WO2019059357A1 - Compact including, as constituent, molded article formed of semiaromatic polyamide resin composition - Google Patents

Compact including, as constituent, molded article formed of semiaromatic polyamide resin composition Download PDF

Info

Publication number
WO2019059357A1
WO2019059357A1 PCT/JP2018/035096 JP2018035096W WO2019059357A1 WO 2019059357 A1 WO2019059357 A1 WO 2019059357A1 JP 2018035096 W JP2018035096 W JP 2018035096W WO 2019059357 A1 WO2019059357 A1 WO 2019059357A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
acid
semi
mass
molded article
Prior art date
Application number
PCT/JP2018/035096
Other languages
French (fr)
Japanese (ja)
Inventor
誠 玉津島
順一 中尾
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2019506459A priority Critical patent/JP7200927B2/en
Priority to CN201880059313.0A priority patent/CN111133038B/en
Priority to KR1020207008226A priority patent/KR102615918B1/en
Publication of WO2019059357A1 publication Critical patent/WO2019059357A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/36Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/10Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the present invention has a structure in which a molded article made of a semiaromatic polyamide resin composition excellent in water absorption dimensional stability and heat resistance and a thermosetting resin containing glycidyl group have high adhesiveness and are directly intervened. It is related with the molded object which it has.
  • Polyamide resins have been used for clothing, industrial materials fibers, engineering plastics, etc., taking advantage of their excellent properties and ease of melt molding.
  • applications of polyamide resin are further expanded, and are used in various applications ranging from automobile parts around the engine to electric and electronic parts represented by smartphones.
  • thermosetting resin is becoming common in order to prevent malfunction of equipment due to a trace amount of moisture and foreign matter entering from the outside while the product is being refined. High adhesion to these thermosetting resins is strongly demanded for such polyamide resins.
  • polyamide resins In the case of polyamide resins, the influence of water absorption in the environment of use on product quality often becomes a problem.
  • the polyamide resin changes its dimensions when it absorbs water in the air, and therefore, the product dimensions change, leading to a defective assembly or operation of the product.
  • blisters of the product due to water absorption occur, leading to the occurrence of product defects.
  • PA6, PA66, modified PA6T, etc. widely used in the market, the saturated water absorption rate of the resin is as high as 6% or more, and the above problem is likely to occur. Therefore, a low water absorption polyamide resin that is less likely to absorb water is required.
  • Patent Document 1 discloses a carbon fiber reinforced polyamide resin composition which is excellent in metal adhesion and is composed of a semiaromatic polyamide, a carbon fiber, and an epoxy compound.
  • the technique described in the document contains an epoxy compound in the resin composition, and the low heat resistance of the epoxy compound increases outgassing at the time of processing at high temperature, and the appearance of the molded article There is a problem with processability such as a marked decrease.
  • Patent Document 2 discloses a semi-aromatic polyamide resin mainly made of PA9T, which is excellent in adhesion to other resins.
  • the amount of terminal amino groups of the semiaromatic polyamide is 60 to 120 ⁇ equivalent / g, and the ratio of (the amount of terminal amino groups) / (the amount of terminal carboxyl groups) is 6 or more
  • this document does not disclose a technique for expressing high adhesiveness with a polyamide resin having a high amount of terminal carboxyl groups.
  • Patent Document 3 discloses a molded article comprising a polyamide resin member and an adhesive layer in contact with the polyamide member, and a metal member.
  • the technique described in the document is essentially the thermoplastic polyolefin elastomer or thermoplastic polyether elastomer in which at least one of maleic acid and maleic anhydride is grafted to the adhesive layer, and the technique of the present invention and Is different.
  • the present invention has been made in view of the current state of the prior art, and its object is to improve the adhesion between a molded article made of a semi-aromatic polyamide resin composition and a thermosetting resin containing glycidyl group.
  • An object of the present invention is to provide a molded article excellent in water absorption dimensional stability and heat resistance, which has a structure directly interposed while having the resin.
  • the present inventor uses a resin composition containing a semiaromatic polyamide resin having specific physical properties such as the amount of end groups in addition to the composition, and a thermosetting resin having a glycidyl group It came to provide the molded object which has high water absorption dimensional stability, heat resistance, and adhesiveness by carrying out.
  • This molded body can also be understood as a composite molded body, since it is a molded body in which a molded article made of a semi-aromatic polyamide resin composition and a thermosetting resin having a glycidyl group are directly interposed. It has also been found that the adhesiveness is improved by further blending a styrene-maleimide copolymer in a specific ratio into the resin composition.
  • the present invention has the following constitution. (1) 100 parts by mass of a semiaromatic polyamide resin (A) satisfying the following requirements (a) to (c), containing 0 to 200 parts by mass of a reinforcing material (B), 80 ° C. 95% RH equilibrium A molded article having a structure in which a molded article (D) comprising a semi-aromatic polyamide resin composition (C) having a water absorption coefficient of 3.0% or less and a thermosetting resin (E) containing glycidyl group are directly interposed .
  • a semiaromatic polyamide resin A satisfying the following requirements (a) to (c), containing 0 to 200 parts by mass of a reinforcing material (B), 80 ° C. 95% RH equilibrium
  • a molded article having a structure in which a molded article (D) comprising a semi-aromatic polyamide resin composition (C) having a water absorption coefficient of 3.0% or less and a thermosetting resin (E) containing glycidyl
  • the semi-aromatic polyamide resin composition (C) is based on 100 parts by mass of the semi-aromatic polyamide resin (A), The molded article according to (1), further comprising 10 to 60 parts by mass of a styrene-maleimide copolymer (F).
  • the semi-aromatic polyamide resin (A) contains 50 to 100 mol% of a repeating unit consisting of a diamine having 6 to 12 carbon atoms and terephthalic acid, and no repeating unit consisting of an aminocarboxylic acid or lactam having 10 or more carbon atoms.
  • thermosetting resin (E) containing a glycidyl group is a one-component thermosetting epoxy resin.
  • a connector comprising the molded body according to any one of (1) to (5).
  • a switch part comprising the molded body according to any one of (1) to (5).
  • a camera part comprising the molded body according to any one of (1) to (5).
  • the semi-aromatic polyamide resin having high water absorption dimensional stability, heat resistance and adhesiveness comprising a molded article comprising a semi-aromatic polyamide resin composition and a thermosetting resin having a glycidyl group It is possible to provide a composite molded article in which molded articles made of the composition and a thermosetting resin having a glycidyl group are directly intervened.
  • directly intercalated means that they are directly adhered.
  • the molded article of the present invention contains 0 to 200 parts by mass of a reinforcing material (B) with respect to 100 parts by mass of a semiaromatic polyamide resin (A) satisfying the following requirements (a) to (c), Structure in which a molded article (D) comprising a semi-aromatic polyamide resin composition (C) having a 95% RH equilibrium water absorption of 3.0% or less and a thermosetting resin (E) containing glycidyl group are directly intervened It is characterized by having.
  • the semiaromatic polyamide resin composition (C) further contains styrene based on 100 parts by mass of the semiaromatic polyamide resin (A). It is a preferred embodiment that 10 to 60 parts by mass of the maleimide copolymer (F) is contained.
  • the semiaromatic polyamide resin (A) used in the present invention is not particularly limited, and is a semiaromatic polyamide having an acid amide bond (-CONH-) in the molecule and having an aromatic ring (benzene ring). It is.
  • semi-aromatic polyamides include 6T polyamides (for example, polyamide 6T6I consisting of terephthalic acid / isophthalic acid / hexamethylene diamine, polyamide 6T66 consisting of terephthalic acid / adipic acid / hexamethylene diamine, terephthalic acid / isophthalic acid / adipine Acid / hexamethylenediamine polyamide 6T6I66, terephthalic acid / hexamethylenediamine / 2-methyl-1, 5-pentamethylenediamine polyamide 6T / M-5T, terephthalic acid / hexamethylenediamine / ⁇ -caprolactam polyamide 6T6,
  • the semi-aromatic polyamide resin (A) used in the present invention needs to have a peak area ( ⁇ H Tc2 ) associated with temperature-drop crystallization measured by the method described in the section of the following examples at 40 mJ / mg or less. Also, it is preferably 35 mJ / mg or less, more preferably 30 mJ / mg or less.
  • ⁇ H Tc2 exceeds the above upper limit, the adhesion to the thermosetting resin (E) is lowered, and the strength necessary for the molded product may not be achieved, which is not preferable.
  • the lower limit of ⁇ H Tc2 is 5 mJ / mg, and 10 mJ / mg or more is more preferable. Below the above lower limit, the molding cycle time may be prolonged and the production efficiency may be reduced. Moreover, when the obtained molded object is subjected to secondary processing in a high temperature environment, dimensional change, deformation, etc. may occur, which is not preferable.
  • the semi-aromatic polyamide resin (A) used in the present invention needs to have a glass transition temperature (Tg) of 120 ° C. or less measured by the method described in the section of the following examples. Moreover, it is preferable that it is 110 degrees C or less, and it is more preferable that it is 100 degrees C or less.
  • Tg glass transition temperature
  • the lower limit of Tg is 50 ° C. or higher, preferably 60 ° C. or higher, and more preferably 70 ° C. or higher. Below the lower limit, depending on the use environment, the molded product may be softened, which may cause deformation or malfunction of the product, which is not preferable.
  • the semiaromatic polyamide resin (A) used in the present invention needs to have a sum (AEG + CEG) of terminal amino group concentration (AEG) and terminal carboxyl group concentration (CEG) of 70 eq / ton or more. Moreover, it is preferable that it is 80 eq / ton or more, and it is more preferable that it is 100 eq / ton or more.
  • (AEG + CEG) is less than the above-mentioned lower limit, adhesion with the thermosetting resin (E) may be lowered, and the strength necessary for the molded product may not be achieved, which is not preferable.
  • the upper limit of (AEG + CEG) is preferably 200 eq / ton or less, more preferably 180 eq / ton or less, and still more preferably 160 eq / ton. When it exceeds the above-mentioned upper limit, reaction of end groups with the heat at the time of processing arises, and a problem may arise in retention stability, and it is not preferable.
  • the terminal amino group concentration (AEG) of the semi-aromatic polyamide resin (A) used in the present invention is preferably 2 eq / ton or more, more preferably 10 eq / ton or more, and 15 eq / ton or more Is more preferably 20 eq / ton or more. Even when the terminal amino group concentration is below the above lower limit, the semi-aromatic polyamide resin (A) used in the present invention is excellent in adhesion to the thermosetting resin (E), and the molded article of the present invention has sufficient adhesion Although it has intensity
  • the semi-aromatic polyamide resin (A) used in the present invention preferably has a terminal carboxyl group concentration (CEG) of 20 eq / ton or more, more preferably 30 eq / ton or more, and 40 eq / ton or more Is more preferred. Since the adhesiveness with a thermosetting resin (E) can be improved by making terminal carboxyl group density
  • the semiaromatic polyamide resin (A) used in the present invention preferably has a larger CEG than AEG.
  • the CEG / AEG is preferably 2 or more, more preferably 5 or more.
  • the semi-aromatic polyamide resin (A) used in the present invention preferably has a DSC melting peak temperature (Tm) located at the lowest temperature side measured by the method described in the section of the following examples and is 280 ° C. or higher. Moreover, it is more preferable that it is 290 degreeC or more, and it is further more preferable that it is 300 degreeC or more.
  • Tm DSC melting peak temperature
  • Tm is less than the above lower limit
  • Tm 340 degrees C or less is preferable
  • 330 degrees C or less is more preferable
  • 320 degrees C or less is more preferable.
  • Tm exceeds the above-mentioned upper limit, processing temperature at the time of molding processing becomes extremely high, and decomposition of resin by heat may occur, which is not preferable.
  • the semiaromatic polyamide resin (A) used in the present invention is preferably the following semiaromatic polyamide resin from the viewpoint of ⁇ H Tc2 , Tg, and Tm.
  • the semi-aromatic polyamide resin (A) comprises 50 to 100 mol% of a repeating unit consisting of a diamine having 6 to 12 carbon atoms and terephthalic acid, and 0 to 50 mol of a repeating unit consisting of an aminocarboxylic acid or lactam having 10 or more carbon atoms.
  • the molding cycle time becomes longer due to the decrease of ⁇ H Tc2 and the Tm decreases. It is not preferable because there is a possibility that problems may occur due to the melting or deformation of the molded product in the solder reflow process due to the above, and the softening of the molded product in the use environment due to the decrease in Tg.
  • the semiaromatic polyamide resin (A) since ⁇ H Tc2 , Tg and Tm of the semiaromatic polyamide resin (A) can be appropriately improved, it is composed of a diamine having 6 to 12 carbon atoms and terephthalic acid in the semiaromatic polyamide resin (A) It is more preferable to set the proportion of repeating units to 55 mol% or more (45 mol% or less of repeating units consisting of an aminocarboxylic acid having 10 or more carbon atoms or lactams), and 60 mol% or more (aminocarboxylic acids having 10 or more carbon atoms) It is more preferable that the repeating unit consisting of lactam be 40 mol% or less).
  • Examples of the diamine component having 6 to 12 carbon atoms constituting the semiaromatic polyamide resin (A) include 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9- Nonamethylenediamine, 2-methyl-1,8-octamethylenediamine, 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine can be mentioned. These may be used alone or in combination.
  • the aminocarboxylic acid having 10 or more carbon atoms or the lactam having 10 or more carbon atoms constituting the semiaromatic polyamide resin (A) is preferably an aminocarboxylic acid or lactam having 11 to 18 carbon atoms.
  • 11-aminoundecanoic acid, undecanelactam, 12-aminododecanoic acid and 12-lauryl lactam are preferable.
  • other components can be copolymerized in 50% by mole or less of the constituent units.
  • Other copolymerizable diamine components include 1,13-tridecamethylenediamine, 1,16-hexadecamethylenediamine, 1,18-octadecamethylenediamine, 2,2,4 (or 2,4,4 (or 2,4,4) Aliphatic diamines such as) -trimethylhexamethylene diamine, fats such as piperazine, cyclohexane diamine, bis (3-methyl-4-aminohexyl) methane, bis- (4,4'-aminocyclohexyl) methane, isophorone diamine Aromatic diamines such as cyclic diamines, metaxylylene diamines, para-xylylene diamines, para-phenylene diamines, meta-phenylene diamines, and hydrogenated products thereof can be mentioned.
  • copolymerizable acid components include isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 2,2'-diphenyldicarboxylic acid
  • Aromatic dicarboxylic acids such as 4,4'-diphenyletherdicarboxylic acid, sodium 5-sulfonate isophthalic acid, 5-hydroxyisophthalic acid, fumaric acid, maleic acid, succinic acid, itaconic acid, adipic acid, azelaic acid, sebacic acid 1,11-undecanedioic acid, 1,12-dodecanedioic acid, 1,14-tetradecanedioic acid, 1,18-octadecanedioic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1 ,
  • one or more of an aminocarboxylic acid having 11 to 18 carbon atoms or a lactam having 11 to 18 carbons are copolymerized Is preferred.
  • the semiaromatic polyamide resin (A) used in the present invention contains 50 to 100 mol% of repeating units consisting of hexamethylene diamine and terephthalic acid, and 0 to 50 mol% of repeating units consisting of aminoundecanoic acid or undecanelactam.
  • a semi-aromatic polyamide resin preferably a semi-aromatic polyamide resin, containing 50 to 98 mol% of repeating units consisting of hexamethylene diamine and terephthalic acid, and 2 to 50 mol% of repeating units consisting of amino undecanoic acid or undecane lactam It is more preferable that the resin is a semi-aromatic polyamide resin containing 55 to 80 mol% of repeating units consisting of hexamethylene diamine and terephthalic acid and 20 to 45 mol% of repeating units consisting of aminoundecanoic acid or undecanelactam
  • a repeating unit composed of hexamethylenediamine and terephthalic acid 60-70 mol% contains a repeating unit composed of aminoundecanoic acid or undecanoic lactam 30-40 mol%, and particularly preferably is a semi-aromatic polyamide resin.
  • the molding cycle time becomes longer due to the decrease in ⁇ H Tc2 and the solder reflow process due to the decrease in Tm.
  • a failure may occur due to the melting or deformation of the molded product in the above, and the softening of the molded product in the use environment due to the decrease of Tg.
  • the Tm can be in the range of 300 ° C. to 320 ° C.
  • ⁇ H Tc2 can be made 10 to 35 mJ / mg
  • Tg can be made 70 to 100 ° C.
  • high adhesiveness with the thermosetting resin (E) can be obtained. And more preferred.
  • phosphoric acid, phosphorous acid, hypophosphorous acid or its metal salt, ammonium salt, ester are mentioned.
  • the metal species of the metal salt include potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin, tungsten, germanium, titanium, antimony and the like.
  • the ester include ethyl ester, isopropyl ester, butyl ester, hexyl ester, isodecyl ester, octadecyl ester, decyl ester, stearyl ester, phenyl ester and the like.
  • alkali compounds such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, from a viewpoint of melt
  • the relative viscosity (RV) measured at 20 ° C. in 96% concentrated sulfuric acid of the semiaromatic polyamide resin (A) is preferably 0.4 to 4.0, more preferably 1.0 to 3.0, and further Preferably, it is 1.5 to 2.5.
  • means for adjusting the molecular weight can be mentioned.
  • the semi-aromatic polyamide resin (A) is to adjust the amount of terminal groups and the molecular weight of polyamide by adjusting the molar ratio between the amount of amino groups and the carboxyl group and performing polycondensation or adding an end capping agent. Can.
  • the timing for adding the end-capping agent may be at the time of raw material charging, at the start of polymerization, at the end of polymerization, or at the end of polymerization.
  • the end capping agent is not particularly limited as long as it is a monofunctional compound having reactivity with an amino group or a carboxyl group at a polyamide end, and an acid anhydride such as monocarboxylic acid or monoamine, phthalic anhydride, Monoisocyanates, mono acid halides, monoesters, monoalcohols and the like can be used.
  • end capping agents include aliphatic monobasics such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, isobutyric acid and the like Alicyclic monocarboxylic acids such as carboxylic acids and cyclohexanecarboxylic acids, benzoic acids, toluic acids, ⁇ -naphthalenecarboxylic acids, ⁇ -naphthalenecarboxylic acids, aromatic monocarboxylic acids such as methylnaphthalenecarboxylic acids and phenylacetic acids, and maleic anhydride Acids, acid anhydrides such as phthalic anhydride and hexahydrophthalic anhydride, methylamine, ethylamine, propylamine, butylamine, butylamine, hexylamine, oc
  • the semi-aromatic polyamide resin (A) can be produced by a conventionally known method, and can be easily synthesized, for example, by co-condensation reaction of raw material monomers.
  • the order of the cocondensation polymerization reaction is not particularly limited, and all the raw material monomers may be reacted at once, or some raw material monomers may be reacted first, and then the remaining raw material monomers may be reacted.
  • the polymerization method is not particularly limited, but it may be carried out in a continuous process from raw material charging to polymer production, or once an oligomer is produced, then polymerization is advanced by an extruder or the like in another process, or the oligomer is solidified You may use methods, such as high molecular weight formation by phase polymerization. By adjusting the feed ratio of the raw material monomers, it is possible to control the proportion of each structural unit in the copolymerized polyamide to be synthesized.
  • the reinforcing material (B) used in the present invention is for improving the moldability of the semiaromatic polyamide resin composition (C) and the strength of the molded article (D) comprising the semiaromatic polyamide resin composition (C). It is preferable to use at least one selected from fibrous reinforcing materials and needle-like reinforcing materials.
  • fibrous reinforcing materials include glass fibers, carbon fibers, boron fibers, ceramic fibers, metal fibers and the like
  • needle-like reinforcing materials include potassium titanate whiskers, aluminum borate whiskers, zinc oxide whiskers, carbonates Calcium whiskers, magnesium sulfate whiskers, wollastonite and the like can be mentioned.
  • glass fibers it is possible to use chopped strands or continuous filament fibers having a length of 0.1 mm to 100 mm.
  • a cross-sectional shape of glass fiber glass fiber of circular cross section and non-circular cross section can be used.
  • the diameter of the round cross section glass fiber is 20 ⁇ m or less, preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less.
  • glass fibers having a non-circular cross section are preferable in terms of physical properties and fluidity.
  • the glass fibers having a non-circular cross section include those having a substantially oval shape, a substantially oval shape, or a substantially wedge shape in a cross section perpendicular to the length direction of the fiber length, and the flatness is 1.5 to 8 Is preferred.
  • the flatness is assumed to be a rectangle having a minimum area circumscribing the cross section perpendicular to the longitudinal direction of the glass fiber, and the length of the long side of this rectangle is the long diameter, and the length of the short side is the short diameter.
  • Ratio of major axis / minor axis when The thickness of the glass fiber is not particularly limited, but the minor diameter is about 1 to 20 ⁇ m and the major diameter is about 2 to 100 ⁇ m.
  • a fibrous reinforcing material that has been treated with an organic treatment or a coupling agent, or to use it together with the coupling agent at the time of melt compounding.
  • a coupling agent any of a coupling agent, a titanate coupling agent, and an aluminum type coupling agent may be used, an aminosilane coupling agent and an epoxy silane coupling agent are especially preferable among these.
  • the reinforcing material (B) used in the present invention needs to be 0 to 200 parts by mass with respect to 100 parts by mass of the semiaromatic polyamide resin (A). Also, 10 to 200 parts by mass is preferable, 10 to 180 parts by mass is more preferable, and 15 to 160 parts by mass is more preferable.
  • the proportion of the reinforcing material (B) exceeds the above-mentioned upper limit, the proportion of the semiaromatic polyamide resin (A) in direct contact with the thermosetting resin (E) decreases at the time of adhesion with the thermosetting resin (E) Adhesion, which is not preferable.
  • the lower limit of the ratio of the reinforcing material (B) is 0 parts by mass.
  • the amount is preferably 10 parts by mass or more, and more preferably 15 parts by mass or more.
  • the styrene-maleimide copolymer (F) used in the present invention is preferably 10 to 60 parts by mass with respect to 100 parts by mass of the semiaromatic polyamide resin (A). In addition, 12 to 50 parts by mass is preferable, and 15 to 40 parts by mass is more preferable. If the proportion of the styrene-maleimide copolymer (F) is below the above lower limit, the adhesion may be lowered upon adhesion with the thermosetting resin (E), which is not preferable. When the proportion of the styrene-maleimide copolymer (F) exceeds the above upper limit, the flowability at the time of injection molding may be reduced, and the appearance of the molded article may be deteriorated, which is not preferable.
  • the styrene-maleimide copolymer (F) used in the present invention is a copolymer containing a styrene monomer and a maleimide monomer as a component.
  • a maleic anhydride may be copolymerized with the styrene-maleimide copolymer (F) for the purpose of improving the compatibility with the semiaromatic polyamide resin (A).
  • the ratio of the components of the styrene-maleimide copolymer (F) is not particularly limited, examples of specific components include 25 to 40 mol% of a styrene monomer, N-phenylmaleimide 50 to 70 mol% and 5 to 15 mol% of maleic anhydride can be mentioned.
  • Commercially available products include Denka IP MS-NIP manufactured by Denka Co., Ltd.
  • the semi-aromatic polyamide resin composition (C) used in the present invention is a solder used not only for suppressing dimensional change of the molded product obtained according to the present invention under actual use environment but also for mounting of electric and electronic parts
  • the 80 ° C. 95% RH equilibrium water absorption as measured by the method described in the item of the following example needs to be 3.0% (3.0 mass%) or less .
  • 80 degreeC 95% RH equilibrium water absorption is 2.5% or less.
  • the 80 ° C 95% RH equilibrium water absorption rate exceeds the above upper limit, the water absorption dimensional change of the obtained molded article becomes large, and problems occur during product assembly or product operation or blisters occur in the solder reflow process, resulting in product failure It is not possible because it may lead.
  • the lower limit of 80 ° C. 95% RH equilibrium water absorption is 0%, about 1.0% is preferable in view of the characteristics of the semiaromatic polyamide resin (A) used in the present invention.
  • additives used in conventional polyamide resin compositions can be used in the semiaromatic polyamide resin composition (C) used in the present invention.
  • Additives include stabilizers, impact modifiers, mold release agents, slide improvers, colorants, plasticizers, crystal nucleating agents, polyamides different from semi-aromatic polyamide resins (A), thermoplastics other than polyamides Resin etc. are mentioned.
