WO2019056811A1 - 一种提升pfc效率的频率调制装置及方法 - Google Patents

一种提升pfc效率的频率调制装置及方法 Download PDF

Info

Publication number
WO2019056811A1
WO2019056811A1 PCT/CN2018/091004 CN2018091004W WO2019056811A1 WO 2019056811 A1 WO2019056811 A1 WO 2019056811A1 CN 2018091004 W CN2018091004 W CN 2018091004W WO 2019056811 A1 WO2019056811 A1 WO 2019056811A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
frequency
switching power
voltage
switching
Prior art date
Application number
PCT/CN2018/091004
Other languages
English (en)
French (fr)
Inventor
张文珂
高鹏飞
滕学军
Original Assignee
郑州云海信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州云海信息技术有限公司 filed Critical 郑州云海信息技术有限公司
Publication of WO2019056811A1 publication Critical patent/WO2019056811A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the field of frequency modulation technology, and in particular to a frequency modulation apparatus and method for improving PFC efficiency.
  • the switching power supply is a kind of power supply that uses a modern power electronic technology to control the ratio of the time when the switch is turned on and off, and maintains a stable output voltage.
  • the switching power supply is generally controlled by a Pulse Width Modulation (PWM) control IC (Integrated Circuit, Integrated circuit) and MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor, metal-oxide semiconductor field effect transistor).
  • PWM Pulse Width Modulation
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor, metal-oxide semiconductor field effect transistor
  • the switching power supply topology is widely used in almost all electronic devices due to its low power consumption, high conversion efficiency, small size and light weight, and wide voltage regulation range. It is an indispensable power supply method for the rapid development of the electronic information industry.
  • the switching power supply has serious switching interference.
  • the power MOSFET inside the switching power supply works in the switching state.
  • the AC pulse voltage and current generated by the switching power supply generate spike interference and harmonic interference through other devices in the circuit.
  • the measures to suppress the elimination and shielding will seriously affect the normal operation of the whole machine.
  • the switching regulator power supply does not have the isolation of the power frequency transformer, these interferences will be serially connected to the power frequency grid, causing serious interference to other electronic equipment and household appliances in the vicinity.
  • PFC conversion efficiency has become an important area of research in power electronics technology.
  • the purpose of the present application is to provide a frequency modulation apparatus and method for improving PFC efficiency for solving the problem of low PFC conversion efficiency.
  • a frequency modulation device for improving the efficiency of the PFC including a switching power supply power level, an input terminal of the switching power supply power level, an input AC power source, and an output terminal output rectifier of the switching power supply power level.
  • a switching power supply control stage After the voltage; further comprising a switching power supply control stage; the input end of the switching power supply control stage is respectively connected to an output end of the AC power source and the switching power supply power stage, and the output end of the switching power supply control stage and the input power of the switching power supply End two connected.
  • the switching power supply control stage includes an AC signal processing module, a PWM module, and a PID module; an input end of the AC signal processing module is connected to an AC power source, and an input end of the PID module is connected to an output end of the switching power supply power level.
  • the output of the PID module and the output of the AC signal processing module are both connected to the input of the PWM module, and the output of the PWM module is connected to the input of the switching power supply.
  • the AC signal processing module includes a processing circuit 1 and a processing circuit 2;
  • the processing circuit 1 includes a plurality of resistors and a capacitor; and the one end of the plurality of resistors connected in series is connected to the N line of the AC power source, and One end is grounded; the capacitor is connected in parallel with the resistance of the ground terminal, one end of the capacitor is grounded, and the other end is connected to the PWM module;
  • the circuit structure of the processing circuit 2 is the same as that of the processing circuit 1; one end of the processing circuit 2 is connected to the L line of the AC power source, and the other end of the processing circuit 2 is connected to the PWM module.
  • the PWM module includes a DSP chip.
  • the PID module includes a PID circuit; the circuit structure of the PID circuit is the same as that of the processing circuit 1.
  • a frequency modulation method for improving PFC efficiency according to the device, introducing AC feedforward frequency modulation.
  • the collected AC alternating voltage is equally divided into 256 equal parts and counted 256 times;
  • the periodic change frequency is specifically:
  • the PWM frequency is low when the zero-crossing input current is low; the PWM frequency is high when the input current is high at the peak point.
  • the basic principle of APFC (Active Power Factor Correction) circuit is to make AC input current through active correction. Following the input voltage, even if the input current becomes a sine wave with the same frequency and the same frequency as the input voltage, after the AC feedforward frequency modulation technique is introduced, the PWM frequency changes sinusoidally with the AC input. When the input current is low at the zero-crossing point, the PWM frequency is low, which can be reduced. MOSFET switching loss; high PWM frequency at high peak input current, can reduce the peak current of PFC inductor and MOSFET, reduce the saturation of PFC inductor core, and achieve the optimal balance between switching loss and core anti-saturation.
  • Figure 1 is a block diagram of the current switching power supply
  • Figure 2 is a PWM switching pulse diagram of the current switching power supply
