水质检测器、在线COD监测仪、在线TSS监测仪、在线BOD监测仪、在线TN监测仪、在线TP监测仪、在线NH3-N监测仪、在线氨氮监测仪、电极、电导率仪等),监测水体总量的装置(例如可以是带有计量功能的电动启闭机等),监测雨量的装置(如雨量计等),监测时间的装置(如计时器等)中的至少一种。
在本发明的一个优选实施方式中,所述第一监测装置根据类型需求可设置在分流井井体内或分流井井体外,例如,监测水体液位的装置和监测水体水质的装置设置在分流井井体内,监测雨量的装置设置在分流井井体外,监测水体总量的装置设置在分流井井体中的水利开关上,监测时间的装置设置在分流井井体内或分流井井体外。
在本发明的一个优选实施方式中,所述第二监测装置包括监测水体液位的装置(例如可以是液位传感器、液位计、液位开关等)。
在本发明的一个优选实施方式中,所述第二监测装置设置在调蓄设施内。
在本发明的一个优选实施方式中,本领域技术人员可以理解,所述入水口、第一出水口和第二出水口的形状和开口大小没有具体的限定,可以和与其相连的管路或廊道的形状或与其设置的水利开关的形状相匹配即可。例如所述入水口、第一出水口和第二出水口的形状为圆形。
在本发明的一个优选实施方式中,本领域技术人员可以理解,所述入水口、第一出水口和第二出水口在分流井井体中的排列顺序和排布方式没有限定,可以根据分流井设置的区域面积和地势高度合理的设置入水口、第一出水口和第二出 水口的相对位置。例如,所述入水口、第一出水口和第二出水口设置在分流井井体侧壁。
当所述入水口、第一出水口和第二出水口设置在分流井井体侧壁时,本领域技术人员可以理解,所述入水口、第一出水口和第二出水口的底部距离分流井井底的高度没有具体限定,例如与入水口连接的管路处于高地势的位置,入水口可以设置在分流井井体侧壁上的任意位置;与第一出水口和第二出水口连接的管路处于低地势的位置,第一出水口和第二出水口设置在分流井井体侧壁靠近分流井井体底部的位置。这样做的目的是为了水体不会在分流井井体中积攒,更好地流向下游。
在本发明的一个优选实施方式中,本领域技术人员可以理解,所述分流井井体的形状没有具体的限定,可以实现对水体的合理排放即可,例如所述分流井井体的形状为方形或圆形。
在本发明的一个优选实施方式中,本领域技术人员可以理解,所述调蓄设施在排水系统中的数量和排布没有具体的限定,可以根据使用该系统的区域面积进行合理的排布,例如可以是串联或并联多个调蓄设施。所述调蓄设施可以是现有技术已知的调蓄设施,例如包括调蓄池、调蓄箱涵、深隧或浅隧等。
在本发明的一个优选实施方式中,所述第二水利开关和第四水利开关分别独立地选自阀门(球阀、闸阀、刀闸阀、蝶阀、升降式橡胶板截流止回阀等)、闸门(上开式闸门、下开式闸门等)、堰门(上开式堰门、下开式堰门、旋转式堰门等)、拍门(截流拍门等)中的一种。
在本发明的一个优选实施方式中,所述第二水利开关可以实现最大限流功能,即保证通过所述第二水利开关的流量不会超过设定的流量值。
在本发明的一个优选实施方式中,所述排水系统还包括在线处理设施;所述在线处理设施设置在出水管上或设置在从出水管管路分出且终端并入出水管管路的支路上;或设置在从出水管管路分出且终端连通自然水体的支路上。
当所述在线处理设施设置在从出水管管路分出且终端并入出水管管路的支路上时,在出水管管路上且在支路分出和并入的位置之间设置第七水利开关;或者,当所述在线处理设施设置在从出水管管路分出且终端连通自然水体的支路上时,在出水管管路上且在支路分出位置的下游端设置第七水利开关。所述第七水利开关与控制单元信号连接,控制单元根据接收的信号控制第七水利开关的开 度。
当所述在线处理设施设置在出水管管路上;水体流经出水管从在线处理设施的入口端流入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端。
当所述在线处理设施设置在出水管支路上时,通过调节第七水利开关的开度调整水体的流向;当第七水利开关处于开启状态时,部分水体流经出水管直接排放至通往自然水体的管路中,部分水体流经设置在出水管旁的支路由在线处理设施的入口端进入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端或直接排放至通往自然水体的管路;当第七水利开关处于截流状态时,全部水体流经支路由在线处理设施的入口端进入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端或直接排放至通往自然水体的管路。
在本发明的一个优选实施方式中,本领域技术人员可以理解,所述在线处理设施在系统中的数量和排布没有具体的限定,可以是串联或并联的多个在线处理设施;其具体排布方式可以根据使用该系统的区域面积进行合理的排布。所述在线处理设施可以是现有技术已知的在线处理设施,例如包括生物滤池、在线处理池、絮凝池、斜板沉淀池、沉砂池或人工湿地等。
在本发明的一个优选实施方式中,所述第七水利开关选自阀门(球阀、闸阀、刀闸阀、蝶阀、升降式橡胶板截流止回阀等)、闸门(上开式闸门、下开式闸门等)、堰门(上开式堰门、下开式堰门、旋转式堰门等)、拍门(截流拍门等)中的一种。
在本发明的一个优选实施方式中,所述第七水利开关可以实现最大限流功能,即保证通过所述第七水利开关的流量不会超过设定的流量值。
[排水控制方法]
本发明还提供上述排水系统的排水控制方法,其包括水位法、水质法、水质-水位法、时间法、总量法、雨量法、时间-水位法、总量-水位法、雨量-水位法中的至少一种。
[水位法]
本发明的第二个方面是提供一种水位法控制的排水控制方法,所述排水控制 方法是基于上述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测水体液位的装置且设置在分流井井体内,所述控制系统中的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,在该控制系统的控制单元中设定分流井的警戒水位H2和调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
1a)水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H;通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
2a)当H<H2且H’<H3时,第二水利开关处于开启状态,第四水利开关处于截流状态;
3a)当H≥H2且H’<H3时,第二水利开关处于开启状态,第四水利开关处于开启状态;
4a)当H’≥H3时,第二水利开关处于关闭状态,第四水利开关处于开启状态。
[水质法]
本发明的第三个方面是提供一种水质法控制的排水控制方法,所述排水控制方法是基于上述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测水体水质的装置且设置在分流井井体内,所述控制系统中的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,在该控制系统的控制单元中设定污染物浓度标准值C1和调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
1b)水体从入水口进入分流井,通过监测水体水质的装置实时监测分流井井体内水体水质C;通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
2b)当C≥C1时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于截流状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;
3b)当C<C1时,第四水利开关处于开启状态,第二水利开关处于关闭状态。
[水位-水质法]
本发明的第四个方面是提供一种水位-水质法控制的排水控制方法,所述排水控制方法是基于上述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测水体液位的装置和监测水体水质的装置且均设置在分流井井体内,所述控制系统中的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,在该控制系统的控制单元中设定分流井的警戒水位H2、污染物浓度标准值C1和调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
1c)水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H,通过监测水体水质的装置实时监测分流井井体内水体水质C;通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
2c)当H≥H2时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于开启状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;
3c)当H<H2且C≥C1时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于截流状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;
4c)当H<H2且C<C1时,第二水利开关处于关闭状态,第四水利开关处于开启状态。
[总量法]
本发明的第五个方面是提供一种总量法控制的排水控制方法,所述排水控制方法是基于上述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测水体总量的装置且设置在分流井井体中的第二水利开关上,所述控制系统中的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,在该控制系统的控制单元中设定分流井需要截流的初雨总量Q1和调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
1d)雨天时,水体从入水口进入分流井,通过监测水体总量的装置实时监测通过第二水利开关的水体总量Q;通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