  • the possible blending amounts of these components in the semiaromatic polyamide resin composition (C) are as described below, but the total of these components is 30 mass% in the semiaromatic polyamide resin composition (C) % Or less is preferable, 20 mass% or less is more preferable, 10 mass% or less is more preferable, and 5 mass% or less is particularly preferable.
  • the semiaromatic polyamide resin composition (C) also includes the case where it is composed of only the semiaromatic polyamide resin (A), but also in that case, it is referred to as the semiaromatic polyamide resin composition (C) for convenience.
  • organic antioxidants and heat stabilizers such as hindered phenol type antioxidants, sulfur type antioxidants and phosphorus type antioxidants, light stabilizers such as hindered amine type, benzophenone type and imidazole type and the like UV absorbers, metal deactivators, copper compounds and the like can be mentioned.
  • a copper compound cuprous chloride, cuprous bromide, cuprous iodide, cupric chloride, cupric bromide, cupric iodide, cupric phosphate, cupric pyrophosphate, Copper salts of organic carboxylic acids such as copper sulfide, copper nitrate and copper acetate can be used.
  • an alkali metal halide compound As a component other than the copper compound, it is preferable to contain an alkali metal halide compound, and as the alkali metal halide compound, lithium chloride, lithium bromide, lithium iodide, sodium iodide, sodium fluoride, sodium chloride, bromide Sodium, sodium iodide, potassium fluoride, potassium chloride, potassium bromide, potassium iodide and the like can be mentioned. These additives may be used not only singly but also in combination of several kinds. Although the addition amount of the stabilizer may be selected as an optimum amount, it is possible to add up to 5 parts by mass with respect to 100 parts by mass of the semiaromatic polyamide resin (A).
  • a polyamide having a composition different from that of the semiaromatic polyamide resin (A) may be polymer-blended.
  • the addition amount of the polyamide having a composition different from that of the semiaromatic polyamide resin (A) may be selected optimally, adding up to 50 parts by mass with respect to 100 parts by mass of the semiaromatic polyamide resin (A) Is possible.
  • thermoplastic resin other than polyamide may be added to the semiaromatic polyamide resin composition (C) used in the present invention.
  • polymers other than polyamide polyphenylene sulfide (PPS), liquid crystal polymer (LCP), aramid resin, polyetheretherketone (PEEK), polyetherketone (PEK), polyetherimide (PEI), thermoplastic polyimide, polyamideimide (PAI), polyether ketone ketone (PEKK), polyphenylene ether (PPE), polyether sulfone (PES), polysulfone (PSU), polyarylate (PAR), polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene na Phthalate, polycarbonate (PC), polyoxymethylene (POM), polypropylene (PP), polyethylene (PE), polymethylpentene (TPX), polystyrene ( S), polymethyl methacrylate, acrylonitrile - styrene cop
  • thermoplastic resins can be blended in a molten state by melt-kneading, they may be dispersed in the polyamide resin composition of the present invention into fibrous and particulate thermoplastic resins.
  • addition amount of the thermoplastic resin may be selected as an optimum amount, it is possible to add up to 50 parts by mass with respect to 100 parts by mass of the semi-aromatic polyamide resin (A).
  • Impact modifiers include ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber (EPDM), ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene-methacrylic acid copolymer, ethylene- Methacrylic acid ester copolymer, polyolefin resin such as ethylene vinyl acetate copolymer, styrene-butadiene-styrene block copolymer (SBS), styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene -A vinyl polymer resin such as styrene copolymer (SIS) or acrylic ester copolymer, polybutylene terephthalate or polybutylene naphthalate as a hard segment, polytetramethylene glycol or polycaprolactone or poly Polyester block copolymer in which the turbo sulfonate di
  • the reactive group capable of reacting with the polyamide is co It is preferable to be polymerized, and the reactive group is a group capable of reacting with an amino group which is a terminal group of a polyamide resin, a carboxyl group and a main chain amide group. Specific examples thereof include a carboxylic acid group, an acid anhydride group, an epoxy group, an oxazoline group, an amino group, and an isocyanate group. Among these, the acid anhydride group is most excellent in reactivity.
  • a mold release agent a long chain fatty acid or ester or metal salt thereof, an amide based compound, polyethylene wax, silicone, polyethylene oxide and the like can be mentioned.
  • the long chain fatty acid preferably has 12 or more carbon atoms in particular, and examples thereof include stearic acid, 12-hydroxystearic acid, behenic acid, montanic acid, etc. Partial or whole carboxylic acid is esterified with monoglycol or polyglycol Or a metal salt may be formed.
  • ethylene bis terephthalamide, methylene bis stearyl amide, etc. are mentioned. These release agents may be used alone or as a mixture. The addition amount of the release agent may be selected as an optimum amount, but it is possible to add up to 5 parts by mass with respect to 100 parts by mass of the semiaromatic polyamide resin (A).
  • the semi-aromatic polyamide resin composition (C) used in the present invention can be produced by blending the above-mentioned respective components by a conventionally known method. For example, each component is added during the polycondensation reaction of the semiaromatic polyamide resin (A), the semiaromatic polyamide resin (A) and the other components are dry blended, or a twin screw extruder is used. The method of melt-kneading each component using can be mentioned.
  • the semiaromatic polyamide resin composition (C) used in the present invention can be made into a molded article (D) by a known molding method such as injection molding.
  • thermosetting resin (E) used in the present invention is a thermosetting resin characterized by containing a glycidyl group in the chemical structure, and one or more kinds of components having a glycidyl group may be contained.
  • the thermosetting resin containing a glycidyl group in the chemical structure means a resin in which the glycidyl group is bonded as a part of the chemical structure of the resin.
  • thermosetting resin containing a glycidyl group in the chemical structure bisphenol A epoxy resin, bisphenol F epoxy resin, novolac epoxy resin, cyclic aliphatic epoxy resin, long chain aliphatic epoxy resin, glycidyl ester epoxy resin Epoxy resin, glycidyl amine type epoxy resin, flame retardant epoxy resin, hydantoin type epoxy resin, isocyanurate type epoxy resin, etc. may be mentioned.
  • bisphenol A epoxy resin and bisphenol F epoxy resin are preferable from the viewpoints of adhesiveness with a semiaromatic polyamide resin (A), processability and versatility.
  • thermosetting resin (E) used in the present invention contains various curing agent components for the purpose of promoting the curing reaction.
  • curing agents aliphatic polyamines, aromatic amines, modified amines, polyamidoamines, secondary amines, tertiary amines, imidazole compounds, polymercaptan compounds, acid anhydrides, boron trifluoride-amine complexes, dicyandiamides, organic acids Hydrazide is mentioned.
  • aliphatic polyamines examples include diethylenetriamine, triethylenetriamine, tetraethylenepentamine, dipropenediamine, diethylaminopropylamine, N-aminoethylpiperazine, mensene diamine, isophorone diamine, 1,3-bisaminocyclohexane
  • aromatic amines examples include m-xylenediamine, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone.
  • An example of a secondary amine includes piperidine.
  • tertiary amines examples include N, N-dimethylpiperazine, triethylenediamine, benzyldimethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol.
  • imidazole compound examples include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-aminoethyl-2-undecylimidazolium trimellitate, and an epoxy-imidazole adduct.
  • Examples of the acid anhydride include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic acid anhydride, ethylene glycol bis trimellitate, glycerol tris trimellitate, maleic anhydride, tetrahydrophthalic anhydride, endo Methylenetetrahydrophthalic anhydride, Methyl endo methylenetetrahydrophthalic anhydride, Methylbutenyltetrahydrophthalic anhydride, Dodecenyl succinic anhydride, Hexahydrophthalic anhydride, Methylhexahydrophthalic anhydride, Succinic anhydride, Methylcyclohexene dicarboxylic anhydride, Alkylstyrene-maleic anhydride copolymer, chlorendic anhydride, polyazelaic anhydride can be mentioned.
  • the curing agent may be contained singly or in combination.
  • thermosetting resin (E) used in the present invention one-component and two-component thermosetting epoxy resins commercially available for bonding and sealing can be used. Among them, one-pack thermosetting epoxy resin is preferable.
  • thermosetting resin (E) used in the present invention may be heat-cured at a temperature suitable for each of the thermosetting resins, but preferably is heat-curable at 23 to 140 ° C., It is more preferable that the heat curing process can be performed at a temperature of 120 ° C., and further preferably, the heat curing process can be performed at 60 to 100 ° C. If the temperature at which the thermosetting treatment of the thermosetting resin (E) can be carried out is lower than the above lower limit, there is a possibility that a problem may occur that the thermosetting reaction does not proceed sufficiently.
  • thermosetting process of the thermosetting resin (E) When the temperature at which the thermosetting process of the thermosetting resin (E) can be carried out exceeds the above upper limit, crystallization and softening of the semiaromatic polyamide resin composition (C) occur by the heat applied during the curing reaction, and the obtained molded article is obtained There is a possibility that a defect may occur in the dimensions.
  • the adhesive strength between the thermosetting resin (E) and the molded article (D) comprising the semiaromatic polyamide resin composition (C) obtained in the present invention is measured by the method described in the section of the following examples.
  • the adhesive strength is an item related to the durability of the molded article obtained by the present invention.
  • the adhesive strength can achieve 1.5 MPa or more.
  • 2.0 MPa or more is preferable, 2.5 MPa or more is more preferable, and 3.0 MPa or more is more preferable.
  • the adhesive strength is less than the above lower limit, peeling of the adhesive surface between the molded article (D) comprising the semiaromatic polyamide resin (C) and the thermosetting resin (E) easily occurs, and the strength and sealing of the molded article There is a possibility that sex can not be satisfied. It is more preferable that the failure state at the time of the adhesive strength measurement is a state of base material failure in which the test piece itself is broken.
  • the semi-aromatic polyamide resin composition (C) contains a predetermined amount of the styrene-maleimide copolymer (F)
  • the molded product obtained in the present invention is a molded product obtained by assembling a molded product (D) comprising the semi-aromatic polyamide resin composition (C) and a thermosetting resin (E) containing a glycidyl group in the chemical structure.
  • a method of assembling a method of assembling by injecting or applying a thermosetting resin (E) to a molded article (D) comprising the semi-aromatic polyamide resin composition (C) is preferable.
  • the molded article (D) obtained in the present invention can be made into a composite molded article by bonding to the same material and different materials via the thermosetting resin (E).
  • the different material is not particularly limited, but examples thereof include resins other than the semi-aromatic polyamide resin (A) and metal materials.
  • the molded article of the present invention uses a semi-aromatic polyamide resin composition containing a semi-aromatic polyamide resin having specific physical properties such as the amount of end groups in addition to the composition, and a thermosetting resin having a glycidyl group
  • a semi-aromatic polyamide resin composition containing a semi-aromatic polyamide resin having specific physical properties such as the amount of end groups in addition to the composition, and a thermosetting resin having a glycidyl group
  • the molded article of the present invention can be widely used for automobile parts and electric and electronic parts, and is not particularly limited, but is particularly preferably used for various connectors, switches, and camera parts.
  • Connectors, switches, camera parts, etc. often have a small molded product size, and if dimensional change occurs due to water absorption, this may lead to contact failure with the terminals.
  • blisters may occur on the surface of the molded body due to the influence of water absorption.
  • displacement of the optical axis may occur due to dimensional change due to water absorption, which may cause a failure in the operation as a camera.
  • thermosetting resin is often used to seal a molded body for the purpose of preventing entry of moisture and foreign matter from the outside. If the adhesion to the thermosetting resin is low, the sealing property may be insufficient, and the product may be damaged due to the influence of moisture and foreign matter entering from the outside.
  • the present invention will be more specifically described by way of examples, but the present invention is not limited to these examples.
  • the measured value described in the Example is measured by the following method.
  • Peak area ( ⁇ H Tc2 ) associated with thermal crystallization Measure 10 mg of semi-aromatic polyamide resin dried under reduced pressure at 105 ° C for 15 hours in a pan made of aluminum (manufactured by SII Nano Technology Inc., part number 170421S), and use an aluminum lid (manufactured by SAI nano technology Inc, part number 170420) After preparing a measurement sample in a sealed state, the temperature was raised from room temperature at 20 ° C./min using a high sensitivity type differential scanning calorimeter DSC 7020 (manufactured by SII Nano Technology Inc.) and held at 350 ° C. for 3 minutes Later, the measurement sample pan was taken out, dipped in liquid nitrogen, and quenched.
  • the sample is taken out of liquid nitrogen and left at room temperature for 30 minutes, and then heated again from room temperature at a rate of 20 ° C./minute using a high sensitivity type differential scanning calorimeter DSC7020 (manufactured by SII Nano Technology Inc.) After holding at 350 ° C. for 3 minutes, the temperature was lowered to 30 ° C. at 10 ° C./min. The peak area of heat release derived from cold crystallization at the time of temperature lowering was taken as ( ⁇ H Tc2 ).
  • the sample is taken out of liquid nitrogen and left at room temperature for 30 minutes, and then heated again from room temperature at a rate of 20 ° C./minute using a high sensitivity type differential scanning calorimeter DSC7020 (manufactured by SII Nano Technology Inc.) And held at 350 ° C. for 3 minutes.
  • the peak temperature of endotherm due to melting at the time of temperature rise was taken as the melting point (Tm).
  • Tg Glass transition temperature Measure 10 mg of semi-aromatic polyamide resin dried under reduced pressure at 105 ° C for 15 hours in a pan made of aluminum (manufactured by SII Nano Technology Inc., part number 170421S), and use an aluminum lid (manufactured by SAI nano technology Inc, part number 170420) After preparing a measurement sample in a sealed state, the temperature was raised from room temperature at 20 ° C./min using a high sensitivity type differential scanning calorimeter DSC 7020 (manufactured by SII Nano Technology Inc.) and held at 350 ° C. for 3 minutes Later, the measurement sample pan was taken out, dipped in liquid nitrogen, and quenched.
  • the sample is taken out of liquid nitrogen and left at room temperature for 30 minutes, and then heated again from room temperature at a rate of 20 ° C./minute using a high sensitivity type differential scanning calorimeter DSC7020 (manufactured by SII Nano Technology Inc.) And held at 350 ° C. for 3 minutes.
  • the inflection point of the baseline at the time of temperature rise was taken as the glass transition temperature (Tg).
  • the cylinder temperature is set to the melting point + 20 ° C of the resin
  • the mold temperature is set to 140 ° C, 100mm long, 100mm wide, 1mm thick
  • the flat plate was injection-molded to prepare a test piece for evaluation. After annealing the test piece in an atmosphere at 150 ° C. for 2 hours, the mass was measured, and the mass at this time was taken as the mass at the time of drying. Further, the annealed test piece was allowed to stand in an atmosphere at 85 ° C.
  • the cylinder temperature is set to + 20 ° C of the melting point of the resin and the mold temperature is set to 140 ° C using an injection molding machine EC-100 made by Toshiba Machine, 100 mm long, 100 mm wide, A flat plate with a thickness of 1 mm was injection molded to prepare a test piece for evaluation. After annealing the test piece in an atmosphere at 150 ° C. for 2 hours, the dimensions in the parallel direction and the perpendicular direction to the film gate are measured with a caliper at a position of 50 mm from the end, respectively, I asked for. Moreover, the average dimension at this time was made into the average dimension at the time of drying.
  • Average dimension (mm) (dimension in parallel direction + dimension in perpendicular direction) / 2
  • FIG. 1 Bonding strength
  • the cylinder temperature is set to the melting point of the resin + 20 ° C
  • the mold temperature is set to 140 ° C
  • the evaluation test piece described in FIG. , Made The upper view of FIG. 1 is a top view seen from the top, and the lower view is a side view seen from the side.
  • 0.04 g of a thermosetting resin to the adhesive surface (area 310 mm 2 : total area of the arrow end in the upper view of FIG. 2) of the prepared test specimen for evaluation, the test specimen of the same shape is used. Heat treatment was performed for 60 minutes in an atmosphere of 100 ° C.
  • Bonding strength (MPa) test force at the time of specimen failure / bonding area (310 mm 2 )
  • Adhesion failure mode The state of failure when the adhesion strength was evaluated by the method described above was classified using the following index.
  • Base material No breakage occurs at the adhesive (thermosetting resin) portion or at the interface between the resin composition test piece and the adhesive, and the test piece itself is broken
  • Interface Adhesive (thermosetting resin) portion or resin composition Fracture at the interface of the specimen and adhesive
  • Reflowable temperature limit is 260 ° C or higher
  • Reflowable temperature limit is less than 260 ° C
  • This example was conducted using a semi-aromatic polyamide resin (A) synthesized as exemplified below.
  • Synthesis Example 1 7.54 kg of 1,6-hexamethylenediamine, 10.79 kg of terephthalic acid, 7.04 kg of 11-aminoundecanoic acid, 9 g of sodium hypophosphite as a catalyst, 40 g of acetic acid as a terminal regulator and 17.52 kg of ion exchanged water
  • the autoclave was charged with N 2 from atmospheric pressure to 0.05 MPa, released from pressure, and returned to atmospheric pressure. This operation was performed three times, and after performing N 2 substitution, it was uniformly dissolved at 135 ° C. and 0.3 MPa with stirring. Thereafter, the solution was continuously supplied by a liquid feed pump, and the temperature was raised to 240 ° C. by a heating pipe, and heat was applied for 1 hour.
  • reaction mixture was supplied to the pressure reaction vessel, heated to 290 ° C., and a portion of water was distilled off to maintain the internal pressure of the vessel at 3 MPa, to obtain a low-order condensate.
  • the polycondensation was advanced under melting to obtain a semi-aromatic polyamide resin (A-1).
  • Synthesis Example 2 8.57 kg of 1,6-hexamethylenediamine, 12.24 kg of terephthalic acid, 7.99 kg of 11-aminoundecanoic acid, 9 g of sodium hypophosphite as a catalyst, 150 g of acetic acid as an end blocking agent and 16.20 kg of ion exchanged water
  • the autoclave was charged with N 2 from atmospheric pressure to 0.05 MPa, released from pressure, and returned to atmospheric pressure. This operation was performed three times, and after performing N 2 substitution, it was uniformly dissolved at 135 ° C. and 0.3 MPa with stirring. Thereafter, the solution was continuously supplied by a liquid feed pump, and the temperature was raised to 240 ° C. by a heating pipe, and heat was applied for 1 hour.
  • the reaction mixture was supplied to the pressure reaction vessel, heated to 290 ° C., and a portion of water was distilled off to maintain the internal pressure of the vessel at 3 MPa, to obtain a low-order condensate.
  • the low-order condensate was taken out into a container under normal temperature and pressure in the air, and then dried under an environment of 70 ° C. and a vacuum degree of 50 Torr using a vacuum dryer. After drying, the lower condensate was reacted with a blender (volume 0.1 m 3 ) for 6 hours at 210 ° C. under a vacuum of 50 Torr for 6 hours to obtain a semi-aromatic polyamide resin (A-2).
  • the obtained semi-aromatic polyamide resin (A-2) has 65.3 mol% of a constituent unit consisting of 1,6-hexamethylenediamine and terephthalic acid and 34.7 mol of a constituent unit consisting of 11-aminoundecanoic acid % consists of a relative viscosity 2.03, melting point 313 ° C., was 1
  • Synthesis Example 3 13.22 kg of 1,6-hexamethylenediamine, 12.25 kg of terephthalic acid, 7.99 kg of 11-aminoundecanoic acid, 9 g of sodium diphosphite as a catalyst, 395 g of acetic acid as an end blocking agent and 12.68 kg of ion exchanged water
  • the autoclave was charged with N 2 from atmospheric pressure to 0.05 MPa, released from pressure, and returned to atmospheric pressure. This operation was performed three times, and after performing N 2 substitution, it was uniformly dissolved at 135 ° C. and 0.3 MPa with stirring. Thereafter, the solution was continuously supplied by a liquid feed pump, and the temperature was raised to 240 ° C. by a heating pipe, and heat was applied for 1 hour.
  • the reaction mixture was supplied to the pressure reaction vessel, heated to 290 ° C., and a portion of water was distilled off to maintain the internal pressure of the vessel at 3 MPa, to obtain a low-order condensate.
  • the low-order condensate was taken out into a container under normal temperature and pressure in the air, and then dried under an environment of 70 ° C. and a vacuum degree of 50 Torr using a vacuum dryer. After drying, the low-order condensate was reacted with a blender (volume 0.1 m 3 ) for 6 hours at 210 ° C. under a vacuum of 50 Torr for 6 hours to obtain a semiaromatic polyamide resin (A-3).
  • Synthesis Example 5 According to the method described in Comparative Example 3 of WO 2006/098434, terephthalic acid units, 1,9-nonanediamine units and 2-methyl-1,8-octanediamine units (1,9-nonanediamine units: 2-methyl)
  • end blocking agent is benzoic acid
  • This example was performed using the semi-aromatic polyamide resin composition (C) produced as illustrated below.
  • Semi-Aromatic Polyamide Resin (A-1): Semi-Aromatic Polyamide Resin Produced According to Synthesis Example 1
  • Semi-Aromatic Polyamide Resin (A-2): Semi-Production Produced According to Synthesis Example 2 Above Aromatic polyamide resin
  • Semi-aromatic polyamide resin (A-3): Semi-aromatic polyamide resin produced based on the above-mentioned Synthesis Example 3
  • Semi-aromatic polyamide resin produced Semi-aromatic polyamide resin (A-5): Semi-aromatic polyamide resin produced according to the above Synthesis Example 5
  • Semi-aromatic polyamide resin (A-6): PA10T (KINGFA SCI .
  • a molded article (D) comprising the semiaromatic polyamide resin composition (C) produced as described above and a thermosetting resin (E) were used. .
  • Examples 1 to 9 and Comparative Examples 1 to 5 were carried out according to the method described above using the semiaromatic polyamide resin composition (C) and the thermosetting resin (E) described in Tables 1 and 2.
  • Thermosetting resin (E-1) one-component thermosetting epoxy resin (manufactured by ThreeBond 2222P)
  • Thermosetting resin (E-2) One-component thermosetting epoxy resin (Taoka Chemical Co., Ltd. AH-3031T)
  • thermosetting resin (E) As apparent from Tables 1 and 2, in Examples 1 to 3 not only high adhesiveness with the thermosetting resin (E) can be expressed, but also the 80% 95% RH equilibrium water absorption dimensional change rate is small, and the solder reflow resistance It can be seen that it has excellent characteristics, such as satisfying the property. Further, in Example 4, although the AEG value is as low as 2 eq / ton and the adhesion to the thermosetting resin (E) is slightly reduced as compared with Examples 1 to 3, the adhesive strength is 2.9 MPa, Sufficient characteristics have been obtained for practical use. In Example 5, the thermosetting resin (E) is changed, but sufficient adhesive strength is obtained, and it can be seen that the resin has excellent properties.
  • Comparative Example 1 uses a semi-aromatic polyamide resin produced from the same monomers as in Examples 1 to 3, but the value of (AEG + CEG) is as low as 59 eq / ton, and a thermosetting resin (E) Adhesiveness with is insufficient.
  • Comparative Examples 2 and 3 use a semi-aromatic polyamide resin (PA9T / M8T) manufactured from monomers different from those of Examples 1 to 5, and in Comparative Example 2, the value of (AEG + CEG) is as low as 63 eq / ton.
  • ⁇ H Tc2 is large and Tg is high, adhesion to the thermosetting resin (E) is insufficient.
  • Comparative Example 3 Although the value of (AEG + CEG) is appropriate at 126 eq / ton, the adhesiveness with the thermosetting resin (E) is insufficient because ⁇ H Tc2 is large and Tg is high.
  • Comparative Example 4 uses a semi-aromatic polyamide resin (PA10T) produced from monomers different from those of Examples 1 to 5, and in addition to the low value of (AEG + CEG) of 44 eq / ton, ⁇ H Tc2 is large. Because of high Tg, adhesion to the thermosetting resin (E) is insufficient.
  • PA10T semi-aromatic polyamide resin
  • thermosetting resin (E) In Comparative Example 5, although the thermosetting resin (E) is changed, although the value of (AEG + CEG) is appropriate to 126 eq / ton as in Comparative Example 3, the ⁇ H Tc2 is large and the Tg is high. Adhesiveness with curable resin (E) is inadequate. Further, in Examples 6 to 9, since the adhesion strength is high and the adhesion failure mode is also the base material, it is understood that the adhesive property with the thermosetting resin (D) is excellent. Furthermore, the 80 ° C. 95% RH equilibrium water absorption rate, the 80 ° C. 95% RH equilibrium water absorption dimensional change rate is also low, and the dimensional stability at the time of water absorption is also excellent.
  • the molded article of the present invention uses a semi-aromatic polyamide resin composition containing a semi-aromatic polyamide resin having specific physical properties such as the amount of end groups in addition to the composition, and a thermosetting resin having a glycidyl group Therefore, it has high water absorption dimensional stability, heat resistance and adhesiveness, and a molded article (composite molded article) highly satisfying user needs can be industrially advantageously manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyamides (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

