WO2019058973A1 - 撮像装置、撮像装置本体及び撮像装置の合焦制御方法 - Google Patents

撮像装置、撮像装置本体及び撮像装置の合焦制御方法 Download PDF

Info

Publication number
WO2019058973A1
WO2019058973A1 PCT/JP2018/032914 JP2018032914W WO2019058973A1 WO 2019058973 A1 WO2019058973 A1 WO 2019058973A1 JP 2018032914 W JP2018032914 W JP 2018032914W WO 2019058973 A1 WO2019058973 A1 WO 2019058973A1
Authority
WO
WIPO (PCT)
Prior art keywords
image sensor
tracking
imaging device
focusing
subject
Prior art date
Application number
PCT/JP2018/032914
Other languages
English (en)
French (fr)
Inventor
和田 哲
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201880060183.2A priority Critical patent/CN111133356B/zh
Priority to JP2019543539A priority patent/JP6836657B2/ja
Publication of WO2019058973A1 publication Critical patent/WO2019058973A1/ja
Priority to US16/824,187 priority patent/US10931865B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • G03B17/14Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets interchangeably
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/663Remote control of cameras or camera parts, e.g. by remote control devices for controlling interchangeable camera parts based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals

Definitions

  • the present invention relates to an imaging apparatus, an imaging apparatus main body, and a focusing control method of an imaging apparatus, and in particular, an imaging apparatus having a function of moving an image sensor for focusing, an imaging apparatus main body, and a focusing control method of an imaging apparatus About.
  • focusing is performed manually.
  • the photographer may manually adjust the focus by turning off the AF function.
  • Patent Document 1 as a function to support manual focus adjustment, an imaging apparatus provided with a function of performing contrast AF by moving the image sensor back and forth when the photographer manually adjusts the focus and then presses the AF button. Has been proposed.
  • the present invention has been made in view of such circumstances, and provides an imaging apparatus, an imaging apparatus main body, and a focusing control method of the imaging apparatus, which can properly perform focusing with high accuracy by appropriately supporting manual focusing.
  • the purpose is to
  • the means for solving the above problems are as follows.
  • An imaging lens having a focus adjustment function, an image sensor for imaging a subject through the imaging lens, an image sensor movement driver for moving the image sensor along the optical axis, and a focus for detecting a defocus amount
  • An imaging apparatus comprising: a detection unit; and an image sensor movement control unit configured to control movement of an image sensor based on a defocus amount detected by a focus detection unit when an object is in focus, and to track the object.
  • the image sensor can be adjusted in focus by moving along the optical axis.
  • the movement of the image sensor is controlled by the image sensor movement control unit.
  • the image sensor movement control unit tracks the subject. That is, the movement of the image sensor is controlled to maintain the in-focus state.
  • the image sensor when the image sensor reaches the end of the movable range, tracking of the subject ends.
  • the image sensor returns to the reference position.
  • the movable range of the image sensor can be arbitrarily set within the range in which the image sensor movement driver can physically move the image sensor. Therefore, it can also be set narrower than the range which can be moved physically. By widening the movable range, it is possible to widen the trackable range.
  • the image sensor when the image sensor returns to the reference position, the image sensor moves at a moving speed according to the change in the defocus amount and returns to the reference position.
  • the focus state changes, which may result in an unnatural image.
  • the image sensor can be returned to the reference position without giving a sense of discomfort to the image.
  • the reference position of the image sensor is set at the position of the flange back.
  • the imaging lens is designed to have the best performance at the flange back position. Therefore, by setting the reference position at the position of the flange back and performing the tracking control based on the reference position, it is possible to capture a high quality image.
  • the position of the flange back includes a position that can be regarded as substantially the position of the flange back, that is, a position that can be regarded as substantially the position of the flange back.
  • the image sensor movement control unit ends tracking of the subject and causes the image sensor to stand by at the position of the end until the subject is refocused on the subject.
  • the image sensor when the image sensor reaches the end of the movable range, tracking of the subject ends.
  • the image sensor stands by at the position of the end until focusing again.
  • the defocus amount is detected based on the outputs of the plurality of phase difference detection pixels provided on the imaging surface of the image sensor.
  • the movement amount of the image sensor for focusing on the subject can be easily obtained. Also, this makes it possible to speed up the AF and improve the followability.
  • the image sensor movement control unit determines that the in-focus state is achieved when the defocus amount detected by the focus detection unit continues below the threshold for a predetermined time, any one of the above (1) to (6) Imaging device.
  • the defocus amount continues to be equal to or less than the threshold for a predetermined time, it is determined that focusing is achieved. In this way, tracking can be started from an almost in-focus state. Thereby, the convenience can be improved.
  • the image sensor movement control unit is configured such that the defocus amount detected by the focus detection unit continues below the first threshold for a constant time, and the change amount of the defocus amount detected by the focus detection unit is constant.
  • the focus amount continues to be equal to or less than the first threshold for a predetermined time
  • the change amount of the defocus amount continues to be equal to or less than a second threshold for a predetermined time
  • a tracking mode manual switching unit for manually switching on / off of the tracking mode is further provided, and the image sensor movement control unit controls movement of the image sensor to track the subject when the tracking mode is on,
  • An imaging device according to any one of (1) to (8).
  • a tracking mode automatic switching unit that turns on the tracking mode when focusing on continuously for a fixed time is further provided, and the image sensor movement control unit controls the movement of the image sensor when the tracking mode is on.
  • the imaging device according to any one of (1) to (8), which is to be tracked.
  • the function of tracking the subject is automatically turned on. Specifically, when focusing is continued for a fixed time, the tracking mode is automatically turned on. Thereby, the convenience can be further improved.
  • a monitor or an electronic viewfinder is provided.
  • An image captured by an image sensor is displayed in real time on the monitor and the electronic viewfinder.
  • the resolution of the monitor and the electronic viewfinder is lower than the resolution of the image sensor, it is difficult to focus manually with high accuracy while checking the display of the monitor and the electronic viewfinder. Therefore, in such a case, the AF support by the movement of the image sensor works particularly effectively.
  • ppi pixel per inch
  • Imaging device body A mount on which an imaging lens having a focusing function is mounted, an image sensor for imaging an object through the imaging lens, an image sensor movement driver for moving the image sensor along the optical axis, defocusing A focus detection unit that detects an amount; and an image sensor movement control unit that controls movement of the image sensor based on the defocus amount detected by the focus detection unit when the subject is in focus, and tracks the object.
  • the image sensor can be adjusted in focus by moving along the optical axis.
  • the movement of the image sensor is controlled by the image sensor movement control unit.
  • the image sensor movement control unit tracks the subject. That is, the movement of the image sensor is controlled to maintain the in-focus state.
  • the tracking ends.
  • the image sensor returns to the reference position.
  • the image sensor movement control unit ends tracking of the subject and causes the image sensor to stand by at the position of the end until the subject is focused on again. ) Of the imaging device.
  • the tracking ends when the image sensor reaches the end of the movable range, the tracking ends.
  • the image sensor stands by at the position of the end until focusing again.
  • An imaging lens having a focusing function, an image sensor for imaging an object through the imaging lens, an image sensor movement driver for moving the image sensor along the optical axis, and a focus for detecting a defocus amount
  • a focus control method of an imaging apparatus including a detection unit, which determines whether or not the subject is in focus, and a defocus amount detected by the focus detection unit when the subject is in focus And controlling the movement of the image sensor based on the movement of the image sensor to track the subject.
  • the image sensor can be adjusted in focus by moving along the optical axis.
  • the movement of the image sensor is controlled by the image sensor movement control unit.
  • the image sensor movement control unit tracks the subject. That is, the movement of the image sensor is controlled to maintain the in-focus state.
  • the tracking ends.
  • the image sensor returns to the reference position.
  • the tracking ends when the image sensor reaches the end of the movable range, the tracking ends.
  • the image sensor stands by at the position of the end until focusing again.
  • manual focusing can be properly supported to achieve high precision focusing.
  • FIG. 1 Front perspective view showing an embodiment of a digital camera Rear perspective view showing an embodiment of a digital camera Block diagram showing the electrical configuration of the digital camera
  • a diagram showing a schematic configuration of an image sensor An enlarged view of a part of the imaging surface
  • a diagram showing a schematic configuration of each pixel Block diagram of functions realized by the camera control unit and the lens control unit Conceptual diagram of focusing by moving the image sensor Conceptual diagram of tracking control by movement of image sensor Conceptual diagram of tracking control over time
  • Conceptual diagram of tracking control over time Flow chart showing processing procedure of tracking control when tracking mode is turned on
  • ⁇ ⁇ First embodiment ⁇ ⁇ [Appearance configuration] 1 and 2 are a front perspective view and a back perspective view, respectively, showing an embodiment of a digital camera to which the present invention is applied.
  • the digital camera 1 shown in FIGS. 1 and 2 is an interchangeable lens type digital camera, and includes an interchangeable lens 10 and a camera body 100.
  • the digital camera 1 is an example of an imaging device.
  • the interchangeable lens 10 is an example of an imaging lens, and is configured by combining a plurality of lenses.
  • the interchangeable lens 10 has a focusing function, and is focused by moving some or all of the lens groups along the optical axis. In this example, focusing is performed by moving a focusing lens including some lens groups along the optical axis.
  • the interchangeable lens 10 includes a focus ring 16 and an aperture ring 18 as a lens operation unit 14.
  • the focus ring 16 is an operation member for focus adjustment.
  • the focus ring 16 is rotatably provided around the lens barrel 12.
  • the focusing mechanism is activated according to the operation direction and the amount of operation. That is, the focus lens moves according to the operation direction and the amount of operation, and focusing is performed.
  • the aperture ring 18 is an operation member for adjusting the aperture.
  • the aperture ring 18 is rotatably provided around the lens barrel 12.
  • the squeeze ring 18 is printed with a set squeeze value which can be set on its outer periphery at a constant interval (not shown).
  • the setting of the aperture is performed by rotating the aperture ring 18 and adjusting the desired aperture value to the position of the index (not shown) provided on the lens barrel 12.
  • the camera body 100 is an example of an imaging device body.
  • the camera body 100 includes a mount 102, a main monitor 104, a sub monitor 106, an electronic viewfinder 108, a camera operation unit 110, and the like.
  • the mount 102 is a mounting portion of the interchangeable lens 10 and is provided on the front of the camera body 100.
  • the interchangeable lens 10 is detachably mounted on the mount 102.
  • the main monitor 104 is provided on the back of the camera body 100.
  • the main monitor 104 is configured by an LCD (Liquid Crystal Display).
  • the main monitor 104 is used as a GUI (Graphical User Interface) for performing various settings, and is also used as a monitor for reproducing captured images. Further, at the time of shooting, a live view is displayed as necessary, and an image captured by an image sensor is displayed in real time.
  • GUI Graphic User Interface
  • the sub monitor 106 is provided on the top surface of the camera body 100.
  • the sub monitor 106 is configured of an LCD.
  • the sub monitor 106 displays main shooting information such as shutter speed, aperture value, sensitivity, and exposure correction.
  • An electronic view finder (EVF) 108 is provided on the top of the camera body 100.
  • the electronic view finder 108 displays a live view and displays an image captured by an image sensor in real time.
  • the electronic view finder 108 can be turned on and off as needed, and switched to display on the main monitor 104.
  • the camera operation unit 110 as an operation member of the digital camera 1, includes a sensitivity dial 111, an erase button 112, a power lever 113, a shutter button 114, a drive button 115, a sub monitor illumination button 116, a shutter speed dial 117, a play button 118, and a front command Dial 119, rear command dial 120, focus lever 121, quick menu button 122, menu / OK button 123, selector button 124, display / BACK button 125, first function button 126, second function button 127, third function button 128 , Fourth function button 129, fifth function button 130, and the like.
  • the sensitivity dial 111 is a dial for setting the sensitivity.
  • the erase button 112 is a button for erasing an image which has already been taken. When the button is pressed during image playback, the image being played back is deleted.
  • the power supply lever 113 is a lever for turning on and off the power of the digital camera 1.
  • the shutter button 114 is a button for instructing recording of an image.
  • the shutter button 114 is composed of a two-step stroke type button which can be pressed halfway and fully. When the shutter button 114 is pressed halfway, the S1 ON signal is output, and when the shutter button 114 is fully pressed, the S2 ON signal is output.
  • the drive button 115 is a button for calling a drive mode selection screen.
  • a drive mode selection screen is displayed on the main monitor 104. The drive mode is selected on the drive mode selection screen, and single frame shooting, continuous shooting, bracket shooting, multiple exposure, moving image shooting and the like are selected.
  • the sub monitor illumination button 116 is a button for turning on and off the illumination of the sub monitor 106.
  • the shutter speed dial 117 is a dial for setting the shutter speed.
  • the play button 118 is a button for instructing to switch to the play mode.
  • the digital camera 1 is activated in the shooting mode, and switches to the playback mode when the playback button 118 is pressed.
  • the front command dial 119 and the rear command dial 120 are assigned functions according to the state of the digital camera 1.
  • the focus lever 121 is a lever for selecting an AF area.
  • the quick menu button 122 is a button for calling a quick menu. When the quick menu button 122 is pressed, a quick menu is displayed on the main monitor 104.
  • the menu / OK button 123 is a button for calling a menu screen. When the menu / OK button 123 is pressed, a menu screen is displayed on the main monitor 104. Further, the menu / OK button 123 also functions as a button for confirming the selected item and the like.
  • the selector button 124 is a so-called cross button, and is a button capable of instructing four directions. When various settings are performed, items are selected by the selector button 124.
  • the display / BACK button 125 is a button for switching the display content of the main monitor 104.
  • the display / BACK button 125 also functions as a button for canceling the selected item etc., that is, a button for returning to the previous state.
  • the function selected by the user is assigned to the first function button 126, the second function button 127, the third function button 128, the fourth function button 129, and the fifth function button 130.
  • a function is manually assigned to switch tracking mode on and off.
  • the button to which the function is assigned functions as a tracking mode manual switching unit.
  • FIG. 3 is a block diagram showing the electrical configuration of the digital camera.
  • the interchangeable lens 10 mounted on the camera body 100 is electrically connected to the camera body 100 via a contact (not shown) provided on the mount 102.
  • the interchangeable lens 10 includes a focus lens 20, a focus lens drive unit 22, and a focus lens position detection unit 24 as a focus adjustment mechanism.
  • the focus lens 20 is a part of a plurality of lenses constituting the interchangeable lens 10.
  • the interchangeable lens 10 is focused by moving the focusing lens 20 back and forth along the optical axis L.
  • the focus lens drive unit 22 moves the focus lens 20 back and forth along the optical axis L.
  • the focus lens drive unit 22 includes, for example, an actuator such as a linear motor and a drive circuit thereof.
  • the focus lens position detection unit 24 detects the position of the focus lens 20.
  • the focus lens position detection unit 24 is configured of, for example, a photo interrupter and an MR sensor (MR sensor: Magneto Resistive Sensor).
  • the photo interrupter detects that the focus lens 20 is positioned at a predetermined home position.
  • the MR sensor detects the amount of movement of the focus lens 20.
  • the position of the focus lens 20 with respect to the origin position can be detected by detecting that the focus lens 20 is positioned at the origin position by the photo interrupter and detecting the movement amount of the focus lens 20 from the origin position by the MR sensor.
  • the interchangeable lens 10 includes a diaphragm 26 and a diaphragm driving unit 28 as a light amount adjustment mechanism.