2d)当Q<Q1时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于截流状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状 态;
3d)当Q≥Q1时,第二水利开关处于关闭状态,第四水利开关处于开启状态。
在本发明的一个优选实施方式中,所述方法还包括如下步骤:
4d)晴天时,水体从入水口进入分流井,第二水利开关处于开启状态,第四水利开关处于截流状态。
[总量-水位法]
本发明的第六个方面是提供一种总量-水位法控制的排水控制方法,所述排水控制方法是基于上述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测水体总量的装置且设置在分流井井体中的第二水利开关上,所述控制系统中的第一监测装置还包括监测水体液位的装置且设置在分流井井体内,所述控制系统中的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,在该控制系统的控制单元中设定分流井需要截流的标准初雨总量Q1、分流井的警戒水位H2和调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
1e)雨天时,水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H,通过监测水体总量的装置实时监测通过第二水利开关的水体总量Q;通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
2e)当H≥H2时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于开启状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态。
3e)当H<H2且Q<Q1时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于截流状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;
4e)当H<H2且Q≥Q1时,第二水利开关处于关闭状态,第四水利开关处于开启状态。
在本发明的一个优选实施方式中,所述方法还包括如下步骤:
5e)晴天时,水体从入水口进入分流井,第二水利开关处于开启状态,第四水利开关处于截流状态。
[雨量法]
本发明的第七个方面是提供一种雨量法控制的排水控制方法,所述排水控制方法是基于上述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测雨量的装置且设置在分流井井体外,所述控制系统中的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,在该控制系统的控制单元中设定分流井需要截流的标准初雨雨量L1和调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
1f)水体从入水口进入分流井,通过监测雨量的装置实时监测初雨雨量L;
2f)当L=0时,此时为晴天,第二水利开关处于开启状态,第四水利开关处于截流状态;
3f)当L>0时,此时为雨天,通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
4f)当0<L<L1时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于截流状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;
5f)当L≥L1时,第二水利开关处于关闭状态,第四水利开关处于开启状态。
[雨量-水位法]
本发明的第八个方面是提供一种雨量-水位法控制的排水控制方法,所述排水控制方法是基于上述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测雨量的装置且设置在分流井井体外,所述控制系统中的第一监测装置还包括监测水体液位的装置且设置在分流井井体内,所述控制系统中的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,在该控制系统的控制单元中设定分流井需要截流的标准初雨雨量L1、分流井的警戒水位H2和调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
1g)水体从入水口进入分流井,通过监测雨量的装置实时监测初雨雨量L;
2g)当L=0时,此时为晴天,第二水利开关处于开启状态,第四水利开关处于截流状态;
3g)当L>0时,此时为雨天,通过监测水体液位的装置实时监测H;通过监 测水体液位的装置实时监测调蓄设施内水体液位高度H’;
4g)当H≥H2时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于开启状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;
5g)当H<H2且0<L<L1时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于截流状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;
6g)当H<H2且L≥L1时,第四水利开关处于开启状态,第二水利开关处于关闭状态。
[时间法]
本发明的第九个方面是提供一种时间法控制的排水控制方法,所述排水控制方法是基于上述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测时间的装置且设置在分流井井体内或分流井井体外,所述控制系统中的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,在该控制系统的控制单元中设定标准时间T1和调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
1h)晴天时,水体从入水口进入分流井,第二水利开关处于开启状态,第四水利开关处于截流状态;
2h)雨天时,水体从入水口进入分流井,通过监测时间的装置实时监测降雨时间T;通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
3h)当T<T1时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于截流状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;
4h)当T≥T1时,第二水利开关处于关闭状态,第四水利开关处于开启状态。
[时间-水位法]
本发明的第十个方面是提供一种时间-水位法控制的排水控制方法,所述排水控制方法是基于上述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测时间的装置且设置在分流井井体内或分流井井体外, 所述控制系统中的第一监测装置还包括监测水体液位的装置且设置在分流井井体内,所述控制系统中的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,在该控制系统的控制单元中设定标准时间T1、分流井的警戒水位H2和调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
1i)晴天时,水体从入水口进入分流井,第二水利开关处于开启状态,第四水利开关处于截流状态;
2i)雨天时,水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H,通过监测时间的装置实时监测降雨时间T;通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
3i)当H≥H2时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于开启状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;
4i)当H<H2且T<T1时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于截流状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;
5i)当H<H2且T≥T1时,第二水利开关处于关闭状态,第四水利开关处于开启状态。
[上述方法的具体限定]
在本发明的一个优选实施方式中,所述排水系统包括在线处理设施时,所述方法还包括如下步骤:
当第四水利开关处于开启状态且所述在线处理设施设置在出水管管路上时;水体流经出水管从在线处理设施的入口端流入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端。
当第四水利开关处于开启状态且所述在线处理设施设置在出水管支路上时,通过调节第七水利开关的开度调整水体的流向;当第七水利开关处于开启状态时,部分水体流经出水管直接排放至通往自然水体的管路中,部分水体流经设置在出水管旁的支路由在线处理设施的入口端进入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端或直接排放至通往自然水体的管路;当第七水利开关处于截流状态时,全部水体流经设置在出水管旁的支路由在线处理设 施的入口端进入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端或直接排放至通往自然水体的管路。
在本发明的一个优选实施方式中,根据分流井对应收水区域内地势最低点在发生积水风险时的高度在该控制系统的控制单元中设定分流井的警戒水位H2。
在本发明的一个优选实施方式中,根据该调蓄设施的容纳能力在该控制系统的控制单元中设定该调蓄设施的最高蓄水水位H3。
在本发明的一个优选实施方式中,所述监测水体液位的装置为液位传感器、液位计、液位开关等。
在本发明的一个优选实施方式中,根据排放到的自然水体的环境容量和进入分流井的水体水质在该控制系统的控制单元中设定污染物浓度标准值C1。
