WO2019058661A1 - 制御装置、および変速機構 - Google Patents
制御装置、および変速機構 Download PDFInfo
- Publication number
- WO2019058661A1 WO2019058661A1 PCT/JP2018/022776 JP2018022776W WO2019058661A1 WO 2019058661 A1 WO2019058661 A1 WO 2019058661A1 JP 2018022776 W JP2018022776 W JP 2018022776W WO 2019058661 A1 WO2019058661 A1 WO 2019058661A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotation
- output shaft
- plate
- control device
- motor
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H59/00—Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
- F16H59/02—Selector apparatus
- F16H59/08—Range selector apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/26—Generation or transmission of movements for final actuating mechanisms
- F16H61/28—Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
- F16H61/32—Electric motors actuators or related electrical control means therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H63/00—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
- F16H63/02—Final output mechanisms therefor; Actuating means for the final output mechanisms
- F16H63/04—Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
Definitions
- the present invention relates to a control device and a transmission mechanism.
- the shift-by-wire transmission mechanism has a plate rotating with respect to the output shaft of the motor and a transmission whose shift position is switched by the rotation of the plate.
- the amount of rotation of the output shaft is determined based on the rotational position of the plate.
- the park-by-wire apparatus described in Patent Document 1 estimates the rotational position of the plate based on the rate of change of the current value flowing to the motor.
- An object of the present invention is, for example, to provide a control device that is advantageous in terms of the accuracy of shift position switching control.
- An exemplary embodiment of the present invention is a control device of a shift-by-wire type transmission mechanism having a plate rotating about an output shaft by rotation of a motor output shaft and a transmission whose shift position is switched by rotation of the plate.
- a torque measuring unit fixed to the output shaft and measuring the torque of the output shaft, and a control unit controlling the rotation of the output shaft by adjusting a drive signal for driving the motor, the control unit including the output shaft
- FIG. 1 is a schematic view of a shift-by-wire transmission mechanism having a control device.
- FIG. 2 is a schematic view showing the shape of a plate.
- FIG. 3 is a block diagram showing the configuration of the control device according to the first embodiment.
- FIG. 4 is a view showing temporal change of torque calculated when the shift position is sequentially switched from the first groove to the fourth groove.
- FIG. 5 is a diagram showing the time change of the rotational speed of the motor when the shift position is sequentially switched from the first groove to the fourth groove.
- FIG. 6 is a diagram showing the time change of the number of pulses of the position signal and the shift angle position when the shift position is sequentially switched from the first groove to the fourth groove.
- FIG. 7 is a block diagram showing a configuration of a control device according to the fourth embodiment.
- FIG. 1 is a schematic view of a shift-by-wire type transmission mechanism 1 having a control device 30 according to the present embodiment.
- the transmission mechanism 1 is used, for example, for a movable body such as an automobile. In the present embodiment, the transmission mechanism 1 is attached to a car.
- the transmission mechanism performs a shift in the moving body by the shift operation of the driver of the moving body.
- the transmission mechanism 1 has a plate 10 and a transmission 20.
- the shift position of the transmission 20 is switched by the rotation of the plate 10.
- the control device 30 controls the transmission mechanism 1 by controlling the rotation of the plate 10 so as to be the shift position selected by the driver of the moving body.
- the cost of the control device for controlling the rotation of the plate can be suppressed and the cost of the transmission mechanism can also be suppressed, as compared with control devices having other configurations. Can.
- FIG. 2 is a schematic view showing the shape of the plate 10.
- the plate 10 is a plate-like member. As shown in FIG. 2, when viewed from the extension direction of the output shaft, the plate 10 protrudes in the rotation direction (FIG. 2 in the left-right direction) at both ends of the outer side surface.
- the plate 10 has a first groove P, a second groove R, a third groove N and a fourth groove D corresponding to the shift position, and an opening 11 into which the output shaft of the motor of the control device 30 is fitted.
- the plate 10 rotates in the arrow direction with respect to the output shaft fitted in the opening 11.
- the first groove P, the second groove R, the third groove N, and the fourth groove D are grooves that are disposed on the side surface of the plate 10 along the direction of rotation, and are recessed inwardly from the side surface to the plate 10.
- the first groove P, the second groove R, the third groove N, and the fourth groove D are disposed on the outer surface of the plate 10 along the direction of rotation, from the outer surface side to the opening 11 side. It is a recessed groove.
- the first groove P, the second groove R, the third groove N, and the fourth groove D are located radially outward from the opening 11 with reference to the output shaft.
- the first groove P, the second groove R, the third groove N and the fourth groove D are arranged in this order in the rotational direction.
- the output shaft of the motor may be fixed directly to the opening 11 or indirectly fixed via another member.
- each groove is previously designed as a rotational position where the first groove P is parking, the second groove R is backward travel, the third groove N is neutral, and the fourth groove D is forward shift position.
- the shape and arrangement of the grooves are not limited to those illustrated.
- the plate 10 is also called a detent plate.
- the shift position switching mechanism 22 is connected to the plate 10 via the pin 23.
- the pins 23 are attached to the side of the plate 10. In other words, the pins 23 are attached to at least one side in the thickness direction of the plate 10.
- the shift position switching mechanism 22 connected to the pin 23 advances and retracts into the transmission 20.
- the oil passage is switched by the amount of movement of the shift position switching mechanism 22 into and out of the transmission 20.
- first groove P the oil passage in the transmission 20 is parked (first groove P), reverse travel (second groove R), neutral ( The third groove N) and the forward travel (fourth groove D) are switched in this order.
- the order and arrangement of parking (first groove P), reverse traveling (second groove R), neutral (third groove N) and forward traveling (fourth groove D) may be different depending on the vehicle type.
- Control device The controller 30 controls the rotation of the output shaft 31 of the motor that rotates the plate 10.
- a so-called mechanical-electrical motor device is used in which the control device 30 and the motor are incorporated in a common housing.
- FIG. 3 is a block diagram showing a configuration of control device 30.
- Control device 30 includes control unit 32, drive unit 33, current detection unit 34, and position detection unit 35.
- the motor M used in the present embodiment is a three-phase synchronous brushless motor.
- the motor M has coils forming three phases of U phase, V phase and W phase.
- a predetermined current is supplied from the controller 30 to each of the U-phase, V-phase and W-phase coils in the motor M.
- current is supplied to the coils, a rotating magnetic field is generated between the stator having the U-phase, V-phase and W-phase three-phase coils and the rotor having the magnet.
- the rotor can rotate with respect to the stator of the motor M.
- the number of phases of the motor M to be used is not limited to three.
- the motor M may be a single-phase, two-phase, four or more phase multiphase motor.
- the controller 32 controls the rotation of the output shaft 31 by adjusting a drive signal for driving the motor M.
- the control unit 32 receives a target rotational position command of the motor M based on the shift position selected by the driver.
- the control unit 32 is, for example, a computer having an arithmetic processing unit such as a CPU, a memory such as a RAM, and a storage unit such as a hard disk drive.
- an electric circuit having an arithmetic device such as a microcontroller may be used for the control unit 32.
- the drive unit 33 supplies the current supplied from the external power supply (not shown) to the motor M based on the drive signal adjusted by the control unit 32.
- the drive unit 33 has, for example, an inverter circuit and an inverter drive unit.
- the inverter circuit includes, for example, a transistor such as a metal oxide semiconductor field effect transistor (MOSFET) as a switching element.
- MOSFET metal oxide semiconductor field effect transistor
- the motor M is a three-phase synchronous brushless motor, three pairs of switching elements are provided in parallel in the inverter circuit.
- the number of switching element pairs may be more than three.
- six pairs of switching elements may be provided.
- the inverter drive unit is an electric circuit that operates the inverter circuit.
- the inverter drive unit outputs the drive signal output from the control unit 32 to the inverter circuit to cause the switching element to perform predetermined switching.
- the inverter drive unit outputs the PWM drive signal of the pulse width modulation method (PWM method), which indicates the drive amount of the motor M, output from the control unit 32 to the six switching elements included in the inverter circuit. Supply.
