WO2019061694A1 - 一种船舶电力系统及其控制方法 - Google Patents

一种船舶电力系统及其控制方法 Download PDF

Info

Publication number
WO2019061694A1
WO2019061694A1 PCT/CN2017/110027 CN2017110027W WO2019061694A1 WO 2019061694 A1 WO2019061694 A1 WO 2019061694A1 CN 2017110027 W CN2017110027 W CN 2017110027W WO 2019061694 A1 WO2019061694 A1 WO 2019061694A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
ship
lithium battery
battery pack
management module
Prior art date
Application number
PCT/CN2017/110027
Other languages
English (en)
French (fr)
Inventor
韩佳
Original Assignee
广船国际有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广船国际有限公司 filed Critical 广船国际有限公司
Publication of WO2019061694A1 publication Critical patent/WO2019061694A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor

Definitions

  • Embodiments of the present invention relate to the field of electronic circuit technologies, and in particular, to a ship power system and a control method thereof.
  • the ship As a kind of water transportation or operation vehicle, the ship has different technical performance, equipment and structural forms according to different use requirements.
  • the interior of the ship mainly includes accommodation space, support structure and drainage structure, and has a propulsion system utilizing external or self-contained energy.
  • the propulsion system of the ship is the source of power for its navigation or operation.
  • the power of the ship mainly includes steam, diesel, gas, and nuclear power equipment.
  • Modern transportation ships mainly use diesel engines as the power source of their electric propulsion systems, and the power of diesel engines needs to be calculated according to the maximum demand for electricity by the grid.
  • the required power is different.
  • a high-power diesel engine is required as the power source of the ship.
  • Such a ship operating with a high-power diesel generator set not only increases the cost of the generator set and its auxiliary equipment used in the ship, but also causes the diesel generator set to operate at a low load for a long period of time under normal operating conditions, resulting in the ship's mechanical structure. Damage.
  • the space required for high-power diesel generator sets is relatively large, which will be detrimental to ship transportation.
  • the existing ship using the high-power diesel generator set as the power source has higher cost, relatively small loading space, and is easy to damage some mechanical structures of the ship, which is not conducive to the competitiveness of the ship in the operating market.
  • the embodiments of the present invention provide a ship power system and a control method thereof, which can solve the technical problem that the high-power generator set of the ship in the prior art is increased in cost and is not conducive to market operation.
  • an embodiment of the present invention provides a ship power system, including: a generator set, a lithium battery pack, a power management module, a battery management module, a power conversion module, and an electric propeller;
  • the signal acquisition end of the power management module is connected to the power output end of the generator set, the first output end is connected to the signal input end of the battery management module, and the first input end and the signal output end of the battery management module Connecting, for collecting output power of the genset, and collecting power information of the lithium battery through the battery management module, and according to the actual power of the electric propeller according to the current working mode of the ship Determining the current total utility power of the ship;
  • the power supply end of the genset is connected to the input end of the power conversion module for supplying electric energy, and is input to the power conversion module;
  • the first control end of the battery management module is connected to the control end of the lithium battery pack, and is configured to control the lithium battery pack after receiving the signal that the power management module controls the discharge of the lithium battery pack Electric propeller discharge;
  • the electrical signal output end of the lithium battery pack is connected to the input end of the power conversion module, and is configured to input electrical energy to the power conversion module according to the control of the battery management module;
  • the first output end of the power conversion module is coupled to the electric propeller for converting the received electrical energy into electrical energy that drives the electric propeller action to power up the electric pusher.
  • the ship power system further includes: a power distribution board;
  • An input end of the power distribution board is connected to a power supply end of the power generator set, a control end is connected to a control end of the battery management module, and an output end is connected to an input end of the power conversion module, according to the a charging control signal sent by the battery management module to the power management module, and the power conversion module is controlled to perform corresponding power conversion;
  • the signal collecting end of the battery management module is connected to the power output end of the lithium battery pack for collecting the current power of the lithium battery pack;
  • the charging signal input end of the lithium battery pack is connected to the second output end of the power conversion module, and is configured to receive the generator set passage when the power of the lithium battery pack is lower than a preset value.
  • the converted charging signal of the power conversion module is used to supplement the power.
  • the power conversion module includes a frequency converter and a transformer.
  • the generator set is a diesel generator set.
  • the lithium battery pack is a plurality of single lithium batteries.
  • an embodiment of the present invention further provides a method for controlling a ship power system, which is applied to the ship power system, and includes:
  • the lithium battery pack of the vessel is controlled to discharge to the electric propeller to supplement the grid usage of the vessel throughout the vessel.
  • the method for controlling the ship power system further includes:
  • the ship uses the generator set for power supply.
  • the method for controlling the ship power system further includes:
  • the genset is controlled to provide charging power to the lithium battery pack.
  • the ship power system and the control method thereof are provided by the embodiment of the invention, and the ship power system comprises a generator set, a lithium battery pack, a power management module, a battery management module, a power conversion module, and an electric propeller, which are collected by using a power management module.
  • the output power of the generator set, and the total power required by the electric propeller is obtained from the current operating conditions of the ship to determine the total utility power of the ship, and when the total power exceeds a preset value, the battery management module controls the lithium battery The group discharges to the electric propeller to compensate for the grid capacity of the ship.
  • the technical problem of increasing the cost of the ship in order to adapt to different working conditions and adopting a high-power generator set in the prior art can solve the manufacturing cost of the ship and increase the loading of the ship compared with the ship adopting the high-power generating set. Space, and can provide suitable power for the operation of the ship, thereby reducing the technical effect of damage to part of the mechanical structure of the ship due to excessive operating power.
  • FIG. 1 is a schematic structural diagram of a ship power system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a ship power system according to Embodiment 2 of the present invention.
  • FIG. 3 is a flowchart of a method for controlling a ship power system according to Embodiment 3 of the present invention.
  • Embodiment 4 is a flow chart of a method for controlling a ship power system according to Embodiment 4 of the present invention.
  • a ship power system provided by an embodiment of the present invention includes: a generator set 10 , a power management module 20 , a battery management module 30 , a lithium battery pack 40 , a power conversion module 50 , and an electric propeller 60 .