在本发明的一个优选实施方式中,所述监测水体水质的装置为水质检测器、在线COD监测仪、在线氨氮监测仪、在线TSS监测仪、在线BOD监测仪、在线NH3-N监测仪、在线TP监测仪、在线TN监测仪、电极、电导率仪等,其监测的是分流井井体内水体中污染物的浓度,所述污染物包括TSS、COD、BOD、NH3-N、TN或TP中的一种或几种。
在本发明的一个优选实施方式中,所述水质检测器可以是采用电极法、UV光学法、光学散射法等实现对水体水质的检测。
在本发明的一个优选实施方式中,所述分流井排放到的自然水体的环境容量可以是自然水体如江河湖海;当所述自然水体的环境容量较大(如海洋),污染物浓度标准值C1可以适当提高;当所述自然水体的环境容量较小(如湖泊),污染物浓度标准值C1可以适当降低。当所述进入分流井的水体水质较好时,如为中后期雨水,污染物浓度标准值C1可以适当降低;当所述进入分流井的水体水质较差时,如为生活污水和/或初期雨水,污染物浓度标准值C1可以适当提高。其目的是尽可能少的减少对自然水体的污染。
在本发明的一个优选实施方式中,根据分流井对应收水区域内所需要收集的初雨总量在该控制系统的控制单元中设定分流井需要截流的标准初雨总量Q1。
在本发明的一个优选实施方式中,所述监测水体总量的装置选自带有计量功能的电动启闭机。
在本发明的一个优选实施方式中,根据分流井对应收水区域内所需要收集的初雨毫米数在该控制系统的控制单元中设定分流井需要截流的标准初雨雨量 L1。
在本发明的一个优选实施方式中,所述监测雨量的装置为雨量计。
在本发明的一个优选实施方式中,根据初期雨水的降雨时间和分流井对应收水区域内初期雨水全部径流到分流井所需要的时间在该控制系统的控制单元中设定标准时间T1。
在本发明的一个优选实施方式中,所述监测时间的装置为计时器。
在本发明的一个优选实施方式中,所述第二水利开关和第七水利开关可以实现最大限流功能,其处于开启状态是指通过所述水利开关的流量值小于等于设定的最大流量值,这可以通过控制系统中的控制单元调节所述水利开关的开度来实现。
在本发明的一个优选实施方式中,所述第四水利开关处于开启状态是指水体可以通过所述水利开关流向自然水体。
在本发明的一个优选实施方式中,所述第四水利开关和第七水利开关处于截流状态是指调节所述水利开关的开度,保证水体截流在所述水利开关的上游端,不能通过所述水利开关流向自然水体。
在本发明的一个优选实施方式中,所述第二水利开关处于关闭状态是指通过所述第二水利开关的水体的流量值为零。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外,应理解,在阅读了本发明所记载的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本发明所限定的范围。
在本发明的描述中,需要说明的是,术语“第一”、“第二”、“第四”和“第七”仅用于描述目的,而并非为指示或暗示相对重要性。
实施例1
如图1和图2所示,本发明提供一种排水系统,所述排水系统包括分流井,所述分流井包括分流井井体6和设置于所述分流井井体6中的三个开口,分别是入水口1、第一出水口2和第二出水口3;
所述排水系统还包括第二水利开关4和第四水利开关5;其中,在靠近所述第 一出水口2处设置第二水利开关4,用于控制通过第一出水口2的过水量;在靠近所述第二出水口3处设置第四水利开关5,用于控制通过第二出水口3的过水量;
所述排水系统还包括调蓄设施7,所述调蓄设施7与第一出水口2相连。
在本发明的一个优选实施方式中,所述排水系统还包括控制系统,所述排水系统还包括控制系统,所述控制系统包括第一监测装置、第二监测装置和与二者信号连接的控制单元;所述控制单元与第二水利开关4和第四水利开关5信号连接;所述第一监测装置和第二监测装置用于监测信号并将监测的信号输送给控制单元,控制单元根据接收的信号控制第二水利开关4和第四水利开关5的开度。
在本发明的一个优选实施方式中,所述调蓄设施7的入口端通过初雨管8与第一出水口2相连。
在本发明的一个优选实施方式中,所述排水系统还包括出水管9;所述第二出水口3通过出水管9与通往自然水体的管路相连。
在本发明的一个优选实施方式中,所述第一监测装置包括监测水体液位的装置(例如可以是液位传感器、液位计、液位开关等),监测水体水质的装置(例如可以是水质检测器、在线COD监测仪、在线TSS监测仪、在线BOD监测仪、在线TN监测仪、在线TP监测仪、在线NH3-N监测仪、在线氨氮监测仪、电极、电导率仪等),监测水体总量的装置(例如可以是带有计量功能的电动启闭机等),监测雨量的装置(如雨量计等),监测时间的装置(如计时器等)中的至少一种。
在本发明的一个优选实施方式中,所述第一监测装置根据类型需求可设置在分流井井体内或分流井井体外,例如,监测水体液位的装置和监测水体水质的装置设置在分流井井体内,监测雨量的装置设置在分流井井体外,监测水体总量的装置设置在分流井井体中的水利开关上,监测时间的装置设置在分流井井体内或分流井井体外。
在本发明的一个优选实施方式中,所述第二监测装置包括监测水体液位的装置(例如可以是液位传感器、液位计、液位开关等);所述第二监测装置设置在调蓄设施内。
在本发明的一个优选实施方式中,本领域技术人员可以理解,所述入水口、第一出水口和第二出水口在分流井井体中的排列顺序和排布方式没有限定,可以根据分流井设置的区域面积和地势高度合理的设置入水口、第一出水口和第二出水口的相对位置。例如,所述入水口、第一出水口和第二出水口设置在分流井井 体侧壁。
当所述入水口、第一出水口和第二出水口设置在分流井井体侧壁时,本领域技术人员可以理解,所述入水口、第一出水口和第二出水口的底部距离分流井井底的高度没有具体限定,例如与入水口连接的管路处于高地势的位置,入水口可以设置在分流井井体侧壁上的任意位置;与第一出水口和第二出水口连接的管路处于低地势的位置,第一出水口和第二出水口设置在分流井井体侧壁靠近分流井井体底部的位置。这样做的目的是为了水体不会在分流井井体中积攒,更好地流向下游。
在本发明的一个优选实施方式中,本领域技术人员可以理解,所述调蓄设施在排水系统中的数量和排布没有具体的限定,可以根据使用该系统的区域面积进行合理的排布,例如可以是串联或并联多个调蓄设施;所述调蓄设施可以是现有技术已知的调蓄设施,例如包括调蓄池、调蓄箱涵、深隧或浅隧等。
实施例2
如图3-6所示,一种带有调蓄设施的排水系统,所述排水系统包括实施例1所述的排水系统,所述排水系统还包括在线处理设施41;
如图3-图4所示,所述在线处理设施设置在出水管9上;
当所述在线处理设施设置在出水管管路上;水体流经出水管从在线处理设施的入口端流入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端。
如图5-图6所示,所述在线处理设施设置在从出水管9管路分出且终端并入出水管9管路的支路上;或设置在从出水管9管路分出且终端连通自然水体的支路上。
当所述在线处理设施设置在从出水管管路分出且终端并入出水管管路的支路上时,在出水管管路上且在支路分出和并入的位置之间设置第七水利开关42;或者,当所述在线处理设施设置在从出水管管路分出且终端连通自然水体的支路上时,在出水管管路上且在支路分出位置的下游端设置第七水利开关42。所述第七水利开关与控制单元信号连接,控制单元根据接收的信号控制第七水利开关的开度。
当所述在线处理设施设置在出水管支路上时,通过调节第七水利开关的开度 调整水体的流向;当第七水利开关处于开启状态时,部分水体流经出水管直接排放至通往自然水体的管路中,部分水体流经设置在出水管旁的支路由在线处理设施的入口端进入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端或直接排放至通往自然水体的管路;当第七水利开关处于截流状态时,全部水体流经支路由在线处理设施的入口端进入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端或直接排放至通往自然水体的管路。
在本发明的一个优选实施方式中,本领域技术人员可以理解,所述在线处理设施在系统中的数量和排布没有具体的限定,可以是串联或并联的多个在线处理设施;其具体排布方式可以根据使用该系统的区域面积进行合理的排布。所述在线处理设施可以是现有技术已知的在线处理设施,例如包括生物滤池、在线处理池、絮凝池、斜板沉淀池、沉砂池或人工湿地等。
上述实施例1-2中,本领域技术人员可以理解,在不同场所使用时,所述分流井井体形状的选择也不同,所述分流井井体形状为圆形时,特别适用于面积较小的区域,圆形分流井的占地面积一般较小,通过节省土地面积,实现其他排水设备的安装和排布。当不受使用区域面积的限制时,可以使用方形结构的分流井,其内部可容纳的空间大,可以在该空间内设置多个具有不同功能的设备,如除去泥沙的装置和除去漂浮物和悬浮物的装置等。
具体地,所述分流井井体的形状为圆形,如图1、图3和图5所示;或者,所述分流井井体的形状为方形,如图2、图4和图6所示。
实施例3
本实施例提供的是一种水位法控制的排水控制方法,所述排水控制方法是基于实施例1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测水体液位的装置且设置在分流井井体内,根据分流井对应收水区域内地势最低点在发生积水风险时的高度在该控制系统的控制单元中设定分流井的警戒水位H2;所述控制系统中的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,根据该调蓄设施的容纳能力在该控制系统的控制单元中设定该调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
1a)水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H;通过监测水体液位的装置实时监测调蓄设施内水体液位高 度H’;
2a)当分流井井体内水体液位高度H<警戒水位H2且当调蓄设施内水体液位高度H’<调蓄设施最高蓄水水位H3时,第二水利开关处于开启状态,第四水利开关处于截流状态;水体排向调蓄设施进行暂时存储;
3a)当分流井井体内水体液位高度H≥警戒水位H2且当调蓄设施内水体液位高度H’<调蓄设施最高蓄水水位H3时,第二水利开关处于开启状态,第四水利开关处于开启状态;部分水体流经出水管与自然水体相连的管路中,进而排向自然水体中;部分水体排向调蓄设施进行暂时存储;