- PWM method pulse width modulation method
- the inverter circuit supplies current to the U-phase, V-phase, and W-phase coils of the motor M based on the PWM drive signal supplied from the inverter drive unit.
- the current detection unit 34 detects the current flowing to the drive unit 33.
- the motor M is a three-phase synchronous brushless motor. Therefore, the current supplied to each of the U-phase, V-phase and W-phase of the motor M is detected.
- the current detection unit 34 outputs the current value of the detected current to the control unit 32.
- a current sensor or a shunt resistor is used as the current detection unit 34.
- the position detection unit 35 detects the rotational position of the rotor of the motor M, and outputs a position signal indicating the detected rotational position.
- a plurality of Hall elements are used as the position detection unit 35.
- three Hall elements are used and arranged at intervals of 120 degrees in the rotational direction of the rotor.
- the Hall element detects the magnetic field of the magnet of the rotor provided coaxially with the output shaft 31 of the motor M or the magnetic field of the sensor magnet provided coaxially with the output shaft 31 of the motor M.
- the number of Hall elements to be used, the arrangement, and the number of poles of the magnet can be changed.
- the number of Hall elements may be, for example, one or two, depending on the number of phases of the motor.
- the sensor magnet may be fixed to the tip of the output shaft by an adhesive or the like, or may be attached directly to the selection of the output shaft, such as being recessed and fitted to the tip of the output shaft.
- the sensor magnet may be indirectly attached to the output shaft 31 via a member such as a magnet holder, for example.
- Each Hall element outputs the detected magnetic field as a voltage signal (voltage signal waveform).
- the position detection unit 35 includes various electronic components including a comparator and an electronic circuit. Each output voltage signal is amplified by an electronic circuit and converted into a pulse signal by a comparator or the like. The position detection unit 35 outputs the pulse signal to the control unit 32 as a position signal.
- Each Hall element of the present embodiment for example, outputs the detected magnetic field as a sine wave whose phase is shifted by 120 degrees.
- the waveform of the voltage signal output from the Hall element may be another waveform such as a rectangular wave.
- the control unit 32 determines whether the shift position has been switched based on the torque transmitted to the plate 10 via the output shaft 31.
- the torque of the output shaft 31 is defined as T, the voltage applied to the motor M as V, the current value detected by the current detection unit 34 as I, and the angular velocity of the rotor of the motor M as ⁇ .
- the angular velocity ⁇ of the rotor is obtained from the position signal (a pulse signal in the present embodiment) output from the position detection unit 35. Then, in FIG.
- the torque T is the current value I, the applied voltage V, and the angular velocity ⁇ of the rotor. Using, it is calculated by the following equation (1).
- the plate 10 may be rotated counterclockwise.
- the speed reduction unit is, for example, a speed reduction mechanism or the like configured by a plurality of gears and the like.
- FIG. 4 is a view showing a time change of torque T calculated when the shift position is sequentially switched from the first groove P to the fourth groove D.
- the timing at which the groove into which the engaging portion 21a fits is switched from the first groove P to the second groove R is time t 1
- the timing at which the second groove R is switched to the third groove N is time t 2
- the third groove N to fourth the timing of switching the groove D and the time t 3.
- the direction of the torque transmitted to the plate 10 via the output shaft 31 is the positive direction when the engaging portion 21a is climbing the slope of the groove by rotating the plate 10 clockwise. Then, when the engaging portion 21a climbs the slope of the groove and starts to descend the slope of the next groove, the direction of the torque switches from the positive direction to the negative direction. In other words, when the engaging portion 21a moves from the radially inner side (the opening 11 side) to the radially outer side (the side surface of the plate 10) on the inner side surface forming the groove, the output shaft The direction of the torque transmitted to the plate 10 via 31 is positive.
- the magnitude of the torque calculated is less than zero. That is, at time t 1, the direction of the torque to be calculated, the negative direction. Also at time t 2 and time t 3 , the magnitude of the torque similarly calculated is smaller than zero. That is, also at time t 2 and time t 3 , the direction of the calculated torque is negative.
- the control unit 32 monitors whether or not the magnitude of the calculated torque is smaller than zero, and determines that the shift position has been switched when the magnitude of the calculated torque becomes smaller than zero, based on the determination result. Adjust the drive signal. In other words, when the direction of the calculated torque switches from the positive direction to the negative direction, the control unit 32 determines that the shift position has switched, and controls the drive signal based on the determination result.
- the control unit 32 can also determine the current shift position using not only the magnitude of the torque but also the number of times the shift position has been switched. That is, the control unit 32 can count the number of times of shift position switching, and can also determine the current shift position by using the counted number of times of shift position switching.
- control device 30 of the present embodiment whether or not the shift position has been switched based on the magnitude of the torque calculated using the position signal indicating the rotational position of the motor M in addition to the current for driving the motor M It can be judged. Therefore, switching of the shift position can be controlled more accurately than estimating the rotational position of the plate 10 only by the drive current of the motor M. Further, according to the control device 30 in the present embodiment, it is not necessary to detect the rotation angle of the output shaft 31 in order to determine the switching of the shift position. Therefore, it is not necessary to provide a sensor for detecting the angle of the output shaft 31, which is advantageous in that the cost of the device can be reduced as compared with a device requiring a sensor.
- the control unit 32 monitors torque after opening a predetermined time interval.
- a predetermined time interval for example, as shown in FIG. 4, when the shift position is switched, it may be repeated that the magnitude of the torque becomes smaller or larger than zero. Therefore, by monitoring the torque by the control unit 32 after leaving a predetermined time interval, it is possible to prevent an overlapping count of switching of the shift position.
- the predetermined time interval is determined based on the shapes of the first groove P, the second groove R, the third groove N, and the fourth groove D.
- the shape of each groove of the plate 10 includes, for example, the depth of the groove, the width of the groove, and the like.
- the shape of each groove of the plate 10 can change the torque monitoring interval. Therefore, in the present embodiment, for example, the transmission mechanism can be controlled without opening a time interval for monitoring more than necessary.
- the function of the control unit 32 is different from that of the first embodiment.
- the control unit 32 also monitors the number of rotations of the motor in addition to the torque.
- the control unit 32 calculates the number of rotations of the motor from the position signal output from the position detection unit 35.
- the control unit 32 starts monitoring the number of revolutions of the motor after the number of revolutions of the motor calculated for the first time after starting the driving of the motor M falls within a predetermined range.
- the control unit 32 determines whether the calculated number of revolutions of the motor is out of a predetermined range.
- the control unit 32 determines that the shift position has been switched when determining that the shift position is out of the predetermined range. In other words, the control unit 32 determines that the shift position has been switched when the number of revolutions of the motor deviates from the predetermined threshold.
- the threshold may be only a predetermined value, or may be a predetermined range having an upper limit and a lower limit. According to the present embodiment, the control unit 32 monitors not only the torque but also the number of rotations of the motor (rotor), thereby improving the control accuracy of the transmission mechanism.
- FIG. 5 is a diagram showing a time change of the rotational speed of the motor when the shift position is sequentially switched from the first groove to the fourth groove.
- the definition of time t 1 to time t 3 is the same as that shown in FIG. That is, the timing at which the groove in which the engaging portion 21a fits is switched from the first groove P to the second groove R is time t 1 , the timing at which the second groove R is switched to the third groove N is time t 2 , the third groove N to the timing of switching to the fourth groove D and time t 3.
- the rotation speed of the motor is controlled by the control unit 32 so as to approach the target rotation speed.
- the controlled rotation speed usually falls within a predetermined range, but deviates from the predetermined range when the shift position is switched.
- a shaded portion shown in FIG. 5 indicates a predetermined range including the target rotation number.
- the rotation speed of the motor is a rotational speed greater than the rotational speed of the predetermined range.
- the rotation speed of the motor is smaller rotational speed than the rotational speed of the predetermined range.
- the control unit 32 can also determine the current shift position the number of times the motor rotational speed deviates from the predetermined range.
