WO2019061833A1 - 消散斑装置、激光光源及激光投影系统 - Google Patents

消散斑装置、激光光源及激光投影系统 Download PDF

Info

Publication number
WO2019061833A1
WO2019061833A1 PCT/CN2017/115236 CN2017115236W WO2019061833A1 WO 2019061833 A1 WO2019061833 A1 WO 2019061833A1 CN 2017115236 W CN2017115236 W CN 2017115236W WO 2019061833 A1 WO2019061833 A1 WO 2019061833A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave plate
laser
laser beam
laser light
light source
Prior art date
Application number
PCT/CN2017/115236
Other languages
English (en)
French (fr)
Inventor
杨乐宝
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Priority to US16/648,133 priority Critical patent/US20200218081A1/en
Publication of WO2019061833A1 publication Critical patent/WO2019061833A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the utility model relates to the field of laser technology. More specifically, it relates to a speckle reduction device, a laser light source, and a laser projection system.
  • the laser beam When the laser light source is used as the light source of the projection system, the laser beam itself generates spot interference (self-coherence) due to the high coherence of the laser.
  • the self-coherence of the laser beam is the same: the laser frequency is the same, the vibration direction is uniform, and the phase difference is constant. Spot interference can result in the formation of stray light with uneven brightness along the laser exit spot, called laser speckle, which affects the imaging effect of the projection.
  • the object of the present invention is to provide a speckle reduction device, a laser light source and a laser projection system to eliminate the laser speckle phenomenon by changing the polarization state of a part of the laser light in the laser beam.
  • the utility model discloses a speckle reduction device, which comprises a wave plate located in a laser light path, the wave plate being arranged to directly pass 25%-75% of the incident laser beam.
  • the wave plate is arranged to pass 50% of the incident laser beam directly.
  • the wave plate is a half wave plate.
  • the speckle reduction device further comprises a stop on the exiting light path of the wave plate.
  • the wave plate is an annular wave plate with an intermediate opening.
  • the wave plate is an annular wave plate having a centrally symmetric shape opening in the middle, and the annular wave plate is concentrically disposed with the aperture through hole.
  • the wave plate is an annular wave plate having a circular opening in the middle, and the annular wave plate is concentrically arranged with the aperture through hole.
  • the wave plate and the diaphragm are disposed in the immediate vicinity of the optical path.
  • the utility model also discloses a laser light source, which comprises a laser for emitting laser light, and further comprises the above-mentioned dissipating spot device.
  • the utility model also discloses a laser projection system, which comprises the above laser light source.
  • the technical scheme of the utility model can eliminate the laser speckle phenomenon by changing the polarization state of a part of the laser beam in the laser beam, and has the advantages of small volume, simple structure and high reliability.
  • Figure 1 shows a cross-sectional view of a speckle reduction device.
  • Figure 2 shows a cross-sectional view of an anti-scattering device in an alternative manner.
  • the dissipating device provided in this embodiment includes a wave plate 100 sequentially located in a laser light path, and the wave plate 100 is arranged to directly pass 25%-75% of the incident laser beam.
  • the portion of the laser beam incident directly through the wave plate 100 does not change the polarization state, while the remaining portion of the laser light changes the polarization state from the wave plate 100. Since the vibration direction between the partial laser beam in which the incident laser beam does not change the polarization state and the partial laser light in which the polarization state is changed is different, no interference is formed between the two, thereby eliminating the laser speckle phenomenon of the incident laser light.
  • the wave plate 100 is arranged to pass 50% of the incident laser beam directly, so that the polarization state of half of the laser light in the incident laser beam can be changed, so that the incident laser beam does not change the partial polarization of the polarization state and the polarization state is changed.
  • Part of the laser occupies half of the incident laser beam, and the effect of eliminating the laser speckle phenomenon of the incident laser beam is better.
  • the wave plate 100 is a half wave plate, such that the incident laser beam changes the partial polarization of the polarization state from the wave plate 100 and the vibration between the incident laser beam directly passing through the wave plate 100 without changing the polarization state.
  • the direction is vertical, and the effect of eliminating the laser speckle phenomenon of the incident laser beam is better.
  • the incident laser when the incident laser is S-state linearly polarized light, 25%-75% of the incident laser beam passes directly through the half-wave plate, and the incident laser beam directly passes through the partial laser of the half-wave plate without changing the polarization state (ie, the incident laser beam passes directly).
  • the partial laser of the half-wave plate is also the S-state linearly polarized light), and the rest of the laser light is converted into the P-state linearly polarized light, because the vibration directions of the P-state linearly polarized light and the S-state linearly polarized light are perpendicular to each other, and the two are not Interference will be formed, thus eliminating the laser speckle phenomenon of the incident laser.
  • the incident laser beam is P-state linearly polarized light, part of the laser beam incident on the laser beam is converted into S-state linearly polarized light, which also eliminates the laser speckle phenomenon of the incident laser light.
  • the astigmatism device further includes a stop 200 located on the exiting path of the wave plate 100.
  • the wave plate 100 and the aperture 200 are disposed in the optical path direction, so that the effect of limiting the incident laser beam by the aperture 200 is better, and the miniaturization of the speckle reduction device is made possible, thereby saving space and reducing the device. Overall volume.
  • the waveplate 100 is an annular aperture plate with an intermediate opening. Further, the wave plate 100 is an annular wave plate having a centrally symmetric shape opening in the middle, and the annular wave plate is concentrically arranged with the aperture 200 through the optical aperture 201. Most preferably, as shown in FIG. 2, the wave plate 100 is an annular wave plate having a circular opening 101 in the middle, and the annular wave plate is concentrically disposed with the aperture 200 through the aperture 201. In this way, the positional relationship between the wave plate 100 and the aperture 200 in the optical path can be easily adjusted.
  • the shape of the wave plate 100 is only a preferred example, and the wave plate 100 may also be any shape having a rectangular shape, a triangular shape, an elliptical shape, or the like, or a ring having an arbitrary shape in the middle, as long as the wave plate 100 is arranged in the optical path to directly pass 25%-75% of the incident laser beam, ie, does not change the deflection state of the laser of 25%-75% of the incident laser beam, and changes the laser of 75%-25% of the incident laser beam.
  • the deflection state can achieve the laser speckle phenomenon of eliminating incident laser light.
  • the embodiment provides a laser light source, which comprises a laser that emits laser light and the above-mentioned dissipating spot device, and the linearly polarized light emitted by the laser passes through the wave plate 100 to eliminate the laser speckle phenomenon.
  • the embodiment further provides a laser projection system including the above laser light source.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Projection Apparatus (AREA)