4a)当调蓄设施内水体液位高度H’≥调蓄设施最高蓄水水位H3时,第二水利开关处于关闭状态,第四水利开关处于开启状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中。
所述监测水体液位的装置为液位传感器、液位计、液位开关等。
实施例4
本实施例提供的是一种水质法控制的排水控制方法,所述排水控制方法是基于实施例1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测水体水质的装置且设置在分流井井体内,根据排放到的自然水体的环境容量和进入分流井的水体水质在该控制系统的控制单元中设定污染物浓度标准值C1;所述控制系统的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,根据该调蓄设施的容纳能力在该控制系统的控制单元中设定该调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
1b)水体从入水口进入分流井,通过监测水体水质的装置实时监测分流井井体内水体水质C;通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
2b)当分流井井体内水体水质C≥污染物浓度标准值C1时,若调蓄设施内水体液位高度H’<调蓄设施最高蓄水水位H3,第二水利开关处于开启状态,第四水利开关处于截流状态;水体排向调蓄设施进行暂时存储;若调蓄设施内水体液位高度H’≥调蓄设施最高蓄水水位H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中;
3b)当分流井井体内水体水质C<污染物浓度标准值C1时,第四水利开关处 于开启状态,第二水利开关处于关闭状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中。
所述监测水体水质的装置为水质检测器、在线COD监测仪、在线氨氮监测仪、在线TSS监测仪、在线BOD监测仪、在线NH3-N监测仪、在线TP监测仪、在线TN监测仪、电极、电导率仪等,其监测的是分流井井体内水体中污染物的浓度,所述污染物包括TSS、COD、BOD、NH3-N、TN或TP中的一种或几种。所述水质检测器可以是采用电极法、UV光学法、光学散射法等实现对水体水质的检测。
所述监测水体液位的装置为液位传感器、液位计、液位开关等。
实施例5
本实施例提供的是一种水位-水质法控制的排水控制方法,所述排水控制方法是基于实施例1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测水体液位的装置和监测水体水质的装置且均设置在分流井井体内,根据分流井对应收水区域内地势最低点在发生积水风险时的高度在该控制系统的控制单元中设定分流井的警戒水位H2;根据排放到的自然水体的环境容量和进入分流井的水体水质在该控制系统的控制单元中设定污染物浓度标准值C1;所述控制系统的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,根据该调蓄设施的容纳能力在该控制系统的控制单元中设定该调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
1c)水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H,通过监测水体水质的装置实时监测分流井井体内水体水质C;通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
2c)当分流井井体内水体液位高度H≥警戒水位H2时,若调蓄设施内水体液位高度H’<调蓄设施最高蓄水水位H3,第二水利开关处于开启状态,第四水利开关处于开启状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中;部分水体排向调蓄设施进行暂时存储;若调蓄设施内水体液位高度H’≥调蓄设施最高蓄水水位H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中;
3c)当分流井井体内水体液位高度H<警戒水位H2且分流井井体内水体水质 C≥污染物浓度标准值C1时,若调蓄设施内水体液位高度H’<调蓄设施最高蓄水水位H3,第二水利开关处于开启状态,第四水利开关处于截流状态;水体排向调蓄设施进行暂时存储;若调蓄设施内水体液位高度H’≥调蓄设施最高蓄水水位H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中;
4c)当分流井井体内水体液位高度H<警戒水位H2且分流井井体内水体水质C<污染物浓度标准值C1时,第四水利开关处于开启状态,第二水利开关处于关闭状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中。
所述监测水体液位的装置为液位传感器、液位计、液位开关等。
所述监测水体水质的装置为水质检测器、在线COD监测仪、在线氨氮监测仪、在线TSS监测仪、在线BOD监测仪、在线NH3-N监测仪、在线TP监测仪、在线TN监测仪、电极、电导率仪等,其监测的是分流井井体内水体中污染物的浓度,所述污染物包括TSS、COD、BOD、NH3-N、TN或TP中的一种或几种。所述水质检测器可以是采用电极法、UV光学法、光学散射法等实现对水体水质的检测。
实施例6
本实施例提供的是一种总量法控制的排水控制方法,所述排水控制方法是基于实施例1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测水体总量的装置且设置在分流井井体中的第二水利开关上,根据分流井对应收水区域内所需要收集的初雨毫米数在该控制系统的控制单元中设定分流井需要截流的初雨总量Q1;所述控制系统的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,根据该调蓄设施的容纳能力在该控制系统的控制单元中设定该调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
1d)雨天时,水体从入水口进入分流井,通过监测水体总量的装置实时监测通过第二水利开关的水体总量Q;通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
2d)当通过第二水利开关的水体总量Q<Q1时,若调蓄设施内水体液位高度H’<调蓄设施最高蓄水水位H3,第二水利开关处于开启状态,第四水利开关处于截流状态;水体排向调蓄设施进行暂时存储;若调蓄设施内水体液位高度H’≥调 蓄设施最高蓄水水位H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中;
3d)当通过第二水利开关的水体总量Q≥Q1时,第二水利开关处于关闭状态,第四水利开关处于开启状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中;
4d)晴天时,水体从入水口进入分流井,第二水利开关处于开启状态,第四水利开关处于截流状态;水体排向调蓄设施进行暂时存储。
所述监测水体总量的装置选自带有计量功能的电动启闭机。
所述监测水体液位的装置为液位传感器、液位计、液位开关等。
实施例7
本实施例提供的是一种总量-水位法控制的排水控制方法,所述排水控制方法是基于实施例1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测水体总量的装置且设置在分流井井体中的第二水利开关上,所述控制系统中的第一监测装置还包括监测水体液位的装置且设置在分流井井体内,根据分流井对应收水区域内所需要收集的初雨总量在该控制系统的控制单元中设定分流井需要截流的标准初雨总量Q1;根据分流井对应收水区域内地势最低点在发生积水风险时的高度在该控制系统的控制单元中设定分流井的警戒水位H2;所述控制系统的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,根据该调蓄设施的容纳能力在该控制系统的控制单元中设定该调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
1e)雨天时,水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H,通过监测水体总量的装置实时监测通过第二水利开关的水体总量Q;通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
2e)当分流井井体内水体液位高度H≥警戒水位H2时,若调蓄设施内水体液位高度H’<调蓄设施最高蓄水水位H3,第二水利开关处于开启状态,第四水利开关处于开启状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中;水体排向调蓄设施进行暂时存储;若调蓄设施内水体液位高度H’≥调蓄设施最高蓄水水位H3,第二水利开关处于关闭状态,第四水利开关处于开启状态; 水体流经出水管与自然水体相连的管路中,进而排向自然水体中;
3e)当分流井井体内水体液位高度H<警戒水位H2且通过第二水利开关的水体总量Q<Q1时,若调蓄设施内水体液位高度H’<调蓄设施最高蓄水水位H3,第二水利开关处于开启状态,第四水利开关处于截流状态;水体排向调蓄设施进行暂时存储;若调蓄设施内水体液位高度H’≥调蓄设施最高蓄水水位H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中;
4e)当分流井井体内水体液位高度H<警戒水位H2且通过第二水利开关的水体总量Q≥Q1时,第四水利开关处于开启状态,第二水利开关处于关闭状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中;
5e)晴天时,水体从入水口进入分流井,第二水利开关处于开启状态,第四水利开关处于截流状态;水体排向调蓄设施进行暂时存储。
所述监测水体液位的装置为液位传感器、液位计、液位开关等。
所述监测水体总量的装置选自带有计量功能的电动启闭机。
实施例8