  • the diaphragm 26 is configured of, for example, an iris diaphragm.
  • the diaphragm drive unit 28 includes a motor for driving the diaphragm blades of the diaphragm 26 and a drive circuit thereof.
  • the interchangeable lens 10 includes a lens control unit 30 that generally controls the entire operation of the interchangeable lens 10.
  • the lens control unit 30 is formed of, for example, a microcomputer, and functions as a focus lens drive control unit 30a, an aperture drive control unit 30b, and the like by executing a predetermined control program (see FIG. 7).
  • the focus lens drive control unit 30 a controls the focus lens drive unit 22 based on the operation signal from the lens operation unit 14 to control the movement of the focus lens 20. Specifically, the focus lens drive unit 22 is controlled so that the focus lens 20 moves by a direction and a movement amount corresponding to the operation direction and the operation amount of the focus ring 16. When the focus ring 16 is operated, the lens operation unit 14 outputs an operation signal corresponding to the operation direction and the operation amount to the lens control unit 30.
  • the diaphragm drive control unit 30 b controls the diaphragm drive unit 28 based on the operation signal from the lens operation unit 14 to control the diaphragm 26. Specifically, the diaphragm drive unit 28 is controlled so that the diaphragm stop set by the diaphragm ring 18 is obtained. When the diaphragm ring 18 is operated, the lens operation unit 14 outputs an operation signal corresponding to the set aperture value to the lens control unit 30.
  • the lens control unit 30 is communicably connected to the camera control unit 250 of the camera body 100.
  • the camera body 100 includes an image sensor 210, an image sensor movement driver 220, an image sensor position detector 222, an image sensor driver 224, an analog signal processor 226, and an ADC (Analog-to-digital converter) 228.
  • EMF electronic viewfinder
  • the image sensor 210 captures an image of an object through the interchangeable lens 10.
  • the image sensor 210 is formed of, for example, a solid-state imaging device such as a charged coupled device (CCD) or a complementary metal oxide semiconductor (CMOS).
  • CMOS complementary metal oxide semiconductor
  • the image sensor 210 has a plurality of phase difference detection pixels on its imaging surface.
  • FIG. 4 is a diagram showing a schematic configuration of the image sensor.
  • the image sensor 210 has an imaging surface 212 in which a large number of pixels are two-dimensionally arranged in the x direction (row direction) and the y direction (column direction).
  • the imaging surface 212 has a plurality of AF (autofocus) areas 214.
  • the AF area 214 is an area set on the imaging surface 212 as an area capable of focusing. In the example shown in FIG. 4, nine AF areas 214 are set at the center of the screen.
  • FIG. 5 is an enlarged view of a part of the imaging surface.
  • Each pixel includes a photoelectric conversion unit, and outputs a signal corresponding to the amount of light received.
  • Each pixel has a color filter of any of R (Red / Red), G (Green / Green), and B (Blue / Blue). Color filters are assigned to each pixel so as to be in a predetermined array.
  • FIG. 5 shows an example of the Bayer arrangement. In the same figure, a letter R is attached to a pixel having an R color filter (R pixel), a letter G is attached to a pixel having a G color filter (G pixel), and a B color filter is provided. The letter B is attached to the pixel (B pixel).
  • the normal pixel 216 and the phase difference detection pixel 218 are disposed.
  • the normal pixel 216 is a pixel for normal imaging.
  • the phase difference detection pixel 218 is a pixel that detects a phase difference.
  • the pixels other than the phase difference detection pixels usually constitute pixels. Usually, only pixels are arranged in the area other than the AF area.
  • phase difference detection pixels 218 are indicated by oblique lines. As shown in the figure, the phase difference detection pixels 218 are regularly arranged on the imaging surface 212.
  • the phase difference detection pixel 218 includes a first phase difference detection pixel 218A and a second phase difference detection pixel 218B.
  • the first phase difference detection pixel 218A and the second phase difference detection pixel 218B are disposed close to each other.
  • the first phase difference detection pixels 218A are arranged at fixed intervals in one of two rows of the same arrangement which are close to each other, and the second phase difference detection pixels 218B are arranged at fixed intervals in the other.
  • An example is shown. In particular, an example in which a specific G pixel of a specific row in which R pixels and G pixels are arranged is used as a phase difference detection pixel is shown.
  • FIG. 6 is a diagram showing a schematic configuration of each pixel.
  • Each pixel has a light shielding film provided with a predetermined opening.
  • FIG. 6 shows the opening of the light shielding film provided in each pixel in white.
  • the normal pixel 216 has a light shielding film whose opening coincides with the center of the photoelectric conversion unit.
  • the normal pixel 216 receives the light flux that has passed through almost all parts of the pupil region of the interchangeable lens 10.
  • the first phase difference detection pixel 218A has a light shielding film in which the opening is eccentric to the right with respect to the center of the photoelectric conversion unit. As a result, in the first phase difference detection pixel 218A, one of the light fluxes of the pair of light fluxes which has passed through different portions of the pupil area of the interchangeable lens 10 is received.
  • the second phase difference detection pixel 218B has a light shielding film in which the opening is offset to the left with respect to the center of the photoelectric conversion unit.
  • the image sensor movement drive unit 220 moves the image sensor 210 back and forth along the optical axis L.
  • the image sensor movement drive unit 220 is configured to include, for example, an actuator such as a piezo actuator and a drive circuit thereof.
  • the image sensor 210 moves within the movable range, and the reference position is set at the center of the movable range.
  • the reference position is set to the position of the flange back defined by the interchangeable lens 10.
  • the interchangeable lens 10 has an optical design based on the position of the flange back. Accordingly, by positioning the image sensor 210 at the reference position, the optical performance of the interchangeable lens 10 can be maximized.
  • the flange back of an interchangeable lens employing a C-mount is 17.526 mm.
  • the flange back of the interchangeable lens which adopts CS mount is 12.5 mm.
  • the image sensor position detection unit 222 detects the position of the image sensor 210 with respect to the reference position.
  • the image sensor position detection unit 222 is configured of, for example, a displacement sensor such as an eddy current sensor.
  • Image sensor driver The image sensor drive unit 224 drives the image sensor 210 under the control of the camera control unit 250.
  • the image sensor 210 is driven by the image sensor drive unit 224 to capture an image.
  • the analog signal processing unit 226 takes in an analog image signal for each pixel output from the image sensor 210 and performs predetermined signal processing (for example, correlated double sampling processing, amplification processing, etc.).
  • the ADC 228 converts an analog image signal output from the analog signal processing unit 226 into a digital image signal and outputs it.
  • the digital signal processing unit 230 takes in a digital image signal, and performs predetermined signal processing (for example, gradation conversion processing, white balance correction processing, gamma correction processing, synchronization processing, YC conversion processing, etc.) to obtain image data.
  • predetermined signal processing for example, gradation conversion processing, white balance correction processing, gamma correction processing, synchronization processing, YC conversion processing, etc.
  • the phase difference AF (autofocus) processing unit 232 is an example of a focus detection unit.
  • the phase difference AF processing unit 232 acquires the signals of the first phase difference detection pixel 218A and the second phase difference detection pixel 218B from the designated AF area 214, performs correlation operation processing on the acquired signals, and performs phase difference. Calculate the quantity. Then, based on the calculated phase difference amount, the direction and amount of defocus are calculated.
  • the AF area is selected by the user. Alternatively, it is determined automatically. Selection by the user is performed by operating the focus lever 121. In the case of automatic determination, for example, the subject is automatically recognized, and the AF area in which the subject is present is selected. Alternatively, the moving body is recognized, and the AF area in which the moving body exists is selected.
  • the memory card interface 234 reads and writes data with respect to the memory card 236 mounted in the card slot under the control of the camera control unit 250.
  • the main monitor 104 is configured of an LCD.
  • the display of the main monitor 104 is controlled by the camera control unit 250.
  • the camera control unit 250 controls the display of the main monitor 104 via the LCD driver 104 a.
  • the sub monitor 106 is configured of an LCD.
  • the display of the sub monitor 106 is controlled by the camera control unit 250.
  • the camera control unit 250 controls the display of the sub monitor 106 via the LCD driver 106 a.
  • the display unit of the electronic viewfinder (EVF) 108 is configured of an LCD.
  • the display of the electronic viewfinder 108 is controlled by the camera control unit 250.
  • the camera control unit 250 controls the display of the electronic viewfinder 108 via the LCD driver 108 a.
  • the camera operation unit 110 outputs, to the camera control unit 250, a signal corresponding to the operation of each operation member.
  • the camera control unit 250 is a control unit that generally controls the overall operation of the digital camera 1.
  • the camera control unit 250 is configured by, for example, a microcomputer, and provides various functions by executing a predetermined program.
  • FIG. 7 is a block diagram of functions realized by the camera control unit and the lens control unit.
  • the camera control unit 250 functions as an image sensor movement control unit 250 a by executing a predetermined program.
  • the image sensor movement control unit 250a controls the movement of the image sensor 210 based on the defocus amount detected by the phase difference AF processing unit 232, and tracks the subject. The tracking is performed by controlling the movement of the image sensor 210 so as to maintain the in-focus state.
  • FIG. 8 is a conceptual view of focusing by movement of the image sensor.
  • the figure (A) has shown the state which the focus shifted
  • the image sensor 210 is located at the reference position R0, and the image of the subject A at the position P1 is formed at the position R1.
  • the position R1 is behind (on the image plane side) the reference position R0.
  • the image sensor 210 is moved backward and positioned at the position R1. As a result, the image of the subject A is formed on the imaging surface and focused.
  • the image sensor 210 may be moved to follow the movement of the imaging point. Accordingly, tracking is performed by moving the image sensor 210 so as to follow the movement of the imaging point.
  • the shift amount between the position of the imaging point and the position of the imaging surface is detected as a defocus amount. Therefore, the image sensor movement control unit 250a controls the movement of the image sensor 210 based on the defocus amount, and maintains the in-focus state.
  • FIG. 9 is a conceptual view of tracking control by movement of the image sensor.
  • FIG. 9A shows a case where the subject A moves from the position P1 to the position P2 and the position R2 of the imaging point reaches the end of the movable range W of the image sensor 210.
  • the image sensor movement control unit 250 a performs tracking until the image sensor 210 reaches the end of the movable range W. That is, based on the defocus amount, the movement of the image sensor 210 is controlled to maintain the in-focus state.
  • FIG. 9B shows a case where the subject A further moves from the position P2 to the position P3 and the position R3 of the imaging point moves beyond the end of the movable range W of the image sensor 210.
  • the image sensor 210 reaches the end of the movable range W, tracking can not be performed thereafter.
  • the image sensor movement control unit 250a ends the tracking.
  • the image sensor movement control unit 250a returns the image sensor 210 to the reference position R0.
  • the image sensor movement control unit 250a moves the image sensor 210 at a movement speed according to the change of the defocus amount.
  • the focus state changes, which may result in an unnatural image.
  • the image sensor 210 can be returned to the reference position R0 without giving a sense of discomfort to the image.
  • the image sensor 210 is moved at substantially the same speed (the same speed or substantially the same speed) as the speed at which the defocus amount changes, and the image sensor 210 is returned to the reference position R0. That is, the image sensor 210 is moved at the same speed as the moving speed of the imaging point, and the image sensor 210 is returned to the reference position R0.
  • FIG. 10 is a conceptual diagram of tracking control over time.
  • reference numeral L1 indicates the movement locus of the imaging point
  • reference numeral L2 indicates the movement locus of the image sensor 210.
  • tracking is started. That is, when the imaging point is located on the imaging surface of the image sensor 210 located at the reference position R0, tracking is started. When the imaging point is located on the imaging surface of the image sensor 210, the defocus amount is zero. Therefore, tracking is started when the defocus amount becomes zero.
  • focusing is performed for the first time at time t0. Therefore, tracking is started from time t0.
  • the movement of the image sensor 210 starts.
  • the image sensor 210 moves following the movement of the imaging point. Thereby, the in-focus state is maintained.
  • the image sensor 210 moves within the movable range.
  • the example shown in FIG. 10 shows the case where the image sensor 210 reaches the end of the movable range W at time t1 after focusing at time t0. In this case, tracking ends once. When the tracking ends, the image sensor 210 returns to the reference position R0. At this time, it moves at almost the same speed as the moving speed of the imaging point, and returns to the reference position R0.
  • the image sensor 210 When returning to the reference position R0, the image sensor 210 stands by at the reference position R0 until focusing again.
  • the example shown in FIG. 10 shows the case where focusing is performed again at time t2. In this case, tracking is resumed from time t2.
  • the image sensor 210 further reaches the end of the movable range W at time t3, and after focusing again at time t4, the image sensor 210 reaches the end of the movable range W at time t5.
  • the tracking ends As shown in the figure, each time the image sensor 210 reaches the end of the movable range W, the tracking ends. When the tracking ends, the image sensor 210 returns to the reference position R0.
  • the operation waits until the in-focus is achieved again, and when the in-focus is achieved, the tracking is resumed.
  • the image sensor movement control unit 250a when the image sensor movement control unit 250a focuses, it starts tracking and moves the image sensor 210 within the movable range to maintain the in-focus state. On the other hand, when the image sensor 210 reaches the end of the movable range W, the tracking is ended, the image sensor 210 is returned to the reference position R0, and standby is performed until the in-focus state is achieved again.
  • Tracking control is performed when the tracking mode is turned on.
  • the tracking mode can be switched on / off by button operation of the function button. Besides, the tracking mode can be switched on / off on the menu screen.
  • FIG. 11 is a flowchart showing a processing procedure (focus control method) of tracking control when the tracking mode is turned on.
  • the photographer operates the focus ring 16 to manually adjust the focus.
  • the image sensor movement control unit 250a determines whether or not the in-focus state has been obtained based on the output of the phase difference AF processing unit 232 (step S11).
  • the image sensor movement control unit 250a starts tracking (step S12). That is, the movement of the image sensor 210 is controlled based on the defocus amount detected by the phase difference AF processing unit 232 to maintain the in-focus state.
  • the tracking control is performed within the movable range of the image sensor 210.
  • the tracking ends.
  • the image sensor movement control unit 250a determines whether the image sensor 210 has reached the end of the movable range (step S13).
  • the image sensor movement control unit 250a determines the presence or absence of a tracking end instruction (step S17).
  • the tracking is instructed to end when the tracking mode is turned off. Further, when the power of the digital camera 1 is turned off, the termination is similarly instructed. When the end is instructed, the process ends. Tracking is continued unless termination is instructed.
  • the image sensor movement control unit 250a ends the tracking (step S14). After completion, the image sensor movement control unit 250a returns the image sensor 210 to the reference position R0 (step S15).
  • the image sensor movement control unit 250a determines the presence or absence of an instruction to end tracking (step S16). When the end is instructed, the process ends. On the other hand, when it is determined that there is no end instruction, the process returns to step S11, and it is determined whether or not the in-focus state is achieved. When focus is achieved, tracking is resumed.
  • the digital camera 1 of the present embodiment when focusing is performed, tracking is started, and movement of the image sensor 210 is controlled so as to maintain the in-focus state. This makes it possible to properly support the user when focusing manually, and to focus with high accuracy. In particular, it is possible to focus on a moving subject with high accuracy.
  • the image sensor 210 When the tracking becomes impossible, the image sensor 210 is returned to the reference position R0. Thereby, the followability can be improved when the tracking is resumed. Further, when the image sensor 210 is returned to the reference position R0, the image sensor 210 is moved at a moving speed according to the change of the defocus amount and returned to the reference position R0. Thus, the image sensor 210 can be returned to the reference position R0 without giving a sense of discomfort to the image.