  • the signal acquisition end of the power management module 20 is connected to the power output end of the genset 10, the first output end of the power management module 20 is connected to the signal input end of the battery management module 30, and the first input end of the power management module 20 is The signal output terminal of the battery management module 30 is connected for collecting the output power of the genset 10, and collecting the power information of the lithium battery pack 40 through the battery management module 30, and according to the actual state of the electric propeller 60 according to the current working mode of the ship.
  • the power supply end of the genset 10 is connected to the input end of the power conversion module 50 for supplying electric energy, and is input to the power conversion module 50; the first control end of the battery management module 30
  • the control terminal of the lithium battery pack 40 is connected to control the discharge of the lithium battery pack 40 electric propeller 60 after receiving the signal that the power management module 20 controls the discharge of the lithium battery pack 40; the electrical signal output end of the lithium battery pack 40 is
  • the input end of the power conversion module 50 is connected for switching to the power according to the control of the battery management module 30.
  • the switching module 50 inputs electrical energy; the first output of the power conversion module 50 is coupled to the electric propeller 60 for converting the received electrical energy into electrical energy that drives the electric propeller 60 to operate to power up the electric pusher 60.
  • the ship electric propulsion refers to the propulsion of the ship propulsion device by the electric motor.
  • the main feature is that the propulsion power and the power of the power station are combined into one.
  • the electric motor is used as the propulsion propulsion host, and the electric propeller is driven by the electric motor to make the ship Ability to work and transport on water.
  • typical working conditions such as free start, stop, reverse, etc.
  • special working conditions such as propeller blocked, water, falling off, etc.
  • fault conditions eg generator single-phase ground fault, three-phase short-circuit fault, etc.
  • the ship's demand for the grid is different. Therefore, the prior art generally adopts a larger power generator set to meet the demand of the ship under different working conditions, but the larger power generator has a higher composition, takes up a large space, and operates the ship under typical working conditions. Some mechanical structures cause some damage.
  • the ship power system provided by the embodiment of the present invention can adopt the generator set 10 to meet the operation of a typical working condition of the ship, thereby serving as a main power source during the operation of the ship.
  • the power management module 20 detects the output power of the genset 10 in real time, and the actual power used by the electric propeller 60 in the current operating mode of the ship, thereby determining the current total utility power of the ship, and is practical in the whole ship.
  • the battery management module 30 controls the lithium battery pack 40 to discharge to the electric propeller 60 to compensate for the grid capacity.
  • the total utility power of the ship will suddenly increase or decrease.
  • the lithium battery pack 40 is controlled to be discharged, thereby compensating the generator set 10 The capacity of the grid to meet the current operating conditions of the ship. And discharge the lithium battery pack 40, And the electric quantity output by the generator set 10 is converted into the electric signal required by the electric power converter 60 by the power conversion module 50 to enable the electric propeller 60 to be powered up to meet the total utility power of the ship under the current operating mode of the ship.
  • the preset threshold may be, for example, a maximum power value that the genset 10 can output, and the preset time may be 5 seconds.
  • the ship power system uses the generator set as the main power source, uses the power management module to collect the output power of the generator set, and obtains the total power required by the electric propeller from the current operating conditions of the ship to determine the entire ship of the ship. Practical total power, and when the total power exceeds a preset value, the battery management module controls the lithium battery pack to discharge to the electric propeller, thereby realizing compensation for the grid capacity of the ship, compared to directly adopting a high-power generator set to meet different
  • the ship in operating condition has the cost saving, reduces the space occupancy rate of the generator set, and can match the running power of the ship with the actual working condition, further ensuring that the mechanical structure of the ship is not damaged.
  • the embodiment is optimized on the basis of the above embodiment, and further, on the basis of the above embodiment, a power distribution board is added for the ship power system, so that the power generated by the generator set can be reasonably distributed.
  • 2 is a schematic structural diagram of a ship power system according to Embodiment 2 of the present invention.
  • the ship power system provided in this embodiment includes: a generator set 10, a power management module 20, a battery management module 30, a lithium battery pack 40, a power conversion module 50, an electric propeller 60, and a power distribution board 70. .
  • the input end of the power distribution board 70 is connected to the power supply end of the genset 10, the control end of the power distribution board 70 is connected to the control end of the battery management module 20, and the output end of the power distribution board 70 and the input end of the power conversion module 50.
  • the connection is used to control the power conversion module 50 to perform corresponding power conversion according to the charging control signal sent by the battery management module 30 to the power management module 20; the signal collection of the battery management module 30
  • the end is connected to the power output end of the lithium battery pack 40 for collecting the current power of the lithium battery pack 40, and controlling the power distribution board 70 to distribute the charging power to the lithium battery pack 40 according to the current power of the lithium battery pack 40; correspondingly, lithium
  • the charging signal input end of the battery pack 40 is connected to the second output end of the power conversion module 50, and is configured to receive the charging signal converted by the genset 10 through the power conversion module 50 when the power of the lithium battery pack 40 is lower than a preset value. To replenish the power.
  • the primary role of the switchboard on the vessel is to be able to distribute the electrical energy output by the genset to the entire shipboard power supply.
  • the generator set 10 of the ship power system can meet the normal operating conditions of the ship. That is, under normal operating conditions, the electrical energy output by the genset 10 satisfies the electrical energy required by the electric propeller 60, and at the same time, can provide electrical energy for other power supply equipment of the entire ship, and the electrical energy required by each power supply device in the ship is performed by the distribution board 70. distribution. Under the special operating conditions of the ship, the output power of the generator set 10 no longer meets the total power required by the ship, and the lithium battery pack 40 is required to perform power compensation. Since the lithium battery pack 40 stores limited power, it is necessary to charge the lithium battery pack 40 when the amount of power is low.
  • the ship power system collects the power outputted by the lithium battery pack 40 in real time through the battery management module 30, and inputs it into the power management module 20, so that when the lithium battery pack 40 needs to be charged, the power management module 20 is caused.
  • the control panel 70 distributes the electrical energy output by the genset 10 to charge the lithium battery pack 40.
  • the power distribution board 70 is allocated to the electrical energy to be converted by the power conversion module 50 to meet the power supply requirements of the lithium battery pack 40 and the electric propeller 60.
  • the power conversion module 50 includes a frequency converter and a transformer.
