WO2019056834A1 - 成像方法、控制序列测定反应的方法、装置及系统 - Google Patents

成像方法、控制序列测定反应的方法、装置及系统 Download PDF

Info

Publication number
WO2019056834A1
WO2019056834A1 PCT/CN2018/095293 CN2018095293W WO2019056834A1 WO 2019056834 A1 WO2019056834 A1 WO 2019056834A1 CN 2018095293 W CN2018095293 W CN 2018095293W WO 2019056834 A1 WO2019056834 A1 WO 2019056834A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
lens module
unit
optical axis
imaging device
Prior art date
Application number
PCT/CN2018/095293
Other languages
English (en)
French (fr)
Inventor
周志良
郑焦
徐家宏
徐剑峰
王光明
姜泽飞
颜钦
Original Assignee
深圳市瀚海基因生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市瀚海基因生物科技有限公司 filed Critical 深圳市瀚海基因生物科技有限公司
Publication of WO2019056834A1 publication Critical patent/WO2019056834A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the invention relates to the field of optical detection, in particular to an imaging method, a method for controlling a sequence determination reaction, a control device, an optical detection system and a sequence determination system.
  • Sequencing includes the determination of nucleic acid sequences.
  • the current sequencing platforms on the market include a generation of sequencing platforms, second-generation sequencing platforms and three generations of sequencing platforms.
  • the sequencing instrument includes a detection module that utilizes the detection module to transform and/or collect information changes produced by biochemical reactions in the sequence determination to determine the sequence.
  • the detection module generally includes an optical detection module, a current detection module, and an acid-base (pH) detection module.
  • the sequencing platform based on the principle of optical detection performs sequence determination by analyzing the changes in the optical signals in the detected sequencing biochemical reactions.
  • the lens module of the optical detection module may experience an unexpected position fluctuation, which may adversely affect the collection of the optical signal.
  • embodiments of the present invention aim to at least solve one of the technical problems existing in the related art or at least provide an alternative practical solution. To this end, embodiments of the present invention are required to provide an imaging method, a method of controlling a sequence determination reaction, a control device, an optical detection system, and a sequence determination system.
  • the inventors When the imaging device is used to focus on a reaction device (for example, a flow cell) on a sequencing platform, the inventors have surprisingly found that the coordinates of the lens module (including the objective lens) are set to follow the coordinates in the Z-axis direction.
  • the curve (zx) of the focal direction (for example, the channel direction of the chip, which is set to the x direction) does not conform to the theoretical linear relationship or the linear relationship, exhibits severe local fluctuations, and the fluctuation exhibits periodic changes. As shown in Figure 1.
  • the inventors have experimented that even if the focus is not given to the lens module in the Z-axis direction, only the lens module is photographed against the same field of view, and the Z-axis direction of the lens module is still periodically fluctuating, as shown in the figure. As shown in 2, the period is about 10.4 s. More surprisingly, the inventors have found that the period of the fluctuation is very close to the period of change that allows the temperature of the reaction device, and it is suspected that the fluctuation of the lens module may be related to fluctuations in temperature. Generally, the setting of allowing the temperature change of the reaction device is controlled by a temperature control device connected to the reaction device.
  • the temperature control device it is desirable to maintain the temperature of the reaction device at about 25 ° C, and the temperature variation range can be set by the temperature control device to be [24 ° C , 26 ° C], that is, beyond 25 ⁇ 1 ° C, the temperature control device will adjust the temperature to maintain the temperature of the reaction device within the above preset range.
  • the inventors verified the above conjecture by controlling the temperature fluctuations. For example, the temperature control device was removed, and a behavior similar to the focus tracking was performed back and forth along a channel of the chip.
  • the lens module ZX fluctuations conformed to a theoretical linear or approximately linear relationship. The cyclical fluctuations mentioned above did not occur. Based on the discovery and confirmation of the above relationship, the inventors propose a scheme for controlling the fluctuation of the lens module by controlling the temperature change.
  • Embodiments of the present invention provide an imaging method for an optical detection system including an imaging device and a carrier device, the carrier device including a temperature control device and a stage, the imaging device including a lens a module, the lens module includes an optical axis, the stage is configured to carry a sample, and the temperature control device is configured to adjust a temperature of the sample, the method comprising:
  • the temperature control device uses the temperature control device to set a range that allows temperature fluctuations of the sample before image acquisition of the sample by the imaging device or when image acquisition is performed using the imaging device, so that The position fluctuation range of the lens module along the optical axis is within a preset range.
  • Embodiments of the present invention provide a method for controlling a sequence assay reaction, which uses a sequence determination system to control the sequence assay reaction,
  • the sequence determination system includes an optical detection system including an imaging device and a carrier device, the imaging device including a lens module, the lens module including an optical axis, the carrier device including a temperature control device and a stage for carrying a sample, the sequence determining reaction comprising image capturing the sample using the imaging device, the method comprising:
  • the position fluctuation range of the lens module along the optical axis is within a preset range.
  • the position fluctuation range of the lens module can be controlled within a preset range, thereby reducing or avoiding an adverse effect on image acquisition of the imaging device.
  • An optical detection system includes a control device, an imaging device, and a carrier device, the carrier device includes a temperature control device and a stage, the imaging device includes a lens module, and the lens module includes an optical axis.
  • the stage is for carrying a sample
  • the temperature control device is for adjusting the temperature of the sample
  • the control device is for: before using the imaging device to perform image acquisition on the sample or using the imaging
  • the temperature control device is used to set a range that allows temperature fluctuation of the sample, so that the position fluctuation range of the lens module along the optical axis is within a preset range.
  • a sequence determination system for controlling a sequence determination reaction comprising an optical detection system comprising a control device, an imaging device and a carrier device, the imaging device comprising a lens module
  • the lens module includes an optical axis
  • the carrying device includes a temperature control device and a carrier
  • the carrier is configured to carry a sample
  • the control device is configured to perform image collection on the sample by using the imaging device
  • the position fluctuation range of the lens module along the optical axis is within a preset range.
  • the position fluctuation range of the lens module can be controlled within a preset range, which reduces or avoids adverse effects on image acquisition of the imaging device.
  • a control device for controlling imaging for an optical detection system includes an imaging device and a carrier device, the carrier device includes a temperature control device and a stage, and the imaging device includes a lens module, the lens module includes an optical axis, the stage is configured to carry a sample, the temperature control device is configured to adjust a temperature of the sample, and the control device includes: a storage device configured to store data, The data includes a computer executable program; a processor for executing the computer executable program, and executing the computer executable program includes performing the method of any of the above embodiments.
  • a computer readable storage medium for storing a program for execution by a computer, the method comprising executing the method of any of the above embodiments.
  • the computer readable storage medium may include read only memory, random access memory, magnetic or optical disks, and the like.
  • a sequence measurement system includes the control device of any of the above embodiments.
  • a computer program product of an embodiment of the invention includes instructions which, when executed by a computer, cause the computer to perform the steps of the method of any of the above embodiments.
  • FIG. 1 is a schematic diagram showing a curve of a Z-axis coordinate of a detected lens module along a tracking direction.
  • FIG. 2 is a schematic diagram showing another variation curve of the detected Z-axis coordinate of the lens module along the tracking direction.
  • FIG 3 is a perspective view of a carrier device according to an embodiment of the present invention.
  • FIG. 4 is an exploded perspective view of a carrier device according to an embodiment of the present invention.
  • FIG. 5 is a schematic view showing the positional relationship between a lens module and a sample according to an embodiment of the present invention.
  • Fig. 6 is a partial schematic structural view of an optical detecting system according to an embodiment of the present invention.
  • FIG. 7 is a schematic flow chart of an image forming method according to an embodiment of the present invention.
  • FIG. 8 is another schematic flow chart of an imaging method according to an embodiment of the present invention.
  • FIG. 9 is a schematic flow chart of still another embodiment of the imaging method according to an embodiment of the present invention.
  • Fig. 10 is an exploded perspective view showing a temperature control device according to an embodiment of the present invention.
  • Figure 11 is a schematic view showing the structure of a water bath and a temperature-controlled water bath device according to an embodiment of the present invention.
  • Figure 12 is a partially exploded perspective view of a carrier device in accordance with an embodiment of the present invention.
  • Fig. 13 is a schematic structural view of a fluid device according to an embodiment of the present invention.
  • Fig. 14 is a flow chart showing a method of controlling a reaction for determining a sequence according to an embodiment of the present invention.
  • Fig. 15 is a schematic block diagram of an image forming apparatus according to an embodiment of the present invention.
  • Fig. 16 is a block diagram showing another module of the image forming apparatus of the embodiment of the present invention.
  • FIG 17 is a block diagram of an optical detection system in accordance with an embodiment of the present invention.
  • Figure 18 is a block diagram showing the sequence determination system of the embodiment of the present invention.
  • first and second are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.
  • connection should be understood broadly, for example, it may be a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection, or it may be an electrical connection or may communicate with each other. It can be directly connected or indirectly connected through an intermediate medium, which can be the internal communication of two elements or the interaction of two elements.
  • intermediate medium can be the internal communication of two elements or the interaction of two elements.
  • any numerical value expressed in an accurate manner represents a range, that is, a range including plus or minus 10% of the numerical value, unless otherwise specified. The description will not be repeated below.
  • sequence determination is identical to nucleic acid sequence determination, including DNA sequencing and/or RNA sequencing, including long fragment sequencing and/or short fragment sequencing.
  • sequence determination reaction is the same as the sequencing reaction.
  • Embodiments of the present invention provide an imaging method for an optical detection system.
  • the optical detection system includes an imaging device 102 and a carrier device 100.
  • the carrier device 100 includes a temperature control device 301 and a stage 103.
  • the imaging device 102 includes a lens module. 104, the lens module 104 includes an optical axis OP, the stage 103 is used to carry the sample 300, and the temperature control device 301 is used to adjust the temperature of the sample 300.
  • the imaging method includes setting a range of temperature fluctuations allowing the sample 300 to be used by the temperature control device 301 before image acquisition of the sample 300 by the imaging device 102 or when image acquisition is performed on the sample 300 by the imaging device 102, so that the lens mode is made.
  • the position fluctuation range of the group 104 along the optical axis OP is within a preset range.
  • the position fluctuation range of the lens module 104 can be controlled within a preset range, which reduces or avoids adverse effects on image acquisition by the imaging device 102.
  • the temperature control device 301 can be in contact with the sample 300 to set a range of temperature fluctuations of the sample 300.
  • the optical detection system is pre-configured with a range of temperature fluctuations of the sample 300 and a range of position fluctuations of the lens module 104 along the optical axis, and controls the lens module 104 along the optical axis OP according to the correspondence relationship.
  • the position fluctuation range is within the preset range. In this way, the imaging method can quickly acquire the range of the temperature fluctuation of the sample 300 corresponding to the range of the position fluctuation of the lens module 104 along the optical axis within the preset range.
  • the correspondence between the range of the temperature fluctuation of the sample 300 and the range of the position fluctuation of the lens module 104 along the optical axis can be stored in the optical detection system.
  • the so-called correspondence can be referred to in Table 1.
  • Table 1 is only an example to illustrate the embodiments of the present invention, and is not to be construed as limiting the present invention.
  • the range of the temperature fluctuation of the sample 300 and the range of the position fluctuation of the lens module 104 along the optical axis may be specifically set according to actual needs.
  • the structure of the carrier device 100 is illustrated in Figures 3 and 4.
  • the positional relationship between the lens module 104 and the sample 300 is as shown in FIG.
  • the imaging device 102 includes a focusing module 106 for performing image acquisition on the sample 300 by using the imaging device 102 , including: focusing the sample 300 by using the focusing module 106 and the lens module 104 . In this manner, the imaging device 102 performs focusing at the time of image acquisition, and can acquire a clear sample image.
  • the focusing includes the steps of: S11, using the focusing module 106 to emit light onto the sample 300 placed on the stage 103; S12, moving the lens module 104 along the optical axis OP to a first setting position; S13, moving the lens module 104 from the first set position to the sample 300 along the optical axis 300 in a first set step and determining whether the focusing module 106 receives the light reflected by the sample 300;
  • the lens module 104 is moved along the optical axis OP by a second set step smaller than the first set step and the sample 300 is imaged by the imaging device 102.
  • the image is collected, and it is determined whether the sharpness value of the image collected by the imaging device 102 reaches the set threshold.
  • the sharpness value of the image reaches the set threshold, S15, the current position of the lens module 104 is saved as the save position.
  • the sample 300 can be understood as a sample in a broad sense or a sample in a narrow sense.
  • the sample is a solution for each of the solutions and reagents.
  • the sample can be placed on a support device such as a reaction device (e.g., a chip), a slide, etc., and a support device with a sample placed on the carrier device 100.
  • a support device such as a reaction device (e.g., a chip), a slide, etc.
  • the sample includes a support device and a sample to be tested on the support device, and the sample can be placed on the carrier device 100 during sequence determination.
  • the sample 300 includes a supporting device 200 and a sample 302 to be tested located in the supporting device 200 .
  • the sample 302 to be tested is a biomolecule such as a nucleic acid, and the lens module 104 is located at the supporting device 200 .
  • the support device 200 has a front panel 202 and a rear panel (lower panel), each panel having two surfaces, and the sample to be tested 302 is attached to the upper surface of the lower panel, that is, the sample 302 to be tested is located below the lower surface 204 of the front panel 202.
  • the imaging device 102 is an image for collecting the sample 302 to be tested, and the sample to be tested 302 is located below the lower surface 204 of the front panel 202 of the supporting device 200, the movement of the lens module 104 is started at the beginning of the focusing process.
  • the sample to be tested 302 is a solution
  • the front panel 202 of the supporting device 200 is glass
  • the medium interface 204 of the supporting device 200 and the sample 302 to be tested is the lower surface 204 of the front panel 202 of the supporting device 200. That is, the interface between the glass and the liquid medium.
  • the sample to be tested 302 of the imaging device 102 is required to be located below the lower surface 204 of the front panel 202. At this time, the image captured by the imaging device 102 is used to discriminate the clear surface for finding the sample 302 to be tested clearly. Can be called focus.
  • the front panel 202 of the sample 302 to be tested has a thickness of 0.175 mm.
  • the support device 200 can be a slide, the sample 302 to be tested is placed on the slide, or the sample 302 to be tested is sandwiched between the two slides.
  • the support device 200 can be a reaction device, for example, a sandwich-like chip carrying a panel on top and bottom, and the sample 302 to be tested is disposed on the chip.
  • the imaging device 102 includes a microscope 107 and a camera 108.
  • the lens module 104 includes an objective lens 110 of the microscope and a lens module 112 of the camera 108.
  • the focusing module 106 can pass the dichroic color separation.
  • the dichroic beam splitter is fixed to the lens module 112 of the camera 108, and the dichroic beam splitter 114 is located between the lens module 112 of the camera 108 and the objective lens 110.
  • the dichroic beam splitter 114 includes a dual c-mount splitter.
  • the dichroic beam splitter 114 can reflect the light emitted by the focusing module 106 to the objective lens 110 and can pass visible light through the lens module 112 of the camera 108 into the camera 108, as shown in FIG.
  • the movement of the lens module 104 may refer to the movement of the objective lens 110, and the position of the lens module 104 may refer to the position of the objective lens 110. In other embodiments, other lenses of the lens module 104 can be selected to achieve focus.
  • the microscope 107 further includes a barrel lens 111 between the objective lens 110 and the camera 108.
  • the stage 103 can move the sample 200 in a plane perpendicular to the optical axis OP (eg, the Z-axis) of the lens module 104 (eg, the XY plane), and/or can drive the sample 300 along the lens mold.
  • the optical axis OP of the group 104 (such as the Z axis) moves.
  • the plane on which the stage 103 moves the sample 300 is not perpendicular to the optical axis OP, ie, the plane of motion of the sample is at an angle other than zero from the XY plane, and the imaging method still applies.
  • the imaging device 102 can also drive the objective lens 110 to move along the optical axis OP of the lens module 104 to perform focusing.
  • the imaging device 102 drives the objective lens 110 to move using a drive such as a stepper motor or a voice coil motor.
  • the positions of the objective lens 110, the stage 103, and the sample 300 may be set on the negative axis of the Z axis, and the first set position may be the Z axis.
  • the coordinate position on the negative axis It can be understood that, in other embodiments, the relationship between the coordinate system and the camera and the objective lens 110 may be adjusted according to actual conditions, and is not specifically limited herein.
  • the first set step size S1 is more suitable, because S1 is too large to cross an acceptable focus range, and S1 is too small to increase the time overhead.
  • the lens module 104 is caused to continue moving toward the sample 300 along the optical axis OP at the first set step.
  • the lens module 104 when the sharpness value of the image does not reach the set threshold, the lens module 104 is caused to continue moving along the optical axis OP by the second set step.
  • the optical detection system can be applied to a sequencing system, or the sequencing system includes an optical detection system.
  • the lens module 104 when the lens module 104 moves, determining whether the current position of the lens module 104 exceeds the second set position; when the current position of the lens module 104 exceeds the second set position, stopping the moving lens
  • the module 104 either performs a focusing step.
  • the first set position and the second set position can limit the range of movement of the lens module 104, so that the lens module 104 can stop moving when the focus cannot be successfully performed, thereby avoiding waste of resources or damage of the device, or
  • the lens module 104 refocuses when the focus cannot be successfully achieved, thereby improving the automation of the imaging method.
  • the settings are adjusted such that the range of motion of the lens module 104 is as small as possible to meet the implementation of the solution.
  • the range of movement of the lens module 104 can be set to 200 ⁇ m ⁇ 10 ⁇ m or [190 ⁇ m, 250 ⁇ m] according to optical path characteristics and experience.
  • another set position may be determined depending on the determined range of movement and the setting of any of the second set position and the first set position.
  • the second set position is set to be the lowest position of the upper surface 205 of the front panel 202 of the reaction device 200 to the next depth of field, and the movement range of the lens module 104 is set to 250 ⁇ m.
  • the setting position is confirmed.
  • the coordinate position corresponding to the position of the next depth of field is a position that becomes smaller in the negative direction of the Z axis.
  • the movement range is a section on the negative axis of the Z-axis.
  • the first set position is nearlimit
  • the second set position is farlimit
  • the coordinate positions corresponding to nearlimit and farlimit are on the negative axis of the Z axis
  • nearlimit -6000um
  • farlimit -6350um
  • the range of movement defined between nearlimit and farlimit is 350um. Therefore, when the coordinate position corresponding to the current position of the lens module 104 is smaller than the coordinate position corresponding to the second set position, it is determined that the current position of the lens module 104 exceeds the second set position.
  • the position of farlimit is the position of the next depth L of the lowermost portion of the upper surface 205 of the front panel 202 of the reaction apparatus 200.
  • the depth of field L is the depth of field of the lens module 104.
  • the coordinate positions corresponding to the first set position and/or the second set position may be specifically set according to actual conditions, and are not specifically limited herein.
  • the focus module 106 includes a first light source 116 for emitting light onto the sample 300 and a light sensor 118 for receiving light reflected by the sample 300. In this way, the illumination of the focus module 106 and the reception of light can be achieved.
  • the first light source 116 can be an infrared light source 116, and the light sensor 118 can be a photo diode.
  • the infrared light emitted by the first light source 116 enters the objective lens 110 through the reflection of the dichroic beam splitter and is projected through the objective lens 110 to the sample 300.
  • the sample 300 can reflect infrared light projected through the objective lens 110.
  • the light reflected by the received sample 300 is light reflected by the lower surface 204 of the front panel of the support device 200.
  • the distance between the objective lens 110 and the sample 300 is in an optical imaging suitable range, and can be used for imaging of the imaging device 102. In one example, the distance is 20-40um.
  • the lens module 104 is moved at a second set step size smaller than the first set step, so that the optical detecting system can find the optimal imaging position of the lens module 104 in a smaller range.
  • the sharpness value of the image can be used as an evaluation value for image focus. In one embodiment, it is determined whether the sharpness value of the image acquired by the imaging device 102 reaches a set threshold value that can be passed through the image processing hill climbing algorithm. It is determined whether the sharpness value reaches the maximum value at the peak of the sharpness value by calculating the sharpness value of the image output by the imaging device 102 at each position of the objective lens 110, thereby determining whether the lens module 104 reaches the imaging device 102 during imaging. The location of the clear face. It can be understood that in other embodiments, other image processing algorithms may also be utilized to determine whether the sharpness value reaches the maximum value at the peak.
  • the sharpness value of the image reaches the set threshold, the current position of the lens module 104 is saved as the storage position, so that the imaging device 102 can output a clear image when the sequence measurement reaction performs image acquisition.
  • the focusing further includes the step of: S16, causing the lens module 104 to be smaller than the first set step and greater than the first
  • the third set step of the second step is moved along the optical axis OP to the sample 300, and the first light intensity parameter is calculated according to the light intensity of the light received by the focus module 106, and it is determined whether the first light intensity parameter is greater than The first set light intensity threshold; when the first light intensity parameter is greater than the first set light intensity threshold, step S14 is performed. In this way, by comparing the first light intensity parameter with the first set light intensity threshold, interference of focusing/focusing of the light signal that is very weak compared with the reflected light of the medium interface can be excluded.
  • the lens module 104 is caused to continue moving toward the sample 300 along the optical axis OP in the third set step.
  • the focus module 106 includes two light sensors 118 for receiving light reflected by the sample 300, the first light intensity parameter being the light of the light received by the two light sensors 118. Strong average. As such, the first light intensity parameter is calculated by the average of the light intensities of the light received by the two light sensors 118 such that the weak light signal is excluded from the more accurate.
  • the first set light intensity threshold nSum 40.
  • the third set step size S2 0.005 mm. It can be understood that, in other examples, the third set step size may also adopt other values, which are not specifically limited herein.
  • the focusing further includes the following steps: S16, the lens module 104 is made smaller than the first set step and greater than The third set step of the second set step moves to the sample 300 along the optical axis OP, and calculates a first light intensity parameter according to the light intensity of the light received by the focus module 106, and determines whether the first light intensity parameter is And greater than the first set light intensity threshold; when the first light intensity parameter is greater than the first set light intensity threshold, S17, the lens module 104 is made smaller than the third set step and greater than the second set step The fourth set step moves along the optical axis OP to the sample 300, and calculates a second light intensity parameter according to the light intensity of the light received by the focus module 106, and determines whether the second light intensity parameter is smaller than the second set light intensity threshold.
  • step S14 is performed.
  • the second light intensity parameter is less than the second set light intensity threshold.
  • the comparison of the second set light intensity threshold can eliminate the strong reflected light signal at the non-media interface position, such as the interference of the oil/reflected light signal of the objective lens 110 on the focus/focus.
  • the lens module 104 When the first light intensity parameter is not greater than the first set light intensity threshold, the lens module 104 is caused to continue moving toward the sample 300 along the optical axis OP in the third set step. When the second light intensity parameter is not less than the second set light intensity threshold, the lens module 104 is caused to continue moving toward the sample 300 along the optical axis OP in the fourth set step.
  • the focus module 106 includes two light sensors 118 for receiving light reflected by the sample 300, the first light intensity parameter being the light of the light received by the two light sensors 118.
  • the strong average value, the light intensity of the light received by the two light sensors 118 has a first difference, and the second light intensity parameter is the difference between the first difference and the set compensation value.
  • the second light intensity parameter is calculated by the light intensity of the light received by the two light sensors 118 such that the optical signal that excludes strong reflection is more accurate.
  • the first set light intensity threshold nSum 40.
  • the lens module 104 when the lens module 104 is moved by the second set step, it is determined whether the first sharpness value of the pattern corresponding to the current position of the lens module 104 is greater than the previous one of the lens module 104. a second sharpness value of the image corresponding to the position; when the first sharpness value is greater than the second sharpness value and the sharpness difference between the first sharpness value and the second sharpness value is greater than the set difference value, Having the lens module 104 continue to move toward the sample 300 along the optical axis OP in a second set step; at a sharpness between the first sharpness value and the second sharpness value and between the first sharpness value and the second sharpness value When the difference value is less than the set difference value, the lens module 104 continues to move along the optical axis OP to the sample 300 at a fifth set step size smaller than the second set step size to cause the image captured by the imaging device 102.
  • the sharpness value reaches a set threshold; when the second sharpness value is greater than the first sharpness value and the sharpness difference between the second sharpness value and the first sharpness value is greater than the set difference, the lens module is made 104 moves away from the sample 300 along the optical axis OP in a second set step; the second sharpness value is greater than the first sharpness value and the second sharpness value and the first sharpness value are When the sharpness difference is less than the set difference, the lens module 104 is moved away from the sample 300 along the optical axis OP by the fifth set step to make the sharpness value of the image collected by the imaging device 102 reach the set threshold. . In this way, the position of the lens module 104 corresponding to the peak of the sharpness value can be accurately found, so that the image output by the imaging device is clear.
  • the second set step size can be used as the coarse adjustment step Z1
  • the fifth set step size can be used as the fine adjustment step length Z2
  • the coarse adjustment range Z3 can be set.
  • the setting of the coarse adjustment range Z3 can stop the movement of the lens module 104 when the sharpness value of the image cannot reach the set threshold, thereby saving resources.
  • the coarse adjustment range Z3 is the adjustment range, that is, the adjustment range on the Z axis is (T, T+Z3).
  • the lens module 104 is moved in the first direction (such as the direction in which the optical axis OP approaches the sample 300) in the range of (T, T+Z3) by the step size Z1, and compared with the current position of the lens module 104.
  • R1>R2 and R1-R2>R0 it means that the sharpness value of the image is close to the set threshold and farther from the set threshold, so that the lens module 104 continues to move in the first direction by the step size Z1 to quickly The ground is close to the set threshold.
  • R1>R2 and R1-R2 ⁇ R0 it means that the sharpness value of the image is close to the set threshold and is closer to the set threshold, so that the lens module 104 moves in the first direction by the step size Z2, so as to be smaller.
  • the step size is close to the set threshold.
  • R2>R1 and R2-R1>R0 it means that the sharpness value of the image has crossed the set threshold and is far from the set threshold, so that the lens module 104 has the step size Z1 in the opposite direction to the first direction.
  • the two directions e.g., in the direction away from the sample 300 along the optical axis OP) move to quickly approach the set threshold.
  • the fifth set step size can be adjusted to accommodate the step size when approaching the set threshold is not too large or too small.
  • image acquisition of sample 300 using imaging device 102 includes: chasing sample 300 with lens module 104. As such, it is ensured that the image captured by the imaging device 102 at different locations of the sample 300 is kept clear.
  • the chasing includes the steps of: acquiring the relative position of the lens module 104 and the sample 300 when the lens module 104 is in the storage position; and controlling the lens module 104 when the sample 300 is moved by the loading platform 103. Exercise to keep the relative position unchanged. In this way, it can be ensured that the image captured by the imaging device 102 at different positions of the sample 300 is kept clear and the focus is achieved.
  • the sample 300 may be tilted. Therefore, when the sample 300 is moved by the stage 103, the surface of the sample 300 is different from the lens module 104. The distance will vary slightly. Therefore, when the sample 300 is moved relative to the optical axis OP of the lens module 104, the imaging position of the imaging device 102 by the imaging device 102 is maintained at the clear surface position. This process is called chasing.
  • the sample 300 is moved by the stage 103, including the sample 300 moving along the X1 axis parallel to the X axis, and the sample 300 moving along the Y1 axis parallel to the Y axis, and the sample 300 moving along the plane X1Y1 defined by the X1 axis and the Y1 axis, And the sample 300 moves along the tilted X axis, and the sample 300 moves along the tilted Y axis, and the sample 300 moves along a plane XY defined oblique to the X and Y axes.
  • the stage 103 when the sample 300 is moved by the stage 103, it is determined whether the current position of the lens module 104 exceeds the third set position; when the current position of the lens module 104 exceeds the third set position, the use The stage 103 drives the sample 300 to move along the optical axis OP and performs a focusing step; when the number of movements reaches a set number of times and the current position of the lens module 104 still exceeds the third set position, it is determined that the tracking failure has failed. In this way, the limitation of the third set position and the number of movements enables the lens module 104 to perform refocusing when the focus recovery fails.
  • the third set position may be nPos
  • the coordinate position corresponding to nPos is on the negative axis of the Z axis
  • the coordinate position corresponding to nPos is greater than the coordinate position corresponding to the second set position farlimit.
  • refocusing is performed to adjust the position of the lens module 104 to attempt successful tracking.
  • the process of chasing the focus if the number of times the lens module 104 is moved reaches the set number of times, the current position of the lens module 104 is still beyond the third set position, the focus cannot be recovered, the focus recovery is determined, the pause is resumed, and the focus is re-focused. Clear face.
  • the coordinate position corresponding to the third set position is an empirical value. When the value is smaller than this value, the image captured by the imaging device 102 is blurred and the probability of chasing a large probability fails.
  • the set number is an empirical value, which can be set according to the actual situation.
  • the relative position when the current position of the lens module 104 does not exceed the third set position, the relative position is determined to be unchanged.
  • the relative positions include relative distances and relative directions. Further, to simplify the operation, the relative position may refer to the relative distance, and the relative position does not mean that the object distance of the imaging system of the imaging device 102 is constant, so that different positions of the sample 300 can be clearly imaged by the imaging device.
  • the carrier device 100 includes a bottom plate 101 and an elastic support assembly 40.
  • the loading platform 103 is fixed on the bottom plate 101 and is provided with a receiving groove 242.
  • the bottom of the receiving groove 242 is provided with a through hole 2422.
  • the temperature control device 301 is connected to the sample 300 in the accommodating groove 242 through the through hole 2422 and elastically supported on the bottom plate 101 by the elastic support assembly 40.
  • the temperature control device 301 is elastically supported on the bottom plate 101 by the elastic support assembly 40, so that the sample 300 and the temperature control device 301 are in contact with the bottom plate 101 when the sample 300 is loaded into the receiving groove 242. For elastic contact, it effectively prevents damage when the sample 300 is assembled.
  • the elastic support assembly 40 pushes the temperature control device 301 toward the accommodating groove 242, so that the temperature control device 301 protrudes from the bottom surface of the accommodating groove 242.
  • the sample 300 is loaded into the accommodating groove 242