本实施例提供的是一种雨量法控制的排水控制方法,所述排水控制方法是基于实施例1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测雨量的装置且设置在分流井井体外,根据分流井对应收水区域内所需要收集的初雨毫米数在该控制系统的控制单元中设定分流井需要截流的标准初雨雨量L1;所述控制系统的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,根据该调蓄设施的容纳能力在该控制系统的控制单元中设定该调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
1f)水体从入水口进入分流井,通过监测雨量的装置实时监测初雨雨量L;
2f)当初雨雨量L=0时,此时为晴天,第二水利开关处于开启状态,第四水利开关处于截流状态;水体排向调蓄设施进行暂时存储;
3f)当初雨雨量L>0时,此时为雨天,通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
4f)当0<初雨雨量L<标准初雨雨量L1时,若调蓄设施内水体液位高度H’<调蓄设施最高蓄水水位H3,第二水利开关处于开启状态,第四水利开关处于截流 状态;水体排向调蓄设施进行暂时存储;若调蓄设施内水体液位高度H’≥调蓄设施最高蓄水水位H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中;
5f)当初雨雨量L≥标准初雨雨量L1时,第二水利开关处于关闭状态,第四水利开关处于开启状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中。
所述监测雨量的装置为雨量计。
所述监测水体液位的装置为液位传感器、液位计、液位开关等。
实施例9
本实施例提供的是一种雨量-水位法控制的排水控制方法,所述排水控制方法是基于实施例1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测雨量的装置且设置在分流井井体外,所述控制系统中的第一监测装置还包括监测水体液位的装置且设置在分流井井体内,根据分流井对应收水区域内所需要收集的初雨毫米数在该控制系统的控制单元中设定分流井需要截流的标准初雨雨量L1;根据分流井对应收水区域内地势最低点在发生积水风险时的高度在该控制系统的控制单元中设定分流井的警戒水位H2;所述控制系统的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,根据该调蓄设施的容纳能力在该控制系统的控制单元中设定该调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
1g)水体从入水口进入分流井,通过监测雨量的装置实时监测初雨雨量L;
2g)当初雨雨量L=0时,此时为晴天,第二水利开关处于开启状态,第四水利开关处于截流状态;水体排向调蓄设施进行暂时存储;
3g)当初雨雨量L>0时,此时为雨天,通过监测水体液位的装置实时监测分流井井体内水体液位高度H;通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
4g)当分流井井体内水体液位高度H≥警戒水位H2时,若调蓄设施内水体液位高度H’<调蓄设施最高蓄水水位H3,第二水利开关处于开启状态,第四水利开关处于开启状态;水体排向调蓄设施进行暂时存储;水体流经出水管与自然水体相连的管路中,进而排向自然水体中;若调蓄设施内水体液位高度H’≥调蓄设施 最高蓄水水位H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中;
5g)当分流井井体内水体液位高度H<警戒水位H2且0<初雨雨量L<标准初雨雨量L1时,若调蓄设施内水体液位高度H’<调蓄设施最高蓄水水位H3,第二水利开关处于开启状态,第四水利开关处于截流状态;水体排向调蓄设施进行暂时存储;若调蓄设施内水体液位高度H’≥调蓄设施最高蓄水水位H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中;
6g)当分流井井体内水体液位高度H<警戒水位H2且初雨雨量L≥标准初雨雨量L1时,第四水利开关处于开启状态,第二水利开关处于关闭状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中。
所述监测水体液位的装置为液位传感器、液位计、液位开关等。
所述监测雨量的装置为雨量计。
实施例10
本实施例提供的是一种时间法控制的排水控制方法,所述排水控制方法是基于实施例1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测时间的装置且设置在分流井井体内或分流井井体外,根据初期雨水的降雨时间和分流井对应收水区域内初期雨水全部径流到分流井所需要的时间在该控制系统的控制单元中设定标准时间T1;所述控制系统的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,根据该调蓄设施的容纳能力在该控制系统的控制单元中设定该调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
1h)晴天时,水体从入水口进入分流井,第二水利开关处于开启状态,第四水利开关处于截流状态;水体排向调蓄设施进行暂时存储;
2h)雨天时,水体从入水口进入分流井,通过监测时间的装置实时监测降雨时间T;通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
3h)当降雨时间T<标准时间T1时,若调蓄设施内水体液位高度H’<调蓄设施最高蓄水水位H3,第二水利开关处于开启状态,第四水利开关处于截流状态;水体排向调蓄设施进行暂时存储;若调蓄设施内水体液位高度H’≥调蓄设施最高 蓄水水位H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中;
4h)当降雨时间T≥标准时间T1时,第二水利开关处于关闭状态,第四水利开关处于开启状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中。
所述监测时间的装置为计时器。
所述监测水体液位的装置为液位传感器、液位计、液位开关等。
实施例11
本实施例提供的是一种时间-水位法控制的排水控制方法,所述排水控制方法是基于实施例1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测时间的装置且设置在分流井井体内或分流井井体外,所述控制系统中的第一监测装置还包括监测水体液位的装置且设置在分流井井体内,根据初期雨水的降雨时间和分流井对应收水区域内初期雨水全部径流到分流井所需要的时间在该控制系统的控制单元中设定标准时间T1;根据分流井对应收水面积区域内地势最低点在发生积水风险时的高度在该控制系统的控制单元中设定分流井的警戒水位H2;所述控制系统的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,根据该调蓄设施的容纳能力在该控制系统的控制单元中设定该调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
1i)晴天时,水体从入水口进入分流井,第二水利开关处于开启状态,第四水利开关处于截流状态;水体排向调蓄设施进行暂时存储;
2i)雨天时,水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H,通过监测时间的装置实时监测降雨时间T;通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
3i)当分流井井体内水体液位高度H≥警戒水位H2时,若调蓄设施内水体液位高度H’<调蓄设施最高蓄水水位H3,第二水利开关处于开启状态,第四水利开关处于开启状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中;水体排向调蓄设施进行暂时存储;若调蓄设施内水体液位高度H’≥调蓄设施最高蓄水水位H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中;
4i)当分流井井体内水体液位高度H<警戒水位H2且降雨时间T<标准时间T1时,若调蓄设施内水体液位高度H’<调蓄设施最高蓄水水位H3,第二水利开关处于开启状态,第四水利开关处于截流状态;水体排向调蓄设施进行暂时存储;若调蓄设施内水体液位高度H’≥调蓄设施最高蓄水水位H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中;
5i)当分流井井体内水体液位高度H<警戒水位H2且降雨时间T≥标准时间T1时,第四水利开关处于开启状态,第二水利开关处于关闭状态;水体流经出水管与自然水体相连的管路中,进而排向自然水体中。
所述监测时间的装置为计时器。
所述监测水体液位的装置为液位传感器、液位计、液位开关等。
实施例12
当所述排水系统包括在线处理设施时,即对应实施例2的排水系统时,其分别采用上述实施例3-11的排水控制方法,且进一步还包括如下步骤:
当第四水利开关处于开启状态且所述在线处理设施设置在出水管管路上时;水体流经出水管从在线处理设施的入口端流入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端。
当第四水利开关处于开启状态且所述在线处理设施设置在出水管支路上时,通过调节第七水利开关的开度调整水体的流向;当第七水利开关处于开启状态时,部分水体流经出水管直接排放至通往自然水体的管路中,部分水体流经设置在出水管旁的支路由在线处理设施的入口端进入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端或直接排放至通往自然水体的管路;当第七水利开关处于截流状态时,全部水体流经设置在出水管旁的支路由在线处理设施的入口端进入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端或直接排放至通往自然水体的管路。
上述实施例3-12中,所述第二水利开关和第七水利开关可以实现最大限流功能,其处于开启状态是指通过所述水利开关的流量值小于等于设定的最大流量值,这可以通过控制系统中的控制单元调节所述水利开关的开度来实现。