  • Figure 3 is a spectrum distribution diagram of the current fixed frequency PWM
  • FIG. 4 is a block diagram of a switching power supply according to an embodiment of the present application.
  • FIG. 5 is a circuit diagram of a switching power supply according to an embodiment of the present application.
  • FIG. 6 is a PWM switching pulse diagram of a switching power supply according to an embodiment of the present application.
  • FIG. 7 is a spectrum distribution diagram of a PWM according to an embodiment of the present application.
  • the typical PWM type switching power supply block diagram is shown in Figure 1.
  • the PWM frequency is constant and does not change with the AC input.
  • EMI Electromagnetic Interference
  • Di/dt the rapid change of current or voltage of the PWM switching tube to time ( Di/dt)
  • its production is determined by two aspects: frequency and amplitude.
  • the frequency distribution depends on the switching frequency fs and the upper and lower edge times tr and tf of the switching pulse.
  • Harmonic analysis of the noise signal can be used to obtain the amplitude and phase angle of each harmonic in the harmonic waveform.
  • the distribution of each harmonic amplitude with frequency is called the amplitude density spectrum.
  • the harmonic amplitude of the frequency bandwidth ⁇ f is F(f1) ⁇ f.
  • the spectrum of the periodic interference signal is discrete, and the height of each line is the amplitude of the second harmonic and the third harmonic, and the distance between each line is an integral multiple of the fundamental frequency.
  • the harmonic interference energy generated by the fixed-frequency PWM switching pulse is relatively concentrated. Its spectrum distribution is shown in Figure 3. However, the current scheme PFC (Power Factor Correction, power factor) conversion efficiency is low and the PFC inductor core saturation is low.
  • the PWM frequency changes sinusoidally with the AC input. When the input current is low at the zero-crossing point, the PWM frequency is low, which can reduce the switching loss of the MOSFET. When the input current is high at the peak point, the PWM frequency is high, which can reduce the peak current of the PFC inductor and MOSFET, and reduce the PFC.
  • the switching power supply power level is included, the input end of the switching power supply power level is input to the AC power supply, and the output end of the switching power supply power level outputs the rectified voltage; the switching power supply control stage is also included; the switching power supply control The input terminals of the stage are respectively connected to the output terminals of the AC power source and the switching power supply power stage, and the output end of the switching power supply control stage is connected to the input terminal 2 of the switching power supply power stage.
  • the switching power supply control stage includes an AC signal processing module, a PWM module, and a PID (proportional, integral, derivative) module; the input end of the AC signal processing module is connected to the AC power source, and the input end of the PID module is connected to the output end of the switching power supply power stage.
  • the output of the PID module and the output of the AC signal processing module are both connected to the input of the PWM module, and the output of the PWM module is connected to the input of the switching power supply.
  • the AC signal processing module includes a processing circuit 1 and a processing circuit 2; the processing circuit includes a plurality of resistors and a capacitor; one end of the plurality of resistors connected in series is connected to the N line of the AC power source, and the other end is grounded; the capacitor is connected in parallel with the resistor at the ground end. One end of the capacitor is grounded and the other end is connected to the PWM module.
  • the circuit structure of the processing circuit 2 is the same as that of the processing circuit one; one end of the processing circuit 2 is connected to the L line of the AC power source, and the other end of the processing circuit 2 is connected to the PWM module.
  • the PID module includes a PID circuit; the circuit structure of the PID circuit is the same as that of the processing circuit one.
  • the PWM module includes a DSP (Digital Signal Processing) chip.
  • a frequency modulation method for improving PFC efficiency, introducing AC feedforward frequency modulation is provided.
  • the frequency is changed every 78.125 ns, and the frequency of each conversion is reduced by 125 Hz.
  • the internal counter of the DSP chip continues to count 64 times to reach 128 times.
  • the AC voltage is at the phase of the zero-crossing point 180°, where the switching frequency fs is reduced to 61 kHz.
  • the negative half cycle repeats the above action, from 128 counts to 192 times, the frequency is gradually increased from 61 kHz to the maximum frequency of 69 kHz, and the frequency from 192 to 256 times is gradually reduced from 69 kHz to a minimum frequency of 61 kHz.
  • the DSP clears the count 256 in the counter and repeats the above actions in the next cycle.
  • a frequency jitter from 61 kHz to 69 kHz is completed in a 5 ms period (frequency of 200 Hz), and periodically fluctuates within a range of 4 kHz from the center of 65 kHz.
  • the frequency is at least 61KHz
  • the AC voltage peak point frequency is up to 69KHz
  • the frequency distribution is changed (adding frequency components), so that the energy of several or dozens of frequencies with a relatively high amplitude is dispersed to the new component.
  • Figure 6 shows that the energy of several or dozens of frequencies with a relatively high amplitude is dispersed to the new component.
  • the fundamental frequency variation amplitude is ⁇ 4 kHz
  • the second harmonic is ⁇ 8 kHz...
  • the nth harmonic is ⁇ 4 nkHz.
  • the higher the harmonic order the greater the frequency dispersion. Its spectrum distribution is shown in Figure 7.
  • the actual experiment proves that after using AC feedforward technology, the quasi-peak value (QP) of the noise signal does not change much with the increase of frequency, which is about 2dB, and the average value (AV) of the noise signal decreases with the increase of frequency, so the frequency jitter technology The effect is significant in the high frequency band.