This compact has a structure in which a molded article (D) and a heat-curable resin (E) that contains a glycidyl group are directly interfaced. The molded article (D) comprises a semiaromatic polyamide resin composition (C) that has an equilibrium water absorption ratio of 3.0% or less at 80°C and 95% RH, and that contains 0–200 parts by mass of a reinforcing material (B) relative to 100 parts by mass of a semiaromatic polyamide resin (A) for which the peak area associated with cooling crystallization measured by differential scanning calorimetry (DSC), the glass transition temperature, and the sum of the terminal amino group concentration and the terminal carboxyl group concentration satisfy designated conditions. The compact has high water absorption dimensional stability, heat resistance, and adhesiveness.

Description

半芳香族ポリアミド樹脂組成物からなる成形品を構成成分として有する成形体Molded article having a molded article comprising a semi-aromatic polyamide resin composition as a component
 本発明は、吸水寸法安定性、耐熱性に優れた半芳香族ポリアミド樹脂組成物からなる成形品と、グリシジル基を含有する熱硬化性樹脂とが、高い接着性を有して直接介する構造を有する成形体に関する。 The present invention has a structure in which a molded article made of a semiaromatic polyamide resin composition excellent in water absorption dimensional stability and heat resistance and a thermosetting resin containing glycidyl group have high adhesiveness and are directly intervened. It is related with the molded object which it has.
 ポリアミド樹脂はその優れた特性と溶融成形の容易さを活かして、衣料用、産業資材用繊維、エンジニアリングプラスチックなどに使用されてきた。近年では各分野での技術発展と共に、ポリアミド樹脂の用途はさらに拡大しており、エンジン周辺の自動車部品からスマートフォンに代表される電気電子部品に至る様々な用途で使用されている。 Polyamide resins have been used for clothing, industrial materials fibers, engineering plastics, etc., taking advantage of their excellent properties and ease of melt molding. In recent years, with the technological development in each field, applications of polyamide resin are further expanded, and are used in various applications ranging from automobile parts around the engine to electric and electronic parts represented by smartphones.
 用途の拡大に伴い、ポリアミド樹脂の使用される部品の形状や構成が多岐に渡る中で、部品同士を接合する方法が注目されている。最たる例として、ネジやビス等で締結する方法があるが、製品製造プロセスの効率化、部品の微小化に伴い、物理的な締結が困難な場合が生じており、新たな接合方法として、各種の溶着工法や熱硬化性樹脂による接合が進められている。特に電気電子分野においては、製品の精密化が進む中で外部から侵入する微量の水分や異物による機器の動作不良を防止するために熱硬化性樹脂による封止が一般的になりつつあり、使用されるポリアミド樹脂にはこれらの熱硬化性樹脂との高い接着性が強く求められている。 BACKGROUND OF THE INVENTION With the expansion of applications, a method of joining parts has been attracting attention, in the wide variety of shapes and configurations of parts in which polyamide resin is used. As a best example, there is a method of fastening with screws or screws, but with the streamlining of product manufacturing process and miniaturization of parts, there are cases where physical fastening becomes difficult, and various new joining methods are available. The welding method and bonding with thermosetting resin are being promoted. In the field of electrical and electronic equipment in particular, sealing with a thermosetting resin is becoming common in order to prevent malfunction of equipment due to a trace amount of moisture and foreign matter entering from the outside while the product is being refined. High adhesion to these thermosetting resins is strongly demanded for such polyamide resins.
 また、ポリアミド樹脂では使用環境下における吸水による製品品位への影響がしばしば問題となる。ポリアミド樹脂は大気中の水分を吸水すると寸法が変化するため、製品寸法に変動が生じ、製品の組み付け不良や動作不良に繋がる。また、電気電子分野において一般的になっているハンダリフロー工程においては、吸水による製品の膨れ(ブリスター)が生じ、製品不良の発生に繋がる。市場で広く使用されるPA6、PA66、変性PA6Tなどは樹脂の飽和吸水率が6%以上と高く、上述の問題が生じやすい。よって、より吸水し難い低吸水性のポリアミド樹脂が求められている。 In the case of polyamide resins, the influence of water absorption in the environment of use on product quality often becomes a problem. The polyamide resin changes its dimensions when it absorbs water in the air, and therefore, the product dimensions change, leading to a defective assembly or operation of the product. Moreover, in the solder reflow process generally used in the field of electric and electronic equipment, blisters of the product due to water absorption occur, leading to the occurrence of product defects. In the case of PA6, PA66, modified PA6T, etc. widely used in the market, the saturated water absorption rate of the resin is as high as 6% or more, and the above problem is likely to occur. Therefore, a low water absorption polyamide resin that is less likely to absorb water is required.
 上述のような市場要求の変化に伴い、種々のポリアミド樹脂組成物が開発されている。特許文献1には、半芳香族ポリアミド、炭素繊維、エポキシ化合物からなる金属密着性に優れる炭素繊維強化ポリアミド樹脂組成物が開示されている。しかしながら、当該文献に記載の技術はエポキシ化合物を樹脂組成物中に含むことが必須とされており、エポキシ化合物の耐熱性の低さから高温での加工時にアウトガスが増大し、成形品の外観が著しく低下するなど加工性に難がある。 Various polyamide resin compositions have been developed with the changes in market requirements as described above. Patent Document 1 discloses a carbon fiber reinforced polyamide resin composition which is excellent in metal adhesion and is composed of a semiaromatic polyamide, a carbon fiber, and an epoxy compound. However, it is essential that the technique described in the document contains an epoxy compound in the resin composition, and the low heat resistance of the epoxy compound increases outgassing at the time of processing at high temperature, and the appearance of the molded article There is a problem with processability such as a marked decrease.
 また、特許文献2には他の樹脂との接着性に優れた、PA9Tを主とした半芳香族ポリアミド樹脂が開示されている。当該文献に記載の技術は、半芳香族ポリアミドの末端アミノ基量を60~120μ等量/g、かつ、(末端アミノ基量)/(末端カルボキシル基量)で表される比が6以上となるように、言い換えれば、末端アミノ基量に加えて、末端カルボキシル基量を10~20μ等量/gの範囲に制御することで、他の樹脂との高い接着性を得るものである。しかしながら、当該文献では末端カルボキシル基量が高いポリアミド樹脂での高い接着性を発現する技術は開示されていない。 In addition, Patent Document 2 discloses a semi-aromatic polyamide resin mainly made of PA9T, which is excellent in adhesion to other resins. In the technique described in the document, the amount of terminal amino groups of the semiaromatic polyamide is 60 to 120 μ equivalent / g, and the ratio of (the amount of terminal amino groups) / (the amount of terminal carboxyl groups) is 6 or more In other words, in addition to the amount of terminal amino groups, by controlling the amount of terminal carboxyl groups in the range of 10 to 20 μ equivalent / g, high adhesiveness with other resins is obtained. However, this document does not disclose a technique for expressing high adhesiveness with a polyamide resin having a high amount of terminal carboxyl groups.
 特許文献3には、ポリアミド樹脂部材とポリアミド部材と接する接着剤層と、金属部材からなる成形体が開示されている。しかしながら、当該文献に記載の技術は、接着剤層にマレイン酸及び無水マレイン酸の少なくとも一方がグラフト化された熱可塑性ポリオレフィンエラストマー又は熱可塑性ポリエーテルエラストマーが必須とされており、本発明の技術とは異なる。 Patent Document 3 discloses a molded article comprising a polyamide resin member and an adhesive layer in contact with the polyamide member, and a metal member. However, the technique described in the document is essentially the thermoplastic polyolefin elastomer or thermoplastic polyether elastomer in which at least one of maleic acid and maleic anhydride is grafted to the adhesive layer, and the technique of the present invention and Is different.
 上述のように、ポリアミド樹脂と他の樹脂や素材との高い接着性を得るために種々の発明がなされているものの、各種の課題やポリアミド樹脂組成物または接着剤層としての限定を抱えている。 As described above, although various inventions have been made to obtain high adhesion between the polyamide resin and other resins and materials, various problems and limitations as a polyamide resin composition or an adhesive layer are held. .
特開2015-129271号公報JP, 2015-129271, A 国際公開WO2006/098434号International Publication WO 2006/098434 特開2017-140768号公報JP, 2017-140768, A
 本発明は、かかる従来技術の現状に鑑み創案されたものであり、その目的は半芳香族ポリアミド樹脂組成物からなる成形品と、グリシジル基を含有する熱硬化性樹脂とが、高い接着性を有しながら直接介する構造を有する、吸水寸法安定性、耐熱性に優れた成形体を提供することにある。 The present invention has been made in view of the current state of the prior art, and its object is to improve the adhesion between a molded article made of a semi-aromatic polyamide resin composition and a thermosetting resin containing glycidyl group. An object of the present invention is to provide a molded article excellent in water absorption dimensional stability and heat resistance, which has a structure directly interposed while having the resin.
 本発明者は、上記目的を達成するために、組成に加え、末端基量などの特定の物性を有する半芳香族ポリアミド樹脂を含有する樹脂組成物と、グリシジル基を有する熱硬化性樹脂を使用することで、高い吸水寸法安定性、耐熱性、接着性を有する成形体を提供するに至った。この成形体は、半芳香族ポリアミド樹脂組成物からなる成形品とグリシジル基を有する熱硬化性樹脂とが直接介した成形体であることから、複合成形体とも解することもできる。樹脂組成物中に、さらにスチレン-マレイミド系共重合体を特定の割合配合することで、接着性が向上することも見出した。 In order to achieve the above object, the present inventor uses a resin composition containing a semiaromatic polyamide resin having specific physical properties such as the amount of end groups in addition to the composition, and a thermosetting resin having a glycidyl group It came to provide the molded object which has high water absorption dimensional stability, heat resistance, and adhesiveness by carrying out. This molded body can also be understood as a composite molded body, since it is a molded body in which a molded article made of a semi-aromatic polyamide resin composition and a thermosetting resin having a glycidyl group are directly interposed. It has also been found that the adhesiveness is improved by further blending a styrene-maleimide copolymer in a specific ratio into the resin composition.
 即ち、本発明は、以下の構成を有するものである。
(1) 下記(a)~(c)の要件を満たす半芳香族ポリアミド樹脂(A)100質量部に対して、強化材(B)0~200質量部を含有し、80℃95%RH平衡吸水率が3.0%以下である半芳香族ポリアミド樹脂組成物(C)からなる成形品(D)と、グリシジル基を含有する熱硬化性樹脂(E)とが直接介する構造を有する成形体。
(a)示差走査熱量分析(DSC)により測定した降温結晶化に伴うピーク面積(ΔHTc2)が40mJ/mg以下
(b)ガラス転移温度(Tg)が120℃以下
(c)末端アミノ基濃度(AEG)と末端カルボキシル基濃度(CEG)の和(AEG+CEG)が70eq/ton以上
(2) 半芳香族ポリアミド樹脂組成物(C)が、半芳香族ポリアミド樹脂(A)100質量部に対して、さらにスチレン-マレイミド系共重合体(F)10~60質量部を含有する(1)に記載の成形体。
(3) 半芳香族ポリアミド樹脂(A)が、炭素数6~12のジアミンとテレフタル酸からなる繰り返し単位を50~100モル%、炭素数10以上のアミノカルボン酸またはラクタムからなる繰り返し単位を0~50モル%を含む半芳香族ポリアミド樹脂である、(1)または(2)に記載の成形体。
(4) 半芳香族ポリアミド樹脂(A)がヘキサメチレンジアミンとテレフタル酸からなる繰り返し単位を50~100モル%、アミノウンデカン酸またはウンデカンラクタムからなる繰り返し単位を0~50モル%を含む半芳香族ポリアミド樹脂である、(1)または(2)に記載の成形体。
(5) グリシジル基を含有する熱硬化性樹脂(E)が、一液型熱硬化性エポキシ樹脂である(1)~(4)のいずれかに記載の成形体。
(6) (1)~(5)のいずれかに記載の成形体からなるコネクタ。
(7) (1)~(5)のいずれかに記載の成形体からなるスイッチ部品。
(8) (1)~(5)のいずれかに記載の成形体からなるカメラ部品。
That is, the present invention has the following constitution.
(1) 100 parts by mass of a semiaromatic polyamide resin (A) satisfying the following requirements (a) to (c), containing 0 to 200 parts by mass of a reinforcing material (B), 80 ° C. 95% RH equilibrium A molded article having a structure in which a molded article (D) comprising a semi-aromatic polyamide resin composition (C) having a water absorption coefficient of 3.0% or less and a thermosetting resin (E) containing glycidyl group are directly interposed .
(A) Peak area (ΔH Tc2 ) associated with temperature-decreasing crystallization measured by differential scanning calorimetry (DSC) is 40 mJ / mg or less (b) Glass transition temperature (Tg) is 120 ° C. or less (c) Terminal amino group concentration (c) Sum of (AEG) and terminal carboxyl group concentration (CEG) (AEG + CEG) is 70 eq / ton or more (2) The semi-aromatic polyamide resin composition (C) is based on 100 parts by mass of the semi-aromatic polyamide resin (A), The molded article according to (1), further comprising 10 to 60 parts by mass of a styrene-maleimide copolymer (F).
(3) The semi-aromatic polyamide resin (A) contains 50 to 100 mol% of a repeating unit consisting of a diamine having 6 to 12 carbon atoms and terephthalic acid, and no repeating unit consisting of an aminocarboxylic acid or lactam having 10 or more carbon atoms. The molded article according to (1) or (2), which is a semiaromatic polyamide resin containing ̃50 mol%.
(4) Semi-aromatic polyamide resin (A) containing 50 to 100 mol% of repeating units consisting of hexamethylene diamine and terephthalic acid and 0 to 50 mol% of repeating units consisting of aminoundecanoic acid or undecanelactam The molded object as described in (1) or (2) which is a polyamide resin.
(5) The molded article according to any one of (1) to (4), wherein the thermosetting resin (E) containing a glycidyl group is a one-component thermosetting epoxy resin.
(6) A connector comprising the molded body according to any one of (1) to (5).
(7) A switch part comprising the molded body according to any one of (1) to (5).
(8) A camera part comprising the molded body according to any one of (1) to (5).
 本発明によれば、半芳香族ポリアミド樹脂組成物からなる成形品と、グリシジル基を有する熱硬化性樹脂からなる、高い吸水寸法安定性、耐熱性、接着性を有する、前記半芳香族ポリアミド樹脂組成物からなる成形品とグリシジル基を有する熱硬化性樹脂とが直接介した複合成形体を提供することができる。ここで、直接介するとは、直接接着していることを表す。 According to the present invention, the semi-aromatic polyamide resin having high water absorption dimensional stability, heat resistance and adhesiveness, comprising a molded article comprising a semi-aromatic polyamide resin composition and a thermosetting resin having a glycidyl group It is possible to provide a composite molded article in which molded articles made of the composition and a thermosetting resin having a glycidyl group are directly intervened. Here, "directly intercalated" means that they are directly adhered.
実施例にて実施する接着強度評価用の試験片形状を示す概略図である。It is the schematic which shows the test piece shape for adhesive strength evaluation implemented in an Example. 実施例にて実施する接着強度評価の試験片作製方法を示す概略図である。It is the schematic which shows the test piece production method of adhesive strength evaluation implemented in an Example.
 以下、本発明の成形体に関して説明する。 Hereinafter, the molded article of the present invention will be described.
 本発明の成形体は、下記(a)~(c)の要件を満たす半芳香族ポリアミド樹脂(A)100質量部に対して、強化材(B)0~200質量部を含有し、80℃95%RH平衡吸水率が3.0%以下である半芳香族ポリアミド樹脂組成物(C)からなる成形品(D)と、グリシジル基を含有する熱硬化性樹脂(E)とが直接介する構造を有することを特徴とする。
(a)示差走査熱量分析(DSC)により測定した降温結晶化に伴うピーク面積(ΔHTc2)が40mJ/mg以下
(b)ガラス転移温度(Tg)が120℃以下
(c)末端アミノ基濃度(AEG)と末端カルボキシル基濃度(CEG)の和(AEG+CEG)が70eq/ton以上
 半芳香族ポリアミド樹脂組成物(C)は、半芳香族ポリアミド樹脂(A)100質量部に対して、さらにスチレン-マレイミド系共重合体(F)10~60質量部を含有していることが好ましい態様である。
The molded article of the present invention contains 0 to 200 parts by mass of a reinforcing material (B) with respect to 100 parts by mass of a semiaromatic polyamide resin (A) satisfying the following requirements (a) to (c), Structure in which a molded article (D) comprising a semi-aromatic polyamide resin composition (C) having a 95% RH equilibrium water absorption of 3.0% or less and a thermosetting resin (E) containing glycidyl group are directly intervened It is characterized by having.
(A) Peak area (ΔH Tc2 ) associated with temperature-decreasing crystallization measured by differential scanning calorimetry (DSC) is 40 mJ / mg or less (b) Glass transition temperature (Tg) is 120 ° C. or less (c) Terminal amino group concentration (c) The sum of (AEG) and terminal carboxyl group concentration (CEG) (AEG + CEG) is 70 eq / ton or more. The semiaromatic polyamide resin composition (C) further contains styrene based on 100 parts by mass of the semiaromatic polyamide resin (A). It is a preferred embodiment that 10 to 60 parts by mass of the maleimide copolymer (F) is contained.
 本発明で用いられる半芳香族ポリアミド樹脂(A)は、特に限定はされず、分子中に酸アミド結合(―CONH―)を有し、かつ芳香族環(ベンゼン環)を有する半芳香族ポリアミドである。
 半芳香族ポリアミドの一例としては、6T系ポリアミド(例えば、テレフタル酸/イソフタル酸/ヘキサメチレンジアミンからなるポリアミド6T6I、テレフタル酸/アジピン酸/ヘキサメチレンジアミンからなるポリアミド6T66、テレフタル酸/イソフタル酸/アジピン酸/ヘキサメチレンジアミンからなるポリアミド6T6I66、テレフタル酸/ヘキサメチレンジアミン/2-メチル-1、5-ペンタメチレンジアミンからなるポリアミド6T/M-5T、テレフタル酸/ヘキサメチレンジアミン/ε-カプロラクタムからなるポリアミド6T6、テレフタル酸/ヘキサメチレンジアミン/テトラメチレンジアミンからなるポリアミド6T/4T)、9T系ポリアミド(テレフタル酸/1,9-ノナンジアミン/2-メチル-1,8-オクタンンジアミン)、10T系ポリアミド(テレフタル酸/1,10-デカンジアミン)、12T系ポリアミド(テレフタル酸/1,12-ドデカンジアミン)、セバシン酸/パラキシレンジアミンからなるポリアミドなどが挙げられる。
The semiaromatic polyamide resin (A) used in the present invention is not particularly limited, and is a semiaromatic polyamide having an acid amide bond (-CONH-) in the molecule and having an aromatic ring (benzene ring). It is.
Examples of semi-aromatic polyamides include 6T polyamides (for example, polyamide 6T6I consisting of terephthalic acid / isophthalic acid / hexamethylene diamine, polyamide 6T66 consisting of terephthalic acid / adipic acid / hexamethylene diamine, terephthalic acid / isophthalic acid / adipine Acid / hexamethylenediamine polyamide 6T6I66, terephthalic acid / hexamethylenediamine / 2-methyl-1, 5-pentamethylenediamine polyamide 6T / M-5T, terephthalic acid / hexamethylenediamine / ε-caprolactam polyamide 6T6, polyamide 6T / 4T) consisting of terephthalic acid / hexamethylenediamine / tetramethylenediamine, 9T polyamide (terephthalic acid / 1,9-nonanediamine / 2-methyl-1) 8-Octane diamine), 10 T polyamide (terephthalic acid / 1, 10-decane diamine), 12 T polyamide (terephthalic acid / 1, 12-dodecane diamine), polyamide consisting of sebacic acid / paraxylene diamine, etc. .
 本発明で用いられる半芳香族ポリアミド樹脂(A)は、下記実施例の項目で説明する方法で測定した降温結晶化に伴うピーク面積(ΔHTc2)が40mJ/mg以下である必要がある。また、35mJ/mg以下であることが好ましく、30mJ/mg以下であることがさらに好ましい。ΔHTc2が上記上限を超える場合、熱硬化性樹脂(E)との接着性が低下し、成形体として必要な強度が達成できない可能性があり、好ましくない。ΔHTc2の下限としては5mJ/mgであり、10mJ/mg以上がより好ましい。上記下限を下回る場合、成形サイクルタイムが長くなり、生産効率が低下する可能性がある。また、得られる成形体が高温環境下で二次加工される場合に寸法変化や変形等が生じる可能性があり、好ましくない。 The semi-aromatic polyamide resin (A) used in the present invention needs to have a peak area (ΔH Tc2 ) associated with temperature-drop crystallization measured by the method described in the section of the following examples at 40 mJ / mg or less. Also, it is preferably 35 mJ / mg or less, more preferably 30 mJ / mg or less. When ΔH Tc2 exceeds the above upper limit, the adhesion to the thermosetting resin (E) is lowered, and the strength necessary for the molded product may not be achieved, which is not preferable. The lower limit of ΔH Tc2 is 5 mJ / mg, and 10 mJ / mg or more is more preferable. Below the above lower limit, the molding cycle time may be prolonged and the production efficiency may be reduced. Moreover, when the obtained molded object is subjected to secondary processing in a high temperature environment, dimensional change, deformation, etc. may occur, which is not preferable.
 本発明で用いられる半芳香族ポリアミド樹脂(A)は、下記実施例の項目で説明する方法で測定したガラス転移温度(Tg)が120℃以下である必要がある。また、110℃以下であることが好ましく、100℃以下であることがより好ましい。Tgが上記上限を超える場合、熱硬化性樹脂(E)の硬化処理温度において分子鎖の運動性が極端に制限されてしまい、熱硬化性樹脂(E)との接着性が低下し、成形体として必要な強度が達成できない可能性があり、好ましくない。Tgの下限としては50℃以上であり、60℃以上が好ましく、70℃以上がより好ましい。上記下限を下回る場合、使用環境によっては成形体が軟化し、製品の変形や動作不良が生じる可能性があり、好ましくない。 The semi-aromatic polyamide resin (A) used in the present invention needs to have a glass transition temperature (Tg) of 120 ° C. or less measured by the method described in the section of the following examples. Moreover, it is preferable that it is 110 degrees C or less, and it is more preferable that it is 100 degrees C or less. When the Tg exceeds the above upper limit, the mobility of the molecular chain is extremely limited at the curing treatment temperature of the thermosetting resin (E), and the adhesion to the thermosetting resin (E) is reduced, and the molded article It is not preferable that the required strength may not be achieved. The lower limit of Tg is 50 ° C. or higher, preferably 60 ° C. or higher, and more preferably 70 ° C. or higher. Below the lower limit, depending on the use environment, the molded product may be softened, which may cause deformation or malfunction of the product, which is not preferable.