Abstract

一种消散斑装置、激光光源及激光投影系统,消散斑装置包括位于激光光路的波片(100),波片(100)布置为使入射激光束的25%-75%直接通过。可消除激光散斑现象。

Description

消散斑装置、激光光源及激光投影系统 技术领域
本实用新型涉及激光技术领域。更具体地,涉及一种消散斑装置、激光光源及激光投影系统。
背景技术
激光光源作为投影系统的光源时,由于激光的高相干性会造成激光束自身产生光斑干涉(自相干),激光束产生自相干的条件是:激光频率相同、振动方向一致和相位差恒定。光斑干涉会导致在激光出射光斑旁边形成亮度不均匀的杂光,称为激光散斑,激光散斑现象会影响投影的成像效果。
因此,需要提供一种可通过改变部分激光的振动方向消除激光散斑现象的消散斑装置、激光光源及激光投影系统。
发明内容
本实用新型的目的在于提供一种消散斑装置、激光光源及激光投影系统,以通过改变激光束中部分激光的偏振态消除激光散斑现象。
为达到上述目的,本实用新型采用下述技术方案:
本实用新型公开一种消散斑装置,包括位于激光光路的波片,所述波片布置为使入射激光束的25%-75%直接通过。
优选地,所述波片布置为使入射激光束的50%直接通过。
优选地,所述波片为半波片。
优选地,该消散斑装置还包括位于所述波片出射光路上的光阑。
优选地,所述波片为中间开孔的环形波片。
优选地,所述波片为中间具有中心对称形状开孔的环形波片,该环形波片与所述光阑通光孔同心设置。
优选地,所述波片为中间具有圆形开孔的环形波片,该环形波片与所述光阑通光孔同心设置。
优选地,所述波片与所述光阑在光路方向上紧邻设置。
本实用新型还公开一种激光光源,包括出射激光的激光器,还包括上述消散斑装置。
本实用新型还公开一种激光投影系统,包括上述激光光源。
本发明的有益效果如下:
本实用新型所述技术方案可通过改变激光束中部分激光的偏振态消除激光散斑现象,且体积小、结构简单、可靠性高。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明;
图1示出消散斑装置的剖面图。
图2示出采用一种替代方式的消散斑装置的剖面图。
具体实施方式
为了更清楚地说明本实用新型,下面结合优选实施例和附图对本实用新型做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本实用新型的保护范围。
如图1所示,本实施例提供的消散斑装置,包括依次位于激光光路的波片100,波片100布置为使入射激光束的25%-75%直接通过。入射激光束直接通过波片100的部分激光未改变偏振态,而其余的部分激光由波片100改变了偏振态。因为入射激光束未改变偏振态的部分激光和改变了偏振态的部分激光之间的振动方向不同,两者之间不会形成干涉,因此也就消除了入射激光的激光散斑现象。
在具体实施时,波片100布置为使入射激光束的50%直接通过,这样可改变入射激光束中一半激光的偏振态,使得入射激光束未改变偏振态的部分激光和改变了偏振态的部分激光各占入射激光束的一半,消除入射激光束的激光散斑现象的效果更佳。
在具体实施时,波片100为半波片,这样可使得入射激光束由波片100改变偏振态的部分激光与入射激光束直接通过波片100而未改变偏振态的部分激光之间的振动方向垂直,消除入射激光束的激光散斑现象的效果更佳。例如,当入射激光为S态线偏振光时,入射激光束的25%-75%直接通过半波片,入射激光束直接通过半波片的部分激光未改变偏振态(即入射激光束直接通过半波片的部分激光还是S态线偏振光),而其余的部分激光转变为P态线偏振光,因为P态线偏振光和S态线偏振光的振动方向互相垂直,两者之间不会形成干涉,因此也就消除了入射激光的激光散斑现象。同理,当入射激光束为P态线偏振光时,入射激光束的部分激光转变为S态线偏振光,同样可消除入射激光的激光散斑现象。