  • the configuration of the camera is the same as that of the first embodiment, so only the processing content of tracking control will be described here.
  • FIG. 12 is a conceptual diagram of tracking control over time in the digital camera of the present embodiment.
  • reference numeral L1 indicates the movement locus of the imaging point
  • reference numeral L2 indicates the movement locus of the image sensor 210.
  • tracking is started. That is, when the imaging point is located on the imaging surface of the image sensor 210 located at the reference position R0, tracking is started.
  • the image sensor 210 moves within the movable range.
  • the example shown in FIG. 12 shows the case where the image sensor 210 reaches one end E ⁇ of the movable range W at time t1 after focusing at time t0. In this case, tracking ends once. When the tracking is finished, the image sensor 210 stops at the position of the end E- and stands by until focusing again.
  • the example shown in FIG. 12 shows the case where focusing is performed again at time t2. In this case, tracking is resumed from time t2.
  • the image sensor 210 further reaches one end E ⁇ of the movable range W at time t3 and is focused again at time t4, and then the image sensor 210 moves at the time t5. Shows the case of reaching the other end E + of. Further, it shows the case where the image sensor 210 reaches the other end E + of the movable range W at time t7 after focusing again at time t6.
  • the tracking ends As shown in the figure, each time the image sensor 210 reaches the end of the movable range W, the tracking ends. When the tracking ends, the image sensor 210 stops at the position of the end, and stands by until focusing again. When the subject is focused again, tracking resumes.
  • the image sensor movement control unit 250a when the image sensor movement control unit 250a focuses, it starts tracking and moves the image sensor 210 within the movable range to maintain the in-focus state. On the other hand, when the image sensor 210 reaches the end of the movable range W, the tracking is ended, and it waits at the position of the end until it is focused again.
  • FIG. 13 is a flowchart showing a processing procedure (focus control method) of tracking control when the tracking mode is turned on.
  • the photographer operates the focus ring 16 to manually adjust the focus.
  • the image sensor movement control unit 250a determines whether or not the in-focus state is obtained based on the output of the phase difference AF processing unit 232 (step S21).
  • the image sensor movement control unit 250a starts tracking (step S22). That is, the movement of the image sensor 210 is controlled based on the defocus amount detected by the phase difference AF processing unit 232 to maintain the in-focus state.
  • the tracking is performed within the movable range of the image sensor 210.
  • the tracking ends.
  • the image sensor movement control unit 250a determines whether the image sensor 210 has reached the end of the movable range (step S23).
  • the image sensor movement control unit 250a determines the presence or absence of a tracking termination instruction (step S27). When the end is instructed, the process ends. Tracking is continued unless termination is instructed.
  • the image sensor movement control unit 250a ends the tracking (step S24). After completion, the image sensor movement control unit 250a causes the image sensor 210 to stand by at the end position (step S25).
  • step S26 the image sensor movement control unit 250a determines the presence or absence of an instruction to end tracking.
  • the process ends.
  • the process returns to step S21, and it is determined whether or not the in-focus state is achieved. When focus is achieved, tracking is resumed.
  • the digital camera 1 of the present embodiment when focusing is performed, tracking is started, and movement of the image sensor 210 is controlled so as to maintain the in-focus state. This makes it possible to properly support the user when focusing manually, and to focus with high accuracy. In particular, moving objects can be focused with high accuracy.
  • the image sensor 210 is stopped at the position of the end of the movable range W and made to stand by. This makes it easy to recover the in-focus state. That is, since the distance for returning to the in-focus state can be shortened, the in-focus state can be recovered early.
  • tracking is started when the subject is in focus.
  • it may be configured to start tracking on the assumption that the defocus amount detected by the phase difference AF processing unit 232 is in focus when the defocus amount continues for a fixed time and is less than or equal to the threshold.
  • the main monitor 104 or the electronic view finder 108 When focusing using the main monitor 104 or the electronic view finder 108, if the resolution of the main monitor 104 and the electronic view finder 108 is low, the image of the main monitor 104 or the electronic view finder 108 is viewed to accurately focus. It is difficult to do.
  • the defocus amount detected by the phase difference AF processing unit 232 continues for a fixed time and is less than or equal to the threshold value, it is regarded as being in focus and tracking is started. If the defocus amount continues below the threshold for a fixed time, it is recognized that the state is close to the in-focus state. In this case, it is considered to be in-focus and tracking is started.
  • FIG. 14 is a conceptual diagram of a temporal process when tracking is considered to be in focus when the defocus amount continues below a threshold for a fixed time.
  • reference numeral L1 indicates the movement locus of the imaging point
  • reference numeral L2 indicates the movement locus of the image sensor 210.
  • the threshold value of the defocus amount be ⁇ .
  • the tracking is started on the assumption that the in-focus state is achieved when the state below the threshold ⁇ continues for the time ⁇ T.
  • the defocus amount is first equal to or less than the threshold ⁇ at time t0. However, the defocus amount exceeds the threshold ⁇ at time t1 before the time ⁇ T elapses. For this reason, it is not considered to be in focus even when the defocus amount becomes equal to or less than the threshold ⁇ .
  • the threshold value ⁇ is again equal to or less at time t2. After time t2, the defocus amount is maintained at or below the threshold ⁇ continuously. For this reason, tracking is started at the stage of time t3 when time ⁇ T has elapsed.
  • the image sensor 210 moves toward the imaging point and focuses. After focusing, the image sensor 210 moves within the movable range, and the in-focus state is maintained.
  • tracking is regarded as being in focus and tracking is started. This can improve the convenience.
  • tracking is performed when focusing is performed in the vicinity of the in-focus position, so that the intention of the photographer can be appropriately reflected in the control.
  • the configuration is also such that tracking is considered to be in focus if the amount of change in the defocus amount detected by the phase difference AF processing unit 232 continues for a fixed time and is less than the threshold.
  • the defocus amount detected by the phase difference AF processing unit 232 is continuously less than or equal to the first threshold for a constant time, and the change amount of the defocus amount detected by the phase difference AF processing unit 232 is a constant time
  • the tracking may be started on the assumption that focusing is continued when the second threshold value is not exceeded.
  • a state in which the defocus amount continues for a fixed time and does not exceed the fixed value (less than the first threshold) and the change amount of the defocus amount continues for the fixed time and does not exceed the fixed value (less than the second threshold) It is a state where the focus lens hardly changes near the focal point. That is, focusing is almost stopped near the in-focus state. In this case, it is regarded that the subject is in focus and tracking is started. In this way, tracking can be started from an almost in-focus state. This can improve the convenience.
  • the function may be arbitrarily turned on and off by the user. That is, it may have a function that allows the user to arbitrarily turn on and off the function to be regarded as focusing.
  • the on / off of the function is set, for example, on the menu screen.
  • the tracking mode is manually switched on and off.
  • switching of the tracking mode may be automated.
  • the camera may be provided with a function of automatically turning on the tracking mode when focusing is continued for a fixed time.
  • the camera control unit 250 functions as a tracking mode automatic switching unit.
  • the tracking mode automatic switching unit determines, based on the output of the phase difference AF processing unit 232, whether or not focusing has been continued for a fixed time, and switches the tracking mode automatically. That is, when it is determined that the in-focus state continues for a predetermined time, the tracking mode is automatically turned on.
  • the tracking mode can be automatically set.
  • the photographer's intention can be reflected in the control, and convenience can be further improved.
  • the on / off of the function is set, for example, on the menu screen. Also, it is preferable that the tracking mode automatically turned on be turned off when the function is turned off.
  • the tracking mode may be automatically turned on.
  • the case where the camera body 100 can not communicate with the interchangeable lens 10 means the case where the camera control unit 250 can not communicate with the lens control unit 30, and the case where the interchangeable lens 10 is not provided with the lens control unit 30 corresponds.
  • the movable range of the image sensor 210 is arbitrarily set within the mechanical operation range of the image sensor movement drive unit 220.
  • the movable range of the image sensor 210 is arbitrarily set within the mechanical operation range of the piezo actuator. The wider the range of movement, the wider the range of AF operation.
  • the movable position of the image sensor 210 is set in consideration of the resolution of the main monitor 104 and the electronic view finder 108. It is preferable to set the range.
  • the resolution of the main monitor 104 and the electronic viewfinder 108 is lower than the resolution of the image sensor 210, there is a limit to the adjustable precision of the main monitor 104 and the electronic viewfinder 108. Therefore, in the main monitor 104 and the electronic view finder 108, it is preferable to set the movable range so that the range which can not be adjusted can be covered by the movement of the image sensor 210.
  • a movable range that is equal to or greater than the pixel pitch of the main monitor 104 and the electronic viewfinder 108.
  • the reference position of the image sensor 210 is set at the center of the movable range in the above embodiment, the position set as the reference position is not limited to this.
  • the reference position may be set at a position on the subject side (front side) of the center of the movable range, or may be set at a position on the image plane side (rear side).
  • the user may be set arbitrarily. As described above, by setting the reference position at the center of the movable range, the followability can be improved.
  • the reference position is set at the position of the flange back in the above embodiment, it may be set at a position different from the flange back. As described above, by setting the reference position at the position of the flange back, it is possible to maximize the optical performance of the interchangeable lens 10 when focusing at the reference position.
  • the reference position may be variable.
  • the reference position may be appropriately switched with reference to position information of the image sensor 210 at the time of focusing of a subject in the past.
  • the reference position may be appropriately switched according to the subject.
  • the configuration can be appropriately switched according to the moving direction of the subject and the like. For example, for an object moving in one direction, the reference position is set in the direction opposite to the moving direction of the imaging point.
  • the defocus amount is detected based on the output of the phase difference detection pixel 218 provided on the imaging surface 212 of the image sensor 210, but the means for detecting the defocus amount is limited to this. It is not something to be done.
  • a known focus detection means such as a passive system or an active system can be used.
  • the phase difference detection pixels are arranged at constant intervals along the x direction, but may be arranged at regular intervals along the y direction. In addition, they may be arranged at regular intervals along the x direction and the y direction.
  • the phase difference detection pixels are arranged only in the AF area set at the center of the screen, but the area in which the phase difference detection pixels are arranged is not limited to this. It is good also as composition arranged on the whole screen.
  • the image sensor 210 is moved along the optical axis L using a piezo actuator, but the configuration of the image sensor movement driver is not limited to this. Besides, for example, a known linear drive type drive mechanism such as a linear motor and a feed screw mechanism can be adopted to move the image sensor 210 along the optical axis L.
  • a known linear drive type drive mechanism such as a linear motor and a feed screw mechanism can be adopted to move the image sensor 210 along the optical axis L.
  • FIG. 15 is a view showing an example in which the present invention is applied to a three-plate type digital camera.
  • the three-plate type digital camera includes a color separation prism 310 and three image sensors 210R, 210G, and 210B in an imaging unit.
  • the color separation prism 310 separates the light incident on the incident surface 310 a into light of three colors of R (Red) light, G (Green) light and B (Blue) light.
  • the three color lights separated are emitted from the R light emission surface 310r, the G light emission surface 310g, and the B light emission surface 310b, respectively.
  • the three image sensors are configured by an image sensor 210R that receives R light, an image sensor 210G that receives G light, and an image sensor 210B that receives B light.
  • the image sensor 210R that receives R light is disposed to face the R light emission surface 310r, and receives R light emitted from the R light emission surface 310r.
  • the image sensor 210G that receives G light is disposed to face the G light emission surface 310g, and receives G light emitted from the G light emission surface 310g.
  • the image sensor 210B that receives B light is disposed to face the B light emission surface 310b, and receives B light emitted from the B light emission surface 310b.
  • the three image sensors 210R, 210G, and 210B are disposed at positions where the optical path lengths from the incident surface 310a of the color separation prism 310 are the same.
  • the three image sensors 210R, 210G and 210B are integrally attached to the color separation prism 310 via a holder (not shown).
  • a unit in which the image sensors 210R, 210G, and 210B are integrated into the color separation prism 310 is referred to as an imaging unit 330.
  • the image sensor movement drive unit 220x moves the imaging unit 330 back and forth along the optical axis L. Further, the image sensor position detection unit 222x detects the position of the imaging unit 330 with respect to the reference position.
  • the focus lens is moved back and forth along the optical axis to perform focusing, but the focusing mechanism of the imaging lens is not limited to this.
  • a liquid lens, a liquid crystal lens or the like can also be used as a focus lens. In liquid lenses and liquid crystal lenses, focusing is performed using refractive index change.
  • the focus lens is driven by an actuator such as a linear motor.
  • the focus lens may be moved manually using a cam mechanism, a helicoid gear, or the like.
  • the present invention can be applied to video cameras, television cameras, cinema cameras, and the like, and can also be applied to electronic devices having an imaging function (for example, mobile phones, smartphones, tablet computers, notebook computers, etc.).
  • the present invention can be similarly applied to a camera in which an imaging lens is integrally incorporated in a camera body.
  • the image sensor movement control unit and the like are configured by the microcomputer, but the hardware configuration for realizing these functions is not limited to this. It can be configured with various processors. For various processors, it is possible to change the circuit configuration after manufacturing a CPU, FPGA (Field Programmable Gate Array (FPGA)) that is a general-purpose processor that functions as a processing unit that executes software (programs) and performs various processing. Processors (PLD: Programmable Logic Device), ASIC (Application Specific Integrated Circuit), ASIC (Application Specific Integrated Circuit), etc. Includes a dedicated electric circuit that is a processor with a circuit configuration designed specifically to execute specific processing. Be
  • FPGA Field Programmable Gate Array
  • One processing unit may be configured by one of these various processors, or may be configured by two or more processors of the same type or different types. For example, it may be configured by a plurality of FPGAs, or may be configured by a combination of a CPU and an FPGA.
  • a plurality of processing units may be configured by one processor.
  • a plurality of processing units are configured by one processor
  • one processor is configured by a combination of one or more CPUs and software, as represented by computers such as clients and servers; There is a form in which this processor functions as a plurality of processing units.
  • SoC System On Chip
  • IC Integrated Circuit
  • the various processing units are configured using one or more of the various processors as a hardware structure.
  • the hardware-like structure of these various processors is, more specifically, an electric circuit combining circuit elements such as semiconductor elements.
  • Aperture drive control unit 100 Camera body 102 Mount 104 Main monitor 104a LCD driver 106 Sub monitor 106a LCD driver 108 Electronic viewfinder (EVF) 108a LCD driver 110 camera operation unit 111 sensitivity dial 112 erase button 113 power lever 114 shutter button 115 drive button 116 sub monitor illumination button 117 shutter speed dial 118 play button 119 front command dial 120 rear command dial 121 focus lever 122 quick menu button 123 menu / OK button 124 Selector button 125 Display / BACK button 126 1st function button 127 2nd function button 128 3rd function button 129 4th function button 130 5th function button 210 Image sensor 210B Image sensor 210G Image sensor 210R Image sensor 212 Imaging Face 214 AF Eri AR 216 Normal pixel 218 Phase difference