Abstract

本申请提供一种提升PFC效率的频率调制装置,包括开关电源功率级,开关电源功率级的输入端一输入AC电源,开关电源功率级的输出端输出整流后的电压;还包括开关电源控制级;所述开关电源控制级的输入端分别与AC电源和开关电源功率级的输出端相连,所述开关电源控制级的输出端与开关电源功率级的输入端二相连。本申请还提供一种提升PFC效率的频率调制方法。可以减少MOSFET的开关损耗、降低PFC电感和MOSFET的峰值电流、降低PFC电感磁芯的饱和度,使开关损耗和磁芯抗饱和度达到最优平衡。

Description

一种提升PFC效率的频率调制装置及方法
本申请要求于2017年9月22日提交中国专利局、申请号为201710866277.6、发明名称为“一种提升PFC效率的频率调制装置及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及频率调制技术领域,具体地说是一种提升PFC效率的频率调制装置及方法。
背景技术
开关电源是利用现代电力电子技术,控制开关管导通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(Pulse Width Modulation,PWM)控制IC(Integrated Circuit,集成电路)和MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金属-氧化物半导体场效应晶体管)构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断创新。
目前开关型电源拓扑因功耗小,转换效率高,体积小重量轻,稳压范围宽等特点被广泛应用到几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。
但开关电源存在较为严重的开关干扰,由开关电源内部的功率MOSFET工作在开关状态,它产生的交流脉冲电压和电流通过电路中的其他器件产生尖峰干扰和谐波干扰,这些干扰如果不采取一定的措施进行抑制消除和屏蔽,就会严重地影响整机的正常工作。此外由于开关稳压电源没有工频变压器的隔离,这些干扰会串入工频电网,使附近的其他电子仪器设备和家用电器受到严重干扰。为了提升电源效率,PFC转换效率提升成为电力电子技术研究的重要领域。
发明内容
本申请的目的在于提供一种提升PFC效率的频率调制装置及方法,用于解 决PFC转换效率低的问题。
本申请解决其技术问题所采取的技术方案是:一种提升PFC效率的频率调制装置,包括开关电源功率级,开关电源功率级的输入端一输入AC电源,开关电源功率级的输出端输出整流后的电压;还包括开关电源控制级;所述开关电源控制级的输入端分别与AC电源和开关电源功率级的输出端相连,所述开关电源控制级的输出端与开关电源功率级的输入端二相连。
进一步地,所述开关电源控制级包括AC信号处理模块、PWM模块和PID模块;所述AC信号处理模块的输入端与AC电源相连,PID模块的输入端与开关电源功率级的输出端相连,PID模块的输出端和AC信号处理模块的输出端均与PWM模块的输入端相连,PWM模块的输出端与开关电源功率级的输入端二相连。
进一步地,所述的AC信号处理模块包括处理电路一和处理电路二;处理电路一包括多个电阻和一个电容;所述的多个电阻相互串联后的一端与AC电源的N线相连,另一端接地;所述的电容与接地端的电阻并联,电容的一端接地,另一端与PWM模块相连;
所述处理电路二的电路结构与处理电路一的电路结构相同;处理电路二的一端与AC电源的L线相连,处理电路二的另一端与PWM模块相连。
进一步地,所述的PWM模块包括DSP芯片。