 本発明で用いられる半芳香族ポリアミド樹脂(A)は、末端アミノ基濃度(AEG)と末端カルボキシル基濃度(CEG)の和(AEG+CEG)が70eq/ton以上であることが必要である。また、80eq/ton以上であることが好ましく、100eq/ton以上であることがより好ましい。(AEG+CEG)が上記下限を下回る場合、熱硬化性樹脂(E)との接着性が低下し、成形体として必要な強度が達成できない可能性があり、好ましくない。(AEG+CEG)の上限としては、200eq/ton以下が好ましく、180eq/ton以下がより好ましく、160eq/tonがさらに好ましい。上記上限を超える場合、加工時の熱による末端基同士の反応が生じ、滞留安定性に問題が生じる可能性があり、好ましくない。 The semiaromatic polyamide resin (A) used in the present invention needs to have a sum (AEG + CEG) of terminal amino group concentration (AEG) and terminal carboxyl group concentration (CEG) of 70 eq / ton or more. Moreover, it is preferable that it is 80 eq / ton or more, and it is more preferable that it is 100 eq / ton or more. When (AEG + CEG) is less than the above-mentioned lower limit, adhesion with the thermosetting resin (E) may be lowered, and the strength necessary for the molded product may not be achieved, which is not preferable. The upper limit of (AEG + CEG) is preferably 200 eq / ton or less, more preferably 180 eq / ton or less, and still more preferably 160 eq / ton. When it exceeds the above-mentioned upper limit, reaction of end groups with the heat at the time of processing arises, and a problem may arise in retention stability, and it is not preferable.
 本発明で用いられる半芳香族ポリアミド樹脂(A)は、末端アミノ基濃度(AEG)が2eq/ton以上であることが好ましく、10eq/ton以上であることがより好ましく、15eq/ton以上であることがさらに好ましく、20eq/ton以上であることが特に好ましい。末端アミノ基濃度が上記下限を下回る場合でも、本発明に用いられる半芳香族ポリアミド樹脂(A)は熱硬化性樹脂(E)との接着性に優れており本発明の成形体は十分な接着強度を有するが、末端アミノ基濃度を上記下限以上とすることで、さらに高い接着強度が得られることから好ましい。 The terminal amino group concentration (AEG) of the semi-aromatic polyamide resin (A) used in the present invention is preferably 2 eq / ton or more, more preferably 10 eq / ton or more, and 15 eq / ton or more Is more preferably 20 eq / ton or more. Even when the terminal amino group concentration is below the above lower limit, the semi-aromatic polyamide resin (A) used in the present invention is excellent in adhesion to the thermosetting resin (E), and the molded article of the present invention has sufficient adhesion Although it has intensity | strength, it is preferable from the further higher adhesive strength being obtained by making the terminal amino group density | concentration more than the said lower limit.
 本発明で用いられる半芳香族ポリアミド樹脂(A)は、末端カルボキシル基濃度(CEG)が20eq/ton以上であることが好ましく、30eq/ton以上であることがより好ましく、40eq/ton以上であることがさらに好ましい。末端カルボキシル基濃度を上記下限以上とすることで、熱硬化性樹脂(E)との接着性を高めることができるため、好ましい。
 本発明で用いられる半芳香族ポリアミド樹脂(A)は、AEGに比べてCEGが大きい方が好ましい。CEG/AEGは、2以上であることが好ましく、5以上であることがより好ましい。
The semi-aromatic polyamide resin (A) used in the present invention preferably has a terminal carboxyl group concentration (CEG) of 20 eq / ton or more, more preferably 30 eq / ton or more, and 40 eq / ton or more Is more preferred. Since the adhesiveness with a thermosetting resin (E) can be improved by making terminal carboxyl group density | concentration into the said lower limit or more, it is preferable.
The semiaromatic polyamide resin (A) used in the present invention preferably has a larger CEG than AEG. The CEG / AEG is preferably 2 or more, more preferably 5 or more.
 本発明で用いられる半芳香族ポリアミド樹脂(A)は、下記実施例の項目で説明する方法で測定した最も低温側に位置するDSC融解ピーク温度(Tm)が280℃以上であることが好ましい。また、290℃以上であることがより好ましく、300℃以上であることがさらに好ましい。Tmが上記下限を下回る場合、本発明の成形体をハンダリフロー工程にて加工した場合、成形体の溶融や変形が生じる可能性があり、好ましくない。Tmの上限としては、340℃以下が好ましく、330℃以下がより好ましく、320℃以下がさらに好ましい。Tmが上記上限を超える場合、成形加工時の加工温度が極めて高くなり、熱による樹脂の分解が生じる可能性があり、好ましくない。 The semi-aromatic polyamide resin (A) used in the present invention preferably has a DSC melting peak temperature (Tm) located at the lowest temperature side measured by the method described in the section of the following examples and is 280 ° C. or higher. Moreover, it is more preferable that it is 290 degreeC or more, and it is further more preferable that it is 300 degreeC or more. When Tm is less than the above lower limit, when the molded body of the present invention is processed in a solder reflow process, melting or deformation of the molded body may occur, which is not preferable. As an upper limit of Tm, 340 degrees C or less is preferable, 330 degrees C or less is more preferable, 320 degrees C or less is more preferable. When Tm exceeds the above-mentioned upper limit, processing temperature at the time of molding processing becomes extremely high, and decomposition of resin by heat may occur, which is not preferable.
 本発明で用いられる半芳香族ポリアミド樹脂(A)としては、ΔHTc2、Tg、Tmの観点から、以下の半芳香族ポリアミド樹脂であることが好ましい。
 半芳香族ポリアミド樹脂(A)は、炭素数6~12のジアミンとテレフタル酸からなる繰り返し単位を50~100モル%、炭素数10以上のアミノカルボン酸またはラクタムからなる繰り返し単位を0~50モル%含む半芳香族ポリアミド樹脂であることが好ましく、炭素数6~12のジアミンとテレフタル酸からなる繰り返し単位を50~98モル%、炭素数10以上のアミノカルボン酸またはラクタムからなる繰り返し単位を2~50モル%含む半芳香族ポリアミド樹脂であることがより好ましく、炭素数6~12のジアミンとテレフタル酸からなる繰り返し単位を55~98モル%、炭素数10以上のアミノカルボン酸またはラクタムからなる繰り返し単位を2~45モル%含む、半芳香族ポリアミド樹脂であることがさらに好ましい。
 半芳香族ポリアミド樹脂(A)中の炭素数6~12のジアミンとテレフタル酸からなる繰り返し単位の割合が50モル%を下回る場合、ΔHTc2の低下による成形サイクルタイムが長くなる他、Tmの低下によるハンダリフロープロセスでの成形体の溶融や変形、Tgの低下による使用環境での成形体の軟化による不具合が生じる可能性があり好ましくない。一方で、半芳香族ポリアミド樹脂(A)のΔHTc2、Tg、Tmを適度に向上させることができるため、半芳香族ポリアミド樹脂(A)中の炭素数6~12のジアミンとテレフタル酸からなる繰り返し単位の割合を55モル%以上(炭素数10以上のアミノカルボン酸またはラクタムからなる繰り返し単位を45モル%以下)とすることがより好ましく、60モル%以上(炭素数10以上のアミノカルボン酸またはラクタムからなる繰り返し単位を40モル%以下)とすることがさらに好ましい。
The semiaromatic polyamide resin (A) used in the present invention is preferably the following semiaromatic polyamide resin from the viewpoint of ΔH Tc2 , Tg, and Tm.
The semi-aromatic polyamide resin (A) comprises 50 to 100 mol% of a repeating unit consisting of a diamine having 6 to 12 carbon atoms and terephthalic acid, and 0 to 50 mol of a repeating unit consisting of an aminocarboxylic acid or lactam having 10 or more carbon atoms. % Is preferably a semi-aromatic polyamide resin containing 50% to 98% by mole of a repeating unit consisting of a diamine having 6 to 12 carbon atoms and terephthalic acid, and 2 repeating units consisting of an aminocarboxylic acid or a lactam having 10 or more carbon atoms. It is more preferable that the semi-aromatic polyamide resin contains 50 to 50 mol%, and 55 to 98 mol% of repeating units consisting of diamine having 6 to 12 carbon atoms and terephthalic acid, and aminocarboxylic acid or lactam having 10 or more carbon atoms More preferably, it is a semiaromatic polyamide resin containing 2 to 45 mol% of repeating units. .
When the proportion of the repeating unit composed of a diamine having 6 to 12 carbon atoms and terephthalic acid in the semi-aromatic polyamide resin (A) is less than 50 mol%, the molding cycle time becomes longer due to the decrease of ΔH Tc2 and the Tm decreases. It is not preferable because there is a possibility that problems may occur due to the melting or deformation of the molded product in the solder reflow process due to the above, and the softening of the molded product in the use environment due to the decrease in Tg. On the other hand, since ΔH Tc2 , Tg and Tm of the semiaromatic polyamide resin (A) can be appropriately improved, it is composed of a diamine having 6 to 12 carbon atoms and terephthalic acid in the semiaromatic polyamide resin (A) It is more preferable to set the proportion of repeating units to 55 mol% or more (45 mol% or less of repeating units consisting of an aminocarboxylic acid having 10 or more carbon atoms or lactams), and 60 mol% or more (aminocarboxylic acids having 10 or more carbon atoms) It is more preferable that the repeating unit consisting of lactam be 40 mol% or less).
 半芳香族ポリアミド樹脂(A)を構成する炭素数6~12のジアミン成分としては、1,6-ヘキサメチレンジアミン、1,7-ヘプタメチレンジアミン、1,8-オクタメチレンジアミン、1,9-ノナメチレンジアミン、2-メチル-1,8-オクタメチレンジアミン、1,10-デカメチレンジアミン、1,11-ウンデカメチレンジアミン、1,12-ドデカメチレンジアミンが挙げられる。これらは単独で用いても良いし、複数用いても良い。 Examples of the diamine component having 6 to 12 carbon atoms constituting the semiaromatic polyamide resin (A) include 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9- Nonamethylenediamine, 2-methyl-1,8-octamethylenediamine, 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine can be mentioned. These may be used alone or in combination.
 半芳香族ポリアミド樹脂(A)を構成する炭素数10以上のアミノカルボン酸または炭素数10以上のラクタムとしては、炭素数11~18のアミノカルボン酸またはラクタムが好ましい。中でも、11-アミノウンデカン酸、ウンデカンラクタム、12-アミノドデカン酸、12-ラウリルラクタムが好ましい。 The aminocarboxylic acid having 10 or more carbon atoms or the lactam having 10 or more carbon atoms constituting the semiaromatic polyamide resin (A) is preferably an aminocarboxylic acid or lactam having 11 to 18 carbon atoms. Among these, 11-aminoundecanoic acid, undecanelactam, 12-aminododecanoic acid and 12-lauryl lactam are preferable.
 本発明で用いられる半芳香族ポリアミド樹脂(A)には、構成単位中50%モル以下で他の成分を共重合することができる。共重合可能な他のジアミン成分としては、1,13-トリデカメチレンジアミン、1,16-ヘキサデカメチレンジアミン、1,18-オクタデカメチレンジアミン、2,2,4(または2,4,4)-トリメチルヘキサメチレンジアミンのような脂肪族ジアミン、ピペラジン、シクロヘキサンジアミン、ビス(3-メチル-4-アミノヘキシル)メタン、ビス-(4,4’-アミノシクロヘキシル)メタン、イソホロンジアミンのような脂環式ジアミン、メタキシリレンジアミン、パラキシリレンジアミン、パラフェニレンジアミン、メタフェニレンジアミンなどの芳香族ジアミンおよびこれらの水添物等が挙げられる。 In the semiaromatic polyamide resin (A) used in the present invention, other components can be copolymerized in 50% by mole or less of the constituent units. Other copolymerizable diamine components include 1,13-tridecamethylenediamine, 1,16-hexadecamethylenediamine, 1,18-octadecamethylenediamine, 2,2,4 (or 2,4,4 (or 2,4,4) Aliphatic diamines such as) -trimethylhexamethylene diamine, fats such as piperazine, cyclohexane diamine, bis (3-methyl-4-aminohexyl) methane, bis- (4,4'-aminocyclohexyl) methane, isophorone diamine Aromatic diamines such as cyclic diamines, metaxylylene diamines, para-xylylene diamines, para-phenylene diamines, meta-phenylene diamines, and hydrogenated products thereof can be mentioned.
 共重合可能な他の酸成分としては、イソフタル酸、オルソフタル酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、2,2’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-スルホン酸ナトリウムイソフタル酸、5-ヒドロキシイソフタル酸等の芳香族ジカルボン酸、フマル酸、マレイン酸、コハク酸、イタコン酸、アジピン酸、アゼライン酸、セバシン酸、1,11-ウンデカン二酸、1,12-ドデカン二酸、1,14-テトラデカン二酸、1,18-オクタデカン二酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、4-メチル-1,2-シクロヘキサンジカルボン酸、ダイマー酸等の脂肪族や脂環族ジカルボン酸等が挙げられる。
 また、共重合可能な他の成分として、ε-カプロラクタムなどが挙げられる。
Other copolymerizable acid components include isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 2,2'-diphenyldicarboxylic acid Aromatic dicarboxylic acids such as 4,4'-diphenyletherdicarboxylic acid, sodium 5-sulfonate isophthalic acid, 5-hydroxyisophthalic acid, fumaric acid, maleic acid, succinic acid, itaconic acid, adipic acid, azelaic acid, sebacic acid 1,11-undecanedioic acid, 1,12-dodecanedioic acid, 1,14-tetradecanedioic acid, 1,18-octadecanedioic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1 , 2-cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexanedicarboxylic acid, Aliphatic and alicyclic dicarboxylic acids such as mer acid.
In addition, another component capable of copolymerizing includes ε-caprolactam and the like.
 上記成分の中でも、ΔHTc2、Tg、Tmの観点から、共重合成分としては、炭素数11~18のアミノカルボン酸もしくは炭素数11~18のラクタムのうちの一種もしくは複数種を共重合していることが好ましい。 Among the above components, from the viewpoint of ΔH Tc 2 , Tg and Tm, as a copolymerization component, one or more of an aminocarboxylic acid having 11 to 18 carbon atoms or a lactam having 11 to 18 carbons are copolymerized Is preferred.
 本発明で用いられる半芳香族ポリアミド樹脂(A)は、ヘキサメチレンジアミンとテレフタル酸からなる繰り返し単位を50~100モル%、アミノウンデカン酸またはウンデカンラクタムからなる繰り返し単位を0~50モル%含む、半芳香族ポリアミド樹脂であることが好ましく、ヘキサメチレンジアミンとテレフタル酸からなる繰り返し単位を50~98モル%、アミノウンデカン酸またはウンデカンラクタムからなる繰り返し単位を2~50モル%含む、半芳香族ポリアミド樹脂であることがより好ましく、ヘキサメチレンジアミンとテレフタル酸からなる繰り返し単位を55~80モル%、アミノウンデカン酸またはウンデカンラクタムからなる繰り返し単位を20~45モル%含む、半芳香族ポリアミド樹脂であることがさらに好ましく、ヘキサメチレンジアミンとテレフタル酸からなる繰り返し単位を60~70モル%、アミノウンデカン酸またはウンデカンラクタムからなる繰り返し単位を30~40モル%含む、半芳香族ポリアミド樹脂であることが特に好ましい。
 半芳香族ポリアミド樹脂(A)中のヘキサメチレンジアミンとテレフタル酸からなる繰り返し単位の割合が50モル%を下回る場合、ΔHTc2の低下により成形サイクルタイムが長くなる他、Tmの低下によるハンダリフロープロセスでの成形体の溶融や変形、Tgの低下による使用環境での成形体の軟化による不具合が生じる可能性がある。一方で、半芳香族ポリアミド樹脂(A)中のヘキサメチレンジアミンとテレフタル酸からなる繰り返し単位の割合を55~80モル%とすることで、半芳香族ポリアミド樹脂(A)の結晶性、分子運動性を制御することが可能であり、ΔHTc2、Tg、Tmを適度に向上させることができるため、より好ましい。また、半芳香族ポリアミド樹脂(A)中のヘキサメチレンジアミンとテレフタル酸からなる繰り返し単位の割合を60~70モル%とすることで、Tmを300℃~320℃の範囲にすることができ、成形加工を容易にするだけでなく、ΔHTc2を10~35mJ/mgに、Tgを70~100℃にすることができ、熱硬化性樹脂(E)との高い接着性を得ることができるため、さらに好ましい。
The semiaromatic polyamide resin (A) used in the present invention contains 50 to 100 mol% of repeating units consisting of hexamethylene diamine and terephthalic acid, and 0 to 50 mol% of repeating units consisting of aminoundecanoic acid or undecanelactam. A semi-aromatic polyamide resin, preferably a semi-aromatic polyamide resin, containing 50 to 98 mol% of repeating units consisting of hexamethylene diamine and terephthalic acid, and 2 to 50 mol% of repeating units consisting of amino undecanoic acid or undecane lactam It is more preferable that the resin is a semi-aromatic polyamide resin containing 55 to 80 mol% of repeating units consisting of hexamethylene diamine and terephthalic acid and 20 to 45 mol% of repeating units consisting of aminoundecanoic acid or undecanelactam What's more Preferred, a repeating unit composed of hexamethylenediamine and terephthalic acid 60-70 mol%, contains a repeating unit composed of aminoundecanoic acid or undecanoic lactam 30-40 mol%, and particularly preferably is a semi-aromatic polyamide resin.
When the proportion of repeating units consisting of hexamethylenediamine and terephthalic acid in the semi-aromatic polyamide resin (A) is less than 50 mol%, the molding cycle time becomes longer due to the decrease in ΔH Tc2 and the solder reflow process due to the decrease in Tm. There is a possibility that a failure may occur due to the melting or deformation of the molded product in the above, and the softening of the molded product in the use environment due to the decrease of Tg. On the other hand, by setting the ratio of repeating units consisting of hexamethylenediamine and terephthalic acid in the semiaromatic polyamide resin (A) to 55 to 80 mol%, the crystallinity and molecular motion of the semiaromatic polyamide resin (A) It is more preferable because it is possible to control the property and to appropriately improve ΔH Tc2 , Tg and Tm. Further, by setting the ratio of repeating units consisting of hexamethylenediamine and terephthalic acid in the semi-aromatic polyamide resin (A) to 60 to 70 mol%, the Tm can be in the range of 300 ° C. to 320 ° C. In addition to facilitating molding, ΔH Tc2 can be made 10 to 35 mJ / mg, Tg can be made 70 to 100 ° C., and high adhesiveness with the thermosetting resin (E) can be obtained. And more preferred.
 半芳香族ポリアミド樹脂(A)を製造する際に使用する触媒としては、リン酸、亜リン酸、次亜リン酸もしくはその金属塩やアンモニウム塩、エステルが挙げられる。金属塩の金属種としては、具体的には、カリウム、ナトリウム、マグネシウム、バナジウム、カルシウム、亜鉛、コバルト、マンガン、錫、タングステン、ゲルマニウム、チタン、アンチモンなどが挙げられる。エステルとしては、エチルエステル、イソプロピルエステル、ブチルエステル、ヘキシルエステル、イソデシルエステル、オクタデシルエステル、デシルエステル、ステアリルエステル、フェニルエステルなどが挙げられる。また、溶融滞留安定性向上の観点から、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム等のアルカリ化合物を添加することが好ましい。 As a catalyst used when manufacturing semi-aromatic polyamide resin (A), phosphoric acid, phosphorous acid, hypophosphorous acid or its metal salt, ammonium salt, ester are mentioned. Specific examples of the metal species of the metal salt include potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin, tungsten, germanium, titanium, antimony and the like. Examples of the ester include ethyl ester, isopropyl ester, butyl ester, hexyl ester, isodecyl ester, octadecyl ester, decyl ester, stearyl ester, phenyl ester and the like. Moreover, it is preferable to add alkali compounds, such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, from a viewpoint of melt | dissolution retention stability improvement.
 半芳香族ポリアミド樹脂(A)の96%濃硫酸中20℃で測定した相対粘度(RV)は0.4~4.0であることが好ましく、より好ましくは1.0~3.0、さらに好ましくは1.5~2.5である。ポリアミドの相対粘度を一定範囲とする方法としては、分子量を調整する手段が挙げられる。 The relative viscosity (RV) measured at 20 ° C. in 96% concentrated sulfuric acid of the semiaromatic polyamide resin (A) is preferably 0.4 to 4.0, more preferably 1.0 to 3.0, and further Preferably, it is 1.5 to 2.5. As a method of setting the relative viscosity of the polyamide within a certain range, means for adjusting the molecular weight can be mentioned.
 半芳香族ポリアミド樹脂(A)は、アミノ基量とカルボキシル基とのモル比を調整して重縮合する方法や末端封止剤を添加する方法によって、ポリアミドの末端基量および分子量を調整することができる。 The semi-aromatic polyamide resin (A) is to adjust the amount of terminal groups and the molecular weight of polyamide by adjusting the molar ratio between the amount of amino groups and the carboxyl group and performing polycondensation or adding an end capping agent. Can.
 末端封止剤を添加する時期としては、原料仕込み時、重合開始時、重合後期、または重合終了時が挙げられる。末端封止剤としては、ポリアミド末端のアミノ基またはカルボキシル基との反応性を有する単官能性の化合物であれば特に制限はないが、モノカルボン酸またはモノアミン、無水フタル酸等の酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類などを使用することができる。末端封止剤としては、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソ酪酸等の脂肪族モノカルボン酸、シクロヘキサンカルボン酸等の脂環式モノカルボン酸、安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸等の芳香族モノカルボン酸、無水マレイン酸、無水フタル酸、ヘキサヒドロ無水フタル酸等の酸無水物、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン、シクロヘキシルアミン、ジシクロヘキシルアミン等の脂環式モノアミン、アニリン、トルイジン、ジフェニルアミン、ナフチルアミン等の芳香族モノアミン等が挙げられる。 The timing for adding the end-capping agent may be at the time of raw material charging, at the start of polymerization, at the end of polymerization, or at the end of polymerization. The end capping agent is not particularly limited as long as it is a monofunctional compound having reactivity with an amino group or a carboxyl group at a polyamide end, and an acid anhydride such as monocarboxylic acid or monoamine, phthalic anhydride, Monoisocyanates, mono acid halides, monoesters, monoalcohols and the like can be used. Examples of end capping agents include aliphatic monobasics such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, isobutyric acid and the like Alicyclic monocarboxylic acids such as carboxylic acids and cyclohexanecarboxylic acids, benzoic acids, toluic acids, α-naphthalenecarboxylic acids, β-naphthalenecarboxylic acids, aromatic monocarboxylic acids such as methylnaphthalenecarboxylic acids and phenylacetic acids, and maleic anhydride Acids, acid anhydrides such as phthalic anhydride and hexahydrophthalic anhydride, methylamine, ethylamine, propylamine, butylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine etc. Aliphatic monoamines, Alicyclic monoamines such as clohexylamine and dicyclohexylamine; and aromatic monoamines such as aniline, toluidine, diphenylamine and naphthylamine.
 半芳香族ポリアミド樹脂(A)は、従来公知の方法で製造することができ、例えば、原料モノマーを共縮合反応させることによって容易に合成することができる。共縮重合反応の順序は特に限定されず、全ての原料モノマーを一度に反応させてもよいし、一部の原料モノマーを先に反応させ、続いて残りの原料モノマーを反応させてもよい。また、重合方法は特に限定されないが、原料仕込みからポリマー作製までを連続的な工程で進めても良いし、一度オリゴマーを作製した後、別工程で押出し機などにより重合を進める、もしくはオリゴマーを固相重合により高分子量化するなどの方法を用いても良い。原料モノマーの仕込み比率を調整することにより、合成される共重合ポリアミド中の各構成単位の割合を制御することができる。 The semi-aromatic polyamide resin (A) can be produced by a conventionally known method, and can be easily synthesized, for example, by co-condensation reaction of raw material monomers. The order of the cocondensation polymerization reaction is not particularly limited, and all the raw material monomers may be reacted at once, or some raw material monomers may be reacted first, and then the remaining raw material monomers may be reacted. Also, the polymerization method is not particularly limited, but it may be carried out in a continuous process from raw material charging to polymer production, or once an oligomer is produced, then polymerization is advanced by an extruder or the like in another process, or the oligomer is solidified You may use methods, such as high molecular weight formation by phase polymerization. By adjusting the feed ratio of the raw material monomers, it is possible to control the proportion of each structural unit in the copolymerized polyamide to be synthesized.