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Automatic Focus Adjustment (AREA)
  • Exposure Control For Cameras (AREA)
  • Focusing (AREA)

Abstract

マニュアルでの焦点合わせを適切にサポートして高精度に焦点合わせできる撮像装置、撮像装置本体及び撮像装置の合焦制御方法を提供する。イメージセンサ(210)を光軸(L)に沿って移動させるイメージセンサ移動駆動部(220)と、イメージセンサ移動駆動部(220)を制御して、イメージセンサ(210)の移動を制御するイメージセンサ移動制御部250aと、を備える。イメージセンサ移動制御部(250a)は、被写体に合焦すると、追尾を開始し、位相差AF処理部(132)で検出されるデフォーカス量に基づいて、合焦状態を維持するように、イメージセンサ(210)の移動を制御する。

Description

撮像装置、撮像装置本体及び撮像装置の合焦制御方法
 本発明は、撮像装置、撮像装置本体及び撮像装置の合焦制御方法に係り、特に、イメージセンサを移動させて焦点調節する機能を備えた撮像装置、撮像装置本体及び撮像装置の合焦制御方法に関する。
 AF(Auto Focus/オートフォーカス)機能のない撮像装置では、マニュアルで焦点調節が行われる。また、AF機能を備えた撮像装置であっても、AF機能をオフして、撮影者がマニュアルで焦点調節する場合がある。
 特許文献1には、マニュアルでの焦点調節をサポートする機能として、撮影者がマニュアルで焦点調節した後、AFボタンを押すと、イメージセンサが前後移動してコントラストAFを行う機能を備えた撮像装置が提案されている。
特開2016-148832号公報
 しかしながら、特許文献1の撮像装置では、被写体に動きがある場合、AFを作動させても、適切に焦点を合わせ続けることが難しいという欠点がある。
 本発明は、このような事情に鑑みてなされたもので、マニュアルでの焦点合わせを適切にサポートして、高精度に焦点合わせできる撮像装置、撮像装置本体及び撮像装置の合焦制御方法を提供することを目的とする。
 上記課題を解決するための手段は、次のとおりである。
 (1)焦点調節機能を備えた撮像レンズと、撮像レンズを介して被写体を撮像するイメージセンサと、イメージセンサを光軸に沿って移動させるイメージセンサ移動駆動部と、デフォーカス量を検出する焦点検出部と、被写体に合焦すると、焦点検出部で検出されるデフォーカス量に基づいて、イメージセンサの移動を制御し、被写体を追尾するイメージセンサ移動制御部と、を備えた撮像装置。
 本態様によれば、イメージセンサが、光軸に沿って移動することで、焦点調節できる。イメージセンサの移動は、イメージセンサ移動制御部で制御される。イメージセンサ移動制御部は、被写体に合焦すると、その被写体を追尾する。すなわち、合焦状態を維持するように、イメージセンサの移動を制御する。これにより、マニュアルで焦点調節する際に、その焦点合わせを適切にサポートでき、高精度に焦点合わせできる。特に、動く被写体をマニュアルで焦点調節する際に、その焦点合わせを適切にサポートでき、高精度に焦点合わせできる。
 (2)イメージセンサ移動制御部は、イメージセンサが可動範囲の端部に到達すると、被写体の追尾を終了し、イメージセンサを基準位置に復帰させる、上記(1)の撮像装置。
 本態様によれば、イメージセンサが可動範囲の端部に到達すると、被写体の追尾が終了する。追尾が終了すると、イメージセンサは基準位置に復帰する。基準位置をイメージセンサの可動範囲の中心又は中心近傍に設定することにより、合焦後の可動範囲を前後に均等に設定できる。これにより、追従性を向上させることができる。
 なお、イメージセンサの可動範囲は、イメージセンサ移動駆動部が、イメージセンサを物理的に移動させることができる範囲内で任意に設定できる。したがって、物理的に移動させることができる範囲よりも狭く設定することもできる。可動範囲を広くとることにより、追尾可能な範囲を広くとれる。電子ビューファインダ等の表示部を使用して焦点合わせする場合は、その解像度を考慮して、可動範囲を設定することが好ましい。すなわち、電子ビューファインダ等の表示では合わせきれない範囲をイメージセンサの移動で調整できるように、その可動範囲を設定することが好ましい。
 (3)イメージセンサ移動制御部は、デフォーカス量の変化に応じた移動速度でイメージセンサを移動させて、イメージセンサを基準位置に復帰させる、上記(2)の撮像装置。
 本態様によれば、イメージセンサが基準位置に復帰する際、デフォーカス量の変化に応じた移動速度で移動して、基準位置に復帰する。イメージセンサを基準位置に復帰させると、焦点状態が変化するので、不自然な画像になるおそれがある。しかし、本態様のようにイメージセンサを移動させることにより、画像に違和感を与えることなくイメージセンサを基準位置に戻すことができる。
 (4)イメージセンサの基準位置が、撮像レンズで規定されるフランジバックの位置に設定される、上記(3)の撮像装置。
 本態様によれば、フランジバックの位置にイメージセンサの基準位置が設定される。一般に撮像レンズは、フランジバックの位置で性能が最高になるように設計される。したがって、フランジバックの位置に基準位置を設定し、基準位置を基準に追従制御を実施することにより、高品質な画像を撮像できる。なお、ここでの「フランジバックの位置」には、実質的にフランジバックの位置とみなせる位置、すなわち、ほぼフランジバックの位置とみなせる位置が含まれる。
 (5)イメージセンサ移動制御部は、イメージセンサが可動範囲の端部に到達すると、被写体の追尾を終了し、被写体に再度合焦するまでイメージセンサを端部の位置で待機させる、上記(1)の撮像装置。
 本態様によれば、イメージセンサが可動範囲の端部に到達すると、被写体の追尾が終了する。追尾が終了すると、イメージセンサは、再度合焦するまで、その端部の位置で待機する。これにより、結像面の位置が可動範囲を外れた場合であっても、合焦状態に復帰させやすくできる。
 (6)焦点検出部は、イメージセンサの撮像面に備えられた複数の位相差検出画素の出力に基づいてデフォーカス量を検出する、上記(1)から(5)のいずれか一の撮像装置。
 本態様によれば、イメージセンサの撮像面に備えられた複数の位相差検出画素の出力に基づいてデフォーカス量が検出される。これにより、被写体に合焦させるためのイメージセンサの移動量を簡単に求めることができる。また、これにより、AFを高速化でき、追従性を向上させることができる。
 (7)イメージセンサ移動制御部は、焦点検出部で検出されるデフォーカス量が一定時間継続して閾値以下の場合に合焦したと判定する、上記(1)から(6)のいずれか一の撮像装置。
 本態様によれば、デフォーカス量が一定時間継続して閾値以下となった場合に、合焦したと判定される。これにより、ほぼ合焦に近い状態から追尾を開始させることができる。これにより、利便性を向上させることができる。
 (8)イメージセンサ移動制御部は、焦点検出部で検出されるデフォーカス量が一定時間継続して第1の閾値以下、かつ、焦点検出部で検出されるデフォーカス量の変化量が一定時間継続して第2の閾値以下の場合に合焦したと判定する、上記(1)から(6)のいずれか一の撮像装置。
 本態様によれば、フォーカス量が一定時間継続して第1の閾値以下となり、かつ、デフォーカス量の変化量が一定時間継続して第2の閾値以下となった場合に、合焦したと判定される。すなわち、合焦付近で焦点調節がほぼ行われなくなると、合焦したものとみなして、追尾が開始される。これにより、ほぼ合焦に近い状態から追尾を開始させることができる。これにより、利便性を向上させることができる。
 (9)追尾モードのオン、オフを手動で切り替える追尾モード手動切替部を更に備え、イメージセンサ移動制御部は、追尾モードがオンの場合にイメージセンサの移動を制御して被写体を追尾する、上記(1)から(8)のいずれか一の撮像装置。
 本態様によれば、被写体を追尾する機能のオン、オフを手動で設定できる。これにより、より利便性を向上させることができる。
 (10)一定時間継続して合焦すると、追尾モードをオンする追尾モード自動切替部を更に備え、イメージセンサ移動制御部は、追尾モードがオンの場合にイメージセンサの移動を制御して被写体を追尾する、上記(1)から(8)のいずれか一の撮像装置。
 本態様によれば、被写体を追尾する機能が自動でオンされる。具体的には、一定時間継続して合焦すると、自動的に追尾モードがオンされる。これにより、より利便性を向上させることができる。
 (11)イメージセンサで撮像された画像がリアルタイムに表示されるモニタ又は電子ビューファインダを更に備え、モニタ及び電子ビューファインダの解像度がイメージセンサの解像度よりも低い、上記(1)から(10)のいずれか一の撮像装置。
 本態様によれば、モニタ又は電子ビューファインダが備えられる。モニタ及び電子ビューファインダには、イメージセンサで撮像された画像がリアルタイムに表示される。モニタ及び電子ビューファインダの解像度が、イメージセンサの解像度よりも低い場合、モニタ及び電子ビューファインダの表示を確認しながら、マニュアルで高精度に焦点合わせするのは困難である。したがって、このような場合は、イメージセンサの移動によるAFのサポートが特に有効に作用する。
 なお、ここでの解像度は画素密度と同義であり、たとえば、ppi(pixel per inch)で表現される。ppiは、画像を表現する格子の細かさであり、一般に1インチあたりのピクセルの数を表す。
 (12)焦点調節機能を備えた撮像レンズが装着されるマウントと、撮像レンズを介して被写体を撮像するイメージセンサと、イメージセンサを光軸に沿って移動させるイメージセンサ移動駆動部と、デフォーカス量を検出する焦点検出部と、被写体に合焦すると、焦点検出部で検出されるデフォーカス量に基づいて、イメージセンサの移動を制御し、被写体を追尾するイメージセンサ移動制御部と、を備えた撮像装置本体。
 本態様によれば、イメージセンサが、光軸に沿って移動することで、焦点調節できる。イメージセンサの移動は、イメージセンサ移動制御部で制御される。イメージセンサ移動制御部は、被写体に合焦すると、その被写体を追尾する。すなわち、合焦状態を維持するように、イメージセンサの移動を制御する。これにより、マニュアルで焦点調節する際に、その焦点合わせを適切にサポートでき、高精度に焦点合わせできる。特に、動く被写体をマニュアルで焦点調節する際に、その焦点合わせを適切にサポートでき、高精度に焦点合わせできる。
 (13)イメージセンサ移動制御部は、イメージセンサが可動範囲の端部に到達すると、被写体の追尾を終了し、イメージセンサを基準位置に復帰させる、上記(12)の撮像装置本体。
 本態様によれば、イメージセンサが可動範囲の端部に到達すると、追尾が終了する。追尾が終了すると、イメージセンサは基準位置に復帰する。基準位置をイメージセンサの可動範囲の中心又は中心近傍に設定することにより、合焦後の可動範囲を前後に均等に設定できる。これにより、追従性を向上させることができる。
 (14)イメージセンサ移動制御部は、イメージセンサが可動範囲の端部に到達すると、被写体の追尾を終了し、被写体に再度合焦するまでイメージセンサを端部の位置で待機させる、上記(12)の撮像装置本体。
 本態様によれば、イメージセンサが可動範囲の端部に到達すると、追尾が終了する。追尾が終了すると、イメージセンサは、再度合焦するまで、その端部の位置で待機する。これにより、結像面の位置が可動範囲を外れた場合であっても、合焦状態に復帰させやすくできる。
 (15)焦点調節機能を備えた撮像レンズと、撮像レンズを介して被写体を撮像するイメージセンサと、イメージセンサを光軸に沿って移動させるイメージセンサ移動駆動部と、デフォーカス量を検出する焦点検出部と、を備えた撮像装置の合焦制御方法であって、被写体に合焦したか否かを判定するステップと、被写体に合焦した場合に焦点検出部で検出されるデフォーカス量に基づいて、イメージセンサの移動を制御して、被写体を追尾するステップと、を含む撮像装置の合焦制御方法。
 本態様によれば、イメージセンサが、光軸に沿って移動することで、焦点調節できる。イメージセンサの移動は、イメージセンサ移動制御部で制御される。イメージセンサ移動制御部は、被写体に合焦すると、その被写体を追尾する。すなわち、合焦状態を維持するようにイメージセンサの移動を制御する。これにより、マニュアルで焦点調節する際に、その焦点合わせを適切にサポートでき、高精度に焦点合わせできる。特に、動く被写体をマニュアルで焦点調節する際に、その焦点合わせを適切にサポートでき、高精度に焦点合わせできる。
 (16)イメージセンサが可動範囲の端部に到達すると、被写体の追尾を終了し、イメージセンサを基準位置に復帰させるステップを更に含む、上記(15)の撮像装置の合焦制御方法。
 本態様によれば、イメージセンサが可動範囲の端部に到達すると、追尾が終了する。追尾が終了すると、イメージセンサは基準位置に復帰する。基準位置をイメージセンサの可動範囲の中心又は中心近傍に設定することにより、合焦後の可動範囲を前後に均等に設定できる。これにより、追従性を向上させることができる。
 (17)イメージセンサが可動範囲の端部に到達すると、被写体の追尾を終了し、被写体に再度合焦するまでイメージセンサを端部の位置で待機するステップを更に含む、上記(15)の撮像装置の合焦制御方法。
 本態様によれば、イメージセンサが可動範囲の端部に到達すると、追尾が終了する。追尾が終了すると、イメージセンサは、再度合焦するまで、その端部の位置で待機する。これにより、結像面の位置が可動範囲を外れた場合であっても、合焦状態に復帰させやすくできる。
 本発明によれば、マニュアルでの焦点合わせを適切にサポートして、高精度に焦点合わせできる。
デジタルカメラの一実施形態を示す正面斜視図 デジタルカメラの一実施形態を示す背面斜視図 デジタルカメラの電気的構成を示すブロック図 イメージセンサの概略構成を示す図 撮像面の一部を拡大した図 各画素の概略構成を示す図 カメラ制御部及びレンズ制御部が実現する機能のブロック図 イメージセンサの移動による焦点合わせの概念図 イメージセンサの移動による追尾制御の概念図 経時的な追尾制御の概念図 追尾モードがオンされた場合の追尾制御の処理手順を示すフローチャート 経時的な追尾制御の概念図 追尾モードがオンされた場合の追尾制御の処理手順を示すフローチャート デフォーカス量が一定時間継続して閾値以下の場合に合焦したとみなして追尾する場合の経時的な処理の概念図 3板式のデジタルカメラに本発明適用する場合の一例を示す図
 以下、添付図面に従って本発明を実施するための好ましい形態について詳説する。
 ◆◆第1の実施の形態◆◆
 [外観構成]
 図1、図2は、それぞれ本発明が適用されたデジタルカメラの一実施形態を示す正面斜視図、背面斜視図である。
 図1及び図2に示すデジタルカメラ1は、レンズ交換式のデジタルカメラであり、交換レンズ10及びカメラ本体100を備える。デジタルカメラ1は、撮像装置の一例である。
 《交換レンズ》
 交換レンズ10は、撮像レンズの一例であり、複数のレンズを組み合わせて構成される。交換レンズ10は、焦点調節機能を備え、一部のレンズ群又は全てのレンズ群を光軸に沿って移動させることにより焦点調節される。本例では、一部のレンズ群で構成されるフォーカスレンズを光軸に沿って移動させることにより焦点調節される。
 交換レンズ10は、レンズ操作部14として、フォーカスリング16及び絞りリング18を備える。
 フォーカスリング16は、焦点調節用の操作部材である。フォーカスリング16は、鏡筒12の周りを回転自在に設けられる。フォーカスリング16を回転操作すると、その操作方向及び操作量に応じて、焦点調節機構が作動する。すなわち、その操作方向及び操作量に応じて、フォーカスレンズが移動し、焦点調節が行われる。
