WO2019056454A1 - 液晶显示装置及其制造方法 - Google Patents

液晶显示装置及其制造方法 Download PDF

Info

Publication number
WO2019056454A1
WO2019056454A1 PCT/CN2017/107319 CN2017107319W WO2019056454A1 WO 2019056454 A1 WO2019056454 A1 WO 2019056454A1 CN 2017107319 W CN2017107319 W CN 2017107319W WO 2019056454 A1 WO2019056454 A1 WO 2019056454A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
substrate
layer
disposed
alignment layer
Prior art date
Application number
PCT/CN2017/107319
Other languages
English (en)
French (fr)
Inventor
黄北洲
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Publication of WO2019056454A1 publication Critical patent/WO2019056454A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134318Electrodes characterised by their geometrical arrangement having a patterned common electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13712Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having negative dielectric anisotropy

Definitions

  • the present application relates to a display device and a method of fabricating the same, and more particularly to a liquid crystal display device having negative dielectric anisotropy and a method of fabricating the same.
  • liquid crystal display devices which have gradually replaced traditional cathode ray tube display devices due to their superior characteristics such as light weight, low power consumption and no radiation. And applied to many kinds of electronic products, such as mobile phones, portable multimedia devices, notebook computers, LCD TVs and LCD screens, and the like.
  • the liquid crystal display device controls the rotation of liquid crystal molecules by an electric field, so that light can pass through the liquid crystal molecules to display an image.
  • a TN type liquid crystal display device has a problem that the viewing angle is narrow. When the viewer deviates from the front side of the display screen, the image will be greatly distorted, especially in a large-sized screen, the image distortion phenomenon is more obvious.
  • the most convenient way to improve the viewing angle was to attach a wide viewing angle film, but the wide viewing angle film is a monolithic material of a Japanese manufacturer, and the cost is not cheap. Therefore, major panel manufacturers continue to invest in manpower, time and money to develop new liquid crystal materials or new panel structures to improve the viewing angle to enhance the competitiveness of products.
  • the purpose of the present application is to provide a liquid crystal display device and a method of fabricating the same that can achieve the effect of improving the viewing angle.
  • the present application provides a method for fabricating a liquid crystal display device, comprising: forming a common electrode on a first substrate; forming a matrix circuit on a second substrate, wherein the matrix circuit comprises a thin film transistor And a patterned pixel electrode, the thin film transistor is connected to the patterned pixel electrode, and one pixel is divided into at least two sub-regions by the patterned pixel electrode in one direction; forming a first alignment layer on the common electrode and forming a second alignment Layered on the patterned pixel electrode; forming a plurality of grooves in the first alignment layer or the second alignment layer; forming a liquid crystal layer between the first alignment layer and the second alignment layer, wherein the liquid crystal layer comprises a plurality of negative dielectric differences a n-type liquid crystal molecule and a plurality of photoreactive monomers; and irradiating a light and applying a threshold voltage to one of the liquid crystal molecules to the liquid crystal molecules to cause the photoreactive monomers and the liquid crystal
  • the grooves are in a zigzag shape in a plan view.
  • the manufacturing method further includes: forming a color filter layer on the first substrate or the second substrate, wherein the color filter layer comprises a plurality of filters; and forming A black matrix layer is disposed on the first substrate, wherein the black matrix layer is disposed corresponding to the filter portions.
  • the black matrix layer is disposed around the filter portions.
  • the common electrode is formed on the color filter layer and the black matrix layer.
  • the color filter layer is disposed on the second substrate, and the second alignment layer is disposed on the pixel electrode and the color filter layer.
  • the matrix circuit further includes a plurality of data lines and a plurality of scan lines, wherein the data lines are interleaved with the scan lines to define a plurality of pixels, and one of the pixels corresponds to one of the thin film transistors And one of the pixel electrodes.
  • the manufacturing method further includes: respectively disposing a first polarizing plate and a second polarizing plate on a surface of the first substrate and the second substrate away from the liquid crystal layer.