  • the frequency converter is mainly composed of rectification, filtering, inverter, braking unit, driving unit, detection unit micro-processing unit, etc., which can change the frequency of output power of the generator set 10 to meet the requirements of different power supply devices for different frequency power sources. Therefore, the purpose of energy saving and speed regulation can be achieved.
  • the frequency converter has protection functions such as overcurrent, overvoltage, and over Load protection, etc.
  • the transformer is mainly composed of a primary coil, a secondary coil and an iron core (magnetic core), which can perform voltage conversion, current conversion, impedance transformation, isolation, voltage regulation, etc., and the principle is to change the voltage of the power source by using electromagnetic induction to meet the ship.
  • the power supply voltage requirements of different power supply equipment are mainly composed of a primary coil, a secondary coil and an iron core (magnetic core), which can perform voltage conversion, current conversion, impedance transformation, isolation, voltage regulation, etc.
  • the genset 10 is a diesel generator set.
  • Diesel generators have the advantages of high power and good economic performance. They use diesel as fuel, which has the advantages of high viscosity, low evaporation, and low auto-ignition temperature. Therefore, the application of diesel generators as the main power source on ships can reduce the operating cost of ships.
  • the lithium battery pack 40 is composed of a plurality of lithium batteries.
  • Lithium batteries are widely used because of their high energy, high storage energy density, long service life, high rated voltage, and high temperature and low temperature adaptability.
  • the lithium battery pack 40 is used to compensate the grid capacity, which can ensure the demand for electricity under different operating conditions of the ship, and its high cycle performance, further saving the operating cost of the ship.
  • the embodiment of the invention increases the power distribution board in the ship power system, so that the electric energy generated by the generator set can be charged for the lithium battery pack, so as to ensure the compensation of the power capacity of the lithium battery pack under the condition that the power compensation is required. , thereby reducing the overall operating cost of the ship.
  • a method for controlling a ship power system according to an embodiment of the present invention includes:
  • the power management of the ship's power generation, distribution, and power loads is critical. Therefore, it is necessary to effectively manage the power generation system, the power distribution system and the electric energy of the ship to ensure that the ship has sufficient available power.
  • the operating environment, human operation, or the working mode of the ship resulting in different working conditions, which can be divided into typical working conditions (such as free start, parking, reverse, etc.), special work.
  • Conditions such as the propeller blocked, water, falling off, etc.
  • fault conditions such as generator single-phase ground fault, three-phase short-circuit fault, etc.
  • the power consumption of the ship's electric propellers is different, and the power demand of other electric equipment is almost unchanged. Therefore, it is necessary to determine the total power consumption of the ship by monitoring the total power of the electric propeller under the current operating conditions of the ship. In addition, the power output of the ship's generator set needs to be monitored in real time.
  • the ship uses the generator set to supply power.
  • the total utility power of the whole ship is different. Therefore, in order to meet the normal operation of the ship, real-time monitoring of the output power of the ship's generator set and the power of the electric propeller, and determining the ship's total utility power, it is necessary to determine the total utility of the ship. Whether the power and the power output by the genset exceed a preset threshold, and when the total utility power of the ship exceeds the preset value for more than the preset time, then It can be known that the total power output of the ship's generator set is insufficient to meet the total utility power of the ship required to operate under the current working conditions of the ship.
  • the lithium battery pack performs the power output of the generator set.
  • Grid compensation on the contrary, if the preset threshold and the preset time are not exceeded, only the generator set is used for power supply, and the lithium battery pack does not need to be compensated by the grid.
  • the total utility power of the whole ship exceeds the preset threshold, but the maintenance time does not exceed the preset time, it may be due to the sudden increase of the total utility power of the ship caused by the uncertain factors in the current operating environment of the ship, rather than the actual ship.
  • the preset threshold may be set to determine whether the power output by the genset is less than the total utility power of the ship required for the current operating condition of the ship, and the preset time may be 5 seconds.
  • the control method of the ship power system determines the current utility total power of the ship by real-time monitoring the total power output of the genset in the ship power system and the total power required by the electric propeller under the current working condition of the ship. And when the current utility total power exceeds the preset value and the maintenance time exceeds the preset time, it is determined that the genset cannot meet the power consumption of each load of the ship under the current operating condition, thereby controlling the lithium battery pack to compensate the grid capacity in real time. Therefore, the ship's normal operation and work can be guaranteed under the premise of saving the ship's own cost and operating cost.
  • Embodiment 4 is a flow chart of a method for controlling a ship power system according to Embodiment 4 of the present invention.
  • the embodiment is optimized on the basis of the foregoing embodiment, and the method for judging the power of the lithium battery pack in the ship power system is added on the basis of the above embodiment, specifically: collecting the current output total amount of the lithium battery And determining whether the total amount of electricity is less than a low battery preset value; if so, controlling the generator set to provide charging power to the lithium battery pack.
  • the control of this embodiment Methods include:
  • the ship uses the generator set to supply power.
  • the current operating conditions of the ship are tested to determine the total power required by the ship, and the power output of the ship's genset is detected, and the power output at the genset is insufficient to meet the current needs of the ship.
  • the total power, and the time when the total power is not satisfied exceeds a certain time, the lithium battery pack is controlled to perform corresponding grid capacity compensation.
  • the lithium battery pack has a limited amount of power, and the lithium battery pack needs to be supplemented after the power compensation.
  • the lithium battery pack can provide sufficient power when the power compensation is required again. Therefore, the power output of the lithium battery needs to be detected in real time, and it is determined whether the power output by the lithium battery pack is less than a preset threshold.
  • the preset threshold may be, for example, that the power of the lithium battery is less than 10% of the total power.
  • the specific settings are based on the actual amount of power required by the ship.
  • the total power output of the lithium battery pack is collected in real time, and when the power of the lithium battery pack is less than a preset threshold, the generator set is controlled to charge the lithium battery pack, so that the lithium battery pack can maintain sufficient power. In order to ensure that the lithium battery pack can provide sufficient power when the ship needs grid capacity compensation, thus ensuring the normal operation and operation of the ship.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种船舶电力系统及其控制方法,该船舶电力系统采用功率管理模块(20)采集发电机组(10)的输出功率,并确定船舶当前运行工况电力推进器(60)所需总功率,在该总功率超出预设值且时长超过预设时间时,使得功率管理模块(20)向电池管理模块(30)发出控制锂电池组(40)放电的控制信号,从而使得锂电池组(40)能够在船舶运行工况所需电力推进器(60)的总功率超出发电机组(10)输出功率时,对电力推进器(60)的用电进行补偿,进而间接的对船舶的电网容量进行补偿。该船舶电力系统及控制方法,能够满足船舶不同运行工况所需电量,具有节省成本和空间占用率的优点,以及能够使船舶运行功率与实际工况相匹配,进一步保证船舶的机械结构不受损害。