 本発明で用いられる強化材(B)は、半芳香族ポリアミド樹脂組成物(C)の成形性と半芳香族ポリアミド樹脂組成物(C)からなる成形品(D)の強度を向上するために配合されるものであり、繊維状強化材及び針状強化材から選択される少なくとも1種を使用することが好ましい。繊維状強化材としては、例えばガラス繊維、炭素繊維、ホウ素繊維、セラミック繊維、金属繊維などが挙げられ、針状強化材としては、例えばチタン酸カリウムウィスカー、ホウ酸アルミニウムウィスカー、酸化亜鉛ウィスカー、炭酸カルシウムウィスカー、硫酸マグネシウムウィスカー、ワラストナイトなどが挙げられる。ガラス繊維としては、0.1mm~100mmの長さを有するチョップドストランドまたは連続フィラメント繊維を使用することが可能である。ガラス繊維の断面形状としては、円形断面及び非円形断面のガラス繊維を用いることができる。円形断面ガラス繊維の直径は20μm以下、好ましくは15μm以下、さらに好ましくは10μm以下である。また、物性面や流動性より非円形断面のガラス繊維が好ましい。非円形断面のガラス繊維としては、繊維長の長さ方向に対して垂直な断面において略楕円形、略長円形、略繭形であるものをも含み、偏平度が1.5~8であることが好ましい。ここで偏平度とは、ガラス繊維の長手方向に対して垂直な断面に外接する最小面積の長方形を想定し、この長方形の長辺の長さを長径とし、短辺の長さを短径としたときの、長径/短径の比である。ガラス繊維の太さは特に限定されるものではないが、短径が1~20μm、長径2~100μm程度である。また、ガラス繊維は繊維束となって、繊維長1~20mm程度に切断されたチョップドストランド状のものが好ましく使用できる。また、繊維状強化材はポリアミド樹脂との親和性を向上させるため、有機処理やカップリング剤処理したもの、または溶融コンパウンド時にカップリング剤と併用することが好ましく、カップリング剤としては、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤のいずれを使用しても良いが、その中でも、特にアミノシランカップリング剤、エポキシシランカップリング剤が好ましい。 The reinforcing material (B) used in the present invention is for improving the moldability of the semiaromatic polyamide resin composition (C) and the strength of the molded article (D) comprising the semiaromatic polyamide resin composition (C). It is preferable to use at least one selected from fibrous reinforcing materials and needle-like reinforcing materials. Examples of fibrous reinforcing materials include glass fibers, carbon fibers, boron fibers, ceramic fibers, metal fibers and the like, and examples of needle-like reinforcing materials include potassium titanate whiskers, aluminum borate whiskers, zinc oxide whiskers, carbonates Calcium whiskers, magnesium sulfate whiskers, wollastonite and the like can be mentioned. As glass fibers it is possible to use chopped strands or continuous filament fibers having a length of 0.1 mm to 100 mm. As a cross-sectional shape of glass fiber, glass fiber of circular cross section and non-circular cross section can be used. The diameter of the round cross section glass fiber is 20 μm or less, preferably 15 μm or less, more preferably 10 μm or less. Further, glass fibers having a non-circular cross section are preferable in terms of physical properties and fluidity. The glass fibers having a non-circular cross section include those having a substantially oval shape, a substantially oval shape, or a substantially wedge shape in a cross section perpendicular to the length direction of the fiber length, and the flatness is 1.5 to 8 Is preferred. Here, the flatness is assumed to be a rectangle having a minimum area circumscribing the cross section perpendicular to the longitudinal direction of the glass fiber, and the length of the long side of this rectangle is the long diameter, and the length of the short side is the short diameter. Ratio of major axis / minor axis when The thickness of the glass fiber is not particularly limited, but the minor diameter is about 1 to 20 μm and the major diameter is about 2 to 100 μm. In addition, it is preferable to use a chopped strand-like glass fiber cut into fibers of about 1 to 20 mm as a fiber bundle. Moreover, in order to improve the affinity to the polyamide resin, it is preferable to use a fibrous reinforcing material that has been treated with an organic treatment or a coupling agent, or to use it together with the coupling agent at the time of melt compounding. Although any of a coupling agent, a titanate coupling agent, and an aluminum type coupling agent may be used, an aminosilane coupling agent and an epoxy silane coupling agent are especially preferable among these.
 本発明で用いられる強化材(B)は、半芳香族ポリアミド樹脂(A)100質量部に対して、0~200質量部である必要がある。また、10~200質量部が好ましく、10~180質量部がより好ましく、15~160質量部がさらに好ましい。強化材(B)の割合が上記上限を超える場合、熱硬化性樹脂(E)との接着の際に、熱硬化性樹脂(E)と直接接する半芳香族ポリアミド樹脂(A)の割合が減少するため、接着性が低下する可能性があり、好ましくない。一方で、製品によっては、強化材(B)を用いずとも十分な成形体強度を発現できる場合があるため、強化材(B)の割合の下限は0質量部であるが、成形性や成形品強度の観点から10質量部以上とすることが好ましく、15質量部以上とすることがより好ましい。 The reinforcing material (B) used in the present invention needs to be 0 to 200 parts by mass with respect to 100 parts by mass of the semiaromatic polyamide resin (A). Also, 10 to 200 parts by mass is preferable, 10 to 180 parts by mass is more preferable, and 15 to 160 parts by mass is more preferable. When the proportion of the reinforcing material (B) exceeds the above-mentioned upper limit, the proportion of the semiaromatic polyamide resin (A) in direct contact with the thermosetting resin (E) decreases at the time of adhesion with the thermosetting resin (E) Adhesion, which is not preferable. On the other hand, depending on the product, there may be a case where sufficient molded body strength can be expressed without using the reinforcing material (B), so the lower limit of the ratio of the reinforcing material (B) is 0 parts by mass. From the viewpoint of product strength, the amount is preferably 10 parts by mass or more, and more preferably 15 parts by mass or more.
 本発明で用いられるスチレン-マレイミド系共重合体(F)は、半芳香族ポリアミド樹脂(A)100質量部に対して、10~60質量部であることが好ましい。また、12~50質量部が好ましく、15~40質量部がより好ましい。スチレン-マレイミド系共重合体(F)の割合が上記下限を下回る場合、熱硬化性樹脂(E)との接着の際に、接着性が低下する可能性があり、好ましくない。スチレン-マレイミド系共重合体(F)の割合が上記上限を超える場合、射出成形時の流動性が低下し、成形体の外観低下が生じる可能性があり、好ましくない。 The styrene-maleimide copolymer (F) used in the present invention is preferably 10 to 60 parts by mass with respect to 100 parts by mass of the semiaromatic polyamide resin (A). In addition, 12 to 50 parts by mass is preferable, and 15 to 40 parts by mass is more preferable. If the proportion of the styrene-maleimide copolymer (F) is below the above lower limit, the adhesion may be lowered upon adhesion with the thermosetting resin (E), which is not preferable. When the proportion of the styrene-maleimide copolymer (F) exceeds the above upper limit, the flowability at the time of injection molding may be reduced, and the appearance of the molded article may be deteriorated, which is not preferable.
 本発明で用いられるスチレン-マレイミド系共重合体(F)はスチレン系単量体、マレイミド系単量体を構成成分として含む共重合体である。スチレン-マレイミド系共重合体(F)には、半芳香族ポリアミド樹脂(A)との相溶性を向上させる目的でマレイン酸無水物が共重合されても良い。スチレン-マレイミド系共重合体(F)の構成成分の比率は特に限定されるものではないが、具体的な構成成分の例としては、スチレン系単量体25~40モル%、N-フェニルマレイミド50~70モル%、マレイン酸無水物5~15モル%が挙げられる。市販品としては、デンカ株式会社製デンカIP MS-NIPが挙げられる。 The styrene-maleimide copolymer (F) used in the present invention is a copolymer containing a styrene monomer and a maleimide monomer as a component. A maleic anhydride may be copolymerized with the styrene-maleimide copolymer (F) for the purpose of improving the compatibility with the semiaromatic polyamide resin (A). Although the ratio of the components of the styrene-maleimide copolymer (F) is not particularly limited, examples of specific components include 25 to 40 mol% of a styrene monomer, N-phenylmaleimide 50 to 70 mol% and 5 to 15 mol% of maleic anhydride can be mentioned. Commercially available products include Denka IP MS-NIP manufactured by Denka Co., Ltd.
 本発明で用いられる半芳香族ポリアミド樹脂組成物(C)は、本発明により得られる成形体の実使用環境下での寸法変化を抑制するためだけでなく、電気電子部品の実装で用いられるハンダリフロー工程においてブリスターの発生を抑制するために、下記実施例の項目で説明する方法で測定した80℃95%RH平衡吸水率が3.0%(3.0質量%)以下である必要がある。また、80℃95%RH平衡吸水率が2.5%以下であることが好ましい。80℃95%RH平衡吸水率が上記上限を超える場合、得られる成形体の吸水寸法変化が大きくなり、製品組み立て時や製品動作時に不具合が生じたり、ハンダリフロー工程においてブリスターが発生し製品不良に繋がる可能性があり、好ましくない。80℃95%RH平衡吸水率の下限は0%であるが、本発明に用いられる半芳香族ポリアミド樹脂(A)の特性上、1.0%程度が好ましい。 The semi-aromatic polyamide resin composition (C) used in the present invention is a solder used not only for suppressing dimensional change of the molded product obtained according to the present invention under actual use environment but also for mounting of electric and electronic parts In order to suppress the occurrence of blisters in the reflow process, the 80 ° C. 95% RH equilibrium water absorption as measured by the method described in the item of the following example needs to be 3.0% (3.0 mass%) or less . Moreover, it is preferable that 80 degreeC 95% RH equilibrium water absorption is 2.5% or less. When the 80 ° C 95% RH equilibrium water absorption rate exceeds the above upper limit, the water absorption dimensional change of the obtained molded article becomes large, and problems occur during product assembly or product operation or blisters occur in the solder reflow process, resulting in product failure It is not possible because it may lead. Although the lower limit of 80 ° C. 95% RH equilibrium water absorption is 0%, about 1.0% is preferable in view of the characteristics of the semiaromatic polyamide resin (A) used in the present invention.
 本発明で用いられる半芳香族ポリアミド樹脂組成物(C)には、従来のポリアミド樹脂組成物に使用される各種添加剤を使用することができる。添加剤としては、安定剤、衝撃改良材、離型剤、摺動性改良材、着色剤、可塑剤、結晶核剤、半芳香族ポリアミド樹脂(A)とは異なるポリアミド、ポリアミド以外の熱可塑性樹脂などが挙げられる。これら成分の半芳香族ポリアミド樹脂組成物(C)中の可能な配合量は、下記に説明する通りであるが、これら成分の合計は、半芳香族ポリアミド樹脂組成物(C)中、30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下がさらに好ましく、5質量%以下が特に好ましい。
 本発明において半芳香族ポリアミド樹脂組成物(C)としては、半芳香族ポリアミド樹脂(A)のみからなる場合も含むが、その場合も便宜上、半芳香族ポリアミド樹脂組成物(C)と称する。
Various additives used in conventional polyamide resin compositions can be used in the semiaromatic polyamide resin composition (C) used in the present invention. Additives include stabilizers, impact modifiers, mold release agents, slide improvers, colorants, plasticizers, crystal nucleating agents, polyamides different from semi-aromatic polyamide resins (A), thermoplastics other than polyamides Resin etc. are mentioned. The possible blending amounts of these components in the semiaromatic polyamide resin composition (C) are as described below, but the total of these components is 30 mass% in the semiaromatic polyamide resin composition (C) % Or less is preferable, 20 mass% or less is more preferable, 10 mass% or less is more preferable, and 5 mass% or less is particularly preferable.
In the present invention, the semiaromatic polyamide resin composition (C) also includes the case where it is composed of only the semiaromatic polyamide resin (A), but also in that case, it is referred to as the semiaromatic polyamide resin composition (C) for convenience.
 安定剤としては、ヒンダードフェノール系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤などの有機系酸化防止剤や熱安定剤、ヒンダードアミン系、ベンゾフェノン系、イミダゾール系等の光安定剤や紫外線吸収剤、金属不活性化剤、銅化合物などが挙げられる。銅化合物としては、塩化第一銅、臭化第一銅、ヨウ化第一銅、塩化第二銅、臭化第二銅、ヨウ化第二銅、燐酸第二銅、ピロリン酸第二銅、硫化銅、硝酸銅、酢酸銅などの有機カルボン酸の銅塩などを用いることができる。さらに銅化合物以外の構成成分としては、ハロゲン化アルカリ金属化合物を含有することが好ましく、ハロゲン化アルカリ金属化合物としては、塩化リチウム、臭化リチウム、ヨウ化リチウム、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、フッ化カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウムなどが挙げられる。これら添加剤は、1種のみの単独使用だけではなく、数種を組み合わせて用いても良い。安定剤の添加量は最適な量を選択すれば良いが、半芳香族ポリアミド樹脂(A)100質量部に対して最大5質量部を添加することが可能である。 As the stabilizer, organic antioxidants and heat stabilizers such as hindered phenol type antioxidants, sulfur type antioxidants and phosphorus type antioxidants, light stabilizers such as hindered amine type, benzophenone type and imidazole type and the like UV absorbers, metal deactivators, copper compounds and the like can be mentioned. As a copper compound, cuprous chloride, cuprous bromide, cuprous iodide, cupric chloride, cupric bromide, cupric iodide, cupric phosphate, cupric pyrophosphate, Copper salts of organic carboxylic acids such as copper sulfide, copper nitrate and copper acetate can be used. Furthermore, as a component other than the copper compound, it is preferable to contain an alkali metal halide compound, and as the alkali metal halide compound, lithium chloride, lithium bromide, lithium iodide, sodium iodide, sodium fluoride, sodium chloride, bromide Sodium, sodium iodide, potassium fluoride, potassium chloride, potassium bromide, potassium iodide and the like can be mentioned. These additives may be used not only singly but also in combination of several kinds. Although the addition amount of the stabilizer may be selected as an optimum amount, it is possible to add up to 5 parts by mass with respect to 100 parts by mass of the semiaromatic polyamide resin (A).
 また、本発明で用いられる半芳香族ポリアミド樹脂組成物(C)には、半芳香族ポリアミド樹脂(A)とは異なる組成のポリアミドをポリマーブレンドしても良い。半芳香族ポリアミド樹脂(A)とは異なる組成のポリアミドの添加量は最適な量を選択すれば良いが、半芳香族ポリアミド樹脂(A)100質量部に対して最大50質量部を添加することが可能である。 In the semiaromatic polyamide resin composition (C) used in the present invention, a polyamide having a composition different from that of the semiaromatic polyamide resin (A) may be polymer-blended. Although the addition amount of the polyamide having a composition different from that of the semiaromatic polyamide resin (A) may be selected optimally, adding up to 50 parts by mass with respect to 100 parts by mass of the semiaromatic polyamide resin (A) Is possible.
 本発明で用いられる半芳香族ポリアミド樹脂組成物(C)には、ポリアミド以外の熱可塑性樹脂を添加しても良い。ポリアミド以外のポリマーとしては、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、アラミド樹脂、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン(PEK)、ポリエーテルイミド(PEI)、熱可塑性ポリイミド、ポリアミドイミド(PAI)、ポリエーテルケトンケトン(PEKK)、ポリフェニレンエーテル(PPE)、ポリエーテルスルホン(PES)、ポリサルホン(PSU)、ポリアリレート(PAR)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリカーボネート(PC)、ポリオキシメチレン(POM)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリメチルペンテン(TPX)、ポリスチレン(PS)、ポリメタクリル酸メチル、アクリロニトリル-スチレン共重合体(AS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)が挙げられる。これら熱可塑性樹脂は、溶融混練により、溶融状態でブレンドすることも可能であるが、熱可塑性樹脂を繊維状、粒子状にし、本発明のポリアミド樹脂組成物に分散しても良い。熱可塑性樹脂の添加量は最適な量を選択すれば良いが、半芳香族ポリアミド樹脂(A)100質量部に対して最大50質量部を添加することが可能である。 A thermoplastic resin other than polyamide may be added to the semiaromatic polyamide resin composition (C) used in the present invention. As polymers other than polyamide, polyphenylene sulfide (PPS), liquid crystal polymer (LCP), aramid resin, polyetheretherketone (PEEK), polyetherketone (PEK), polyetherimide (PEI), thermoplastic polyimide, polyamideimide (PAI), polyether ketone ketone (PEKK), polyphenylene ether (PPE), polyether sulfone (PES), polysulfone (PSU), polyarylate (PAR), polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene na Phthalate, polycarbonate (PC), polyoxymethylene (POM), polypropylene (PP), polyethylene (PE), polymethylpentene (TPX), polystyrene ( S), polymethyl methacrylate, acrylonitrile - styrene copolymer (AS), acrylonitrile - butadiene - styrene copolymer (ABS) and the like. Although these thermoplastic resins can be blended in a molten state by melt-kneading, they may be dispersed in the polyamide resin composition of the present invention into fibrous and particulate thermoplastic resins. Although the addition amount of the thermoplastic resin may be selected as an optimum amount, it is possible to add up to 50 parts by mass with respect to 100 parts by mass of the semi-aromatic polyamide resin (A).
 衝撃改良剤としては、エチレン-プロピレンゴム(EPM)、エチレン-プロピレン-ジエンゴム(EPDM)、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸エステル共重合体、エチレン酢酸ビニル共重合体等のポリオレフィン系樹脂、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-イソプレン-スチレン共重合体(SIS)、アクリル酸エステル共重合体等のビニルポリマー系樹脂、ポリブチレンテレフタレートまたはポリブチレンナフタレートをハードセグメントとし、ポリテトラメチレングリコールまたはポリカプロラクトンまたはポリカーボネートジオールをソフトセグメントとしたポリエステルブロック共重合体、ポリアミドエラストマー、ウレタンエラストマー、アクリルエラストマー、シリコンゴム、フッ素系ゴム、異なる2種のポリマーより構成されたコアシェル構造を有するポリマー粒子などが挙げられる。衝撃改良剤の添加量は最適な量を選択すれば良いが、半芳香族ポリアミド樹脂(A)100質量部に対して最大30質量部を添加することが可能である。 Impact modifiers include ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber (EPDM), ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene-methacrylic acid copolymer, ethylene- Methacrylic acid ester copolymer, polyolefin resin such as ethylene vinyl acetate copolymer, styrene-butadiene-styrene block copolymer (SBS), styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene -A vinyl polymer resin such as styrene copolymer (SIS) or acrylic ester copolymer, polybutylene terephthalate or polybutylene naphthalate as a hard segment, polytetramethylene glycol or polycaprolactone or poly Polyester block copolymer in which the turbo sulfonate diol as a soft segment, a polyamide elastomer, urethane elastomer, acrylic elastomer, silicone rubber, fluorinated rubber, and the like polymer particles having a core-shell structure constituted from two different polymers. Although the addition amount of the impact modifier may be selected optimally, it is possible to add up to 30 parts by mass with respect to 100 parts by mass of the semiaromatic polyamide resin (A).
 本発明で用いられる半芳香族ポリアミド樹脂組成物(C)に、芳香族ポリアミド樹脂(A)以外の熱可塑性樹脂および耐衝撃改良材を添加する場合にはポリアミドと反応可能な反応性基が共重合されていることが好ましく、反応性基としてはポリアミド樹脂の末端基であるアミノ基、カルボキシル基及び主鎖アミド基と反応しうる基である。具体的にはカルボン酸基、酸無水物基、エポキシ基、オキサゾリン基、アミノ基、イソシアネート基等が例示されるが、それらの中でも酸無水物基が最も反応性に優れている。 When a thermoplastic resin other than the aromatic polyamide resin (A) and an impact modifier are added to the semiaromatic polyamide resin composition (C) used in the present invention, the reactive group capable of reacting with the polyamide is co It is preferable to be polymerized, and the reactive group is a group capable of reacting with an amino group which is a terminal group of a polyamide resin, a carboxyl group and a main chain amide group. Specific examples thereof include a carboxylic acid group, an acid anhydride group, an epoxy group, an oxazoline group, an amino group, and an isocyanate group. Among these, the acid anhydride group is most excellent in reactivity.
 離型剤としては、長鎖脂肪酸またはそのエステルや金属塩、アマイド系化合物、ポリエチレンワックス、シリコーン、ポリエチレンオキシド等が挙げられる。長鎖脂肪酸としては、特に炭素数12以上が好ましく、例えばステアリン酸、12-ヒドロキシステアリン酸、ベヘン酸、モンタン酸などが挙げられ、部分的もしくは全カルボン酸が、モノグリコールやポリグリコールによりエステル化されていてもよく、または金属塩を形成していても良い。アマイド系化合物としては、エチレンビステレフタルアミド、メチレンビスステアリルアミドなどが挙げられる。これら離型剤は、単独であるいは混合物として用いても良い。離型剤の添加量は最適な量を選択すれば良いが、半芳香族ポリアミド樹脂(A)100質量部に対して最大5質量部を添加することが可能である。 As a mold release agent, a long chain fatty acid or ester or metal salt thereof, an amide based compound, polyethylene wax, silicone, polyethylene oxide and the like can be mentioned. The long chain fatty acid preferably has 12 or more carbon atoms in particular, and examples thereof include stearic acid, 12-hydroxystearic acid, behenic acid, montanic acid, etc. Partial or whole carboxylic acid is esterified with monoglycol or polyglycol Or a metal salt may be formed. As an amide system compound, ethylene bis terephthalamide, methylene bis stearyl amide, etc. are mentioned. These release agents may be used alone or as a mixture. The addition amount of the release agent may be selected as an optimum amount, but it is possible to add up to 5 parts by mass with respect to 100 parts by mass of the semiaromatic polyamide resin (A).
 本発明で用いられる半芳香族ポリアミド樹脂組成物(C)は、上述の各構成成分を従来公知の方法で配合することにより製造されることができる。例えば、半芳香族ポリアミド樹脂(A)の重縮合反応時に各成分を添加したり、半芳香族ポリアミド樹脂(A)とその他の成分をドライブレンドしたり、または、二軸スクリュー型の押出機を用いて各構成成分を溶融混練する方法を挙げることができる。 The semi-aromatic polyamide resin composition (C) used in the present invention can be produced by blending the above-mentioned respective components by a conventionally known method. For example, each component is added during the polycondensation reaction of the semiaromatic polyamide resin (A), the semiaromatic polyamide resin (A) and the other components are dry blended, or a twin screw extruder is used. The method of melt-kneading each component using can be mentioned.
 本発明で用いられる半芳香族ポリアミド樹脂組成物(C)は、射出成形等の公知の成形方法により、成形品(D)とすることができる。 The semiaromatic polyamide resin composition (C) used in the present invention can be made into a molded article (D) by a known molding method such as injection molding.
 本発明で用いられる熱硬化性樹脂(E)は、化学構造中にグリシジル基を含むことを特徴とする熱硬化性樹脂であり、グリシジル基を有する成分が一種または複数種含まれても良い。化学構造中にグリシジル基を含む熱硬化性樹脂とは、グリシジル基が、樹脂の化学構造の一部として結合している樹脂を意味する。化学構造中にグリシジル基を含む熱硬化性樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、環状脂肪族型エポキシ樹脂、長鎖脂肪族型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、難燃性エポキシ樹脂、ヒダントイン系エポキシ樹脂、イソシアヌレート系エポキシ樹脂などが挙げられる。この中でも、半芳香族ポリアミド樹脂(A)との接着性、加工性、汎用性の観点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂が好ましい。 The thermosetting resin (E) used in the present invention is a thermosetting resin characterized by containing a glycidyl group in the chemical structure, and one or more kinds of components having a glycidyl group may be contained. The thermosetting resin containing a glycidyl group in the chemical structure means a resin in which the glycidyl group is bonded as a part of the chemical structure of the resin. As a thermosetting resin containing a glycidyl group in the chemical structure, bisphenol A epoxy resin, bisphenol F epoxy resin, novolac epoxy resin, cyclic aliphatic epoxy resin, long chain aliphatic epoxy resin, glycidyl ester epoxy resin Epoxy resin, glycidyl amine type epoxy resin, flame retardant epoxy resin, hydantoin type epoxy resin, isocyanurate type epoxy resin, etc. may be mentioned. Among these, bisphenol A epoxy resin and bisphenol F epoxy resin are preferable from the viewpoints of adhesiveness with a semiaromatic polyamide resin (A), processability and versatility.