  • the first polarizing plate and the second polarizing plate comprise a Nicol prism structure orthogonal to an absorption axis of an angle of 45 degrees.
  • the light is ultraviolet light
  • the liquid crystal molecules and the photoreactive monomers are irradiated by a side of the first substrate away from the second substrate, or by the The liquid crystal molecules and the photoreactive monomers are irradiated on a side of the second substrate away from the first substrate.
  • the present application further provides a liquid crystal display device including a first substrate, a second substrate, a first alignment layer, a second alignment layer, and a liquid crystal layer.
  • the first substrate comprises a common electrode and a first substrate, and the common electrode is disposed on the first substrate.
  • the second substrate comprises a matrix circuit and a second substrate.
  • the matrix circuit is disposed on the second substrate and includes a thin film transistor and a patterned pixel electrode.
  • the thin film transistor is connected to the patterned pixel electrode, and one pixel is patterned.
  • the pixel electrode is divided into at least two sub-regions in one direction.
  • the first alignment layer is disposed on the common electrode, and the second alignment layer is disposed on the patterned pixel electrode, wherein the first alignment layer or the second alignment layer has a plurality of grooves.
  • the liquid crystal layer is disposed between the first alignment layer and the second alignment layer, and the liquid crystal layer comprises a plurality of negative dielectric anisotropic n-type liquid crystal molecules and a plurality of photoreactive monomers, wherein the liquid crystal molecules are irradiated by a light
  • the photoreactive monomers polymerize and cure the photoreactive monomers and the liquid crystal molecules to define the tilt direction of the liquid crystal molecules under a voltage.
  • the first substrate or the second substrate is a soft substrate
  • the soft substrate comprises an organic polymer material
  • the first substrate further includes a color filter layer and a black matrix layer, and the color filter layer is disposed on the first substrate or the second substrate, the color filter The layer includes a plurality of filter portions, the black matrix layer is disposed on the first substrate, and the black matrix layer is disposed corresponding to the filter portions.
  • the liquid crystal display device further includes a first polarizing plate and a second polarizing plate, wherein the first polarizing plate and the second polarizing plate are respectively disposed on the first substrate and the second substrate away from the The surface of the liquid crystal layer.
  • the present application further provides a liquid crystal display device including a first substrate, a second substrate, a first alignment layer, a second alignment layer, a liquid crystal layer, and a first polarizer.
  • a second polarizing plate and a backlight module The first substrate comprises a common electrode, a color filter layer, a black matrix layer and a first substrate, the color filter layer is disposed on the first substrate, the black matrix layer is disposed around the color filter layer, and the common electrode is disposed On the color filter layer and the black matrix layer.
  • the second substrate comprises a matrix circuit and a second substrate.
  • the matrix circuit is disposed on the second substrate and includes a thin film transistor and a patterned pixel electrode.
  • the thin film transistor is connected to the patterned pixel electrode, and one pixel is patterned.
  • the pixel electrode is divided into at least two sub-regions in one direction.
  • the first alignment layer is disposed on the common electrode, and the second alignment layer is disposed on the patterned pixel electrode, wherein the first alignment layer or the second alignment layer has a plurality of grooves, and in a plan view, the grooves are Jagged.
  • the liquid crystal layer is disposed between the first alignment layer and the second alignment layer, wherein the liquid crystal layer comprises a plurality of negative dielectric anisotropic n-type liquid crystal molecules and a plurality of photoreactive monomers, and the liquid crystals are irradiated by a light.
  • the molecules and the photoreactive monomers polymerize and cure the photoreactive monomers and the liquid crystal molecules to define the tilt direction of the liquid crystal molecules under a voltage.
  • the first polarizing plate and the second polarizing plate are respectively disposed on a surface of the first substrate and the second substrate away from the liquid crystal layer.
  • the backlight module is disposed on a side of the second substrate away from the first substrate.
  • the patterning arrangement of the grooves of the first alignment layer or the second alignment layer and the polymer stable alignment technology enable the liquid crystal molecules to be pre-tipped without an applied voltage.