Description

一种船舶电力系统及其控制方法 技术领域
本发明实施例涉及电子电路技术领域,尤其涉及一种船舶电力系统及其控制方法。
背景技术
船舶作为一种水上运输或作业的交通工具,其按不同的使用需求而具有不同的技术性能、装备和结构形式。船舶内部主要包括容纳空间、支撑结构和排水结构,具有利用外在或自带能源的推进系统。其中,船舶的推进系统是其航行或作业的动力来源。
船舶的动力主要有蒸汽、柴油、燃气、以及核动力装置等,现代运输船舶的主要采用柴油机作为其电力推进系统动力源的,而柴油机的功率需要根据电网对电量的最大需求量来计算。但是在不同工况下,所需电量不同,为满足特殊工况下船舶依然正常作业,则需将功率提高至最大需求量,即需要采用大功率的柴油机作为船舶的动力源。这种采用大功率柴油发电机组进行作业的船舶,不仅增加船舶中所使用发电机组及其辅助设备的成本,并且对于正常运行的工况,会使得柴油发电机组长期低负荷运行,造成船舶机械结构的损害。此外,大功率柴油发电机组所需占用的空间相对较大,将不利于船舶运输。
因此,现有的采用大功率柴油发电机组作为动力源的船舶成本较高,装载空间相对较小,且容易对船舶的部分机械结构造成损害,从而不利于船舶在营运市场上的竞争力。
发明内容
有鉴于此,本发明实施例提供了一种船舶电力系统及其控制方法,能够解决现有技术中船舶采用大功率发电机组致使其成本提高,不利于市场营运的技术问题。
第一方面,本发明实施例提供了一种船舶电力系统,包括:发电机组、锂电池组、功率管理模块、电池管理模块、电源转换模块、以及电力推进器;
所述功率管理模块的信号采集端与所述发电机组的功率输出端连接、第一输出端与所述电池管理模块的信号输入端连接、第一输入端与所述电池管理模块的信号输出端连接,用于采集所述发电机组的输出功率,以及通过所述电池管理模块采集所述锂电池组的电量信息,并根据所述船舶的当前工况模式下所述电力推进器的实际使用功率,确定所述船舶当前的全船实用总功率;
所述发电机组的供电端与所述电源转换模块的输入端连接,用于提供电能,并输入所述电源转换模块;
所述电池管理模块的第一控制端与所述锂电池组的控制端连接,用于在接收到所述功率管理模块控制所述锂电池组放电的信号后,控制所述锂电池组向所述电力推进器放电;
所述锂电池组的电信号输出端与所述电源转换模块的输入端连接,用于根据所述电池管理模块的控制,向所述电源转换模块输入电能;
所述电源转换模块的第一输出端与所述电力推进器连接,用于将接收的电能转换为驱动所述电力推进器动作的电能,以使所述电力推动器上电工作。
可选的,所述船舶电力系统还包括:配电板;
所述配电板的输入端与所述发电机组的供电端连接、控制端与所述电池管理模块的控制端连接、以及输出端与所述电源转换模块的输入端连接,用于根据所述电池管理模块向所述功率管理模块发出的充电控制信号,控制所述电源转换模块进行相应的电能转换;
所述电池管理模块的信号采集端与所述锂电池组的电量输出端连接,用于采集所述锂电池组的当前电量;
相应的,所述锂电池组的充电信号输入端与所述电源转换模块的第二输出端连接,用于在所述锂电池组的电量低于预设值时,接收所述发电机组通过所述电源转换模块转换后的充电信号,以进行电量补充。
可选的,所述电源转换模块包括变频器和变压器。
可选的,所述发电机组为柴油发电机组。
可选的,所述锂电池组为多个单个锂电池。
第二方面,本发明实施例还提供了一种船舶电力系统的控制方法,应用于上述船舶电力系统,包括:
实时监测所述船舶发电机组的输出功率、以及所述船舶的当前工况下的电力推进器的使用总功率,以确定所述船舶的当前全船实用总功率;
判断所述船舶的当前全船实用总功率是否超出预设阈值;
若是,则判断所述船舶的当前实用总功率的维持时间是否超过预设时间;
若是,则控制所述船舶的锂电池组向电力推进器放电,以对所述船舶全船的电网用量进行补充。
可选的,所述船舶电力系统的控制方法还包括:
若所述船舶的实用总功率未超出所述预设阈值和/或所述维持时间未超过 所述预设时间,则所述船舶采用所述发电机组进行供电。
可选的,所述船舶电力系统的控制方法还包括:
采集所述锂电池组的当前输出总电量,并判断所述总电量是否小于低电量预设值;
若是,则控制所述发电机组向所述锂电池组提供充电电能。
本发明实施例提供的一种船舶电力系统及其控制方法,该船舶电力系统包括发电机组、锂电池组、功率管理模块、电池管理模块、电源转换模块、以及电力推进器,采用功率管理模块采集发电机组的输出功率,并由船舶当前运行工况获得电力推进器所需总功率,以确定船舶的全船实用总功率,并在该总功率超出预设值时,使得电池管理模块控制锂电池组向电力推进器放电,从而实现对船舶的电网容量进行补偿。解决了现有技术中为适应不同工况,需采用大功率的发电机组,使得船舶成本增加的技术问题,相对于采用大功率发电机组的船舶,能够降低船舶的制造成本,以及增加船舶的装载空间,且能够为船舶运行提供合适的功率,从而降低因运行功率过大,对船舶部分机械结构造成损害的技术效果。
附图说明
图1是本发明实施例一提供的一种船舶电力系统的结构示意图;
图2是本发明实施例二提供的一种船舶电力系统的结构示意图;
图3是本发明实施例三提供的一种船舶电力系统的控制方法的流程图;
图4是本发明实施例四提供的一种船舶电力系统的控制方法的流程图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。在不冲突的情况下,本发明实施例以及实施例中的特征可以相互组合。
实施例一
本实施例提供的船舶电力系统可以适用于需在不同工况下运行的任何船舶的应用场景。图1是本发明实施例一提供的一种船舶电力系统的结构示意图。如图1所示,本发明实施例提供的船舶电力系统包括:发电机组10、功率管理模块20、电池管理模块30、锂电池组40、电源转换模块50、以及电力推进器60。