 本発明で用いられる熱硬化性樹脂(E)には、硬化反応を進める目的で種々の硬化剤成分が含まれる。硬化剤としては、脂肪族ポリアミン、芳香族アミン、変性アミン、ポリアミドアミン、二級アミン、三級アミン、イミダゾール化合物、ポリメルカプタン化合物、酸無水物、三フッ化ホウ素‐アミン錯体、ジシアンジアミド、有機酸ヒドラジッドが挙げられる。脂肪族ポリアミンの例としては、ジエチレントリアミン、トリエチレントリアミン、テトラエチレンペンタミン、ジプロプレンジアミン、ジエチルアミノプロピルアミン、N-アミノエチルピペラジン、メンセンジアミン、イソフオロンジアミン、1,3-ビスアミノシクロヘキサンが挙げられる。芳香族アミンの例としては、m-キシレンジアミン、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルフォンが挙げられる。二級アミンの例としては、ピペリジンが挙げられる。三級アミンの例としては、N,N-ジメチルピペラジン、トリエチレンジアミン、ベンジルジメチルアミン、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノールが挙げられる。イミダゾール化合物としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-アミノエチル-2-ウンデシルイミダゾリウム・トリメリテート、エポキシ-イミダゾールアダクトが挙げられる。酸無水物の例としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、エチレングリコールビストリメリテート、グリセロールトリストリメリテート、無水マレイン酸、テトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水コハク酸、メチルシクロヘキセンジカルボン酸無水物、アルキルスチレン-無水マレイン酸共重合体、クロレンド酸無水物、ポリアゼライン酸無水物が挙げられる。硬化剤は一種または複数種含まれても良い。本発明で用いられる熱硬化性樹脂(E)としては、接着用や封止用として市販されている一液型、二液型熱硬化性エポキシ樹脂が使用可能である。また、その中でも一液型熱硬化性エポキシ樹脂が好ましい。 The thermosetting resin (E) used in the present invention contains various curing agent components for the purpose of promoting the curing reaction. As curing agents, aliphatic polyamines, aromatic amines, modified amines, polyamidoamines, secondary amines, tertiary amines, imidazole compounds, polymercaptan compounds, acid anhydrides, boron trifluoride-amine complexes, dicyandiamides, organic acids Hydrazide is mentioned. Examples of aliphatic polyamines include diethylenetriamine, triethylenetriamine, tetraethylenepentamine, dipropenediamine, diethylaminopropylamine, N-aminoethylpiperazine, mensene diamine, isophorone diamine, 1,3-bisaminocyclohexane Be Examples of aromatic amines include m-xylenediamine, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone. An example of a secondary amine includes piperidine. Examples of tertiary amines include N, N-dimethylpiperazine, triethylenediamine, benzyldimethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol. Examples of the imidazole compound include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-aminoethyl-2-undecylimidazolium trimellitate, and an epoxy-imidazole adduct. Examples of the acid anhydride include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic acid anhydride, ethylene glycol bis trimellitate, glycerol tris trimellitate, maleic anhydride, tetrahydrophthalic anhydride, endo Methylenetetrahydrophthalic anhydride, Methyl endo methylenetetrahydrophthalic anhydride, Methylbutenyltetrahydrophthalic anhydride, Dodecenyl succinic anhydride, Hexahydrophthalic anhydride, Methylhexahydrophthalic anhydride, Succinic anhydride, Methylcyclohexene dicarboxylic anhydride, Alkylstyrene-maleic anhydride copolymer, chlorendic anhydride, polyazelaic anhydride can be mentioned. The curing agent may be contained singly or in combination. As the thermosetting resin (E) used in the present invention, one-component and two-component thermosetting epoxy resins commercially available for bonding and sealing can be used. Among them, one-pack thermosetting epoxy resin is preferable.
 本発明に使用される熱硬化性樹脂(E)は、熱硬化性樹脂それぞれに適した温度で熱硬化処理を行えばよいが、23~140℃で熱硬化処理可能であることが好ましく、40~120℃で熱硬化処理可能であることがより好ましく、60~100℃で熱硬化処理可能であることがさらに好ましい。熱硬化性樹脂(E)の熱硬化処理可能な温度が上記下限を下回る場合、熱硬化反応が十分に進まない問題が生じる可能性がある。熱硬化性樹脂(E)の熱硬化処理可能な温度が上記上限を超える場合、硬化反応時に掛かる熱により半芳香族ポリアミド樹脂組成物(C)の結晶化や軟化が生じ、得られる成形体の寸法に不具合が生じる可能性がある。 The thermosetting resin (E) used in the present invention may be heat-cured at a temperature suitable for each of the thermosetting resins, but preferably is heat-curable at 23 to 140 ° C., It is more preferable that the heat curing process can be performed at a temperature of 120 ° C., and further preferably, the heat curing process can be performed at 60 to 100 ° C. If the temperature at which the thermosetting treatment of the thermosetting resin (E) can be carried out is lower than the above lower limit, there is a possibility that a problem may occur that the thermosetting reaction does not proceed sufficiently. When the temperature at which the thermosetting process of the thermosetting resin (E) can be carried out exceeds the above upper limit, crystallization and softening of the semiaromatic polyamide resin composition (C) occur by the heat applied during the curing reaction, and the obtained molded article is obtained There is a possibility that a defect may occur in the dimensions.
 本発明で得られる半芳香族ポリアミド樹脂組成物(C)からなる成形品(D)と熱硬化性樹脂(E)との接着強度は、下記実施例の項目で説明する方法で測定される。接着強度は、本発明で得られる成形体の耐久性に関係する項目である。本発明では、接着強度は1.5MPa以上を達成することができる。また、接着強度は2.0MPa以上が好ましく、2.5MPa以上がより好ましく、3.0MPa以上がさらに好ましい。接着強度が上記下限を下回る場合、半芳香族ポリアミド樹脂(C)からなる成形品(D)と熱硬化性樹脂(E)との接着面の剥離が簡単に生じ、成形体の強度、封止性が満足できない可能性がある。該接着強度測定時の破壊状態は、試験片自体が破壊する母材破壊の状態であることがより好ましい。半芳香族ポリアミド樹脂組成物(C)がスチレン-マレイミド系共重合体(F)を所定量含むことで、母材破壊を起こす程度の接着強度を達成することができる。 The adhesive strength between the thermosetting resin (E) and the molded article (D) comprising the semiaromatic polyamide resin composition (C) obtained in the present invention is measured by the method described in the section of the following examples. The adhesive strength is an item related to the durability of the molded article obtained by the present invention. In the present invention, the adhesive strength can achieve 1.5 MPa or more. Moreover, 2.0 MPa or more is preferable, 2.5 MPa or more is more preferable, and 3.0 MPa or more is more preferable. When the adhesive strength is less than the above lower limit, peeling of the adhesive surface between the molded article (D) comprising the semiaromatic polyamide resin (C) and the thermosetting resin (E) easily occurs, and the strength and sealing of the molded article There is a possibility that sex can not be satisfied. It is more preferable that the failure state at the time of the adhesive strength measurement is a state of base material failure in which the test piece itself is broken. When the semi-aromatic polyamide resin composition (C) contains a predetermined amount of the styrene-maleimide copolymer (F), adhesive strength to such an extent that base material destruction occurs can be achieved.
 本発明で得られる成形体は、半芳香族ポリアミド樹脂組成物(C)からなる成形品(D)と化学構造中にグリシジル基を含む熱硬化性樹脂(E)を組付けてなる成形体であるが、組付ける方法としては、半芳香族ポリアミド樹脂組成物(C)からなる成形品(D)に熱硬化性樹脂(E)を注入あるいは塗布することで組付ける方法が好ましい。 The molded product obtained in the present invention is a molded product obtained by assembling a molded product (D) comprising the semi-aromatic polyamide resin composition (C) and a thermosetting resin (E) containing a glycidyl group in the chemical structure. As a method of assembling, a method of assembling by injecting or applying a thermosetting resin (E) to a molded article (D) comprising the semi-aromatic polyamide resin composition (C) is preferable.
 本発明で得られる成形品(D)は、熱硬化性樹脂(E)を介して同種材料、異種材料と接着することで複合成形体とすることができる。異種材料としては、特に限定されないが、例としては半芳香族ポリアミド樹脂(A)以外の樹脂、金属材料が挙げられる。 The molded article (D) obtained in the present invention can be made into a composite molded article by bonding to the same material and different materials via the thermosetting resin (E). The different material is not particularly limited, but examples thereof include resins other than the semi-aromatic polyamide resin (A) and metal materials.
 本発明の成形体は、組成に加え、末端基量などの特定の物性を有する半芳香族ポリアミド樹脂を含有する半芳香族ポリアミド樹脂組成物と、グリシジル基を有する熱硬化性樹脂を使用することで、高い吸水寸法安定性、耐熱性、接着性を有しており、ユーザーニーズを高度に満足する成形体(複合成形体)を提供することが可能となる。半芳香族ポリアミド樹脂組成物にスチレン-マレイミド系共重合体(F)を所定量含むことで、より好ましい態様となる。 The molded article of the present invention uses a semi-aromatic polyamide resin composition containing a semi-aromatic polyamide resin having specific physical properties such as the amount of end groups in addition to the composition, and a thermosetting resin having a glycidyl group Thus, it has high water absorption dimensional stability, heat resistance, and adhesiveness, and it is possible to provide a molded article (composite molded article) that highly satisfies user needs. By including a predetermined amount of the styrene-maleimide copolymer (F) in the semi-aromatic polyamide resin composition, a more preferable embodiment is obtained.
 本発明の成形体は、自動車部品、電気電子部品に広く使用することができ、用途を限定するものではないが、特には、種々のコネクタ、スイッチ、カメラ部品に使用することが好ましい。コネクタ、スイッチ、カメラ部品等は成形品のサイズが小さいことが多く、吸水による寸法変化が生じると端子との接触不良に繋がる可能性がある。成形体がハンダリフロー工程において実装される場合には、吸水による影響で成形体表面にブリスターが発生する可能性がある。成形体がカメラ部品に使用される場合には、吸水による寸法変化により光軸のずれが生じ、カメラとしての動作に不具合が生じる可能性がある。
 また、コネクタやスイッチ、カメラ部品においては、外部からの水分、異物の侵入を防止する目的で熱硬化性樹脂を用いて成形体を封止することが多くある。熱硬化性樹脂との接着性が低い場合には、封止性が不足し、外部から侵入する水分、異物の影響により製品の不具合に繋がる可能性がある。
The molded article of the present invention can be widely used for automobile parts and electric and electronic parts, and is not particularly limited, but is particularly preferably used for various connectors, switches, and camera parts. Connectors, switches, camera parts, etc. often have a small molded product size, and if dimensional change occurs due to water absorption, this may lead to contact failure with the terminals. When the molded body is mounted in a solder reflow process, blisters may occur on the surface of the molded body due to the influence of water absorption. When the molded body is used for a camera part, displacement of the optical axis may occur due to dimensional change due to water absorption, which may cause a failure in the operation as a camera.
Further, in the case of connectors, switches, and camera parts, a thermosetting resin is often used to seal a molded body for the purpose of preventing entry of moisture and foreign matter from the outside. If the adhesion to the thermosetting resin is low, the sealing property may be insufficient, and the product may be damaged due to the influence of moisture and foreign matter entering from the outside.
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例に記載された測定値は、以下の方法によって測定したものである。 Hereinafter, the present invention will be more specifically described by way of examples, but the present invention is not limited to these examples. In addition, the measured value described in the Example is measured by the following method.
(1)末端アミノ基濃度、末端カルボキシル基濃度
 半芳香族ポリアミド樹脂(A)を、重クロロホルム(CDCl)/ヘキサフルオロイソプロパノール(HFIP)=1/1の溶媒に溶解し、重蟻酸を滴下後、H-NMRにて各末端基濃度を測定した。
(1) Terminal amino group concentration, terminal carboxyl group concentration After dissolving semiaromatic polyamide resin (A) in a solvent of deuterated chloroform (CDCl 3 ) / hexafluoroisopropanol (HFIP) = 1/1, and dropping formic acid Each end group concentration was measured by 1 H-NMR.
(2)降温結晶化に伴うピーク面積(ΔHTc2
 105℃で15時間減圧乾燥した半芳香族ポリアミド樹脂をアルミニウム製パン(エスアイアイ・ナノテクノロジー社製、品番170421S)に10mg計量し、アルミニウム製蓋(エスアイアイ・ナノテクノロジー社製、品番170420)で密封状態にして測定試料を調製した後、高感度型示差式走査熱量計DSC7020(エスアイアイ・ナノテクノロジー社製)を用いて室温から20℃/分で昇温し、350℃で3分間保持した後に測定試料パンを取出し、液体窒素に漬け込み、急冷させた。その後、液体窒素からサンプルを取り出し、室温で30分間放置した後、再び、高感度型示差式走査熱量計DSC7020(エスアイアイ・ナノテクノロジー社製)を用いて室温から20℃/分で昇温し、350℃で3分間保持した後、10℃/分で30℃まで降温した。降温時の冷結晶化に由来する放熱のピーク面積を(ΔHTc2)とした。
(2) Peak area (ΔH Tc2 ) associated with thermal crystallization
Measure 10 mg of semi-aromatic polyamide resin dried under reduced pressure at 105 ° C for 15 hours in a pan made of aluminum (manufactured by SII Nano Technology Inc., part number 170421S), and use an aluminum lid (manufactured by SAI nano technology Inc, part number 170420) After preparing a measurement sample in a sealed state, the temperature was raised from room temperature at 20 ° C./min using a high sensitivity type differential scanning calorimeter DSC 7020 (manufactured by SII Nano Technology Inc.) and held at 350 ° C. for 3 minutes Later, the measurement sample pan was taken out, dipped in liquid nitrogen, and quenched. Thereafter, the sample is taken out of liquid nitrogen and left at room temperature for 30 minutes, and then heated again from room temperature at a rate of 20 ° C./minute using a high sensitivity type differential scanning calorimeter DSC7020 (manufactured by SII Nano Technology Inc.) After holding at 350 ° C. for 3 minutes, the temperature was lowered to 30 ° C. at 10 ° C./min. The peak area of heat release derived from cold crystallization at the time of temperature lowering was taken as (ΔH Tc2 ).
(3)融点(Tm)
 105℃で15時間減圧乾燥した半芳香族ポリアミド樹脂をアルミニウム製パン(エスアイアイ・ナノテクノロジー社製、品番170421S)に10mg計量し、アルミニウム製蓋(エスアイアイ・ナノテクノロジー社製、品番170420)で密封状態にして測定試料を調製した後、高感度型示差式走査熱量計DSC7020(エスアイアイ・ナノテクノロジー社製)を用いて室温から20℃/分で昇温し、350℃で3分間保持した後に測定試料パンを取出し、液体窒素に漬け込み、急冷させた。その後、液体窒素からサンプルを取り出し、室温で30分間放置した後、再び、高感度型示差式走査熱量計DSC7020(エスアイアイ・ナノテクノロジー社製)を用いて室温から20℃/分で昇温し、350℃で3分間保持した。昇温時の融解による吸熱のピーク温度を融点(Tm)とした。
(3) Melting point (Tm)
Measure 10 mg of semi-aromatic polyamide resin dried under reduced pressure at 105 ° C for 15 hours in a pan made of aluminum (manufactured by SII Nano Technology Inc., part number 170421S), and use an aluminum lid (manufactured by SAI nano technology Inc, part number 170420) After preparing a measurement sample in a sealed state, the temperature was raised from room temperature at 20 ° C./min using a high sensitivity type differential scanning calorimeter DSC 7020 (manufactured by SII Nano Technology Inc.) and held at 350 ° C. for 3 minutes Later, the measurement sample pan was taken out, dipped in liquid nitrogen, and quenched. Thereafter, the sample is taken out of liquid nitrogen and left at room temperature for 30 minutes, and then heated again from room temperature at a rate of 20 ° C./minute using a high sensitivity type differential scanning calorimeter DSC7020 (manufactured by SII Nano Technology Inc.) And held at 350 ° C. for 3 minutes. The peak temperature of endotherm due to melting at the time of temperature rise was taken as the melting point (Tm).
(4)ガラス転移温度(Tg)
 105℃で15時間減圧乾燥した半芳香族ポリアミド樹脂をアルミニウム製パン(エスアイアイ・ナノテクノロジー社製、品番170421S)に10mg計量し、アルミニウム製蓋(エスアイアイ・ナノテクノロジー社製、品番170420)で密封状態にして測定試料を調製した後、高感度型示差式走査熱量計DSC7020(エスアイアイ・ナノテクノロジー社製)を用いて室温から20℃/分で昇温し、350℃で3分間保持した後に測定試料パンを取出し、液体窒素に漬け込み、急冷させた。その後、液体窒素からサンプルを取り出し、室温で30分間放置した後、再び、高感度型示差式走査熱量計DSC7020(エスアイアイ・ナノテクノロジー社製)を用いて室温から20℃/分で昇温し、350℃で3分間保持した。昇温時のベースラインの変曲点をガラス転移温度(Tg)とした。
(4) Glass transition temperature (Tg)
Measure 10 mg of semi-aromatic polyamide resin dried under reduced pressure at 105 ° C for 15 hours in a pan made of aluminum (manufactured by SII Nano Technology Inc., part number 170421S), and use an aluminum lid (manufactured by SAI nano technology Inc, part number 170420) After preparing a measurement sample in a sealed state, the temperature was raised from room temperature at 20 ° C./min using a high sensitivity type differential scanning calorimeter DSC 7020 (manufactured by SII Nano Technology Inc.) and held at 350 ° C. for 3 minutes Later, the measurement sample pan was taken out, dipped in liquid nitrogen, and quenched. Thereafter, the sample is taken out of liquid nitrogen and left at room temperature for 30 minutes, and then heated again from room temperature at a rate of 20 ° C./minute using a high sensitivity type differential scanning calorimeter DSC7020 (manufactured by SII Nano Technology Inc.) And held at 350 ° C. for 3 minutes. The inflection point of the baseline at the time of temperature rise was taken as the glass transition temperature (Tg).
(5)80℃95%RH平衡吸水率
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、縦100mm、横100mm、厚み1mmの平板を射出成形し、評価用試験片を作製した。この試験片を150℃の雰囲気下で2時間アニール処理した後、質量を測定し、このときの質量を乾燥時の質量とした。さらに、アニール処理した試験片を85℃95%RH(相対湿度)の雰囲気下に1000時間静置した後、質量を測定し、このときの質量を飽和吸水時の質量とした。上述の方法で測定した飽和吸水時及び乾燥時の質量から以下の式より80℃95%RH平衡吸水率を求めた。
 80℃95%RH平衡吸水率(%)={(飽和吸水時の質量-乾燥時の質量)/乾燥時の質量}×100
(5) 80 ° C 95% RH equilibrium water absorption rate Using the injection molding machine EC-100 made by Toshiba Machine, the cylinder temperature is set to the melting point + 20 ° C of the resin, the mold temperature is set to 140 ° C, 100mm long, 100mm wide, 1mm thick The flat plate was injection-molded to prepare a test piece for evaluation. After annealing the test piece in an atmosphere at 150 ° C. for 2 hours, the mass was measured, and the mass at this time was taken as the mass at the time of drying. Further, the annealed test piece was allowed to stand in an atmosphere at 85 ° C. and 95% RH (relative humidity) for 1000 hours, and then its mass was measured, and the mass at this time was taken as the mass at the time of saturated water absorption. From the mass at the time of saturated water absorption and drying measured by the above-mentioned method, 80 ° C. 95% RH equilibrium water absorption was determined from the following equation.
80 ° C 95% RH equilibrium water absorption (%) = {(mass at saturated water absorption-mass at drying) / mass at drying} × 100
(6)80℃95%RH平衡吸水寸法変化率
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、縦100mm、横100mm、厚み1mmの平板を射出成形し、評価用試験片を作製した。この試験片を150℃の雰囲気下で2時間アニール処理した後、フィルムゲートに対して平行方向、直角方向の寸法をそれぞれ端部から50mmの位置でノギスにて測定し、以下の式より平均寸法を求めた。また、このときの平均寸法を乾燥時の平均寸法とした。
 平均寸法(mm)=(平行方向の寸法+直角方向の寸法)/2
 さらに、アニール処理した試験片を85℃95%RH(相対湿度)の雰囲気下に1000時間静置した後、上記と同様の方法で平均寸法を求め、このときの平均寸法を平衡吸水時の平均寸法とした。上述の方法で測定した平衡吸水時及び乾燥時の平均寸法から以下の式より80℃95%RH平衡吸水寸法変化率を求めた。
 80℃95%RH平衡吸水寸法変化率(%)={(平衡吸水時の平均寸法-乾燥時の平均寸法)/乾燥時の平均寸法}×100
(6) 80 ° C 95% RH equilibrium water absorption dimensional change rate The cylinder temperature is set to + 20 ° C of the melting point of the resin and the mold temperature is set to 140 ° C using an injection molding machine EC-100 made by Toshiba Machine, 100 mm long, 100 mm wide, A flat plate with a thickness of 1 mm was injection molded to prepare a test piece for evaluation. After annealing the test piece in an atmosphere at 150 ° C. for 2 hours, the dimensions in the parallel direction and the perpendicular direction to the film gate are measured with a caliper at a position of 50 mm from the end, respectively, I asked for. Moreover, the average dimension at this time was made into the average dimension at the time of drying.
Average dimension (mm) = (dimension in parallel direction + dimension in perpendicular direction) / 2
Furthermore, after leaving the annealed test specimen to stand in an atmosphere of 85 ° C. and 95% RH (relative humidity) for 1000 hours, the average size is determined by the same method as described above, and the average size at this time is the average at the time of equilibrium water absorption. It was a size. From the average dimensions at the time of equilibrium water absorption and drying measured by the above-mentioned method, the 80 ° C. 95% RH equilibrium water absorption dimensional change rate was determined from the following equation.
80 ° C. 95% RH equilibrium water absorption dimensional change rate (%) = {(average size at equilibrium water absorption−average size at drying) / average size at drying} × 100
(7)接着強度
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、図1に記載する評価用試験片を射出成形にて、作製した。図1の上図が上から見た天面の図であり、下図が横から見た側面の図である。作製した評価用試験片の接着面(面積310mm:図2の上図の矢印の先の合計面積)に熱硬化性樹脂0.04gを均一に塗布した後、同形状の評価用試験片を接着面が対となるように貼り合わせて固定した状態(図2の下図)で、100℃の雰囲気下にて60分熱処理を行い、接着強度評価用試験片を作製した。作製した試験片を24時間室温にて静置した後、島津製作所社製精密万能試験機AG-ISにて、引張速度5mm/minで評価し、以下の式より接着強度を求めた。