进一步地,所述的PID模块包括PID电路;所述PID电路的电路结构与处理电路一的电路结构相同。
一种提升PFC效率的频率调制方法,根据所述的装置,引入AC前馈频率调制。
进一步地,AC前馈频率调制的具体方法包括:
将采集到的AC交流电压平均分为256等份,计数256次;
设定周期化变化频率,使开关损耗和磁芯抗饱和度达到最优平衡。
进一步地,所述周期化变化频率具体为:
在过零点输入电流低时PWM频率低;在峰值点输入电流高时PWM频率高。
以上发明内容提供的仅仅是本申请实施例的表述,而不是发明本身。
发明内容中提供的效果仅仅是实施例的效果,而不是发明所有的全部效果,上述技术方案中的一个技术方案具有如下优点或有益效果:
引入AC前馈频率调制技术,能提高转换效率和降低PFC电感磁芯饱和度:APFC(Active Power Factor Correction,有源功率因数校正)电路基本原理是将AC输入电流通过有源矫正的方式使其跟随输入电压,即使输入电流变成和输入电压同频同相的正弦波,引入AC前馈频率调制技术后,PWM频率随AC输入做正弦变化,在过零点输入电流低时PWM频率低,可以减少MOSFET的开关损耗;在峰值点输入电流高时PWM频率高,可以降低PFC电感和MOSFET的峰值电流,降低PFC电感磁芯的饱和度,使开关损耗和磁芯抗饱和度达到最优平衡。
附图说明
此处所说明的附图用来提供对本申请的进一步解释,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为目前的开关电源方框图;
图2为目前开关电源的PWM开关脉冲图;
图3为目前定频PWM的频谱分布图;
图4为本申请实施例的开关电源方框图;
图5为本申请实施例的开关电源电路图;
图6为本申请实施例的开关电源的PWM开关脉冲图;
图7为本申请实施例的PWM的频谱分布图。
具体实施方式
为了能清楚说明本方案的技术特点,下面通过具体实施方式,并结合其附图,对本申请进行详细阐述。下文的公开提供了许多不同的实施例或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。此外,本申请可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置 之间的关系。应当注意,在附图中所图示的部件不一定按比例绘制。本申请省略了对公知组件和处理技术及工艺的描述以避免不必要地限制本申请。
为了更清楚的理解本申请,以下是对现有技术的描述。
典型的PWM型开关电源方框图如图1,PWM频率恒定,不随交流输入变化,如图2,EMI(Electromagnetic Interference,电磁干扰)主要是由PWM开关管的电流或电压对时间的快速变化产生的(di/dt),其产生由两方面决定:频率和幅度。频率的分布取决于开关频率fs和开关脉冲的上下沿时间tr和tf。对噪声信号进行谐波分析,可得出谐波波形中各次谐波的幅值和相角。各次谐波幅值随频率的分布称为幅密度频谱。在频率f1处,频带宽为Δf的谐波幅度为F(f1)Δf。周期干扰信号的频谱为离散型,各谱线高度为二次谐波、三次谐波的幅值,各谱线间的距离为基波频率的整数倍。定频PWM开关脉冲产生的谐波干扰能量相对比较集中。其频谱分布如图3。但目前的方案PFC(Power Factor Correction,功率因数)转换效率低和PFC电感磁芯饱和度低。