其中,功率管理模块20的信号采集端与发电机组10的功率输出端连接,功率管理模块20的第一输出端与电池管理模块30的信号输入端连接,功率管理模块20的第一输入端与电池管理模块30的信号输出端连接,用于采集发电机组10的输出功率,以及通过电池管理模块30采集锂电池组40的电量信息,并根据船舶的当前工况模式下电力推进器60的实际使用功率,确定船舶当前的全船实用总功率;发电机组10的供电端与电源转换模块50的输入端连接,用于提供电能,并输入电源转换模块50;电池管理模块30的第一控制端与锂电池组40的控制端连接,用于在接收到功率管理模块20控制锂电池组40放电的信号后,控制锂电池组40电力推进器60放电;锂电池组40的电信号输出端与电源转换模块50的输入端连接,用于根据电池管理模块30的控制,向电源转 换模块50输入电能;电源转换模块50的第一输出端与电力推进器60连接,用于将接收的电能转换为驱动电力推进器60动作的电能,以使电力推动器60上电工作。
示例性的,船舶电力推进是指由电动机带动船舶推进器进行船舶推进,其主要特点是将推进动力与电站动力合二为一,以电动机作为船舶推进主机,依靠电力带动推进器,以使得船舶能够进行水上作业和运输。在船舶实际运行过程中,其具有不同的工况,可以分为典型工况(例如自由起航、停车、倒航等),特殊工况(例如螺旋桨受阻、出水、脱落等),以及故障工况(例如发电机单相接地故障、三相短路故障等)。而对于不同运行工况,船舶对电网的需求量不同。因而,现有技术通常采用较大功率的发电机组,以满足不同工况下船舶对电网的需求,但是较大功率的发电机组成本较高,占用空间大,且对于典型工况下运行船舶的部分机械结构造成一定的损害。
如图1所示,本发明实施例提供的船舶电力系统,采用的发电机组10能够满足船舶典型工况的运行,从而在船舶运行过程中作为主要的动力源。并通过功率管理模块20实时检测发电机组10的输出功率,以及船舶当前运行工况模式下,电力推进器60的实际使用功率,从而确定船舶当前的全船实用总功率,并在该全船实用总功率大于预设值时,使得电池管理模块30控制锂电池组40向电力推进器60放电,以进行电网容量的补偿。此外,由于在船舶运行过程中,由于运行环境等不确定因素的影响,会致使全船的实用总功率突然升高或降低。因而,在实际运行过程中,全船实用总功率超出预设阈值,且维持一定时间时,即维持的时间超过预设时间时,才会控制锂电池组40放电,从而补偿发电机组10不足以满足船舶当前运行工况的电网容量。并将锂电池组40放出的电量, 以及发电机组10输出的电量通过电源转换模块50转换为电力推进器60所需的电信号,以使电力推进器60上电工作,满足船舶当前运行工况模式下全船实用总功率。其中,预设阈值例如可以为发电机组10所能输出的最大功率值,而预设时间可以为5秒。
本发明实施例提供的船舶电力系统以发电机组为主要动力源,采用功率管理模块采集发电机组的输出功率,并由船舶当前运行工况获得电力推进器所需总功率,以确定船舶的全船实用总功率,并在该总功率超出预设值时,使得电池管理模块控制锂电池组向电力推进器放电,从而实现对船舶的电网容量进行补偿,相对于直接采用大功率发电机组以满足不同运行工况的船舶,具有节省成本,减少发电机组的空间占用率,以及能够使船舶运行功率与实际工况相匹配,进一步保证船舶的机械结构不受损害。
实施例二
本实施例在上述实施例的基础上进行了优化,进一步在上述实施例的基础上为船舶电力系统增加了配电板,以使得发电机组所产生的电量能够进行合理分配。图2是本发明实施例二提供的一种船舶电力系统的结构示意图。如图2所示,本实施例提供的船舶电力系统包括:发电机组10、功率管理模块20、电池管理模块30、锂电池组40、电源转换模块50、电力推进器60、以及配电板70。
其中,配电板70的输入端与发电机组10的供电端连接,配电板70的控制端与电池管理模块20的控制端连接,配电板70的输出端与电源转换模块50的输入端连接,用于根据电池管理模块30向功率管理模块20发出的充电控制信号,控制电源转换模块50进行相应的电能转换;电池管理模块30的信号采集 端与锂电池组40的电量输出端连接,用于采集锂电池组40的当前电量,并根据锂电池组40的当前电量控制配电板70向锂电池组40分配充电电能;相应的,锂电池组40的充电信号输入端与电源转换模块50的第二输出端连接,用于在锂电池组40电量的低于预设值时,接收发电机组10通过电源转换模块50转换后的充电信号,以进行电量补充。
示例性的,在船舶上设置配电板的主要作用是能够将发电机组输出的电能向全船供电设备进行分配。如图2所示,船舶电力系统的发电机组10能够满足船舶的正常运行工况。即在正常工况下,发电机组10输出的电能满足电力推进器60所需电能,同时能够为全船的其它供电设备提供电能,船舶中各供电设备所需的电能均采用配电板70进行分配。而在船舶特殊运行工况下,发电机组10输出的功率不再满足船舶所需的总功率,需要采用锂电池组40进行电量补偿。由于锂电池组40存储的电能有限,因而在电量较少时需要对锂电池组40进行充电。
本发明实施例提供的船舶电力系统,通过电池管理模块30实时采集锂电池组40输出的电量,并输入功率管理模块20中,从而在该锂电池组40需要进行充电时,使得功率管理模块20控制配电板70分配发电机组10输出的电能为锂电池组40进行充电。其中,配电板70分配到电能均需通过电源转换模块50进行转换,以满足锂电池组40及电力推进器60的供电需求。
可选的,电源转换模块50包括变频器和变压器。其中,变频器主要由整流、滤波、逆变、制动单元、驱动单元、检测单元微处理单元等组成,其通过改变发电机组10输出电能的频率,以满足各供电设备对不同频率电源的需求,从而能够达到节能和调速的目的,另外,变频器具有保护功能,如过流、过压、过 载保护等。变压器主要由初级线圈、次级线圈和铁芯(磁芯)组成,其能够进行电压变换、电流变换、阻抗变换、隔离、稳压等,其原理为利用电磁感应改变电源的电压,从而满足船舶不同供电设备对电源电压需求。
可选的,发电机组10为柴油发电机组。柴油发电机具有功率大、经济性能好等优点,其采用柴油作为燃料,该燃料具有粘度大、不易蒸发、自燃温度低等优点。因而在船舶上应用柴油发电机为主要动力源,能够降低船舶的运行成本。