  • the sample 300 is pressed against the temperature control device 301 through the clamping frame 221 of the stage 103, and at the same time, the pressed temperature control device 301 compresses the elastic support assembly 40 downward, so that The elastic support assembly 40 generates an elastic force and finally locks the sample 300 to the stage 103.
  • the sample 300 and the temperature control device 301 are in elastic contact with the bottom plate 101, effectively preventing damage during assembly and sequencing of the sample 300.
  • the elastic support assembly 40 includes a guiding cylinder 43 and a resilient member 44.
  • the temperature control device 301 includes a temperature control portion 312 and a guiding post 341.
  • the guiding post 341 is disposed at a temperature away from the receiving slot 242.
  • the guiding cylinder 43 is fixed on the bottom plate 101, and the guiding post 341 passes through the elastic member 44 and the guiding cylinder 43, and the elastic member 44 elastically abuts between the temperature control portion 312 and the guiding cylinder 43.
  • the elastic member 44 can provide an elastic force, and at the same time, the cooperation of the guiding cylinder 43 and the guiding post 341 can ensure that the movement of the temperature control device 301 is relatively stable.
  • the sample 300 when the sample 300 is loaded into the accommodating groove 242, it is in contact with the temperature control device 301 and is pressed down. At this time, the elastic member 44 is compressed, and the reaction force of the elastic member 44 after being compressed is sufficient for the sample 300 and the temperature control device 301. The contact, at the same time, the resilient contact provided by the resilient member 44 ensures that the sample 300 is not susceptible to damage during the pressing process.
  • the resilient member 44 can be a spring such that the manufacturing cost of the carrier device 100 can be reduced.
  • the elastic member 44 may be an elastic member such as a rubber cylinder, and is not limited herein.
  • the guide barrel 43 is a linear bearing and the guide post 341 is in sliding contact with the ball of the linear bearing.
  • the linear bearing can reduce the resistance of the temperature control device 301 while moving while guiding the temperature control device 301.
  • the temperature control device 301 is pressed downward, that is, the guide post 341 needs to slide downward, and the ball of the linear bearing slides down when the guide post 341 slides down. Can reduce friction.
  • the temperature control device 301 includes a fixing plate 321, a temperature conducting plate 322, a temperature control element 323, and a guiding post 341.
  • the temperature control element 323 is sandwiched between the fixing plate 321 and Between the temperature conduction plates 322, the temperature control elements 323 are in contact with the temperature conduction plate 322 and the fixed plate 321 for contacting the sample 300 loaded in the accommodating groove 242, and the guide column 341 is disposed away from the temperature control.
  • the guiding post 341 is passed through the elastic supporting assembly 40.
  • the fixed plate 321 provides support for the temperature control element 323, and the temperature conductive plate 322 transfers the temperature generated by the temperature control element 323 to the sample 300, thereby achieving temperature control of the sample 300.
  • the guide post 341 is passed through the elastic support assembly 40, and the elastic force of the elastic support assembly 40 causes the sample 300 and the temperature control device 301 to be in close contact.
  • the temperature conductive plate 322 and the fixed plate 321 can be made of a metal material for conducting the temperature of the temperature control element 323.
  • the temperature control element 323 is a Peltier. With the Peltier effect, the temperature control element 323 can achieve cooling and heating. For example, by applying a current in a different direction to the temperature control element 323, the upper surface of the temperature control element 323 is cooled, the lower surface is heated, or the upper surface of the temperature control element 323 is heated, and the lower surface is cooled. The temperature conducting plate 322 in contact with the upper surface of the temperature control element 323 conducts the upper surface temperature of the temperature control element 323 to the sample 300, thereby effecting temperature control of the sample 300.
  • a thermally conductive layer can be disposed between the temperature conducting plate 322 and the temperature control element 323 that conducts the temperature of the temperature control element 323 to the temperature conducting plate 322. In this way, the thermal conductivity between the temperature control element 323 and the temperature conducting plate 322 is increased.
  • the thermally conductive layer is a layer of silica gel.
  • the temperature control device 301 further includes a water bath 324 disposed on a surface of the fixed plate 321 remote from the temperature control element 323, the water bath 324 being spaced from the guide post 341.
  • the water bath 324 can carry away the heat of the temperature control element 323 through the fixing plate 321 in time.
  • the temperature control device 301 includes a temperature sensor 325 disposed on the temperature conducting plate 322. In this way, temperature detection of the temperature conducting plate 322 can be achieved, facilitating accurate temperature control of the sample 300.
  • the temperature sensor 325 can obtain the temperature of the sample 300 and feed back to the external control device. Thereby the external control device can control the temperature of the sample 300 based on the feedback of the temperature sensor 325.
  • the temperature conducting plate 322 can be provided with a receiving hole, and the temperature sensor 325 is disposed in the receiving hole, so that the temperature of the sample 300 can be monitored more accurately.
  • the carrier device 100 can achieve a surface temperature accuracy of the sample 300 of ⁇ 0.1 ° C or ⁇ 0.5 ° C; the sample 300 surface temperature fluctuation is not greater than 0.1 ° C or 0.5 ° C; from room temperature 25 ° C to 65 ° C heating time Not more than 1min, from 65 ° C to room temperature 25 ° C cooling time is not more than 1.5min.
  • Sample 300 has precise temperature control, which improves biochemical reaction efficiency and reduces test time.
  • the water bath 324 includes a heat sink 3242, a cover plate 3244, a liquid inlet joint 3246, and a liquid outlet joint 3248.
  • the heat dissipation plate 3242 is provided with a flow channel groove, and the heat dissipation plate 3242 is in contact with the fixed plate 321.
  • the cover plate 3244 is connected to the heat dissipation plate 3242 and covers the flow channel groove to form a liquid chamber.
  • the liquid chamber is for accommodating the coolant, and the cover plate 3244 is provided with a liquid inlet and a liquid outlet connected to the liquid chamber.
  • the inlet connector 3246 is connected to the inlet port.
  • the liquid outlet connector 3248 is connected to the liquid outlet. In this way, an efficient water bath 324 heat dissipation structure is realized.
  • the water bath 324 is used to provide a coolant circulation that utilizes the coolant to dissipate heat from the lower surface of the temperature control element 323 that is in contact with the fixed plate 321 .
  • the flow channel groove provided on the heat dissipation plate 3242 can increase the contact area of the heat dissipation plate 3242 and the fixed plate 321, thereby improving the efficiency of heat dissipation.
  • the cooling liquid can be water. In this way, the cost of the carrier device 100 can be reduced.
  • the coolant may be a specially made coolant, without any limitation.
  • the specially designed coolant ensures a good thermal conductivity.
  • the temperature control device 301 includes a temperature controlled water bath device 326 that includes a heat sink 3262, an infusion pump 3264, and a cooling device 3266.
  • the fin 3262 is provided with a flow path through which the coolant flows, and the inlet of the flow path is connected to the liquid outlet 3248.
  • the infusion pump 3264 is connected to the outlet of the flow path and the inlet connection 3246.
  • Cooling device 3266 is used to cool fins 3262. As such, the heat of the water bath 324 can be carried to the temperature controlled water bath unit 326 and dissipated through the heat sink 3262.
  • the temperature controlled water bath unit 326 is used to accelerate the heat exchange between the coolant and the external environment to ensure rapid cooling of the coolant.
  • the fins 3262 are used to exchange heat between the coolant and the external environment, the infusion pump 3264 is used to promote circulation of the coolant, and the cooling device 3266 is used to accelerate the heat exchange of the coolant in the fins 3262.
  • the cooling device 3266 can be a fan.
  • the fan is blown to the fins 3262 to increase the convection of the air, thereby achieving heat exchange of the coolant in the accelerating fins 3262.
  • the temperature control device 301 includes a thermal barrier 327.
  • the heat insulator 327 is disposed between the temperature conductive plate 322 and the fixed plate 321 . As such, it is possible to prevent the temperature conduction plate 322 from being disturbed by the temperature of the fixed plate 321 to cause inaccurate temperature control of the sample 300.
  • the temperature conducting plate 322 and the fixing plate 321 are respectively in contact with two different faces of the temperature control element 323, and the temperatures of the two faces are different during the operation of the temperature controlling element 323.
  • the temperature transfer between the temperature conducting plate 322 and the fixed plate 321 is blocked by the heat insulating member 327, thereby ensuring that the temperature of the temperature conducting plate 322 is not It is affected by the temperature of the fixed plate 321 .
  • the insulation 327 can be an insulating cotton.
  • the insulating cotton can avoid damage to the temperature control element 323 between the temperature conducting plate 322 and the fixing plate 321 while achieving heat insulation.
  • the temperature control device 301 includes a surface 328 for contacting the sample 300, the surface 328 being a matt black surface. As such, it is possible to prevent the laser reflection emitted by the carrier device 100 from adversely affecting the sample imaging of the sample 300.
  • the flow path in the sample 300 is transparent, and when the carrier device 100 is in operation, it is necessary to emit a laser to the sample 300 to excite the sample in the sample 300 to fluoresce, and to form an image of the sample by collecting fluorescence.
  • the surface 328 in contact with the sample 300 as a matt black surface, the reflection of the laser light is effectively reduced.
  • surface 328 is the upper surface of temperature conducting plate 322 that is in contact with sample 300.
  • the loading platform 103 includes a clamping frame 221 and a supporting base 241.
  • the clamping frame 221 is rotatably connected to the supporting base 241.
  • the supporting base 241 is provided with a receiving groove 242, and the supporting base 241 is disposed on the bottom plate. 101.
  • the loading and unloading of the sample 300 can be facilitated by the rotation of the clip frame 221 relative to the support base 241.
  • the sample frame 300 can be rotated to the temperature control device 301 by the rotational connection of the framing frame 221 and the support base 241, thereby ensuring the sample 300 and the temperature control. Full contact of device 301. Thereafter, the clip frame 221 is locked to the support base 241 by, for example, snapping to press the sample 300 to ensure the stability of the sample 300 during the sequencing process.
  • a torsion spring may be disposed at a joint of the clamping frame 221 and the support base 241. When the clamping frame 221 is unlocked, the torsion spring may drive the clamping frame 221 to open relative to the support base 241.
  • the support base 241 is provided with a button 246 that connects the buckle 248.
  • the state of movement of the buckle 248 can be controlled by the button 246, and the locked state of the clip frame 221 and the support base 241 can be released, so that the clip frame 221 can be unlocked.
  • the button 246 when the button 246 is pressed, the button 246 can move the buckle 248 away from the clamping frame 221 by means of a lever connection, thereby unlocking the locking state of the clamping frame 221 and the buckle 248, and the sample 300 can be realized. Assembly or disassembly.
  • the buckle 248 loses its external force and the buckle 248 is reset.
  • the clamping frame 221 is closed, the clamping frame 221 is again engaged with the buckle 248 to lock the clamping frame 221.
  • the support base 241 includes a panel 244, the panel 244 is provided with a button through hole 2442, the button 246 is provided with a button through hole 2442, and the bottom of the button 246 is convexly provided with a flange 2462.
  • the flange 2462 is in interference with the lower surface of the panel 244.
  • the panel 244 can compress the flange 2462, thereby allowing the button 246 to be pressed and reset more smoothly, and can cause the button 246 to be restrained when it is reset and will not run out.
  • an embodiment of the present invention provides a method for controlling a sequence determination reaction, and the sequence determination system is controlled by a sequence determination system, and the sequence determination system includes
  • the optical detection system includes an imaging device 102 and a carrier device 100.
  • the carrier device 100 includes a temperature control device 301 and a carrier 103.
  • the imaging device 102 includes a lens module 104.
  • the lens module 104 includes an optical axis OP and a carrier 103.
  • the temperature control device 301 is used to adjust the temperature of the sample.
  • the sequence determination reaction involves image acquisition of the sample using imaging device 102.
  • the method for controlling the sequence measurement reaction includes setting a range of temperature fluctuations allowing the sample to be used by the temperature control device 301 before performing the sequence measurement reaction using the sequence measurement system or when performing the sequence measurement using the sequence measurement system, so that the lens module 104 is provided.
  • the position fluctuation range along the optical axis OP is within a preset range.
  • the optical detection system is pre-configured with a range of temperature fluctuations of the sample 300 and a range of position fluctuations of the lens module 104 along the optical axis, and controls the lens module 104 along the optical axis OP according to the correspondence relationship.
  • the position fluctuation range is within the preset range. In this way, the method of controlling the sequence measurement reaction can quickly acquire the range of the temperature fluctuation of the sample 300 corresponding to the range of the position fluctuation of the lens module 104 along the optical axis within the preset range.
  • the imaging device 102 includes a focus module 106 that performs image acquisition on the sample 300 using the imaging device 102, including: focusing the sample 300 using the focus module 106 and the lens module 104.
  • the sequence determination reaction includes a first biochemical reaction and a second biochemical reaction
  • the first biochemical reaction and the second biochemical reaction are performed on the reaction device 200
  • the sequencing system includes a fluid device 500
  • the fluid device 500 is connected to the reaction device 200.
  • the reaction device 200 includes a first unit 41 and a second unit 42.
  • the sample 300 is placed on the first unit 41 and the second unit 42 to define a repeat execution unit S112 included in the sequence determination reaction.
  • the second biochemical reaction - the first biochemical reaction - image acquisition, the method of controlling the sequence determination reaction comprises, after completing the following initial step S111, such that when the fluid device 500 is used, one of the first unit 41 and the second unit 42 is subjected to the sample 300.
  • image acquisition is performed on the sample 300 of another unit by the imaging device 102.
  • the initial step S111 includes the steps of: a using the fluid device 500 to make the first unit 41 and the second unit 42
  • the sample 300 on one of the samples performs the first biochemical reaction
  • b uses the imaging device 102 to perform the sample 300 on the unit after the first biochemical reaction.
  • Image acquisition, c utilizes fluid device 500 to subject sample 300 on the other of first unit 41 and second unit 42 to a first biochemical reaction.
  • the method for determining the reaction by the above control sequence divides the reaction device 200 into at least two units, and uses the fluid device 500 to cause one of the units to perform an biochemical reaction while using the imaging device 102 to image another unit. Acquisition is image acquisition, which reduces the time required for sequence determination and improves the efficiency of sequence determination.
  • the sample 300 is a sample to be tested, and the sample 300 is located on the reaction device 200 (support device).
  • the reaction device 200 with the sample 300 can also be placed on the carrier device 100 for sequence determination reactions.
  • Embodiments of the carrier device 100 in the method of controlling the sequence determination reaction and an explanation of the beneficial effects can be referred to the embodiment of the carrier device 100 in the above-described optical detection system, and in order to avoid redundancy, it will not be developed in detail here.
  • the inventors made the above-described computer-executable parallel control calling device based on the time difference of biochemical reaction and information collection in the discovered sequencing reaction, based on the reaction device and the number of imaging devices in the sequencing system, and the reaction device is divided into at least two units.
  • the method of sequencing the reaction in whole or in part of the system, making full use of the time difference of the main steps in the sequencing reaction, and greatly improving the efficiency of the sequencing reaction.
  • the apparatus/system required for performing a sequence determination reaction in terms of hardware cost, is more expensive than the fluid device/system, and the cost of the fluid device/system is greater than the cost of the reaction device/chip.
  • the reaction device 200 may be a chip, and the first unit 41 and the second unit 42 of the reaction device 200 each include a plurality of channels, after the initial step S111, the first unit 41
  • the channels and channels of the second unit 42 are staggered, unsynchronized, and unaffected by each other in the sequence determination reaction.
  • the fluid device 500 will deliver the reagent for the reaction to the first unit 41, at which point the same reagent will not be allowed to enter the second unit 42, and vice versa.
  • nucleic acid sequence determination is performed on a single molecule sequencing platform using total internal reflection (TIRF) optical system detection, based on the amount of data required for subsequent genetic information analysis and the empirical value of the proportion of valid data after processing,
  • the number of image acquisitions corresponding to the estimated amount of raw data required is approximately 300 fields of view (FOV).
  • FOV fields of view
  • the time required to control the mobile reaction device 200 by the imaging device 102 and to collect 300 FOVs is substantially equal to the sum of the times of the first biochemical reaction and the second biochemical reaction by the fluid device 500, and the use of the present
  • the method of this embodiment of the invention can increase the reaction efficiency by a factor of two.
  • the sample to be sequenced has been immobilized on the surface of the channels of the first unit 41 and the second unit 42 of the reaction device 200 before the sequence determination reaction, and the sample to be sequenced is, for example, double-stranded. Or a single-stranded DNA strand.
  • the repeated execution unit S112 is the second biochemical reaction-first biochemical reaction-image acquisition, which means that when the sequence reaction of one unit of the reaction device 200 is performed, the sample on the unit is sequentially sequenced. Perform a second biochemical reaction, a first biochemical reaction, and image acquisition.
  • the method of the embodiment of the present invention may perform a repeated execution process of the first biochemical reaction-image acquisition-second biochemical reaction on the sample on the unit, and/or a sample on the unit is present. Perform image acquisition - second biochemical reaction - repeated execution of the first biochemical reaction.
  • sequence determination reaction can complete the determination of at least one base every one cycle: the first biochemical reaction, the image acquisition and the second biochemical reaction, and the base is selected from the group consisting of At least one of A, T, C, G, and U.
  • the definition of "repeated execution unit" in the present invention is merely for convenience of explanation of the scheme of the present invention, and the reaction sequence in the reaction is not determined for the defined sequence.
  • the image on the second unit 42 is image-collected by the imaging device 102, and then According to the repetitive execution unit, after the second biochemical reaction and the first biochemical reaction are performed on the sample on the first unit 41 by the fluid device 500, the image on the first unit 41 is image-collected by the imaging device 102. After image acquisition of the sample on the second unit 42, the sample on the second unit 42 is subjected to a second biochemical reaction and a first biochemical reaction using the fluid device 500.
  • the sample on the second unit 42 is subjected to the second biochemical reaction and the first biochemical reaction by the fluid device 500
  • the sample on the first unit 41 is image-collected by the imaging device 102
  • the image on the second unit 42 is image-collected by the imaging device 102.
  • the sample on the first unit 41 is subjected to a second biochemical reaction and a first biochemical reaction using the fluid device 500.
  • a uses the fluid device 500 to cause the sample on the first unit 41 to perform the first biochemical reaction; b uses the imaging device 102 to perform the first biochemical reaction.
  • the sample on the first unit 41 performs image acquisition;
  • c uses the fluid device 500 to subject the sample on the second unit 42 to a first biochemical reaction.
  • a utilizes fluid device 500 to cause a sample on second unit 42 to undergo a first biochemical reaction; b utilizes imaging device 102 on a second unit 42 after performing a first biochemical reaction The sample is subjected to image acquisition; c uses the fluid device 500 to cause the sample on the first unit 41 to undergo a first biochemical reaction.
  • Image acquisition is performed on the sample by the imaging device 102 to form image data, which can be output to other devices/modules of the sequence determination system for processing to obtain corresponding images.
  • step a and step c are performed simultaneously, or step b and step c are performed simultaneously, or step b is performed prior to step c, or step b is performed after step c.
  • step a and step c are performed simultaneously, or step b is performed prior to step c, or step b is performed after step c.
  • the sample on the first unit 41 is subjected to the first biochemical reaction by the fluid device 500, the sample on the second unit 42 is not affected by the sample on the first unit 41.
  • the first biochemical reaction vice versa.
  • step b and step c are performed simultaneously, which further increases the efficiency of the method.
  • the first biochemical reaction comprises an extension reaction and the second biochemical reaction comprises a group excision.
  • the method of controlling the sequence measurement reaction is applied in a wider range.
  • the sample to be sequenced ie, the template strand
  • the polymerase/ligase extension reaction is based on base complementation, attaching a specific substrate to a sample to be sequenced, and using a detectable group carried on the substrate to determine the type of substrate on the binding to determine sequence.
  • the detectable group includes a fluorophore that fluoresces under a laser of a particular wavelength.
  • the group cleave reaction is to cleave the group carried on the substrate bound to the sample (template) to be sequenced, so that the next base of the template can continue to be determined, ie, the first unit
  • the sample on 41 and/or second unit 42 is capable of continuing the sequencing reaction.
  • the extension reaction comprises sequencing while sequencing and sequencing while synthesizing.
  • the second biochemical reaction comprises capping.
  • the so-called capping is mainly the group/bond exposed after the protection group is removed.
  • the first biochemical reaction comprises a base extension reaction
  • the structure of the substrate added is an A/T/C/G-terminating group-linking unit-emitting group, wherein the terminating group is light and / Or a chemically cleavable group, the substrate is provided with a luminescent group by a linker.
  • the second biochemical reaction involves group excision. After the cleavable group is removed by light and/or chemical, the exposed group is a sulfhydryl group, and the sulfhydryl group can be protected from oxidation by capping, such as by adding an alkylating agent.
  • the method of controlling the sequencing reaction is applied in a wider range.
  • image acquisition also includes the addition of imaging reagents.
  • the so-called imaging reagent contains an antioxidant component, such as water-soluble vitamin E (Trolox), etc., which can avoid or reduce the damage or influence of light on the sample during image acquisition.
  • an antioxidant component such as water-soluble vitamin E (Trolox), etc.
  • the light emitted by the laser excitation sample is fluorescent, which can reduce the adverse effects of ambient light on the image acquisition of the imaging device.
  • the "signal collection” process includes the addition of imaging reagents, image acquisition (in the embodiment of the invention, the imaging reagent is placed in the image acquisition); after cleave, the buffer (buffer1) is cleaned and capped (plus Some protective reagents are related to the structure of the substrate), and then buffer 2 is cleaned (buffers 1, 2 may be the same or different).
  • fluid device 500 includes a valve body assembly 10 and a drive assembly 50 that communicates with valve body assembly 10 via reaction device 200, with first unit 41 and/or with fluid device 500.
  • the valve body assembly 10 is used to switch between different reagents, and the driving assembly 50 causes the valve body assembly 10 to output the reagent to the first unit 41 and / or second unit 42.
  • the different reagents required for the sequence determination reaction can be conveniently input to the first unit 41 and/or the second unit 42 by the valve body assembly 10 and the drive assembly 50.
  • the fluid device 500 includes a reagent assembly including a first reagent, a second reagent, and a third reagent, the reagent assembly including a first reagent bottle 11 containing the first reagent and a second reagent
  • the valve body assembly 10 connects the first reagent bottle 11, the second reagent bottle 12, and the third reagent bottle 13 through a pipe.
  • the valve body assembly 10 switches between different reagent bottles to enable the drive assembly 50 to withdraw reagents from the reagent bottles in communication with the valve body assembly 10 to the first unit 41 and/or the second unit 42.
  • the valve body assembly 10 includes a first multi-way valve 20 and a first three-way valve 30 that switches between different reagents to the first three-way valve 30, the first three-way valve
  • the reagent output from the first multi-way valve 20 is output to the first unit 41 and/or the second unit 42.
  • the drive assembly 50 is enabled by the first multi-way valve 20 and the first three-way valve 30 to cause the valve body assembly 10 to output different reagents to the first unit 41 and/or the second unit 42.
  • the first multi-way valve 20 is connected to the first reagent bottle 11, the second reagent bottle 12, the third reagent bottle 13, and the first three-way valve 30, and the first multi-way valve 20 is used.
  • the first reagent bottle 11, the second reagent bottle 12, or the third reagent bottle 13 is communicated with the first three-way valve 30.
  • the first three-way valve 30 is connected to the first unit 41, the second unit 42, and the first multi-way valve 20, and the first three-way valve 30 is used to connect the first unit 41 or the second unit 42 with the first multi-way valve 20. Connected.
  • the first reagent is a sequencing reagent
  • the second reagent is a group excision reagent
  • the third reagent is an imaging reagent
  • the first multi-way valve 20 includes a first extraction port 21 that connects the first reagent bottle 11 , The second extraction port 22 of the second reagent bottle 12 and the third extraction port 23 connected to the third reagent bottle 13 and a liquid outlet port 24 are connected.
  • the liquid outlet 24 communicates with the first extraction port 21, or the second extraction port 22 or the third extraction port 23.
  • the sequencing reagent is an agent comprising at least a portion of the reactants of the extension reaction, such as a reagent comprising a substrate and a polymerase/ligase.
  • the substrate carries a detectable group, such as a fluorescent group.
  • the first three-way valve 30 includes a liquid suction port 31, a first split port 32, and a second split port 33, and the liquid suction port 31 communicates with the first split port 32 or the second split port 33.
  • the liquid suction port 31 communicates with the liquid outlet port 24.
  • the first unit 41 and the second unit 42 communicate with the first split port 32 and the second split port 33, respectively.
  • the first multi-way valve 20 is a rotary valve, and the first extraction port 21, the second extraction port 22, and the third extraction port 23 respectively surround the liquid outlet 24, and the first extraction port 21,
  • the second extraction port 22 and the third extraction port 23 communicate with the liquid outlet 24 through a rotary duct 25 that rotates around the liquid outlet 24.
  • the rotating pipe 25 can be sequentially rotated to the positions of the first extraction port 21, the second extraction port 22, and the third extraction port 23, so that the liquid outlet 24 can sequentially communicate with the first reagent bottle 11, the second reagent bottle 12, and the third.
  • the reagent bottle 13, that is, the reaction device 200, can obtain different reagents from the first reagent bottle 11, the second reagent bottle 12, and the third reagent bottle 13, respectively, thereby performing the first biochemical reaction, the second biochemical reaction, and image acquisition on the sample.
  • the order of communication between the liquid outlet 24 and the first extraction port 21, the second extraction port 22, and the third extraction port 23 may not be limited.
  • the liquid suction port 31 of the first three-way valve 30 when the liquid suction port 31 of the first three-way valve 30 is in communication with the first split port 32, the liquid suction port 31 is disconnected from the second split port 33, and vice versa.
  • the liquid suction port 31 may be connected to the first split port 32 or the second split port 33 as required for the sequence determination, that is, when the sample on the first unit 41 performs the second biochemical reaction and the first biochemical reaction, the first split port 32 is in communication with the liquid suction port 30, so that the liquid suction port 30 supplies the first reagent and the first reagent to the first unit 41 via the first split port 32, and the second reagent and the first reagent are obtained in the first unit 41.
  • the second split port 33 is in communication with the liquid suction port 31 such that the second unit 42 acquires the third reagent, and the imaging device 102 can perform image acquisition on the sample on the second unit 42.
  • the second unit 42 After the sample image collection on the second unit 42 is completed, the second unit 42 starts to acquire the second reagent and the first reagent through the liquid suction port 31, so that the sample on the second unit 42 performs the second biochemical reaction and the first biochemical reaction.
  • the first split port 32 communicates with the liquid suction port 31, the first unit 41 acquires the third reagent, and the imaging device 102 can be on the first unit 41.
  • the sample is image-collected, which effectively reduces the time of sequence determination and improves the efficiency of sequence determination.
  • the drive assembly 50 includes a first pump 51 that communicates with the valve body assembly 10 through a first unit 41 and a second pump 52 that communicates with the valve body assembly 10 through a second unit 42.
  • the first pump 51 is used to cause the valve body assembly 10 to output the reagent to the first The unit 41, and/or utilizes the second pump 52 to cause the valve body assembly 10 to output reagents to the second unit 42.
  • the first pump 51 and the second pump 52 can be used to transfer the reagent output from the valve body assembly 10 to the first unit 41 and/or the second unit 42, respectively, for convenient operation.
  • first pump 51 and the second pump 52 are piped to the first unit 41 and the second unit 42, respectively.
  • the first pump 51 communicates with the first split port of the first three-way valve through the first unit 41
  • the second pump 52 communicates with the second split port of the first three-way valve through the second unit 42.
  • the first pump 51 supplies a negative pressure to the first unit 41, so that the first unit 41 sequentially acquires the second reagent and the first reagent to perform the second biochemical reaction and the first biochemical reaction, and the second unit is obtained in the first unit 41.
  • the first pump 51 stops providing the negative pressure
  • the second pump 52 provides the negative pressure to cause the second unit 42 to acquire the third reagent
  • the imaging device 102 performs image acquisition on the sample on the second unit 42.
  • the liquid outlet 24 sequentially connects the second extraction port 22 and the first extraction port 21 to extract the second reagent and the first reagent.
  • a reagent, the liquid suction port 31 is in communication with the first split port 32, and when the first pump 51 supplies a negative pressure to the first unit 41, the second reagent and the first reagent are sequentially entered into the passage of the first unit 41.
  • the first pump 51 stops providing the negative pressure, and the liquid outlet 24 communicates with the third extraction port 23 to extract the third reagent, the liquid suction port 24 and the second split port. 33 is connected, the second pump 52 provides a negative pressure to the second unit 42 such that the third reagent enters the channel of the second unit 42 and image acquisition of the sample on the second unit 42 by the imaging device 102. Accordingly, the valve body assembly 10, the drive assembly 50, and the imaging device 102 cooperate to image the sample on the second unit 42 while the sample on the first unit 41 is undergoing the second biochemical reaction and the first biochemical reaction. collection. vice versa.
  • fluid device 500 includes at least one first container and sequencing reagent configuration assembly 60, the reagents including sequencing reagents, and the first unit 41 and/or the second unit 42 are subjected to a sample using fluid device 500.
  • the sequencing reagent configuration component 60 Upon a biochemical reaction and/or a second biochemical reaction, the sequencing reagent configuration component 60 outputs the sequencing reagent to a first container in communication with the valve body assembly 10.
  • the sequencing reagent configuration component 60 outputs the sequencing reagent to a first container in communication with the valve body assembly 10.
  • the first container is the first reagent bottle 11.
  • the number of first containers is multiple.
  • the sequencing reagent configuration assembly 60 includes a plurality of sequencing reagent raw material bottles 61, a second multi-way valve 62, a second three-way valve 63, and a third pump 64.
  • a plurality of sequencing reagent raw material bottles 61 are used to hold a plurality of sequencing reagent raw materials
  • a second multi-way valve 62 simultaneously connects a plurality of sequencing reagent raw material bottles 61, and a pipe is connected to the second three-way valve 63.
  • the second three-way valve 63 also pipes the third pump 64 and the first reagent bottle 11.
  • the third pump 64 is in communication with one of the sequencing reagent raw material bottles 61 via the second three-way valve 63 and the second multi-way valve 62.
  • the first reagent bottle 11 is in communication with the third pump 64 via the second three-way valve 63.
  • the third pump 64 is sequentially connected to the plurality of sequencing reagent raw material bottles 61 to extract the sequencing reagent raw materials in the plurality of sequencing reagent raw material bottles 61, and is mixed and configured into a sequencing reagent, and the third pump 64 and the first reagent bottle 11 are 11 In communication, the sequencing reagent is injected into the first reagent bottle 11.
  • the plurality of sequencing reagent raw material bottles 61 respectively contain different sequencing reagent raw materials, so that the sequencing reagent raw materials in the plurality of sequencing reagent raw material bottles 61 can be sequentially extracted by the third pump 64 to be mixed and configured into the sequencing reagents.
  • the number of sequencing reagent raw material bottles 61 is nine, each containing a solution of a different type of nucleoside analog (substrate), a DNA polymerase solution, and various buffer solutions or components of a thiol-protecting solution.
  • the plurality of sequencing reagent raw material bottles 61 may be placed on the test tube rack to stabilize the plurality of sequencing reagent raw material bottles 61, and the six sequencing reagent raw material bottles 61 may be respectively labeled with different labels to facilitate the next sequencing.
  • Reagent raw materials are supplemented to avoid cross-infection of sequencing reagent materials.
  • the number of sequencing reagent raw material bottles 61 may also be two, three, four, five, six, seven or eight other quantities, which may be specific according to actual needs and characteristics of each solution. Adjustment.