- the predetermined range is determined based on the accuracy of control by the control unit 32. By determining the predetermined range according to the performance of the control unit 32, it is possible to improve the control accuracy of the transmission mechanism.
- the predetermined range is also determined based on the shapes of the first groove P, the second groove R, the third groove N, and the fourth groove D.
- the shape of the groove includes, for example, the depth of the groove, the width of the groove, and the like.
- the shape of the groove may include the dimension in the radial direction of the inner side surface of the groove, the dimension in the rotation direction of the opening of the groove, and the like.
- the control unit 32 monitors the number of pulses of the position signal in addition to the torque or the number of rotations of the motor.
- the control unit 32 calculates the rotation angle of the plate 10 using the number of pulses of the pulse signal, and determines switching of the shift position based on the calculated rotation angle.
- the control unit monitors the number of pulses of the position signal in addition to the number of rotations of the motor, thereby improving the control accuracy of the transmission mechanism.
- the relationship between the number of pulses of the pulse signal and the rotation angle of the plate 10 is as follows. First, it is assumed that the number of pulses is N p , the rotation angle of the plate 10 is a, the number of poles of the magnet detected by the position detection unit 35 is P, and the number of sensors in the position detection unit 35 is s.
- the reduction ratio R A of the reduction portion of the motor M is also used, the relationship between the pulse number N p and the rotation angle a is expressed by equation (2).
- N p a ⁇ RA / (360 / P ⁇ s) (2)
- the number s of sensors is three.
- the number of poles P may be, for example, eight.
- the reduction ratio R A is, for example, 60.
- N p 4 ⁇ a.
- the rotation angle a of the plate 10 can be calculated from the number of pulses N p from this equation.
- control unit 32 connects the calculated rotation angle, a straight line connecting the rotation center of the plate 10 and any one of the plurality of grooves, and connects the rotation center and the groove adjacent to any one of the grooves.
- the angle formed by the straight line can also be used to determine the switching of the shift position.
- the rotation center of the plate 10 is the center 11 a of the opening 11.
- the shape of the opening 11 is substantially circular in a plan view (when viewed from the output shaft side). A straight line connecting the center 11a and the first groove P, and the angle between the straight line connecting the second groove R next to the center 11a and the first groove P, and the angle theta 1.
- the angles between the center 11 a and the straight line connecting the grooves are respectively set as an angle ⁇ 2 and an angle ⁇ 3 . That is, the straight line connecting the center 11a and the second groove R, the angle between the straight line connecting the third groove N adjacent to the center 11a and the second groove R, the angle theta 2. And the straight line connecting the center 11a and the third groove N, the angle between the straight line connecting the fourth groove D next to the center 11a and the third groove N, the angle theta 3.
- the control unit 32 can also determine the switching of the shift position from the rotation angle of the plate 10 calculated from the angle ⁇ 1 , the angle ⁇ 2 and the angle ⁇ 3, and the number of pulses. For example, when the angles ⁇ 1 , ⁇ 2 and ⁇ 3 are all equal and the rotation angle is larger than these, the shift position is switched at least once.
- the control accuracy of the transmission mechanism can be improved by determining the rotation angle of the plate 10 which is the determination reference of the shift position switching by the arrangement of the plurality of grooves formed in the plate 10.
- the control unit 32 sets the rotational position of the plate 10 when the shift position is a predetermined shift position as the initial position, and controls the rotation of the output shaft 31 to rotate the plate 10 to the initial position. Then, the control unit 32 can determine the switching of the shift position using the rotation angle calculated from the number of pulses with reference to the initial position. For example, the initial position of the rotational position of the plate 10 is set as the first groove P. Control unit 32, the calculated rotation angle if it exceeds the angle theta 1, it can be determined that the shift position is switched. According to this, the control unit 32 can determine the switching of the shift position using the rotation angle calculated based on the initial position. Therefore, for example, even when the current shift position is not known, the transmission can be controlled by moving the plate to the initial position.
- FIG. 6 is a diagram showing temporal changes in the number of pulses of the position signal and the shift angle position when the shift position is sequentially switched from the first groove to the fourth groove.
- the left vertical axis is the rotation angle calculated from the equation (2) and the number of pulses
- the right vertical axis is the number of pulses.
- the definition of time t 1 to time t 3 is the same as that shown in FIG.
- the number of pulses corresponding to the rotation angle ⁇ 1 n 1 1, the number of pulses corresponding to the rotation angle ⁇ 1 + ⁇ 2 n 2, the number of pulses corresponding to the rotation angle ⁇ 1 + ⁇ 2 + ⁇ 3 and n 3.
- the time when the rotation angle becomes ⁇ 1 is time t 1
- the time when the rotation angle becomes ⁇ 2 is time t 2
- the time when the rotation angle becomes ⁇ 3 is time t 3 .
- an arbitrary timing within the time range in which the rotation angle is, for example, ⁇ 1 ⁇ 2 degrees may be taken as time t 1 .
- any timing within the time range where the rotation angle is ⁇ 1 + ⁇ 2 ⁇ 2 degrees is time t 2
- any timing within the time range where the rotation angle is ⁇ 1 + ⁇ 2 + ⁇ 3 ⁇ 2 degrees it may be used as the time t 3.
- the range of the error of the mechanical angle of the rotation angle described above is not limited to ⁇ 2 degrees, and may be set as appropriate.
- FIG. 7 is a block diagram showing the configuration of the control device 40 of the present embodiment.
- the control device 40 is fixed to the output shaft 31 and has a torque measurement unit 44 that measures the torque of the output shaft 31.
- the torque measurement unit 44 converts, for example, a twist amount corresponding to the torque of the output shaft 31 into a voltage, and outputs the voltage to the control unit 42.
- the control unit 42 controls the rotation of the output shaft 31 by adjusting a drive signal for driving the motor M.
- various torque sensors can be used as the torque measurement unit 44.
- the control unit 42 of the present embodiment determines whether the magnitude of the torque measured by the torque measurement unit 44 becomes smaller than zero after the start of rotation Monitor whether or not. In other words, it is monitored whether the torque measured by the torque measurement unit 44 has switched from the positive direction to the negative direction.
- the control unit 42 determines that the shift position has been switched when the torque becomes smaller than zero, and adjusts the drive signal based on the determination result. In other words, the control unit 42 determines that the shift position has been switched when the torque measured by the torque measurement unit 44 switches from the positive direction to the negative direction, and controls the drive signal based on the determination result.
- the control device 40 of the present embodiment switching of the shift position can be determined based on the measurement result of torque by the torque measurement unit 44. Therefore, the rotational position of the plate 10 can be estimated without being affected by the disturbance noise included in the drive current of the motor M. Therefore, the control device 40 of the present embodiment is advantageous in that the control accuracy of the switching of the shift position is high as compared with the case where the shift position is switched based on the drive current. Further, according to the control device 40 in the present embodiment, it is not necessary to detect the rotation angle of the output shaft 31 in order to determine the switching of the shift position. Therefore, it is not necessary to provide the control device 40 with a sensor for detecting the rotation angle of the output shaft 31, which may be advantageous in that the cost of the device can be reduced as compared with the device having the sensor.
- the monitoring of the rotational speed in the second embodiment may be combined with the measurement of the torque. That is, in the control device 40 of the present embodiment, control of the transmission mechanism may be performed based on the measured torque and the monitored rotation speed. In the control device 40, the control unit also monitors the number of rotations of the motor, thereby further improving the control accuracy of the transmission mechanism. Moreover, the monitoring of the pulse number of 3rd Embodiment may also be combined with the control apparatus 40 of this embodiment. That is, in the control device 40 of the present embodiment, control of the transmission mechanism may be performed based on the torque measured as described above and the number of pulses monitored as described above.
- control accuracy of the transmission mechanism can be further improved by monitoring the number of pulses of the position signal as well.
- control device 40 of this embodiment may be combined with the third embodiment. That is, in the control device 40 of the present embodiment, control of the transmission mechanism may be performed based on the torque measured as described above and the number of pulses monitored as described above.
- the controller may monitor only the rotational speed of the motor without monitoring the torque.