  • the liquid crystal molecules can be rotated in the direction of the pre-tilt, in addition to speeding up the reaction speed of the liquid crystal, the purpose of multi-region vertical alignment can be achieved, thereby making the liquid crystal display device of the present application Has the effect of improving the viewing angle.
  • FIG. 1 is a flow chart showing a method of manufacturing a liquid crystal display device according to a first embodiment of the present application.
  • FIGS. 2A to 2G are respectively schematic views showing a manufacturing process of a liquid crystal display device according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a patterned pixel electrode of an embodiment.
  • 4A to 4C are schematic diagrams showing the reaction of liquid crystal molecules and photoreactive monomers when irradiated with light, respectively.
  • FIG. 5 is a schematic diagram of a liquid crystal display device according to another embodiment of the present application.
  • FIG. 6 is a schematic diagram of a liquid crystal display device according to another embodiment of the present application.
  • FIG. 7 is a flow chart showing a method of manufacturing a liquid crystal display device according to a second embodiment of the present application.
  • FIGS. 8A to 8G are respectively schematic views showing a manufacturing process of a liquid crystal display device according to an embodiment of the present application.
  • 9A to 9C are schematic views showing the reaction of liquid crystal molecules and photoreactive monomers when irradiated with light, respectively.
  • FIG. 10 is a schematic diagram of a liquid crystal display device according to another embodiment of the present application.
  • first”, “second”, and the like in the present application are for the purpose of description only. It is not to be understood as indicating or implying its relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” and “second” may include at least one of the features, either explicitly or implicitly. In the description of the present application, the meaning of "a plurality" is at least two, such as two, three, etc., unless specifically defined otherwise.
  • fixed may be a fixed connection, or may be a detachable connection, or may be integrated; It may be a mechanical connection or an electrical connection; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship of two elements unless explicitly defined otherwise.
  • fix may be a fixed connection, or may be a detachable connection, or may be integrated; It may be a mechanical connection or an electrical connection; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship of two elements unless explicitly defined otherwise.
  • specific meanings of the above terms in the present application can be understood on a case-by-case basis.
  • the liquid crystal display device of the following embodiment includes a liquid crystal display panel, and the liquid crystal display panel can be a vertical alignment mode (VA mode) liquid crystal display panel.
  • VA mode vertical alignment mode
  • most of the liquid crystal molecules are vertically aligned with the upper and lower substrates without applying a driving voltage, and the transmittance is zero (ie, black display).
  • the liquid crystal molecules can be arranged substantially horizontally to cause the liquid crystal display panel to be white-displayed, and when a driving voltage smaller than a predetermined voltage is applied, most of the liquid crystal molecules are tilted. A uniform midtone display is obtained.
  • FIG. 1 is a flow chart showing a method of manufacturing a liquid crystal display device according to a first embodiment of the present application.
  • the manufacturing process of the liquid crystal display device may include the steps of: forming a common electrode on a first substrate (step T01), forming a matrix circuit on a second substrate, wherein the matrix circuit comprises a a thin film transistor and a patterned pixel electrode, the thin film transistor is connected to the patterned pixel electrode, and one pixel is divided into at least two sub-regions in one direction by the patterned pixel electrode (step T02), and a first alignment layer is formed on the common electrode.
  • step T03 Forming a plurality of grooves on the electrode (step T03), forming a first alignment layer or a second alignment layer (step T04), forming a liquid crystal layer between the first alignment layer and the second alignment layer, wherein the liquid crystal layer comprises a plurality of negative layers Dielectrically anisotropic n-type liquid crystal molecules and a plurality of photoreactive monomers (step T05), and irradiating a light, and applying a threshold voltage to one of the liquid crystal molecules to the liquid crystal molecules to cause the light to react
  • the monomer is polymerized and cured with the liquid crystal molecules to define the tilt direction of the liquid crystal molecules under a voltage (step T06).
  • the manufacturing method of the liquid crystal display device may further include: forming a color filter layer on the first substrate or the second substrate, wherein the color filter layer comprises a plurality of filter portions, and forming a black matrix The layer is on the first substrate, wherein the black matrix layer is disposed corresponding to the filter portions.