  • the second multi-way valve 62 is disposed in the same manner as the first multi-way valve 20. The difference is that the second multi-way valve 62 realizes that the third pump 64 is in communication with the plurality of sequencing reagent raw material bottles 61 in sequence, and the second multi-way valve 62 selects one of the sequencing reagent raw material bottles 61 to communicate, and controls the connection duration, Thereby, the adjustment of the amount of extraction of the sequencing reagent raw material in the sequencing reagent raw material bottle 61 by the third pump 64 is controlled. Thereby, the sequencing reagent raw materials of the plurality of sequencing reagent raw material bottles 61 can be configured in proportion to meet the sequence determination requirements.
  • the second three-way valve 63 is configured in the same manner as the first three-way valve 30.
  • the second three-way valve 63 can realize the communication between the third pump 64 and the second multi-way valve 62, so that the third pump 64 can extract the sequencing reagent raw materials in the plurality of sequencing reagent raw material bottles 61 and configure them as sequencing reagents.
  • the second three-way valve 63 can communicate that the third pump 64 and the first reagent bottle 11 are in communication, so that the third pump 64 can inject the already configured sequencing reagent into the first reagent bottle 11.
  • the third pump 64 may supply a negative pressure to the plurality of sequencing reagent raw material bottles 61 via the second three-way valve 63 and the second multi-way valve 62 to extract the sequencing reagents in the plurality of sequencing reagent raw material bottles 61.
  • the third pump 64 can also provide a positive pressure to the first reagent bottle 11 via the second three-way valve 63 to inject the sequencing reagent into the first reagent bottle 11.
  • a first mixer 65 is connected between the second three-way valve 63 and the first reagent bottle 11, and the first mixer 65 is provided with a plurality of first weir pipes 651, and the plurality of first weir pipes 651 are connected end to end. And connected between the second three-way valve 63 and the first reagent bottle 11.
  • the plurality of first weir pipes 651 are fixed on one fixed plate, the first weir pipe 651 is S-shaped, and the plurality of weir pipes 651 may be juxtaposed in multiple rows, and each row is mutually Connected.
  • a plurality of first helium conduits 651 are communicated between the second three-way valve 63 and the first reagent bottle 11 such that the sequencing reagent injected from the third pump 64 is buffered through the plurality of helium conduits 651, and sequencing is increased.
  • the flow path of the reagents allows the plurality of sequencing reagent materials in the sequencing reagent to be thoroughly mixed to improve the reaction efficiency of the sequencing reagent.
  • the plurality of weir conduits 651 may also be sequentially spiraled.
  • the number of the first reagent bottles 11 may be one or plural. In one example, the number of first reagent bottles 11 is plural, and solutions containing different types of substrates are separately contained.
  • the sequencing reagent configuration assembly 60 further includes a third multi-way valve 66 that simultaneously conduits the plurality of first reagent bottles 11 and the second three-way valve 63, and the third pump 64 passes through the second three-way valve 63.
  • the third multi-way valve 66 is in communication with one of the first reagent bottles 11.
  • the sequencing reagents in the plurality of first reagent bottles 11 are different, and the number of the first reagent bottles 11 is four.
  • the third pump 64 the sequencing reagent raw material reagents of the plurality of sequencing reagent raw material bottles 61 are different in proportion, and different sequencing reagents can be configured, so that the plurality of first reagent bottles 11 can be used to hold a plurality of different sequencing reagents.
  • the third multi-way valve 66 has the same structure as the second multi-way valve 62. The third multi-way valve 66 can realize that the third pump 64 sequentially injects different sequencing reagents into the plurality of first reagent bottles 11 in sequence.
  • a first reagent bottle 11 is selected through the second three-way valve 63 and the third multi-way valve 66, and the sequencing reagent is injected into the first reagent bottle 11.
  • the number of the first reagent bottles 11 may also be two, three, four, five, six or seven, etc., and may be specifically adjusted according to actual needs and characteristics of each solution.
  • the sequencing reagent configuration assembly 60 further includes a rinse reagent bottle 67 for holding the rinse reagent, and a first waste liquid bottle 67 for holding the rinse reagent, and the rinse reagent bottle 67 is passed through the second multi-way valve 62 and the second three-way valve 63.
  • the first waste liquid bottle 68 is for containing waste liquid
  • the first waste liquid bottle 68 is in communication with the third pump 64 via the third multi-way valve 66 and the second three-way valve 63.
  • the third pump 64 may extract the flushing reagent in the flushing reagent bottle 67 to flush the third pump 64. That is, after the third pump 64 is configured to complete a sequencing reagent, the next time the sequencing reagent is configured, the rinsing reagent in the rinsing reagent bottle 67 can be extracted, and the sequencing reagent can be re-configured after rinsing, thereby avoiding the configuration of two different gene sequencing. A cross infection has occurred.
  • the third pump 64 can inject the waste liquid that has been cleaned into the first waste liquid bottle 68. To achieve the effect of environmentally friendly recycling.
  • the sequencing reagent configuration assembly 60 implements an in-line mixing function of the fluidic device 500. It will be appreciated that in certain embodiments, the fluidic device may also have no in-line mixing function, and accordingly, the sequencing reagent configuration component 60 may be omitted, as well as meeting the fluid path requirements of the sequencing reaction and controlling the sequencing reaction fluid path. This makes the piping of the fluid device simpler and the sequencing system more compact.
  • fluid device 500 includes a second container and imaging reagent configuration assembly 70 that includes imaging reagents for image acquisition of samples on first unit 41 and/or second unit 42 using imaging device 102
  • the imaging reagent configuration assembly 70 outputs the imaging reagent to a second container in communication with the valve body assembly 10.
  • the second container is the third reagent bottle 13.
  • the imaging reagent configuration assembly 70 includes a plurality of imaging reagent material bottles 71, a fourth multi-way valve 72, a third three-way valve 73, and a fourth pump 74.
  • a plurality of imaging reagent material bottles 71 are used to hold a plurality of imaging reagent materials.
  • the fourth multi-way valve 72 is simultaneously connected to the plurality of image forming reagent raw material bottles 71, and the pipe is connected to the third three-way valve 73.
  • the third three-way valve 73 also pipes the fourth pump 74 and the third reagent bottle 13.
  • the fourth pump 74 is in communication with one of the image forming reagent raw material bottles 71 via the third three-way valve 73 and the fourth multi-way valve 72.
  • the third reagent bottle 13 is in communication with the fourth pump 74 via the third three-way valve 73, wherein the fourth pump 74 is sequentially connected to the plurality of imaging reagent raw material bottles 71 to extract imaging in the plurality of imaging reagent raw material bottles 71.
  • the reagent materials are mixed and configured as an imaging reagent.
  • the fourth pump 74 is in communication with the third reagent bottle 13 for injecting the imaging reagent into the third reagent bottle 13.
  • the plurality of imaging reagent raw material bottles 71 respectively contain different imaging reagent raw materials, so that the imaging reagent raw materials in the plurality of imaging reagent raw material bottles 71 can be sequentially extracted by the fourth pump 74, thereby being mixed and configured into imaging reagents.
  • the number of imaging reagent raw material bottles 71 is five.
  • the plurality of imaging reagent raw material bottles 71 may be placed on the test tube rack to stabilize the plurality of imaging reagent raw material bottles 71, and different labels may be respectively attached to the five imaging reagent raw material bottles 71 for convenient next imaging.
  • Reagent raw materials are added to avoid cross-infection of imaging reagent materials.
  • the number of imaging reagent raw material bottles 71 may also be six or eight equal amounts, and is specifically adjusted according to actual needs.
  • the fourth multi-way valve 72 is disposed in the same manner as the first multi-way valve 20.
  • the fourth multi-way valve 72 realizes that the fourth pump 74 is in communication with the plurality of imaging reagent raw material bottles 71 in sequence, and the fourth multi-way valve 72 selects one of the imaging reagent raw material bottles 71 to communicate, and controls the communication duration, Thereby, the adjustment of the amount of extraction of the imaging reagent material in the image forming reagent raw material bottle 71 by the fourth pump 74 is controlled.
  • the imaging reagent raw materials of the plurality of imaging reagent raw material bottles 71 can be configured in proportion to meet the sequence determination requirements.
  • the third three-way valve 73 is configured in the same manner as the first three-way valve 30.
  • the third three-way valve 73 can realize that the fourth pump 74 and the fourth multi-way valve 72 are in communication, so that the fourth pump 74 can extract the imaging reagent raw materials in the plurality of imaging reagent raw material bottles 71 and configure them as imaging reagents.
  • the third three-way valve 73 can communicate that the fourth pump 74 and the third reagent bottle 13 are in communication, so that the fourth pump 74 can inject the already-configured imaging reagent into the imaging reagent bottle 13.
  • the fourth pump 74 may supply a negative pressure to the plurality of imaging reagent raw material bottles 71 via the third three-way valve 73 and the fourth multi-way valve 72 to extract the imaging reagent raw materials in the plurality of imaging reagent raw material bottles 71.
  • the fourth pump 74 can also provide a positive pressure to the third reagent bottle 13 via the third three-way valve 73 to inject the imaging reagent into the third reagent bottle 13.
  • the imaging reagent configuration assembly 70 further includes a second mixer 75, the second mixer 75 is coupled between the third three-way valve 73 and the third reagent bottle 13, and the second mixer 75 includes a plurality of second ports
  • the pipe 751 has a plurality of second weir pipes 751 connected end to end and communicated between the third three-way valve 73 and the third reagent bottle 13.
  • the second mixer 75 is configured in the same manner as the first mixer 65, and the imaging reagent injected from the fourth pump 74 by the second mixer 75 is buffered by the plurality of second weir tubes 751, and the flow stroke of the imaging reagent is increased, Thereby, a plurality of imaging reagent raw materials in the imaging reagent are thoroughly mixed to improve the reaction efficiency of the imaging reagent.
  • the drive assembly 50 further includes a fourth three-way valve 53, a fifth three-way valve 54, a second waste liquid bottle 55, and a third waste liquid bottle 56.
  • the fourth three-way valve 53 is connected between the first pump 51 and the first unit 41, and is also connected to the second waste liquid bottle 55.
  • the fifth three-way valve 54 is connected between the second pump 52 and the second unit 42 while also piping the third waste liquid bottle 56.
  • the first pump 51 communicates with the first unit 41 or the second waste liquid bottle 55 via the fourth three-way valve 53, so that the first pump 51 extracts the waste liquid in the first unit 41 that has completed the sequence determination reaction, and may then move to the second waste.
  • the liquid bottle 55 injects the waste liquid, so that the first pump 51 performs the next negative pressure to the first unit 41 to perform the sequence measurement reaction.
  • the fifth three-way valve 54 and the fourth three-way valve 53 are configured in the same manner, and are not described herein again.
  • the third waste liquid bottle 56 and the second waste liquid bottle 55 have the same structure, and are not described herein again.
  • imaging reagent configuration assembly 70 implements an in-line mixing function of fluid device 500. It will be appreciated that in certain embodiments, the fluidic device may also have no in-line mixing function, and accordingly, the imaging reagent dispensing assembly 70 may be omitted. This makes the piping of the fluid device simpler and the sequencing system more compact.
  • fluid device 500 includes a first control unit that electrically couples valve body assembly 10 and drive assembly 50 to control operation of valve body assembly 10 and drive assembly 50. In this way, automated control of the valve body assembly 10 and the drive assembly 50 can be achieved, thereby increasing efficiency.
  • the first control unit electrically connects the first multi-way valve 20, the first three-way valve 30, and the drive assembly 50 to control the first multi-way valve 20, the first three-way valve 30, and the drive Component 50 operates.
  • the first control unit may be a device including a single chip microcomputer, a calculator processor, or a central control processor, and controls the first multi-way valve 20, the first three-way valve 30, and the driving assembly 50 to operate by using the first control unit to implement the fluid device. 500 automatic operation to improve efficiency.
  • the first control unit is further electrically connected to the second multi-way valve 62, the second three-way valve 63, the third multi-way valve 66, the fourth multi-way valve 72, and the third three-way valve 73.
  • the third pump 64 and the fourth pump 74 increase the operating efficiency of the fluid device 500.
  • the method of controlling the sequence determination reaction further comprises determining a plurality of set positions when the sample on the first unit 41 and/or the second unit 42 is imaged by the imaging device 102. In this way, the image acquisition time of the imaging device 102 can be shortened, and the efficiency can be improved.
  • an initial position at the time of image acquisition such as an initial XY position, for the sample 300 of the channels of the first unit 41 and the second unit 42 may be input in the imaging device 102, and the distance and each channel for each movement are set. The number of times the image is acquired is taken, and the sequence measurement reaction is performed from the initial position.
  • each unit of reaction device 200 includes a plurality of channels to speed up the sequencing of sample 300.
  • the sample 300 image data on each channel consists of a field of view (FOV).
  • FOV field of view
  • image acquisition is performed on the sample 300 on a plurality of channels of the unit, 300 FOVs are set for each channel, and the moving position of the reaction device 200 is controlled according to the set number of FOVs.
  • the imaging device 102 includes a second control unit 502, an image acquisition unit 506, and a second light source 508.
  • the second control unit 502 sends an initialization command and a drive command, and the stage 103 is configured according to the initialization command.
  • the stage 103 moves the reaction device according to a plurality of set positions and drive commands, when the stage is loaded
  • the second control unit 502 controls the second light source 508 to emit light to the first unit 41 and/or the second unit 42 to cause the sample 300 to excite the detection light, and to control the image acquisition unit 506.
  • the detection light is collected to form image data. As such, automatic control of image acquisition of the sample 300 on the first unit 41 and the second unit 42 is achieved.
  • the second control unit 502 includes a host computer 510 and a lower computer 512, and the host computer 510 is configured to send an initialization command.
  • the lower computer 512 is configured to send a drive command according to an initialization command.
  • the second light source 508 is controlled by the lower position machine 512 to emit light to the sample 300 to cause the sample 300 to excite the detection light
  • the image capturing unit 506 is controlled to collect the detection light to form image data.
  • the image acquisition unit 506 is configured to directly transmit the image data to the upper computer 510. In this way, the number of data transmissions of the upper computer 510 and the lower computer 512 can be reduced, and the image data is directly transmitted to the upper computer 510, thereby realizing rapid sequence measurement.
  • the stage 103 directly carries the reaction device 200, and the stage 103 controls the movement of the reaction device 200 in the sequence determination system.
  • the stage 103 includes a position calculation unit that calculates each movement of the reaction device 200 based on the initialization command.
  • the set position is to move the reaction device during the sequence determination process. For example, in the high-throughput sequence measurement, the sample 300 image data of a plurality of set positions is collected in one sequence measurement, and the stage 103 calculates the set position of each driving reaction device 200 according to the initialization command to receive the drive command. At this time, the reaction device 200 is moved according to each set position to an area where the image acquisition unit 506 can acquire an image.
  • the stage 103 is movable in the XYZ triaxial direction to move the reaction device 200 to the set position.
  • reaction device 200 can be placed on another support table that moves the reaction device 200 to a set position by driving the support table.
  • image acquisition unit 506 includes a camera 108 to convert an optical signal into an electrical signal.
  • the image acquisition unit 506 includes an optical path module and a camera 108.
  • the reaction device 200 is placed on the stage 103 on the object side of the optical path module, and the camera 108 is located on the image side of the optical path module.
  • the optical path module may be a microscope, and the microscope may include the objective lens 110 of the lens module 104 of the above embodiment.
  • image acquisition unit 506 is configured to receive initialization instructions and to turn on according to initialization instructions. As such, the image acquisition unit 506 is in an on state after initialization, causing the image acquisition unit 506 to acquire the detected light at a faster rate.
  • the host computer 510 transmits an initialization command to the image acquisition unit 506 and the image data transmitted by the image acquisition unit 506 by a wireless or wired method. In this way, data transmission between the host computer 510 and the image acquisition unit 506 is realized.
  • the data transmission manner between the upper computer 510 and the image collection unit 506 may be a wireless local area network transmission, a Bluetooth transmission, or a universal serial bus transmission.
  • the transmission mode is not limited, and an appropriate transmission mode may be selected according to actual needs.
  • the lower computer 512 includes an input/output port for outputting a first transistor-transistor logic level signal (TLL signal) to control the second light source 508 to emit light, and to control the image acquisition unit. 506 collects detection light.
  • TLL signal transistor-transistor logic level signal
  • the lower computer 512 controls the second light source 508 and the image acquisition unit 506 through the first transistor-transistor logic level signal, thereby reducing the communication time between the lower computer 512 and the second light source 508 and the image acquisition unit 506, and further obtaining quickly.
  • the second light source 508 emits a laser of a specific wavelength, illuminating the sample 300 on the first unit 41 and the second unit 42 to cause the fluorescent group in the sample 300 to fluoresce as the detection light.
  • the image acquisition unit 506 collects the fluorescence to form image data.
  • the transistor-transistor logic level signal transmission rate is in the order of microseconds, and the transistor-transistor logic level signal causes the lower-level machine 512 and the second light source 508 and the image acquisition unit 506 to communicate with each other through a serial port. Realizing fast communication, reducing the communication time between the lower computer 512 and various components, and facilitating rapid sequence measurement, and the imaging device 102 of the embodiment of the present invention can complete a round of sequence measurement and complete a set position. The acquisition of images, the cumulative communication time shortened after repeated multiple times is more significant.
  • the second control unit 502 controls the second light source 508 to turn off when the set exposure time of the image acquisition unit 506 is reached.
  • the second control unit 502 controls the second light source 508 to emit light during the exposure time of the image acquisition unit 506, and is turned off after the exposure is completed, so that the image collected by the image acquisition unit 506 is clearer and energy is saved.
  • the lower computer 512 controls the second light source 508 to turn off.
  • the exposure time can be set in various ways, for example, according to the situation, or the simulated exposure process can be used to obtain the optimum exposure time before the sequence measurement, or the appropriate exposure can be calculated by an algorithm. Time value.
  • the exposure time is not limited to the above method, and an appropriate method may be selected according to actual conditions to set the exposure time in practical applications.
  • the lower computer 512 includes an input/output port for outputting a second transistor-transistor logic level signal to control the second source 508 to turn off. In this way, the lower computer 512 outputs the second transistor-transistor logic level signal through the input/output port to turn off the second light source 508, which reduces the communication time between the lower computer 512 and the second light source 508, which is advantageous for achieving fast sequencing.
  • the second control unit 502 controls the stage 103 to move the reaction device 200 to the next set position to complete the acquisition of the set position image data. In this manner, the imaging device 102 collects images one by one for each set position of the mobile reaction device 200, achieving high-throughput sequencing.
  • the lower computer 512 transmits a drive command to the stage 103 again. Further, when the acquisition of the image data corresponding to all the set positions is completed, the lower computer 512 is configured to send an end command to the upper computer 510 to complete image acquisition of one unit of the reaction device 200.
  • the image acquisition unit 506 is connected to the upper computer 510.
  • the image acquisition unit 506 transmits the image data to the upper computer 510 for each image data of the set position, and the lower computer 512 is turned off at the second light source 508. Thereafter, the drive command is transmitted to the stage 103 to cause the stage 103 to move the reaction apparatus 200 to the next set position, and the lower unit 512 does not need to wait for the completion of the image data transmission to further shorten the sequence measurement time.
  • the drive command is a pulse signal.
  • the second control unit 502 transmits the drive command to the stage 103 in the form of a pulse signal, which reduces the communication time between the second control unit 502 and the stage 103, and is advantageous for realizing fast sequence determination.
  • the image acquisition unit 506 includes a tracking module 516 and an objective lens 110.
  • the tracking module 516 controls the objective lens 110 and/or the reaction device 200 to move along the optical axis of the objective lens 110 according to an initialization command.
  • the tracking module 516 maintains the distance between the objective lens 110 and the sample corresponding to the optimal focus position unchanged during image acquisition. In this way, when the set positions on the sample that need to acquire images are not in the same XY plane, the distance between the objective lens 110 and the reaction device 200 is adjusted by the tracking module 516, so that the image collecting unit 506 collects different XY planes. Set a clear image of the sample at the location.
  • the distance of the objective lens 110 from the sample is the object distance.
  • the host computer 510 sends an initialization command to the tracking module 516, so that the tracking module 516 activates the automatic tracking function.
  • movement along the optical axis of the objective lens can be understood as moving along the Z axis.
  • the tracking module 516 can control the movement of the objective lens 110 relative to the reaction device 200 in accordance with an initialization command to enable the camera 108 to produce a clear sample image. After determining that the camera 108 has a clear sample image, the tracking module 516 performs a lock focus function, that is, when the position of the sample to be collected changes, causing the distance between the objective lens 110 and the sample to change, the tracking module The 516 compensates for the amount of change by controlling the movement of the objective lens 110 such that the sample image formed by the camera 108 is always clear.
  • the so-called optimal focus position corresponds to a preset distance between the objective lens and the sample.
  • the preset distance can be a fixed value or a fixed range, which is related to the quality of the image.
  • the optimal focus position can be determined by a hill-climbing search algorithm such that the quality of the image acquired at the optimal focus position image reaches a predetermined parameter.
  • an embodiment of the present invention provides an optical detection system 600.
  • the optical detection system 600 includes a control device 601, an imaging device 102, and a carrier device 100.
  • the carrier device 100 includes a temperature control device 301 and a carrier 103.
  • the imaging device 102 The lens module 104 includes a light axis OP, the stage 103 is used to carry the sample 300, the temperature control device 301 is used to adjust the temperature of the sample 300, and the control device 601 is used to:
  • the temperature control device 301 is used to set a range of temperature fluctuations allowing the sample 300 to cause the lens module 104 to follow the light.
  • the position fluctuation range of the axis OP is within a preset range.
  • an embodiment of the present invention provides a sequence determination system 700 for controlling a sequence determination reaction.
  • the sequence determination system 700 includes an optical detection system 600.
  • the optical detection system 600 includes a control device 601, an imaging device 102, and a carrier device 100.
  • the imaging device 102 includes a lens module 104.
  • the lens module 104 includes an optical axis OP.
  • the carrier device 100 includes a temperature control device 301 and a carrier 103.
  • the carrier 103 is used to carry the sample 300, and the temperature control device 301 is used to adjust the sample 300.
  • the temperature, control device 601 is used for image acquisition of the sample 300 by the imaging device 102, and for:
  • the temperature control device 301 is used to set a range of temperature fluctuations allowing the sample 300 to be used to cause the lens module 104 along the optical axis OP before the sequence measurement system 700 performs the sequence measurement reaction or when the sequence measurement system 700 performs the sequence measurement.
  • the position fluctuation range is within the preset range.
  • the optical detection system 600 is pre-configured with a range of temperature fluctuations of the sample 300 and a range of position fluctuations of the lens module 104 along the optical axis OP, and the control device 601 is configured to control the lens mode according to the correspondence relationship.
  • the position fluctuation range of the group 104 along the optical axis OP is within a preset range.
  • the correspondence includes:
  • the position of the lens module along the optical axis fluctuates within a range of ⁇ 0.5 ⁇ m.
  • the imaging device 102 includes a focus module 106 for image acquisition of the sample 300 by the imaging device 102.
  • the control device 601 is configured to focus the sample 300 by using the focus module 106 and the lens module 104.
  • the sample 300 is imaged by the imaging device 102, and the control device 601 is configured to: use the lens module 104 to focus the sample 300.
  • focusing includes the steps of:
  • the lens module 104 When the focus module 106 receives the light reflected by the sample 300, the lens module 104 is moved along the optical axis OP by a second set step smaller than the first set step and the image is imaged by the imaging device 102. Collecting, and determining whether the sharpness value of the image collected by the imaging device 102 reaches a set threshold;
  • the current position of the lens module 104 is saved as the save position.
  • control device 601 can be used to perform the relevant steps of the focusing.
  • the focus module 106 includes a first light source 116 for emitting light onto the sample 300 and a light sensor 118 for receiving light reflected by the sample 300.
  • the focus module 106 when the focus module 106 receives light reflected by the sample 300, the focusing includes:
  • the lens module 104 is moved toward the sample 300 along the optical axis OP by a third set step that is smaller than the first set step and larger than the second set step, and is based on the light intensity of the light received by the focus module 106. Calculating a first light intensity parameter, determining whether the first light intensity parameter is greater than a first set light intensity threshold;
  • the lens module 104 When the first light intensity parameter is greater than the first set light intensity threshold, the lens module 104 is moved along the optical axis OP by the second set step and the image is collected by the imaging device 102, and the imaging device is determined. The step of whether the sharpness value of the captured image of 102 reaches a set threshold.
  • the focus module 106 includes two light sensors 118 for receiving light reflected by the sample 300, the first light intensity parameter being the light of the light received by the two light sensors 118. Strong average.
  • the focus module 106 when the focus module 106 receives light reflected by the sample 300, the focusing includes:
  • the lens module 104 is moved toward the sample 300 along the optical axis OP by a third set step that is smaller than the first set step and larger than the second set step, and is based on the light intensity of the light received by the focus module 106. Calculating a first light intensity parameter, determining whether the first light intensity parameter is greater than a first set light intensity threshold;
  • the lens module 104 When the first light intensity parameter is greater than the first set light intensity threshold, the lens module 104 is caused to move toward the sample along the optical axis OP by a fourth set step that is smaller than the third set step and greater than the second set step. 300 moves, and calculates a second light intensity parameter according to the light intensity of the light received by the focus module 106, and determines whether the second light intensity parameter is smaller than the second set light intensity threshold;
  • the lens module 104 When the second light intensity parameter is less than the second set light intensity threshold, the lens module 104 is moved along the optical axis OP by the second set step and the image is collected by the imaging device 102, and the imaging device is determined. The step of whether the sharpness value of the captured image of 102 reaches a set threshold.
  • the focus module 106 includes two light sensors 118 for receiving light reflected by the sample 300, the first light intensity parameter being the light of the light received by the two light sensors 118.
  • the strong average value, the light intensity of the light received by the two light sensors 118 has a first difference, and the second light intensity parameter is the difference between the first difference and the set compensation value.
  • control device 601 is configured to: when the lens module 104 is moved in the second set step, determine whether the first sharpness value of the pattern corresponding to the current position of the lens module 104 is greater than the lens. a second sharpness value of the image corresponding to the previous position of the module 104;
  • the lens module 104 is set to the second set step Continue to move along the optical axis OP toward the sample 300;
  • the lens module 104 is made smaller than the second set step
  • the long fifth set step continues to move along the optical axis OP toward the sample 300 to cause the sharpness value of the image acquired by the imaging device 102 to reach a set threshold;
  • the lens module 104 is set to the second set step Moving away from the sample 300 along the optical axis OP;
  • the lens module 104 is set to the fifth set step Moving away from the sample 300 along the optical axis OP causes the sharpness value of the image acquired by the imaging device 102 to reach a set threshold.
  • control device 601 is configured to: when the lens module 104 moves, determine whether the current position of the lens module 104 exceeds a second set position;
  • the carrier device 100 includes:
  • the stage 103 is fixed on the bottom plate.
  • the stage 103 is provided with a receiving groove 242.
  • the receiving groove 242 is accommodated with a sample 300.
  • the bottom of the receiving groove 242 is provided with a through hole 2422.
  • the temperature control device 301 passes through the through hole 2422.
  • the sample 300 in the groove 242 is connected;
  • the elastic support assembly 40, the temperature control device 301 is elastically supported on the bottom plate 101 by the elastic support assembly 40.
  • the elastic support assembly 40 includes a guiding cylinder 43 and a resilient member 44.
  • the temperature control device 301 includes a temperature control portion 312 and a guiding post 341.
  • the guiding post 341 is disposed at a temperature away from the receiving slot 242.
  • the guiding cylinder 43 is fixed on the bottom plate 101, and the guiding post 341 passes through the elastic member 44 and the guiding cylinder 43, and the elastic member 44 elastically resists between the temperature control portion 312 and the guiding cylinder 43;
  • the guiding cylinder 43 is a linear bearing, and the guiding post 341 is in sliding contact with the balls of the linear bearing.
  • the temperature control device 301 includes a fixed plate 321, a temperature conducting plate 322, a temperature control element 323, and a guiding post 341.
  • the temperature controlling element 323 is sandwiched between the fixing plate 321 and the temperature conducting plate 322.
  • the control element 323 is in contact with the temperature conduction plate 322 and the fixed plate 321 for contacting the sample 300 loaded in the accommodating groove 242, and the guide post 341 is disposed away from the fixing plate 321 of the temperature control element 323.
  • the guide post 341 is threaded through the elastic support assembly 40.
  • the temperature control device 301 further includes a water bath 324 disposed on a surface of the fixed plate 321 remote from the temperature control element 323, the water bath 324 being spaced from the guide post 341.
  • the sequencing reaction comprises a first biochemical reaction and a second biochemical reaction, the first biochemical reaction and the second biochemical reaction being performed on the reaction device 200, the sequencing system 700 comprising a fluid device 500, the fluid device 500 being connected Reaction device 200,
  • the reaction device 200 includes a first unit 41 and a second unit 42.
  • the sample 300 is placed on the first unit 41 and the second unit 42 to define a repeating execution unit included in the sequence determination reaction as the second biochemical reaction-first biochemical reaction. -graphic gathering,
  • the control device 601 is configured to utilize imaging after the first unit 41 and the second unit 42 are subjected to the second biochemical reaction and the first biochemical reaction of the sample 300 by the fluid device 500 after completing the following initial steps Device 102 performs image acquisition on sample 300 of another unit,
  • the initial steps include the steps:
  • the sample 300 on the other of the first unit 41 and the second unit 42 is subjected to a first biochemical reaction using the fluid device 500.
  • step a and step c are performed simultaneously, or step b and step c are performed simultaneously, or step b is performed prior to step c, or step b is performed after step c.
  • the fluidic device 500 includes a valve body assembly 10 and a drive assembly 50 that communicates with the valve body assembly 10 via the reaction device 200, with the first unit 41 and/or the second unit 42 being utilized by the fluid device 500.
  • the valve body assembly 10 is used to switch between different reagents, and the drive assembly 50 causes the valve body assembly 10 to output the reagent to the first unit 41 and/or the second. Unit 42.
  • the valve body assembly 10 includes a first multi-way valve 20 and a first three-way valve 30 that switches between different reagents to the first three-way valve 30, the first three-way valve
  • the reagent output from the first multi-way valve 20 is output to the first unit 41 and/or the second unit 42.
  • the drive assembly 50 includes a first pump 51 that communicates with the valve body assembly 10 through a first unit 41 and a second pump 52 that communicates with the valve body assembly 10 through a second unit 42.
  • the first pump 51 is used to cause the valve body assembly 10 to output the reagent to the first A unit 41, and/or utilizes a second pump 52 to cause the valve body assembly 10 to output reagents to the second unit 42.
  • the optical detection system 600 includes an imaging device 102 and a carrier device 100.
  • the carrier device 100 includes a temperature control device 301 and a stage. 103, the imaging device 102 includes a lens module 104, the lens module 104 includes an optical axis OP, the carrier 103 is used to carry the sample 300, and the temperature control device 301 is used to adjust the temperature of the sample 300.
  • the control device 601 includes:
  • a storage device 602 configured to store data, where the data includes a computer executable program
  • the processor 604 is configured to execute a computer executable program, and the executing the computer executable program comprises the method of performing any of the above embodiments.
  • a computer readable storage medium for storing a program for execution by a computer, the program comprising the method of any of the above embodiments.
  • the computer readable storage medium may include read only memory, random access memory, magnetic or optical disks, and the like.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.