 接着強度(MPa)=試験片破壊時の試験力/接着面積(310mm
(7) Bonding strength Using an injection molding machine EC-100 made by Toshiba Machine, the cylinder temperature is set to the melting point of the resin + 20 ° C, the mold temperature is set to 140 ° C, and the evaluation test piece described in FIG. , Made. The upper view of FIG. 1 is a top view seen from the top, and the lower view is a side view seen from the side. After uniformly applying 0.04 g of a thermosetting resin to the adhesive surface (area 310 mm 2 : total area of the arrow end in the upper view of FIG. 2) of the prepared test specimen for evaluation, the test specimen of the same shape is used. Heat treatment was performed for 60 minutes in an atmosphere of 100 ° C. in a state of bonding and fixing so that the bonding surfaces were paired (lower in FIG. 2), to prepare a test piece for adhesive strength evaluation. The prepared test piece was allowed to stand at room temperature for 24 hours, and then evaluated at a tensile speed of 5 mm / min with a precision universal testing machine AG-IS manufactured by Shimadzu Corporation, and adhesion strength was determined from the following equation.
Bonding strength (MPa) = test force at the time of specimen failure / bonding area (310 mm 2 )
(8)接着破壊モード
 上記に記載の方法で接着強度の評価を行った際の、破壊の状態を以下の指標を用いて分類した。
 母材:接着剤(熱硬化性樹脂)部または樹脂組成物試験片と接着剤の界面での破壊は生じず、試験片自体が破壊
 界面:接着剤(熱硬化性樹脂)部または樹脂組成物試験片と接着剤の界面での破壊
(8) Adhesion failure mode The state of failure when the adhesion strength was evaluated by the method described above was classified using the following index.
Base material: No breakage occurs at the adhesive (thermosetting resin) portion or at the interface between the resin composition test piece and the adhesive, and the test piece itself is broken Interface: Adhesive (thermosetting resin) portion or resin composition Fracture at the interface of the specimen and adhesive
(9)耐ハンダリフロー性
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、長さ127mm、幅12.6mm、厚み0.8mmのUL燃焼試験用テストピースを射出成形し、試験片を作製した。試験片は85℃、85%RH(相対湿度)の雰囲気中に72時間放置した。試験片はエアリフロー炉中(エイテック製 AIS-20-82C)、室温から150℃まで60秒かけて昇温させ予備加熱を行った後、190℃まで0.5℃/分の昇温速度でプレヒートを実施した。その後、100℃/分の速度で所定の設定温度まで昇温し、所定の温度で10秒間保持した後、冷却を行った。設定温度は240℃から5℃おきに増加させ、表面の膨れや変形が発生しなかった最高の設定温度をリフロー耐熱温度とし、ハンダ耐熱性の指標として用いた。
 ○:リフロー耐熱温度が260℃以上
 ×:リフロー耐熱温度が260℃未満
(9) Solder Reflow Resistance Using an injection molding machine EC-100 manufactured by Toshiba Machine, the cylinder temperature is set to the melting point of the resin + 20 ° C., the mold temperature is set to 140 ° C., length 127 mm, width 12.6 mm, thickness 0. Test pieces of 8 mm for UL combustion test were injection molded to prepare test pieces. The test piece was left for 72 hours in an atmosphere at 85 ° C. and 85% RH (relative humidity). The test piece is preheated by raising the temperature from room temperature to 150 ° C over 60 seconds in an air reflow furnace (AIS AIS-20-82C), then at a heating rate of 0.5 ° C / min to 190 ° C. Preheating was performed. Thereafter, the temperature was raised to a predetermined set temperature at a rate of 100 ° C./min, and held at the predetermined temperature for 10 seconds, followed by cooling. The set temperature was increased every 240 ° C. to 5 ° C., and the highest set temperature at which surface swelling or deformation did not occur was used as a reflow heat resistance temperature and was used as an index of solder heat resistance.
○: Reflowable temperature limit is 260 ° C or higher ×: Reflowable temperature limit is less than 260 ° C
 本実施例は、以下に例示するように合成された半芳香族ポリアミド樹脂(A)を使用して行われたものである。 This example was conducted using a semi-aromatic polyamide resin (A) synthesized as exemplified below.
<合成例1>
 1,6-ヘキサメチレンジアミン7.54kg、テレフタル酸10.79kg、11-アミノウンデカン酸7.04kg、触媒としてジ亜リン酸ナトリウム9g、末端調整剤として酢酸40gおよびイオン交換水17.52kgを50リットルのオートクレーブに仕込み、常圧から0.05MPaまでNで加圧し、放圧させ、常圧に戻した。この操作を3回行い、N置換を行った後、攪拌下135℃、0.3MPaにて均一溶解させた。その後、溶解液を送液ポンプにより、連続的に供給し、加熱配管で240℃まで昇温させ、1時間、熱を加えた。その後、加圧反応缶に反応混合物が供給され、290℃に加熱され、缶内圧を3MPaで維持するように、水の一部を留出させ、低次縮合物を得た。その後、この低次縮合物を、溶融状態を維持したまま直接二軸押出し機(スクリュー径37mm、L/D=60)に供給し、樹脂温度を335℃、3箇所のベントから水を抜きながら溶融下で重縮合を進め、半芳香族ポリアミド樹脂(A-1)を得た。得られた半芳香族ポリアミド樹脂(A-1)は、1、6-ヘキサメチレンジアミンとテレフタル酸からなる構成単位が65.1モル%、11-アミノウンデカン酸からなる構成単位が34.9モル%で構成され、相対粘度2.1、融点314℃、H-NMRにより分析したAEG=20eq/ton、CEG=140eq/tonであった。
Synthesis Example 1
7.54 kg of 1,6-hexamethylenediamine, 10.79 kg of terephthalic acid, 7.04 kg of 11-aminoundecanoic acid, 9 g of sodium hypophosphite as a catalyst, 40 g of acetic acid as a terminal regulator and 17.52 kg of ion exchanged water The autoclave was charged with N 2 from atmospheric pressure to 0.05 MPa, released from pressure, and returned to atmospheric pressure. This operation was performed three times, and after performing N 2 substitution, it was uniformly dissolved at 135 ° C. and 0.3 MPa with stirring. Thereafter, the solution was continuously supplied by a liquid feed pump, and the temperature was raised to 240 ° C. by a heating pipe, and heat was applied for 1 hour. Thereafter, the reaction mixture was supplied to the pressure reaction vessel, heated to 290 ° C., and a portion of water was distilled off to maintain the internal pressure of the vessel at 3 MPa, to obtain a low-order condensate. Then, this low-order condensate is directly supplied to a twin-screw extruder (screw diameter 37 mm, L / D = 60) while maintaining the molten state, and the resin temperature is 335 ° C. while removing water from three vents. The polycondensation was advanced under melting to obtain a semi-aromatic polyamide resin (A-1). The obtained semi-aromatic polyamide resin (A-1) has 65.1 mol% of a structural unit consisting of 1,6-hexamethylenediamine and terephthalic acid and 34.9 mol of a structural unit consisting of 11-aminoundecanoic acid %, Relative viscosity 2.1, melting point 314 ° C., AEG = 20 eq / ton, CEG = 140 eq / ton, analyzed by 1 H-NMR.
<合成例2>
 1,6-ヘキサメチレンジアミン8.57kg、テレフタル酸12.24kg、11-アミノウンデカン酸7.99kg、触媒としてジ亜リン酸ナトリウム9g、末端封鎖剤として酢酸150gおよびイオン交換水16.20kgを50リットルのオートクレーブに仕込み、常圧から0.05MPaまでNで加圧し、放圧させ、常圧に戻した。この操作を3回行い、N置換を行った後、攪拌下135℃、0.3MPaにて均一溶解させた。その後、溶解液を送液ポンプにより、連続的に供給し、加熱配管で240℃まで昇温させ、1時間、熱を加えた。その後、加圧反応缶に反応混合物が供給され、290℃に加熱され、缶内圧を3MPaで維持するように、水の一部を留出させ、低次縮合物を得た。その後、この低次縮合物を大気中、常温、常圧の容器に取り出した後、真空乾燥機を用いて、70℃、真空度50Torrの環境下で乾燥した。乾燥後、低次縮合物をブレンダー(容量0.1m)を用いて、210℃、真空度50Torrの環境で6時間反応させ、半芳香族ポリアミド樹脂(A-2)を得た。得られた半芳香族ポリアミド樹脂(A-2)は、1、6-ヘキサメチレンジアミンとテレフタル酸からなる構成単位が65.3モル%、11-アミノウンデカン酸からなる構成単位が34.7モル%で構成され、相対粘度2.03、融点313℃、H-NMRにより分析したAEG=2eq/ton、CEG=111eq/tonであった。
Synthesis Example 2
8.57 kg of 1,6-hexamethylenediamine, 12.24 kg of terephthalic acid, 7.99 kg of 11-aminoundecanoic acid, 9 g of sodium hypophosphite as a catalyst, 150 g of acetic acid as an end blocking agent and 16.20 kg of ion exchanged water The autoclave was charged with N 2 from atmospheric pressure to 0.05 MPa, released from pressure, and returned to atmospheric pressure. This operation was performed three times, and after performing N 2 substitution, it was uniformly dissolved at 135 ° C. and 0.3 MPa with stirring. Thereafter, the solution was continuously supplied by a liquid feed pump, and the temperature was raised to 240 ° C. by a heating pipe, and heat was applied for 1 hour. Thereafter, the reaction mixture was supplied to the pressure reaction vessel, heated to 290 ° C., and a portion of water was distilled off to maintain the internal pressure of the vessel at 3 MPa, to obtain a low-order condensate. Thereafter, the low-order condensate was taken out into a container under normal temperature and pressure in the air, and then dried under an environment of 70 ° C. and a vacuum degree of 50 Torr using a vacuum dryer. After drying, the lower condensate was reacted with a blender (volume 0.1 m 3 ) for 6 hours at 210 ° C. under a vacuum of 50 Torr for 6 hours to obtain a semi-aromatic polyamide resin (A-2). The obtained semi-aromatic polyamide resin (A-2) has 65.3 mol% of a constituent unit consisting of 1,6-hexamethylenediamine and terephthalic acid and 34.7 mol of a constituent unit consisting of 11-aminoundecanoic acid % consists of a relative viscosity 2.03, melting point 313 ° C., was 1 AEG was analyzed by H-NMR = 2eq / ton, CEG = 111eq / ton.
<合成例3>
 1,6-ヘキサメチレンジアミン13.22kg、テレフタル酸12.25kg、11-アミノウンデカン酸7.99kg、触媒としてジ亜リン酸ナトリウム9g、末端封鎖剤として酢酸395gおよびイオン交換水12.68kgを50リットルのオートクレーブに仕込み、常圧から0.05MPaまでNで加圧し、放圧させ、常圧に戻した。この操作を3回行い、N置換を行った後、攪拌下135℃、0.3MPaにて均一溶解させた。その後、溶解液を送液ポンプにより、連続的に供給し、加熱配管で240℃まで昇温させ、1時間、熱を加えた。その後、加圧反応缶に反応混合物が供給され、290℃に加熱され、缶内圧を3MPaで維持するように、水の一部を留出させ、低次縮合物を得た。その後、この低次縮合物を大気中、常温、常圧の容器に取り出した後、真空乾燥機を用いて、70℃、真空度50Torrの環境下で乾燥した。乾燥後、低次縮合物をブレンダー(容量0.1m)を用いて、210℃、真空度50Torrの環境で6時間反応させ、半芳香族ポリアミド樹脂(A-3)を得た。得られた半芳香族ポリアミド樹脂(A-3)は、1、6-ヘキサメチレンジアミンとテレフタル酸からなる構成単位が64.8モル%、11-アミノウンデカン酸からなる構成単位が35.2モル%で構成され、相対粘度1.84、融点314℃、H-NMRにより分析したAEG=29eq/ton、CEG=30eq/tonであった。
Synthesis Example 3
13.22 kg of 1,6-hexamethylenediamine, 12.25 kg of terephthalic acid, 7.99 kg of 11-aminoundecanoic acid, 9 g of sodium diphosphite as a catalyst, 395 g of acetic acid as an end blocking agent and 12.68 kg of ion exchanged water The autoclave was charged with N 2 from atmospheric pressure to 0.05 MPa, released from pressure, and returned to atmospheric pressure. This operation was performed three times, and after performing N 2 substitution, it was uniformly dissolved at 135 ° C. and 0.3 MPa with stirring. Thereafter, the solution was continuously supplied by a liquid feed pump, and the temperature was raised to 240 ° C. by a heating pipe, and heat was applied for 1 hour. Thereafter, the reaction mixture was supplied to the pressure reaction vessel, heated to 290 ° C., and a portion of water was distilled off to maintain the internal pressure of the vessel at 3 MPa, to obtain a low-order condensate. Thereafter, the low-order condensate was taken out into a container under normal temperature and pressure in the air, and then dried under an environment of 70 ° C. and a vacuum degree of 50 Torr using a vacuum dryer. After drying, the low-order condensate was reacted with a blender (volume 0.1 m 3 ) for 6 hours at 210 ° C. under a vacuum of 50 Torr for 6 hours to obtain a semiaromatic polyamide resin (A-3). The obtained semi-aromatic polyamide resin (A-3) has 64.8 mol% of a structural unit consisting of 1,6-hexamethylenediamine and terephthalic acid and 35.2 mol of a structural unit consisting of 11-aminoundecanoic acid %, Relative viscosity 1.84, melting point 314 ° C., AEG = 29 eq / ton, CEG = 30 eq / ton, analyzed by 1 H-NMR.
<合成例4>
 特開平7-228689号公報の実施例1に記載された方法に従い、テレフタル酸単位と、1,9-ノナンジアミン単位および2-メチル-1,8-オクタンジアミン単位(1,9-ノナンジアミン単位:2-メチル-1,8-オクタンジアミン単位のモル比が85:15)からなる半芳香族ポリアミド樹脂の合成を行った(末端封鎖剤は安息香酸を使用)。得られた半芳香族ポリアミド樹脂(A-4)は、相対粘度2.1、融点286℃、H-NMRにより分析したAEG=13eq/ton、CEG=50eq/tonであった。
Synthesis Example 4
According to the method described in Example 1 of JP-A-7-228689, terephthalic acid units, 1,9-nonanediamine units and 2-methyl-1,8-octanediamine units (1,9-nonanediamine units: 2 The synthesis of a semi-aromatic polyamide resin consisting of 85:15 in the molar ratio of methyl-1,8-octanediamine units was carried out (end blocking agent is benzoic acid). The obtained semi-aromatic polyamide resin (A-4) had a relative viscosity of 2.1, a melting point of 286 ° C., AEG = 13 eq / ton and CEG = 50 eq / ton as analyzed by 1 H-NMR.
<合成例5>
 WO2006/098434号公報の比較例3に記載された方法に従い、テレフタル酸単位と、1,9-ノナンジアミン単位および2-メチル-1,8-オクタンジアミン単位(1,9-ノナンジアミン単位:2-メチル-1,8-オクタンジアミン単位のモル比が80:20)からなる半芳香族ポリアミド樹脂の合成を行った(末端封鎖剤は安息香酸を使用)。得られた半芳香族ポリアミド樹脂(A-5)は、相対粘度2.1、融点282℃、H-NMRにより分析したAEG=80eq/ton、CEG=46eq/tonであった。
Synthesis Example 5
According to the method described in Comparative Example 3 of WO 2006/098434, terephthalic acid units, 1,9-nonanediamine units and 2-methyl-1,8-octanediamine units (1,9-nonanediamine units: 2-methyl) The synthesis of a semi-aromatic polyamide resin consisting of a molar ratio of 80:20) 1,8-octanediamine units was carried out (end blocking agent is benzoic acid). The obtained semi-aromatic polyamide resin (A-5) had a relative viscosity of 2.1, a melting point of 282 ° C., AEG = 80 eq / ton, CEG = 46 eq / ton as analyzed by 1 H-NMR.
 本実施例は、以下に例示するように作製された半芳香族ポリアミド樹脂組成物(C)を使用して行われたものである。 This example was performed using the semi-aromatic polyamide resin composition (C) produced as illustrated below.
 表1、2に記載の成分と質量割合(質量部)で、コペリオン(株)製二軸押出機STS-35を用いて各ポリアミド原料の融点+20℃で溶融混練し、実施例1~9、比較例1~5の半芳香族ポリアミド樹脂組成物(C)を得た。半芳香族ポリアミド樹脂組成物(C)を用いて上述の方法でポリアミド樹脂組成物の作製に当たり使用した原料は以下の通りである。他添加剤として用いた離型剤と安定剤は、1:5の質量割合で用いた。
半芳香族ポリアミド樹脂(A-1):上記の合成例1に基づいて作製された半芳香族ポリアミド樹脂
半芳香族ポリアミド樹脂(A-2):上記の合成例2に基づいて作製された半芳香族ポリアミド樹脂
半芳香族ポリアミド樹脂(A-3):上記の合成例3に基づいて作製された半芳香族ポリアミド樹脂
半芳香族ポリアミド樹脂(A-4):上記の合成例4に基づいて作製された半芳香族ポリアミド樹脂
半芳香族ポリアミド樹脂(A-5):上記の合成例5に基づいて作製された半芳香族ポリアミド樹脂
半芳香族ポリアミド樹脂(A-6):PA10T(KINGFA SCI.&TECH.CO.,LTD.社製 Vicnyl(R) 700)
強化材(B):ガラス繊維(日本電気ガラス(株)製、T-275H)
スチレン-マレイミド系共重合体(F):スチレン-N-フェニルマレイミド-無水マレイン酸共重合体(デンカ(株)製、デンカIP MS-NIP)
離型剤:ステアリン酸マグネシウム
安定剤:ペンタエリスリチル・テトラキス[3-(3、5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート] (Chiba Speciality Chemicals社製 Irganox1010)
The components and mass proportions (parts by mass) described in Tables 1 and 2 were melt-kneaded at a melting point of + 20 ° C. of each polyamide raw material using a twin screw extruder STS-35 manufactured by Coperion Co., Ltd. Examples 1-9 Semi-aromatic polyamide resin compositions (C) of Comparative Examples 1 to 5 were obtained. The raw materials used for preparation of a polyamide resin composition by the above-mentioned method using semi-aromatic polyamide resin composition (C) are as follows. The release agent and the stabilizer used as other additives were used at a mass ratio of 1: 5.
Semi-Aromatic Polyamide Resin (A-1): Semi-Aromatic Polyamide Resin Produced According to Synthesis Example 1 Semi-Aromatic Polyamide Resin (A-2): Semi-Production Produced According to Synthesis Example 2 Above Aromatic polyamide resin Semi-aromatic polyamide resin (A-3): Semi-aromatic polyamide resin produced based on the above-mentioned Synthesis Example 3 Semi-aromatic polyamide resin (A-4): Based on the above-mentioned Synthesis Example 4 Semi-aromatic polyamide resin produced Semi-aromatic polyamide resin (A-5): Semi-aromatic polyamide resin produced according to the above Synthesis Example 5 Semi-aromatic polyamide resin (A-6): PA10T (KINGFA SCI . & TECH.CO., LTD. Made Vicnyl (R) 700)
Reinforcing material (B): Glass fiber (manufactured by Nippon Electric Glass Co., Ltd., T-275H)
Styrene-maleimide copolymer (F): styrene-N-phenylmaleimide-maleic anhydride copolymer (Denka Co., Ltd., Denka IP MS-NIP)
Releasing agent: Magnesium stearate Stabilizer: pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (Irganox 1010, manufactured by Chiba Specialty Chemicals)
 本実施例は、上記に記載のように作製された半芳香族ポリアミド樹脂組成物(C)からなる成形品(D)と、熱硬化性樹脂(E)を使用して行われたものである。 In this example, a molded article (D) comprising the semiaromatic polyamide resin composition (C) produced as described above and a thermosetting resin (E) were used. .
<実施例1~9、比較例1~5>
 表1、2に記載の半芳香族ポリアミド樹脂組成物(C)および熱硬化性樹脂(E)を用いて、上記記載の方法で実施例1~9、比較例1~5を行った。
熱硬化性樹脂(E-1):一液型熱硬化性エポキシ樹脂(スリーボンド社製 2222P)
熱硬化性樹脂(E-2):一液型熱硬化性エポキシ樹脂(田岡化学社製 AH-3031T)
Examples 1 to 9 and Comparative Examples 1 to 5
Examples 1 to 9 and Comparative Examples 1 to 5 were carried out according to the method described above using the semiaromatic polyamide resin composition (C) and the thermosetting resin (E) described in Tables 1 and 2.
Thermosetting resin (E-1): one-component thermosetting epoxy resin (manufactured by ThreeBond 2222P)
Thermosetting resin (E-2): One-component thermosetting epoxy resin (Taoka Chemical Co., Ltd. AH-3031T)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1、2から明らかなように、実施例1~3では熱硬化性樹脂(E)との高い接着性を発現できるだけでなく、80℃95%RH平衡吸水寸法変化率も小さく、耐ハンダリフロー性も満足するなど、優れた特性を有することがわかる。また、実施例4では、AEG=2eq/tonと低く、熱硬化性樹脂(E)との接着性が実施例1~3と比べてやや低下するものの、その接着強度は2.9MPaであり、実用上は十分な特性が得られている。実施例5では、熱硬化性樹脂(E)を変更しているが、十分な接着強度が得られており、優れた特性を有することがわかる。一方で、比較例1は実施例1~3と同様のモノマーから製造された半芳香族ポリアミド樹脂を用いているが、(AEG+CEG)の値が59eq/tonと低く、熱硬化性樹脂(E)との接着性が不十分である。比較例2、3は、実施例1~5と異なるモノマーから製造された半芳香族ポリアミド樹脂(PA9T/M8T)を用いており、比較例2では(AEG+CEG)の値が63eq/tonと低いことに加えて、ΔHTc2が大きく、Tgが高いため、熱硬化性樹脂(E)との接着性が不十分である。比較例3では(AEG+CEG)の値が126eq/tonと適切であるものの、ΔHTc2が大きく、Tgが高いため、熱硬化性樹脂(E)との接着性が不十分である。比較例4では、実施例1~5と異なるモノマーから製造された半芳香族ポリアミド樹脂(PA10T)を用いており、(AEG+CEG)の値が44eq/tonと低いことに加えて、ΔHTc2が大きく、Tgが高いため、熱硬化性樹脂(E)との接着性が不十分である。比較例5では、熱硬化性樹脂(E)を変更しているが、比較例3同様に(AEG+CEG)の値が126eq/tonと適切であるものの、ΔHTc2が大きく、Tgが高いため、熱硬化性樹脂(E)との接着性が不十分である。
 また、実施例6~9では、接着強度が高く、接着破壊モードも母材であることから、熱硬化性樹脂(D)との優れた接着性を有することがわかる。さらに、80℃95%RH平衡吸水率、80℃95%RH平衡吸水寸法変化率も低く、吸水時の寸法安定性にも優れる。
As apparent from Tables 1 and 2, in Examples 1 to 3 not only high adhesiveness with the thermosetting resin (E) can be expressed, but also the 80% 95% RH equilibrium water absorption dimensional change rate is small, and the solder reflow resistance It can be seen that it has excellent characteristics, such as satisfying the property. Further, in Example 4, although the AEG value is as low as 2 eq / ton and the adhesion to the thermosetting resin (E) is slightly reduced as compared with Examples 1 to 3, the adhesive strength is 2.9 MPa, Sufficient characteristics have been obtained for practical use. In Example 5, the thermosetting resin (E) is changed, but sufficient adhesive strength is obtained, and it can be seen that the resin has excellent properties. On the other hand, Comparative Example 1 uses a semi-aromatic polyamide resin produced from the same monomers as in Examples 1 to 3, but the value of (AEG + CEG) is as low as 59 eq / ton, and a thermosetting resin (E) Adhesiveness with is insufficient. Comparative Examples 2 and 3 use a semi-aromatic polyamide resin (PA9T / M8T) manufactured from monomers different from those of Examples 1 to 5, and in Comparative Example 2, the value of (AEG + CEG) is as low as 63 eq / ton. In addition, since ΔH Tc2 is large and Tg is high, adhesion to the thermosetting resin (E) is insufficient. In Comparative Example 3, although the value of (AEG + CEG) is appropriate at 126 eq / ton, the adhesiveness with the thermosetting resin (E) is insufficient because ΔH Tc2 is large and Tg is high. Comparative Example 4 uses a semi-aromatic polyamide resin (PA10T) produced from monomers different from those of Examples 1 to 5, and in addition to the low value of (AEG + CEG) of 44 eq / ton, ΔH Tc2 is large. Because of high Tg, adhesion to the thermosetting resin (E) is insufficient. In Comparative Example 5, although the thermosetting resin (E) is changed, although the value of (AEG + CEG) is appropriate to 126 eq / ton as in Comparative Example 3, the ΔH Tc2 is large and the Tg is high. Adhesiveness with curable resin (E) is inadequate.
Further, in Examples 6 to 9, since the adhesion strength is high and the adhesion failure mode is also the base material, it is understood that the adhesive property with the thermosetting resin (D) is excellent. Furthermore, the 80 ° C. 95% RH equilibrium water absorption rate, the 80 ° C. 95% RH equilibrium water absorption dimensional change rate is also low, and the dimensional stability at the time of water absorption is also excellent.
 本発明の成形体は、組成に加え、末端基量などの特定の物性を有する半芳香族ポリアミド樹脂を含有する半芳香族ポリアミド樹脂組成物と、グリシジル基を有する熱硬化性樹脂を使用することで、高い吸水寸法安定性、耐熱性、接着性を有しており、ユーザーニーズを高度に満足した成形体(複合成形体)を工業的に有利に製造することができる。
 
The molded article of the present invention uses a semi-aromatic polyamide resin composition containing a semi-aromatic polyamide resin having specific physical properties such as the amount of end groups in addition to the composition, and a thermosetting resin having a glycidyl group Therefore, it has high water absorption dimensional stability, heat resistance and adhesiveness, and a molded article (composite molded article) highly satisfying user needs can be industrially advantageously manufactured.

Claims (8)

  1.  下記(a)~(c)の要件を満たす半芳香族ポリアミド樹脂(A)100質量部に対して、強化材(B)0~200質量部を含有し、80℃95%RH平衡吸水率が3.0%以下である半芳香族ポリアミド樹脂組成物(C)からなる成形品(D)と、グリシジル基を含有する熱硬化性樹脂(E)とが直接介する構造を有する成形体。
    (a)示差走査熱量分析(DSC)により測定した降温結晶化に伴うピーク面積(ΔHTc2)が40mJ/mg以下
    (b)ガラス転移温度(Tg)が120℃以下
    (c)末端アミノ基濃度(AEG)と末端カルボキシル基濃度(CEG)の和(AEG+CEG)が70eq/ton以上
    The reinforcing material (B) contains 0 to 200 parts by mass with respect to 100 parts by mass of the semiaromatic polyamide resin (A) satisfying the following requirements (a) to (c), and has an equilibrium water absorption of 80.degree. The molded object which has a structure which the molded article (D) which consists of a semi-aromatic polyamide resin composition (C) which is 3.0% or less, and the thermosetting resin (E) containing glycidyl group directly intervenes.
    (A) Peak area (ΔH Tc2 ) associated with temperature-decreasing crystallization measured by differential scanning calorimetry (DSC) is 40 mJ / mg or less (b) Glass transition temperature (Tg) is 120 ° C. or less (c) Terminal amino group concentration (c) Sum of (AEG) and terminal carboxyl group concentration (CEG) (AEG + CEG) is at least 70 eq / ton
  2.  半芳香族ポリアミド樹脂組成物(C)が、半芳香族ポリアミド樹脂(A)100質量部に対して、さらにスチレン-マレイミド系共重合体(F)10~60質量部を含有する請求項1に記載の成形体。 The semiaromatic polyamide resin composition (C) further comprises 10 to 60 parts by mass of a styrene-maleimide copolymer (F) with respect to 100 parts by mass of the semiaromatic polyamide resin (A). The molded body described.
  3.  半芳香族ポリアミド樹脂(A)が、炭素数6~12のジアミンとテレフタル酸からなる繰り返し単位を50~100モル%、炭素数10以上のアミノカルボン酸またはラクタムからなる繰り返し単位を0~50モル%を含む半芳香族ポリアミド樹脂である、請求項1または2に記載の成形体。 The semi-aromatic polyamide resin (A) contains 50 to 100 mol% of a repeating unit consisting of a diamine having 6 to 12 carbon atoms and terephthalic acid, and 0 to 50 mol of a repeating unit consisting of an aminocarboxylic acid or lactam having 10 or more carbon atoms The molded article according to claim 1 or 2, which is a semi-aromatic polyamide resin containing%.
  4.  半芳香族ポリアミド樹脂(A)がヘキサメチレンジアミンとテレフタル酸からなる繰り返し単位を50~100モル%、アミノウンデカン酸またはウンデカンラクタムからなる繰り返し単位を0~50モル%を含む半芳香族ポリアミド樹脂である、請求項1または2に記載の成形体。 A semiaromatic polyamide resin comprising 50 to 100 mol% of repeating units consisting of hexamethylenediamine and terephthalic acid and 0 to 50 mol% of repeating units consisting of aminoundecanoic acid or undecanelactam as the semiaromatic polyamide resin (A) The molded object according to claim 1 or 2.
  5.  グリシジル基を含有する熱硬化性樹脂(E)が、一液型熱硬化性エポキシ樹脂である請求項1~4のいずれかに記載の成形体。 The molded article according to any one of claims 1 to 4, wherein the thermosetting resin (E) containing a glycidyl group is a one-component thermosetting epoxy resin.
  6.  請求項1~5のいずれかに記載の成形体からなるコネクタ。 A connector comprising the molded body according to any one of claims 1 to 5.
  7.  請求項1~5のいずれかに記載の成形体からなるスイッチ部品。 A switch component comprising the molded body according to any one of claims 1 to 5.
  8.  請求項1~5のいずれかに記載の成形体からなるカメラ部品。
     
    A camera part comprising the molded body according to any one of claims 1 to 5.
PCT/JP2018/035096 2017-09-25 2018-09-21 Compact including, as constituent, molded article formed of semiaromatic polyamide resin composition WO2019059357A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019506459A JP7200927B2 (en) 2017-09-25 2018-09-21 Molded article having molded article made of semi-aromatic polyamide resin composition as a constituent
CN201880059313.0A CN111133038B (en) 2017-09-25 2018-09-21 Molded article comprising semi-aromatic polyamide resin composition as component
KR1020207008226A KR102615918B1 (en) 2017-09-25 2018-09-21 A molded article having a molded article containing a semi-aromatic polyamide resin composition as a component.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-183800 2017-09-25
JP2017183800 2017-09-25
JP2018-058291 2018-03-26
JP2018058291 2018-03-26

Publications (1)

Publication Number Publication Date
WO2019059357A1 true WO2019059357A1 (en) 2019-03-28

Family

ID=65810335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035096 WO2019059357A1 (en) 2017-09-25 2018-09-21 Compact including, as constituent, molded article formed of semiaromatic polyamide resin composition

Country Status (4)

Country Link
JP (1) JP7200927B2 (en)
KR (1) KR102615918B1 (en)
CN (1) CN111133038B (en)
WO (1) WO2019059357A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6909417B1 (en) * 2019-09-12 2021-07-28 東洋紡株式会社 Polyamide resin composition and polyamide resin molded product
CN114585688A (en) * 2019-11-29 2022-06-03 东洋纺株式会社 Semi-aromatic polyamide resin composition and metal plating molded body
EP4105399A4 (en) * 2020-02-10 2023-12-27 Kuraray Co., Ltd. Molded article for plumbing and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112592583B (en) * 2020-11-16 2023-03-10 金旸(厦门)新材料科技有限公司 Alcoholysis-resistant enhanced PA6T material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204683A (en) * 2006-02-03 2007-08-16 Toray Ind Inc Member for use in welding and molded article
JP2012086578A (en) * 2004-02-27 2012-05-10 Toray Ind Inc Epoxy resin composition for carbon-fiber-reinforced composite material, prepreg, integrated molding, fiber-reinforced composite material sheet, and casing for electric/electronic equipment
JP2012167285A (en) * 2011-01-28 2012-09-06 Kuraray Co Ltd Polyamide composition for reflecting plate, reflecting plate, light emission device having the reflecting plate, and illumination device and image display having the light emission device
WO2015019882A1 (en) * 2013-08-05 2015-02-12 東洋紡株式会社 Flame-retardant polyamide resin composition
JP2017119433A (en) * 2015-12-25 2017-07-06 東レ株式会社 Composite molding and method for manufacturing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100591713C (en) * 2004-02-27 2010-02-24 东丽株式会社 Epoxy resin composition for carbon-fiber-reinforced composite material, prepreg, integrated molding, sheet of fiber-reinforced composite material and cabinet for electrical/electronic equipment
US20090098325A1 (en) 2005-03-18 2009-04-16 Kuraray Co. Ltd. Semi-aromatic polyamide resin
FR2946652B1 (en) * 2009-06-12 2012-07-20 Rhodia Operations POLYAMIDE OF HIGH VISCOSITY.
JPWO2011052464A1 (en) * 2009-10-27 2013-03-21 東洋紡株式会社 Copolyamide
JP2015129271A (en) 2013-12-05 2015-07-16 東レ株式会社 Carbon fiber-reinforced polyamide resin composition and molded article obtained by molding the same
WO2017077901A1 (en) * 2015-11-02 2017-05-11 東洋紡株式会社 Semi-aromatic polyamide resin and method for producing same
JP6650288B2 (en) 2016-02-10 2020-02-19 三菱エンジニアリングプラスチックス株式会社 Molding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012086578A (en) * 2004-02-27 2012-05-10 Toray Ind Inc Epoxy resin composition for carbon-fiber-reinforced composite material, prepreg, integrated molding, fiber-reinforced composite material sheet, and casing for electric/electronic equipment
JP2007204683A (en) * 2006-02-03 2007-08-16 Toray Ind Inc Member for use in welding and molded article
JP2012167285A (en) * 2011-01-28 2012-09-06 Kuraray Co Ltd Polyamide composition for reflecting plate, reflecting plate, light emission device having the reflecting plate, and illumination device and image display having the light emission device
WO2015019882A1 (en) * 2013-08-05 2015-02-12 東洋紡株式会社 Flame-retardant polyamide resin composition
JP2017119433A (en) * 2015-12-25 2017-07-06 東レ株式会社 Composite molding and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6909417B1 (en) * 2019-09-12 2021-07-28 東洋紡株式会社 Polyamide resin composition and polyamide resin molded product
US11667789B2 (en) 2019-09-12 2023-06-06 Toyobo Co., Ltd. Polyamide resin composition and polyamide resin molded article
CN114585688A (en) * 2019-11-29 2022-06-03 东洋纺株式会社 Semi-aromatic polyamide resin composition and metal plating molded body
EP4105399A4 (en) * 2020-02-10 2023-12-27 Kuraray Co., Ltd. Molded article for plumbing and method

Also Published As

Publication number Publication date
KR102615918B1 (en) 2023-12-19
KR20200047594A (en) 2020-05-07
JPWO2019059357A1 (en) 2020-09-10
JP7200927B2 (en) 2023-01-10
CN111133038B (en) 2022-10-14
CN111133038A (en) 2020-05-08

Similar Documents

Publication Publication Date Title
JP7200927B2 (en) Molded article having molded article made of semi-aromatic polyamide resin composition as a constituent
JP4998841B2 (en) Polyamide resin composition used for reflector for surface mount LED
JP7375787B2 (en) Polyarylene sulfide resin compositions, molded products thereof, and surface-mounted electronic components
WO2017131018A1 (en) Molded article and method for production thereof
WO2014108091A1 (en) Polyamide resin and use thereof and polyamide composition consisting of same
JP5964964B2 (en) Polyamide, polyamide composition and molded article
JP2003041117A (en) Polyamide composition
WO2011074536A1 (en) Copolyamide
WO2011052464A1 (en) Copolymerized polyamide
WO2012161064A1 (en) Polyamide resin composition for optical components
JP2009263635A (en) Thermoplastic resin composition, process for producing the same, and electronic component for surface mounting
WO2017077901A1 (en) Semi-aromatic polyamide resin and method for producing same
WO2019122139A1 (en) High heat resistance polyamide molding compound
WO2009096400A1 (en) Poly(arylene sulfide) resin composition, process for production thereof, and surface mount electronic component
JP2011111576A (en) Copolyamide
JP5257778B2 (en) Polyarylene sulfide resin composition, method for producing the same, and electronic component for surface mounting
EP3519503A1 (en) Polymer composition, molded part and processes for production thereof
EP3551698A1 (en) Thermoplastic composition, molded part made thereof and use thereof in automotive and e&e applications
JP2012102232A (en) Copolyamide
JPH03201375A (en) Resin composition for connector, and connector
WO2014132883A1 (en) Flame-retardant polyamide resin composition to be used in surface mount type electric/electronic component
CN107922735B (en) Polyarylene sulfide resin composition and molded article thereof
KR20190083364A (en) Use of polyamide 6 (PA6) as a heat-aging stabilizer in a polymer composition comprising polyphenylene sulfide (PPS)
JPH11241020A (en) Heat-resistant resin composition
JP5911382B2 (en) Polyamide and its molded products

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019506459

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857896

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207008226

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857896

Country of ref document: EP

Kind code of ref document: A1