为了解决上述问题,本申请提供了一种提升PFC效率的频率调制装置,采用AC(Alternating Current,交流)前馈技术,将采样到的AC交流电压(市电周期T=20ms)平均分成256等份(计数256次),根据设定方法周期性变化频率,谐波次数越高,频率分散越大。PWM频率随AC输入做正弦变化,在过零点输入电流低时PWM频率低,可以减少MOSFET的开关损耗;在峰值点输入电流高时PWM频率高,可以降低PFC电感和MOSFET的峰值电流,降低PFC电感磁芯的饱和度,使开关损耗和磁芯抗饱和度达到最优平衡。如图4和图5所示,包括开关电源功率级,开关电源功率级的输入端一输入AC电源,开关电源功率级的输出端输出整流后的电压;还包括开关电源控制级;开关电源控制级的输入端分别与AC电源和开关电源功率级的输出端相连,开关电源控制级的输出端与开关电源功率级的输入端二相连。
开关电源控制级包括AC信号处理模块、PWM模块和PID(比例、积分、微分)模块;AC信号处理模块的输入端与AC电源相连,PID模块的输入端与开关电源功率级的输出端相连,PID模块的输出端和AC信号处理模块的输出端均与PWM模块的输入端相连,PWM模块的输出端与开关电源功率级的输入端二相连。
AC信号处理模块包括处理电路一和处理电路二;处理电路一包括多个电阻和一个电容;多个电阻相互串联后的一端与AC电源的N线相连,另一端接地;电容与接地端的电阻并联,电容的一端接地,另一端与PWM模块相连。
处理电路二的电路结构与处理电路一的电路结构相同;处理电路二的一端与AC电源的L线相连,处理电路二的另一端与PWM模块相连。PID模块包括PID电路;PID电路的电路结构与处理电路一的电路结构相同。PWM模块包括DSP(Digital Signal Processing,数字信号处理)芯片。
一种提升PFC效率的频率调制方法,引入AC前馈频率调制。
将采样到的AC交流电压(市电周期T=20ms)平均分成256等份(计数256次)。设定在AC电压过零点的初始频率为最小频率fmin=61KHz,在AC电压峰值点为最大频率fmax=69KHz。从过零点开始计时,每T/256=78.125ns时间改变一次频率。AC电压从0°相位到90°相位的1/4T时间内通过DSP芯片内部计数器计数64次,每次变频频率增加(fmax-fmin)/64=125Hz。此时AC电压在峰值电压90°相位处,开关频率fs增加到69KHz。从90°相位处开始计时,每78.125ns改变一次频率,每次变频频率减少125Hz。通过DSP芯片内部计数器继续计数64次达到128次,此时AC电压在过零点180°相位处,此处开关频率fs减小到61KHz。负半周期重复以上动作,从计数128次到192次频率由61KHz逐渐增加到最大频率69KHz,从计数192次到256次频率逐渐由69kHz减小到最小频率61KHz。在下一周期开始的过零点,DSP将计数器内计数256清零,下一周期重复以上动作。从AC电压过零点到峰值点开关频率fs在5ms周期(频率为200Hz)内,完成一次从61kHz至69kHz之间的频率抖动,并周期性地以65kHz为中心上下4kHz范围内变动。在AC电压过零点频率最低61KHz,在AC电压峰值点频率最高69KHz,频率分布改变(加多了频率成份),使到本来幅度比较高的几个或几十个频率的能量分散到新成份,如图6。基波频率变化幅值为±4kHz,二次谐波为±8kHz…,n次谐波为±4nkHz。谐波次数越高,频率分散越大。其频谱分布如图7。实际实验证明,采用AC前馈技术后,噪声信号的准峰值(QP)随频率增加变动不大,下降约2dB,而噪声信号的平均值(AV)随频率增加下降十分明显,所以频率抖动技术在高频段效果显著。
以上所述只是本申请的优选实施方式,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也被视为本申请的保护范围。