可选的,锂电池组40由多个锂电池构成。锂电池的能量比较高,具有高储存能量密度,且具有使用寿命长、额定电压高、高低温适应性强等特点,而被广泛应用。在船舶电力系统中采用锂电池组40进行电网容量的补偿,能够保证船舶不同运行工况下对电量的需求,且其的高循环性能,进一步节省的船舶的运行成本。
本发明实施例通过在船舶电力系统中增加配电板,以使得发电机组所产生的电能能够为锂电池组进行充电,以保证锂电池组在需要电量补偿的工况下能够进行电网容量的补偿,从而降低船舶的整体运行成本。
实施例三
本实施例提供的船舶电力系统的控制方法适用于对本发明实施例提供的船舶电力系统进行控制的情况。图3是本发明实施例三提供的一种船舶电力系统的控制方法的流程图。如图3所示,本发明实施例提供的船舶电力系统的控制方法,包括:
S301、实时监测所述船舶发电机组的输出功率、以及所述船舶的当前工况下的电力推进器的使用总功率,以确定所述船舶的当前全船实用总功率。
示例性的,随着船舶用电负载功率的增加,船舶的发电、配电和用电负载的电能管理至关重要。因而,需要对船舶的发电系统、配电系统和用电负载的电能进行有效管理,以保证船舶具有足够的可用功率。而在船舶实际运行过程中,受运行环境、人为操作、或者船舶工作模式的影响,致使其具有不同的工况,可以分为典型工况(例如自由起航、停车、倒航等),特殊工况(例如螺旋桨受阻、出水、脱落等),以及故障工况(例如发电机单相接地故障、三相短路故障等)。而对于不同运行工况,船舶电力推进器的用电量不同,其它用电设备的电量需求几乎无太大变化。因此,需要通过监测船舶当前运行工况下电力推进器的使用总功率,确定船舶的全船的用电量,此外,还需要对船舶的发电机组输出的功率进行实时监测。
S302、判断所述船舶的当前全船实用总功率是否超出预设阈值;若是,则执行S303;可选的,若否,则执行S305;
S303、判断所述船舶的当前实用总功率的维持时间是否超过预设时间;若是,则执行S304;可选的,若否,则执行S305;;
S304、控制所述船舶的锂电池组向电力推进器放电,以对所述船舶全船的电网用量进行补充;
S305、所述船舶采用所述发电机组进行供电。
示例性的,由于船舶不同运行工况电力推进器所需电量不同,进而使得全船实用总功率不同。因此,为满足船舶的正常运行,对船舶的发电机组的输出功率和电力推进器的使用功率进行实时监测,并确定船舶的全船实用总功率后,需要判断该船舶所需的全船实用总功率与其发电机组输出的功率之间是否超出预设阈值,且在该全船实用总功率超出预设值的维持时间大于预设时间时,则 可知船舶的发电机组输出的总功率不足以满足船舶当前工况下运行所需的全船实用总功率,因此需要控制锂电池组补偿该功率差值,即锂电池组对发电机组输出的电量进行电网补偿;相反,若没有超出预设阈值和预设时间,则仅采用发电机组进行供电,锂电池组无需进行电网补偿。而在全船实用总功率超出预设阈值,但维持时间未超过预设时间时,可能是由于船舶的当前运行环境中不确定因素引起的全船实用总功率的突然升高,而非船舶实际运行工况下真正所需的总功率,为避免电量的浪费,在其全船实用总功率超出预设阈值,但维持时间未超过预设时间时,仍然仅采用发电机组为船舶供电。其中预设阈值的设置可以是判断发电机组输出的功率是否小于船舶当前运行工况所需的全船实用总功率,而预设时间可以为5秒。
本发明实施例提供的船舶电力系统的控制方法通过实时监测船舶电力系统中发电机组输出的总功率以及船舶当前工况下电力推进器所需的使用总功率,确定出船舶的当前实用总功率,并在当前实用总功率超出预设值,且维持时间超过预设时间时,确定出当前运行工况下发电机组无法满足船舶各负载的用电量,从而控制锂电池组对电网容量进行实时补偿,从而能够在节省船舶自身成本和运行成本的前提下,保证船舶的正常运行和工作。
实施例四
图4是本发明实施例四提供的一种船舶电力系统的控制方法的流程图。本实施例在上述实施例的基础上进行了优化,在上述实施例的基础上增加了对船舶电力系统中锂电池组电量进行判断的方法,具体为:采集所述锂电池的当前输出总电量,并判断所述总电量是否小于低电量预设值;若是,则控制所述发电机组向所述锂电池组提供充电电能。如图4所示,相应的,本实施例的控制 方法包括:
S401、实时监测所述船舶发电机组的输出功率、以及所述船舶的当前工况下的电力推进器的使用总功率,以确定所述船舶的当前全船实用总功率。
S402、判断所述船舶的当前全船实用总功率是否超出预设阈值;若是,则执行S403;若否,则执行S405;
S403、判断所述船舶的当前实用总功率的维持时间是否超过预设时间;若是,则执行S404;若否,则执行S405;
S404、控制所述船舶的锂电池组向电力推进器放电,以对所述船舶全船的电网用量进行补充。
S405、所述船舶采用所述发电机组进行供电。
S406、采集所述锂电池组的当前输出总电量,并判断所述总电量是否小于低电量预设值;若是,则执行S407;
S407、控制所述发电机组向所述锂电池组提供充电电能。
示例性的,对船舶的当前运行工况进行检测,以确定该船舶当前所需的总功率,以及对船舶发电机组输出的功率进行检测,在该发电机组输出的功率不足以满足船舶当前所需的总功率,且该不满足总功率的时间超过一定时间时,控制锂电池组进行相应的电网容量补偿。而锂电池组的电量有限,在进行电量补偿后还需对锂电池组的电量进行补充。以使得再次需要电量补偿时,锂电池组能够提供足够的电量。因而,还需对锂电池输出的电量进行实时检测,并判断该锂电池组输出的电量是否小于预设阈值,该预设阈值例如可以是锂电池的电量小于其总电量的10%,在此仅为示例性的值,具体设置依据实际船舶所需电量的情况,再吃不做限定。当检测出锂电池组的输出总电量小于预设阈值时, 则需要对锂电池组进行充电,此时可控制发电机组输出的电能向锂电池组进行充电,以使锂电池组能够保持足够的电量。
本发明实施例通过对锂电池组输出的总电量进行实时采集,并在该锂电池组的电量小于预设阈值时,控制发电机组向锂电池组进行充电,使得锂电池组能够保持足够的电量,从而保证锂电池组能在船舶需要电网容量补偿时,提供足够的电量,进而保证船舶的正常运行和作业。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (8)