- the control unit can determine switching of the shift position based on only the number of rotations of the motor M. Therefore, in this case, the rotational position of the plate 10 can be estimated without being affected by the disturbance noise included in the drive current of the motor M. Therefore, the control device 40 of the present embodiment is advantageous in that the control of switching control of the shift position can be made higher as compared with the case where the shift position is switched based on the drive current.
- the second embodiment and the third embodiment may be combined without monitoring the torque. That is, based on the number of rotations of the motor M and the number of pulses of the position signal, the control unit may determine switching of the shift position and adjust the drive signal. The control unit monitors not only the number of rotations of the motor M but also the number of pulses of the position signal, thereby further improving the control accuracy of the transmission mechanism.
- the controller may monitor only the number of pulses without monitoring the torque.
- the control unit can determine the switching of the shift position based on only the number of pulses of the position signal. Therefore, the rotational position of the plate 10 can be estimated without being affected by the disturbance noise included in the drive current of the motor M, which is advantageous in that the accuracy of the switching control of the shift position can be increased.
- control device 31: output shaft
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Gear-Shifting Mechanisms (AREA)
Abstract
モータの出力軸の回転によって出力軸に関して回転するプレートと、プレートの回転によってシフト位置が切り替わる変速機を有するシフトバイワイヤ式の変速機構の制御装置であって、出力軸に固定され、出力軸のトルクを計測するトルク計測部と、モータを駆動させる駆動信号を調整して出力軸の回転を制御する制御部と、を有し、制御部は、出力軸の回転開始時にトルク計測部により計測されたトルクの方向について、回転開始時の後にトルク計測部により計測されたトルクの大きさがゼロより小さくなるか否かを監視し、小さくなった場合にシフト位置が切り替わったと判断し、判断結果に基づいて駆動信号を調整する。
Description
本発明は、制御装置、および変速機構に関する。
シフトバイワイヤ方式の変速機構は、モータの出力軸に対して回転するプレートおよびプレートの回転によってシフト位置が切り替わる変速機を有する。出力軸の回転量は、プレートの回転位置に基づいて決定される。特許文献1に記載のパークバイワイヤ装置は、モータに流れる電流値の変化率に基づいてプレートの回転位置を推定している。
しかしながら、特許文献1に記載のパークバイワイヤ装置では、検出される電流値に含まれる外乱ノイズなどの影響によって回転位置の推定精度が不十分となりうる。また、特許文献1においては、シフト位置が切り替わるタイミングとモータに流れる電流値の変化率との関係は不明であり、シフト位置の切り替え制御の精度の点で不利となりうる。
本発明は、例えば、シフト位置の切り替え制御の精度の点で有利な制御装置を提供することを目的とする。
本願発明の例示的な一実施形態は、モータの出力軸の回転によって出力軸に関して回転するプレートと、プレートの回転によってシフト位置が切り替わる変速機を有するシフトバイワイヤ式の変速機構の制御装置であって、出力軸に固定され、出力軸のトルクを計測するトルク計測部と、モータを駆動させる駆動信号を調整して出力軸の回転を制御する制御部と、を有し、制御部は、出力軸の回転開始時にトルク計測部により計測されたトルクの方向について、回転開始時の後にトルク計測部により計測されたトルクの大きさがゼロより小さくなるか否かを監視し、小さくなった場合にシフト位置が切り替わったと判断し、判断結果に基づいて駆動信号を調整することを特徴とする。
本願発明の例示的な一実施形態によれば、シフト位置の切り替え制御の精度の点で有利な制御装置を提供することができる。
以下、本発明を実施するための形態について図面などを参照して説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。
[第1実施形態]
[第1実施形態]
<変速機構>
図1は、本実施形態に係る制御装置30を有するシフトバイワイヤ式の変速機構1の概略図である。変速機構1は、例えば、自動車等の移動体に用いられる。本実施形態では、変速機構1は、自動車に取り付けられている。変速機構は、移動体の運転者のシフト操作によって、移動体における変速を行う。変速機構1は、プレート10および変速機20を有する。変速機20のシフト位置は、プレート10の回転によって切り替えられる。制御装置30は、移動体の運転者の選択したシフト位置となるようにプレート10の回転を制御することで変速機構1を制御する。本実施形態の制御装置30が用いられることにより、他の構成を有する制御装置と比較して、プレートの回転を制御する制御装置のコストを抑えることができるとともに、変速機構としてのコストも抑えることができる。
図1は、本実施形態に係る制御装置30を有するシフトバイワイヤ式の変速機構1の概略図である。変速機構1は、例えば、自動車等の移動体に用いられる。本実施形態では、変速機構1は、自動車に取り付けられている。変速機構は、移動体の運転者のシフト操作によって、移動体における変速を行う。変速機構1は、プレート10および変速機20を有する。変速機20のシフト位置は、プレート10の回転によって切り替えられる。制御装置30は、移動体の運転者の選択したシフト位置となるようにプレート10の回転を制御することで変速機構1を制御する。本実施形態の制御装置30が用いられることにより、他の構成を有する制御装置と比較して、プレートの回転を制御する制御装置のコストを抑えることができるとともに、変速機構としてのコストも抑えることができる。
<プレート>
図2は、プレート10の形状を示す概略図である。プレート10は、板状の部材である。図2に示すように、プレート10は、出力軸の延伸方向から見た場合に、外側面の両端が回転方向(図2は左右方向)に突出する。プレート10は、シフト位置に対応した第1溝P、第2溝R、第3溝Nおよび第4溝Dと、制御装置30が有するモータの出力軸が嵌る開口部11と、を有する。プレート10は、開口部11に嵌った出力軸に対して矢印方向に回転する。第1溝P、第2溝R、第3溝Nおよび第4溝Dは、回転の方向に沿ってプレート10の側面に配置され、側面からプレート10に内側に向けて凹む溝である。言い換えると、第1溝P、第2溝R、第3溝Nおよび第4溝Dは、回転の方向に沿ってプレート10の外側面に配置され、外側面側から開口部11側に向けて凹む溝である。第1溝P、第2溝R、第3溝Nおよび第4溝Dは、開口部11から出力軸を基準とする径方向外側に位置する。第1溝P、第2溝R、第3溝Nおよび第4溝Dは、回転方向に、この順で並ぶ。なお、モータの出力軸は、開口部11に対して、直接固定されてもよく、他の部材を介して間接的に固定されてもよい。