Claims (8)

  1. 一种提升PFC效率的频率调制装置,包括开关电源功率级,开关电源功率级的输入端一输入AC电源,开关电源功率级的输出端输出整流后的电压;其特征是,还包括开关电源控制级;所述开关电源控制级的输入端分别与AC电源和开关电源功率级的输出端相连,所述开关电源控制级的输出端与开关电源功率级的输入端二相连。
  2. 根据权利要求1所述的装置,其特征是,所述开关电源控制级包括AC信号处理模块、PWM模块和PID模块;所述AC信号处理模块的输入端与AC电源相连,所述PID模块的输入端与开关电源功率级的输出端相连,所述PID模块的输出端和AC信号处理模块的输出端均与所述PWM模块的输入端相连,所述PWM模块的输出端与开关电源功率级的输入端二相连。
  3. 根据权利要求2所述的装置,其特征是,所述的AC信号处理模块包括处理电路一和处理电路二;所述处理电路一包括多个电阻和一个电容;所述的多个电阻相互串联后的一端与AC电源的N线相连,另一端接地;所述的电容与接地端的电阻并联,所述的电容的一端接地,另一端与PWM模块相连;
    所述处理电路二的电路结构与所述处理电路一的电路结构相同;所述处理电路二的一端与AC电源的L线相连,所述处理电路二的另一端与PWM模块相连。
  4. 根据权利要求3所述的装置,其特征是,所述的PWM模块包括DSP芯片。
  5. 根据权利要求3所述的装置,其特征是,所述的PID模块包括PID电路;所述PID电路的电路结构与所述处理电路一的电路结构相同。
  6. 一种提升PFC效率的频率调制方法,根据权利要求1至5任意一项所述的装置,其特征是,引入AC前馈频率调制。
  7. 根据权利要求6所述的方法,其特征是,AC前馈频率调制的具体方法包括:
    将采集到的AC交流电压平均分为256等份,计数256次;
    设定周期化变化频率,使开关损耗和磁芯抗饱和度达到最优平衡。
  8. 根据权利要求7所述的方法,其特征是,所述周期化变化频率具体为:
    在AC电压过零点的初始频率为最小频率fmin,在AC电压峰值点为最大频率fmax;
    从过零点开始计时,每T/256时间改变一次频率;
    AC电压从0°相位到90°相位的1/4T时间内通过DSP芯片内部计数器计数64次,使每次变频频率增加(fmax-fmin)/64Hz;
    AC电压在峰值电压90°相位处,开关频率fs增加到fmax;
    AC电压从90°相位处开始计时,每T/256改变一次频率,每次变频频率减少(fmax-fmin)/64Hz;
    DSP芯片内部计数器继续计数64次达到128次,AC电压在过零点180°相位处,开关频率fs减小到fmin;
    负半周期重复以上操作。
PCT/CN2018/091004 2017-09-22 2018-06-13 一种提升pfc效率的频率调制装置及方法 WO2019056811A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710866277.6 2017-09-22
CN201710866277.6A CN107528464A (zh) 2017-09-22 2017-09-22 一种提升pfc效率的频率调制装置及方法

Publications (1)

Publication Number Publication Date
WO2019056811A1 true WO2019056811A1 (zh) 2019-03-28