Abstract

本发明公开了成像方法、控制序列测定反应的方法、装置及系统。成像方法用于光学检测系统,光学检测系统包括成像装置和承载装置,承载装置包括温控装置和载台,成像装置包括镜头模组,镜头模组包括光轴,载台用于承载样品,温控装置用于调节样品的温度,成像方法包括:在利用成像装置对样品进行图像采集之前或者在利用成像装置对样品进行图像采集时,利用温控装置设定允许样品的温度波动的范围,以使镜头模组沿光轴的位置波动范围位于预设范围内。如此,利用上述成像方法,能够将镜头模组的位置波动范围控制在预设范围内,减少或避免对成像装置进行图像采集时的不利影响。

Description

成像方法、控制序列测定反应的方法、装置及系统
本申请要求于2017年09月20日提交中国专利局的申请号为201710855394.2的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光学检测领域,尤其涉及一种成像方法、一种控制序列测定反应的方法、一种控制装置、一种光学检测系统和一种序列测定系统。
背景技术
序列测定,即测序,包括核酸序列的测定。目前市面上的测序平台包括一代测序平台、二代测序平台和三代测序平台。从功能控制角度,测序仪器包括探测模块,利用探测模块转化和/或收集序列测定中生化反应产生的信息变化,以测定序列。探测模块一般包括光学检测模块、电流检测模块和酸碱(pH)检测模块。基于光学检测原理的测序平台通过分析采集检测到的测序生化反应中的光信号变化来进行序列测定。
在采集光信号的过程中,光学检测模块的镜头模组会发生预期外的位置波动,这种位置波动对光信号的采集带来不利影响。
发明内容
本发明实施方式旨在至少解决相关技术中存在的技术问题之一或者至少提供一种可选择的实用方案。为此,本发明实施方式需要提供一种成像方法、一种控制序列测定反应的方法、一种控制装置、一种光学检测系统和一种序列测定系统。
发明人基于以下发现而产生作出本发明方案的构思:
本领域技术人员能够知晓,在成像、图像/信号采集或者测序的过程中,特别是包含了高精度/高倍数的光学系统的平台,光学检测系统的镜头模组(包括物镜)若发生抖动/波动或者发生的抖动/波动不受控,很可能影响图像的采集,影响信号的获取。
在测序平台上利用成像装置对着反应装置(例如芯片,flow cell)进行追焦时,发明人惊奇地发现,镜头模组(包括物镜)的坐标(定为Z轴方向上的坐标)沿追焦方向(例如芯片的通道方向,定为x方向)的变化曲线(z-x)不符合理论上的线性关系或者近似于线性的关系,呈现出剧烈的局部波动,并且该波动呈现周期性的变化,如图1所示。进一步地,发明人试验,即使不进行追焦即不给镜头模组Z轴方向运动的指令,只将镜头模组对着同一视野进行拍照,镜头模组Z轴方向仍旧周期性波动,如图2所示,周期约为10.4s。更惊奇地,发明人发现该波动的周期与允许反应装置的温度的变化周期非常接近,猜想镜头模组的波动可能与温度的波动有关。一般地,允许反应装置的温度变化的设置是通过与反应装置连接的温控装置进行控制的,例如希望反应装置的温度保持在25℃左右,可通过温控装置设置温度变化范围为[24℃,26℃],即超出25±1℃,温控装置将调节温度使反应装置的温度维持在上述预设范围。
发明人通过控制温度波动证实验证了上述猜想,例如将温控装置撤掉,沿芯片的一条通道来回进行类似于追焦的行为,镜头模组Z-X波动符合理论上的线性或近似线性的关系,未出现上面所说的周期性波动现象。基于以上关系的发现及证实,发明人提出一种利用控制温度变化来控制镜头模组波动的方案。
本发明实施方式提供一种成像方法,所述成像方法用于光学检测系统,所述光学检测系统包括成像装置和承载装置,所述承载装置包括温控装置和载台,所述成像装置包括镜头模组,所述镜头模组包括光轴,所述载台用于承载样品,所述温控装置用于调节所述样品的温度,所述方法包括:
在利用所述成像装置对所述样品进行图像采集之前或者在利用所述成像装置对所述样品进行图像采集时,利用所述温控装置设定允许所述样品的温度波动的范围,以使所述镜头模组沿所述光轴的位置波动范围位于预设范围内。
本发明实施方式提供一种控制序列测定反应的方法,其利用序列测定系统对所述序列测定反应进行控制,
所述序列测定系统包括光学检测系统,所述光学检测系统包括成像装置和承载装置,所述成像装置包括镜头模组,所述镜头模组包括光轴,所述承载装置包括温控装置和载台,所述载台用于承载样品,所述序列测定反应包括利用所述成像装置对所述样品进行图像采集,所述方法包括:
在利用所述序列测定系统进行所述序列测定反应之前或者在利用所述序列测定系统进行所述序列测定时,利用所述温控装置设定允许所述样品的温度波动的范围,以使所述镜头模组沿所述光轴的位置波动范围位于预设范围内。
利用上述成像方法和/或序列测定控制方法,能够将镜头模组的位置波动范围控制在预设范围内,减少或避免对成像装置进行图像采集时的不利影响。
本发明实施方式的一种光学检测系统包括控制装置、成像装置和承载装置,所述承载装置包括温控装置和载台,所述成像装置包括镜头模组,所述镜头模组包括光轴,所述载台用于承载样品,所述温控装置用于调节所述样品的温度,所述控制装置用于:在利用所述成像装置对所述样品进行图像采集之前或者在利用所述成像装置对所述样品进行图像采集时,利用所述温控装置设定允许所述样品的温度波动的范围,以使所述镜头模组沿所述光轴的位置波动范围位于预设范围内。
本发明实施方式的一种序列测定系统,对序列测定反应进行控制,所述序列测定系统包括光学检测系统,所述光学检测系统包括控制装置、成像装置和承载装置,所述成像装置包括镜头模组,所述镜头模组包括光轴,所述承载装置包括温控装置和载台,所述载台用于承载样品,所述控制装置用于利用所述成像装置对所述样品进行图像采集,及用于:
在利用所述序列测定系统进行所述序列测定反应之前或者在利用所述序列测定系统进行所述序列测定时,利用 所述温控装置设定允许所述样品的温度波动的范围,以使所述镜头模组沿所述光轴的位置波动范围位于预设范围内。
利用上述光学检测系统和/或序列测定系统,能够将镜头模组的位置波动范围控制在预设范围内,减少或避免对成像装置进行图像采集时的不利影响。
本发明实施方式的一种对成像进行控制的控制装置,用于光学检测系统,所述光学检测系统包括成像装置和承载装置,所述承载装置包括温控装置和载台,所述成像装置包括镜头模组,所述镜头模组包括光轴,所述载台用于承载样品,所述温控装置用于调节所述样品的温度,所述控制装置包括:存储装置,用于存储数据,所述数据包括计算机可执行程序;处理器,用于执行所述计算机可执行程序,执行所述计算机可执行程序包括完成上述任一实施方式的方法。
本发明实施方式的一种计算机可读存储介质,用于存储供计算机执行的程序,执行所述程序包括完成上述任一实施方式的方法。计算机可读存储介质可以包括:只读存储器、随机存储器、磁盘或光盘等。
本发明实施方式的一种序列测定系统,包括上述任一实施方式的控制装置。
本发明实施方式的一种计算机程序产品,包含指令,当该指令被计算机执行时,该指令使得计算机执行上述任一实施方式的方法的步骤。
本发明实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明实施方式的实践了解到。
附图说明
本发明实施方式的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是检测到的镜头模组的Z轴坐标沿追焦方向的变化曲线示意图。
图2是检测到的镜头模组的Z轴坐标沿追焦方向的另一变化曲线示意图。
图3是本发明实施方式的承载装置的立体示意图。
图4是本发明实施方式的承载装置的分解示意图。
图5是本发明实施方式的镜头模组与样品的位置关系示意图。
图6是本发明实施方式的光学检测系统的部分结构示意图。
图7是本发明实施方式的成像方法的流程示意图。
图8是本发明实施方式的成像方法的另一流程示意图。
图9是本发明实施方式的成像方法的再一流程示意图。
图10是本发明实施方式的温控装置的分解示意图。
图11是本发明实施方式的水浴室和温控水浴装置的结构示意图。
图12是本发明实施方式的承载装置的部分分解示意图。
图13是本发明实施方式的流体装置的结构示意图。
图14是本发明实施方式的控制序列测定反应的方法的流程示意图。
图15是本发明实施方式的成像装置的模块示意图。
图16是本发明实施方式的成像装置的另一模块示意图。
图17是本发明实施方式的光学检测系统的模块示意图。
图18是本发明实施方式的序列测定系统的模块示意图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
除非另有明确的规定和限定,“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设定进行描述。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设定之间的关系。
术语“厚度”、“上”、“下”、“前”、“后”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
所称的“不变”,例如涉及距离、物距和/或相对位置等的可以表现为数值、数值范围或量上的变化,可以是绝对不变,也可以是相对不变,所称的相对不变为保持在一定偏差范围或者预设的可接受范围。如无另外说明,涉及距离、物距和/或相对位置的“不变”为相对不变。需要说明的是,由于本发明的描述中涉及的具体数据大多具有统计意义,因此,如无特殊说明,任意以精确方式表达的数值均代表一个范围,即包含该数值正负10%的区间,以下不再重复说明。
所称的“序列测定”同核酸序列测定,包括DNA测序和/或RNA测序,包括长片段测序和/或短片段测序。所称 的“序列测定反应”同测序反应。
本发明实施方式提供一种成像方法,成像方法用于光学检测系统,光学检测系统包括成像装置102和承载装置100,承载装置100包括温控装置301和载台103,成像装置102包括镜头模组104,镜头模组104包括光轴OP,载台103用于承载样品300,温控装置301用于调节样品300的温度。成像方法包括:在利用成像装置102对样品300进行图像采集之前或者在利用成像装置102对样品300进行图像采集时,利用温控装置301设定允许样品300的温度波动的范围,以使镜头模组104沿光轴OP的位置波动范围位于预设范围内。利用上述成像方法,能够将镜头模组104的位置波动范围控制在预设范围内,减少或避免对成像装置102进行图像采集时的不利影响。
具体地,温控装置301可与样品300接触以设定样品300的温度波动的范围。
在某些实施方式中,光学检测系统预设有样品300的温度波动的范围与镜头模组104沿光轴的位置波动范围的对应关系,根据对应关系,控制镜头模组104沿光轴OP的位置波动范围位于预设范围内。如此,成像方法可快速地获取将镜头模组104沿光轴的位置波动范围控制在预设范围内所对应的样品300的温度波动的范围。
具体地,样品300的温度波动的范围与镜头模组104沿光轴的位置波动范围的对应关系可存储在光学检测系统中。在一个例子中,所称的对应关系可参下表1。
表1
Figure PCTCN2018095293-appb-000001
需要指出的是,上述表1的数据只是作为示例来说明本发明实施方式,不能理解为对本发明的限制。在其它示例中,可根据实际需求来对样品300的温度波动的范围和镜头模组104沿光轴的位置波动范围进行具体设置对应关系。
在某些实施方式中,承载装置100的结构如图3和图4所示。镜头模组104与样品300的位置关系如图5所示。
再某些实施方式中,请参图6,成像装置102包括对焦模组106,利用成像装置102对样品300进行图像采集,包括:利用对焦模组106和镜头模组104对样品300进行对焦。如此,成像装置102在图像采集时进行对焦,能够获取到清晰的样品图像。
在某些实施方式中,请参图7,对焦包括步骤:S11,利用对焦模组106发射光至置于载台103上的样品300上;S12,使镜头模组104沿光轴OP移动到第一设定位置;S13,使镜头模组104从第一设定位置以第一设定步长沿光轴300向样品300移动并判断对焦模组106是否接收到由样品300反射的光;在对焦模组106接收到由样品300反射的光时,S14,使镜头模组104以小于第一设定步长的第二设定步长沿光轴OP移动并利用成像装置102对样品300进行图像采集,并判断成像装置102所采集到的图像的锐度值是否达到设定阈值;在图像的锐度值达到设定阈值时,S15,保存镜头模组104的当前位置作为保存位置。利用上述成像方法,能够快速准确地找到目标物体清晰成像的平面,即清晰平面/清晰面。该方法特别适用于不易找到清晰平面的包含精密光学系统的设备,例如带有高倍数镜头的光学检测设备。
具体地,样品300可理解为广义上的样品或狭义上的样品。对于广义上的样品,样品为各位溶液、试剂等待测样品。可将样品置于支承装置上,支承装置例如是,反应装置(如芯片),玻片等,带有样品的支承装置放置在承载装置100上。对于狭义上的样品,样品包括支承装置和位于支承装置上的待测样品,序列测定时,可将样品放置在承载装置100上。请参图5,在对焦步骤的实施方式中,样品300包括支承装置200和位于支承装置200的待测样品302,待测样品302为生物分子,如核酸等,镜头模组104位于支承装置200的上方。支承装置200具有前面板202和后面板(下面板),各面板均具有两个表面,待测样品302连接在下面板的上表面上,即待测样品302位于前面板202的下表面204下方。在本发明实施方式中,由于成像装置102为采集待测样品302的图像,而待测样品302位于支承装置200的前面板202下表面204下方,在对焦过程开始时,镜头模组104的移动是为了找到待测样品302所在的介质分界面204,以提高成像装置102的采集清晰图像的成功率。在本发明实施方式中,待测样品302为溶液,支承装置200的前面板202为玻璃,支承装置200与待测样品302的介质分界面204为支承装置200的前面板202的下表面204,即玻璃与液体两种介质的分界面。成像装置102所需采集图像的待测样品302位于在前面板202的下表面204之下,此时再通过成像装置102所采集的图像来判别寻找待测样品302清晰成像的清晰面,此过程可称为对焦。在一个例子中,待测样品302的前面板202的厚度为0.175mm。
在某些实施方式中,支承装置200可为玻片,待测样品302置于玻片上,或者待测样品302夹设于两片玻片中。在某些实施方式中,支承装置200可为反应装置,例如,上下有承载面板的类似于三明治结构的芯片,待测样品302设置于芯片上。
在某些实施方式中,请参图6,成像装置102包括显微镜107和相机108,镜头模组104包括显微镜的物镜110和相机108的镜头模组112,对焦模组106可通过二向色分束器114(dichroic beam splitter)与相机108的镜头模组112固定在一起,二向色分束器114位于相机108的镜头模组112与物镜110之间。二向色分束器114包括双C型分束器(dual c-mount splitter)。二向色分束器114可反射对焦模组106发射的光至物镜110并能够让可见光穿透并经相机108的镜头模组112进入相机108内,如图6所示。
在本发明实施方式中,镜头模组104的移动可指物镜110的移动,镜头模组104的位置可指物镜110的位置。在其它实施方式中,可选择移动镜头模组104的其它透镜来实现对焦。另外,显微镜107还包括位于物镜110和相机108之间的镜筒透镜111(tube lens)。
在某些实施方式中,载台103能够带动样品200在垂直于镜头模组104的光轴OP(如Z轴)的平面内移动(如XY平面),和/或能够带动样品300沿镜头模组104的光轴OP(如Z轴)移动。
在某些实施方式中,载台103带动样品300移动的平面非垂直于光轴OP,即样品的运动平面与XY平面夹角非0,该成像方法仍旧适用。
另外,成像装置102也能够驱动物镜110沿镜头模组104的光轴OP移动以进行对焦。在一些例子中,成像装置102利用步进马达或音圈马达等驱动件来驱动物镜110移动。
在某些实施方式中,在建立坐标系时,如图5所示,可将物镜110、载台103和样品300的位置设置在Z轴的负轴上,第一设定位置可为Z轴的负轴上的坐标位置。可以理解,在其它实施方式中,也可根据实际情况对坐标系与相机和物镜110的关系进行调整,在此不做具体限定。
在一个例子中,成像装置102包括全内反射荧光显微镜,物镜110为60倍放大,第一设定步长S1=0.01mm。如此,第一设定步长S1较合适,因S1太大会跨过可接受的对焦范围,S1太小会增加时间开销。
在对焦模组106没接收到由样品300反射的光时,则使镜头模组104以第一设定步长沿光轴OP向样品300继续移动。
在某些实施方式中,在图像的锐度值没达到设定阈值时,则使镜头模组104以第二设定步长沿光轴OP继续移动。
在某些实施方式中,光学检测系统可应用于序列测定系统,或者说,序列测定系统包括光学检测系统。
在某些实施方式中,在镜头模组104移动时,判断镜头模组104的当前位置是否超出第二设定位置;在镜头模组104的当前位置超出第二设定位置时,停止移动镜头模组104或者进行对焦步骤。如此,第一设定位置与第二设定位置可限定镜头模组104的移动范围,可使镜头模组104在无法对焦成功时停止移动,避免了资源的浪费或者设备的损坏,或可使镜头模组104在无法对焦成功时进行重新对焦,提高了成像方法的自动化。
在某些实施方式中,例如在全内反射成像系统中,为能快速找到介质分界面,会调整设置使镜头模组104的移动范围在能满足实施该方案的情况下尽量小。例如,在物镜为60倍的全内反射成像装置上,按照光路特性以及经验总结,镜头模组104的移动范围可设置为200μm±10μm或者为[190μm,250μm]。
在某些实施方式中,依据已定的移动范围以及第二设定位置和第一设定位置中任一位置的设定,可确定另一设定位置。在一个例子中,设定第二设定位置为反应装置200前面板202的上表面205最低处再往下一个景深大小的位置,设定镜头模组104的移动范围为250μm,如此,第一设定位置即确定。在本发明示例中,下一个景深大小的位置所对应的坐标位置为沿Z轴负方向变小的位置。
具体地,在本发明实施方式中,移动范围为Z轴的负轴上的一个区间。在一个例子中,第一设定位置为nearlimit,第二设定位置为farlimit,nearlimit和farlimit对应的坐标位置均位于Z轴的负轴上,nearlimit=-6000um,farlimit=-6350um。nearlimit和farlimit之间限定的移动范围的大小为350um。因此,当镜头模组104的当前位置对应的坐标位置小于第二设定位置对应的坐标位置时,判断镜头模组104的当前位置超出第二设定位置。在图5中,farlimit的位置为反应装置200前面板202的上表面205最低处下一个景深L的位置。景深L为镜头模组104的景深大小。
需要指出的是,在其它实施方式中,第一设定位置和/或第二设定位置所对应的坐标位置可根据实际情况作具体设定,在此不作具体限定。
在某些实施方式中,对焦模组106包括第一光源116和光传感器118,第一光源116用于发射光到样品300上,光传感器118用于接收由样品300反射的光。如此,可实现对焦模组106的发光和接收光。
具体地,在本发明实施方式中,第一光源116可为红外光源116,光传感器118可为光电二极管(photo diode),如此,成本低,检测的准确率高。第一光源116发射的红外光经二向色分束器的反射进入物镜110,并经物镜110投射到样品300。样品300可反射经物镜110投射的红外光。在对焦步骤的实施方式中,当样品300包括支承装置200和待测样品302时,接收的样品300反射的光是由支承装置200的前面板的下表面204反射的光。
样品300反射的红外光能否进入物镜110并被光传感器118接收到,主要取决于物镜110与样品300的距离。因此,在判断对焦模组106接收到样品300反射的红外光时,可判断物镜110与样品300的距离处于光学成像合适范围中,能够用于成像装置102的成像。在一个例子中,距离为20-40um。
此时,使镜头模组104以小于第一设定步长的第二设定步长移动,使得光学检测系统能够在更小的范围内寻找镜头模组104的最佳成像位置。
在某些实施方式中,图像的锐度值可作为图像对焦的评价值(evaluation value)。在一个实施方式中,判断成像装置102采集的图像的锐度值是否达到设定阈值可通过图像处理的爬山算法。通过计算物镜110在每个位置时成像装置102所输出的图像的锐度值来判断锐度值是否达到锐度值波峰处的最大值,进而判断镜头模组104是否到达成像装置102成像时的清晰面所在的位置。可以理解,在其它实施方式中,也可利用其它图像处理的算法来判断锐度值是否达到波峰处的最大值。
在图像的锐度值达到设定阈值时,保存镜头模组104的当前位置作为保存位置,可使得在序列测定反应进行图像采集时,成像装置102能够输出清晰的图像。
在某些实施方式中,请参图8,在对焦模组106接收到由样品300反射的光时,对焦还包括步骤:S16,使镜头模组104以小于第一设定步长且大于第二设定步长的第三设定步长沿光轴OP向样品300移动,并根据对焦模组106接收到的光的光强计算出第一光强参数,判断第一光强参数是否大于第一设定光强阈值;在第一光强参数大于第一设定光强阈值时,进行步骤S14。如此,通过第一光强参数和第一设定光强阈值的比较,可排除与介质分界面反射光对比非常弱的光信号对调焦/对焦产生的干扰。
在第一光强参数不大于第一设定光强阈值时,则使镜头模组104以第三设定步长沿光轴OP向样品300继续移动。
在某些实施方式中,对焦模组106包括两个光传感器118,两个光传感器118用于接收由样品300反射的光,第一光强参数为两个光传感器118接收到的光的光强的平均值。如此,通过两个光传感器118接收到的光的光强的平均值来计算第一光强参数,使得排除弱的光信号更加准确。
具体地,第一光强参数可设置为SUM,即SUM=(PD1+PD2)/2,PD1和PD2分别表示两个光传感器118接收到的 光的光强。在一个例子中,第一设定光强阈值nSum=40。
在一个例子中,第三设定步长S2=0.005mm。可以理解,在其它例子中,第三设定步长也可采用其它数值,在此不作具体限定。
在某些实施方式中,请参图9,在对焦模组106接收到由样品300反射的光时,对焦还包括以下步骤:S16,使镜头模组104以小于第一设定步长且大于第二设定步长的第三设定步长沿光轴OP向样品300移动,并根据对焦模组106接收到的光的光强计算出第一光强参数,判断第一光强参数是否大于第一设定光强阈值;在第一光强参数大于第一设定光强阈值时,S17,使镜头模组104以小于第三设定步长且大于第二设定步长的第四设定步长沿光轴OP向样品300移动,并根据对焦模组106接收到的光的光强计算出第二光强参数,判断第二光强参数是否小于第二设定光强阈值;在第二光强参数小于第二设定光强阈值时,进行步骤S14。如此,通过第一光强参数和第一设定光强阈值的比较,可排除与介质分界面反射光对比非常弱的光信号对调焦/对焦产生的干扰;及通过第二光强参数和第二设定光强阈值的比较,可排除非介质分界面位置的强反射光信号,比如物镜110油面/空气反射的光信号对调焦/对焦产生的干扰。
在第一光强参数不大于第一设定光强阈值时,则使镜头模组104以第三设定步长沿光轴OP向样品300继续移动。在第二光强参数不小于第二设定光强阈值时,则使镜头模组104以第四设定步长沿光轴OP向样品300继续移动。
在一个例子中,第三设定步长S2=0.005mm,第四设定步长S3=0.002mm。可以理解,在其它例子中,第三设定步长和第四设定步长也可采用其它数值,在此不作具体限定。
在某些实施方式中,对焦模组106包括两个光传感器118,两个光传感器118用于接收由样品300反射的光,第一光强参数为两个光传感器118接收到的光的光强的平均值,两个光传感器118接收到的光的光强具有第一差值,第二光强参数为第一差值与设定补偿值的差值。如此,通过两个光传感器118接收到的光的光强来计算第二光强参数,使得排除强反射的光信号更加准确。
具体地,第一光强参数可设置为SUM,即SUM=(PD1+PD2)/2,PD1和PD2分别表示两个光传感器118接收到的光的光强。在一个例子中,第一设定光强阈值nSum=40。差值可设置为err,设定补偿值为offset,即err=(PD1-PD2)-offset。在理想状态下,第一差值可为零。在一个例子中,第二设定光强阈值nErr=10,offset=30。
在某些实施方式中,在使镜头模组104以第二设定步长移动时,判断镜头模组104的当前位置所对应的图案的第一锐度值是否大于镜头模组104的前一位置所对应的图像的第二锐度值;在第一锐度值大于第二锐度值且第一锐度值和第二锐度值之间的锐度差值大于设定差值时,使镜头模组104以第二设定步长沿光轴OP继续向样品300移动;在第一锐度值大于第二锐度值且第一锐度值和第二锐度值之间的锐度差值小于设定差值时,使镜头模组104以小于第二设定步长的第五设定步长继续沿光轴OP向样品300移动以使成像装置102所采集到的图像的锐度值达到设定阈值;在第二锐度值大于第一锐度值且第二锐度值和第一锐度值之间的锐度差值大于设定差值时,使镜头模组104以第二设定步长沿光轴OP远离样品300移动;在第二锐度值大于第一锐度值且第二锐度值和第一锐度值之间的锐度差值小于设定差值时,使镜头模组104以第五设定步长沿光轴OP远离样品300移动以使成像装置102所采集到的图像的锐度值达到设定阈值。如此,能够较准确地找到锐度值波峰处所对应的镜头模组104的位置,使成像装置所输出的图像清晰。
具体地,第二设定步长可作为粗调步长Z1,第五设定步长可作为细调步长Z2,并可设置粗调范围Z3。粗调范围Z3的设置可使图像的锐度值无法到达设定阈值时,能够停止镜头模组104的移动,节约了资源。
以镜头模组104的当前位置作为起点T,粗调范围Z3为调整范围,即在Z轴上的调整范围为(T,T+Z3)。先以步长Z1在(T,T+Z3)范围内使镜头模组104沿第一方向(如沿光轴OP向样品300靠近的方向)移动,并比较在镜头模组104的当前位置时成像装置102所采集到的图像的第一锐度值R1与镜头模组104在前一位置时成像装置102所采集到的图像的第二锐度值R2。
当R1>R2且R1-R2>R0时,即说明图像的锐度值向设定阈值靠近且离设定阈值较远,使镜头模组104继续以步长Z1沿第一方向移动,以快速地向设定阈值靠近。
当R1>R2且R1-R2<R0时,即说明图像的锐度值向设定阈值靠近且离设定阈值较近,使镜头模组104以步长Z2沿第一方向移动,以较小的步长向设定阈值靠近。
当R2>R1且R2-R1>R0时,即说明图像的锐度值已跨过设定阈值且离设定阈值较远,使镜头模组104以步长Z1沿与第一方向相反的第二方向(如沿光轴OP远离样品300的方向)移动,以快速地向设定阈值靠近。
当R2>R1且R2-R1<R0时,即说明图像的锐度值已跨过设定阈值且离设定阈值较近,使镜头模组104以步长Z2沿与第一方向相反的第二方向移动,以较小的步长向设定阈值靠近。
在某些实施方式中,在镜头模组104移动时,第五设定步长可进行调整以适应向设定阈值靠近时的步长不宜太大或太小。
在一个例子中,T=0,Z1=100,Z2=40,Z3=2100,调整范围为(0,2100)。需要说明的是,上述数值是用在成像装置102进行图像采集过程中对移动镜头模组104时所用的度量值,该度量值为光强相关。
在某些实施方式中,利用成像装置102对样品300进行图像采集,包括:利用镜头模组104对样品300进行追焦。如此,可保证成像装置102在样品300的不同位置采集图像时,采集到的图像是保持清晰的。
在某些实施方式中,追焦包括步骤:在镜头模组104处于保存位置时,获取镜头模组104与样品300的相对位置;利用载台103带动样品300移动时,控制镜头模组104的运动以保持相对位置不变。如此,可保证成像装置102在样品300的不同位置采集图像时,采集到的图像是保持清晰的,实现追焦。
具体地,由于载台103和/或样品300的物理误差,可能会导致样品300是倾斜的,因此,在利用载台103带动样品300移动时,样品300的表面不同的位置与镜头模组104的距离会发生微小变化。因此,样品300相对于镜头模组104的光轴OP移动时,成像装置102对样品300的成像位置一直保持在清晰面位置。此过程称为追焦。
利用载台103带动样品300移动,包括样品300沿平行于X轴的X1轴移动,和样品300沿平行于Y轴的Y1轴移动,和样品300沿X1轴和Y1轴限定的平面X1Y1移动,和样品300沿倾斜于X轴移动,和样品300沿倾斜于Y 轴移动,和样品300沿倾斜于X轴和Y轴限定的平面XY移动。
在某些实施方式中,利用载台103带动样品300移动时,判断镜头模组104的当前位置是否超出第三设定位置;在镜头模组104的当前位置超出第三设定位置时,利用载台103带动样品300沿光轴OP移动并进行对焦步骤;在移动次数到达设定次数且镜头模组104的当前位置仍超出第三设定位置时,判断追焦失败。如此,第三设定位置和移动次数的限定使镜头模组104在追焦失败时,可进行重新对焦。
具体地,在本发明示例中,第三设定位置可为nPos,nPos对应的坐标位置在Z轴的负轴上,且nPos对应的坐标位置大于第二设定位置farlimit对应的坐标位置。当镜头模组104的当前位置对应的坐标位置小于第三设定位置对应的坐标位置时,判断镜头模组104的当前位置超出第三设定位置。
在首次判断镜头模组104的当前位置超出第三设定位置时,会进行重新对焦以对镜头模组104的位置进行调整以尝试追焦成功。在追焦过程中,若移动镜头模组104的次数到达设定次数时,镜头模组104的当前位置仍超出第三设定位置,则无法追焦,判断追焦失败,暂停并重新对焦寻找清晰面。