  1. 一种船舶电力系统,其特征在于,包括:发电机组、锂电池组、功率管理模块、电池管理模块、电源转换模块、以及电力推进器;
    所述功率管理模块的信号采集端与所述发电机组的功率输出端连接、第一输出端与所述电池管理模块的信号输入端连接、第一输入端与所述电池管理模块的信号输出端连接,用于采集所述发电机组的输出功率,以及通过所述电池管理模块采集所述锂电池组的电量信息,并根据所述船舶的当前工况模式下所述电力推进器的实际使用功率,确定所述船舶当前的全船实用总功率;
    所述发电机组的供电端与所述电源转换模块的输入端连接,用于提供电能,并输入所述电源转换模块;
    所述电池管理模块的第一控制端与所述锂电池组的控制端连接,用于在接收到所述功率管理模块控制所述锂电池组放电的信号后,控制所述锂电池组向所述电力推进器放电;
    所述锂电池组的电信号输出端与所述电源转换模块的输入端连接,用于根据所述电池管理模块的控制,向所述电源转换模块输入电能;
    所述电源转换模块的第一输出端与所述电力推进器连接,用于将接收的电能转换为驱动所述电力推进器动作的电能,以使所述电力推动器上电工作。
  2. 根据权利要求1所述的系统,其特征在于,还包括:配电板;
    所述配电板的输入端与所述发电机组的供电端连接、控制端与所述电池管理模块的控制端连接、以及输出端与所述电源转换模块的输入端连接,用于根据所述电池管理模块向所述功率管理模块发出的充电控制信号,控制所述电源转换模块进行相应的电能转换;
    所述电池管理模块的信号采集端与所述锂电池组的电量输出端连接,用于 采集所述锂电池组的当前电量;
    相应的,所述锂电池组的充电信号输入端与所述电源转换模块的第二输出端连接,用于在所述锂电池组的电量低于预设值时,接收所述发电机组通过所述电源转换模块转换后的充电信号,以进行电量补充。
  3. 根据权利要求1所述的系统,其特征在于,所述电源转换模块包括变频器和变压器。
  4. 根据权利要求1~4任一项所述的系统,其特征在于,所述发电机组为柴油发电机组。
  5. 根据权利要求1~4任一项所述的系统,其特征在于,所述锂电池组为多个单个锂电池。
  6. 一种用于如权利要求1~5任一项所述的船舶电力系统的控制方法,其特征在于,包括:
    实时监测所述船舶发电机组的输出功率、以及所述船舶的当前工况下的电力推进器的使用总功率,以确定所述船舶的当前全船实用总功率;
    判断所述船舶的当前全船实用总功率是否超出预设阈值;
    若是,则判断所述船舶的当前实用总功率的维持时间是否超过预设时间;
    若是,则控制所述船舶的锂电池组向电力推进器放电,以对所述船舶全船的电网用量进行补充。
  7. 根据权利要求6所述的控制方法,其特征在于,还包括:
    若所述船舶的实用总功率未超出所述预设阈值和/或所述维持时间未超过所述预设时间,则所述船舶采用所述发电机组进行供电。
  8. 根据权利要求6所述的控制方法,其特征在于,还包括:
    采集所述锂电池组的当前输出总电量,并判断所述总电量是否小于低电量预设值;
    若是,则控制所述发电机组向所述锂电池组提供充电电能。
PCT/CN2017/110027 2017-09-26 2017-11-08 一种船舶电力系统及其控制方法 WO2019061694A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710880520.XA CN107697258A (zh) 2017-09-26 2017-09-26 一种船舶电力系统及其控制方法
CN201710880520.X 2017-09-26