Family

ID=60737174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091004 WO2019056811A1 (zh) 2017-09-22 2018-06-13 一种提升pfc效率的频率调制装置及方法

Country Status (2)

Country Link
CN (1) CN107528464A (zh)
WO (1) WO2019056811A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107528464A (zh) * 2017-09-22 2017-12-29 郑州云海信息技术有限公司 一种提升pfc效率的频率调制装置及方法
CN108039816A (zh) * 2017-12-21 2018-05-15 郑州云海信息技术有限公司 一种采用ac前馈改善emi的新型频率调制方法及装置
CN108683330A (zh) * 2018-05-25 2018-10-19 宋庆国 一种三开关管三相pfc电路控制方法及系列拓扑结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7012413B1 (en) * 2003-08-01 2006-03-14 Tyco Electronics Power Systems, Inc. Controller for a power factor corrector and method of regulating the power factor corrector
CN102144352A (zh) * 2008-09-05 2011-08-03 伊顿工业公司 功率因数校正开关模式电源
CN107528464A (zh) * 2017-09-22 2017-12-29 郑州云海信息技术有限公司 一种提升pfc效率的频率调制装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201440634U (zh) * 2009-08-21 2010-04-21 朝阳无线电元件有限责任公司 新型数控电源pfc电路
US9419513B2 (en) * 2014-02-13 2016-08-16 Infineon Technologies Austria Ag Power factor corrector timing control with efficient power factor and THD
CN206432893U (zh) * 2017-02-07 2017-08-22 中国长城科技集团股份有限公司 一种开关电源及其降噪装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7012413B1 (en) * 2003-08-01 2006-03-14 Tyco Electronics Power Systems, Inc. Controller for a power factor corrector and method of regulating the power factor corrector
CN102144352A (zh) * 2008-09-05 2011-08-03 伊顿工业公司 功率因数校正开关模式电源
CN107528464A (zh) * 2017-09-22 2017-12-29 郑州云海信息技术有限公司 一种提升pfc效率的频率调制装置及方法

Also Published As

Publication number Publication date
CN107528464A (zh) 2017-12-29

Similar Documents

Publication Publication Date Title
US10389234B2 (en) Systems and methods for reducing electromagnetic interference using switching frequency jittering
WO2017215189A1 (zh) Pfc变换器控制方法、装置和变频电器
US10079537B2 (en) Resonant converter with power factor correction and controller used therein
CN104038045B (zh) 高功率因数校正控制电路及装置
TWI499183B (zh) 電源轉換器的功率因數校正電路
WO2019056811A1 (zh) 一种提升pfc效率的频率调制装置及方法
CN102340251A (zh) 交流-直流转换器及其控制电路
JP6217340B2 (ja) 電源装置
CN203933384U (zh) 一种高功率因数校正控制电路及装置
CN110048597A (zh) 功率因数校正电路的控制方法、控制器及系统
WO2014169821A1 (en) Apparatus and method for resonant converters
CN107127422B (zh) 一种高功率因数技术的电弧焊机电源
Vilathgamuwa et al. EMI suppression with switching frequency modulated DC-DC converters
CN112953199A (zh) 开关电源控制器及其控制方法
KR20150137872A (ko) 전원 공급 장치와 전원 공급 장치의 전력 변환 회로
Rossetto et al. Boost PFC with 100-Hz switching frequency providing output voltage stabilization and compliance with EMC standards
US10008954B2 (en) Switching frequency modulation in a switched mode power supply
CN108039816A (zh) 一种采用ac前馈改善emi的新型频率调制方法及装置
Bourgeois Circuits for power factor correction with regards to mains filtering
CN213125885U (zh) 用于交流功率控制的集成驱动电路及无级调速控制电路
JP7322954B2 (ja) 電力変換装置及びその制御方法
CN203747645U (zh) 一种用于语音类产品的电源适配器电路
CN216751541U (zh) 一种混频斩波谐振变换器
CN219204372U (zh) 一种输出连续可调的直流高压电源
CN104052286B (zh) 电力变换装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859660

Country of ref document: EP

Kind code of ref document: A1