各溝の配置は、第1溝Pはパーキング、第2溝Rは後退走行、第3溝Nはニュートラル、第4溝Dは前進走行の各シフト位置となる回転位置として予め設計されている。なお、各溝の形状および配置は図示したものに限られない。プレート10は、ディテントプレートとも呼ばれる。
<変速機>
変速機20内では、各シフト位置を実現するための油路が構成されている。プレート10の回転によって、油路が切り替えられることで、シフト位置が切り替えられる。図1に示すように、変速機20には、ディテントスプリング21およびシフト位置切り替え機構22が取り付けられている。ディテントスプリング21は、変速機20の筐体に固定される。ディテントスプリング21の先端には、係合部21aが備えられている。プレート10の回転位置に応じて、第1溝P、第2溝R、第3溝Nおよび第4溝Dのうちいずれかに係合部21aが嵌まる。これにより、プレート10の回転位置が保持される。
シフト位置切り替え機構22は、ピン23を介してプレート10と接続する。ピン23は、プレート10の側面に取り付けられる。言い換えると、ピン23は、プレート10の板厚方向における少なくとも一方側の面に取り付けられる。プレート10の回転に伴って、ピン23と接続するシフト位置切り替え機構22が、変速機20内に進退する。シフト位置切り替え機構22の変速機20内に対する進退量によって、油路が切り替えられる。
例えば、シフト位置切り替え機構22が変速機20内に、順次、押し込まれていくことにより、変速機20内の油路がパーキング(第1溝P)、後退走行(第2溝R)、ニュートラル(第3溝N)、前進走行(第4溝D)の順に切り替えられる。なお、パーキング(第1溝P)、後退走行(第2溝R)、ニュートラル(第3溝N)、前進走行(第4溝D)の順番や配置などは、車種によって異なっていてもよい。
<制御装置>
制御装置30は、プレート10を回転させるモータの出力軸31の回転を、制御する。本実施形態では、制御装置30およびモータが共通の筐体に内蔵された、いわゆる機電一体型のモータ装置を用いる。
図3は、制御装置30の構成を示すブロック図である。制御装置30は、制御部32と、駆動部33と、電流検出部34と、位置検出部35と、を有する。本実施形態で用いるモータMは、三相同期ブラシレスモータとする。
(モータ)
モータMは、U相、V相およびW相の三相を構成するコイルを有する。モータMの駆動時には、制御装置30からモータM内のU相、V相およびW相のコイルのそれぞれに所定の電流が供給される。コイルに電流が供給されると、U相、V相およびW相の三相のコイルを有する固定子と、マグネットを有する回転子との間に、回転磁界が発生する。その結果、モータMの固定子に対して回転子が回転することができる。なお、使用されるモータMの相の数は、三相に限られない。例えば、モータMは、単相、二相、4相以上の多相モータであってもよい。
(制御部)
制御部32は、モータMを駆動させる駆動信号を調整して出力軸31の回転を制御する。制御部32は、運転者の選択したシフト位置に基づく、モータMの目標回転位置指令を受け取る。制御部32は、例えば、CPU等の演算処理部、RAM等のメモリ、およびハードディスクドライブ等の記憶部を有するコンピュータが用いられる。ただし、制御部32には、コンピュータに代えて、マイクロコントローラ等の演算装置を有する電気回路が用いられていてもよい。
制御部32は、モータMを駆動させる駆動信号を調整して出力軸31の回転を制御する。制御部32は、運転者の選択したシフト位置に基づく、モータMの目標回転位置指令を受け取る。制御部32は、例えば、CPU等の演算処理部、RAM等のメモリ、およびハードディスクドライブ等の記憶部を有するコンピュータが用いられる。ただし、制御部32には、コンピュータに代えて、マイクロコントローラ等の演算装置を有する電気回路が用いられていてもよい。
(駆動部)
駆動部33は、制御部32により調整された駆動信号に基づいて、外部電源(不図示)から供給された電流をモータMに供給する。駆動部33は、例えば、インバータ回路およびインバータ駆動部を有する。インバータ回路は、例えば、金属酸化膜半導体電界効果トランジスタ(MOSFET)などのトランジスタをスイッチング素子として有する。本実施形態では、モータMは三相同期ブラシレスモータであるため、インバータ回路には、1対のスイッチング素子が並列に三組設けられている。なお、インバータ回路において、スイッチング素子の対は、三組より多くてもよい。インバータ回路において、スイッチング素子の対は、例えば、六組であってもよい。
インバータ駆動部は、インバータ回路を動作させる電気回路である。インバータ駆動部は、制御部32が出力した駆動信号を、インバータ回路に出力して、スイッチング素子に所定のスイッチングを行わせる。本実施形態では、インバータ駆動部は、制御部32が出力した、モータMの駆動量を指示する、パルス幅変調方式(PWM方式)のPWM駆動信号を、インバータ回路に含まれる6つのスイッチング素子に供給する。インバータ回路は、インバータ駆動部から供給されたPWM駆動信号に基づいて、モータMのU相、V相およびW相のそれぞれのコイルに電流を供給する。
(電流検出部)
電流検出部34は、駆動部33に流れる電流を検出する。本実施形態では、モータMは三相同期ブラシレスモータである。そのため、モータMのU相、V相およびW相のそれぞれに供給される電流を検出する。電流検出部34は、検出した電流の電流値を制御部32に出力する。電流検出部34としては、例えば、電流センサやシャント抵抗などが用いられる。
(位置検出部)
位置検出部35は、モータMのロータの回転位置を検出して、検出された回転位置を示す位置信号を出力する。本実施形態では、位置検出部35として、複数のホール素子が用いられる。本実施形態では、3つのホール素子が用いられ、ロータの回転方向に120度間隔で配置される。ホール素子は、モータMの出力軸31と同軸に設けられたロータのマグネットの磁界、または、モータMの出力軸31と同軸に設けられたセンサマグネットの磁界を検出する。なお、用いられるホール素子の数、配置およびマグネットの極数は変更しうる。ホール素子の数は、モータの相の数に応じて、例えば、1個または2個であってもよい。センサマグネットは、例えば、出力軸の先端に、接着剤等によって固定されてもよく、出力軸の先端に凹部などを設けてはめ込まれるなど、出力軸の選択に直接取り付けられてもよい。センサマグネットは、例えば、マグネットホルダなどの部材を介して間接的に出力軸31に取り付けられてもよい。
各ホール素子は、検出した磁界を電圧信号(電圧信号波形)として出力する。位置検出部35は、コンパレータを含む各種電子部品および電子回路を有する。出力された各電圧信号は、電子回路で増幅され、コンパレータなどによってパルス信号に変換される。位置検出部35は、パルス信号を位置信号として制御部32へ出力する。本実施形態の各ホール素子は、例えば、検出した磁界を、位相が120度ずれた正弦波として出力する。ホール素子から出力される電圧信号の波形は、矩形波など他の波形であってもよい。
<シフト位置の切り替わりの判断方法>
本実施形態の制御部32は、出力軸31を介してプレート10に伝わるトルクに基づいてシフト位置が切り替わったか否かを判断する。出力軸31のトルクをT、モータMへの印加電圧をV、電流検出部34により検出された電流値をI、モータMのロータの角速度をωと定義する。ロータの角速度ωは、位置検出部35から出力された位置信号(本実施形態では、パルス信号)から求められる。そして、図2において、プレート10を時計回りに回転させる時の電流の流れる方向およびロータの回転方向を正の方向とすると、トルクTは、電流値I、印加電圧V、およびロータの角速度ωを用いて、次のような式(1)で算出される。なお、プレート10は、反時計回りに回転させてもよい。
T=V×(I/ω)・・・(1)
なお、モータMが減速部を有する場合は、式(1)において、減速比RAをさらに掛け合わせることにより、トルクを算出することができる。減速部とは、例えば、複数のギア等によって構成される減速機構などである。
なお、モータMが減速部を有する場合は、式(1)において、減速比RAをさらに掛け合わせることにより、トルクを算出することができる。減速部とは、例えば、複数のギア等によって構成される減速機構などである。
図4は、シフト位置が第1溝Pから第4溝Dまで順次切り替えられるときに算出されるトルクTの時間変化を示す図である。係合部21aが嵌る溝が、第1溝Pから第2溝Rに切り替わるタイミングを時間t1、第2溝Rから第3溝Nに切り替わるタイミングを時間t2、第3溝Nから第4溝Dに切り替わるタイミングを時間t3とする。
出力軸31を介してプレート10に伝わるトルクの向きは、プレート10を時計回りに回転させて係合部21aが、溝の斜面を登っているときは正方向になる。そして、係合部21aが溝の斜面を登り切って、次の溝の斜面を下り始めるときに、トルクの向きは、正方向から負方向に切り替わる。言い換えると、係合部21aが、溝を構成する内側面上において、プレート10の径方向内側(開口部11側)から径方向外側(プレート10の側面側)へ移動する場合には、出力軸31を介してプレート10に伝わるトルクの向きは、正の方向となる。係合部21aが、溝を構成する内側面上において、プレート10の径方向外側(プレート10の側面側)から径方向内側(開口部11側)へ移動する場合には、出力軸31を介してプレート10に伝わるトルクの向きは、負の方向となる。