第三设定位置所对应的坐标位置是经验值,小于该值时,成像装置102采集到的图像模糊并很大概率追焦失败。设定次数是经验值,可根据实际情况作具体设定。
在某些实施方式中,在镜头模组104的当前位置没超出第三设定位置时,判断相对位置不变。在某些实施方式中,相对位置包括相对距离和相对方向。进一步地,为简化运算,相对位置可指相对距离,相对位置不变是指,成像装置102的成像系统的物距不变,可使得样品300的不同位置能够被成像装置清晰成像。
在某些实施方式中,请参图3-图4和图10-图12,承载装置100包括底板101和弹性支撑组件40。载台103固定在底板101上并设有容置槽242,容置槽242的底部设有通孔2422。温控装置301通过通孔2422与容置槽242中的样品300相连接并通过弹性支撑组件40弹性支撑在底板101上。
本发明实施方式的承载装置100中,温控装置301通过弹性支撑组件40弹性支撑在底板101上,使得样品300装载到容置槽242中时,样品300和温控装置301与底板101的接触为弹性接触,有效防止样品300装配时损坏。
具体地,当载台103还没装置样品300时,弹性支撑组件40将温控装置301顶向容置槽242,使温控装置301相对于容置槽242的底面凸出。当样品300装载至容置槽242时,通过载台103的夹装框221将样品300压向温控装置301,与此同时,被压的温控装置301向下压缩弹性支撑组件40,使弹性支撑组件40产生弹性力,最后将样品300锁紧在载台103上。在样品300装载的整个过程和样品300被锁紧时,样品300和温控装置301与底板101为弹性接触,有效防止样品300装配及测序过程中的损坏。
在某些实施方式中,弹性支撑组件40包括导引筒43和弹性件44,温控装置301包括温控部312和导引柱341,导引柱341设置在远离容置槽242的温控部312的一侧上,导引筒43固定在底板101上,导引柱341穿设弹性件44和导引筒43,弹性件44弹性抵触在温控部312和导引筒43之间。如此,弹性件44能够提供弹性力,同时,导引筒43和导引柱341的配合也能够保证温控装置301的移动较为稳定。
可以理解,样品300装载到容置槽242时,与温控装置301接触并下压,此时弹性件44被压缩,弹性件44被压缩后的反作用力为样品300和温控装置301提供充分的接触,与此同时,弹性件44提供的弹性接触确保样品300在下压过程中不容易损坏。
在某些实施方式中,弹性件44可以是弹簧,如此,能够降低承载装置100的制造成本。
在某些实施方式中,弹性件44可以是橡胶圆柱等具备弹性的元件,在此不做任何限制。
在某些实施方式中,导引筒43为直线轴承,导引柱341与直线轴承的滚珠滑动接触。如此,直线轴承在导引温控装置301移动的同时,也能减少温控装置301移动时的阻力。
可以理解,在样品300下压过程中,温控装置301会被压着向下移动,也即是说,导引柱341需要向下滑动,直线轴承的滚珠在导引柱341向下滑动时,可以减小摩擦。
请参阅图4和图10,在某些实施方式中,温控装置301包括固定板321、温度传导板322、温控元件323和导引柱341,温控元件323夹设在固定板321和温度传导板322之间,温控元件323均与温度传导板322和固定板321接触,温度传导板322用于与装载在容置槽242的样品300接触,导引柱341设置在远离温控元件323的固定板321的表面上,导引柱341穿设弹性支撑组件40。如此,利用较简单的结构实现了温控装置301的功能,降低了承载装置100的成本。
可以理解,固定板321为温控元件323提供支撑,温度传导板322将温控元件323产生的温度传递至样品300,从而实现样品300温度的控制。导引柱341穿设弹性支撑组件40,利用弹性支撑组件40的弹力使得样品300和温控装置301紧密接触。
在某些实施方式中,温度传导板322和固定板321可以由金属材料制成,用于传导温控元件323的温度。
在一个例子中,温控元件323是珀尔帖。利用珀尔帖效应,温控元件323可以实现制冷制热。例如,通过对温控元件323施加不同方向的电流,使得温控元件323的上表面制冷,下表面制热,或温控元件323的上表面制热,下表面制冷。与温控元件323的上表面接触的温度传导板322将温控元件323的上表面温度传导至样品300,进而实现对样品300的温度控制。
在某些实施方式中,温度传导板322和温控元件323之间可以设置导热层,导热层将温控元件323的温度传导至温度传导板322。如此,提高了温控元件323与温度传导板322之间的热传导率。在一个例子中,导热层是硅胶层。
在某些实施方式中,温控装置301还包括设置在远离温控元件323的固定板321的表面上的水浴室324,水浴室324与导引柱341间隔设置。如此,当温控元件323工作时,水浴室324能够通过固定板321及时将温控元件323的热量带走。
在某些实施方式中,温控装置301包括设置在温度传导板322上的温度传感器325。如此,能够实现对温度传导板322的温度检测,有利于对样品300的精确温度控制。
具体地,承载装置100工作时,由于温度传导板322和样品300紧密接触,温度传导板322的温度相当于样品300的温度,所以温度传感器325可以获得样品300的温度并反馈至外部控制装置,从而外部控制装置可以根据温 度传感器325的反馈控制样品300的温度。
在本发明实施方式中,温度传导板322可开设有容置孔,温度传感器325穿设在容置孔,这样能更准确地监控样品300的温度。在一个具体实施方式中,承载装置100能够实现样品300表面温度准确度为±0.1℃或±0.5℃;样品300表面温度波动度不大于0.1℃或0.5℃;从室温25℃到65℃升温时间不大于1min,从65℃降至室温25℃降温时间不大于1.5min。样品300温度控制精准,能够提升生化反应效率,减少测试时间。
请参阅图11,在某些实施方式中,水浴室324包括散热板3242、盖板3244、进液接头3246和出液接头3248。散热板3242上设置有流道槽,散热板3242与固定板321接触。盖板3244与散热板3242连接并覆盖流道槽形成液腔,液腔用于容纳冷却液,盖板3244上设置连通液腔的进液口和出液口。进液接头3246连接进液口。出液接头3248连接出液口。如此,实现了高效的水浴室324散热结构。
可以理解,水浴室324用于提供冷却液循环,利用冷却液为与固定板321接触的温控元件323的下表面散热。散热板3242上设置的流道槽可以增大散热板3242和固定板321的接触面积,从而提高散热的效率。
在某些实施方式中,冷却液可以是水。如此,能够降低承载装置100的成本。
在某些实施方式中,冷却液可以是专门制作的冷却液,在此不做任何限制。专门制作的冷却液可保证导热能力达到较为理想的状态。
请再次参阅图11,在某些实施方式中,温控装置301包括温控水浴装置326,温控水浴装置326包括散热片3262、输液泵3264和冷却装置3266。散热片3262开设有用于供冷却液流过的流路,流路的进口连接出液接头3248。输液泵3264连接流路的出口和进液接头3246。冷却装置3266用于冷却散热片3262。如此,能够将水浴室324的热量带到温控水浴装置326并通过散热片3262散发掉。
具体地,温控水浴装置326用于加速冷却液和外部环境的热交换,从而确保冷却液的快速降温。散热片3262用于使冷却液和外部环境进行热交换,输液泵3264用于促进冷却液的循环,冷却装置3266用于加速散热片3262中的冷却液的热交换。
在某些实施方式中,冷却装置3266可以是风扇。通过风扇向散热片3262吹风,增加空气的对流,从而实现加速散热片3262中的冷却液的热交换。
在某些实施方式中,温控装置301包括隔热件327。隔热件327设置在温度传导板322和固定板321之间。如此,能够避免温度传导板322受固定板321的温度干扰而导致对样品300的温度控制不准确。
具体地,温度传导板322和固定板321分别与温控元件323的两个不同面接触,两个面的温度在温控元件323工作过程中产生的温度不一样。为了保证温度传导板322准确地将温控元件323的温度传导至样品300,所以利用隔热件327隔断温度传导板322和固定板321之间的温度传递,从而确保温度传导板322的温度不受固定板321的温度的影响。
在某些实施方式中,隔热件327可以是隔热棉。隔热棉可以在实现隔热的同时,避免损坏温度传导板322和固定板321之间的温控元件323。
在某些实施方式中,温控装置301包括用于与样品300接触的表面328,表面328为亚光黑表面。如此,可防止承载装置100工作时发出的激光反射对样品300的样片成像带来负面影响。
具体地,样品300中的流道是透明的,承载装置100工作时,需发射激光至样品300,以激发样品300中的样品发出荧光,并通过采集荧光来形成样品的图像。通过将与样品300接触的表面328设置为亚光黑表面,有效地减少了激光的反射。
在某些实施方式中,表面328为与样品300接触的温度传导板322的上表面。
在某些实施方式中,载台103包括夹装框221与支撑座241,夹装框221可转动地连接在支撑座241上,支撑座241开设有容置槽242,支撑座241设置在底板101上。如此,通过夹装框221相对于支撑座241的转动,可方便样品300的装载和卸载。
具体地,当样品300放置到容置槽242中时,利用夹装框221和支撑座241的转动连接可以转动夹装框221将样品300压向温控装置301,从而确保样品300和温控装置301的充分接触。之后,夹装框221通过例如卡扣的方式锁紧在支撑座241,以压紧样品300,保证样品300在测序过程中的稳定性。夹装框221与支撑座241的连接处可设置有扭簧,在夹装框221解锁时,扭簧可驱动夹装框221相对于支撑座241打开。
请参阅图12,在某些实施方式中,支撑座241上设置有按钮246,按钮246连接卡扣248。如此,通过按钮246可以控制卡扣248的运动状态,解除夹装框221与支撑座241的锁紧状态,从而可以将夹装框221解锁。
具体地,在按钮246被按下时,按钮246可以通过杠杆连接的方式带动卡扣248远离夹装框221运动,从而解锁夹装框221与卡扣248的锁紧状态,可以实现样品300的装配或拆卸。在按钮246被松开时,卡扣248失去外力作用,卡扣248复位。当夹装框221关闭时,夹装框221再次与卡扣248卡上而锁紧夹装框221。
请再次参阅图12,在某些实施方式中,支撑座241包括面板244,面板244上开设有按钮通孔2442,按钮246穿设按钮通孔2442,按钮246的底部凸设有凸缘2462,凸缘2462与面板244的下表面抵触。
如此,面板244可紧压凸缘2462,从而使得按钮246的按下和复位较顺畅,而且能使得按钮246复位时得到限制,不会跑出。
在某些实施方式中,请参图13、图3、图4和图6,本发明实施方式提供一种控制序列测定反应的方法,利用序列测定系统对序列测定反应进行控制,序列测定系统包括光学检测系统,光学检测系统包括成像装置102和承载装置100,承载装置100包括温控装置301和载台103,成像装置102包括镜头模组104,镜头模组104包括光轴OP,载台103用于承载样品,温控装置301用于调节样品的温度。序列测定反应包括利用成像装置102对样品进行图像采集。控制序列测定反应的方法包括:在利用序列测定系统进行序列测定反应之前或者在利用序列测定系统进行序列测定时,利用温控装置301设定允许样品的温度波动的范围,以使镜头模组104沿光轴OP的位置波动范围位于预设范围内。利用上述控制序列测定反应的方法,能够将镜头模组104的位置波动范围控制在预设范围内,减少或避免对成像装置102进行图像采集时的不利影响。
在某些实施方式中,光学检测系统预设有样品300的温度波动的范围与镜头模组104沿光轴的位置波动范围的 对应关系,根据对应关系,控制镜头模组104沿光轴OP的位置波动范围位于预设范围内。如此,控制序列测定反应的方法可快速地获取将镜头模组104沿光轴的位置波动范围控制在预设范围内所对应的样品300的温度波动的范围。
具体地,样品300的温度波动的范围与镜头模组104沿光轴的位置波动范围的对应关系可存储在光学检测系统中。在一个例子中,所称的对应关系可参表1。在某些实施方式中,成像装置102包括对焦模组106,利用成像装置102对样品300进行图像采集,包括:利用对焦模组106和镜头模组104对样品300进行对焦。
需要指出的是,上述对光学检测系统中关于对焦的实施方式和有益效果的解释说明也适用于本实施方式的序列测定系统中的对焦,为避免冗余,在此不再详细展开。
在某些实施方式中,请参图14,序列测定反应包括第一生化反应和第二生化反应,第一生化反应和第二生化反应在反应装置200上进行,序列测定系统包括流体装置500,流体装置500连接反应装置200,反应装置200包括第一单元41和第二单元42,样品300置于第一单元41和第二单元42上,定义序列测定反应包含的一种重复执行单位S112为第二生化反应-第一生化反应-图像采集,控制序列测定反应的方法包括在完成以下初始步骤S111之后,使得当利用流体装置500使第一单元41和第二单元42中的一个进行样品300的第二生化反应和第一生化反应的同时,利用成像装置102对另一个单元的样品300进行图像采集,初始步骤S111包括步骤:a利用流体装置500使第一单元41和第二单元42中的一个上的样品300进行第一生化反应,b利用成像装置102对进行第一生化反应后的单元上的样品300进行图像采集,c利用流体装置500使第一单元41和第二单元42中的另一个上的样品300进行第一生化反应。上述控制序列测定反应的方法,基于序列测定反应中,将反应装置200至少分为两个单元,利用流体装置500使其中一个单元在进行生化反应的同时,利用成像装置102对另一个单元进行图像采集即图像采集,进而可减少序列测定所用的时间,提高了序列测定效率。
具体地,在图14所示的控制序列测定反应的方法的实施方式中,样品300为待测样品,样品300位于反应装置200(支承装置)上。在本发明实施方式中,也可将带有样品300的反应装置200放置在承载装置100上以进行序列测定反应。
控制序列测定反应的方法中的承载装置100的实施方式和有益效果的解释说明可参上述光学检测系统中的承载装置100的实施方式,为避免冗余,在此不再详细展开。
发明人基于发现的测序反应中生化反应和信息收集的时间差、基于反应装置以及序列测定系统中成像装置的数目,将反应装置至少分为两个单元,作出如上的计算机可执行的并行控制调用装置/系统的全部或部分进行序列测定反应的方法,充分利用测序反应中的主要步骤的时间差,大大提高测序反应效率。
一般地,进行序列测定反应所需的装置/系统,从硬件花费来看,成像装置/系统的花费大于流体装置/系统的花费,流体装置/系统的花费大于反应装置/芯片的花费。利用本发明的这一方法控制序列测定反应,能够充分利用成像装置/系统、流体装置/系统和反应装置,进一步降低测序成本。
具体地,在某些实施方式中,反应装置200可为芯片,反应装置200的第一单元41和第二单元42均包括多条通道(channel),在初始步骤S111后,第一单元41的通道和第二单元42的通道在序列测定反应是错开的、不同步的、相互不影响的。例如,在需要对第一单元41上的样品进行生化反应时,流体装置500会向第一单元41输送反应用的试剂,此时,不会使相同试剂进入第二单元42,反之亦然。
在一个例子中,在利用全内反射(TIRF)光学系统检测的单分子测序平台上进行核酸序列测定,基于后续遗传信息分析所需的数据量以及处理后的有效数据的比例的经验值,预估所需的原始数据量对应的图像采集数目大约为300个视野(FOV)。在一轮序列测定反应中,利用成像装置102控制移动反应装置200以及采集300个FOV所需的时间大致与利用流体装置500进行第一生化反应和第二生化反应的时间的总和相等,利用本发明的这一实施方式的方法,能够提高一倍的反应效率。
本领域技术人员可以理解,若在一些其它情况,如遗传信息分析所需的数据量减少和/或处理后的有效数据的比例提高,使得每一轮测序反应所需采集的FOV数变少,即图像采集所需时间减少或者生化反应的总时间变长,可利用本发明的方法将m个反应装置分成n个单元,m、n均为大于或等于1的整数,n大于或等于两倍的m,使各单元处于一轮/不同轮测序反应的不同步骤或阶段,能够充分利用成像装置102和流体装置500,提高反应效率。本领域技术人员还可以理解,若在一些与以上示例相反的情况中,如生化反应所需时间变少等,利用本发明的这一方法也能够充分利用反应装置200上的单元数目配置来提高效率。
在某些实施方式中,在进行序列测定反应前,反应装置200的第一单元41和第二单元42的通道的表面上已固定有待序列测定的样品,待序列测定的样品例如是具有双链或单链结构的DNA链。
在本发明实施方式中,重复执行单位S112为第二生化反应-第一生化反应-图像采集,指的是,在对反应装置200某一个单元进行序列测定反应时,依次对该单元上的样品进行第二生化反应、第一生化反应和图像采集。当重复执行单位被执行多次时,本发明实施方式的方法会出现对单元上的样品进行第一生化反应-图像采集-第二生化反应的重复执行过程,和/或出现对单元上的样品进行图像采集-第二生化反应-第一生化反应的重复执行过程。需要说明的是,一般地,所称序列测定反应每经一个以下循环:第一生化反应、图像采集和第二生化反应,就能够完成一个至少一种碱基的测定,所称碱基选自A、T、C、G和U中的至少一种。本领域技术人员可以理解,本发明中的对“重复执行单位”的定义,只是为了方便说明本发明方案,不为限定序列测定反应中的反应顺序。
在本发明实施方式中,当利用流体装置500使第一单元41上的样品进行第二生化反应和第一生化反应的同时,利用成像装置102对第二单元42上的样品进行图像采集,然后,根据重复执行单元,在利用流体装置500使第一单元41上的样品进行完第二生化反应和第一生化反应后,利用成像装置102对第一单元41上的样品进行图像采集的同时,在对第二单元42上的样品进行图像采集后,利用流体装置500使第二单元42上的样品进行第二生化反应和第一生化反应。
在另外的实施方式中,当利用流体装置500使第二单元42上的样品进行第二生化反应和第一生化反应的同时,利用成像装置102对第一单元41上的样品进行图像采集,然后,根据重复执行单元,在利用流体装置500使第二单元42上的样品进行完第二生化反应和第一生化反应后,利用成像装置102对第二单元42上的样品进行图像采集 的同时,在对第一单元41上的样品进行图像采集后,利用流体装置500使第一单元41上的样品进行第二生化反应和第一生化反应。
在本发明实施方式中,请参图14,在初始步骤S111中,a利用流体装置500使第一单元41上的样品进行第一生化反应;b利用成像装置102对进行第一生化反应后的第一单元41上的样品进行图像采集;c利用流体装置500使第二单元42上的样品进行第一生化反应。
在另一实施方式中,在初始步骤中,a利用流体装置500使第二单元42上的样品进行第一生化反应;b利用成像装置102对进行第一生化反应后的第二单元42上的样品进行图像采集;c利用流体装置500使第一单元41上的样品进行第一生化反应。
利用成像装置102对样品进行图像采集形成图像数据,图像数据可输出至序列测定系统其它装置/模块进行处理以得到相应的图像。
在某些实施方式中,步骤a和步骤c同时进行,或步骤b和步骤c同时进行,或步骤b在步骤c之前进行,或步骤b在步骤c之后进行。如此,对序列测定进行控制的方法的实施具有更多的灵活性。
具体地,在本发明实施方式中,在步骤a中,利用流体装置500使第一单元41上的样品进行第一生化反应时,第二单元42上的样品不受第一单元41上的样品的第一生化反应影响。反之亦然。
较佳地,步骤b和步骤c同时进行,这样进一步提高方法的效率。
在某些实施方式中,第一生化反应包括延伸反应,第二生化反应包括基团切除。如此,使对序列测定反应进行控制的方法应用范围更广。
具体地,在某些实施方式中,在对序列测定反应进行之前,反应装置200的第一单元41和第二单元42的通道内已固定有待序列测定的样品,即模板链。聚合酶/连接酶延伸反应是基于碱基互补、将特定底物连接到待序列测定的样品上,以及利用底物上带有的可检测基团来测定结合上的底物的类型,以测定序列。在一个例子中,可检测基团包括荧光基团,会在特定波长的激光下发出荧光。
基团切除(cleave)反应是将结合到待序列测定的样品(模板)上的底物上带有的基团剪切掉,这样使得模板的下一个碱基能够继续被测定,即第一单元41和/或第二单元42上的样品能够继续进行序列测定反应。
在某些实施方式中,延伸反应包括边连接边测序和边合成边测序。
在某些实施方式中,第二生化反应包括加帽。
所称的加帽主要为保护基团切除后暴露出来的基团/键。在一个例子中,第一生化反应包括碱基延伸反应,所加底物的结构为A/T/C/G-终止基团-连接单元-发光基团,其中的终止基团为光和/或化学可断裂基团,通过连接单元(linker)使底物带有发光基团。第二生化反应包括基团切除,通过光和/或化学切除可断裂基团后,暴露出来的基团为巯基,通过加帽如通过加入烷基化试剂,能够保护巯基不被氧化。如此,使得对序列测定反应进行控制的方法应用范围更广。
在某些实施方式中,图像采集还包括加成像试剂。所称成像试剂包含抗氧化的成分,例如水溶性维生素E(Trolox)等,能够避免或者减少图像采集过程中光对样品造成的损伤或影响。
较佳地,激光激发样品发出的光为荧光,可减少环境光对成像装置对样品图像采集时的不利影响。
进一步地示例说明:“信号收集”过程包括加成像试剂、图像采集(在本发明实施方式中,将加成像试剂放在图像采集中);cleave后,缓冲液(buffer1)清洗、加帽(加某种保护试剂,与底物结构有关)、再buffer2清洗(buffer1、2可以相同,也可不同)。
在某些实施方式中,请参图13,流体装置500包括阀体组件10及驱动组件50,驱动组件50通过反应装置200连通阀体组件10,在利用流体装置500使第一单元41和/或第二单元42上的样品进行第一生化反应和/或第二生化反应时,阀体组件10用于切换连通不同的试剂,驱动组件50使阀体组件10输出试剂至第一单元41和/或第二单元42。如此,通过阀体组件10和驱动组件50,能够方便地将序列测定反应所需的不同试剂输入至第一单元41和/或第二单元42。
具体地,在本发明实施方式中,流体装置500包括试剂组件,试剂包括第一试剂、第二试剂和第三试剂,试剂组件包括盛装第一试剂的第一试剂瓶11、盛装第二试剂的第二试剂瓶12和盛装第三试剂的第三试剂瓶13,阀体组件10通过管道连接第一试剂瓶11、第二试剂瓶12和第三试剂瓶13。阀体组件10切换连通不同的试剂瓶,以使驱动组件50能够从与阀体组件10连通的试剂瓶中抽取试剂至第一单元41和/或第二单元42。
在某些实施方式中,阀体组件10包括第一多通阀20和第一三通阀30,第一多通阀20切换连通不同的试剂至第一三通阀30,第一三通阀30将第一多通阀20输出的试剂输出至第一单元41和/或第二单元42。如此,通过第一多通阀20和第一三通阀30实现了驱动组件50使阀体组件10输出不同的试剂至第一单元41和/或第二单元42。
具体地,在本发明实施方式中,第一多通阀20管道连接第一试剂瓶11、第二试剂瓶12、第三试剂瓶13及第一三通阀30,第一多通阀20用于将第一试剂瓶11、第二试剂瓶12或第三试剂瓶13与第一三通阀30相连通。第一三通阀30管道连接第一单元41、第二单元42及第一多通阀20,第一三通阀30用于将第一单元41或第二单元42与第一多通阀20相连通。
在某些实施方式中,第一试剂为测序试剂,第二试剂为基团切除试剂,第三试剂为成像试剂,第一多通阀20包括连接第一试剂瓶11的第一抽取口21、连接第二试剂瓶12的第二抽取口22和连接于第三试剂瓶13的第三抽取口23,以及一个出液口24。出液口24与第一抽取口21、或第二抽取口22或第三抽取口23相连通。测序试剂为包含延伸反应至少一部分反应物的试剂,例如是包含底物和聚合酶/连接酶的试剂。底物带有可检测基团,例如带荧光基团。
第一三通阀30包括吸液口31、第一分流口32和第二分流口33,吸液口31连通第一分流口32或第二分流口33。吸液口31连通出液口24。第一单元41和第二单元42分别连通第一分流口32和第二分流口33。
在本发明实施方式中,第一多通阀20为旋转阀,第一抽取口21、第二抽取口22和第三抽取口23分别围绕于出液口24周围,第一抽取口21、第二抽取口22和第三抽取口23通过绕出液口24旋转的旋转管道25连通出液口24。旋转管道25可以依次旋转至第一抽取口21、第二抽取口22和第三抽取口23的位置,从而实现出液口24可以 依次连通第一试剂瓶11、第二试剂瓶12和第三试剂瓶13,即反应装置200可以分别从第一试剂瓶11、第二试剂瓶12和第三试剂瓶13获取不同的试剂,进而使样品进行第一生化反应、第二生化反应和图像采集。在其它实施方式中,出液口24与第一抽取口21、第二抽取口22和第三抽取口23的连通顺序也可以不限制。
在某些实施方式中,第一三通阀30的吸液口31与第一分流口32相连通时,吸液口31与第二分流口33断开,反之亦然。吸液口31可以是按照序列测定所需而连通第一分流口32或第二分流口33,即当第一单元41上的样品进行第二生化反应和第一生化反应时,第一分流口32与吸液口30相连通,从而吸液口30经第一分流口32向第一单元41提供所需的第二试剂和第一试剂,在第一单元41获取完第二试剂和第一试剂后,第二分流口33与吸液口31相连通,从而使得第二单元42获取第三试剂,成像装置102可对第二单元42上的样品进行图像采集。
待第二单元42上的样品图像采集完成后,第二单元42开始经吸液口31获取第二试剂和第一试剂,使第二单元42上的样品进行第二生化反应和第一生化反应,在第二单元42获取完第二试剂和第一试剂后,第一分流口32与吸液口31相连通,第一单元41获取第三试剂,成像装置102可对第一单元41上的样品进行图像采集,从而有效减少序列测定的时间,提高序列测定的效率。
在某些实施方式中,驱动组件50包括第一泵51和第二泵52,第一泵51通过第一单元41连通阀体组件10,第二泵52通过第二单元42连通阀体组件10,在利用流体装置500使第一单元41和/或第二单元42上的样品进行第一生化反应和/或第二生化反应时,利用第一泵51使阀体组件10输出试剂至第一单元41,和/利用第二泵52使阀体组件10输出试剂至第二单元42。如此,利用第一泵51和第二泵52可分别实现将阀体组件10输出的试剂传输至第一单元41和/或第二单元42,方便操作。
具体地,第一泵51和第二泵52分别管道连接第一单元41和第二单元42。
在本发明示例中,第一泵51通过第一单元41连通第一三通阀的第一分流口,第二泵52通过第二单元42连通第一三通阀的第二分流口,工作时,第一泵51向第一单元41提供负压,以使第一单元41依次获取第二试剂和第一试剂进行第二生化反应和第一生化反应,在第一单元41获取完第二试剂和第一试剂后,第一泵51停止提供负压,第二泵52提供负压以使第二单元42获取第三试剂,并利用成像装置102对第二单元42上的样品进行图像采集。
需要指出的是,在使第一单元41上的样品进行第二生化反应和第一生化反应时,出液口24依次连通第二抽取口22和第一抽取口21以抽取第二试剂和第一试剂,吸液口31与第一分流口32连通,第一泵51向第一单元41提供负压时,使得第二试剂和第一试剂依次进入第一单元41的通道内。
在第一单元41获取完第二试剂和第一试剂后,第一泵51停止提供负压,出液口24连通第三抽取口23以抽取第三试剂,吸液口24与第二分流口33连通,第二泵52向第二单元42提供负压,使得第三试剂进入第二单元42的通道内,并利用成像装置102对第二单元42上的样品进行图像采集。因此,阀体组件10、驱动组件50和成像装置102协同工作,在使第一单元41上的样品在进行第二生化反应和第一生化反应的同时,对第二单元42上的样品进行图像采集。反之亦然。
在某些实施方式中,流体装置500包括至少一个第一容器和测序试剂配置组件60,试剂包括测序试剂,在利用流体装置500使第一单元41和/或第二单元42上的样品进行第一生化反应和/或第二生化反应时,测序试剂配置组件60将测序试剂输出至与阀体组件10连通的第一容器中。如此,方便将进行序列测定反应用的试剂加入到第一单元41和第二单元42中。
具体地,在本发明示例中,第一容器为第一试剂瓶11。在一个例子中,第一容器的数目是多个。
测序试剂配置组件60包括多个测序试剂原料瓶61、第二多通阀62、第二三通阀63和第三泵64。多个测序试剂原料瓶61用以盛装多种测序试剂原料,第二多通阀62同时管道连接多个测序试剂原料瓶61,以及管道连接第二三通阀63。第二三通阀63还管道连接第三泵64和第一试剂瓶11。第三泵64经第二三通阀63和第二多通阀62与其中一个测序试剂原料瓶61相连通。第一试剂瓶11经第二三通阀63与第三泵64相连通。其中,第三泵64依次与多个测序试剂原料瓶61相连通,以抽取多个测序试剂原料瓶61中的测序试剂原料,并混合配置成测序试剂,第三泵64与第一试剂瓶11相连通,用于将测序试剂注射至第一试剂瓶11中。
本实施方式中,多个测序试剂原料瓶61分别盛装不同的测序试剂原料,从而可以利用第三泵64依次抽取多个测序试剂原料瓶61中的测序试剂原料,从而混合配置成测序试剂。
在一个例子中,测序试剂原料瓶61的数目为九个,分别盛装不同类型的核苷类似物(底物)的溶液、DNA聚合酶溶液以及各种缓冲溶液或巯基保护溶液的组成部分。多个测序试剂原料瓶61可以是放置于试管架上,以便对多个测序试剂原料瓶61进行稳固,同时还可以分别对六个测序试剂原料瓶61贴设不同标签,以方便下次进行测序试剂原料进行补充,避免测序试剂原料的交叉感染。在其它实施方式中,测序试剂原料瓶61的数目还可以是两个、三个、四个、五个、六个、七个或八个等其它数量,可根据实际需要以及各溶液的特性具体调整。