在具体实施时,该消散斑装置还包括位于波片100出射光路上的光阑200。进一步,波片100与光阑200在光路方向上紧邻设置,这样使得光阑200的限制入射激光束的效果更佳,且使得消散斑装置的小型化成为可能,可节省空间、减小装置的整体体积。
作为一种优选替代方式,波片100为中间开孔的环形波片。进一步,波片100为中间具有中心对称形状开孔的环形波片,该环形波片与光阑200通光孔201同心设置。最为优选的是如图2所示的,波片100为中间具有圆形开孔101的环形波片,该环形波片与光阑200通光孔201同心设置。这样可实现波片100与光阑200的在光路中的位置关系易调整。
另外,本领域技术人员应该了解的是,上述波片100的形状只是优选的举例,波片100还可为矩形、三角形、椭圆形等任意形状或中间开有任意形状孔的环形,只要波片100在光路中布置为使入射激光束的25%-75%直接通过,即不改变入射激光束的25%-75%的激光的偏转态、改变入射激光束的75%-25%的激光的偏转态即可实现消除入射激光的激光散斑现象。
进一步,本实施例提供了一种激光光源,包括出射激光的激光器和上述消散斑装置,激光器出射的线偏振光经过波片100后即可消除激光散斑现象。
进一步,本实施例还提供了一种包括上述激光光源的激光投影系统。
显然,本实用新型的上述实施例仅仅是为清楚地说明本实用新型所作的举例,而并非是对本实用新型的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本实用新型的技术方案所引伸出的显而易见的变化或变动仍处于本实用新型的保护范围之列。

Claims (10)

  1. 一种消散斑装置,其特征在于,包括位于激光光路的波片,所述波片布置为使入射激光束的25%-75%直接通过。
  2. 根据权利要求1所述的消散斑装置,其特征在于,所述波片布置为使入射激光束的50%直接通过。
  3. 根据权利要求1所述的消散斑装置,其特征在于,所述波片为半波片。
  4. 根据权利要求1所述的消散斑装置,其特征在于,该消散斑装置还包括位于所述波片出射光路上的光阑。
  5. 根据权利要求4所述的消散斑装置,其特征在于,所述波片为中间开孔的环形波片。
  6. 根据权利要求4所述的消散斑装置,其特征在于,所述波片为中间具有中心对称形状开孔的环形波片,该环形波片与所述光阑通光孔同心设置。
  7. 根据权利要求4所述的消散斑装置,其特征在于,所述波片为中间具有圆形开孔的环形波片,该波片与所述光阑通光孔同心设置。
  8. 根据权利要求4所述的消散斑装置,其特征在于,所述波片与所述光阑在光路方向上紧邻设置。
  9. 一种激光光源,包括出射激光的激光器,其特征在于,还包括如权利要求1-8中任一项所述的消散斑装置。
  10. 一种激光投影系统,其特征在于,包括如权利要求9所述的激光光源。
PCT/CN2017/115236 2017-09-29 2017-12-08 消散斑装置、激光光源及激光投影系统 WO2019061833A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/648,133 US20200218081A1 (en) 2017-09-29 2017-12-08 Speckle elimination apparatus, laser source, and laser projection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721269570.6U CN207281393U (zh) 2017-09-29 2017-09-29 消散斑装置、激光光源及激光投影系统
CN201721269570.6 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019061833A1 true WO2019061833A1 (zh) 2019-04-04