図4をみると、時間t1にて、算出されるトルクの大きさは、ゼロより小さくなる。すなわち、時間t1にて、算出されるトルクの向きは、負の方向となる。時間t2、時間t3においても、同様に算出されるトルクの大きさがゼロより小さくなる。すなわち、時間t2、時間t3においても、算出されるトルクの向きは、負の方向となる。制御部32は、算出するトルクの大きさがゼロより小さくなるか否かを監視し、算出するトルクの大きさがゼロより小さくなった場合にシフト位置が切り替わったと判断し、判断結果に基づいて駆動信号を調整する。言い換えると、制御部32は、算出されるトルクの向きが正の方向から負の方向へと切り替わった際に、シフト位置が切り替わったと判断し、判断結果に基づいて駆動信号を制御する。制御部32は、トルクの大きさだけではなく、シフト位置の切り替わりの回数も用いて、現在のシフト位置を判断することもできる。すなわち、制御部32は、シフト位置の切り替わりの回数を数えることができ、数えたシフト位置の切り替わりの回数を利用して、現在のシフト位置を判断することもできる。
本実施形態の制御装置30によれば、モータMを駆動する電流に加え、モータMの回転位置を示す位置信号も用いて算出したトルクの大きさに基づいて、シフト位置が切り替わったか否かを判断することができる。したがって、モータMの駆動電流のみでプレート10の回転位置を推定するよりも、精度よくシフト位置の切り替えを制御することができる。また、本実施形態における制御装置30によれば、シフト位置の切り替わりを判断するために出力軸31の回転角度を検出する必要がない。したがって、出力軸31の角度を検出するためのセンサを設ける必要がなくなり、センサが必要な装置と比較して、装置のコストを低減することができる点で有利となる。
制御部32は、シフト位置が切り替わったと判断してから、所定の時間間隔をあけてから、トルクの監視を行う。本実施形態では、例えば図4に示すように、シフト位置が切り替わる際に、トルクの大きさがゼロより小さくなったり大きくなったりすることが、繰り返されうる。そのため、所定の時間間隔をあけてから制御部32によるトルクの監視が行われることにより、シフト位置の切り替わりの重複カウントを防止することができる。
所定の時間間隔は、第1溝P、第2溝R、第3溝Nおよび第4溝Dの形状に基づいて、決定される。ここで、プレート10の各溝の形状とは、例えば、溝の深さや溝の幅などを含む。プレート10の各溝の形状によって、トルクの監視間隔を変更することができる。そのため、本実施形態では、例えば、必要以上に、監視のための時間間隔をあけることなく、変速機構の制御をすることができる。
[第2実施形態]
[第2実施形態]
次に、第2実施形態について説明する。本実施形態では、制御部32が有する機能が、第1実施形態とは異なる。本実施形態では、制御部32が、トルクに加えて、モータの回転数も併せて監視する。まず、制御部32は、位置検出部35が出力した位置信号からモータの回転数を算出する。そして、制御部32は、モータMの駆動を開始してから初めて算出したモータの回転数が所定の範囲に収まった後に、モータの回転数の監視を始める。モータの回転数の監視を始めてから、制御部32は、算出したモータの回転数が、所定の範囲から外れるか否かを判定する。制御部32は、所定の範囲から外れたと判定する場合に、シフト位置が切り替わったと判断する。言い換えると、制御部32は、モータの回転数が所定の閾値から外れた場合に、シフト位置が切り替わったと判断する。ここで、閾値は、所定の値のみであってもよく、上限および下限を有する所定の範囲であってもよい。本実施形態によれば、制御部32が、トルクだけでなくモータ(ロータ)の回転数も併せて監視することにより、変速機構の制御精度を向上させることができる。
図5は、シフト位置を第1溝から第4溝まで順次切り替えるときにおける、モータの回転数の時間変化を示す図である。時間t1~時間t3の定義は、図4に示すものと同じである。すなわち、係合部21aが嵌る溝が、第1溝Pから第2溝Rに切り替わるタイミングを時間t1、第2溝Rから第3溝Nに切り替わるタイミングを時間t2、第3溝Nから第4溝Dに切り替わるタイミングを時間t3とする。モータの回転数は、制御部32の制御によって、目標回転数に近づくように制御される。ここで、制御される回転数は、通常は所定の範囲に収まるが、シフト位置が切り替わるタイミングでは所定の範囲から外れる。図5に示す網掛け部は、目標回転数を含む所定の範囲を示す。
図5において、例えば、時間t1および時間t2において、モータの回転数は、所定の範囲の回転数よりも大きい回転数である。時間t3において、モータの回転数は、所定の範囲の回転数よりも小さい回転数である。制御部32は、モータの回転数が所定の範囲から外れた回数で現在のシフト位置を判断することもできる。
所定の範囲は、制御部32による制御の精度に基づいて、決定される。制御部32の性能によって所定の範囲を決定することにより、変速機構の制御精度を向上させることができる。また、所定の範囲は、第1溝P、第2溝R、第3溝Nおよび第4溝Dの形状にも基づいて決定される。ここで、溝の形状とは、例えば、溝の深さや溝の幅などを含む。また、溝の形状には、溝を構成する内側面における径方向の寸法や溝の開口部における回転方向における寸法などを含んでもよい。プレート10の溝形状によって、所定の範囲を決定することにより、変速機構の制御精度を向上させることができる。
[第3実施形態]
[第3実施形態]
次に第3実施形態について説明する。本実施形態では、第1および第2実施形態と異なり、制御部32が、トルクまたはモータの回転数に加え、位置信号のパルス数も併せて監視する。制御部32は、パルス信号のパルス数を用いてプレート10の回転角度を算出し、算出した回転角度に基づいてシフト位置の切り替わりを判断する。本実施形態によれば、制御部がモータの回転数に加えて位置信号のパルス数も併せて監視することにより、変速機構の制御精度を向上させることができる。
パルス信号のパルス数とプレート10の回転角度との関係は、以下の通りである。まず、パルス数をNp、プレート10の回転角度をa、位置検出部35が検出するマグネットの極数をP、位置検出部35が有するセンサの数をsとする。モータMの減速部の減速比RAも用いると、パルス数Npと回転角度aとの関係は、式(2)のように示される。
Np=a×RA/(360/P×s)・・・(2)
本実施形態では、センサの数sを3つとした。極数Pは、例えば、8極としうる。減速比RAは、例えば、60とする。これらを式(2)に代入すると、Np=4×aとなる。本実施形態では、この式から、パルス数Npからプレート10の回転角度aを算出できる。
本実施形態では、センサの数sを3つとした。極数Pは、例えば、8極としうる。減速比RAは、例えば、60とする。これらを式(2)に代入すると、Np=4×aとなる。本実施形態では、この式から、パルス数Npからプレート10の回転角度aを算出できる。
また、制御部32は、算出した回転角度および、プレート10の回転中心と複数の溝のうちいずれか1つとを結ぶ直線と、回転中心と当該いずれか1つの溝の隣にある溝とを結ぶ直線とのなす角度を用いて、シフト位置の切り替わりを判断することもできる。図2を用いて説明すると、まず、プレート10の回転中心は、開口部11の中心11aである。本実施形態では、平面視(出力軸側から見たとき)において、開口部11の形状は略円形である。中心11aと第1溝Pとを結ぶ直線と、中心11aと第1溝Pの隣の第2溝Rとを結ぶ直線とのなす角度を、角度θ1とする。同様にして、中心11aと各溝を結ぶ直線間の角度をそれぞれ角度θ2、角度θ3とする。すなわち、中心11aと第2溝Rとを結ぶ直線と、中心11aと第2溝Rの隣の第3溝Nとを結ぶ直線とのなす角度を、角度θ2とする。中心11aと第3溝Nとを結ぶ直線と、中心11aと第3溝Nの隣の第4溝Dとを結ぶ直線とのなす角度を、角度θ3とする。
制御部32は、角度θ1、角度θ2および角度θ3と、パルス数と、から算出したプレート10の回転角度からも、シフト位置の切り替わりを判断できる。例えば、角度θ1、角度θ2および角度θ3がすべて等しく、回転角度がこれらよりも大きい場合は、少なくとも1回シフト位置が切り替わる。プレート10に形成される複数の溝の配置によって、シフト位置の切り替わりの判断基準となるプレート10の回転角度を決定することで、変速機構の制御精度を向上させることができる。
制御部32は、シフト位置が所定のシフト位置となるときのプレート10の回転位置を初期位置と設定し、出力軸31の回転を制御してプレート10を初期位置まで回転させる。そして、制御部32は、初期位置を基準としてパルス数から算出した回転角度を用いて、シフト位置の切り替わりを判断することができる。例えば、プレート10の回転位置の初期位置を第1溝Pと設定する。制御部32は、算出した回転角度が角度θ1を超えた場合に、シフト位置が切り替わったと判断できる。これによれば、制御部32は、初期位置を基準として算出した回転角度を用いてシフト位置の切り替わりを判断することができる。そのため、例えば、現在のシフト位置がわからない場合でも、初期位置までプレートを移動させることで変速機の制御を行うことができる。