第二多通阀62与第一多通阀20的结构相同设置。不同的是,第二多通阀62实现第三泵64依次和多个测序试剂原料瓶61相连通,第二多通阀62选定其中一个测序试剂原料瓶61连通,并通过控制连通时长,从而控制第三泵64对测序试剂原料瓶61内测序试剂原料抽取量的调节。从而实现多个测序试剂原料瓶61的测序试剂原料可以按比例进行配置,以符合序列测定需求。
第二三通阀63与第一三通阀30结构相同设置。第二三通阀63可以实现第三泵64和第二多通阀62连通,从而第三泵64可以抽取多个测序试剂原料瓶61内的测序试剂原料,配置成测序试剂。第二三通阀63可以实现第三泵64和第一试剂瓶11连通,从而第三泵64可以向第一试剂瓶11中注射已经配置好的测序试剂。
第三泵64可以经第二三通阀63和第二多通阀62向多个测序试剂原料瓶61提供负压,以抽取多个测序试剂原料瓶61中的测序试剂。第三泵64还可以经第二三通阀63向第一试剂瓶11中提供正压,以注射测序试剂至第一试剂瓶11内。
进一步地,第二三通阀63和第一试剂瓶11之间连接有第一混合器65,第一混合器65设置多个第一蜿蜒管道651,多个第一蜿蜒管道651首尾相连,并连通于第二三通阀63和第一试剂瓶11之间。
在本发明实施方式中,多个第一蜿蜒管道651固定于一个固定板上,第一蜿蜒管道651呈S形,多个蜿蜒管道651可以是多排并列,且每排之间相互连通。利用多个第一蜿蜒管道651连通于第二三通阀63和第一试剂瓶11之 间,使得从第三泵64注射出的测序试剂经过多个蜿蜒管道651进行缓冲,而且增加测序试剂的流动行程,从而使得测序试剂中的多种测序试剂原料进行充分混合,提升测序试剂反应效率。在其它实施方式中,多个蜿蜒管道651还可以是依次盘旋。
第一试剂瓶11的数目可以是一个,也可以是多个。在一个例子中,第一试剂瓶11的数目为多个,包含不同类型的底物的溶液分别盛放。测序试剂配置组件60还包括第三多通阀66,第三多通阀66同时管道连接多个第一试剂瓶11,以及第二三通阀63,第三泵64经第二三通阀63和第三多通阀66与其中一个第一试剂瓶11相连通。
在本发明实施方式中,多个第一试剂瓶11内的测序试剂不同,第一试剂瓶11的数目为四个。根据第三泵64抽取多个测序试剂原料瓶61的测序试剂原料试剂比例不同,可以配置成不同的测序试剂,从而可以利用多个第一试剂瓶11盛装多种不同的测序试剂。第三多通阀66结构与第二多通阀62结构相同设置。第三多通阀66可以实现第三泵64依次向多个第一试剂瓶11内分别注射不同的测序试剂。具体的,第三泵64每配置完成测序试剂后,经第二三通阀63和第三多通阀66选定一个第一试剂瓶11,并将测序试剂注射至第一试剂瓶11内。在其它实施方式中,第一试剂瓶11的数目还可以是二个、三个、四个、五个、六个或七个等数量,可根据实际需要以及各溶液的特性具体调整。
进一步地,测序试剂配置组件60还包括冲洗试剂瓶67和第一废液瓶68,冲洗试剂瓶67用于盛装冲洗试剂,冲洗试剂瓶67经第二多通阀62和第二三通阀63与第三泵64相连通,第一废液瓶68用于盛装废液,第一废液瓶68经第三多通阀66和第二三通阀63与第三泵64相连通。
冲洗试剂瓶67经第二多通阀62和第二三通阀63与第三泵64相连通时,第三泵64可以抽取冲洗试剂瓶67内冲洗试剂,以对第三泵64进行冲洗,即第三泵64在配置完成一种测序试剂后,下一次配置测序试剂之前,可以先抽取冲洗试剂瓶67内的冲洗试剂,进行冲洗后再次配置测序试剂,从而避免配置两种不同的基因测序出现交叉感染。第一废液瓶68经第三多通阀66和第二三通阀63与第三泵64相连通时,第三泵64可以将已经完成清洗的废液注射至第一废液瓶68中,从而达到环保回收的效果。
在本发明实施方式中,测序试剂配置组件60实现了流体装置500的在线混合功能。可以理解,在某些实施方式中,流体装置也可以没有在线混合功能,相应地,可将测序试剂配置组件60省略,同样能够满足测序反应的液路需求以及控制测序反应液路。这样能够使流体装置的管路更加简单、序列测定系统更加小巧紧凑。
在某些实施方式中,流体装置500包括第二容器和成像试剂配置组件70,试剂包括成像试剂,在利用成像装置102对第一单元41和/或第二单元42上的样品进行图像采集时,成像试剂配置组件70将成像试剂输出至与阀体组件10连通的第二容器中。如此,方便将进行序列测定反应用的试剂加入到第一单元41和第二单元42中。
具体地,在本发明示例中,第二容器为第三试剂瓶13。
在本发明实施方式中,成像试剂配置组件70包括多个成像试剂原料瓶71、第四多通阀72、第三三通阀73和第四泵74。多个成像试剂原料瓶71用以盛装多种成像试剂原料。第四多通阀72同时管道连接多个成像试剂原料瓶71,以及管道连接第三三通阀73。第三三通阀73还管道连接第四泵74和第三试剂瓶13。第四泵74经第三三通阀73和第四多通阀72与其中一个成像试剂原料瓶71相连通。第三试剂瓶13经第三三通阀73与第四泵74相连通,其中,第四泵74依次与多个成像试剂原料瓶71相连通,以抽取多个成像试剂原料瓶71中的成像试剂原料,并混合配置成成像试剂。第四泵74与第三试剂瓶13相连通,用于将成像试剂注射至第三试剂瓶13内。
在本发明实施方式中,多个成像试剂原料瓶71分别盛装不同的成像试剂原料,从而可以利用第四泵74依次抽取多个成像试剂原料瓶71中的成像试剂原料,从而混合配置成成像试剂。具体的,成像试剂原料瓶71的数目为五个。多个成像试剂原料瓶71可以是放置于试管架上,以便对多个成像试剂原料瓶71进行稳固,同时还可以分别对五个成像试剂原料瓶71贴设不同标签,以方便下次进行成像试剂原料补充,避免成像试剂原料的交叉感染。在其它实施方式中,成像试剂原料瓶71的数目还可以是六个或八个等数量,根据实际需要具体调整。
第四多通阀72与第一多通阀20的结构相同设置。不同的是,第四多通阀72实现第四泵74依次和多个成像试剂原料瓶71相连通,第四多通阀72选定其中一个成像试剂原料瓶71连通,并通过控制连通时长,从而控制第四泵74对成像试剂原料瓶71内成像试剂原料抽取量的调节。从而实现多个成像试剂原料瓶71的成像试剂原料可以按比例进行配置,以符合序列测定需求。
第三三通阀73与第一三通阀30结构相同设置。第三三通阀73可以实现第四泵74和第四多通阀72连通,从而第四泵74可以抽取多个成像试剂原料瓶71内的成像试剂原料,配置成成像试剂。第三三通阀73可以实现第四泵74和第三试剂瓶13连通,从而第四泵74可以向成像试剂瓶13中注射已经配置好的成像试剂。
第四泵74可以经第三三通阀73和第四多通阀72向多个成像试剂原料瓶71提供负压,以抽取多个成像试剂原料瓶71中的成像试剂原料。第四泵74还可以经第三三通阀73向第三试剂瓶13中提供正压,以注射成像试剂至第三试剂瓶13内。
进一步地,成像试剂配置组件70还包括第二混合器75,第二混合器75连接于第三三通阀73和第三试剂瓶13之间,第二混合器75包括多个第二蜿蜒管道751,多个第二蜿蜒管道751首尾相连,并连通于第三三通阀73和第三试剂瓶13之间。
第二混合器75与第一混合器65结构相同设置,第二混合器75从第四泵74注射出的成像试剂经过多个第二蜿蜒管道751进行缓冲,而且增加成像试剂的流动行程,从而使得成像试剂中的多种成像试剂原料进行充分混合,提升成像试剂反应效率。
进一步地,在某些实施方式中,驱动组件50还包括第四三通阀53、第五三通阀54、第二废液瓶55和第三废液瓶56。第四三通阀53管道连接于第一泵51和第一单元41之间,同时还管道连接第二废液瓶55。第五三通阀54管道连接于第二泵52和第二单元42之间,同时还管道连接第三废液瓶56。
第一泵51经第四三通阀53连通第一单元41或第二废液瓶55,从而第一泵51抽取第一单元41内已经完成序列测定反应的废液后,可以向第二废液瓶55注射废液,从而使得第一泵51进行下一次向第一单元41提供负压,以进行序列测定反应。第五三通阀54与第四三通阀53结构相同设置,在此不再赘述,第三废液瓶56和第二废液瓶55结构相同设置,在此不再赘述。
在本发明实施方式中,成像试剂配置组件70实现了流体装置500的在线混合功能。可以理解,在某些实施方式中,流体装置也可以没有在线混合功能,相应地,可将成像试剂配置组件70省略。这样能够使流体装置的管路更加简单、序列测定系统更加小巧紧凑。
在某些实施方式中,流体装置500包括第一控制单元,第一控制单元电连接阀体组件10和驱动组件50以控制阀体组件10和驱动组件50运行。如此,可实现阀体组件10和驱动组件50的自动化控制,进而提高效率。
具体地,在本发明示例中,第一控制单元电连接第一多通阀20、第一三通阀30和驱动组件50,以控制第一多通阀20、第一三通阀30和驱动组件50运行。第一控制单元可以是包括单片机、计算器处理器、或中央控制处理器等装置,利用第一控制单元控制第一多通阀20、第一三通阀30和驱动组件50运行,实现流体装置500自动运行,提高效率。进一步地,在本发明示例中,第一控制单元还电连接第二多通阀62、第二三通阀63、第三多通阀66、第四多通阀72、第三三通阀73、第三泵64和第四泵74,使得流体装置500运行效率提升。
在某些实施方式中,对序列测定反应进行控制的方法,还包括:确定利用成像装置102对第一单元41和/或第二单元42上的样品进行图像采集时的多个设定位置。如此,能够缩短成像装置102图像采集时间,提高效率。
具体地,可在成像装置102中输入对第一单元41和第二单元42的通道的样品300进行图像采集时的初始位置,例如初始的XY位置,并设置每次移动的距离和每个通道所需图像采集的次数,从初始位置进行序列测定反应。
一般地,反应装置200的每个单元包括多条通道以加快对样品300的序列测定。每个通道上的样品300图像数据由多个视野(Field of View,FOV)组成。在一个例子中,欲对单元的多个通道上的样品300进行图像采集,设定每个通道要获取300个FOV,根据设定的FOV数目对反应装置200的移动位置进行控制。
在某些实施方式中,请参图16,成像装置102包括第二控制单元502、图像采集单元506和第二光源508,第二控制单元502发送初始化指令和驱动指令,载台103根据初始化指令确定多个设定位置,在利用成像装置102对第一单元41和第二单元42上的样品300进行图像采集时,载台103根据多个设定位置和驱动指令移动反应装置,当载台103移动反应装置200到设定位置时,第二控制单元502控制第二光源508发射光至第一单元41和/或第二单元42以使样品300激发出检测光,及控制图像采集单元506采集检测光以形成图像数据。如此,实现对第一单元41和第二单元42上的样品300进行图像采集的自动控制。
具体地,在某些实施方式中,第二控制单元502包括上位机510和下位机512,上位机510用于发送初始化指令。下位机512用于根据初始化指令发送驱动指令。当载台103移动反应装置200到设定位置时,利用下位机512控制第二光源508发射光至样品300以使样品300激发出检测光,以及控制图像采集单元506采集检测光以形成图像数据。图像采集单元506用于将图像数据直接传输至上位机510。如此,可减少上位机510与下位机512的数据传输次数,同时图像数据直接传输至上位机510,实现快速的序列测定。
在某些实施方式中,载台103直接承载着反应装置200,载台103控制反应装置200在序列测定系统中的移动,载台103包括位置计算单元,根据初始化指令计算每次移动反应装置200的设定位置以在序列测定过程移动反应装置。例如高通量序列测定中,一次序列测定需采集多个设定位置的样品300图像数据,载台103则根据初始化指令,计算每次驱动反应装置200的设定位置,以在接收到驱动指令时,根据每个设定位置将反应装置200移动至图像采集单元506可采集图像的区域。较佳地,载台103可实现XYZ三轴方向的运动以移动反应装置200至设定位置。
在另外的实施方式中,反应装置200可放置在另一支撑台上,载台103通过驱动支撑台来移动反应装置200至设定位置。
在某些实施方式中,图像采集单元506包括相机108以将光信号转化为电信号。在一个例子中,图像采集单元506包括光路模块和相机108,反应装置200放置于载台103上,位于光路模块的物侧,相机108位于光路模块的像侧。光路模块可为显微镜,显微镜可包括上述实施方式的镜头模组104的物镜110。
在某些实施方式中,图像采集单元506用于接收初始化指令并根据初始化指令开启。如此,图像采集单元506在初始化之后即处于开启状态,使图像采集单元506采集检测光的速度更快。
在某些实施方式中,上位机510通过无线或有线的方法将初始化指令发送至图像采集单元506及接收图像采集单元506传输的图像数据。如此,实现上位机510与图像采集单元506之间的数据传输。
具体地,上位机510与图像采集单元506之间的数据传输方式可以是无线局域网传输,也可以是蓝牙传输,还可以是通用串行总线传输。当然,在其它实施方式中,不限于上述传输方式,可根据实际需求选择合适的传输方式。
在某些实施方式中,下位机512包括输入/输出端口,输入/输出端口用于输出第一晶体管-晶体管逻辑电平信号(TLL信号)以控制第二光源508发射光,及控制图像采集单元506采集检测光。
如此,下位机512通过第一晶体管-晶体管逻辑电平信号控制第二光源508及图像采集单元506,减少了下位机512与第二光源508及图像采集单元506之间的通信时间,进一步快速获得图像,实现快速的序列测定。
具体地,在一个例子中,第二光源508发出特定波长的激光,照射第一单元41和第二单元42上的样品300,使样品300中的荧火基团发出荧光,该荧光作为检测光,图像采集单元506采集该荧光以形成图像数据。
进一步地,晶体管-晶体管逻辑电平信号传输速率为微秒级,相比较于相关技术中通过串口进行通信,晶体管-晶体管逻辑电平信号使下位机512与第二光源508及图像采集单元506之间实现快速通信,减少了下位机512与各个部件之间的通信时间,有利于实现快速的序列测定,且本发明实施方式的成像装置102在完成一轮序列测定,可完成了一个设定位置图像的采集,多次重复之后累计通信时间的缩短更为显著。
在某些实施方式中,在图像采集单元506采集检测光时,当达到图像采集单元506的设定曝光时间后,第二控制单元502控制第二光源508关闭。如此,第二控制单元502控制第二光源508在图像采集单元506的曝光时间内发光,在曝光结束后关闭,使得图像采集单元506采集的图像更清晰,并且节约了能源。
具体地,在某些实施方式中,下位机512控制第二光源508关闭。
进一步地,在某些实施方式中,可通过多种方式设定曝光时间,例如根据情况进行人为设置,或者在序列测定前进行模拟曝光过程获取最适宜的曝光时间,或者通过算法计算出合适曝光时间值。当然,在其它实施方式中,不限于上述方法设定曝光时间,可在实际应用中根据实际情况选择合适方法设定曝光时间。
在某些实施方式中,下位机512包括输入/输出端口,输入/输出端口用于输出第二晶体管-晶体管逻辑电平信 号以控制第二光源508关闭。如此,下位机512通过输入/输出端口输出第二晶体管-晶体管逻辑电平信号关闭第二光源508,减少了下位机512和第二光源508之间的通信时间,有利于实现快速测序。
在某些实施方式中,在第二光源508关闭后,第二控制单元502控制载台103将反应装置200移动至下一个设定位置以完成设定位置图像数据的采集。如此,成像装置102对移动反应装置200的每个设定位置进行逐个采集图像,实现高通量测序。
具体地,在某些实施方式中,在第二光源508关闭后,下位机512再次发送驱动指令至载台103。进一步地,在完成所有设定位置对应的图像数据的采集时,下位机512用于发送结束指令至上位机510以完成反应装置200的一个单元的图像采集。
在某些实施方式中,图像采集单元506与上位机510连接,图像采集单元506每采集到一个设定位置的图像数据,将图像数据传输至上位机510,下位机512在第二光源508关闭后,发送驱动指令至载台103使载台103将反应装置200移动至下一个设定位置,下位机512无需等待图像数据传输完成以进一步缩短序列测定时间。
在某些实施方式中,驱动指令为脉冲信号。如此,第二控制单元502通过脉冲信号的形式发送驱动指令至载台103,减少了第二控制单元502和载台103之间的通信时间,有利于实现快速序列测定。
在某些实施方式中,请参图16,图像采集单元506包括追焦模组516及物镜110,追焦模组516根据初始化指令控制物镜110和/或反应装置200沿物镜110光轴移动,以确定图像采集单元506对样品进行图像采集时的最佳对焦位置,在进行图像采集时,追焦模组516保持最佳对焦位置对应的物镜110与样品的距离不变。如此,当样品上的各个需要采集图像的设定位置不在同一个XY平面上时,通过追焦模组516调节物镜110与反应装置200之间的距离,使图像采集单元506采集到不同XY平面设定位置上样品的清晰图像。
具体地,在某些实施方式中,物镜110与样品的距离为物距。上位机510将初始化指令发送至追焦模组516,使追焦模组516启动自动追焦功能。在一个例子中,沿物镜光轴移动可理解为沿Z轴移动。
追焦模组516根据初始化指令,可控制物镜110相对于反应装置200的移动以使相机108能够成清晰的样品图像。在确定相机108成清晰的样品图像后,追焦模组516执行锁焦功能,也就是说,当所需采集的样品位置发生变化而导致物镜110与样品的距离发生变化时,追焦模组516通过控制物镜110的移动来补偿变化量,使得相机108所成的样品图像始终保持清晰。
所称的最佳对焦位置对应物镜和样品之间的一个预设距离,所称预设距离可以是一个固定数值或固定范围,与成像的品质相关。在一个例子中,通过对照片图像的品质参数作预先限定,最佳对焦位置可通过爬山搜索算法确定,以使在该最佳对焦位置图像采集所得的图像的品质达到预先设定的参数。
请参图17,本发明实施方式提供一种光学检测系统600,光学检测系统600包括控制装置601、成像装置102和承载装置100,承载装置100包括温控装置301和载台103,成像装置102包括镜头模组104,镜头模组104包括光轴OP,载台103用于承载样品300,温控装置301用于调节样品300的温度,控制装置601用于:
在利用成像装置102对样品300进行图像采集之前或者在利用成像装置102对样品300进行图像采集时,利用温控装置301设定允许样品300的温度波动的范围,以使镜头模组104沿光轴OP的位置波动范围位于预设范围内。
需要说明的是,上述任一实施方式和实施例中的对成像方法的技术特征和有益效果的解释和说明也适用于本实施方式的光学检测系统600,为避免冗余,在此不再详细展开。
请参图18,本发明实施方式提供一种序列测定系统700,对序列测定反应进行控制,序列测定系统700包括光学检测系统600,光学检测系统600包括控制装置601、成像装置102和承载装置100,成像装置102包括镜头模组104,镜头模组104包括光轴OP,承载装置100包括温控装置301和载台103,载台103用于承载样品300,温控装置301用于调节样品300的温度,控制装置601用于利用成像装置102对样品300进行图像采集,及用于:
在利用序列测定系统700进行序列测定反应之前或者在利用序列测定系统700进行序列测定时,利用温控装置301设定允许样品300的温度波动的范围,以使镜头模组104沿光轴OP的位置波动范围位于预设范围内。
需要说明的是,上述任一实施方式和实施例中的对控制序列测定反应的方法的技术特征和有益效果的解释和说明也适用于本实施方式的序列测定系统700,为避免冗余,在此不再详细展开。
在某些实施方式中,光学检测系统600预设有样品300的温度波动的范围与镜头模组104沿光轴OP的位置波动范围的对应关系,控制装置601用于根据对应关系,控制镜头模组104沿光轴OP的位置波动范围位于预设范围内。
在某些实施方式中,所述对应关系包括:
当设定允许所述样品的温度波动的范围为±10℃,所述镜头模组沿所述光轴的位置波动范围±8微米;
当设定允许所述样品的温度波动的范围为±5℃,所述镜头模组沿所述光轴的位置波动范围为±4微米;
当设定允许所述样品的温度波动的范围为±1.5℃,所述镜头模组沿所述光轴的位置波动范围为±1微米;
当设定允许所述样品的温度波动的范围为±0.5℃,所述镜头模组沿所述光轴的位置波动范围为±0.5微米。
在某些实施方式中,成像装置102包括对焦模组106,利用成像装置102对样品300进行图像采集,控制装置601用于:利用对焦模组106和镜头模组104对样品300进行对焦。
在某些实施方式中,利用成像装置102对样品300进行图像采集,控制装置601用于:利用镜头模组104对样品300进行追焦。
在某些实施方式中,对焦包括步骤:
利用对焦模组106发射光至置于载台103上的样品300上;
使镜头模组104沿光轴OP移动到第一设定位置;
使镜头模组104从第一设定位置以第一设定步长沿光轴OP向样品300移动并判断对焦模组106是否接收到由样品300反射的光;
在对焦模组106接收到由样品300反射的光时,使镜头模组104以小于第一设定步长的第二设定步长沿光轴OP移动并利用成像装置102对样品300进行图像采集,并判断成像装置102所采集到的图像的锐度值是否达到设定阈值;
在图像的锐度值达到设定阈值时,保存镜头模组104的当前位置作为保存位置。
可以理解,控制装置601可以用于执行所述对焦的相关步骤。
在某些实施方式中,对焦模组106包括第一光源116和光传感器118,第一光源116用于发射光到样品300上,光传感器118用于接收由样品300反射的光。
在某些实施方式中,在对焦模组106接收到由样品300反射的光时,对焦包括:
使镜头模组104以小于第一设定步长且大于第二设定步长的第三设定步长沿光轴OP向样品300移动,并根据对焦模组106接收到的光的光强计算出第一光强参数,判断第一光强参数是否大于第一设定光强阈值;
在第一光强参数大于第一设定光强阈值时,进行使镜头模组104以第二设定步长沿光轴OP移动并利用成像装置102对样品300进行图像采集,并判断成像装置102所采集到的图像的锐度值是否达到设定阈值的步骤。
在某些实施方式中,对焦模组106包括两个光传感器118,两个光传感器118用于接收由样品300反射的光,第一光强参数为两个光传感器118接收到的光的光强的平均值。
在某些实施方式中,在对焦模组106接收到由样品300反射的光时,对焦包括:
使镜头模组104以小于第一设定步长且大于第二设定步长的第三设定步长沿光轴OP向样品300移动,并根据对焦模组106接收到的光的光强计算出第一光强参数,判断第一光强参数是否大于第一设定光强阈值;
在第一光强参数大于第一设定光强阈值时,使镜头模组104以小于第三设定步长且大于第二设定步长的第四设定步长沿光轴OP向样品300移动,并根据对焦模组106接收到的光的光强计算出第二光强参数,判断第二光强参数是否小于第二设定光强阈值;
在第二光强参数小于第二设定光强阈值时,进行使镜头模组104以第二设定步长沿光轴OP移动并利用成像装置102对样品300进行图像采集,并判断成像装置102所采集到的图像的锐度值是否达到设定阈值的步骤。
在某些实施方式中,对焦模组106包括两个光传感器118,两个光传感器118用于接收由样品300反射的光,第一光强参数为两个光传感器118接收到的光的光强的平均值,两个光传感器118接收到的光的光强具有第一差值,第二光强参数为第一差值与设定补偿值的差值。
在某些实施方式中,控制装置601用于:在使镜头模组104以第二设定步长移动时,判断镜头模组104的当前位置所对应的图案的第一锐度值是否大于镜头模组104的前一位置所对应的图像的第二锐度值;
在第一锐度值大于第二锐度值且第一锐度值和第二锐度值之间的锐度差值大于设定差值时,使镜头模组104以第二设定步长继续沿光轴OP向样品300移动;
在第一锐度值大于第二锐度值且第一锐度值和第二锐度值之间的锐度差值小于设定差值时,使镜头模组104以小于第二设定步长的第五设定步长继续沿光轴OP向样品300移动以使成像装置102所采集到的图像的锐度值达到设定阈值;
在第二锐度值大于第一锐度值且第二锐度值和第一锐度值之间的锐度差值大于设定差值时,使镜头模组104以第二设定步长沿光轴OP远离样品300移动;
在第二锐度值大于第一锐度值且第二锐度值和第一锐度值之间的锐度差值小于设定差值时,使镜头模组104以第五设定步长沿光轴OP远离样品300移动以使成像装置102所采集到的图像的锐度值达到设定阈值。
在某些实施方式中,控制装置601用于:在镜头模组104移动时,判断镜头模组104的当前位置是否超出第二设定位置;
在镜头模组104的当前位置超出第二设定位置时,停止移动镜头模组104或者停止进行对焦步骤。
在某些实施方式中,承载装置100包括:
底板101;
载台103固定在底板上,载台103设有容置槽242,容置槽242容置有样品300,容置槽242的底部设有通孔2422,温控装置301通过通孔2422与容置槽242中的样品300相连接;
弹性支撑组件40,温控装置301通过弹性支撑组件40弹性支撑在底板101上。
在某些实施方式中,弹性支撑组件40包括导引筒43和弹性件44,温控装置301包括温控部312和导引柱341,导引柱341设置在远离容置槽242的温控部312的一侧上,导引筒43固定在底板101上,导引柱341穿设弹性件44和导引筒43,弹性件44弹性抵触在温控部312和导引筒43之间;
导引筒43为直线轴承,导引柱341与直线轴承的滚珠滑动接触。
在某些实施方式中,温控装置301包括固定板321、温度传导板322、温控元件323和导引柱341,温控元件323夹设在固定板321和温度传导板322之间,温控元件323均与温度传导板322和固定板321接触,温度传导板322用于与装载在容置槽242中的样品300接触,导引柱341设置在远离温控元件323的固定板321的表面上,导引柱341穿设弹性支撑组件40。
在某些实施方式中,温控装置301还包括设置在远离温控元件323的固定板321的表面上的水浴室324,水浴室324与导引柱341间隔设置。
在某些实施方式中,序列测定反应包括第一生化反应和第二生化反应,第一生化反应和第二生化反应在反应装置200上进行,序列测定系统700包括流体装置500,流体装置500连接反应装置200,
反应装置200包括第一单元41和第二单元42,样品300置于第一单元41和第二单元42上,定义序列测定反应包含的一种重复执行单位为第二生化反应-第一生化反应-图像采集,
控制装置601用于,在完成以下初始步骤之后,使得当利用流体装置500使第一单元41和第二单元42中的一个进行样品300的第二生化反应和第一生化反应的同时,利用成像装置102对另一个单元的样品300进行图像采集,
初始步骤包括步骤:
a利用流体装置500使第一单元41和第二单元42中的一个上的样品300进行第一生化反应,
b利用成像装置102对进行第一生化反应后的单元上的样品300进行图像采集,
c利用流体装置500使第一单元41和第二单元42中的另一个上的样品300进行第一生化反应。
在某些实施方式中,步骤a和步骤c同时进行,或步骤b和步骤c同时进行,或步骤b在步骤c之前进行,或 步骤b在步骤c之后进行。
在某些实施方式中,流体装置500包括阀体组件10及驱动组件50,驱动组件50通过反应装置200连通阀体组件10,在利用流体装置500使第一单元41和/或第二单元42上的样品300进行第一生化反应和/或第二生化反应时,阀体组件10用于切换连通不同的试剂,驱动组件50使阀体组件10输出试剂至第一单元41和/或第二单元42。
在某些实施方式中,阀体组件10包括第一多通阀20和第一三通阀30,第一多通阀20切换连通不同的试剂至第一三通阀30,第一三通阀30将第一多通阀20输出的试剂输出至第一单元41和/或第二单元42。
在某些实施方式中,驱动组件50包括第一泵51和第二泵52,第一泵51通过第一单元41连通阀体组件10,第二泵52通过第二单元42连通阀体组件10,在利用流体装置500使第一单元41和/或第二单元42上的样品300进行第一生化反应和/或第二生化反应时,利用第一泵51使阀体组件10输出试剂至第一单元41,和/或利用第二泵52使阀体组件10输出试剂至第二单元42。
请参图17和图18,一种对成像进行控制的控制装置601,用于光学检测系统600,光学检测系统600包括成像装置102和承载装置100,承载装置100包括温控装置301和载台103,成像装置102包括镜头模组104,镜头模组104包括光轴OP,载台103用于承载样品300,温控装置301用于调节样品300的温度,控制装置601包括:
存储装置602,用于存储数据,数据包括计算机可执行程序;
处理器604,用于执行计算机可执行程序,执行计算机可执行程序包括完成上述任一实施方式的方法。
本发明实施方式的一种计算机可读存储介质,用于存储供计算机执行的程序,执行程序包括完成上述任一实施方式的方法。计算机可读存储介质可以包括:只读存储器、随机存储器、磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施方式”、“某些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,在本发明各个实施方式中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
尽管上面已经示出和描述了本发明的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (48)

  1. 一种成像方法,其特征在于,所述方法用于光学检测系统,所述光学检测系统包括成像装置和承载装置,所述成像装置包括镜头模组,所述镜头模组包括光轴,所述承载装置包括温控装置和载台,所述温控装置用于调节所述样品的温度,所述载台用于承载样品,所述方法包括:
    在利用所述成像装置对所述样品进行图像采集之前或者在利用所述成像装置对所述样品进行图像采集时,利用所述温控装置设定允许所述样品的温度波动的范围,以使所述镜头模组沿所述光轴的位置波动范围位于预设范围内。
  2. 一种控制序列测定反应的方法,其特征在于,利用序列测定系统对所述序列测定反应进行控制,
    所述序列测定系统包括光学检测系统,所述光学检测系统包括成像装置和承载装置,所述成像装置包括镜头模组,所述镜头模组包括光轴,所述承载装置包括温控装置和载台,所述温控装置用于调节所述样品的温度,所述载台用于承载样品,所述序列测定反应包括利用所述成像装置对所述样品进行图像采集,所述方法包括:
    在利用所述序列测定系统进行所述序列测定反应之前或者在利用所述序列测定系统进行所述序列测定时,利用所述温控装置设定允许所述样品的温度波动的范围,以使所述镜头模组沿所述光轴的位置波动范围位于预设范围内。
  3. 如权利要求1或2所述的方法,其特征在于,所述光学检测系统预设有允许所述样品的温度波动的范围与所述镜头模组沿所述光轴的位置波动范围的对应关系,根据所述对应关系,控制所述镜头模组沿所述光轴的位置波动范围位于所述预设范围内。
  4. 如权利要求3所述的方法,其特征在于,所述对应关系包括:
    当设定允许所述样品的温度波动的范围为±10℃,所述镜头模组沿所述光轴的位置波动范围±8微米;
    当设定允许所述样品的温度波动的范围为±5℃,所述镜头模组沿所述光轴的位置波动范围为±4微米;
    当设定允许所述样品的温度波动的范围为±1.5℃,所述镜头模组沿所述光轴的位置波动范围为±1微米;
    当设定允许所述样品的温度波动的范围为±0.5℃,所述镜头模组沿所述光轴的位置波动范围为±0.5微米。
  5. 如权利要求1或2所述的方法,其特征在于,所述成像装置包括对焦模组,利用所述成像装置对所述样品进行图像采集,包括:利用所述对焦模组和所述镜头模组对所述样品进行对焦。
  6. 如权利要求5所述的方法,其特征在于,利用所述成像装置对所述样品进行图像采集,包括:利用所述镜头模组对所述样品进行追焦。
  7. 如权利要求5或6所述的方法,其特征在于,所述对焦包括步骤:
    利用所述对焦模组发射光至置于所述载台上的所述样品上;
    使所述镜头模组沿所述光轴移动到第一设定位置;
    使所述镜头模组从所述第一设定位置以第一设定步长沿所述光轴向所述样品移动并判断所述对焦模组是否接收到由所述样品反射的所述光;
    在所述对焦模组接收到由所述样品反射的所述光时,使所述镜头模组以小于所述第一设定步长的第二设定步长沿所述光轴移动并利用所述成像装置对所述样品进行图像采集,并判断所述成像装置所采集到的图像的锐度值是否达到设定阈值;
    在所述图像的锐度值达到所述设定阈值时,保存所述镜头模组的当前位置作为保存位置。
  8. 如权利要求5-7任一权利要求所述的方法,其特征在于,所述对焦模组包括光源和光传感器,所述光源用于发射所述光到所述样品上,所述光传感器用于接收由所述样品反射的所述光。
  9. 如权利要求8所述的方法,其特征在于,在所述对焦模组接收到由所述样品反射的所述光时,所述对焦还包括步骤:
    使所述镜头模组以小于所述第一设定步长且大于所述第二设定步长的第三设定步长沿所述光轴向所述样品移动,并根据所述对焦模组接收到的所述光的光强计算出第一光强参数,判断所述第一光强参数是否大于第一设定光强阈值;
    在所述第一光强参数大于所述第一设定光强阈值时,进行使所述镜头模组以所述第二设定步长沿所述光轴移动并利用所述成像装置对所述样品进行图像采集,并判断所述成像装置所采集到的图像的锐度值是否达到设定阈值的步骤。
  10. 如权利要求9所述的方法,其特征在于,所述对焦模组包括两个光传感器,所述两个光传感器用于接收由所述样品反射的所述光,所述第一光强参数为所述两个光传感器接收到的光的光强的平均值。
  11. 如权利要求7-10任一权利要求所述的方法,其特征在于,在所述对焦模组接收到由所述样品反射的所述光时,所述对焦还包括以下步骤:
    使所述镜头模组以小于所述第一设定步长且大于所述第二设定步长的第三设定步长沿所述光轴向所述样品移动,并根据所述对焦模组接收到的所述光的光强计算出第一光强参数,判断所述第一光强参数是否大于第一设定光强阈值;
    在所述第一光强参数大于所述第一设定光强阈值时,使所述镜头模组以小于所述第三设定步长且大于所述第二设定步长的第四设定步长沿所述光轴向所述样品移动,并根据所述对焦模组接收到的所述光的光强计算出第二光强参数,判断所述第二光强参数是否小于第二设定光强阈值;
    在所述第二光强参数小于所述第二设定光强阈值时,进行使所述镜头模组以所述第二设定步长沿所述光轴移动并利用所述成像装置对所述样品进行图像采集,并判断所述成像装置所采集到的图像的锐度值是否达到设定阈值的步骤。
  12. 如权利要求10-11任一权利要求所述的方法,其特征在于,所述两个光传感器接收到的光的光强具有第一差值,所述第二光强参数为所述第一差值与设定补偿值的差值。
  13. 如权利要求7-12任一权利要求所述的方法,其特征在于,在使所述镜头模组以所述第二设定步长移动时,判断所述镜头模组的当前位置所对应的所述图案的第一锐度值是否大于所述镜头模组的前一位置所对应的所述图像的第二锐度值;
    在所述第一锐度值大于所述第二锐度值且所述第一锐度值和所述第二锐度值之间的锐度差值大于设定差值时,使所述镜头模组以所述第二设定步长继续沿所述光轴向所述样品移动;
    在所述第一锐度值大于所述第二锐度值且所述第一锐度值和所述第二锐度值之间的锐度差值小于所述设定差值时,使所述镜头模组以小于所述第二设定步长的第五设定步长继续沿所述光轴向所述样品移动以使所述成像装置所采集到的图像的锐度值达到所述设定阈值;
    在所述第二锐度值大于所述第一锐度值且所述第二锐度值和所述第一锐度值之间的锐度差值大于所述设定差值时,使所述镜头模组以所述第二设定步长沿所述光轴远离所述样品移动;
    在所述第二锐度值大于所述第一锐度值且所述第二锐度值和所述第一锐度值之间的锐度差值小于所述设定差值时,使所述镜头模组以所述第五设定步长沿所述光轴远离所述样品移动以使所述成像装置所采集到的图像的锐度值达到所述设定阈值。
  14. 如权利要求7-13任一权利要求所述的方法,其特征在于,在所述镜头模组移动时,判断所述镜头模组的当前位置是否超出第二设定位置;
    在所述镜头模组的当前位置超出所述第二设定位置时,停止移动所述镜头模组或者停止进行所述对焦步骤。
  15. 如权利要求1-14任一权利要求所述的方法,其特征在于,所述承载装置包括:
    底板;
    所述载台固定在所述底板上,所述载台设有容置槽,所述容置槽容置有所述样品,所述容置槽的底部设有通孔,所述温控装置通过所述通孔与所述容置槽中的所述样品相连接;
    弹性支撑组件,所述温控装置通过所述弹性支撑组件弹性支撑在所述底板上。
  16. 如权利要求15所述的方法,其特征在于,所述弹性支撑组件包括导引筒和弹性件,所述温控装置包括温控部和导引柱,所述导引柱设置在远离所述容置槽的所述温控部的一侧上,所述导引筒固定在所述底板上,所述导引柱穿设所述弹性件和所述导引筒,所述弹性件弹性抵触在所述温控部和所述导引筒之间。
  17. 如权利要求16所述的方法,其特征在于,所述导引筒为直线轴承,所述导引柱与所述直线轴承的滚珠滑动接触。
  18. 如权利要求1-17任一权利要求所述的方法,其特征在于,所述温控装置包括固定板、温度传导板、温控元件和导引柱,所述温控元件夹设在所述固定板和所述温度传导板之间,所述温控元件均与所述温度传导板和所述固定板接触,所述温度传导板用于与装载在所述容置槽中的所述样品接触,所述导引柱设置在远离所述温控元件的所述固定板的表面上,所述导引柱穿设所述弹性支撑组件。
  19. 如权利要求2-18任一权利要求所述的方法,其特征在于,所述序列测定反应包括第一生化反应和第二生化反应,所述第一生化反应和所述第二生化反应在反应装置上进行,所述序列测定系统包括流体装置,所述流体装置连接所述反应装置,
    所述反应装置包括第一单元和第二单元,所述样品置于所述第一单元和所述第二单元上,定义所述序列测定反应包含的一种重复执行单位为第二生化反应-第一生化反应-图像采集,
    所述方法包括在完成以下初始步骤之后,使得当利用所述流体装置使所述第一单元和所述第二单元中的一个进行所述样品的所述第二生化反应和所述第一生化反应的同时,利用所述成像装置对另一个单元的所述样品进行图像采集,
    所述初始步骤包括步骤:
    a利用所述流体装置使所述第一单元和所述第二单元中的一个上的所述样品进行第一生化反应,
    b利用所述成像装置对进行所述第一生化反应后的单元上的所述样品进行图像采集,
    c利用所述流体装置使所述第一单元和所述第二单元中的另一个上的所述样品进行第一生化反应。
  20. 如权利要求19所述的方法,其特征在于,步骤a和步骤c同时进行,或步骤b和步骤c同时进行,或步骤b在步骤c之前进行,或步骤b在步骤c之后进行。
  21. 如权利要求19或20所述的方法,其特征在于,所述流体装置包括阀体组件及驱动组件,所述驱动组件通过所述反应装置连通所述阀体组件,在利用所述流体装置使所述第一单元和/或所述第二单元上的所述样品进行所 述第一生化反应和/或所述第二生化反应时,所述阀体组件用于切换连通不同的试剂,所述驱动组件使所述阀体组件输出所述试剂至所述第一单元和/或所述第二单元。
  22. 如权利要求21所述的方法,其特征在于,所述阀体组件包括第一多通阀和第一三通阀,所述第一多通阀切换连通不同的所述试剂至所述第一三通阀,所述第一三通阀将所述第一多通阀输出的所述试剂输出至所述第一单元和/或所述第二单元。
  23. 一种光学检测系统,其特征在于,所述光学检测系统包括控制装置、成像装置和承载装置,所述承载装置包括温控装置和载台,所述成像装置包括镜头模组,所述镜头模组包括光轴,所述载台用于承载样品,所述温控装置用于调节所述样品的温度,所述控制装置用于:
    在利用所述成像装置对所述样品进行图像采集之前或者在利用所述成像装置对所述样品进行图像采集时,利用所述温控装置设定允许所述样品的温度波动的范围,以使所述镜头模组沿所述光轴的位置波动范围位于预设范围内。
  24. 一种序列测定系统,对序列测定反应进行控制,其特征在于,所述序列测定系统包括光学检测系统,所述光学检测系统包括控制装置、成像装置和承载装置,所述成像装置包括镜头模组,所述镜头模组包括光轴,所述承载装置包括温控装置和载台,所述载台用于承载样品,所述温控装置用于调节所述样品的温度,所述控制装置用于利用所述成像装置对所述样品进行图像采集,及用于:
    在利用所述序列测定系统进行所述序列测定反应之前或者在利用所述序列测定系统进行所述序列测定时,利用所述温控装置设定允许所述样品的温度波动的范围,以使所述镜头模组沿所述光轴的位置波动范围位于预设范围内。
  25. 如权利要求23或24所述的系统,其特征在于,所述光学检测系统预设有允许所述样品的温度波动的范围与所述镜头模组沿所述光轴的位置波动范围的对应关系,所述控制装置用于根据所述对应关系,控制所述镜头模组沿所述光轴的位置波动范围位于所述预设范围内。
  26. 如权利要求25所述的系统,其特征在于,所述对应关系包括:
    当设定允许所述样品的温度波动的范围为±10℃,所述镜头模组沿所述光轴的位置波动范围±8微米;
    当设定允许所述样品的温度波动的范围为±5℃,所述镜头模组沿所述光轴的位置波动范围为±4微米;
    当设定允许所述样品的温度波动的范围为±1.5℃,所述镜头模组沿所述光轴的位置波动范围为±1微米;
    当设定允许所述样品的温度波动的范围为±0.5℃,所述镜头模组沿所述光轴的位置波动范围为±0.5微米。
  27. 如权利要求23或24所述的系统,其特征在于,所述成像装置包括对焦模组,利用所述成像装置对所述样品进行图像采集,所述控制装置用于:利用所述对焦模组和所述镜头模组对所述样品进行对焦。
  28. 如权利要求27所述的系统,其特征在于,利用所述成像装置对所述样品进行图像采集,所述控制装置用于:利用所述镜头模组对所述样品进行追焦。
  29. 如权利要求27或28所述的系统,其特征在于,所述对焦包括:
    利用所述对焦模组发射光至置于所述载台上的所述样品上;
    使所述镜头模组沿所述光轴移动到第一设定位置;
    使所述镜头模组从所述第一设定位置以第一设定步长沿所述光轴向所述样品移动并判断所述对焦模组是否接收到由所述样品反射的所述光;
    在所述对焦模组接收到由所述样品反射的所述光时,使所述镜头模组以小于所述第一设定步长的第二设定步长沿所述光轴移动并利用所述成像装置对所述样品进行图像采集,并判断所述成像装置所采集到的所述图像的锐度值是否达到设定阈值;
    在所述图像的锐度值达到所述设定阈值时,保存所述镜头模组的当前位置作为保存位置。
  30. 如权利要求27-29任一权利要求所述的系统,其特征在于,所述对焦模组包括光源和光传感器,所述光源用于发射所述光到所述样品上,所述光传感器用于接收由所述样品反射的所述光。
  31. 如权利要求30所述的系统,其特征在于,在所述对焦模组接收到由所述样品反射的所述光时,所述对焦包括:
    使所述镜头模组以小于所述第一设定步长且大于所述第二设定步长的第三设定步长沿所述光轴向所述样品移动,并根据所述对焦模组接收到的所述光的光强计算出第一光强参数,判断所述第一光强参数是否大于第一设定光强阈值;
    在所述第一光强参数大于所述第一设定光强阈值时,进行使所述镜头模组以所述第二设定步长沿所述光轴移动并利用所述成像装置对所述样品进行图像采集,并判断所述成像装置所采集到的所述图像的锐度值是否达到设定阈值的步骤。
  32. 如权利要求31所述的系统,其特征在于,所述对焦模组包括两个光传感器,所述两个光传感器用于接收由所述样品反射的所述光,所述第一光强参数为所述两个光传感器接收到的光的光强的平均值。
  33. 如权利要求29-32任一权利要求所述的系统,其特征在于,在所述对焦模组接收到由所述样品反射的所述光时,所述对焦包括:
    使所述镜头模组以小于所述第一设定步长且大于所述第二设定步长的第三设定步长沿所述光轴向所述样品移 动,并根据所述对焦模组接收到的所述光的光强计算出第一光强参数,判断所述第一光强参数是否大于第一设定光强阈值;
    在所述第一光强参数大于所述第一设定光强阈值时,使所述镜头模组以小于所述第三设定步长且大于所述第二设定步长的第四设定步长沿所述光轴向所述样品移动,并根据所述对焦模组接收到的所述光的光强计算出第二光强参数,判断所述第二光强参数是否小于第二设定光强阈值;
    在所述第二光强参数小于所述第二设定光强阈值时,进行使所述镜头模组以所述第二设定步长沿所述光轴移动并利用所述成像装置对所述样品进行图像采集,并判断所述成像装置所采集到的所述图像的锐度值是否达到设定阈值的步骤。
  34. 如权利要求32-33任一权利要求所述的系统,其特征在于,所述两个光传感器接收到的光的光强具有第一差值,所述第二光强参数为所述第一差值与设定补偿值的差值。
  35. 如权利要求29-34任一权利要求所述的系统,其特征在于,所述控制装置用于:在使所述镜头模组以所述第二设定步长移动时,判断所述镜头模组的当前位置所对应的所述图案的第一锐度值是否大于所述镜头模组的前一位置所对应的所述图像的第二锐度值;
    在所述第一锐度值大于所述第二锐度值且所述第一锐度值和所述第二锐度值之间的锐度差值大于设定差值时,使所述镜头模组以所述第二设定步长继续沿所述光轴向所述样品移动;
    在所述第一锐度值大于所述第二锐度值且所述第一锐度值和所述第二锐度值之间的锐度差值小于所述设定差值时,使所述镜头模组以小于所述第二设定步长的第五设定步长继续沿所述光轴向所述样品移动以使所述成像装置所采集到的所述图像的锐度值达到所述设定阈值;
    在所述第二锐度值大于所述第一锐度值且所述第二锐度值和所述第一锐度值之间的锐度差值大于所述设定差值时,使所述镜头模组以所述第二设定步长沿所述光轴远离所述样品移动;
    在所述第二锐度值大于所述第一锐度值且所述第二锐度值和所述第一锐度值之间的锐度差值小于所述设定差值时,使所述镜头模组以所述第五设定步长沿所述光轴远离所述样品移动以使所述成像装置所采集到的所述图像的锐度值达到所述设定阈值。
  36. 如权利要求29-35任一权利要求所述的系统,其特征在于,所述控制装置用于:在所述镜头模组移动时,判断所述镜头模组的当前位置是否超出第二设定位置;
    在所述镜头模组的当前位置超出所述第二设定位置时,停止移动所述镜头模组或者停止进行所述对焦步骤。
  37. 如权利要求23-36任一权利要求所述的系统,其特征在于,所述承载装置包括:
    底板;
    所述载台固定在所述底板上,所述载台设有容置槽,所述容置槽容置有所述样品,所述容置槽的底部设有通孔,所述温控装置通过所述通孔与所述容置槽中的所述样品相连接;
    弹性支撑组件,所述温控装置通过所述弹性支撑组件弹性支撑在所述底板上。
  38. 如权利要求37所述的系统,其特征在于,所述弹性支撑组件包括导引筒和弹性件,所述温控装置包括温控部和导引柱,所述导引柱设置在远离所述容置槽的所述温控部的一侧上,所述导引筒固定在所述底板上,所述导引柱穿设所述弹性件和所述导引筒,所述弹性件弹性抵触在所述温控部和所述导引筒之间。
  39. 如权利要求38所述的系统,其特征在于,所述导引筒为直线轴承,所述导引柱与所述直线轴承的滚珠滑动接触。
  40. 如权利要求23-39任一权利要求所述的系统,其特征在于,所述温控装置包括固定板、温度传导板、温控元件和导引柱,所述温控元件夹设在所述固定板和所述温度传导板之间,所述温控元件均与所述温度传导板和所述固定板接触,所述温度传导板用于与装载在所述容置槽中的所述样品接触,所述导引柱设置在远离所述温控元件的所述固定板的表面上,所述导引柱穿设所述弹性支撑组件。
  41. 如权利要求24-40任一权利要求所述的系统,其特征在于,所述序列测定反应包括第一生化反应和第二生化反应,所述第一生化反应和所述第二生化反应在反应装置上进行,所述序列测定系统包括流体装置,所述流体装置连接所述反应装置,
    所述反应装置包括第一单元和第二单元,所述样品置于所述第一单元和所述第二单元上,定义所述序列测定反应包含的一种重复执行单位为第二生化反应-第一生化反应-图像采集,
    所述控制装置用于,在完成以下初始步骤之后,使得当利用所述流体装置使所述第一单元和所述第二单元中的一个进行所述样品的所述第二生化反应和所述第一生化反应的同时,利用所述成像装置对另一个单元的所述样品进行图像采集,
    所述初始步骤包括步骤:
    a利用所述流体装置使所述第一单元和所述第二单元中的一个上的所述样品进行第一生化反应,
    b利用所述成像装置对进行所述第一生化反应后的单元上的所述样品进行图像采集,
    c利用所述流体装置使所述第一单元和所述第二单元中的另一个上的所述样品进行第一生化反应。
  42. 如权利要求41所述的系统,其特征在于,步骤a和步骤c同时进行,或步骤b和步骤c同时进行,或步骤b在步骤c之前进行,或步骤b在步骤c之后进行。
  43. 如权利要求41或42所述的系统,其特征在于,所述流体装置包括阀体组件及驱动组件,所述驱动组件通过所述反应装置连通所述阀体组件,在利用所述流体装置使所述第一单元和/或所述第二单元上的所述样品进行所述第一生化反应和/或所述第二生化反应时,所述阀体组件用于切换连通不同的试剂,所述驱动组件使所述阀体组件输出所述试剂至所述第一单元和/或所述第二单元。
  44. 如权利要求43所述的系统,其特征在于,所述阀体组件包括第一多通阀和第一三通阀,所述第一多通阀切换连通不同的所述试剂至所述第一三通阀,所述第一三通阀将所述第一多通阀输出的所述试剂输出至所述第一单元和/或所述第二单元。
  45. 一种控制装置,用于光学检测系统,所述光学检测系统包括成像装置和承载装置,所述承载装置包括温控装置和载台,所述成像装置包括镜头模组,所述镜头模组包括光轴,所述载台用于承载样品,所述温控装置用于调节所述样品的温度,其特征在于,所述控制装置包括计算机可执行程序执行所述计算机可执行程序包括完成权利要求1-22任一项所述的方法的步骤。
  46. 一种计算机可读存储介质,用于存储供计算机执行的程序,执行所述程序包括完成权利要求1-22任一项所述的方法的步骤。
  47. 一种序列测定系统,其特征在于,包括权利要求45所述的控制装置。
  48. 一种计算机程序产品,包含指令,其特征在于,当所述指令被计算机执行时,所述指令使得所述计算机执行权利要求1-22任一项所述的方法的步骤。
PCT/CN2018/095293 2017-09-20 2018-07-11 成像方法、控制序列测定反应的方法、装置及系统 WO2019056834A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710855394.2A CN112326652B (zh) 2017-09-20 2017-09-20 成像方法、控制序列测定反应的方法、装置及系统
CN201710855394.2 2017-09-20