上述实施例3-12中,所述第四水利开关处于开启状态是指水体可以通过所述 水利开关流向自然水体。
上述实施例3-12中,所述第四水利开关和第七水利开关处于截流状态是指调节所述水利开关的开度,保证水体截流在所述水利开关的上游端,不能通过所述水利开关流向自然水体。
上述实施例3-12中,所述第二水利开关处于关闭状态是指通过所述第二水利开关的水体的流量值为零。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种排水系统,其特征在于,所述排水系统包括分流井,所述分流井包括分流井井体和设置于所述分流井井体中的三个开口,分别是入水口、第一出水口和第二出水口;
    所述排水系统还包括第二水利开关和第四水利开关;其中,在靠近所述第一出水口处设置第二水利开关,用于控制通过第一出水口的过水量;在靠近所述第二出水口处设置第四水利开关,用于控制通过第二出水口的过水量;
    所述排水系统还包括调蓄设施,所述调蓄设施与第一出水口相连。
    优选地,所述排水系统还包括控制系统,所述控制系统包括第一监测装置、第二监测装置和与二者信号连接的控制单元;所述控制单元与第二水利开关和第四水利开关信号连接;所述第一监测装置和第二监测装置用于监测信号并将监测的信号输送给控制单元,控制单元根据接收的信号控制第二水利开关和第四水利开关的开度。
    优选地,所述调蓄设施通过管道或廊道与第一出水口相连,例如通过初雨管与第一出水口相连。
    优选地,所述排水系统还包括出水管;所述第二出水口通过出水管与通往自然水体的管路相连。
    优选地,所述第一监测装置包括监测水体液位的装置(例如可以是液位传感器、液位计、液位开关等),监测水体水质的装置(例如可以是水质检测器、在线COD监测仪、在线TSS监测仪、在线BOD监测仪、在线TN监测仪、在线TP监测仪、在线NH3-N监测仪、在线氨氮监测仪、电极、电导率仪等),监测水体总量的装置(例如可以是带有计量功能的电动启闭机等),监测雨量的装置(如雨量计等),监测时间的装置(如计时器等)中的至少一种。
    优选地,所述第一监测装置根据类型需求可设置在分流井井体内或分流井井体外,例如,监测水体液位的装置和监测水体水质的装置设置在分流井井体内,监测雨量的装置设置在分流井井体外,监测水体总量的装置设置在分流井井体中的水利开关上,监测时间的装置设置在分流井井体内或分流井井体外。
    优选地,所述第二监测装置包括监测水体液位的装置(例如可以是液位传感器、液位计、液位开关等)。
    优选地,所述第二监测装置设置在调蓄设施内。
    优选地,所述调蓄设施可以是串联或并联多个调蓄设施;所述调蓄设施包括调蓄池、调蓄箱涵、深隧或浅隧等。
    优选地,所述排水系统还包括在线处理设施;所述在线处理设施设置在出水管上或设置在从出水管管路分出且终端并入出水管管路的支路上;或设置在从出水管管路分出且终端连通自然水体的支路上。
    当所述在线处理设施设置在从出水管管路分出且终端并入出水管管路的支路上时,在出水管管路上且在支路分出和并入的位置之间设置第七水利开关;或者,当所述在线处理设施设置在从出水管管路分出且终端连通自然水体的支路上时,在出水管管路上且在支路分出位置的下游端设置第七水利开关。
    优选地,所述第七水利开关与控制单元信号连接,控制单元根据接收的信号控制第七水利开关的开度。
    优选地,所述在线处理设施可以是串联或并联的多个在线处理设施;所述在线处理设施包括生物滤池、在线处理池、絮凝池、斜板沉淀池、沉砂池或人工湿地。
    优选地,所述第二水利开关和第四水利开关分别独立地选自阀门(球阀、闸阀、刀闸阀、蝶阀、升降式橡胶板截流止回阀等)、闸门(上开式闸门、下开式闸门等)、堰门(上开式堰门、下开式堰门、旋转式堰门等)、拍门(截流拍门等)中的一种。
    优选地,所述第二水利开关可以实现最大限流功能,即保证通过所述第二水利开关的流量不会超过设定的流量值。
    优选地,所述第七水利开关选自阀门(球阀、闸阀、刀闸阀、蝶阀、升降式橡胶板截流止回阀等)、闸门(上开式闸门、下开式闸门等)、堰门(上开式堰门、下开式堰门、旋转式堰门等)、拍门(截流拍门等)中的一种。
    所述第七水利开关可以实现最大限流功能,即保证通过所述第七水利开关的流量不会超过设定的流量值。
  2. 一种水位法控制的排水控制方法,所述排水控制方法是基于权利要求1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测水体液位的装置且设置在分流井井体内,所述控制系统中的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,在该控制系统的控制单元中设定 分流井的警戒水位H2和调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
    1a)水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H;通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
    2a)当H<H2且H’<H3时,第二水利开关处于开启状态,第四水利开关处于截流状态;
    3a)当H≥H2且H’<H3时,第二水利开关处于开启状态,第四水利开关处于开启状态;
    4a)当H’≥H3时,第二水利开关处于关闭状态,第四水利开关处于开启状态。
    优选地,根据分流井对应收水区域内地势最低点在发生积水风险时的高度在该控制系统的控制单元中设定分流井的警戒水位H2。
    优选地,根据该调蓄设施的容纳能力在该控制系统的控制单元中设定该调蓄设施的最高蓄水水位H3。
    优选地,所述监测水体液位的装置为液位传感器、液位计、液位开关等。
  3. 一种水质法控制的排水控制方法,其特征在于,所述排水控制方法是基于权利要求1所述的的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测水体水质的装置且设置在分流井井体内,所述控制系统中的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,在该控制系统的控制单元中设定污染物浓度标准值C1和调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
    1b)水体从入水口进入分流井,通过监测水体水质的装置实时监测分流井井体内水体水质C;通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
    2b)当C≥C1时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于截流状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;
    3b)当C<C1时,第四水利开关处于开启状态,第二水利开关处于关闭状态。
    优选地,根据排放到的自然水体的环境容量和进入分流井的水体水质在该控制系统的控制单元中设定污染物浓度标准值C1。
    优选地,所述监测水体水质的装置为水质检测器、在线COD监测仪、在线 氨氮监测仪、在线TSS监测仪、在线BOD监测仪、在线NH3-N监测仪、在线TP监测仪、在线TN监测仪、电极、电导率仪等,其监测的是分流井井体内水体中污染物的浓度,所述污染物包括TSS、COD、BOD、NH3-N、TN或TP中的一种或几种。
    优选地,所述水质检测器可以是采用电极法、UV光学法、光学散射法等实现对水体水质的检测。
    优选地,根据该调蓄设施的容纳能力在该控制系统的控制单元中设定该调蓄设施的最高蓄水水位H3。
    优选地,所述监测水体液位的装置为液位传感器、液位计、液位开关等。
  4. 一种水位-水质法控制的排水控制方法,其特征在于,所述排水控制方法是基于权利要求1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测水体液位的装置和监测水体水质的装置且均设置在分流井井体内,所述控制系统中的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,在该控制系统的控制单元中设定分流井的警戒水位H2、污染物浓度标准值C1和调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
    1c)水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H,通过监测水体水质的装置实时监测分流井井体内水体水质C;通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
    2c)当H≥H2时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于开启状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;
    3c)当H<H2且C≥C1时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于截流状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;
    4c)当H<H2且C<C1时,第二水利开关处于关闭状态,第四水利开关处于开启状态。
    优选地,根据分流井对应收水区域内地势最低点在发生积水风险时的高度在该控制系统的控制单元中设定分流井的警戒水位H2。
    优选地,根据该调蓄设施的容纳能力在该控制系统的控制单元中设定该调蓄设施的最高蓄水水位H3。
    优选地,所述监测水体液位的装置为液位传感器、液位计、液位开关等。
    优选地,根据排放到的自然水体的环境容量和进入分流井的水体水质在该控制系统的控制单元中设定污染物浓度标准值C1。
    优选地,所述监测水体水质的装置为水质检测器、在线COD监测仪、在线氨氮监测仪、在线TSS监测仪、在线BOD监测仪、在线NH3-N监测仪、在线TP监测仪、在线TN监测仪、电极、电导率仪等,其监测的是分流井井体内水体中污染物的浓度,所述污染物包括TSS、COD、BOD、NH3-N、TN或TP中的一种或几种。
    优选地,所述水质检测器可以是采用电极法、UV光学法、光学散射法等实现对水体水质的检测。
  5. 一种总量法控制的排水控制方法,其特征在于,所述排水控制方法是基于权利要求1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测水体总量的装置且设置在分流井井体中的第二水利开关上,所述控制系统中的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,在该控制系统的控制单元中设定分流井需要截流的初雨总量Q1和调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
    1d)雨天时,水体从入水口进入分流井,通过监测水体总量的装置实时监测通过第二水利开关的水体总量Q;通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
    2d)当Q<Q1时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于截流状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;
    3d)当Q≥Q1时,第二水利开关处于关闭状态,第四水利开关处于开启状态。
    优选地,所述方法还包括如下步骤:
    4d)晴天时,水体从入水口进入分流井,第二水利开关处于开启状态,第四水利开关处于截流状态。
    优选地,根据分流井对应收水区域内所需要收集的初雨总量在该控制系统的控制单元中设定分流井需要截流的标准初雨总量Q1。
    优选地,所述监测水体总量的装置选自带有计量功能的电动启闭机。
    优选地,根据该调蓄设施的容纳能力在该控制系统的控制单元中设定该调蓄 设施的最高蓄水水位H3。
    优选地,所述监测水体液位的装置为液位传感器、液位计、液位开关等。
  6. 一种总量-水位法控制的排水控制方法,其特征在于,所述排水控制方法是基于权利要求1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测水体总量的装置且设置在分流井井体中的第二水利开关上,所述控制系统中的第一监测装置还包括监测水体液位的装置且设置在分流井井体内,所述控制系统中的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,在该控制系统的控制单元中设定分流井需要截流的标准初雨总量Q1、分流井的警戒水位H2和调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
    1e)雨天时,水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H,通过监测水体总量的装置实时监测通过第二水利开关的水体总量Q;通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
    2e)当H≥H2时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于开启状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态。
    3e)当H<H2且Q<Q1时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于截流状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;
    4e)当H<H2且Q≥Q1时,第二水利开关处于关闭状态,第四水利开关处于开启状态。
    优选地,所述方法还包括如下步骤:
    5e)晴天时,水体从入水口进入分流井,第二水利开关处于开启状态,第四水利开关处于截流状态。
    优选地,根据分流井对应收水区域内所需要收集的初雨总量在该控制系统的控制单元中设定分流井需要截流的标准初雨总量Q1。
    优选地,所述监测水体总量的装置选自带有计量功能的电动启闭机。
    优选地,根据分流井对应收水区域内地势最低点在发生积水风险时的高度在该控制系统的控制单元中设定分流井的警戒水位H2。
    优选地,根据该调蓄设施的容纳能力在该控制系统的控制单元中设定该调蓄设施的最高蓄水水位H3。
    优选地,所述监测水体液位的装置为液位传感器、液位计、液位开关等。
  7. 一种雨量法控制的排水控制方法,其特征在于,所述排水控制方法是基于权利要求1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测雨量的装置且设置在分流井井体外,所述控制系统中的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,在该控制系统的控制单元中设定分流井需要截流的标准初雨雨量L1和调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
    1f)水体从入水口进入分流井,通过监测雨量的装置实时监测初雨雨量L;
    2f)当L=0时,此时为晴天,第二水利开关处于开启状态,第四水利开关处于截流状态;
    3f)当L>0时,此时为雨天,通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
    4f)当0<L<L1时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于截流状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;
    5f)当L≥L1时,第二水利开关处于关闭状态,第四水利开关处于开启状态。
    优选地,根据分流井对应收水区域内所需要收集的初雨毫米数在该控制系统的控制单元中设定分流井需要截流的标准初雨雨量L1。
    优选地,所述监测雨量的装置为雨量计。
    优选地,根据该调蓄设施的容纳能力在该控制系统的控制单元中设定该调蓄设施的最高蓄水水位H3。
    优选地,所述监测水体液位的装置为液位传感器、液位计、液位开关等。
  8. 一种雨量-水位法控制的排水控制方法,其特征在于,所述排水控制方法是基于权利要求1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测雨量的装置且设置在分流井井体外,所述控制系统中的第一监测装置还包括监测水体液位的装置且设置在分流井井体内,所述控制系统中的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,在该控制系统的控制单元中设定分流井需要截流的标准初雨雨量L1、分流井的警戒水位H2 和调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
    1g)水体从入水口进入分流井,通过监测雨量的装置实时监测初雨雨量L;
    2g)当L=0时,此时为晴天,第二水利开关处于开启状态,第四水利开关处于截流状态;
    3g)当L>0时,此时为雨天,通过监测水体液位的装置实时监测H;通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
    4g)当H≥H2时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于开启状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;
    5g)当H<H2且0<L<L1时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于截流状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;
    6g)当H<H2且L≥L1时,第四水利开关处于开启状态,第二水利开关处于关闭状态。
    优选地,根据分流井对应收水区域内所需要收集的初雨毫米数在该控制系统的控制单元中设定分流井需要截流的标准初雨雨量L1。
    优选地,所述监测雨量的装置为雨量计。
    优选地,根据分流井对应收水区域内地势最低点在发生积水风险时的高度在该控制系统的控制单元中设定分流井的警戒水位H2。
    优选地,根据该调蓄设施的容纳能力在该控制系统的控制单元中设定该调蓄设施的最高蓄水水位H3。
    优选地,所述监测水体液位的装置为液位传感器、液位计、液位开关等。
  9. 一种时间法控制的排水控制方法,其特征在于,所述排水控制方法是基于权利要求1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测时间的装置且设置在分流井井体内或分流井井体外,所述控制系统中的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,在该控制系统的控制单元中设定标准时间T1和调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
    1h)晴天时,水体从入水口进入分流井,第二水利开关处于开启状态,第四水利开关处于截流状态;
    2h)雨天时,水体从入水口进入分流井,通过监测时间的装置实时监测降雨时间T;通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
    3h)当T<T1时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于截流状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;
    4h)当T≥T1时,第二水利开关处于关闭状态,第四水利开关处于开启状态。
    优选地,根据初期雨水的降雨时间和分流井对应收水区域内初期雨水全部径流到分流井所需要的时间在该控制系统的控制单元中设定标准时间T1。
    优选地,所述监测时间的装置为计时器。
    优选地,根据该调蓄设施的容纳能力在该控制系统的控制单元中设定该调蓄设施的最高蓄水水位H3。
    优选地,所述监测水体液位的装置为液位传感器、液位计、液位开关等。
  10. 一种时间-水位法控制的排水控制方法,其特征在于,所述排水控制方法是基于权利要求1所述的排水系统,所述排水系统包括控制系统,所述控制系统中的第一监测装置包括监测时间的装置且设置在分流井井体内或分流井井体外,所述控制系统中的第一监测装置还包括监测水体液位的装置且设置在分流井井体内,所述控制系统中的第二监测装置包括监测水体液位的装置且设置在调蓄设施内,在该控制系统的控制单元中设定标准时间T1、分流井的警戒水位H2和调蓄设施的最高蓄水水位H3;所述方法包括如下步骤:
    1i)晴天时,水体从入水口进入分流井,第二水利开关处于开启状态,第四水利开关处于截流状态;
    2i)雨天时,水体从入水口进入分流井,通过监测水体液位的装置实时监测分流井井体内水体液位高度H,通过监测时间的装置实时监测降雨时间T;通过监测水体液位的装置实时监测调蓄设施内水体液位高度H’;
    3i)当H≥H2时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于开启状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;
    4i)当H<H2且T<T1时,若H’<H3,第二水利开关处于开启状态,第四水利开关处于截流状态;若H’≥H3,第二水利开关处于关闭状态,第四水利开关处于开启状态;
    5i)当H<H2且T≥T1时,第二水利开关处于关闭状态,第四水利开关处于开启状态。
    优选地,根据初期雨水的降雨时间和分流井对应收水区域内初期雨水全部径流到分流井所需要的时间在该控制系统的控制单元中设定标准时间T1。
    优选地,所述监测时间的装置为计时器。
    优选地,根据分流井对应收水区域内地势最低点在发生积水风险时的高度在该控制系统的控制单元中设定分流井的警戒水位H2。
    优选地,根据该调蓄设施的容纳能力在该控制系统的控制单元中设定该调蓄设施的最高蓄水水位H3。
    优选地,所述监测水体液位的装置为液位传感器、液位计、液位开关等。
  11. 权利要求2-10中任一项所述的方法,其特征在于,所述排水系统包括在线处理设施时,所述方法还包括如下步骤:
    当第四水利开关处于开启状态且所述在线处理设施设置在出水管管路上时;水体流经出水管从在线处理设施的入口端流入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端。
    当第四水利开关处于开启状态且所述在线处理设施设置在出水管支路上时,通过调节第七水利开关的开度调整水体的流向;当第七水利开关处于开启状态时,部分水体流经出水管直接排放至通往自然水体的管路中,部分水体流经设置在出水管旁的支路由在线处理设施的入口端进入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端或直接排放至通往自然水体的管路;当第七水利开关处于截流状态时,全部水体流经设置在出水管旁的支路由在线处理设施的入口端进入在线处理设施,经处理后,从在线处理设施的出口端流入出水管下游端或直接排放至通往自然水体的管路。
PCT/CN2017/116933 2017-09-30 2017-12-18 一种带有调蓄设施的排水系统及排水控制方法 WO2019061872A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710915382.4A CN107761898B (zh) 2017-09-30 2017-09-30 一种带有调蓄设施的排水系统及排水控制方法
CN201710915382.4 2017-09-30

Publications (1)

Publication Number Publication Date
WO2019061872A1 true WO2019061872A1 (zh) 2019-04-04

Family

ID=61267049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116933 WO2019061872A1 (zh) 2017-09-30 2017-12-18 一种带有调蓄设施的排水系统及排水控制方法

Country Status (2)

Country Link
CN (1) CN107761898B (zh)
WO (1) WO2019061872A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111749317A (zh) * 2019-03-27 2020-10-09 高小平 一种截污调蓄排水系统及其排水控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3310314A1 (de) * 1983-03-22 1984-09-27 Fa. Helmuth Dallmer, 5760 Arnsberg Revisionsschacht fuer eine gebaeude-abwasserleitung
JP2010185194A (ja) * 2009-02-10 2010-08-26 Sekisui Plastics Co Ltd 雨水流出抑制施設
CN102776949A (zh) * 2012-08-14 2012-11-14 上海市城市建设设计研究总院 分建式雨水调蓄系统
CN103410215A (zh) * 2013-08-06 2013-11-27 嘉兴市规划设计研究院有限公司 一种分流制雨水排放口末端调蓄及污染截控的方法
CN103774736A (zh) * 2014-02-26 2014-05-07 华瀚管道系统科技有限公司 一种城市排水管网雨水分流处理及存储系统
CN105064494A (zh) * 2015-07-17 2015-11-18 武汉圣禹排水系统有限公司 雨水截流系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3310314A1 (de) * 1983-03-22 1984-09-27 Fa. Helmuth Dallmer, 5760 Arnsberg Revisionsschacht fuer eine gebaeude-abwasserleitung
JP2010185194A (ja) * 2009-02-10 2010-08-26 Sekisui Plastics Co Ltd 雨水流出抑制施設
CN102776949A (zh) * 2012-08-14 2012-11-14 上海市城市建设设计研究总院 分建式雨水调蓄系统
CN103410215A (zh) * 2013-08-06 2013-11-27 嘉兴市规划设计研究院有限公司 一种分流制雨水排放口末端调蓄及污染截控的方法
CN103774736A (zh) * 2014-02-26 2014-05-07 华瀚管道系统科技有限公司 一种城市排水管网雨水分流处理及存储系统
CN105064494A (zh) * 2015-07-17 2015-11-18 武汉圣禹排水系统有限公司 雨水截流系统

Also Published As

Publication number Publication date
CN107761898A (zh) 2018-03-06
CN107761898B (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
CN107605006B (zh) 一种排水系统及排水控制方法
WO2019061871A1 (zh) 一种带有调蓄设施的排水系统及排水控制方法
CN107587580B (zh) 一种带液动下开式堰门和泵排的排水系统及排水控制方法
CN207436200U (zh) 一种带有溢流堰的分流井及包括该分流井的排水系统
CN107842088A (zh) 一种带有调蓄设施和在线处理设施的排水系统及排水控制方法
CN207959445U (zh) 一种带有调蓄设施和在线处理设施的排水系统
CN107558593B (zh) 一种包括一进四出式分流井的排水系统及排水控制方法
CN207761004U (zh) 一种带有溢流堰的分流井及包括该分流井的排水系统
CN207436169U (zh) 一种控制污水和初期雨水污染的分流制排水管网系统
CN107587579B (zh) 带有截污管和雨水处理设施的排水系统及排水控制方法
WO2019085189A1 (zh) 一种降雨时控制排水系统中的污水汇入污水干管的方法
CN107620367B (zh) 一种带有截污管和调蓄设施的排水系统及排水控制方法
CN107806154B (zh) 一种带有在线处理设施的排水系统及排水控制方法
CN207761003U (zh) 一种带有调蓄设施和一体化处理设施的排水系统
WO2019061872A1 (zh) 一种带有调蓄设施的排水系统及排水控制方法
CN207760984U (zh) 一种带有截污管和在线处理设施的排水系统
CN207760985U (zh) 一种带液动下开式堰门和泵排的排水系统
CN207436179U (zh) 一种带有双翻板闸门的分流井及包括该分流井的排水系统
CN107806162A (zh) 一种降雨时控制排水系统中各个分流设施截污管中的污水汇入污水干管的方法
CN107780509B (zh) 一种带有调蓄设施和一体化处理设施的排水系统及排水控制方法
CN107587581B (zh) 一种带有雨水处理系统的排水系统及排水控制方法
CN107761902B (zh) 一种带有截污管和在线处理设施的排水系统及排水控制方法
CN207436176U (zh) 一种带有在线处理设施的排水系统
CN107859139A (zh) 一种降雨时控制排水系统中各个片区雨水管路和污水管路中的污水汇入污水干管的方法
CN207760980U (zh) 一种带有截污管和调蓄设施的排水系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926478

Country of ref document: EP

Kind code of ref document: A1