図6は、シフト位置を第1溝から第4溝まで順次切り替えるときにおける、位置信号のパルス数とシフト角度位置の時間変化を示す図である。縦軸左は、式(2)およびパルス数から算出した回転角度、縦軸右はパルス数である。時間t1~時間t3の定義は、図4に示すものと同じである。回転角度θ1に対応するパルス数をn1、回転角度θ1+θ2に対応するパルス数をn2、回転角度θ1+θ2+θ3に対応するパルス数をn3とする。
回転角度がθ1となる時間は時間t1、回転角度がθ2となる時間は時間t2、回転角度がθ3となる時間は時間t3である。機械角の誤差を考慮して、回転角度が、例えばθ1±2度となる時間範囲内における任意のタイミングを時間t1としてもよい。同様に、例えば回転角度がθ1+θ2±2度となる時間範囲内における任意のタイミングを時間t2、回転角度がθ1+θ2+θ3±2度となる時間範囲内における任意のタイミングを、時間t3としてもよい。なお、上述した回転角度の機械角の誤差の範囲は、±2度に限られず、適宜、設定されてもよい。
[第4実施形態]
[第4実施形態]
第1実施形態では、出力軸31のトルクは、電流検出部34により検出された電流値に基づいて、算出される。しかしながら、出力軸のトルクは、電流検出部34以外の手段によって、検出されてもよい。図7は、本実施形態の制御装置40の構成を示すブロック図である。制御装置40は、出力軸31に固定され、出力軸31のトルクを計測するトルク計測部44を有する。トルク計測部44は、例えば、出力軸31のトルクに応じたねじれ量を電圧に変換して、制御部42に出力する。制御部42は、モータMを駆動させる駆動信号を調整して出力軸31の回転を制御する。トルク計測部44は、例えば、各種のトルクセンサなどを用いることができる。
本実施形態の制御部42は、出力軸31の回転開始時にトルク計測部44が計測したトルクの方向について、回転開始時の後にトルク計測部44が計測したトルクの大きさがゼロより小さくなるか否かを監視する。言い換えると、トルク計測部44が計測したトルクが正の方向から負の方向へ切り替わったか否かを監視する。制御部42は、トルクがゼロより小さくなった場合にシフト位置が切り替わったと判断し、判断結果に基づいて駆動信号を調整する。言い換えると、制御部42は、トルク計測部44が計測したトルクが正の方向から負の方向へ切り替わった場合にシフト位置が切り替わったと判断し、判断結果に基づいて駆動信号を制御する。
本実施形態の制御装置40によれば、トルク計測部44によるトルクの計測結果に基づいて、シフト位置の切り替わりを判定することができる。したがって、モータMの駆動電流に含まれる外乱ノイズの影響を受けることなく、プレート10の回転位置を推定することができる。そのため、本実施形態の制御装置40は、駆動電流に基づいてシフト位置を切り替える場合と比較して、シフト位置の切り替えの制御の精度が高い点で有利となる。また、本実施形態における制御装置40によれば、シフト位置の切り替わりを判断するために出力軸31の回転角度を検出する必要がない。したがって、制御装置40に出力軸31の回転角度を検出するためのセンサを設ける必要がなくなり、当該センサを有する装置と比較して、装置のコストを安くできる点で有利となりうる。
また、本実施形態の制御装置40では、トルクの計測とともに、第2実施形態における回転数の監視も組み合わされてもよい。すなわち、本実施形態の制御装置40では、計測したトルクと監視した回転数とに基づいて、変速機構の制御が行われてもよい。制御装置40において、制御部がモータの回転数も併せて監視することにより、変速機構の制御精度をより向上させることができる。また、本実施形態の制御装置40は、さらに第3実施形態のパルス数の監視も組み合わされてもよい。すなわち、本実施形態の制御装置40では、上述のように計測したトルクと、上述のように監視されたパルス数とに基づいて、変速機構の制御が行われてもよい。本実施形態の制御装置40では、位置信号のパルス数も併せて監視することで、より変速機構の制御精度を向上させることができる。さらに、本実施形態の制御装置40は、第3実施形態と組み合わされてもよい。すなわち、本実施形態の制御装置40において、上述のように計測したトルクと、上述のように監視したパルス数と、に基づいて、変速機構の制御が行われてもよい。
なお、第2実施形態において、制御部は、トルクを監視することなく、モータの回転数の監視のみが行われてもよい。これによれば、制御部は、モータMの回転数のみに基づいてシフト位置の切り替わりを判定することができる。したがって、この場合、モータMの駆動電流に含まれる外乱ノイズの影響を受けることなくプレート10の回転位置を推定することができる。そのため、本実施形態の制御装置40は、駆動電流に基づいてシフト位置を切り替える場合と比較して、シフト位置の切り替え制御の精度を高くすることができる点で有利となる。また、本実施形態では、シフト位置の切り替わりを判断するために出力軸31の回転角度を検出する必要がない。したがって、出力軸31の回転角度を検出するためのセンサを設ける必要がなくなり、センサを有する装置と比較して、装置のコストを安くできる点で有利となりうる。
また、トルクの監視をせずに、第2実施形態と第3実施形態を組み合わせてもよい。すなわち、制御部は、モータMの回転数と位置信号のパルス数に基づいて、シフト位置の切り替えを判別し、駆動信号を調整してもよい。制御部が、モータMの回転数に加え、位置信号のパルス数も併せて監視することにより、変速機構の制御精度をより向上させることができる。
第3実施形態においては、制御部が、トルクを監視することなく、パルス数の監視のみを行ってもよい。これによれば、制御部は、位置信号のパルス数のみに基づいて、シフト位置の切り替わりを判定することができる。したがって、モータMの駆動電流に含まれる外乱ノイズの影響を受けることなくプレート10の回転位置を推定することができ、シフト位置の切り替え制御の精度を高くすることができる点で有利となる。また、この場合、シフト位置の切り替わりを判断するために、出力軸31の回転角度を検出する必要がない。したがって、出力軸31の回転角度を検出するためのセンサを設ける必要がなくなり、センサを有する装置と比較して、装置のコストを下げることができる点で有利となりうる。
以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
30:制御装置、31:出力軸、32:制御部、33:駆動部、34:電流検出部、35:位置検出部、
Claims (14)
- モータの出力軸の回転によって前記出力軸に関して回転するプレートと、
前記プレートの回転によってシフト位置が切り替わる変速機と、
を有するシフトバイワイヤ式の変速機構の制御装置であって、
前記出力軸に固定され、前記出力軸のトルクを計測するトルク計測部と、
前記モータを駆動させる駆動信号を調整して前記出力軸の回転を制御する制御部と、
を有し、
前記制御部は、
前記出力軸の回転開始時に前記トルク計測部により計測された前記トルクの方向について、前記回転開始時の後に前記トルク計測部により計測された前記トルクの大きさがゼロより小さくなるか否かを監視し、
前記トルクの大きさがゼロより小さくなった場合に前記シフト位置が切り替わったと判断し、
判断結果に基づいて前記駆動信号を調整する、
ことを特徴とする制御装置。
- 前記モータのロータの回転位置を検出して、検出された回転位置を示す位置信号を出力する位置検出部をさらに有し、
前記制御部は、
前記位置検出部が出力した前記位置信号から前記ロータの回転数を算出し、
前記モータの駆動を開始してから初めて所定の範囲に収まった後において、算出した前記回転数が、前記所定の範囲から外れるか否かを判定し、
算出した前記回転数が前記所定の範囲から外れたと判定する場合に前記シフト位置が切り替わったと判断する、
ことを特徴とする請求項1に記載の制御装置。
- 前記所定の範囲は、前記回転数を目標回転数に近づける前記制御部による制御精度に基づいて決定されることを特徴とする請求項2に記載の制御装置。
- 前記プレートは、前記回転の方向に沿って前記プレートの側面に配置され、かつ、前記側面から前記プレートの内側に向けて凹む複数の溝を備え、
前記所定の範囲は、前記複数の溝の形状に基づいて決定されることを特徴とする請求項2または3に記載の制御装置。
- 前記位置信号は、パルス信号であり、
前記制御部は、
前記パルス信号のパルス数を用いて前記プレートの回転角度を算出し、
算出した前記回転角度に基づいて前記シフト位置の切り替わりを判断する、
ことを特徴とする請求項2ないし4のいずれか1項に記載の制御装置。
- 前記プレートは、前記回転の方向に沿って前記プレートの側面に配置され、かつ、前記側面から前記プレートの内側に向けて凹む複数の溝を備え、
前記制御部は、前記算出した回転角度および、前記プレートの回転中心と前記複数の溝のうちいずれか1つとを結ぶ直線と、前記回転中心と前記いずれか1つの溝の隣にある溝とを結ぶ直線のなす角度を用いて前記シフト位置の切り替わりを判断する、
ことを特徴とする請求項5に記載の制御装置。
- 前記制御部は、