  • FIG. 1 and FIG. 2A to FIG. 2G are respectively schematic views showing a manufacturing process of the liquid crystal display device 1 according to an embodiment of the present application.
  • the common electrode 112 is formed on the first substrate 111. As shown in FIG. 2A, a whole layer of the common electrode 112 is formed on the surface of the first substrate 111 (FIG. 2A shows the reverse, that is, the common electrode 112 is located on the lower surface of the first substrate 111). However, before the step T01 of forming the common electrode 112, the present embodiment first forms the color filter layer CF and the black matrix layer BM on the surface of the first substrate 111, and causes the black matrix layer BM to correspond to the color filter layer. After the CF is set, the common electrode 112 is formed on the color filter layer CF and the black matrix layer BM.
  • the black matrix layer BM is an opaque material, for example, a metal or a resin, and the metal may be, for example, a chromium, a chromium oxide or a oxynitride compound. Since the black matrix layer BM is an opaque material, an opaque region can be formed on the first substrate 111 to define a permeable region.
  • the color filter layer CF may include a plurality of filter portions such as red, green, and blue, and the material thereof is a light transmissive material, such as a pigment or a dye, and may be dyed, pigment dispersed, and printed. A filter portion of a different color is formed on the first base material 111 by a method such as a dry film method or an electric method.
  • the filter portions are not limited to only the red, green or blue filter portions, and the black matrix layer BM may be disposed around the filter portions.
  • the color filter layer CF of the present embodiment is formed on the first substrate 111.
  • the color filter layer CF may be formed on the second substrate 121.
  • step T02 is: forming a matrix circuit on the second substrate 121, wherein the matrix circuit comprises a thin film transistor T and a patterned pixel electrode 122, the thin film transistor T is connected to the patterned pixel electrode 122, and one pixel is patterned pixel electrode 122 is divided into at least two sub-areas in one direction.
  • the thin film transistor T and the patterned pixel electrode 122 may be arranged in a two-dimensional array and be a pixel switching component and a pixel electrode of the liquid crystal display panel.
  • the thin film transistor T and the patterned pixel electrode 122 can be formed on the second substrate 121 by a semiconductor thin film process.
  • the above thin film process may include a low temperature polysilicon (LTPS) process, an amorphous silicon (a-Si) process, or a metal oxide (eg, indium gallium zinc oxide, IGZO) semiconductor process, etc., without limitation.
  • LTPS low temperature polysilicon
  • a-Si amorphous silicon
  • IGZO metal oxide
  • the pixel electrode is patterned by an etching process. As shown in FIG. 3, the pixel electrode 122 is patterned to have a plurality of slits, and one pixel can be patterned by the pixel electrode.
  • the slits of 122 are divided into at least two sub-regions in one direction, and according to the pattern of the pixel electrodes, when a voltage is applied, the liquid crystal molecules can be tilted in, for example, four different directions (a, b, c, d). To enhance the perspective.
  • the thin film transistor T of the present embodiment may include a gate G, a gate dielectric layer GI, a channel layer C, a source S, and a drain D.
  • the gate G is formed on the second substrate 121, and the material of the gate G may be a single layer or a multilayer structure composed of a metal (for example, aluminum, copper, silver, molybdenum, or titanium) or an alloy thereof.
  • the wires for transmitting the driving signals may be electrically connected to each other by using the same layer and the same process as the gate G, such as a scanning line (not shown).
  • the gate dielectric layer GI is formed and covered on the gate G, and the gate dielectric layer GI may be an organic material such as an organosilicon oxide compound, or an inorganic material such as silicon nitride, silicon oxide, silicon oxynitride, carbonization. Silicon, alumina, yttria, or a multilayer structure of the above materials.
  • the gate dielectric layer GI needs to completely cover the gate G, and may partially or completely cover the second substrate 121.
  • the channel layer C is formed on the gate dielectric layer GI with respect to the gate G position.