Publications (1)

Publication Number Publication Date
WO2019061694A1 true WO2019061694A1 (zh) 2019-04-04

Family

ID=61174433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110027 WO2019061694A1 (zh) 2017-09-26 2017-11-08 一种船舶电力系统及其控制方法

Country Status (2)

Country Link
CN (1) CN107697258A (zh)
WO (1) WO2019061694A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114291242A (zh) * 2021-12-10 2022-04-08 深圳市苇渡智能科技有限公司 推进器的控制方法、推进器和计算机可读存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110341505A (zh) * 2018-03-19 2019-10-18 江苏现代造船技术有限公司 一种内河全电力推进船舶无线充电装置
CN109018291A (zh) * 2018-07-24 2018-12-18 李继祎 一种船舶供电系统及控制方法
CN110789700B (zh) * 2019-09-30 2022-03-15 广州文冲船厂有限责任公司 一种船舶电池动力功率管理系统的控制方法
CN114084334B (zh) * 2021-11-18 2023-05-16 江南造船(集团)有限责任公司 基于动力电池能量转换的船舶航行系统及方法
CN114336621A (zh) * 2022-02-18 2022-04-12 中船动力研究院有限公司 一种气电混合动力船舶能量管理系统和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211657A (zh) * 2011-05-11 2011-10-12 上海海事大学 柴油发电机组与动力电池混合供电的船舶电力推进系统
CN103332284A (zh) * 2013-06-27 2013-10-02 上海海事大学 一种混合动力船舶电力推进系统的能量管理与控制方法
CN103708015A (zh) * 2013-12-18 2014-04-09 上海海事大学 一种双柴油发电机组与锂电池混合动力船舶结构与控制方法
CN204726648U (zh) * 2015-06-08 2015-10-28 于海 一种船用混合动力装置
GB2532731A (en) * 2014-11-25 2016-06-01 Eric Hawksley Graeme Hybrid power system
CN206265278U (zh) * 2016-12-18 2017-06-20 湖州港口船业有限公司 船舶混合动力系统
CN107161313A (zh) * 2017-05-23 2017-09-15 大连理工大学 一种适用于工程船的油电混合动力倒车控制系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101465969B1 (ko) * 2012-12-11 2014-12-01 전자부품연구원 보트용 추진 시스템 및 이의 운용 방법
CN104787288A (zh) * 2015-03-27 2015-07-22 上海新实达高速游艇制造有限公司 船舶集成动力系统
CN105151261A (zh) * 2015-07-31 2015-12-16 深圳市森派新能源科技有限公司 一种电动拖船及其动力系统
CN106809363A (zh) * 2016-01-28 2017-06-09 上海冠图电气科技有限公司 船舶多类型能源管理系统以及能源管理方法
CN105966590A (zh) * 2016-06-28 2016-09-28 江苏省船舶设计研究所有限公司 一种带储能单元混合电力推进系统的车客渡船

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211657A (zh) * 2011-05-11 2011-10-12 上海海事大学 柴油发电机组与动力电池混合供电的船舶电力推进系统
CN103332284A (zh) * 2013-06-27 2013-10-02 上海海事大学 一种混合动力船舶电力推进系统的能量管理与控制方法
CN103708015A (zh) * 2013-12-18 2014-04-09 上海海事大学 一种双柴油发电机组与锂电池混合动力船舶结构与控制方法
GB2532731A (en) * 2014-11-25 2016-06-01 Eric Hawksley Graeme Hybrid power system
CN204726648U (zh) * 2015-06-08 2015-10-28 于海 一种船用混合动力装置
CN206265278U (zh) * 2016-12-18 2017-06-20 湖州港口船业有限公司 船舶混合动力系统
CN107161313A (zh) * 2017-05-23 2017-09-15 大连理工大学 一种适用于工程船的油电混合动力倒车控制系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114291242A (zh) * 2021-12-10 2022-04-08 深圳市苇渡智能科技有限公司 推进器的控制方法、推进器和计算机可读存储介质
CN114291242B (zh) * 2021-12-10 2023-03-14 深圳市苇渡智能科技有限公司 推进器的控制方法、推进器和计算机可读存储介质

Also Published As

Publication number Publication date
CN107697258A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
WO2019061694A1 (zh) 一种船舶电力系统及其控制方法
CN103929115B (zh) 并离网双模式船舶太阳能发电系统
CN105846419B (zh) 基于直流微电网的光伏、柴油互补供电系统
CN103329396A (zh) 用于船舶的电驱动装置的供电系统
WO2019061803A1 (zh) 一种船舶电力系统
CN106067692A (zh) 飞机电气系统及其供电方法
CN100490274C (zh) 蓄电池充放电集成管理器及其管理方法
Khan et al. Management of hybrid energy storage systems for MVDC power system of all electric ship
CN103915884A (zh) 基于太阳能发电的船舶应急电源系统
CN105391164A (zh) 微电网型不间断电源系统
CN102496961A (zh) 一种基于直流母线的风电独立电网系统
CN106160162A (zh) 供电系统
CN113507144A (zh) 一种船舶交直流组网配电功率管理系统及其供电方法
CN211001772U (zh) 一种船用纯电池推进系统
CN105471092A (zh) 不间断电源系统
CN105140947A (zh) 智能社区微电网电池储能系统
CN202405799U (zh) 一种基于直流母线的风电独立电网系统
CN109649222B (zh) 城轨列车再生能量综合利用系统及其控制方法
CN203707864U (zh) 一种新型混合能源48v直流变频发电系统
CN212137297U (zh) 一种光储充一体化微电网能量管理系统
CN114597938A (zh) 一种铝空气电池混合供电系统及其控制方法
CN210016289U (zh) 一种风电场后备电源冗余式设计储能系统
CN207910525U (zh) 一种纯电动船用交流电源输出系统装置
CN202670086U (zh) 新能源电动船
CN102347617A (zh) 清洁能源补偿的储能电站和具有清洁能源补偿的储能系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926364

Country of ref document: EP

Kind code of ref document: A1