前記シフト位置が所定のシフト位置となるときの前記プレートの回転位置を初期位置と設定し、
前記出力軸の回転を制御して前記プレートを前記初期位置まで回転させ、前記初期位置を基準として前記算出した回転角度を用いて前記シフト位置の切り替わりを判断する、
ことを特徴とする請求項5または6に記載の制御装置。 - モータの出力軸の回転によって前記出力軸に関して回転するプレートと、
前記プレートの回転によってシフト位置が切り替わる変速機と、
を有するシフトバイワイヤ式の変速機構の制御装置であって、
前記モータのロータの回転位置を検出して、検出された回転位置を示す位置信号を出力する位置検出部と、
前記モータを駆動させる駆動信号を調整して前記出力軸の回転を制御する制御部と、
を有し、
前記制御部は、
前記位置検出部が出力した前記位置信号から前記ロータの回転数を算出し、
前記モータの駆動を開始してから初めて所定の範囲に収まった後において、算出した前記回転数が、前記所定の範囲から外れるか否かを判定し、
算出した前記回転数が、前記所定の範囲から外れたと判定する場合に前記シフト位置が切り替わったと判断し、
判断結果に基づいて前記駆動信号を調整する、
ことを特徴とする制御装置。 - 前記位置信号は、パルス信号であり、
前記制御部は、
前記パルス信号のパルス数を用いて前記プレートの回転角度を算出し、
算出した前記回転角度に基づいて前記シフト位置の切り替わりを判断する、
ことを特徴とする請求項8に記載の制御装置。
- モータの出力軸の回転によって前記出力軸に関して回転するプレートと、
前記プレートの回転によってシフト位置が切り替わる変速機と、
を有するシフトバイワイヤ式の変速機構の制御装置であって、
前記モータのロータの回転位置を検出して、検出された回転位置を示すパルス信号を出力する位置検出部と、
前記モータを駆動させる駆動信号を調整して前記出力軸の回転を制御する制御部と、
を有し、
前記制御部は、
前記パルス信号のパルス数を用いて前記プレートの回転角度を算出し、
算出した前記回転角度に基づいて前記シフト位置の切り替わりを判断し、
判断結果に基づいて前記駆動信号を調整する、
ことを特徴とする制御装置。
- 前記出力軸に固定され、前記出力軸のトルクを計測するトルク計測部をさらに有し、
前記制御部は、
前記出力軸の回転開始時に前記トルク計測部により計測された前記トルクの方向について、前記回転開始時の後に前記トルク計測部により計測された前記トルクの大きさがゼロより小さくなるか否かを監視し、
前記トルクの大きさがゼロより小さくなった場合に前記シフト位置が切り替わったと判断する、
ことを特徴とする請求項10に記載の制御装置。 - 前記位置検出部は、ホール素子であることを特徴とする請求項2ないし12のいずれか1項に記載の制御装置。
- 前記位置検出部は、前記出力軸に直接または間接的に取り付けられたセンサマグネットであることを特徴とする請求項2ないし12のいずれか1項に記載の制御装置。
- モータの出力軸の回転によって前記出力軸に関して回転するプレートと、
前記プレートの回転によってシフト位置が切り替わる変速機と、
請求項1から12のいずれか1項に記載の制御装置と、
を有し、
前記プレートは、前記制御装置により制御される、
ことを特徴とするシフトバイワイヤ式の変速機構。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-178707 | 2017-09-19 | ||
JP2017178707 | 2017-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019058661A1 true WO2019058661A1 (ja) | 2019-03-28 |
Family
ID=65809669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/022776 WO2019058661A1 (ja) | 2017-09-19 | 2018-06-14 | 制御装置、および変速機構 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019058661A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003148608A (ja) * | 2001-11-14 | 2003-05-21 | Hitachi Unisia Automotive Ltd | 自動変速機の電動式レンジ切換装置 |
JP2013096439A (ja) * | 2011-10-28 | 2013-05-20 | Denso Corp | シフトバイワイヤシステム |
JP2015090197A (ja) * | 2013-11-06 | 2015-05-11 | 日産自動車株式会社 | パーキングアクチュエータの制御装置 |
-
2018
- 2018-06-14 WO PCT/JP2018/022776 patent/WO2019058661A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003148608A (ja) * | 2001-11-14 | 2003-05-21 | Hitachi Unisia Automotive Ltd | 自動変速機の電動式レンジ切換装置 |
JP2013096439A (ja) * | 2011-10-28 | 2013-05-20 | Denso Corp | シフトバイワイヤシステム |
JP2015090197A (ja) * | 2013-11-06 | 2015-05-11 | 日産自動車株式会社 | パーキングアクチュエータの制御装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4613513B2 (ja) | 電動パワーステアリング装置 | |
JP3812739B2 (ja) | モータ異常検出装置及び電動パワーステアリング制御装置 | |
US8004223B2 (en) | Wheel driving apparatus and electric vehicle including the same | |
US8766589B2 (en) | Motor control unit and vehicle steering system | |
JP4483009B2 (ja) | モータ制御装置 | |
JP6565783B2 (ja) | シフトレンジ制御装置 | |
US20140111130A1 (en) | Motor drive device | |
US9407177B2 (en) | Rotating electric machine control device and electric power steering apparatus | |
US10554158B2 (en) | Motor control method | |
EP3557754A1 (en) | Motor driving circuit, motor driving method and motor device using the same | |
JP5958519B2 (ja) | 制御装置、および、これを用いたシフトバイワイヤシステム | |
US9325275B2 (en) | Control apparatus and shift-by-wire system using the same | |
US10003289B2 (en) | Method for controlling motor | |
KR102004080B1 (ko) | 전동 파워 스티어링 장치의 제어 장치 및 전동 파워 스티어링 장치 | |
US10505482B2 (en) | Magnetic pole direction detection device | |
KR20160149373A (ko) | 모터 제어 방법 | |
JPWO2011142032A1 (ja) | ブラシレスモータの駆動装置 | |
JP4735439B2 (ja) | 永久磁石式同期電動機の初期磁極位置推定装置 | |
WO2019058661A1 (ja) | 制御装置、および変速機構 | |
WO2019058662A1 (ja) | 制御装置、および変速機構 | |
US9413275B2 (en) | Motor control device | |
JP6241331B2 (ja) | 電動機の制御装置 | |
JP2012070495A (ja) | モータ駆動制御装置 | |
KR102077362B1 (ko) | 모터제어기의 개선 | |
JP3546862B2 (ja) | 永久磁石型ブラシレスモータ用の制御装置及び制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18857871 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18857871 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |