WO2019058646A1 - 無線通信モジュール - Google Patents

無線通信モジュール Download PDF

Info

Publication number
WO2019058646A1
WO2019058646A1 PCT/JP2018/020877 JP2018020877W WO2019058646A1 WO 2019058646 A1 WO2019058646 A1 WO 2019058646A1 JP 2018020877 W JP2018020877 W JP 2018020877W WO 2019058646 A1 WO2019058646 A1 WO 2019058646A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
communication module
antenna circuit
antenna
integrated circuit
Prior art date
Application number
PCT/JP2018/020877
Other languages
English (en)
French (fr)
Inventor
幸平 松丸
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to EP18857937.9A priority Critical patent/EP3686999B1/en
Priority to US16/638,917 priority patent/US11211696B2/en
Publication of WO2019058646A1 publication Critical patent/WO2019058646A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/52Systems for transmission between fixed stations via waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device

Definitions

  • the present invention relates to a wireless communication module.
  • a wireless communication module includes an antenna circuit board on which an antenna element, a feeder, and an integrated circuit are mounted.
  • FIGS. 1 and 2 of Patent Document 1 describe a module-integrated antenna including a multilayer substrate on which an antenna, a feeding terminal, and a first RFIC and a second RFIC are mounted.
  • the module-integrated antenna, the multilayer substrate, and the antenna described in Patent Document 1 can be read as the wireless communication module, the antenna circuit substrate, and the antenna element described in the present specification, respectively. Further, in the wireless communication module described in Patent Document 1, the first RFIC and the second RFIC can be read as the integrated circuit described in the present specification, and the first RFIC or the second RFIC and the feeding terminal can be used. The wiring of the portion connecting the two can be read as the feeder described in the present specification. The following description will be made using the member names used in the present specification.
  • the frequency band of electromagnetic waves transmitted and received by the wireless communication module as described above is becoming higher and higher.
  • a band called E band is 70 GHz or more and 80 GHz or less.
  • the loss of power supplied from the integrated circuit to the antenna element through the feeder depends on the dielectric material constituting the antenna circuit substrate.
  • the conventional wireless communication module (the wireless communication module described in FIG. 1 and FIG. 2 of Patent Document 1) employs ceramics as a material for forming an antenna circuit board.
  • dielectric loss due to ceramics can not be ignored.
  • the antenna circuit substrate made of ceramics does not have flexibility, there is also a problem that the processability is bad.
  • the conventional wireless communication module adopting such an antenna circuit substrate has a problem that the radiation characteristic of the antenna element becomes unstable. This is because the radiation characteristic of the antenna element fluctuates each time due to deformation (for example) of the antenna circuit board.
  • the deformation of the antenna circuit substrate described above becomes larger as, for example, the amount of heat generation of the integrated circuit increases.
  • the radiation characteristics of the antenna element become unstable as the heat generation amount of the integrated circuit increases, for example.
  • a material having flexibility such as a polyimide resin or a liquid crystal polymer, is more likely to be softened and deformed as the temperature becomes higher.
  • the calorific value of the integrated circuit tends to increase as the frequency band of the electromagnetic wave transmitted and received using the integrated circuit increases. Therefore, the problem that the radiation characteristic of the antenna element described above becomes unstable becomes more remarkable as the frequency of the electromagnetic wave transmitted and received using the integrated circuit becomes higher.
  • the present invention has been made in view of the above-described problems, and an object thereof is to realize a wireless communication module in which a change in radiation characteristics that may occur due to deformation of an antenna circuit substrate is suppressed.
  • the antenna element is mounted on the first main surface, and a feed line and the feed line are provided on the second main surface.
  • the support is (1) opposed to the second main surface of the antenna circuit substrate, and of the electromagnetic wave transmitted and received from the second main surface of the antenna circuit substrate using the antenna circuit substrate. It is characterized in that it is separated by a wavelength or more, or (2) it does not face the second main surface of the antenna circuit board.
  • (A) is a top view of the wireless-communications module concerning Embodiment 1 of the present invention.
  • (B) is a sectional view showing the AA 'section of the wireless communication module shown in (a).
  • (A) is a top view which shows the front surface of the antenna circuit board with which the wireless-communications module shown in FIG. 1 is provided.
  • (B) is a top view which shows the back surface of the antenna circuit board shown to (a).
  • (A) is a top view of the wireless-communications module concerning the modification 1 of the present invention.
  • (B) is a sectional view showing the AA 'section of the wireless communication module shown in (a).
  • (A) is a top view which shows the front surface of the antenna circuit board with which the wireless-communications module shown in FIG.
  • (B) is a top view which shows the back surface of the antenna circuit board shown to (a).
  • (A) is a top view of the radio communication module concerning modification 2 of the present invention.
  • (B) is a sectional view showing the AA 'section of the wireless communication module shown in (a).
  • (A) is a three-sided view of the radio
  • (B) is a top view which shows the back surface of the wireless-communications module shown to (a).
  • (A) is a three-sided view of the wireless-communications module concerning modification 3 of the present invention.
  • (B) is a top view which shows the back surface of the wireless-communications module shown to (a).
  • FIG. 1A is a plan view of the wireless communication module 1 according to the first embodiment of the present invention.
  • FIG. 1B is a cross-sectional view of the wireless communication module 1 in a cross section including the straight line AA ′ shown in FIG. 1A and orthogonal to main surfaces 1111 and 1112 of the antenna circuit substrate 11 described later. is there.
  • the wireless communication module 1 includes an antenna circuit board 11 and a support 12.
  • the direction parallel to the normals of the main surfaces 1111 and 1112 of the antenna circuit substrate 11 is the z-axis direction
  • the long sides of the main surfaces 1111 and 1112 of the antenna circuit substrate 11 are
  • the direction along x is defined as the x-axis direction
  • the direction along the short sides of the main surfaces 1111 and 1112 of the antenna circuit substrate 11 is defined as the y-axis direction.
  • the direction from the main surface 1111 on the side where the antenna element group 114 is provided to the main surface 1112 on the side where the feeding line group 113 is provided is Of the pair of long sides of the main surfaces 1111 and 1112 of the antenna circuit board, the direction from the long side closer to the connector 117 to the other long side is defined as the y-axis positive direction.
  • the positive direction of the x-axis is defined to form a right-handed orthogonal coordinate system with the axis and the z-axis.
  • FIG. 2A is a plan view of the main surface 1112 of the antenna circuit substrate 11 in plan view.
  • (B) is the top view which planarly viewed the main surface 1111 of the antenna circuit substrate 11.
  • the main surface 1111 and the main surface 1112 are respectively the first main surface and the second main surface described in the claims.
  • the main surfaces refer to two surfaces having the largest area among the six surfaces constituting the rectangular parallelepiped member.
  • the main surface 1112 of the antenna circuit substrate 11 is also referred to as a front surface 1112.
  • the main surface 1111 is also referred to as a back surface 1111.
  • straight line BB 'shown to (a) of FIG. 2 is an extension line of the intersection line of the cross section shown to (b) of FIG. 1, and the front surface 1112.
  • straight line CC 'shown to (b) of FIG. 2 is an extension line of the intersection line of the cross section shown to (b) of FIG. 1, and back surface 1111.
  • straight line AA ' is shown in FIG. 1 (a)
  • the antenna circuit substrate 11 includes a substrate 111, an input / output terminal group 112, a feed line group 113, an antenna element group 114, an integrated circuit 115, a component group 116, and a connector 117.
  • the substrate 111 is a plate-like member and is made of a flexible material.
  • the material of the substrate 111 is preferably, for example, a polyimide resin, a liquid crystal polymer, or a composite material containing at least one of a polyimide resin and a liquid crystal polymer.
  • Other materials of the substrate 111 include PPE (polyphenylene ether) / PPO (polyphenylene oxide) resin, PTFE (polytetra fluoroethylen) resin, hydrocarbon resin, and the like.
  • a liquid crystal polymer is employed as the material of the substrate 111.
  • substrate 111 becomes a shape which combined two large and small rectangles.
  • the shape of the main surface of the substrate 111 is a shape in which the smaller rectangle is drawn from the central portion of the longer side of the larger rectangle in the negative y-axis direction.
  • An input / output terminal group 112, a feed line group 113, an integrated circuit 115, and a component group 116 are mounted on the front surface 1112 of the larger rectangular region of the substrate 111. Further, an antenna element group 114 is formed on the back surface 1111 of the larger rectangular area. Further, the connector 117 is mounted on the smaller rectangular front surface 1112 of the substrate 111.
  • the end of the feed line group 113 formed on the front surface 1112 and the antenna element group 114 formed on the back surface 1111 are electrically connected.
  • the vias 111a which are connected in the same manner are formed.
  • Each of the vias 111 a is a conductor post formed by filling the inside of a through hole penetrating from the front surface 1112 to the back surface 1111 of the substrate. Sixty four vias 111 a are formed in the substrate 111 corresponding to the number of antenna elements constituting the antenna element group 114.
  • the input / output terminal group 112 includes a plurality of (20 in this embodiment) electrode pads 112_1 to 112_20 formed on the front surface 1112 of the substrate 111.
  • electrode pads 112_1, 112_2, 112_3, 112_4 described later are illustrated, and the electrode pads 112_5 to 112_20 are omitted.
  • a feed line group 113 described later is connected to the four electrode pads 112_1, 112_2, 112_3, 112_4.
  • the electrode pads 112_5 to 112_20 are connected to any of the component groups 116 via signal lines (not shown in FIG. 2A) or become vacant pads not connected to any of the components.
  • FIG. 2A exemplifies the case where the number of electrode pads constituting the input / output terminal group 112 is 20, this number is arbitrary.
  • the case where the feed-line group 113 is connected with respect to four electrode pad 112_1, 112_2, 112_3, 112_4 among them is illustrated.
  • the number of electrode pads to which the feed line group 113 is connected is arbitrary.
  • the antenna element group 114 is configured of m antenna elements 114 — j.
  • m is an integer of 1 or more
  • j is an integer of 1 or more and m or less.
  • FIG. 2B illustrates the case where the number m of the antenna elements 114 — j is 64, this number is arbitrary.
  • the integrated circuit 115 is an integrated circuit including a processor and a memory that process an RF (Radio Frequency) signal (an electromagnetic wave described in the claims) transmitted and received by the wireless communication module 1. Specifically, the integrated circuit 115 supplies from an antenna element group 114 a transmission circuit that modulates a baseband signal supplied from an external device other than the wireless communication module 1 via the connector 117 into an RF (Radio Frequency) signal. And a receiver circuit for demodulating the received RF signal into a baseband signal.
  • the band of the RF signal modulated by the integrated circuit 115 is E band (70 GHz or more and 80 GHz or less). However, this band is not limited to the E band, and can be appropriately selected according to the application of the wireless communication module 1.
  • the integrated circuit 115 has a BGA (Ball Grid Array) 115 a.
  • the BGA 115a is composed of a plurality of (20 in the present embodiment) solder balls.
  • the number of solder balls constituting the BGA 115a is the same as the number of electrode pads 112_1 to 112_20 constituting the input / output terminal group 112.
  • the integrated circuit 115 is mounted on the front surface 1112 of the substrate 111 by soldering each of the solder balls constituting the BGA 115 a to each of the corresponding electrode pads 112_1 to 112_20.
  • the integrated circuit 115 is mounted on the substrate 111 using the BGA 115 a.
  • the configuration for mounting the integrated circuit 115 on the substrate 111 is not limited to the BGA, and can be appropriately selected from existing technologies.
  • the feed line group 113 includes four feed lines 113_1 to 113_4.
  • Each of the feeders 113_1 to 113_4 is configured by combining a plurality of strip-shaped conductors provided on the front surface 1112.
  • a ground layer (not shown in FIG. 2A) is provided in the inner layer of the substrate 111.
  • the ground layer and each of the feed lines 113_1 to 113_4 constitute a microstrip line.
  • the feed line 113_1 electrically connects the electrode pad 112_1 and each of the antenna elements 114_33 to 114_48 through the via 111a.
  • the feeder line 113_2 electrically connects the electrode pad 112_2 to each of the antenna elements 114_49 to 114_64 through the via 111a.
  • the feed line 113_3 electrically connects the electrode pad 112_3 to each of the antenna elements 114_1 to 114_16 through the via 111a.
  • the feed line 113 _ 4 electrically connects the electrode pad 112 _ 4 to each of the antenna elements 114 _ 17 to 114 _ 32 via the via 111 a.
  • the feeder 113_1 includes five 1 ⁇ 4 branches.
  • the feeder 113_1 is viewed from the side of the electrode pad 112_1 toward the end of the feeder 113_1, the feeder 113_1 is branched from one strip conductor to four strip conductors by 1 ⁇ 4 branching.
  • Each of the branched four strip-shaped conductors is further provided with a 1 ⁇ 4 branch. Therefore, the feed line 113_1 is branched from one strip conductor to finally 16 strip conductors.
  • Each of the ends of the 16 strip conductors branched in this manner is electrically connected to each of the 16 antenna elements 114_33 to 114_48 through the via 111a (see FIG. 1B). ).
  • the distances from the electrode pad 112_1 to each of the ends of the above-described sixteen strip conductors are all equal. Also, the lengths of the vias 111a connected to the ends of the sixteen strip conductors are equal to one another. Therefore, in the wireless communication module 1, the distances from the electrode pad 112_1 to each of the antenna elements 114_33 to 114_48 are all equal. That is, the feed line 113_1 is configured to have equal length wiring.
  • the feed lines 113_2 to 113_4 are all configured similarly to the feed line 113_1.
  • the wireless communication module 1 transmits an RF signal
  • the RF signal modulated by the integrated circuit 115 from the baseband signal is supplied to each of the antenna elements 114_1 to 114_64 through the feed lines 113_1 to 113_4 and the via 111a.
  • Each of the antenna elements 114_1 to 114_64 transmits its RF signal.
  • the wireless communication module 1 receives an RF signal
  • the RF signal received by the antenna elements 114_1 to 114_64 is supplied to the integrated circuit 115 via the via 111a and the feeding lines 113_1 to 113_4, and the integrated circuit 115 , Demodulate the RF signal to a baseband signal.
  • the component group 116 is configured of, for example, electronic components such as a resistor, a capacitor, and a vibrator.
  • the connector 117 connects the wireless communication module 1 and an external device other than the wireless communication module 1.
  • the external device is provided with a connector paired with the connector 117.
  • the wireless communication module 1 and the external device can be connected by fitting the connector 117 and the connector forming a pair with the connector 117. That is, baseband signals can be transmitted and received between the wireless communication module 1 and an external device.
  • the support 12 is configured of a first holding portion 121, a second holding portion 122, and a connecting portion 123.
  • the support 12 is made of a material having good thermal conductivity.
  • a metal is preferable, and among them, a metal having a particularly high thermal conductivity (that is, copper, aluminum, etc.) is more preferable.
  • Other materials of the support 12 include carbon graphite, aluminum nitride, silicon carbide and the like. In the present embodiment, aluminum is adopted as the material of the support 12.
  • Each of the first holding portion 121, the second holding portion 122, and the connecting portion 123 is a plate-like member.
  • the connection part 123 is arrange
  • each of the 1st holding part 121 and the 2nd holding part 122 is arrange
  • the main surface of each of the first holding portion 121 and the second holding portion 122 is orthogonal to the main surface of the connecting portion 123.
  • the first holding portion 121, the second holding portion 122, and the connecting portion 123 are joined such that the cross-sectional view of the support 12 is U-shaped (in the case of an alphabet example). That is, the connecting portion 123 intervenes between the first holding portion 121 and the second holding portion 122, and connects them.
  • FIG. 1B each of the vicinity of the joint where the first holding portion 121 and the coupling portion 123 are joined and the vicinity of the joint where the second holding portion 122 and the coupling portion 123 are joined are shown.
  • the corners may stand or may be rounded.
  • the method to join the 1st holding part 121, the 2nd holding part 122, and the connection part 123 is not limited.
  • the first holding portion 121, the second holding portion 122, and the connecting portion 123 may be joined by welding (including solder welding), or may be joined using a bolt, or an adhesive may be used. You may use and join.
  • the method of joining the 1st holding part 121 and the connection part 123 is a method which can ensure favorable heat conductivity between the 1st holding part 121 and the connection part 123.
  • FIG. The same applies to a method of joining the second holding portion 122 and the connecting portion 123.
  • the support 12 is bonded to the substrate 111 in a state in which the end faces of the first holding portion 121 and the second holding portion 122 in the negative z-axis direction are in contact with the front surface 1112 of the substrate 111.
  • the support 12 is joined to the substrate 111 such that the main surface of the connecting portion 123 faces the front surface 1112 and the connecting portion 123 covers the front surface 1112. Therefore, the connecting portion 123 is configured such that the size of its main surface is approximately the same as the size of the larger rectangle that constitutes the main surface of the substrate 111.
  • the method of bonding the first holding portion 121 and the substrate 111 and the method of bonding the second holding portion 122 and the substrate 111 are not limited.
  • the first holding portion 121 and the substrate 111 may be joined using a bolt or may be joined using an adhesive. The same applies to the bonding between the second holding portion 122 and the substrate 111.
  • the first holding unit 121 holds one of the short sides of the antenna circuit board 11 (the short side in the negative x-axis direction).
  • the second holding unit 122 holds the other of the short sides of the pair (short side on the positive side in the x-axis direction).
  • the main surfaces of the first holding portion 121 and the second holding portion 122 each have a rectangular shape.
  • the lengths of the long sides of the main surfaces of the first holding portion 121 and the second holding portion 122 are approximately the same as the lengths of the short sides held in the antenna circuit board 11 (equal in this embodiment).
  • the lengths of the short sides of the main surfaces of the first holding unit 121 and the second holding unit 122 correspond to one wavelength of an RF signal (electromagnetic wave described in the claims) transmitted and received using the antenna circuit board 11. It is comprised so that it may become more than the value which added the thickness of the connection part 123 to the equivalent distance.
  • the principal surface on the z-axis negative direction side of the coupling portion 123 (the principal surface facing the front surface 1112 of the substrate 111) is one wavelength of the above-described RF signal from the front surface 1112 of the substrate 111. It is separated by the distance equivalent to
  • the connecting portion 123 it is preferable that the main surface opposite to the front surface 1112 of the substrate 111 be in contact with the upper surface of the integrated circuit 115.
  • the upper surface of the integrated circuit 115 is the main surface opposite to the main surface of the integrated circuit 115 where the BGA 115a is provided, and is the main surface on the z-axis positive direction side.
  • Couplings 123 draw heat generated by integrated circuit 115 through the interface with integrated circuit 115. The heat drawn from the integrated circuit 115 by the connecting portion 123 diffuses into the inside of the connecting portion 123 and is released from the two main surfaces of the connecting portion 123 to the atmosphere.
  • the main surface of the connecting portion 123 facing the front surface 1112 of the substrate 111 and the upper surface of the integrated circuit 115 may be configured to be in direct contact with each other, but a thermally conductive paste or thermally conductive It is preferable to be configured to contact indirectly through the sheet.
  • a thermally conductive paste or thermally conductive sheet between the connecting portion 123 and the integrated circuit 115, the thermal conductivity between the connecting portion 123 and the integrated circuit 115 can be enhanced.
  • each short side of the main surface of the first holding portion 121 and the second holding portion 122 be equal to a value obtained by subtracting the thickness of the connecting portion 123 from the total value described above.
  • the main surface on the z-axis negative direction side of the connection portion 123 contacts the upper surface of the integrated circuit 115.
  • the sum of the height of the integrated circuit 115 including the BGA 115a and the height of the input / output terminal group 112 is less than the distance corresponding to one wavelength of the RF signal described above.
  • the lengths of the short sides of the first holding portion 121 and the second holding portion 122 are equal to or greater than the distance corresponding to one wavelength of the RF signal described above plus the thickness of the coupling portion 123. It is preferable to interpose the above-mentioned thermally conductive paste or thermally conductive sheet in the gap generated between the integrated circuit 115 and the connection portion 123. According to this configuration, the above-described gap can be filled without impairing the thermal conductivity between the integrated circuit 115 and the support 12.
  • the support 12 is configured by connecting the first holding portion 121, the second holding portion 122, and the connecting portion 123, which are plate-like members, in a U-shaped cross-sectional view.
  • the support 12 may be configured by bending a region (both end portions) including both end sides thereof so that the cross-sectional shape of the plate-like member is U-shaped in cross section.
  • the first holding portion 121 and the second holding portion 122 are respectively constituted by bent end portions
  • the connecting portion 123 is constituted by a portion positioned between the bent end portions.
  • the support 12 holds one pair of opposite sides of the antenna circuit board 11. For this reason, the wireless communication module 1 can maintain the planarity of the antenna circuit substrate 11 even when the antenna circuit substrate 11 is made of a flexible material. Therefore, the wireless communication module 1 can suppress the change of the radiation characteristic that may occur due to the deformation of the antenna circuit board 11.
  • the support 12 is disposed at a predetermined distance or more from the antenna circuit board 11. For this reason, the support 12 does not approach the feed line group 113 excessively. Therefore, the wireless communication module 1 can suppress the deterioration of the radiation characteristic that may occur in the antenna element group 114, and can obtain the desired radiation characteristic assumed at the time of design.
  • the wireless communication module 1 can achieve both the heat stability of the radiation characteristic and the desired radiation characteristic.
  • the support 12 and the integrated circuit 115 are in contact with each other.
  • the support 12 can draw in and diffuse the heat generated by the integrated circuit 115 from the integrated circuit 115. Therefore, the wireless communication module 1 can suppress the amount of heat transmitted from the integrated circuit 115 to the antenna circuit substrate 11 even when the amount of heat (the amount of heat generation) emitted by the integrated circuit 115 is large. It can improve stability.
  • the feed line group 113 is formed on the front surface 1112 of the antenna circuit substrate 11.
  • the wireless communication module 1 since there is no dielectric on one side (z-axis positive direction side) of feed line group 113, one side of feed line group 113 is covered with air having a small dielectric loss. .
  • the wireless communication module 1 has a loss that may occur in the feed line group 113 as compared with the antenna circuit board in which the feed line is disposed inside the dielectric as described in FIGS. 1 and 2 of Patent Document 1. Can be greatly suppressed.
  • the antenna circuit board 11 provided in the wireless communication module 1 adopts a liquid crystal polymer as a material for forming the substrate 111. According to this configuration, even if the band of the RF signal transmitted and received using the antenna circuit board 11 is high as in the E band, for example, the integrated circuit 115 to the antenna element group 114 via the feed line group 113 It is possible to suppress the loss of supplied power.
  • a composite material containing at least one of a polyimide resin and at least one of a polyimide resin and a liquid crystal polymer can be mentioned in addition to the liquid crystal polymer.
  • FIG. 3A is a plan view of the wireless communication module 1A.
  • (B) of FIG. 3 includes the straight line AA ′ shown in (a) of FIG. 3 and is a cross section of the wireless communication module 1A in a cross section orthogonal to the front surface 1112 and the back surface 1111 of the antenna circuit substrate 11A.
  • FIG. FIG. 4A is a plan view of the front surface 1112 of the antenna circuit board 11A provided in the wireless communication module 1A.
  • FIGS. 3 and 4 is a plan view of the back surface 1111 of the antenna circuit substrate 11A.
  • straight line BB 'shown in (a) of FIG. 4 and straight line CC' shown in (b) of FIG. 2 are straight line shown in (a) of FIG. 2 and straight lines shown in (b) of FIG. Similar to CC '.
  • the coordinate system shown in FIGS. 3 and 4 is defined in the same manner as the coordinate system shown in FIGS. 1 and 2.
  • the wireless communication module 1A is obtained by adding the heat diffusion plate 118 and the heat pipe 119 to the antenna circuit board 11 of the wireless communication module 1.
  • an antenna circuit board obtained by modifying the antenna circuit board 11 of the wireless communication module 1 is referred to as an antenna circuit board 11A.
  • the heat diffusion plate 118 is a plate-like member, and is made of a material having good thermal conductivity.
  • the material of the heat diffusion plate 118 is preferably a metal, and among them, a metal having a particularly high thermal conductivity (that is, copper, aluminum, etc.) is more preferable.
  • aluminum is employed as the material of the heat diffusion plate 118.
  • the heat diffusion plate 118 is a region where the antenna element group 114 is not formed on the back surface 1111 of the substrate 111, and is formed in a region overlapping the integrated circuit 115 when the antenna circuit substrate 11A is viewed in plan.
  • the heat diffusion plate 118 draws and diffuses the heat generated by the integrated circuit 115 mounted on the front surface 1112 through the substrate 111.
  • the heat pipe 119 is a rod-like member, and is made of a material having good thermal conductivity.
  • a metal is preferable, and among them, a metal having a particularly high thermal conductivity (that is, copper, aluminum or the like) is more preferable.
  • copper is employed as the material of the heat pipe 119.
  • the heat pipe 119 is provided such that a section including one end contacts the surface of the heat diffusion plate 118.
  • the other end (not shown in FIG. 4A) of the heat pipe 119 is in contact with a metal member disposed outside the wireless communication module 1A.
  • the heat pipe 119 configured in this manner can further draw in the heat drawn from the integrated circuit 115 by the heat diffusion plate 118 from one end thereof and escape from the other end to the metal member. .
  • the heat pipe 119 may be hollow, and cooling water may be circulated therein.
  • the wireless communication module 1A further includes the heat diffusion plate 118.
  • the heat diffusion plate 118 can draw in heat from the integrated circuit 115 and diffuse the heat, so it is possible to suppress the amount of heat transferred from the integrated circuit 115 to the antenna circuit substrate 11A. Therefore, the wireless communication module 1A can increase the stability of the radiation characteristic to heat even when the amount of heat (heat generation amount) emitted by the integrated circuit 115 is large.
  • the wireless communication module 1A further includes a heat pipe 119.
  • the heat pipe 119 can efficiently dissipate the heat drawn by the heat diffusion plate 118 from the integrated circuit 115 to the outside of the heat diffusion plate 118 (the outside of the wireless communication module 1A). Therefore, the wireless communication module 1A can further enhance the heat stability of the radiation characteristic even when the amount of heat (heat generation amount) emitted by the integrated circuit 115 is large.
  • FIG. 5A is a plan view of the wireless communication module 1B.
  • 5B includes the straight line AA ′ shown in FIG. 5A and is a cross section of the wireless communication module 1B in a cross section orthogonal to the front surface 1112 and the back surface 1111 of the antenna circuit substrate 11B.
  • FIG. The coordinate system shown in FIG. 5 is defined in the same manner as the coordinate system shown in FIGS. 1 and 2.
  • the wireless communication module 1B transforms the support 12 of the wireless communication module 1 into a support 12B, and then the antenna circuit board 11 of the wireless communication module 1 It can be obtained by adding the heat diffusion plate 118 to it.
  • the antenna circuit board 11 of the wireless communication module 1 is referred to as an antenna circuit board 11B
  • the support 12 of the wireless communication module 1 is referred to as a support 12B.
  • the antenna circuit board 11 B is obtained by adding the heat diffusion plate 118 to the antenna circuit board 11.
  • the antenna circuit board 11B is obtained by omitting the heat pipe 119 from the antenna circuit board 11A. Therefore, in the present modification, the description regarding the antenna circuit board 11B is omitted.
  • the heat diffusion plate 118 can draw in heat from the integrated circuit 115 via the substrate 111 and diffuse the heat, so that the amount of heat transferred from the integrated circuit 115 to the antenna circuit substrate 11B can be suppressed. Therefore, the wireless communication module 1B can enhance the heat stability of the radiation characteristic.
  • Support 12 B is obtained by adding heat pipes 124 a and 124 b to support 12.
  • each of the heat pipe 124 a and the heat pipe 124 b is configured in the same manner as the heat pipe 119 described in the first modification. Therefore, in this modification, a method of arranging the heat pipe 124a and the heat pipe 124b will be described.
  • each of the heat pipe 124a and the heat pipe 124b is a straight line bisecting the main surface of the support 12B. It is disposed on the surface of the connecting portion 123 so as to be line symmetrical with each other with a straight line parallel to the x-axis direction as a symmetry axis. So, in this modification, the method of arrangement
  • the heat pipe 124a is formed along the main surface (main surface facing the front surface 1112 of the antenna circuit board 11B) on the z-axis negative direction side of the surface (glide surface) of the connection portion 123 constituting the support 12B. , Z-axis negative direction side is provided in contact with the main surface. More specifically, the heat pipe 124 a is provided in a region not facing the feed line group 113 in the main surface on the z-axis negative direction side.
  • the heat pipe 124a can be prevented from approaching the feed line group 113, the radiation characteristic of the antenna element group 114 can be prevented from deteriorating from the desired radiation characteristic assumed at the time of design.
  • the contact area where the support 12B and the integrated circuit 115 are in contact with each other in the y-axis direction positive direction and y-axis negative direction It is a region stretched toward.
  • One end of the heat pipe 124a is disposed in a region extending in the negative direction of the y-axis in the above-described contact region.
  • the other end (not shown in FIG. 5A) of the heat pipe 124a is in contact with a metal member disposed outside the wireless communication module 1B.
  • the heat pipe 124a can efficiently dissipate the heat drawn by the support 12B from the integrated circuit 115 to the outside of the support 12B. Therefore, the wireless communication module 1B can further enhance the stability of the radiation characteristic to heat even if the amount of heat (heat generation amount) emitted by the integrated circuit 115 is large.
  • FIG. 6A is a three-sided view of the wireless communication module 2 according to the second embodiment of the present invention.
  • FIG. 6B is a plan view of the back surface of the wireless communication module 2.
  • the coordinate system shown in FIG. 6 is defined in the same manner as the coordinate system shown in FIGS. 1 and 2.
  • the wireless communication module 2 includes an antenna circuit board 21 and a support 22.
  • the antenna circuit board 21 includes a substrate 211, an input / output terminal group 212, a feed line group 213, an antenna element group 214, an integrated circuit 215, a component group 216, a connector 217, and a heat diffusion plate 218. . Further, a via 211 a is formed in the substrate 211.
  • the substrate 211, the via 211a, the input / output terminal group 212, the feed line group 213, the antenna element group 214, the integrated circuit 215, the component group 216, and the connector 217 are the substrate 111 in the first embodiment, the via 111a, the input / output terminal group 112,
  • the configuration is the same as the feed line group 113, the antenna element group 114, the integrated circuit 115, and the parts group 116.
  • the heat diffusion plate 218 is configured in the same manner as the heat diffusion plate 118 in the first modification of the first embodiment.
  • the support 22 is configured by a first holding portion 221, a second holding portion 222, and a connecting portion 223.
  • the support 22 is made of a material having a good thermal conductivity.
  • the support 22 is similar to the support 12.
  • aluminum is employed as the material of the support 22.
  • Each of the first holding portion 221, the second holding portion 222, and the connecting portion 223 is a plate-like member. As shown in (a) of FIG. 6, the major axis of the connecting portion 223 is stretched along (in the present embodiment, parallel to) the x-axis direction. Further, the major axes of the first holding portion 221 and the second holding portion 222 are respectively extended (parallel in this embodiment) along the y-axis direction. In the present embodiment, the major axis of each of the first holding portion 221 and the second holding portion 222 is orthogonal to the major axis of the connecting portion 223.
  • the first holding portion is configured such that the shape in plan view becomes U-shaped (when it is exemplified by the alphabet).
  • the second holding portion 222 and the connecting portion 223 are joined. That is, the connecting part 223 is interposed between the first holding part 221 and the second holding part 222, and connects them. Therefore, the connecting portion 223 of the support 22 does not face the front surface 2112 of the antenna circuit board 21.
  • FIG. 6A each of the vicinity of the joint where the first holding portion 221 and the coupling portion 223 are joined and the vicinity of the joint where the second holding portion 222 and the coupling portion 223 are joined are shown.
  • the corners may stand or may be rounded.
  • the method of joining the first holding portion 221, the second holding portion 222, and the connecting portion 223 is the same as the method of connecting the first holding portion 121, the second holding portion 122, and the connecting portion 123.
  • the support 22 is joined to the substrate 211 with the end faces of the first holding portion 221, the second holding portion 222, and the connecting portion 223 in the negative z-axis direction in contact with the front surface 2112 of the substrate 211. There is. In other words, the support 22 is bonded to the substrate 211 so as to surround the side surface of the substrate 211 in three directions and not to face the front surface 2112 of the substrate 211.
  • the method of joining the first holding portion 221 and the substrate 211, the method of joining the second holding portion 222 and the substrate 211, and the method of joining the connecting portion 223 and the substrate 211 are the first holding portion 121 and the substrate 111. And the method of bonding the second holding portion 122 and the substrate 111.
  • the first holding unit 221 holds one of the short sides of the antenna circuit board 21 (short side on the negative side in the x-axis direction).
  • the second holding unit 222 holds the other (short side on the positive side in the x-axis positive direction) of the short side of the pair.
  • the support 22 may be formed by bending a portion including both ends of the plate-like member so as to be U-shaped in plan view based on a single plate-like member.
  • the first holding portion 221 and the second holding portion 222 are respectively configured by a portion including both ends that are bent
  • the connecting portion 223 is configured by a portion between the portions including both ends that are bent.
  • the wireless communication module 2 can maintain the planarity of the antenna circuit board 21 even when the antenna circuit board 21 is made of a flexible material. Therefore, the wireless communication module 2 can suppress the change of the radiation characteristic that may occur due to the deformation of the antenna circuit board 21.
  • the support 22 is joined to the substrate 211 so as to surround the side surface of the substrate 211 in three directions and not to face the front surface 2112 of the substrate 211. Therefore, the wireless communication module 2 can suppress the deterioration of the radiation characteristic that may occur in the antenna element group 214, and can obtain the desired radiation characteristic assumed at the time of design.
  • the wireless communication module 2 adopts the antenna circuit board 21 made of a flexible material, the antenna circuit board 21 (more specifically, the substrate 211) is obtained by the action of the support 22. Can be suppressed while preventing the deformation of. Therefore, the wireless communication module 2 can achieve both the heat stability of the radiation characteristic and the desired radiation characteristic.
  • the wireless communication module 2 also includes a heat diffusion plate 218.
  • the heat diffusion plate 218 can draw heat from the integrated circuit 215 through the substrate 211 and can diffuse the heat. Therefore, the wireless communication module 2 can suppress the amount of heat transmitted from the integrated circuit 215 to the antenna circuit board 21 even when the amount of heat (heat generation amount) emitted by the integrated circuit 215 is large. Therefore, the wireless communication module 2 can enhance the heat stability of the radiation characteristic.
  • the wireless communication module 2 shown in FIG. 6 can be modified to further enhance the thermal stability of the radiation characteristics of the antenna element group 214.
  • a wireless communication module 2A which is a modification (a third modification of the present invention) of the wireless communication module 2 will be described with reference to FIG.
  • FIG. 7A is a three-sided view of the wireless communication module 2A.
  • FIG. 7B is a plan view of the back surface of the wireless communication module 2A.
  • the coordinate system shown in FIG. 7 is defined in the same manner as the coordinate system shown in FIGS. 1 and 2.
  • the wireless communication module 2A is obtained by using the antenna circuit substrate 21 in the wireless communication module 2 as the antenna circuit substrate 21A.
  • the antenna circuit board 21A is obtained by adding the heat pipe 219 to the antenna circuit board 21.
  • the heat pipe 219 is configured the same as the heat pipe 119 shown in FIGS. 3 and 4.
  • the heat pipe 219 can efficiently dissipate the heat drawn from the integrated circuit 215 by the heat diffusion plate 218 through the substrate 211 to the outside of the heat diffusion plate 218 (the outside of the wireless communication module 2A). Therefore, the wireless communication module 2A can further enhance the heat stability of the radiation characteristic even when the amount of heat (heat generation amount) emitted by the integrated circuit 215 is large.
  • antenna elements (114_1 to 114_64, 214_1 to 214_64) are mounted on the first main surface (1111, 2111), The antenna elements (114_1 to 114_64, 214_1) to the second main surface (1112, 2112) via the feeding lines (113_1 to 113_4, 213_1 to 213_4) and the feeding lines (113_1 to 113_4, 213_1 to 213_4).
  • Antenna circuit board (11, 11A, 11B, 21, 21A) on which integrated circuits (115, 215) connected to 214_64) are mounted, and one of the antenna circuit boards (11, 11A, 11B, 21, 21A) By holding the opposite sides of the set, the antenna circuit boards (11, 11A, 11B A support (12, 12B, 22) for maintaining the planarity of 21.
  • the support (12, 12B, 22) comprising: (1) the antenna circuit board (11, 11A, 11B) , 21, 21A) facing the second main surface (1112, 2112), and the second main surface (1112, 2112) of the antenna circuit board (11, 11A, 11B, 21, 21A) From the antenna circuit board (11, 11A, 11B, 21, 21A) or more separated from the wavelength of the electromagnetic wave transmitted and received, or (2) the antenna circuit board (11, 11A, 11B, 21, 21A) And the second main surface (1112, 2112) of
  • the antenna circuit since the support holds the pair of opposite sides of the antenna circuit substrate, the antenna circuit may be made of a flexible material.
  • the planarity of the substrate can be maintained. Therefore, it is possible to suppress a change in radiation characteristics that may occur due to the deformation of the antenna circuit substrate.
  • the support does not approach the feed line excessively. Therefore, the deterioration of the radiation characteristic that may occur in the antenna element can be suppressed, and the desired radiation characteristic assumed at the time of design can be obtained.
  • the wireless communication module according to the present invention has the support after preventing deformation of the antenna circuit board even when the antenna circuit board made of the material having flexibility is adopted. It is possible to suppress the deterioration of the radiation characteristics (for example, the decrease in gain) that may occur.
  • the support (12, 12B) is the second main surface of the antenna circuit board (11, 11A, 11B). Preferably, it is configured to be in contact with the integrated circuit (115) opposite to (1112) and to diffuse heat generated in the integrated circuit (115).
  • the support in contact with the integrated circuit can draw in and diffuse the heat generated by the integrated circuit from the integrated circuit. Therefore, the wireless communication module can suppress the amount of heat transferred from the integrated circuit to the antenna circuit substrate even when the amount of heat (heat generation amount) emitted by the integrated circuit is large, so that the heat of the radiation characteristic can be reduced. It can improve stability.
  • heat pipes are provided on the surface of the support (12B).
  • the heat pipe can efficiently dissipate the heat drawn by the support from the integrated circuit to the outside of the support.
  • the wireless communication module can further enhance the thermal stability of the radiation characteristic.
  • the first main surface (1111, 2111) of the antenna circuit board (11A, 11B, 21, 21A) The integrated circuit (115, 215) when the antenna circuit substrate (11A, 11B, 21, 21A) is viewed in a plan view in a region where the antenna elements (114_1 to 114_64, 214_1 to 214_64) are not formed. It is preferable that a thermal diffusion plate (118, 218) for diffusing the heat generated in the integrated circuit (115, 215) is formed in the overlapping area.
  • the heat diffusion plate formed in the area overlapping with the integrated circuit can draw in and diffuse the heat generated by the integrated circuit from the integrated circuit via the antenna circuit substrate. Therefore, since the present wireless communication module can suppress the amount of heat transferred from the integrated circuit to the antenna circuit substrate, the stability of the radiation characteristic to heat can be enhanced.
  • a heat pipe (119, 219) is provided on the surface of the heat diffusion plate (118, 218).
  • the heat pipe can efficiently dissipate the heat drawn by the heat diffusion plate from the integrated circuit to the outside of the heat diffusion plate.
  • the wireless communication module can further enhance the thermal stability of the radiation characteristic.
  • the antenna circuit board (11, 11A, 11B, 21, 21A) is a polyimide resin, a liquid crystal polymer, or It is preferable that it is a flexible antenna circuit board (11, 11A, 11B, 21, 21A) made of a composite material including at least one of a polyimide resin and a liquid crystal polymer.
  • the power supplied from the integrated circuit to the antenna element through the feeder line Loss can be suppressed.
  • 1, 1A, 1B, 2, 2A wireless communication modules 11, 11A, 11B, 21, 21A antenna circuit boards 12, 12B, 22 supports 111, 211 boards 111a, 211a vias 112, 212 input / output terminal groups 112_1 to 112_20, 212_1 to 212_20 electrode pad 113, 213 feed line group 113_1 to 113_4, 213_1 to 213_4 feed line 114, 214 antenna element group 114_1 to 114_64, 214_1 to 214_64 antenna element 115, 215 integrated circuit 115a, 215a BGA 116, 216 parts group 117, 217 connector 118, 218 heat diffusion plate 119, 219 heat pipe 121, 221 first holding portion 122, 222 second holding portion 123, 223 connecting portion 124a, 124b heat pipe

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Transceivers (AREA)

Abstract

アンテナ回路基板が変形することに起因して生じ得る放射特性の変化を抑制した無線通信モジュールを実現すること。無線通信モジュール(1)のアンテナ回路基板(11)は、第1の主面(1111)にアンテナ素子(114_j)が実装され、第2の主面(1112)に集積回路(115)が実装される。無線通信モジュール(1)の支持体(12)は、アンテナ回路基板(11)の1組の対辺を保持することによってその平面性を保つ。支持体(12)は、(i)第2の主面(1112)と対向し、かつ、第2の主面(1112)からアンテナ回路基板(11)を用いて送受信される電磁波の波長以上離間しているか、(ii)第2の主面(1112)と対向していない。

Description

無線通信モジュール
 本発明は、無線通信モジュールに関する。
 アンテナ素子と、給電線と、集積回路とが実装されたアンテナ回路基板を備えた無線通信モジュールが知られている。例えば、特許文献1の図1及び図2には、アンテナと、給電端子と、第1のRFIC及び第2のRFICとが実装された多層基板を備えたモジュール一体型アンテナが記載されている。
 特許文献1に記載のモジュール一体型アンテナ、多層基板、及びアンテナは、それぞれ、本明細書に記載の無線通信モジュール、アンテナ回路基板、及びアンテナ素子と読み替え可能である。また、特許文献1に記載の無線通信モジュールにおいて、第1のRFIC及び第2のRFICは、本明細書に記載の集積回路と読み替え可能であり、第1のRFIC又は第2のRFICと給電端子とを接続する部分の配線は、本明細書に記載の給電線と読み替え可能である。以下では、本明細書で用いる部材名を用いて説明する。
日本国公開特許公報「特開2003-188626号公報」
 近年のネットワークトラフィックの増大に伴い、上述したような無線通信モジュールが送受信する電磁波の帯域は、ますます高周波化されている。例えばEバンドと呼ばれる帯域は、70GHz以上80GHz以下である。このような高周波帯域では、給電線を介して集積回路からアンテナ素子に供給される電力の損失がアンテナ回路基板を構成する誘電体材料に依存することが知られている。例えば従来の無線通信モジュール(特許文献1の図1及び図2に記載の無線通信モジュール)は、アンテナ回路基板を構成する材料としてセラミクスを採用している。このようなアンテナ回路基板を高周波帯域において利用する場合、セラミクスによる誘電体損失を無視することができない。また、セラミクスを材料とするアンテナ回路基板には、可撓性を有さないため、加工性が悪いという問題もある。
 このため、高周波領域において利用されるアンテナ回路基板としては、誘電体損失の小さいポリイミド樹脂や液晶ポリマーなどにより構成された、可撓性を有するアンテナ回路基板が広く用いられている。しかしながら、このようなアンテナ回路基板を採用した従来の無線通信モジュールは、アンテナ素子の放射特性が不安定になるという課題を有する。これは、アンテナ回路基板が変形する(例えばしなる)ことに起因してアンテナ素子の放射特性がその都度変動するためである。
 また、上述したアンテナ回路基板の変形は、例えば集積回路の発熱量が増えれば増えるほど大きくなる。換言すれば、アンテナ素子の放射特性は、例えば集積回路の発熱量が増えれば増えるほど不安定になる。ポリイミド樹脂や液晶ポリマーなどの可撓性有する材料は、その温度が高くなれば高くなるほど軟化し、変形しやすくなるためである。ここで、集積回路の発熱量は、集積回路を用いて送受信される電磁波の帯域が高周波化されればされるほど増加する傾向にある。そのため、上述したアンテナ素子の放射特性が不安定になるという課題は、集積回路を用いて送受信される電磁波の帯域が高周波化されればされるほど顕著になる。
 本発明は、上述した課題に鑑みなされたものであり、その目的は、アンテナ回路基板が変形することに起因して生じ得る放射特性の変化を抑制した無線通信モジュールを実現することにある。
 上記の課題を解決するために、本発明の一態様に係る無線通信モジュールは、第1の主面にアンテナ素子が実装され、第2の主面に給電線、及び、前記給電線を介して前記アンテナ素子に接続された集積回路が実装されたアンテナ回路基板と、前記アンテナ回路基板の1組の対辺を保持することによって、前記アンテナ回路基板の平面性を保つ支持体と、を備えており、前記支持体は、(1)前記アンテナ回路基板の前記第2の主面と対向し、かつ、前記アンテナ回路基板の前記第2の主面から前記アンテナ回路基板を用いて送受信される電磁波の波長以上離間しているか、又は、(2)前記アンテナ回路基板の前記第2の主面と対向していない、ことを特徴とする。
 本発明の一態様によれば、アンテナ回路基板が変形することに起因して生じ得る放射特性の変化を抑制した無線通信モジュールを実現することができる。
(a)は、本発明の実施形態1に係る無線通信モジュールの平面図である。(b)は、(a)に示した無線通信モジュールのAA’断面を示す断面図である。 (a)は、図1に示した無線通信モジュールが備えているアンテナ回路基板のおもて面を示す平面図である。(b)は、(a)に示したアンテナ回路基板のうら面を示す平面図である。 (a)は、本発明の変形例1に係る無線通信モジュールの平面図である。(b)は、(a)に示した無線通信モジュールのAA’断面を示す断面図である。 (a)は、図3に示した無線通信モジュールが備えているアンテナ回路基板のおもて面を示す平面図である。(b)は、(a)に示したアンテナ回路基板のうら面を示す平面図である。 (a)は、本発明の変形例2に係る無線通信モジュールの平面図である。(b)は、(a)に示した無線通信モジュールのAA’断面を示す断面図である。 (a)は、本発明の実施形態2に係る無線通信モジュールの三面図である。(b)は、(a)に示した無線通信モジュールのうら面を示す平面図である。 (a)は、本発明の変形例3に係る無線通信モジュールの三面図である。(b)は、(a)に示した無線通信モジュールのうら面を示す平面図である。
 〔実施形態1〕
 以下、本発明の実施形態1について、図1~図2を参照して詳細に説明する。図1の(a)は、本発明の実施形態1に係る無線通信モジュール1の平面図である。図1の(b)は、図1の(a)に示した直線AA’を含み、且つ、後述するアンテナ回路基板11の主面1111,1112に直交する断面における無線通信モジュール1の断面図である。
 図1の(a)及び(b)に示すように、無線通信モジュール1は、アンテナ回路基板11と、支持体12とを備えている。なお、図1及び図2に付した座標系は、アンテナ回路基板11の主面1111,1112の法線と平行な方向をz軸方向とし、アンテナ回路基板11の主面1111,1112の長辺に沿う方向をx軸方向とし、アンテナ回路基板11の主面1111,1112の短辺に沿う方向をy軸方向とするように定められている。また、アンテナ回路基板11の2つの主面1111,1112のうち、アンテナ素子群114が設けられている側の主面1111から給電線群113が設けられている側の主面1112へ向かう方向をz軸正方向と定め、アンテナ回路基板の主面1111,1112の一対の長辺のうち、コネクタ117に近接する側の長辺から他方の長辺に向かう方向をy軸正方向と定め、y軸及びz軸とともに右手系の直交座標系を形成するようにx軸の正方向を定めている。
 (アンテナ回路基板11の構成)
 図2の(a)は、アンテナ回路基板11の主面1112を平面視した平面図である。(b)は、アンテナ回路基板11の主面1111を平面視した平面図である。主面1111及び主面1112は、それぞれ、請求の範囲に記載の第1の主面及び第2の主面である。ここで、主面とは、直方体状の部材を構成する6つの面のうち、最大の面積を有する2つの面のことを指す。以降、アンテナ回路基板11の主面1112を、表(おもて)面1112とも記載する。また、主面1111を、うら面1111とも記載する。
 なお、図2の(a)に示す直線BB’は、図1の(b)に示した断面と、おもて面1112との交線の延長線である。また、図2の(b)に示す直線CC’は、図1の(b)に示した断面と、うら面1111との交線の延長線である。したがって、図1の(a)には直線AA’のみを示しているものの、図1の(a)においては直線BB’及び直線CC’は、直線AA’に重なっている。
 アンテナ回路基板11は、基板111と、入出力端子群112と、給電線群113と、アンテナ素子群114と、集積回路115と、部品群116と、コネクタ117とを含む。
 基板111は、板状の部材であり、可撓性を有する材料からなる。基板111の材料は、例えば、ポリイミド樹脂、液晶ポリマー、又は、少なくともポリイミド樹脂及び液晶ポリマーの少なくとも一方を含む複合材料であることが好ましい。これ以外の基板111の材料としては、PPE(Polyphenyleneether)/PPO(Polyphenyleneoxide)樹脂、PTFE(Polytetrafluoroethylen)樹脂、炭化水素樹脂などが挙げられる。本実施形態では、基板111の材料として液晶ポリマーを採用している。
 図2の(a)に示すように、基板111の主面は、大小2つの長方形を組み合わせた形状となっている。換言すると、基板111の主面の形状は、大きい方の長方形のy軸負方向側の長辺の中央部分から、小さい方の長方形が引き出された形状である。
 基板111において大きい方の長方形の領域のおもて面1112には、入出力端子群112と、給電線群113と、集積回路115と、部品群116とが実装されている。また、大きい方の長方形の領域のうら面1111には、アンテナ素子群114が形成される。また、基板111において小さい方の長方形のおもて面1112には、コネクタ117が実装される。
 また、図1(b)に示すように、基板111の内部には、おもて面1112に形成された給電線群113の末端と、うら面1111に形成されたアンテナ素子群114とを電気的に接続するビア111aが形成されている。
 ビア111aの各々は、基板のおもて面1112からうら面1111まで貫通する貫通孔の内部に導体を充填することによって構成された導体ポストである。基板111の内部には、アンテナ素子群114を構成するアンテナ素子の数に対応して、64本のビア111aが形成されている。
 入出力端子群112は、基板111のおもて面1112に形成された複数(本実施形態では20個)の電極パッド112_1~112_20からなる。なお、図2の(a)においては、後述する4つの電極パッド112_1,112_2,112_3,112_4のみを図示し、電極パッド112_5~112_20の図示を省略している。
 4つの電極パッド112_1,112_2,112_3,112_4には、後述する給電線群113が接続されている。
 また、電極パッド112_5~112_20は、部品群116の何れかに信号線(図2の(a)には不図示)を介して接続されるか、何れの部品にも接続されない空きパッドとなる。なお、図2(a)では、入出力端子群112を構成する電極パッドの数が20個である場合を例示しているが、この数は任意である。また、そのうちの4個の電極パッド112_1,112_2,112_3,112_4に対して給電線群113が接続される場合を例示している。しかし、給電線群113が接続される電極パッドの数は、任意である。
 アンテナ素子群114は、m個のアンテナ素子114_jによって構成される。mは1以上の整数であり、jは1以上m以下の整数である。図2(b)では、アンテナ素子114_jの数mが64の場合を例示しているが、この数は任意である。
 集積回路115は、無線通信モジュール1が送受信するRF(Radio Frequency)信号(請求の範囲に記載の電磁波)を処理するプロセッサ及びメモリを含む集積回路である。具体的には、集積回路115は、コネクタ117を介して無線通信モジュール1以外の外部機器から供給されたベースバンド信号をRF(Radio Frequency)信号に変調する送信回路と、アンテナ素子群114から供給されたRF信号をベースバンド信号に復調する受信回路とを含んでいる。なお、本実施形態では、集積回路115が変調するRF信号の帯域は、Eバンド(70GHz以上80GHz以下)であるものとする。ただし、この帯域は、Eバンドに限定される物ではなく、無線通信モジュール1の用途に応じて適宜選択することができる。
 集積回路115は、BGA(Ball Grid Array)115aを有する。BGA115aは、複数(本実施形態では20個)の半田ボールによって構成されている。BGA115aを構成する半田ボールの数は、入出力端子群112を構成する電極パッド112_1~112_20の数と同数である。
 BGA115aを構成する半田ボールの各々がそれぞれ対応する電極パッド112_1~112_20の各々に半田付けされることによって、集積回路115は、基板111のおもて面1112に対して実装されている。
 なお、本実施形態においては、BGA115aを用いて集積回路115を基板111に実装している。しかし、集積回路115を基板111に実装する構成は、BGAに限定されるものではなく、既存の技術から適宜選択することができる。
 給電線群113は、4本の給電線113_1~113_4からなる。給電線113_1~113_4の各々は、おもて面1112上に設けられた帯状導体を複数組み合わせることにより構成されている。なお、基板111の内層には、図2の(a)に図示しないグランド層が設けられている。このグランド層と給電線113_1~113_4の各々は、マイクロストリップ線路を構成する。
 給電線113_1は、電極パッド112_1と、アンテナ素子114_33~114_48の各々とを、ビア111aを介して電気的に接続する。給電線113_2は、電極パッド112_2と、アンテナ素子114_49~114_64の各々とを、ビア111aを介して電気的に接続する。給電線113_3は、電極パッド112_3と、アンテナ素子114_1~114_16の各々とを、ビア111aを介して電気的に接続する。給電線113_4は、電極パッド112_4と、アンテナ素子114_17~114_32の各々とを、ビア111aを介して電気的に接続する。
 給電線113_1は、1×4分岐を5個含んでいる。給電線113_1を電極パッド112_1の側から給電線113_1の末端に向かって見た場合、給電線113_1は、1×4分岐により1本の帯状導体から4本の帯状導体へ分岐される。分岐された4本の帯状導体の各々には、それぞれ、1×4分岐が更に設けられている。したがって、給電線113_1は、1本の帯状導体から最終的に16本の帯状導体へ分岐される。このように分岐された16本の帯状導体の末端の各々は、それぞれ、ビア111aを介して16個のアンテナ素子114_33~114_48の各々と電気的に接続されている(図1の(b)参照)。
 給電線113_1において、電極パッド112_1から上述した16本の帯状導体の末端の各々までの距離は、何れも等しくなるように構成されている。また、16本の帯状導体の末端の各々に接続されたビア111aの長さは、何れも等しい。したがって、無線通信モジュール1において、電極パッド112_1からアンテナ素子114_33~114_48の各々までの距離は、何れも等しい。すなわち、給電線113_1は、等長配線となるように構成されている。
 給電線113_2~113_4は、何れも、給電線113_1と同様に構成されている。
 例えば、無線通信モジュール1がRF信号を送信する場合、集積回路115がベースバンド信号から変調したRF信号は、給電線113_1~113_4とビア111aとを介してアンテナ素子114_1~114_64の各々に供給され、アンテナ素子114_1~114_64の各々は、そのRF信号を送信する。また、例えば無線通信モジュール1がRF信号を受信する場合、アンテナ素子114_1~114_64が受信したRF信号は、ビア111aと給電線113_1~113_4とを介して集積回路115に供給され、集積回路115は、そのRF信号をベースバンド信号に復調する。
 なお、無線通信モジュール1が備えているアンテナ素子群114を構成するアンテナ素子の数、給電線群113を構成する給電線の数、及び、給電線群113を構成する給電線の分岐のさせ方などは、限定されるものではなく適宜定めることができる。
 部品群116は、例えば、抵抗や、コンデンサや、振動子などの電子部品により構成されている。
 コネクタ117は、無線通信モジュール1と無線通信モジュール1以外の外部機器とを接続する。なお、外部機器は、コネクタ117と対をなすコネクタを備えている。コネクタ117と、コネクタ117と対をなすコネクタとを嵌合することによって、無線通信モジュール1と外部機器とを接続することができる。すなわち、無線通信モジュール1と外部機器との間でベースバンド信号を送受信することができる。
 (支持体12の構成)
 図1の(a)及び(b)に示すように、支持体12は、第1保持部121と、第2保持部122と、連結部123とによって構成されている。支持体12は、熱伝導性が良好な材料からなる。例えば、支持体12の材料としては、金属が好ましく、その中でも熱伝導性が特に高い金属(すなわち銅やアルミ等)がより好ましい。それ以外の支持体12の材料としては、カーボングラファイト、窒化アルミニウム、シリコンカーバイドなどが挙げられる。本実施形態では、支持体12の材料としてアルミを採用する。
 第1保持部121、第2保持部122及び連結部123の各々は、何れも板状部材である。図1の(a)に示すように、連結部123は、その主面がxy平面に沿うように配置されている。また、図1の(b)に示すように、第1保持部121及び第2保持部122の各々は、その主面がxy平面に交わるように配置されている。本実施形態において、第1保持部121及び第2保持部122の各々の主面は、連結部123の主面に対して直交している。
 このように、支持体12の断面視形状がU字型(アルファベットで例えた場合)になるように、第1保持部121、第2保持部122及び連結部123は、接合されている。すなわち、連結部123は、第1保持部121と第2保持部122との間に介在し、各々を連結している。なお、第1保持部121と連結部123とを接合する接合部近傍、及び、第2保持部122と連結部123とを接合する接合部近傍の各々は、図1の(b)に示すように角が立っていてもよいし、角が丸められていてもよい。
 なお、第1保持部121、第2保持部122、及び連結部123を接合する方法は、限定されるものではない。例えば、第1保持部121、第2保持部122及び連結部123は、溶接(半田溶接を含む)により接合されていてもよいし、ボルトを用いて接合されていてもよいし、接着剤を用いて接合されていてもよい。なお、第1保持部121と連結部123とを接合する方法は、第1保持部121と連結部123との間に良好な熱伝導性を確保することができる方法であることが好ましい。第2保持部122と連結部123とを接合する方法についても同様である。
 支持体12は、第1保持部121及び第2保持部122のz軸負方向側の端面が基板111のおもて面1112に接した状態で、基板111に接合されている。換言すれば、支持体12は、連結部123の主面がおもて面1112と対向し、且つ、連結部123がおもて面1112を覆うように、基板111に接合されている。したがって、連結部123は、その主面の大きさが基板111の主面を構成する大きい方の長方形の大きさと同程度となるように構成されている。
 第1保持部121と基板111とを接合する方法、及び、第2保持部122と基板111とを接合する方法は、限定されるものではない。例えば、第1保持部121と基板111とは、ボルトを用いて接合されていてもよいし、接着剤を用いて接合されていてもよい。第2保持部122と基板111との接合についても同様である。
 無線通信モジュール1において、第1保持部121は、アンテナ回路基板11の1組の短辺の一方(x軸負方向側の短辺)を保持している。同様に、無線通信モジュール1において、第2保持部122は、当該1組の短辺の他方(x軸正方向側の短辺)を保持している。これらの一対の短辺は、請求の範囲に記載の1組の対辺に対応する。
 具体的には、第1保持部121及び第2保持部122の主面は、それぞれ長方形状である。第1保持部121及び第2保持部122の主面の長辺の長さは、アンテナ回路基板11において保持される短辺の長さと同程度である(本実施形態では等しい)。
 また、第1保持部121及び第2保持部122の主面の短辺の長さは、アンテナ回路基板11を用いて送受信されるRF信号(請求の範囲に記載の電磁波)の1波長分に相当する距離に連結部123の厚みを加えた値以上となるように構成されている。その結果、連結部123のz軸負方向側の主面(基板111のおもて面1112に対向する主面)は、基板111のおもて面1112から、上述したRF信号の1波長分に相当する距離以上離間している。
 また、連結部123において、基板111のおもて面1112に対向する主面は、集積回路115の上面に接触することが好ましい。なお、集積回路115の上面とは、集積回路115においてBGA115aが設けられている主面に対向する主面であり、z軸正方向側の主面である。連結部123は、集積回路115との接触面を通して、集積回路115によって生じる熱を引き込む。連結部123が集積回路115から引き込んだ熱は、連結部123の内部に拡散し、連結部123の2つの主面から大気中に放出される。
 なお、基板111のおもて面1112に対向する連結部123の主面と、集積回路115の上面とは、直接接触するように構成されていてもよいが、熱伝導性ペースト又は熱伝導性シートを介在して間接的に接触するように構成されていることが好ましい。連結部123と集積回路115との間に熱伝導性ペースト又は熱伝導性シートが介在することによって、連結部123と集積回路115との間における熱伝導性を高めることができる。
 ここで、BGA115aを含む集積回路115の高さと入出力端子群112の高さとの合計値が、上述したRF信号の1波長分に相当する距離以上であるとする。この場合、第1保持部121及び第2保持部122の主面の各短辺は、上述した合計値から連結部123の厚みを引いた値に等しいことが望ましい。これにより、連結部123のz軸負方向側の主面は、集積回路115の上面に接触する。
 一方、BGA115aを含む集積回路115の高さと入出力端子群112の高さとの合計値が、上述したRF信号の1波長分に相当する距離未満であるとする。この場合、第1保持部121及び第2保持部122の各短辺の長さを上述したRF信号の1波長分に相当する距離に連結部123の厚みを加えた値以上にした上で、集積回路115と、連結部123との間に生じる隙間に、上述した熱伝導性ペースト又は熱伝導性シートを介在させることが好ましい。この構成によれば、集積回路115と支持体12との間の熱伝導性を損なうことなく、上述した隙間を埋めることができる。
 なお、本実施形態において、支持体12は、板状部材である第1保持部121、第2保持部122及び連結部123を断面視形状がU字型になるよう連結することにより構成されている。しかし、支持体12は、1枚の板状部材を断面視形状がU字型になるように、その両端辺を含む領域(両端部分)をそれぞれ折り曲げることにより構成されていてもよい。この場合、第1保持部121及び第2保持部122は、折り曲げられた両端部分によってそれぞれ構成され、連結部123は、折り曲げられた両端部分の間に位置する部分によって構成される。
 (無線通信モジュール1の効果)
 以上のように構成された無線通信モジュール1では、支持体12がアンテナ回路基板11の1組の対辺を保持している。このため、無線通信モジュール1は、アンテナ回路基板11が可撓性を有する材料からなる場合であっても、アンテナ回路基板11の平面性を保つことができる。したがって、無線通信モジュール1は、アンテナ回路基板11が変形することに起因して生じ得る放射特性の変化を抑制することができる。
 また、無線通信モジュール1では、支持体12が、アンテナ回路基板11から所定距離以上離れて配置される。このため、支持体12が給電線群113に過度に近接することがない。したがって、無線通信モジュール1は、アンテナ素子群114において生じ得る放射特性の低下を抑制することができ、設計時に想定した所望の放射特性を得ることができる。
 以上のように、無線通信モジュール1は、可撓性を有する材料からなるアンテナ回路基板11を採用した場合であっても、支持体12の作用によりアンテナ回路基板11(より具体的には基板111)の変形を防止したうえで、利得の低下を抑制することができる。したがって、無線通信モジュール1は、放射特性の熱に対する安定性と、所望の放射特性とを両立することができる。
 また、無線通信モジュール1では、支持体12と集積回路115とが接触している。
 この構成によれば、支持体12は、集積回路115が発生した熱を集積回路115から引き込み、拡散することができる。したがって、無線通信モジュール1は、集積回路115が発する熱量(発熱量)が大きい場合であっても、集積回路115からアンテナ回路基板11に伝わる熱量を抑制することができるので、放射特性の熱に対する安定性を高めることができる。
 また、本実施形態では、給電線群113がアンテナ回路基板11のおもて面1112上に形成される。
 この構成によれば、給電線群113の一方の側(z軸正方向側)には誘電体が存在しないため、給電線群113の一方の側は、誘電損失の少ない空気により覆われている。その結果、無線通信モジュール1は、特許文献1の図1及び図2に記載されたように給電線が誘電体の内部に配置されたアンテナ回路基板と比べて、給電線群113において生じ得る損失を大幅に抑制することができる。
 また、無線通信モジュール1が備えているアンテナ回路基板11は、基板111を構成する材料として液晶ポリマーを採用している。この構成によれば、アンテナ回路基板11を用いて送受信されるRF信号の帯域が例えばEバンドのように高い場合であっても、給電線群113を介して集積回路115からアンテナ素子群114に供給される電力の損失を抑制することができる。なお、損失が少ない材料としては、液晶ポリマー以外に、ポリイミド樹脂と、少なくともポリイミド樹脂及び液晶ポリマーの少なくとも一方を含む複合材料とが挙げられる。
 〔変形例1〕
 図1に示した無線通信モジュール1は、アンテナ素子群114の放射特性の熱に対する安定性を更に高めるよう変形可能である。無線通信モジュール1の変形例1である無線通信モジュール1Aについて、図3~図4を参照して説明する。図3の(a)は、無線通信モジュール1Aの平面図である。図3の(b)は、図3の(a)に示した直線AA’を含み、且つ、アンテナ回路基板11Aのおもて面1112及びうら面1111に直行する断面における無線通信モジュール1Aの断面図である。図4の(a)は、無線通信モジュール1Aが備えているアンテナ回路基板11Aのおもて面1112を平面視した平面図である。図4の(b)は、アンテナ回路基板11Aのうら面1111を平面視した平面図である。なお、図4の(a)に示す直線BB’及び図2の(b)に示す直線CC’は、それぞれ、図2の(a)に示す直線BB’及び図2の(b)に示す直線CC’と同様である。なお、図3及び図4に示した座標系は、図1及び図2に示した座標系と同様に定めている。
 (アンテナ回路基板11Aの構成)
 図3の(a)及び(b)に示すように、無線通信モジュール1Aは、無線通信モジュール1のアンテナ回路基板11に対して熱拡散板118とヒートパイプ119とを追加することによって得られる。本変形例では、無線通信モジュール1のアンテナ回路基板11を変形したアンテナ回路基板を、アンテナ回路基板11Aと称する。
 熱拡散板118は、板状部材であり、熱伝導性が良好な材料からなる。例えば、熱拡散板118の材料としては、金属が好ましく、その中でも熱伝導性が特に高い金属(すなわち銅やアルミ等)がより好ましい。本実施形態では、熱拡散板118の材料としてアルミを採用する。
 熱拡散板118は、基板111のうら面1111において、アンテナ素子群114が形成されていない領域であって、アンテナ回路基板11Aを平面視したときに集積回路115と重なる領域に形成される。熱拡散板118は、おもて面1112に実装された集積回路115によって生じる熱を、基板111を介して引き込み、拡散する。
 ヒートパイプ119は、棒状の部材であり、熱伝導性が良好な材料によって構成される。例えば、ヒートパイプ119の材料としては、金属が好ましく、その中でも熱伝導性が特に高い金属(すなわち銅やアルミ等)がより好ましい。本実施形態では、ヒートパイプ119の材料として銅を採用する。
 ヒートパイプ119は、一方の端部を含む区間が熱拡散板118の表面に接触するように設けられている。また、ヒートパイプ119の他方の端部(図4の(a)に不図示)は、無線通信モジュール1Aの外部に配置されている金属部材に接触させられている。
 このように構成されたヒートパイプ119は、熱拡散板118が集積回路115から引き込んだ熱を、その一方の端部から更に引き込み、その他方の端部から上記金属部材に対して逃がすことができる。
 なお、ヒートパイプ119は、中空に形成されており、その内部を冷却水が循環するように構成されていてもよい。
 (アンテナ回路基板11Aの更なる効果)
 以上のように、無線通信モジュール1Aは、熱拡散板118を更に備えている。この構成によれば、熱拡散板118は、集積回路115から熱を引き込み、拡散することができるので、集積回路115からアンテナ回路基板11Aに伝わる熱量を抑制することができる。したがって、無線通信モジュール1Aは、集積回路115が発する熱量(発熱量)が大きい場合であっても、放射特性の熱に対する安定性を高めることができる。
 また、無線通信モジュール1Aは、ヒートパイプ119を更に備えている。この構成によれば、ヒートパイプ119は、熱拡散板118が集積回路115から引き込んだ熱を、熱拡散板118の外部(無線通信モジュール1Aの外部)に効率よく逃がすことができる。したがって、無線通信モジュール1Aは、集積回路115が発する熱量(発熱量)が大きい場合であっても、放射特性の熱に対する安定性を更に高めることができる。
 〔変形例2〕
 図1に示した無線通信モジュール1は、アンテナ素子群114の放射特性の熱に対する安定性を更に高めるよう変形可能である。無線通信モジュール1の変形例2である無線通信モジュール1Bについて、図5を参照して説明する。図5の(a)は、無線通信モジュール1Bの平面図である。図5の(b)は、図5の(a)に示した直線AA’を含み、且つ、アンテナ回路基板11Bのおもて面1112及びうら面1111に直行する断面における無線通信モジュール1Bの断面図である。なお、図5に示した座標系は、図1及び図2に示した座標系と同様に定めている。
 図5の(a)及び(b)に示すように、無線通信モジュール1Bは、無線通信モジュール1における支持体12を、支持体12Bに変形したうえで、無線通信モジュール1のアンテナ回路基板11に対して熱拡散板118を追加することによって得られる。本変形例では、無線通信モジュール1のアンテナ回路基板11を変形したアンテナ回路基板をアンテナ回路基板11Bと称し、無線通信モジュール1の支持体12を変形した支持体を支持体12Bと称する。
 (アンテナ回路基板11Bの構成)
 上述したように、アンテナ回路基板11Bは、アンテナ回路基板11に対して熱拡散板118を追加することによって得られる。別の言い方をすれば、アンテナ回路基板11Bは、アンテナ回路基板11Aからヒートパイプ119を省略することによって得られる。したがって、本変形例では、アンテナ回路基板11Bに関する説明を省略する。
 熱拡散板118は、基板111を介して集積回路115から熱を引き込み、拡散することができるので、集積回路115からアンテナ回路基板11Bに伝わる熱量を抑制することができる。したがって、無線通信モジュール1Bは、放射特性の熱に対する安定性を高めることができる。
 (支持体12Bの構成)
 支持体12Bは、支持体12に対してヒートパイプ124aと124bとを追加することによって得られる。
 ヒートパイプ124a及びヒートパイプ124bの各々は、変形例1において説明したヒートパイプ119と同様に構成されている。したがって、本変形例では、ヒートパイプ124a及びヒートパイプ124bの配置の仕方について説明する。なお、支持体12Bの主面を平面視した場合(図5の(a)参照)に、ヒートパイプ124a及びヒートパイプ124bの各々は、支持体12Bの主面を二等分する直線であってx軸方向と平行な直線を対称軸として、互いに線対称となるように連結部123の表面に配置されている。そこで、本変形例では、ヒートパイプ124aの配置の仕方について説明し、ヒートパイプ124bの配置の仕方についての説明は、省略する。
 ヒートパイプ124aは、支持体12Bを構成する連結部123の表面(ひょう面)のうちz軸負方向側の主面(アンテナ回路基板11Bのおもて面1112に対向する主面)に沿って、z軸負方向側の主面と接触するように設けられている。より詳しくは、ヒートパイプ124aは、z軸負方向側の主面のうち給電線群113と対向しない領域に設けられている。
 この構成によれば、ヒートパイプ124aが給電線群113に近接することを防止できるため、アンテナ素子群114の放射特性が設計時に想定した所望の放射特性から劣化することを防止することができる。
 無線通信モジュール1Bにおいてz軸負方向側の主面のうち給電線群113と対向しない領域とは、支持体12Bと集積回路115とが接触する接触領域をy軸方向正方向及びy軸負方向に向かって延伸した領域である。ヒートパイプ124aは、上述した接触領域をy軸負方向に向かって延伸した領域に、その一方の端部が配置されている。ヒートパイプ124aの他方の端部(図5(a)において不図示)は、無線通信モジュール1Bの外部に配置されている金属部材に接触させられている。
 ヒートパイプ124aは、支持体12Bが集積回路115から引き込んだ熱を、支持体12Bの外部に効率よく逃がすことができる。したがって、無線通信モジュール1Bは、集積回路115が発する熱量(発熱量)が大きい場合であっても、放射特性の熱に対する安定性を更に高めることができる。
 〔実施形態2〕
 本発明の実施形態2について、図6を参照して詳細に説明する。図6の(a)は、本発明の実施形態2に係る無線通信モジュール2の三面図である。図6の(b)は、無線通信モジュール2のうら面の平面図である。なお、図6に示した座標系は、図1及び図2に示した座標系と同様に定めている。
 図6(a)及び(b)に示すように、無線通信モジュール2は、アンテナ回路基板21と、支持体22とを含む。
 (アンテナ回路基板21の構成)
 アンテナ回路基板21は、基板211と、入出力端子群212と、給電線群213と、アンテナ素子群214と、集積回路215と、部品群216と、コネクタ217と、熱拡散板218とを含む。また、基板211の内部にはビア211aが形成されている。基板211、ビア211a、入出力端子群212、給電線群213、アンテナ素子群214、集積回路215、部品群216及びコネクタ217は、実施形態1における基板111、ビア111a、入出力端子群112、給電線群113、アンテナ素子群114、集積回路115、部品群116と同様に構成される。熱拡散板218は、実施形態1の変形例1における熱拡散板118と同様に構成される。
 (支持体22の構成)
 図6(a)に示すように、支持体22は、第1保持部221と、第2保持部222と、連結部223とによって構成されている。
支持体22は、熱伝導性が良好な材料からなる。この点について、支持体22は、支持体12と同様である。本実施形態において、支持体22の材料としてアルミを採用する。
 第1保持部221、第2保持部222及び連結部223の各々は、何れも板状部材である。図6の(a)に示すように、連結部223の長軸は、x軸方向に沿うように(本実施形態では平行に)延伸されている。また、第1保持部221及び第2保持部222の各々の長軸は、それぞれ、y軸方向に沿うように(本実施形態では平行に)延伸されている。本実施形態において、第1保持部221及び第2保持部222の各々の長軸は、連結部223の長軸に対して直交している。
 このように、支持体22は、アンテナ回路基板21のおもて面2112を平面視した場合に、その平面視形状がU字型(アルファベットで例えた場合)になるように、第1保持部221、第2保持部222及び連結部223が接合されている。すなわち、連結部223は、第1保持部221と第2保持部222との間に介在し、各々を連結している。したがって、支持体22の連結部223は、アンテナ回路基板21のおもて面2112と対向していない。なお、第1保持部221と連結部223とを接合する接合部近傍、及び、第2保持部222と連結部223とを接合する接合部近傍の各々は、図6の(a)に示すように角が立っていてもよいし、角が丸められていてもよい。
 なお、第1保持部221、第2保持部222、及び連結部223を接合する方法については、第1保持部121、第2保持部122、及び連結部123を接合する方法と同様である。
 支持体22は、第1保持部221、第2保持部222、及び連結部223のz軸負方向側の端面が基板211のおもて面2112に接した状態で、基板211に接合されている。換言すれば、支持体22は、基板211の側面を3方向から取り囲み、基板211のおもて面2112と対向しないように、基板211に接合されている。
 第1保持部221と基板211とを接合する方法、第2保持部222と基板211とを接合する方法、及び連結部223と基板211とを接合する方法は、第1保持部121と基板111とを接合する方法、及び、第2保持部122と基板111とを接合する方法と同様である。
 無線通信モジュール2において、第1保持部221は、アンテナ回路基板21の1組の短辺の一方(x軸負方向側の短辺)を保持している。同様に、無線通信モジュール2において、第2保持部222は、当該1組の短辺の他方(x軸正方向側の短辺)を保持している。これらの一対の短辺は、請求の範囲に記載の1組の対辺に対応する。
 なお、支持体22は、一枚の板状部材をもとにして、平面視した場合にU字型になるように、上記板状部材の両端を含む部分を折り曲げることにより形成されてもよい。この場合、第1保持部221及び第2保持部222は、折り曲げられた両端を含む部分によってそれぞれ構成され、連結部223は、折り曲げられた両端を含む部分の間の部分によって構成される。
 (無線通信モジュール2の効果)
 無線通信モジュール2は、無線通信モジュール1と同様に、アンテナ回路基板21が可撓性を有する材料からなる場合であっても、アンテナ回路基板21の平面性を保つことができる。したがって、無線通信モジュール2は、アンテナ回路基板21が変形することに起因して生じ得る放射特性の変化を抑制することができる。
 また、無線通信モジュール2では、支持体22は、基板211の側面を3方向から取り囲み、基板211のおもて面2112と対向しないように、基板211に接合されている。したがって、無線通信モジュール2は、アンテナ素子群214において生じ得る放射特性の低下を抑制することができ、設計時に想定した所望の放射特性を得ることができる。
 以上のように、無線通信モジュール2は、可撓性を有する材料からなるアンテナ回路基板21を採用した場合であっても、支持体22の作用によりアンテナ回路基板21(より具体的には基板211)の変形を防止したうえで、利得の低下を抑制することができる。したがって、無線通信モジュール2は、放射特性の熱に対する安定性と、所望の放射特性とを両立することができる。
 また、無線通信モジュール2は、熱拡散板218を備えている。この構成によれば、熱拡散板218は、熱拡散板118の場合と同様に、基板211を介して集積回路215から熱を引き込み、拡散することができる。したがって、無線通信モジュール2は、集積回路215が発する熱量(発熱量)が大きい場合であっても、集積回路215からアンテナ回路基板21に伝わる熱量を抑制することができる。したがって、無線通信モジュール2は、放射特性の熱に対する安定性を高めることができる。
 〔変形例3〕
 図6に示した無線通信モジュール2は、アンテナ素子群214の放射特性の熱に対する安定性を更に高めるよう変形可能である。無線通信モジュール2の変形例(本発明の変形例3)である無線通信モジュール2Aについて、図7を参照して説明する。図7の(a)は、無線通信モジュール2Aの三面図である。図7の(b)は、無線通信モジュール2Aのうら面の平面図である。なお、図7に示した座標系は、図1及び図2に示した座標系と同様に定めている。
 図7の(a)及び(b)に示すように、無線通信モジュール2Aは、無線通信モジュール2におけるアンテナ回路基板21を、アンテナ回路基板21Aにすることによって得られる。具体的には、アンテナ回路基板21Aは、アンテナ回路基板21に対してヒートパイプ219を追加することによって得られる。ヒートパイプ219は、図3及び図4に示したヒートパイプ119と同一に構成される。
 ヒートパイプ219の一方の端部(図7の(a)及び(b)において不図示)は、例えば、無線通信モジュール2Aの外部に配置されている金属部材に接触させられている。このため、ヒートパイプ219は、熱拡散板218が基板211を介して集積回路215から引き込んだ熱を、熱拡散板218の外部(無線通信モジュール2Aの外部)に効率よく逃がすことができる。したがって、無線通信モジュール2Aは、集積回路215が発する熱量(発熱量)が大きい場合であっても、放射特性の熱に対する安定性を更に高めることができる。
 〔まとめ〕
 本発明の一実施形態に係る無線通信モジュール(1,1A,1B,2,2A)は、第1の主面(1111,2111)にアンテナ素子(114_1~114_64,214_1~214_64)が実装され、第2の主面(1112,2112)に給電線(113_1~113_4,213_1~213_4)、及び、前記給電線(113_1~113_4,213_1~213_4)を介して前記アンテナ素子(114_1~114_64,214_1~214_64)に接続された集積回路(115,215)が実装されたアンテナ回路基板(11,11A,11B,21,21A)と、前記アンテナ回路基板(11,11A,11B,21,21A)の1組の対辺を保持することによって、前記アンテナ回路基板(11,11A,11B,21,21A)の平面性を保つ支持体(12,12B,22)と、を備えており、前記支持体(12,12B,22)は、(1)前記アンテナ回路基板(11,11A,11B,21,21A)の前記第2の主面(1112,2112)と対向し、かつ、前記アンテナ回路基板(11,11A,11B,21,21A)の前記第2の主面(1112,2112)から前記アンテナ回路基板(11,11A,11B,21,21A)を用いて送受信される電磁波の波長以上離間しているか、又は、(2)前記アンテナ回路基板(11,11A,11B,21,21A)の前記第2の主面(1112,2112)と対向していない、ことを特徴とする。
 上記の構成によれば、前記支持体が前記アンテナ回路基板の前記1組の対辺を保持しているため、前記アンテナ回路基板が可撓性を有する材料からなる場合であっても、前記アンテナ回路基板の平面性を保つことができる。したがって、アンテナ回路基板が変形することに起因して生じ得る放射特性の変化を抑制することができる。
 また、上記の構成によれば、上述した(1)及び(2)の何れの場合であっても、前記支持体が前記給電線に過度に近接することがない。したがって、前記アンテナ素子において生じ得る放射特性の劣化を抑制することができ、設計時に想定した所望の放射特性を得ることができる。
 以上のように、本無線通信モジュールは、可撓性を有する材料からなる前記アンテナ回路基板を採用した場合であっても、前記アンテナ回路基板の変形を防止したうえで、支持体を有することにより生じ得る放射特性の劣化(例えば、利得の低下)を抑制することができる。
 また、本発明の一実施形態に係る無線通信モジュール(1,1A,1B)において、前記支持体(12,12B)は、前記アンテナ回路基板(11,11A,11B)の前記第2の主面(1112)と対向して前記集積回路(115)と接触し、前記集積回路(115)にて発生した熱を拡散する、ように構成されていることが好ましい。
 上記の構成によれば、前記集積回路と接触している支持体は、前記集積回路が発生した熱を前記集積回路から引き込み、拡散することができる。したがって、本無線通信モジュールは、前記集積回路が発する熱量(発熱量)が大きい場合であっても、前記集積回路から前記アンテナ回路基板に伝わる熱量を抑制することができるので、放射特性の熱に対する安定性を高めることができる。
 また、本発明の一実施形態に係る無線通信モジュール(1B)において、前記支持体(12B)の表面には、ヒートパイプ(124a、124b)が設けられている、ことが好ましい。
 上記の構成によれば、ヒートパイプは、前記支持体が前記集積回路から引き込んだ熱を、前記支持体の外部に効率よく逃がすことができる。したがって、本無線通信モジュールは、放射特性の熱に対する安定性を更に高めることができる。
 また、本発明の一実施形態に係る無線通信モジュール(1A,1B,2,2A)において、前記アンテナ回路基板(11A,11B,21,21A)の前記第1の主面(1111,2111)において、前記アンテナ素子(114_1~114_64,214_1~214_64)が形成されていない領域であって、前記アンテナ回路基板(11A,11B,21,21A)を平面視したときに前記集積回路(115,215)と重なる領域に、前記集積回路(115,215)にて発生した熱を拡散する熱拡散板(118,218)が形成されている、ことが好ましい。
 上記の構成によれば、前記集積回路と重なる領域に形成された熱拡散板は、前記集積回路が発生した熱を、前記アンテナ回路基板を介して前記集積回路から引き込み、拡散することができる。したがって、本無線通信モジュールは、前記集積回路から前記アンテナ回路基板に伝わる熱量を抑制することができるので、放射特性の熱に対する安定性を高めることができる。
 また、本発明の一実施形態に係る無線通信モジュール(1A,2A)において、前記熱拡散板(118,218)の表面には、ヒートパイプ(119,219)が設けられている、ことが好ましい。
 上記の構成によれば、ヒートパイプは、前記熱拡散板が前記集積回路から引き込んだ熱を、前記熱拡散板の外部に効率よく逃がすことができる。したがって、本無線通信モジュールは、放射特性の熱に対する安定性を更に高めることができる。
 また、本発明の一実施形態に係る無線通信モジュール(1,1A,1B,2,2A)において、前記アンテナ回路基板(11,11A,11B,21,21A)は、ポリイミド樹脂、液晶ポリマー、又は、少なくともポリイミド樹脂及び液晶ポリマーの少なくとも一方を含む複合材料により構成された、可撓性を有するアンテナ回路基板(11,11A,11B,21,21A)である、ことが好ましい。
 上記の構成によれば、前記アンテナ回路基板を用いて送受信される電磁波の帯域が例えばEバンドのように高い場合であっても、給電線を介して集積回路からアンテナ素子に供給される電力の損失を抑制することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
1、1A、1B、2、2A 無線通信モジュール
11、11A、11B、21、21A アンテナ回路基板
12、12B、22 支持体
111、211 基板
111a、211a ビア
112、212 入出力端子群
112_1~112_20、212_1~212_20 電極パッド
113、213 給電線群
113_1~113_4、213_1~213_4 給電線
114、214 アンテナ素子群
114_1~114_64、214_1~214_64 アンテナ素子
115、215 集積回路
115a、215a BGA
116、216 部品群
117、217 コネクタ
118、218 熱拡散板
119、219 ヒートパイプ
121、221 第1保持部
122、222 第2保持部
123、223 連結部
124a、124b ヒートパイプ

Claims (6)

  1.  第1の主面にアンテナ素子が実装され、第2の主面に給電線、及び、前記給電線を介して前記アンテナ素子に接続された集積回路が実装されたアンテナ回路基板と、
     前記アンテナ回路基板の1組の対辺を保持することによって、前記アンテナ回路基板の平面性を保つ支持体と、を備えており、
     前記支持体は、(1)前記アンテナ回路基板の前記第2の主面と対向し、かつ、前記アンテナ回路基板の前記第2の主面から前記アンテナ回路基板を用いて送受信される電磁波の波長以上離間しているか、又は、(2)前記アンテナ回路基板の前記第2の主面と対向していない、
    ことを特徴とする無線通信モジュール。
  2.  前記支持体は、前記アンテナ回路基板の前記第2の主面と対向して前記集積回路と接触し、前記集積回路にて発生した熱を拡散する、
    ことを特徴とする請求項1に記載の無線通信モジュール。
  3.  前記支持体の表面には、ヒートパイプが設けられている、
    ことを特徴とする請求項2に記載の無線通信モジュール。
  4.  前記アンテナ回路基板の前記第1の主面において、前記アンテナ素子が形成されていない領域であって、前記アンテナ回路基板を平面視したときに前記集積回路と重なる領域に、前記集積回路にて発生した熱を拡散する熱拡散板が形成されている、
    ことを特徴とする請求項1~3の何れか1項に記載の無線通信モジュール。
  5.  前記熱拡散板の表面には、ヒートパイプが設けられている、
    ことを特徴とする請求項4に記載の無線通信モジュール。
  6.  前記アンテナ回路基板は、ポリイミド樹脂、液晶ポリマー、又は、少なくともポリイミド樹脂及び液晶ポリマーの少なくとも一方を含む複合材料により構成された、可撓性を有するアンテナ回路基板である、
    ことを特徴とする請求項1~5の何れか1項に記載の無線通信モジュール。
PCT/JP2018/020877 2017-09-22 2018-05-31 無線通信モジュール WO2019058646A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18857937.9A EP3686999B1 (en) 2017-09-22 2018-05-31 Wireless communication module
US16/638,917 US11211696B2 (en) 2017-09-22 2018-05-31 Wireless communication module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017182770A JP6905438B2 (ja) 2017-09-22 2017-09-22 無線通信モジュール
JP2017-182770 2017-09-22

Publications (1)

Publication Number Publication Date
WO2019058646A1 true WO2019058646A1 (ja) 2019-03-28

Family

ID=65810163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020877 WO2019058646A1 (ja) 2017-09-22 2018-05-31 無線通信モジュール

Country Status (4)

Country Link
US (1) US11211696B2 (ja)
EP (1) EP3686999B1 (ja)
JP (1) JP6905438B2 (ja)
WO (1) WO2019058646A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6967410B2 (ja) * 2017-09-19 2021-11-17 株式会社フジクラ 無線モジュール
KR102660927B1 (ko) * 2018-10-26 2024-04-25 삼성전자주식회사 그라운드 보강 구조를 포함하는 전자 장치

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2710195A1 (fr) * 1993-09-14 1995-03-24 Thomson Csf Assemblage antenne-circuit électronique.
JPH11136024A (ja) * 1997-10-31 1999-05-21 Hitachi Chem Co Ltd 平面アンテナ
JP2002076720A (ja) * 2000-08-31 2002-03-15 Hitachi Ltd 高周波同軸線接続構造
JP2003500832A (ja) * 1999-05-18 2003-01-07 アメラシア インターナショナル テクノロジー,インコーポレイテッド 高密度電子パッケージ及びその製造方法
JP2003188626A (ja) 2001-12-19 2003-07-04 Murata Mfg Co Ltd モジュール一体型アンテナ
JP2004048489A (ja) * 2002-07-12 2004-02-12 Mitsubishi Electric Corp 移動体搭載アンテナ及びその冷却装置
JP2004140632A (ja) * 2002-10-18 2004-05-13 Hitachi Ltd 高周波送受信装置とその製造方法
JP2005086603A (ja) * 2003-09-10 2005-03-31 Tdk Corp 電子部品モジュールおよびその製造方法
JP2008244581A (ja) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp アンテナ装置
JP2008252303A (ja) * 2007-03-29 2008-10-16 Toshiba Corp アンテナ装置とアンテナ複合ユニット
US8061012B2 (en) * 2007-06-27 2011-11-22 Rf Micro Devices, Inc. Method of manufacturing a module
JP2012514431A (ja) * 2008-12-31 2012-06-21 インテル コーポレイション プラットフォーム統合型フェーズドアレイ送受信モジュールのための装置
WO2014196144A1 (ja) * 2013-06-04 2014-12-11 パナソニックIpマネジメント株式会社 無線モジュール及び無線装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068576A (ja) * 1999-08-30 2001-03-16 Sharp Corp 気密封止型半導体装置
JP3941416B2 (ja) * 2001-04-26 2007-07-04 ソニー株式会社 高周波モジュール装置及びその製造方法
JP3973402B2 (ja) * 2001-10-25 2007-09-12 株式会社日立製作所 高周波回路モジュール
WO2016031807A1 (ja) * 2014-08-26 2016-03-03 三菱電機株式会社 高周波モジュール

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2710195A1 (fr) * 1993-09-14 1995-03-24 Thomson Csf Assemblage antenne-circuit électronique.
JPH11136024A (ja) * 1997-10-31 1999-05-21 Hitachi Chem Co Ltd 平面アンテナ
JP2003500832A (ja) * 1999-05-18 2003-01-07 アメラシア インターナショナル テクノロジー,インコーポレイテッド 高密度電子パッケージ及びその製造方法
JP2002076720A (ja) * 2000-08-31 2002-03-15 Hitachi Ltd 高周波同軸線接続構造
JP2003188626A (ja) 2001-12-19 2003-07-04 Murata Mfg Co Ltd モジュール一体型アンテナ
JP2004048489A (ja) * 2002-07-12 2004-02-12 Mitsubishi Electric Corp 移動体搭載アンテナ及びその冷却装置
JP2004140632A (ja) * 2002-10-18 2004-05-13 Hitachi Ltd 高周波送受信装置とその製造方法
JP2005086603A (ja) * 2003-09-10 2005-03-31 Tdk Corp 電子部品モジュールおよびその製造方法
JP2008244581A (ja) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp アンテナ装置
JP2008252303A (ja) * 2007-03-29 2008-10-16 Toshiba Corp アンテナ装置とアンテナ複合ユニット
US8061012B2 (en) * 2007-06-27 2011-11-22 Rf Micro Devices, Inc. Method of manufacturing a module
JP2012514431A (ja) * 2008-12-31 2012-06-21 インテル コーポレイション プラットフォーム統合型フェーズドアレイ送受信モジュールのための装置
WO2014196144A1 (ja) * 2013-06-04 2014-12-11 パナソニックIpマネジメント株式会社 無線モジュール及び無線装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3686999A4

Also Published As

Publication number Publication date
US20200365977A1 (en) 2020-11-19
EP3686999B1 (en) 2022-05-25
EP3686999A1 (en) 2020-07-29
JP6905438B2 (ja) 2021-07-21
US11211696B2 (en) 2021-12-28
EP3686999A4 (en) 2020-11-11
JP2019057896A (ja) 2019-04-11

Similar Documents

Publication Publication Date Title
TWI650901B (zh) 貼片天線單元及天線
JP5556072B2 (ja) 半導体装置、その製造方法、ミリ波誘電体内伝送装置
GB2559001A (en) Wireless communications package with integrated antenna array
JP5408166B2 (ja) アンテナ装置
KR101605218B1 (ko) 밀리미터파 유전체 내 전송 장치 및 그 제조 방법, 및 무선 전송 장치 및 무선 전송 방법
CN113327990B (zh) 光学模块
JP2005045240A (ja) 回路相互接続構造
US8289728B2 (en) Interconnect board, printed circuit board unit, and method
CN110462933A (zh) 平面天线和无线模块
US20230140655A1 (en) Antenna module, connection member, and communication device equipped with the same
US20110031628A1 (en) Semiconductor device module and method of manufacturing semiconductor device module
JP7350646B2 (ja) 光モジュール
US20200091584A1 (en) On-chip antenna
WO2019058646A1 (ja) 無線通信モジュール
WO2014094636A1 (zh) 电子装置和栅格阵列模块
WO2024109303A1 (zh) 光模块
WO2012000371A1 (zh) 一种dc/dc模块电源
TWI451628B (zh) 具有天線結構之電子設備
US10321555B1 (en) Printed circuit board based RF circuit module
US10772204B2 (en) Electronic device
CN217468777U (zh) 基站天线
US11984637B2 (en) Transmission line and electronic device
WO2011157125A2 (zh) 天线辐射单元、馈电方法及天线系统
JP7474143B2 (ja) 光モジュール
WO2024080073A1 (ja) アンテナ構造体及びアレイアンテナ構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018857937

Country of ref document: EP

Effective date: 20200422