Publications (1)

Publication Number Publication Date
WO2019056834A1 true WO2019056834A1 (zh) 2019-03-28

Family

ID=65810033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095293 WO2019056834A1 (zh) 2017-09-20 2018-07-11 成像方法、控制序列测定反应的方法、装置及系统

Country Status (2)

Country Link
CN (1) CN112326652B (zh)
WO (1) WO2019056834A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2432594Y (zh) * 2000-07-26 2001-05-30 中国科学院光电技术研究所 亚半微米光刻物镜的恒温水套
US20070003958A1 (en) * 2005-06-29 2007-01-04 Canon Kabushiki Kaisha Method for measuring melting temperature of nucleic acid hybrid and apparatus for use in the method
CN106568742A (zh) * 2016-10-10 2017-04-19 暨南大学 一种快速多通高灵敏度超微量微透镜成像免疫测定仪
CN207215686U (zh) * 2017-09-20 2018-04-10 深圳市瀚海基因生物科技有限公司 光学检测系统及序列测定系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253869A (ja) * 1997-03-07 1998-09-25 Canon Inc 光学素子の位置補正装置、合焦装置および光学機器
US5936717A (en) * 1997-05-06 1999-08-10 Agfa Corporation Thermal compensation focus adjustment
CN100585705C (zh) * 2002-08-28 2010-01-27 柯尼卡美能达控股株式会社 光学拾取设备的物镜、光学拾取设备和光学信息记录/再现设备
DE602005019689D1 (de) * 2004-01-20 2010-04-15 Zeiss Carl Smt Ag Belichtungsvorrichtung und messeinrichtung für eine projektionslinse
WO2007139201A1 (ja) * 2006-05-31 2007-12-06 Olympus Corporation 生体試料撮像方法および生体試料撮像装置
CN101303442B (zh) * 2007-05-08 2011-02-02 鸿富锦精密工业(深圳)有限公司 具温度补偿机构的镜头模组和相机模组
CN101419379A (zh) * 2007-10-23 2009-04-29 鸿富锦精密工业(深圳)有限公司 具有自动对焦功能的相机模组及其对焦方法
JP4796215B2 (ja) * 2009-04-02 2011-10-19 オリンパスメディカルシステムズ株式会社 レンズ駆動制御装置、レンズ駆動装置及び内視鏡システム
JP2010282025A (ja) * 2009-06-04 2010-12-16 Canon Inc 撮像装置
JP2011118269A (ja) * 2009-12-07 2011-06-16 Nikon Corp 対物レンズの調整方法、対物レンズユニット、および表面検査装置
CN103403603B (zh) * 2010-12-16 2015-09-09 富士胶片株式会社 变焦镜头和成像设备
JP2012189987A (ja) * 2011-02-22 2012-10-04 Tamron Co Ltd 赤外線レンズユニット、及びそれを備えた赤外線カメラシステム
KR101931967B1 (ko) * 2011-09-19 2018-12-27 삼성전자 주식회사 광학 현미경의 자동 초점 조절 장치
CN103863581B (zh) * 2014-03-27 2016-06-29 北京空间机电研究所 一种用于高分辨率光学遥感器精密控温的间接热控装置
SG10201811725SA (en) * 2015-02-06 2019-02-27 Life Technologies Corp Systems and methods for assessing biological samples
CN105199949B (zh) * 2015-09-15 2017-12-12 深圳市瀚海基因生物科技有限公司 基因测序的流体控制装置
CN105861293B (zh) * 2016-04-06 2017-11-07 深圳市瀚海基因生物科技有限公司 单分子基因测序仪
CN205883405U (zh) * 2016-07-29 2017-01-11 深圳众思科技有限公司 一种自动追焦装置及终端
CN206457488U (zh) * 2016-12-21 2017-09-01 深圳市瀚海基因生物科技有限公司 样本承载系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2432594Y (zh) * 2000-07-26 2001-05-30 中国科学院光电技术研究所 亚半微米光刻物镜的恒温水套
US20070003958A1 (en) * 2005-06-29 2007-01-04 Canon Kabushiki Kaisha Method for measuring melting temperature of nucleic acid hybrid and apparatus for use in the method
CN106568742A (zh) * 2016-10-10 2017-04-19 暨南大学 一种快速多通高灵敏度超微量微透镜成像免疫测定仪
CN207215686U (zh) * 2017-09-20 2018-04-10 深圳市瀚海基因生物科技有限公司 光学检测系统及序列测定系统

Also Published As

Publication number Publication date
CN112326652B (zh) 2021-09-03
CN112326652A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
US11966086B2 (en) Determining temperature-varying signal emissions during automated, random-access thermal cycling processes
CN207215686U (zh) 光学检测系统及序列测定系统
AU2019200400B2 (en) Integrated Optoelectronic Read Head And Fluidic Cartridge Useful For Nucleic Acid Sequencing
US8241573B2 (en) Systems and devices for sequence by synthesis analysis
WO2022061152A2 (en) Sample handling apparatus and fluid delivery methods
US8062592B2 (en) Electrophoresis apparatus using capillary array and a sample tray
JP2004003989A (ja) 生物学的物質の走査のためのシステム、方法、および製品
US20090280559A1 (en) Genetic sequencer incorporating fluorescence microscopy
US20210269867A1 (en) Device for detecting nucleic acid amplification reaction products in real time
US20090308746A1 (en) Analyzing apparatus using rotatable microfluidic disk
US20090262356A1 (en) User interface and method for using an spr system
JP2015090458A (ja) 分析装置
US11575823B2 (en) Imaging method, device and system
JP3991029B2 (ja) 核酸分析装置
WO2019056834A1 (zh) 成像方法、控制序列测定反应的方法、装置及系统
WO2018121261A1 (zh) 对序列测定反应进行控制的方法、序列测定系统和控制装置
CN108693624A (zh) 成像方法、装置及系统
WO2022073357A1 (zh) 测序系统和承载装置
US20240159972A1 (en) Apparatus for incubating receptacles and detecting optical signals emitted by the contents of the receptacles
US20230219095A1 (en) A RANDOM ACCESS REAL-TIME QUANTITATIVE POLYMERASE CHAIN REACTION (qPCR) REACTOR SYSTEM
WO2024091598A1 (en) 3-dimensional robotic sequencing device
US20220048033A1 (en) Apparatus and methods for multiplexed amplification and detection of dna using convectional heating and label-free microarray
EP4330753A1 (en) Microscopy system and method using an immersion liquid
TW201919015A (zh) 去氧核醣核酸擴增反應之檢測設備
CN108693113A (zh) 成像方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859455

Country of ref document: EP

Kind code of ref document: A1