 絞りリング18は、絞り調節用の操作部材である。絞りリング18は、鏡筒12の周りを回転自在に設けられる。絞りリング18は、その外周に設定可能な絞り値が一定の間隔で印字される(不図示)。絞りの設定は、絞りリング18を回転操作し、鏡筒12に備えられた指標(不図示)の位置に設定を希望する絞り値を合わせることにより行われる。
 《カメラ本体》
 カメラ本体100は、撮像装置本体の一例である。カメラ本体100は、マウント102、メインモニタ104、サブモニタ106、電子ビューファインダ108、カメラ操作部110等を備える。
 マウント102は、交換レンズ10の装着部であり、カメラ本体100の正面に備えられる。交換レンズ10は、このマウント102に着脱自在に装着される。
 メインモニタ104は、カメラ本体100の背面に備えられる。メインモニタ104は、LCD(Liquid Crystal Display/液晶ディスプレイ)で構成される。メインモニタ104は、各種設定を行う際のGUI(Graphical User Interface)として利用されるほか、撮影済み画像の再生用モニタとして利用される。また、撮影時には、必要に応じてライブビューが表示され、イメージセンサで撮像された画像がリアルタイムに表示される。
 サブモニタ106は、カメラ本体100の上面に備えられる。サブモニタ106は、LCDで構成される。サブモニタ106には、シャッタースピード、絞り値、感度、露出補正などの主要な撮影情報が表示される。
 電子ビューファインダ(EVF:Electronic View Finder)108は、カメラ本体100の上部に備えられる。電子ビューファインダ108には、ライブビューが表示され、イメージセンサで撮像された画像がリアルタイムに表示される。電子ビューファインダ108は、必要に応じてオン、オフでき、メインモニタ104への表示に切り替えられる。
 カメラ操作部110は、デジタルカメラ1の操作部材として、感度ダイヤル111、消去ボタン112、電源レバー113、シャッターボタン114、ドライブボタン115、サブモニタ照明ボタン116、シャッタースピードダイヤル117、再生ボタン118、フロントコマンドダイヤル119、リアコマンドダイヤル120、フォーカスレバー121、クイックメニューボタン122、メニュー/OKボタン123、セレクターボタン124、表示/BACKボタン125、第1ファンクションボタン126、第2ファンクションボタン127、第3ファンクションボタン128、第4ファンクションボタン129、第5ファンクションボタン130等を備える。
 感度ダイヤル111は、感度を設定するダイヤルである。消去ボタン112は、撮影済みの画像を消去するボタンである。画像再生中に当該ボタンを押すと、再生中の画像が消去される。電源レバー113は、デジタルカメラ1の電源をオン、オフするレバーである。ャッターボタン114は、画像の記録を指示するボタンである。シャッターボタン114は、半押し及び全押しが可能な二段ストローク式のボタンで構成される。シャッターボタン114を半押しするとS1ON信号が出力され、全押しするとS2ON信号が出力される。静止画を撮像する場合、シャッターボタン114の半押しで撮像準備が行われ、全押しで画像の記録が行われる。動画を撮像する場合、最初のシャッターボタン114の全押しで撮像が開始され、2回目のシャッターボタン114を全押しで撮像が終了する。ドライブボタン115は、ドライブモードの選択画面を呼び出すボタンである。ドライブボタン115が押されると、メインモニタ104にドライブモードの選択画面が表示される。ドライブモードの選択画面でドライブモードが選択され、1コマ撮影、連写、ブラケット撮影、多重露光、動画撮影等が選択される。サブモニタ照明ボタン116は、サブモニタ106の照明をオン、オフするボタンである。シャッタースピードダイヤル117は、シャッタースピードを設定するダイヤルである。再生ボタン118は、再生モードへの切り替えを指示するボタンである。デジタルカメラ1は、撮影モードで起動し、再生ボタン118を押すと、再生モードに切り替わる。なお、再生モードの状態でシャッターボタン114を押すと、撮影モードに切り替わる。フロントコマンドダイヤル119及びリアコマンドダイヤル120には、デジタルカメラ1の状態に応じた機能が割り当てられる。フォーカスレバー121は、AFエリアを選択するレバーである。クイックメニューボタン122は、クイックメニューを呼び出すボタンである。クイックメニューボタン122を押すと、メインモニタ104にクイックメニューが表示される。クイックメニューには、デジタルカメラ1で設定可能な項目のうちユーザーが登録した項目が表示される。メニュー/OKボタン123は、メニュー画面を呼び出すボタンである。メニュー/OKボタン123を押すと、メインモニタ104にメニュー画面が表示される。また、メニュー/OKボタン123は、選択事項等を確定するボタンとしても機能する。セレクターボタン124は、いわゆる十字ボタンであり、4方向の指示が可能なボタンである。各種設定等を行う場合は、このセレクターボタン124で項目の選択等を行う。表示/BACKボタン125は、メインモニタ104の表示内容を切り替えるボタンである。また、表示/BACKボタン125は、選択事項等をキャンセルするボタン、すなわち、一つ前の状態に戻すボタンとしても機能する。第1ファンクションボタン126、第2ファンクションボタン127、第3ファンクションボタン128、第4ファンクションボタン129及び第5ファンクションボタン130には、あらかじめ用意された機能のうちユーザーが選択した機能が割り当てられる。たとえば、追尾モードのオン、オフを手動で切り替える機能が割り当てられる。この場合、当該機能が割り当てられたボタンが、追尾モード手動切替部として機能する。
 [電気的構成]
 図3は、デジタルカメラの電気的構成を示すブロック図である。
 カメラ本体100に装着された交換レンズ10は、マウント102に備えられた接点(不図示)を介してカメラ本体100と電気的に接続される。
 《交換レンズ》
 交換レンズ10は、焦点調節機構として、フォーカスレンズ20、フォーカスレンズ駆動部22及びフォーカスレンズ位置検出部24を備える。
 フォーカスレンズ20は、交換レンズ10を構成する複数のレンズの一部のレンズである。交換レンズ10は、フォーカスレンズ20を光軸Lに沿って前後移動させることにより焦点調節される。
 フォーカスレンズ駆動部22は、フォーカスレンズ20を光軸Lに沿って前後移動させる。フォーカスレンズ駆動部22は、たとえば、リニアモータ等のアクチュエータ、及び、その駆動回路を備えて構成される。
 フォーカスレンズ位置検出部24は、フォーカスレンズ20の位置を検出する。フォーカスレンズ位置検出部24は、たとえば、フォトインタラプタ及びMRセンサ(MRセンサ:Magneto Resistive Sensor/磁気抵抗効果素子)で構成される。フォトインタラプタは、フォーカスレンズ20が、あらかじめ定められた原点位置に位置したことを検出する。MRセンサは、フォーカスレンズ20の移動量を検出する。フォトインタラプタによってフォーカスレンズ20が原点位置に位置したことを検出し、MRセンサによって原点位置からのフォーカスレンズ20の移動量を検出することにより、原点位置に対するフォーカスレンズ20の位置を検出できる。
 交換レンズ10は、光量調節機構として、絞り26及び絞り駆動部28を備える。絞り26は、たとえば、虹彩絞りで構成される。絞り駆動部28は、絞り26の絞り羽根を駆動するモータ、及び、その駆動回路を備えて構成される。
 交換レンズ10は、交換レンズ10の全体の動作を統括制御するレンズ制御部30を備える。レンズ制御部30は、たとえば、マイクロコンピュータで構成され、所定の制御プログラムを実行することにより、フォーカスレンズ駆動制御部30a、絞り駆動制御部30b等として機能する(図7参照)。
 フォーカスレンズ駆動制御部30aは、レンズ操作部14からの操作信号に基づいて、フォーカスレンズ駆動部22を制御し、フォーカスレンズ20の移動を制御する。具体的には、フォーカスリング16の操作方向及び操作量に対応した方向及び移動量でフォーカスレンズ20が移動するように、フォーカスレンズ駆動部22を制御する。レンズ操作部14は、フォーカスリング16が操作されると、その操作方向及び操作量に応じた操作信号をレンズ制御部30に出力する。
 絞り駆動制御部30bは、レンズ操作部14からの操作信号に基づいて、絞り駆動部28を制御し、絞り26を制御する。具体的には、絞りリング18で設定された絞り値になるように、絞り駆動部28を制御する。レンズ操作部14は、絞りリング18が操作されると、設定された絞り値に対応した操作信号をレンズ制御部30に出力する。
 レンズ制御部30は、交換レンズ10がカメラ本体100に装着されると、カメラ本体100のカメラ制御部250と通信可能に接続される。
 《カメラ本体》
 カメラ本体100は、イメージセンサ210、イメージセンサ移動駆動部220、イメージセンサ位置検出部222、イメージセンサ駆動部224、アナログ信号処理部226、ADC(Analog-to-digital converter/アナログデジタル変換器)228、デジタル信号処理部230、位相差AF処理部232、メモリカードインタフェース234、メモリカード236、メインモニタ104、サブモニタ106、電子ビューファインダ(EVF)108、カメラ操作部110及びカメラ制御部250を備える。
 〈イメージセンサ〉
 イメージセンサ210は、交換レンズ10を介して被写体を撮像する。イメージセンサ210は、たとえば、CCD(Charged Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子で構成される。イメージセンサ210は、その撮像面に複数の位相差検出画素を有する。
 図4は、イメージセンサの概略構成を示す図である。
 イメージセンサ210は、多数の画素がx方向(行方向)及びy方向(列方向)に二次元的に配列された撮像面212を有する。撮像面212は、複数のAF(autofocus)エリア214を有する。AFエリア214は、焦点合わせが可能な領域として撮像面212に設定された領域である。図4に示す例では、画面中央部分に9つのAFエリア214を設定している。
 図5は、撮像面の一部を拡大した図である。
 撮像面212には、多数の画素が規則的に配置される。各画素は光電変換部を備え、受光量に応じた信号を出力する。また、各画素は、R(Red/赤)、G(Green/緑)、B(Blue/青)のいずれかの色のカラーフィルタを有する。カラーフィルタは、所定の配列となるように、各画素に割り当てられる。図5は、ベイヤ配列の例を示している。なお、同図では、Rのカラーフィルタを有する画素(R画素)にRの文字を付し、Gのカラーフィルタを有する画素(G画素)にGの文字を付し、Bのカラーフィルタを有する画素(B画素)にBの文字を付している。
 AFエリアには、通常画素216及び位相差検出画素218が配置される。通常画素216とは、通常の撮像用の画素のことである。位相差検出画素218とは、位相差を検出する画素のことである。位相差検出画素以外は、通常画素を構成する。AFエリア以外の領域には、通常画素のみが配置される。
 図5では、位相差検出画素218を斜線で示している。同図に示すように、位相差検出画素218は、撮像面212に規則的に配置される。
 位相差検出画素218は、第1位相差検出画素218A及び第2位相差検出画素218Bで構成される。第1位相差検出画素218A及び第2位相差検出画素218Bは、互いに近接して配置される。図5に示す例では、互いに近接する同じ配列の2つの行の一方に一定の間隔で第1位相差検出画素218Aを配置し、他方に一定の間隔で第2位相差検出画素218Bを配置した例を示している。特に、R画素及びG画素が配列された特定の行の特定のG画素を位相差検出画素として利用した場合の例を示している。
 図6は、各画素の概略構成を示す図である。
 各画素は、所定の開口部を備えた遮光膜を有する。図6は、各画素に備えられる遮光膜の開口部を白抜きで示している。
 通常画素216は、開口部が、光電変換部の中心と一致した遮光膜を有する。通常画素216は、交換レンズ10の瞳領域のほぼ全ての部分を通過した光束を受光する。
 第1位相差検出画素218Aは、開口部が光電変換部の中心に対して右側に偏心した遮光膜を有する。この結果、第1位相差検出画素218Aは、交換レンズ10の瞳領域の異なる部分を通過した一対の光束のうち一方の光束が受光される。
 第2位相差検出画素218Bは、開口部が光電変換部の中心に対して左側に偏芯した遮光膜を有する。この結果、第2位相差検出画素218Bでは、交換レンズ10の瞳領域の異なる部分を通過した一対の光束のうち他方の光束が受光される。
 以上の構成により、第1位相差検出画素218A及び第2位相差検出画素218Bの信号を取得し、両者を比較することにより、位相差量の検出が可能となる。
 〈イメージセンサ移動駆動部〉
 イメージセンサ移動駆動部220は、イメージセンサ210を光軸Lに沿って前後に移動させる。イメージセンサ移動駆動部220は、たとえば、ピエゾアクチュエータ等のアクチュエータ、及び、その駆動回路を備えて構成される。
 イメージセンサ210は、可動範囲内で移動し、その可動範囲の中央に基準位置が設定される。基準位置は、交換レンズ10で規定されるフランジバックの位置に設定される。一般に交換レンズ10は、フランジバックの位置を基準に光学設計が行われる。したがって、イメージセンサ210を基準位置に位置させることにより、交換レンズ10の光学性能を最大限に発揮させることができる。
 たとえば、Cマウントを採用する交換レンズのフランジバックは、17.526mmである。また、CSマウントを採用する交換レンズのフランジバックは、12.5mmである。
 〈イメージセンサ位置検出部〉
 イメージセンサ位置検出部222は、基準位置に対するイメージセンサ210の位置を検出する。イメージセンサ位置検出部222は、たとえば、渦電流センサ等の変位センサで構成される。
 〈イメージセンサ駆動部〉
 イメージセンサ駆動部224は、カメラ制御部250による制御の下、イメージセンサ210を駆動する。イメージセンサ210は、イメージセンサ駆動部224に駆動されて、画像を撮像する。
 〈アナログ信号処理部〉
 アナログ信号処理部226は、イメージセンサ210から出力される画素ごとのアナログの画像信号を取り込み、所定の信号処理(たとえば、相関二重サンプリング処理、増幅処理等)を施す。
 〈ADC〉
 ADC228は、アナログ信号処理部226から出力されるアナログの画像信号をデジタルの画像信号に変換して出力する。
 〈デジタル信号処理部〉
 デジタル信号処理部230は、デジタルの画像信号を取り込み、所定の信号処理(たとえば、階調変換処理、ホワイトバランス補正処理、ガンマ補正処理、同時化処理、YC変換処理等)を施して、画像データを生成する。
 〈位相差AF処理部〉
 位相差AF(autofocus)処理部232は、焦点検出部の一例である。位相差AF処理部232は、指定されたAFエリア214から第1位相差検出画素218A及び第2位相差検出画素218Bの信号を取得し、取得した信号に対して相関演算処理を行って位相差量を算出する。そして、算出した位相差量に基づいて、デフォーカスの方向及び量を算出する。AFエリアは、ユーザーによって選択される。あるいは、自動で決定される。ユーザーによる選択は、フォーカスレバー121の操作によって行われる。自動で決定する場合は、たとえば、被写体を自動で認識し、被写体の存在するAFエリアを選択する。あるいは、動体を認識し、動体の存在するAFエリアを選択する。