Family

ID=61987384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115236 WO2019061833A1 (zh) 2017-09-29 2017-12-08 消散斑装置、激光光源及激光投影系统

Country Status (3)

Country Link
US (1) US20200218081A1 (zh)
CN (1) CN207281393U (zh)
WO (1) WO2019061833A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207457624U (zh) * 2017-11-22 2018-06-05 歌尔科技有限公司 消散斑装置、激光光源及激光投影系统
CN113376947A (zh) * 2021-05-31 2021-09-10 青岛海信激光显示股份有限公司 多色光源及投影设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070223091A1 (en) * 2006-03-27 2007-09-27 Texas Instruments Incorporated System and method for laser speckle reduction
US7342719B1 (en) * 2004-06-25 2008-03-11 Rockwell Collins, Inc. Projection screen with reduced speckle
US20080080054A1 (en) * 2006-09-29 2008-04-03 Evans & Sutherland Computer Corporation System and method for reduction of image artifacts for laser projectors
US20120062848A1 (en) * 2010-09-08 2012-03-15 Asahi Glass Company, Limited Projection type display apparatus
CN103323958A (zh) * 2013-06-22 2013-09-25 夏云 基于正交偏振合成的散斑消除装置
CN104614867A (zh) * 2010-09-03 2015-05-13 青岛海信电器股份有限公司 旋光器以及基于旋光器的激光散斑抑制装置与方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568322A (en) * 1993-03-02 1996-10-22 Asahi Kogaku Kogyo Kabushiki Kaisha Image forming lens system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7342719B1 (en) * 2004-06-25 2008-03-11 Rockwell Collins, Inc. Projection screen with reduced speckle
US20070223091A1 (en) * 2006-03-27 2007-09-27 Texas Instruments Incorporated System and method for laser speckle reduction
US20080080054A1 (en) * 2006-09-29 2008-04-03 Evans & Sutherland Computer Corporation System and method for reduction of image artifacts for laser projectors
CN104614867A (zh) * 2010-09-03 2015-05-13 青岛海信电器股份有限公司 旋光器以及基于旋光器的激光散斑抑制装置与方法
US20120062848A1 (en) * 2010-09-08 2012-03-15 Asahi Glass Company, Limited Projection type display apparatus
CN103323958A (zh) * 2013-06-22 2013-09-25 夏云 基于正交偏振合成的散斑消除装置

Also Published As

Publication number Publication date
CN207281393U (zh) 2018-04-27
US20200218081A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
WO2019100451A1 (zh) 消散斑装置、激光光源及激光投影系统
WO2019061833A1 (zh) 消散斑装置、激光光源及激光投影系统
TWI489884B (zh) 音源輸出裝置及運用此音源輸出裝置的影音輸出裝置
CN104811873B (zh) 发声装置
TWD208394S (zh) 投影模組
US1755636A (en) Loud-speaker
US8622553B2 (en) Reduced-speckle laser projector with speckle-reduction
WO2017101460A1 (zh) 一种合光系统及其投影照明光路
JP2015222418A (ja) 色分離合成系およびこれを用いた色分離合成装置、画像表示装置
WO2019100452A1 (zh) 消散斑装置、激光光源及激光投影系统
JP2012073523A (ja) プロジェクタ
US1808297A (en) Loud speaker
JP2019531514A (ja) 楕円体形状の広角バックライトレンズ
WO2019092966A1 (ja) スピーカ用ホーン及びホーンスピーカ
TW201430433A (zh) 鏡頭結構
JP5825522B2 (ja) スピーカ装置
CN208239742U (zh) 基于混沌激光的散斑抑制装置
CN109061997A (zh) 一种基于指向光源的光栅后置式裸眼3d显示系统
GB503853A (en) Improvements in or relating to microphones
CN108563035A (zh) 基于混沌激光的散斑抑制方法及装置
JP2014071384A (ja) 投射装置
JP2016009086A (ja) 光源装置および画像表示装置
WO2017166498A1 (zh) 一种电视
TWI688817B (zh) 投射光源裝置
KR101371229B1 (ko) 2웨이 스피커

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927286

Country of ref document: EP

Kind code of ref document: A1