 〈メモリカードインタフェース及びメモリカード〉
 メモリカードインタフェース234は、カメラ制御部250による制御の下、カードスロットに装着されたメモリカード236に対して、データの読み書きを行う。
 〈メインモニタ〉
 メインモニタ104は、LCDで構成される。メインモニタ104の表示は、カメラ制御部250で制御される。カメラ制御部250は、LCDドライバ104aを介してメインモニタ104の表示を制御する。
 〈サブモニタ〉
 サブモニタ106は、LCDで構成される。サブモニタ106の表示は、カメラ制御部250で制御される。カメラ制御部250は、LCDドライバ106aを介してサブモニタ106の表示を制御する。
 〈電子ビューファインダ〉
 電子ビューファインダ(EVF)108は、その表示部がLCDで構成される。電子ビューファインダ108の表示は、カメラ制御部250で制御される。カメラ制御部250は、LCDドライバ108aを介して電子ビューファインダ108の表示を制御する。
 〈カメラ操作部〉
 カメラ操作部110は、各操作部材の操作に応じた信号をカメラ制御部250に出力する。
 〈カメラ制御部〉
 カメラ制御部250は、デジタルカメラ1の全体の動作を統括制御する制御部である。カメラ制御部250は、たとえば、マイクロコンピュータで構成され、所定のプログラムを実行することにより、各種機能を提供する。
 図7は、カメラ制御部及びレンズ制御部が実現する機能のブロック図である。
 図7に示すように、カメラ制御部250は、所定のプログラムを実行することにより、イメージセンサ移動制御部250aとして機能する。
 イメージセンサ移動制御部250aは、位相差AF処理部232で検出されるデフォーカス量に基づいて、イメージセンサ210の移動を制御し、被写体を追尾する。追尾は、合焦状態を維持するように、イメージセンサ210の移動を制御することにより行われる。
 ここで、イメージセンサ210の移動によるAFについて説明する。
 図8は、イメージセンサの移動による焦点合わせの概念図である。同図(A)は焦点がずれた状態を示しており、同図(B)は、合焦状態を示している。
 図8(A)に示すように、イメージセンサ210が基準位置R0に位置しており、位置P1の被写体Aの像が位置R1に形成されているとする。図8(A)に示すように、位置R1が、基準位置R0よりも後方(像面側)にあるとする。この場合、図8(B)に示すように、イメージセンサ210を後方に移動させて、位置R1に位置させる。これにより、被写体Aの像が撮像面上に形成され、合焦する。
 このように、被写体の像が形成される位置、すなわち、結像点の位置にイメージセンサ210を移動させることにより、被写体に合焦させることができる。合焦状態を維持するためには、結像点の移動に追従するように、イメージセンサ210を移動させればよい。したがって、追尾は、結像点の移動に追従するように、イメージセンサ210を移動させることにより行われる。結像点の位置と撮像面の位置とのずれ量は、デフォーカス量として検出される。したがって、イメージセンサ移動制御部250aは、デフォーカス量に基づいて、イメージセンサ210の移動を制御し、合焦状態を維持する。
 図9は、イメージセンサの移動による追尾制御の概念図である。
 図9(A)は、被写体Aが位置P1から位置P2に移動して、結像点の位置R2がイメージセンサ210の可動範囲Wの端部に到達した場合を示している。イメージセンサ移動制御部250aは、イメージセンサ210が可動範囲Wの端部に到達するまで、追尾を実施する。すなわち、デフォーカス量に基づいて、イメージセンサ210の移動を制御し、合焦状態を維持させる。
 図9(B)は、被写体Aが位置P2から更に位置P3に移動して、結像点の位置R3がイメージセンサ210の可動範囲Wの端部を超えて移動した場合を示している。イメージセンサ210が、可動範囲Wの端部に到達すると、以後は、追尾不能となる。イメージセンサ移動制御部250aは、イメージセンサ210が可動範囲Wの端部に到達すると、追尾を終了する。追尾を終了すると、イメージセンサ移動制御部250aは、イメージセンサ210を基準位置R0に復帰させる。
 イメージセンサ210を基準位置R0に復帰させる際、イメージセンサ移動制御部250aは、デフォーカス量の変化に応じた移動速度でイメージセンサ210を移動させる。イメージセンサ210を基準位置R0に復帰させると、焦点状態が変化するので、不自然な画像になるおそれがある。しかし、デフォーカス量の変化に応じた移動速度でイメージセンサ210を移動させることにより、画像に違和感を与えることなくイメージセンサ210を基準位置R0に戻すことができる。ここでは、デフォーカス量が変化する速度とほぼ同じ速度(同じ速度ないし実質的に同じ速度)でイメージセンサ210を移動させて、イメージセンサ210を基準位置R0に復帰させる。すなわち、結像点の移動速度と同じ速度でイメージセンサ210を移動させて、イメージセンサ210を基準位置R0に復帰させる。
 図10は、経時的な追尾制御の概念図である。
 同図において、符号L1は、結像点の移動軌跡を示し、符号L2は、イメージセンサ210の移動軌跡を示している。
 同図に示すように、合焦すると、追尾が開始される。すなわち、基準位置R0に位置するイメージセンサ210の撮像面上に結像点が位置すると、追尾が開始される。イメージセンサ210の撮像面上に結像点が位置すると、デフォーカス量はゼロとなる。したがって、デフォーカス量がゼロとなった段階で追尾が開始される。
 図10に示す例では、時刻t0で初めて合焦している。したがって、時刻t0から追尾が開始される。図10に示すように、時刻t0で合焦後、イメージセンサ210の移動が開始する。イメージセンサ210は、結像点の移動に追従して移動する。これにより、合焦状態が維持される。
 イメージセンサ210は、可動範囲内で移動する。図10に示す例では、時刻t0で合焦後、時刻t1でイメージセンサ210が可動範囲Wの端部に到達した場合を示している。この場合、追尾は、一旦終了する。追尾が終了すると、イメージセンサ210は、基準位置R0に復帰する。この際、結像点の移動速度とほぼ同じ速度で移動して、基準位置R0に復帰する。
 基準位置R0に復帰すると、イメージセンサ210は、再度合焦するまで基準位置R0で待機する。図10に示す例では、時刻t2で再度合焦した場合を示している。この場合、時刻t2から追尾が再開される。図10に示す例では、更に、時刻t3でイメージセンサ210が可動範囲Wの端部に到達し、時刻t4で再度合焦後、時刻t5でイメージセンサ210が可動範囲Wの端部に到達した場合を示している。同図に示すように、イメージセンサ210が可動範囲Wの端部に到達するたびに、追尾が終了する。追尾が終了すると、イメージセンサ210が基準位置R0に復帰する。イメージセンサ210が基準位置R0に復帰すると、再度合焦するまで待機し、合焦すると、追尾が再開される。
 このように、イメージセンサ移動制御部250aは、合焦すると、追尾を開始し、可動範囲内でイメージセンサ210を移動させて、合焦状態を維持させる。一方、イメージセンサ210が可動範囲Wの端部に到達すると、追尾を終了し、イメージセンサ210を基準位置R0に復帰させて、再度合焦するまで待機させる。
 [作用]
 追尾制御は、追尾モードがオンされた場合に実施される。追尾モードのオン、オフを手動で切り替える機能がファンクションボタンに割り当てられている場合、ファンクションボタンのボタン操作で追尾モードのオン、オフが切り替えられる。この他、メニュー画面で追尾モードのオン、オフが切り替えられる。
 図11は、追尾モードがオンされた場合の追尾制御の処理手順(合焦制御方法)を示すフローチャートである。
 撮影者は、フォーカスリング16を操作して、マニュアルで焦点調節を行う。イメージセンサ移動制御部250aは、位相差AF処理部232の出力に基づいて、合焦したか否かを判定する(ステップS11)。
 イメージセンサ移動制御部250aは、合焦したと判定すると、追尾を開始する(ステップS12)。すなわち、位相差AF処理部232で検出されるデフォーカス量に基づいて、イメージセンサ210の移動を制御し、合焦状態を維持させる。
 追尾制御は、イメージセンサ210の可動範囲内で実施される。イメージセンサ210が、可動範囲の端部に到達すると、追尾は終了する。イメージセンサ移動制御部250aは、イメージセンサ210が、可動範囲の端部に到達したか否かを判定する(ステップS13)。
 イメージセンサ210が、可動範囲の端部に到達していないと判定すると、イメージセンサ移動制御部250aは、追尾終了の指示の有無を判定する(ステップS17)。追尾は、追尾モードがオフされると、終了が指示される。また、デジタルカメラ1の電源がオフされた場合も同様に終了が指示される。終了が指示されると、処理を終了する。終了が指示されない限り、追尾を継続する。
 一方、イメージセンサ210が、可動範囲の端部に到達したと判定すると、イメージセンサ移動制御部250aは、追尾を終了する(ステップS14)。終了後、イメージセンサ移動制御部250aは、イメージセンサ210を基準位置R0に復帰させる(ステップS15)。
 この後、イメージセンサ移動制御部250aは、追尾終了の指示の有無を判定する(ステップS16)。終了が指示されると、処理を終了する。一方、終了指示がないと判定すると、ステップS11に戻り、合焦したか否かを判定する。合焦した場合は、追尾を再開する。
 このように、本実施の形態のデジタルカメラ1では、合焦すると、追尾が開始され、合焦状態を維持するように、イメージセンサ210の移動が制御される。これにより、マニュアルでの焦点合わせする際、ユーザーを適切にサポートでき、高精度に焦点合わせできる。特に、動いている被写体に対して高精度に焦点合わせできる。
 また、追尾が不能になった場合は、イメージセンサ210を基準位置R0に復帰させる。これにより、追尾を再開する際に追従性を向上させることができる。また、イメージセンサ210を基準位置R0に復帰させる際、デフォーカス量の変化に応じた移動速度でイメージセンサ210を移動させて、基準位置R0に復帰させる。これにより、画像に違和感を与えることなくイメージセンサ210を基準位置R0に復帰させることができる。
 ◆◆第2の実施の形態◆◆
 上記実施の形態のデジタルカメラでは、イメージセンサ210が可動範囲Wの端部に到達すると、追尾を終了し、イメージセンサ210を基準位置R0に復帰させる構成としている。
 本実施の形態のデジタルカメラでは、イメージセンサ210が可動範囲Wの端部に到達すると、追尾を終了し、再度合焦するまでイメージセンサ210を端部の位置で待機させる。待機中に再度合焦すると、追尾を再開する。
 カメラの構成は、上記第1の実施の形態と同じなので、ここでは追尾制御の処理内容についてのみ説明する。
 図12は、本実施の形態のデジタルカメラにおける経時的な追尾制御の概念図である。
 同図において、符号L1は、結像点の移動軌跡を示し、符号L2は、イメージセンサ210の移動軌跡を示している。
 同図に示すように、合焦すると、追尾が開始される。すなわち、基準位置R0に位置するイメージセンサ210の撮像面上に結像点が位置すると、追尾が開始される。
 図12に示す例では、時刻t0で初めて合焦している。したがって、時刻t0から追尾が開始される。図12に示すように、時刻t0で合焦後、イメージセンサ210の移動が開始する。イメージセンサ210は、結像点の移動に追従して移動する。これにより、合焦状態が維持される。
 イメージセンサ210は、可動範囲内で移動する。図12に示す例では、時刻t0で合焦後、時刻t1でイメージセンサ210が、可動範囲Wの一方の端部E-に到達した場合を示している。この場合、追尾は、一旦終了する。追尾が終了すると、イメージセンサ210は、その端部E-の位置で停止し、再度合焦するまで待機する。
 図12に示す例では、時刻t2で再度合焦した場合を示している。この場合、時刻t2から追尾が再開される。図12に示す例では、更に、時刻t3でイメージセンサ210が、可動範囲Wの一方の端部E-に到達し、時刻t4で再度合焦後、時刻t5でイメージセンサ210が、可動範囲Wの他方の端部E+に到達した場合を示している。また、時刻t6で再度合焦後、時刻t7でイメージセンサ210が、可動範囲Wの他方の端部E+に到達した場合を示している。同図に示すように、イメージセンサ210が可動範囲Wの端部に到達するたびに、追尾が終了する。追尾が終了すると、イメージセンサ210は、その端部の位置で停止し、再度合焦するまで待機する。そして、再度合焦すると、追尾が再開される。
 このように、イメージセンサ移動制御部250aは、合焦すると、追尾を開始し、可動範囲内でイメージセンサ210を移動させて、合焦状態を維持させる。一方、イメージセンサ210が可動範囲Wの端部に到達すると、追尾を終了し、再度合焦するまで、その端部の位置で待機させる。
 [作用]
 図13は、追尾モードがオンされた場合の追尾制御の処理手順(合焦制御方法)を示すフローチャートである。
 撮影者は、フォーカスリング16を操作して、マニュアルで焦点調節を行う。イメージセンサ移動制御部250aは、位相差AF処理部232の出力に基づいて、合焦したか否かを判定する(ステップS21)。
 イメージセンサ移動制御部250aは、合焦したと判定すると、追尾を開始する(ステップS22)。すなわち、位相差AF処理部232で検出されるデフォーカス量に基づいて、イメージセンサ210の移動を制御し、合焦状態を維持させる。
 追尾は、イメージセンサ210の可動範囲内で実施される。イメージセンサ210が、可動範囲の端部に到達すると、追尾は終了する。イメージセンサ移動制御部250aは、イメージセンサ210が、可動範囲の端部に到達したか否かを判定する(ステップS23)。
 イメージセンサ210が、可動範囲の端部に到達していないと判定すると、イメージセンサ移動制御部250aは、追尾終了の指示の有無を判定する(ステップS27)。終了が指示されると、処理を終了する。終了が指示されない限り、追尾を継続する。
 一方、イメージセンサ210が、可動範囲の端部に到達したと判定すると、イメージセンサ移動制御部250aは、追尾を終了する(ステップS24)。終了後、イメージセンサ移動制御部250aは、イメージセンサ210を端部の位置で待機させる(ステップS25)。
 この後、イメージセンサ移動制御部250aは、追尾終了の指示の有無を判定する(ステップS26)。終了が指示されると、処理を終了する。一方、終了指示がないと判定すると、ステップS21に戻り、合焦したか否かを判定する。合焦した場合は、追尾を再開する。
 このように、本実施の形態のデジタルカメラ1では、合焦すると、追尾が開始され、合焦状態を維持するように、イメージセンサ210の移動が制御される。これにより、マニュアルで焦点合わせする際、ユーザーを適切にサポートでき、高精度に焦点合わせできる。特に、動いている被写体を高精度に焦点合わせできる。
 また、追尾が不能になった場合は、イメージセンサ210を可動範囲Wの端部の位置で停止させて待機させる。これにより、合焦状態を回復しやすくできる。すなわち、合焦状態に戻す距離を短くできるので、早期に合焦状態に回復させることができる。
 ◆◆その他の実施の形態◆◆
 [合焦判定]
 上記実施の形態では、被写体に合焦すると、追尾を開始する構成としている。この他、位相差AF処理部232で検出されるデフォーカス量が一定時間継続して閾値以下の場合に合焦したとみなして、追尾を開始する構成としてもよい。
 メインモニタ104又は電子ビューファインダ108を使用して焦点調節する場合において、メインモニタ104及び電子ビューファインダ108の解像度が低い場合、メインモニタ104又は電子ビューファインダ108の画像を見て、正確に焦点合わせすることは難しい。
 そこで、位相差AF処理部232で検出されるデフォーカス量が一定時間継続して閾値以下の場合、合焦したとみなして、追尾を開始する。デフォーカス量が一定時間継続して閾値以下であれば、合焦に近い状態にあると認められるので、その場合は、合焦したものとみなして、追尾を開始する構成とする。
 図14は、デフォーカス量が一定時間継続して閾値以下の場合に合焦したとみなして追尾する場合の経時的な処理の概念図である。
 同図において、符号L1は、結像点の移動軌跡を示し、符号L2は、イメージセンサ210の移動軌跡を示している。
 デフォーカス量の閾値をεとする。閾値ε以下の状態が時間ΔT継続した場合に合焦したとみなして、追尾を開始する。
 図14に示す例では、最初に時刻t0でデフォーカス量が閾値ε以下となっている。しかし、時間ΔTを経過する前に時刻t1でデフォーカス量が閾値εを超えている。このため、デフォーカス量が閾値ε以下になっても合焦したとはみなされていない。
 図14に示す例では、時刻t2で再び閾値ε以下となっている。時刻t2以降は、継続してデフォーカス量が閾値ε以下に保たれている。このため、時間ΔTが経過した時刻t3の段階で追尾が開始されている。
 追尾が開始されると、イメージセンサ210が結像点に向けて移動し、合焦する。合焦後は、可動範囲内でイメージセンサ210が移動し、合焦状態が維持される。
 このように、デフォーカス量が一定時間継続して閾値以下の場合に合焦したとみなして、追尾を開始する。これにより、利便性を向上できる。特に、解像度(分解能)の低いメインモニタ104又は電子ビューファインダ108を使用して焦点合わせする場合、正確に合焦させることが難しい場合がある。このような場合であっても、合焦近傍に焦点合わせされた場合は、追尾が行われるので、撮影者の意図を適切に制御に反映させることができる。
 この他、上記条件に加えて、位相差AF処理部232で検出されるデフォーカス量の変化量が一定時間継続して閾値以下の場合に合焦したとみなして、追尾を開始する構成としてもよい。すなわち、位相差AF処理部232で検出されるデフォーカス量が一定時間継続して第1の閾値以下であり、かつ、位相差AF処理部232で検出されるデフォーカス量の変化量が一定時間継続して第2の閾値以下の場合に合焦したとみなして、追尾を開始する構成としてもよい。デフォーカス量が一定時間継続して一定値以下(第1の閾値以下)、かつ、デフォーカス量の変化量が一定時間継続して一定値以下(第2の閾値以下)の状態とは、合焦付近でフォーカスレンズがほとんど変化しない状態のことである。すなわち、合焦付近で焦点調節がほぼ行われなくなった状態である。この場合、合焦したとみなして、追尾を開始する。これにより、ほぼ合焦に近い状態から追尾を開始させることができる。これにより、利便性を向上できる。
 なお、当該機能をユーザーが任意にオン、オフできる構成としてもよい。すなわち、合焦とみなす機能をユーザーが任意にオン、オフできる機能を備えてもよい。当該機能のオン、オフは、たとえば、メニュー画面で設定する構成とする。
 [追尾モードの自動切替]
 上記実施の形態では、手動で追尾モードのオン、オフを切り替える構成としているが、追尾モードの切り替えを自動化してもよい。たとえば、一定時間継続して合焦すると、自動的に追尾モードをオンする機能を備えてもよい。この場合、カメラ制御部250が、追尾モード自動切替部として機能する。追尾モード自動切替部は、位相差AF処理部232の出力に基づいて、一定時間継続して合焦したか否かを判定し、追尾モードを自動で切り替える。すなわち、一定時間継続して合焦したと判定すると、自動的に追尾モードをオンする。これにより、撮影者が特定の被写体に焦点を合わせ続けているような場合に、自動的に追尾モードに設定できる。これにより、撮影者の意図を制御に反映させることができ、より利便性を向上できる。
 なお、当該機能は、ユーザーが任意にオン、オフできる構成とすることが好ましい。すなわち、追尾モードを自動でオンする機能をユーザーが任意にオン、オフできる機能を備えることが好ましい。当該機能のオン、オフは、たとえば、メニュー画面で設定する構成とする。また、自動的にオンされた追尾モードは、当該機能がオフされるとオフされることが好ましい。
 この他、カメラ本体100が、交換レンズ10と通信できない場合に自動的に追尾モードをオンする構成にしてもよい。カメラ本体100が交換レンズ10と通信できない場合とは、カメラ制御部250が、レンズ制御部30と通信できない場合であり、交換レンズ10にレンズ制御部30が備えられていない場合などが該当する。
 [イメージセンサの可動範囲]
 イメージセンサ210の可動範囲は、イメージセンサ移動駆動部220の機械的な作動範囲内で任意に設定される。たとえば、イメージセンサ移動駆動部220が、ピエゾアクチュエータで構成される場合、そのピエゾアクチュエータの機械的な作動範囲内でイメージセンサ210の可動範囲が任意に設定される。可動範囲を広くとるほどAFの作動範囲を広くとれる。
 なお、上記実施の形態のデジタルカメラのように、メインモニタ104又は電子ビューファインダ108を使用して焦点調節する場合、メインモニタ104及び電子ビューファインダ108の解像度を考慮して、イメージセンサ210の可動範囲を設定することが好ましい。メインモニタ104及び電子ビューファインダ108の解像度が、イメージセンサ210の解像度に比べて低い場合、メインモニタ104及び電子ビューファインダ108で調整可能な精度には限界がある。したがって、メインモニタ104及び電子ビューファインダ108では、調整できない範囲をイメージセンサ210の移動でカバーできるように、その可動範囲を設定することが好ましい。具体的には、メインモニタ104及び電子ビューファインダ108の画素ピッチ以上の可動範囲を確保することが好ましい。これにより、解像度の低いメインモニタ104又は電子ビューファインダ108を使用して焦点調節する場合であっても、目的とする被写体に精度よく合焦させることができる。
 [イメージセンサの基準位置]
 上記実施の形態では、イメージセンサ210の基準位置を可動範囲の中央に設定しているが、基準位置として設定する位置は、これに限定されるものではない。たとえば、可動範囲の中央よりも被写体側(前側)の位置に基準位置を設定してもよいし、また、像面側(後側)の位置に基準位置を設定してもよい。また、ユーザーが、任意に設定できる構成としてもよい。なお、上記のように、可動範囲の中央に基準位置を設定することにより、追従性を向上できる。
 また、上記実施の形態では、フランジバックの位置に基準位置を設定しているが、フランジバックと異なる位置に設定してもよい。なお、上記のように、フランジバックの位置に基準位置を設定することにより、基準位置で合焦した際に交換レンズ10の光学性能を最大限に発揮させることができる。
 また、基準位置が可変する構成とすることもできる。たとえば、過去の被写体の合焦時のイメージセンサ210の位置情報を参照して、基準位置を適宜切り替える構成とすることができる。また、被写体に応じて、基準位置を適宜切り替える構成とすることもできる。たとえば、被写体の移動方向等に応じて、適宜切り替える構成とすることができる。たとえば、一方向に移動する被写体については、結像点の移動方向と反対方向に基準位置を設定する。
 [焦点検出部]
 上記実施の形態では、イメージセンサ210の撮像面212に備えられた位相差検出画素218の出力に基づいてデフォーカス量を検出する構成としているが、デフォーカス量を検出する手段は、これに限定されるものではない。パッシブ方式、アクティブ方式等の公知の焦点検出手段を使用できる。
 また、上記実施の形態では、位相差検出画素をx方向に沿って一定の間隔で配置しているが、y方向に沿って一定の間隔で配置してもよい。また、x方向及びy方向に沿って一定の間隔で配置してもよい。
 また、上記実施の形態では、画面中央に設定されたAFエリアにのみ位相差検出画素を配置しているが、位相差検出画素を配置する領域は、これに限定されるものではない。画面全体に配置する構成としてもよい。
 [イメージセンサ移動駆動部]
 上記実施の形態では、ピエゾアクチュエータを使用して、イメージセンサ210を光軸Lに沿って移動させる構成としているが、イメージセンサ移動駆動部の構成は、これに限定されるものではない。この他、たとえば、リニアモータ、送りネジ機構等の公知の直動式の駆動機構を採用して、イメージセンサ210を光軸Lに沿って移動させることができる。
 [撮像部]
 上記実施の形態では、本発明を単板式のデジタルカメラに適用した場合を例に説明したが、本発明は多板式のカメラにも適用できる。
 図15は、3板式のデジタルカメラに本発明適用する場合の一例を示す図である。
 同図に示すように、3板式のデジタルカメラは、撮像部に色分解プリズム310、及び、3つのイメージセンサ210R、210G、210Bを備える。
 色分解プリズム310は、入射面310aに入射した光をR(Red)光、G(Green)光及びB(Blue)光の3色の光に分解する。分解された3色の光は、それぞれR光出射面310r、G光出射面310g、B光出射面310bから出射される。
 3つのイメージセンサは、R光を受光するイメージセンサ210Rと、G光を受光するイメージセンサ210Gと、B光を受光するイメージセンサ210Bと、で構成される。
 R光を受光するイメージセンサ210Rは、R光出射面310rに対向して配置され、R光出射面310rから出射されるR光を受光する。
 G光を受光するイメージセンサ210Gは、G光出射面310gに対向して配置され、G光出射面310gから出射されるG光を受光する。
 B光を受光するイメージセンサ210Bは、B光出射面310bに対向して配置され、B光出射面310bから出射されるB光を受光する。
 3つのイメージセンサ210R、210G、210Bは、それぞれ色分解プリズム310の入射面310aからの光路長が同じになる位置に配置される。
 3つのイメージセンサ210R、210G、210Bは、図示しないホルダを介して、色分解プリズム310に一体的に取り付けられる。色分解プリズム310にイメージセンサ210R、210G、210Bが一体化されたユニットを撮像ユニット330とする。イメージセンサ移動駆動部220xは、撮像ユニット330を光軸Lに沿って前後移動させる。また、イメージセンサ位置検出部222xは、基準位置に対する撮像ユニット330の位置を検出する。
 [撮像レンズ]
 上記実施の形態では、フォーカスレンズを光軸に沿って前後移動させて焦点調節しているが、撮像レンズの焦点調節機構は、これに限定されるものではない。この他、液体レンズ、液晶レンズ等をフォーカスレンズとして利用することもできる。液体レンズ及び液晶レンズでは、屈折率変化を利用して、焦点調節する。
 また、上記実施の形態では、フォーカスレンズをリニアモータ等のアクチュエータで駆動する構成としているが、カム機構、ヘリコイドギア等を用いて手動で移動させる構成としてもよい。
 [撮像装置]
 上記実施の形態では、本発明をデジタルカメラに適用した場合を例に説明したが、本発明の適用は、これに限定されるものではない。この他、たとえば、ビデオカメラ、テレビカメラ、シネマカメラ等にも適用でき、更に、撮像機能を備えた電子機器(たとえば、携帯電話、スマートフォン、タブレットパソコン、ノートパソコン等)にも同様に適用できる。
 また、上記実施の形態では、レンズ交換式のデジタルカメラに本発明を適用した場合を例に説明したが、撮像レンズがカメラ本体に一体的に組み込まれたカメラにも同様に適用できる。
 [その他]
 上記実施の形態では、イメージセンサ移動制御部等をマイクロコンピュータで構成しているが、これらの機能を実現するためのハードウェア的な構成は、これに限定されるものではない。各種のプロセッサで構成できる。各種のプロセッサには、ソフトウェア(プログラム)を実行して各種の処理を行う処理部として機能する汎用的なプロセッサであるCPU、FPGA(FPGA:Field Programmable Gate Array)などの製造後に回路構成を変更可能なプロセッサであるPLD(PLD:Programmable Logic Device)、ASIC(ASIC:Application Specific Integrated Circuit)などの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。
 一つの処理部は、これら各種のプロセッサのうちの一つで構成されていてもよいし、同種又は異種の二つ以上のプロセッサで構成されていてもよい。たとえば、複数のFPGAで構成されてもよいし、CPU及びFPGAの組み合わせで構成されてもよい。
 また、複数の処理部を一つのプロセッサで構成してもよい。複数の処理部を一つのプロセッサで構成する例としては、第1に、クライアント、サーバなどのコンピュータに代表されるように、一つ以上のCPUとソフトウェアとの組合せで一つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(SoC:System On Chip)などに代表されるように、複数の処理部を含むシステム全体の機能を一つのICチップ(IC:Integrated Circuit)で実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを一つ以上用いて構成される。
 更に、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路である。
1 デジタルカメラ
10 交換レンズ
12 鏡筒
14 レンズ操作部
16 フォーカスリング
18 絞りリング
20 フォーカスレンズ
22 フォーカスレンズ駆動部
24 フォーカスレンズ位置検出部
26 絞り
28 絞り駆動部
30 レンズ制御部
30a フォーカスレンズ駆動制御部
30b 絞り駆動制御部
100 カメラ本体
102 マウント
104 メインモニタ
104a LCDドライバ
106 サブモニタ
106a LCDドライバ
108 電子ビューファインダ(EVF)
108a LCDドライバ
110 カメラ操作部
111 感度ダイヤル
112 消去ボタン
113 電源レバー
114 シャッターボタン
115 ドライブボタン
116 サブモニタ照明ボタン
117 シャッタースピードダイヤル
118 再生ボタン
119 フロントコマンドダイヤル
120 リアコマンドダイヤル
121 フォーカスレバー
122 クイックメニューボタン
123 メニュー/OKボタン
124 セレクターボタン
125 表示/BACKボタン
126 第1ファンクションボタン
127 第2ファンクションボタン
128 第3ファンクションボタン
129 第4ファンクションボタン
130 第5ファンクションボタン
210 イメージセンサ
210B イメージセンサ
210G イメージセンサ
210R イメージセンサ
212 撮像面
214 AFエリア
216 通常画素
218 位相差検出画素
218A 第1位相差検出画素
218B 第2位相差検出画素
220 イメージセンサ移動駆動部
220x イメージセンサ移動駆動部
222 イメージセンサ位置検出部
222x イメージセンサ位置検出部
224 イメージセンサ駆動部
226 アナログ信号処理部
228 ADC(アナログデジタル変換器)
230 デジタル信号処理部
232 位相差AF処理部
234 メモリカードインタフェース
236 メモリカード
250 カメラ制御部
250a イメージセンサ移動制御部
310 色分解プリズム
310a 入射面
310b B光出射面
310g G光出射面
310r R光出射面
330 撮像ユニット
A 被写体
E 端部
L 光軸
R0 基準位置
W イメージセンサの可動範囲
S11~S17 追尾制御の処理手順
S21~S27 追尾制御の処理手順

Claims (17)

  1.  焦点調節機能を備えた撮像レンズと、
     前記撮像レンズを介して被写体を撮像するイメージセンサと、
     前記イメージセンサを光軸に沿って移動させるイメージセンサ移動駆動部と、
     デフォーカス量を検出する焦点検出部と、
     前記被写体に合焦すると、前記焦点検出部で検出される前記デフォーカス量に基づいて、前記イメージセンサの移動を制御し、前記被写体を追尾するイメージセンサ移動制御部と、
     を備えた撮像装置。
  2.  前記イメージセンサ移動制御部は、前記イメージセンサが可動範囲の端部に到達すると、前記被写体の追尾を終了し、前記イメージセンサを基準位置に復帰させる、
     請求項1に記載の撮像装置。
  3.  前記イメージセンサ移動制御部は、前記デフォーカス量の変化に応じた移動速度で前記イメージセンサを移動させて、前記イメージセンサを前記基準位置に復帰させる、
     請求項2に記載の撮像装置。
  4.  前記イメージセンサの前記基準位置が、前記撮像レンズで規定されるフランジバックの位置に設定される、
     請求項3に記載の撮像装置。
  5.  前記イメージセンサ移動制御部は、前記イメージセンサが可動範囲の端部に到達すると、前記被写体の追尾を終了し、前記被写体に再度合焦するまで前記イメージセンサを前記端部の位置で待機させる、
     請求項1に記載の撮像装置。
  6.  前記焦点検出部は、前記イメージセンサの撮像面に備えられた複数の位相差検出画素の出力に基づいて前記デフォーカス量を検出する、
     請求項1から5のいずれか1項に記載の撮像装置。
  7.  前記イメージセンサ移動制御部は、前記焦点検出部で検出される前記デフォーカス量が一定時間継続して閾値以下の場合に合焦したと判定する、
     請求項1から6のいずれか1項に記載の撮像装置。
  8.  前記イメージセンサ移動制御部は、前記焦点検出部で検出される前記デフォーカス量が一定時間継続して第1の閾値以下、かつ、前記焦点検出部で検出される前記デフォーカス量の変化量が一定時間継続して第2の閾値以下の場合に合焦したと判定する、
     請求項1から6のいずれか1項に記載の撮像装置。
  9.  追尾モードのオン、オフを手動で切り替える追尾モード手動切替部を更に備え、
     前記イメージセンサ移動制御部は、前記追尾モードがオンの場合に前記イメージセンサの移動を制御して前記被写体を追尾する、
     請求項1から8のいずれか1項に記載の撮像装置。
  10.  一定時間継続して合焦すると、追尾モードをオンする追尾モード自動切替部を更に備え、
     前記イメージセンサ移動制御部は、前記追尾モードがオンの場合に前記イメージセンサの移動を制御して前記被写体を追尾する、
     請求項1から8のいずれか1項に記載の撮像装置。
  11.  前記イメージセンサで撮像された画像がリアルタイムに表示されるモニタ又は電子ビューファインダを更に備え、
     前記モニタ及び前記電子ビューファインダの解像度が前記イメージセンサの解像度よりも低い、
     請求項1から10のいずれか1項に記載の撮像装置。
  12.  焦点調節機能を備えた撮像レンズが装着されるマウントと、
     前記撮像レンズを介して被写体を撮像するイメージセンサと、
     前記イメージセンサを光軸に沿って移動させるイメージセンサ移動駆動部と、
     デフォーカス量を検出する焦点検出部と、
     前記被写体に合焦すると、前記焦点検出部で検出される前記デフォーカス量に基づいて、前記イメージセンサの移動を制御し、前記被写体を追尾するイメージセンサ移動制御部と、
     を備えた撮像装置本体。
  13.  前記イメージセンサ移動制御部は、前記イメージセンサが可動範囲の端部に到達すると、前記被写体の追尾を終了し、前記イメージセンサを基準位置に復帰させる、
     請求項12に記載の撮像装置本体。
  14.  前記イメージセンサ移動制御部は、前記イメージセンサが可動範囲の端部に到達すると、前記被写体の追尾を終了し、前記被写体に再度合焦するまで前記イメージセンサを前記端部の位置で待機させる、
     請求項12に記載の撮像装置本体。
  15.  焦点調節機能を備えた撮像レンズと、前記撮像レンズを介して被写体を撮像するイメージセンサと、前記イメージセンサを光軸に沿って移動させるイメージセンサ移動駆動部と、デフォーカス量を検出する焦点検出部と、を備えた撮像装置の合焦制御方法であって、
     前記被写体に合焦したか否かを判定するステップと、
     前記被写体に合焦した場合に前記焦点検出部で検出される前記デフォーカス量に基づいて、前記イメージセンサの移動を制御して、前記被写体を追尾するステップと、
     を含む撮像装置の合焦制御方法。
  16.  前記イメージセンサが可動範囲の端部に到達すると、前記被写体の追尾を終了し、前記イメージセンサを基準位置に復帰させるステップを更に含む、
     請求項15に記載の撮像装置の合焦制御方法。
  17.  前記イメージセンサが可動範囲の端部に到達すると、前記被写体の追尾を終了し、前記被写体に再度合焦するまで前記イメージセンサを前記端部の位置で待機するステップを更に含む、
     請求項15に記載の撮像装置の合焦制御方法。
PCT/JP2018/032914 2017-09-20 2018-09-05 撮像装置、撮像装置本体及び撮像装置の合焦制御方法 WO2019058973A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880060183.2A CN111133356B (zh) 2017-09-20 2018-09-05 摄像装置、摄像装置主体及摄像装置的对焦控制方法
JP2019543539A JP6836657B2 (ja) 2017-09-20 2018-09-05 撮像装置、撮像装置本体及び撮像装置の合焦制御方法
US16/824,187 US10931865B2 (en) 2017-09-20 2020-03-19 Focus adjustment function of imaging device, focus adjustment function of imaging device main body, and focus adjustment method of imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017180245 2017-09-20
JP2017-180245 2017-09-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/824,187 Continuation US10931865B2 (en) 2017-09-20 2020-03-19 Focus adjustment function of imaging device, focus adjustment function of imaging device main body, and focus adjustment method of imaging device

Publications (1)

Publication Number Publication Date
WO2019058973A1 true WO2019058973A1 (ja) 2019-03-28

Family

ID=65811258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032914 WO2019058973A1 (ja) 2017-09-20 2018-09-05 撮像装置、撮像装置本体及び撮像装置の合焦制御方法

Country Status (4)

Country Link
US (1) US10931865B2 (ja)
JP (1) JP6836657B2 (ja)
CN (1) CN111133356B (ja)
WO (1) WO2019058973A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113893A1 (ja) * 2020-11-26 2022-06-02 富士フイルム株式会社 撮像装置、撮像制御方法及び撮像制御プログラム
WO2023058328A1 (ja) * 2021-10-04 2023-04-13 ソニーグループ株式会社 撮像装置、制御方法、プログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188934A1 (ja) * 2018-03-30 2019-10-03 富士フイルム株式会社 撮像装置、撮像方法、及びプログラム
JP2022190236A (ja) * 2021-06-14 2022-12-26 キヤノン株式会社 電子機器、電子機器の制御方法、プログラム、記憶媒体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393277A (ja) * 1986-10-08 1988-04-23 Canon Inc 自動合焦装置
US6689998B1 (en) * 2000-07-05 2004-02-10 Psc Scanning, Inc. Apparatus for optical distancing autofocus and imaging and method of using the same
JP2006145813A (ja) * 2004-11-19 2006-06-08 Pentax Corp デジタルカメラ
JP2010107866A (ja) * 2008-10-31 2010-05-13 Olympus Imaging Corp デジタルカメラ及び光学機器
JP2014048545A (ja) * 2012-08-31 2014-03-17 Canon Inc 撮像装置
JP2016006940A (ja) * 2014-06-20 2016-01-14 リコーイメージング株式会社 コントラストaf機能を備えたカメラ
JP2016148832A (ja) * 2015-02-06 2016-08-18 パナソニックIpマネジメント株式会社 カメラ本体及び撮像装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03143173A (ja) * 1989-10-30 1991-06-18 Toshiba Corp ビデオ・カメラの自動焦点調節装置
JPH04158322A (ja) * 1990-10-23 1992-06-01 Ricoh Co Ltd 自動焦点調整装置
US5578813A (en) * 1995-03-02 1996-11-26 Allen; Ross R. Freehand image scanning device which compensates for non-linear movement
US5969760A (en) * 1996-03-14 1999-10-19 Polaroid Corporation Electronic still camera having mechanically adjustable CCD to effect focus
CN101616262B (zh) * 2005-02-07 2012-07-25 松下电器产业株式会社 成像装置
CN101614858B (zh) * 2008-06-26 2011-08-31 深圳富泰宏精密工业有限公司 对焦系统
JP5839786B2 (ja) * 2010-07-12 2016-01-06 キヤノン株式会社 撮像装置およびトラッキングデータの調整方法
US9818202B2 (en) * 2011-12-13 2017-11-14 Sony Corporation Object tracking based on distance prediction
KR20150014007A (ko) * 2013-07-25 2015-02-06 삼성전자주식회사 이미지 센서 및 이를 포함하는 촬상 장치
JP6120728B2 (ja) * 2013-08-27 2017-04-26 キヤノン株式会社 光学機器
JP6486041B2 (ja) * 2014-09-11 2019-03-20 キヤノン株式会社 撮像装置およびその制御方法
US9918004B2 (en) * 2015-02-06 2018-03-13 Panasonic Intellectual Property Management Co., Ltd. Camera body capable of driving an image sensor along an optical axis in response to a change in an optical state of an object image
US10200592B2 (en) * 2016-03-29 2019-02-05 Panasonic Intellectual Property Management Co., Ltd. Camera body and imaging device
EP3244604B1 (en) * 2016-05-12 2018-07-18 Axis AB Camera
JP2018084701A (ja) * 2016-11-24 2018-05-31 オリンパス株式会社 焦点調節装置、カメラシステム及び焦点調節方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393277A (ja) * 1986-10-08 1988-04-23 Canon Inc 自動合焦装置
US6689998B1 (en) * 2000-07-05 2004-02-10 Psc Scanning, Inc. Apparatus for optical distancing autofocus and imaging and method of using the same
JP2006145813A (ja) * 2004-11-19 2006-06-08 Pentax Corp デジタルカメラ
JP2010107866A (ja) * 2008-10-31 2010-05-13 Olympus Imaging Corp デジタルカメラ及び光学機器
JP2014048545A (ja) * 2012-08-31 2014-03-17 Canon Inc 撮像装置
JP2016006940A (ja) * 2014-06-20 2016-01-14 リコーイメージング株式会社 コントラストaf機能を備えたカメラ
JP2016148832A (ja) * 2015-02-06 2016-08-18 パナソニックIpマネジメント株式会社 カメラ本体及び撮像装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113893A1 (ja) * 2020-11-26 2022-06-02 富士フイルム株式会社 撮像装置、撮像制御方法及び撮像制御プログラム
WO2023058328A1 (ja) * 2021-10-04 2023-04-13 ソニーグループ株式会社 撮像装置、制御方法、プログラム

Also Published As

Publication number Publication date
US10931865B2 (en) 2021-02-23
CN111133356B (zh) 2022-03-01
CN111133356A (zh) 2020-05-08
JPWO2019058973A1 (ja) 2020-11-05
JP6836657B2 (ja) 2021-03-03
US20200221017A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
US9977217B2 (en) Imaging device
JP6836657B2 (ja) 撮像装置、撮像装置本体及び撮像装置の合焦制御方法
US9578231B2 (en) Image capture apparatus and method for controlling the same
JP6781859B2 (ja) 撮像装置、その焦点合わせ補助方法、及び、その焦点合わせ補助プログラム
JP7012142B2 (ja) 焦点調節操作検出装置、焦点調節操作検出方法及び焦点調節操作検出プログラム、並びに、撮像装置本体及び撮像装置
CN111095066B (zh) 摄像装置及摄像装置的对焦控制方法
WO2017090233A1 (ja) 撮像装置
US11729500B2 (en) Lowpass filter control apparatus and lowpass filter control method for controlling variable lowpass filter
US10764488B2 (en) Imaging device, imaging device main body, and focusing control method of imaging device
JP2010014788A (ja) 撮像素子、撮像装置
JP3633022B2 (ja) フォーカシング方法及び装置
US20110032390A1 (en) Digital photographing apparatus and moving picture capturing method performed by the same
JP7241511B2 (ja) 撮像装置およびその制御方法
JPH06205258A (ja) 合焦位置検出装置
JPH04296175A (ja) カメラ装置
JPH0332172A (ja) 固体撮像カメラのフォーカシング装置
JP2013042289A (ja) 測光装置及び撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857880

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543539

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857880

Country of ref document: EP

Kind code of ref document: A1