  • the channel layer C is, for example but not limited to, comprising an oxide semiconductor.
  • the foregoing oxide semiconductor includes an oxide, and the oxide includes one of indium, gallium, zinc and tin, for example, Indium Gallium Zinc Oxide (IGZO).
  • the source S and the drain D are respectively formed on the channel layer C, and one ends of the source S and the drain D are respectively in contact with the channel layer C. When the channel layer C of the thin film transistor T is not turned on, the source S and the drain D are electrically separated.
  • a structure of the same process as the source S and the drain D may be used, for example, a data line (not shown).
  • the drain D of the thin film transistor T can be connected to the patterned pixel electrode 122. Therefore, when the channel layer C of the thin film transistor T is turned on, the data voltage of the pixel can be transmitted through the data line, the source S and the drain D.
  • the material of the source S and the drain D may be a single layer or a multilayer structure composed of a metal (for example, aluminum, copper, silver, molybdenum, or titanium) or an alloy thereof, and is not limited.
  • the source S and the drain D of the thin film transistor T of the present embodiment are directly formed on the channel layer C and connected to the channel layer C.
  • an etching may be formed on the channel layer C. After terminating the layer (not shown), one end of the source S and the drain D are respectively brought into contact with the channel layer C by etching one of the openings of the layer.
  • the etch stop layer may be an organic material such as an organosilicon oxide compound, or a single layer inorganic material such as silicon nitride, silicon oxide, silicon oxynitride, silicon carbide, aluminum oxide, hafnium oxide, or a combination of the above materials. .
  • first substrate 111 or the second substrate 121 may be a rigid substrate and made of a light transmissive material, for example, a glass substrate, a quartz substrate or a plastic substrate, and is not limited thereto. .
  • first substrate 111 or the second substrate 121 may be a flexible substrate such that the liquid crystal display panel has flexibility as a flexible panel.
  • the soft substrate may comprise an organic polymer material, and the glass transition temperature (Tg) of the organic polymer material may be between 400 degrees Celsius and 600 degrees Celsius, and by such a high glass transition temperature, The soft substrate will not be damaged in the subsequent film process.
  • the organic polymer material may be a thermoplastic material such as polyimide (PI), polyethylene (PE), polyvinyl chloride (PVC), polystyrene (PS), acrylic (acrylic, acrylic) ), Fluoropolymer, polyester or nylon.
  • the material of the common electrode 112 and the patterned pixel electrode 122 may be, for example, indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), cadmium tin oxide (CTO), tin oxide.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • AZO aluminum zinc oxide
  • CTO cadmium tin oxide
  • a transparent conductive material such as (SnO 2 ) or zinc oxide (ZnO) is not limited.
  • step T02 is performed after step T01, but not limited thereto.
  • the order may be reversed or performed simultaneously.
  • the matrix circuit may further include a plurality of data lines and a plurality of scan lines, and the data lines are interleaved with the scan lines to define a plurality of pixels.
  • One pixel may correspond to one thin film transistor T and one patterned pixel electrode 122, and one pixel may correspond to one filter of the color filter layer CF.
  • step T03 is performed to form the first alignment layer 113 on the common electrode 112 and the second alignment layer 123 on the patterned pixel electrode 122.
  • the first alignment layer 113 of the present embodiment is overlaid on the common electrode 112
  • the second alignment layer 123 is overlaid on the patterned pixel electrode 122 of the matrix circuit.
  • the first alignment layer 113 and the second alignment layer 123 may be formed on the common electrode 112 and the matrix circuit, for example, by coating, printing, or deposition.
  • the material of the first alignment layer 113 and the second alignment layer 123 may be, for example, an inorganic material or an organic material, and the inorganic material may be a cocoa It is a diamond-like carbon (DLC), silicon carbide (SiC), silicon dioxide (SiO2), silicon nitride (Si3N4) or aluminum oxide (Al2O3), etc., and the organic material can be, for example, a poly Amide (PI) or polymethymmethacrylate (PMMA).
  • DLC diamond-like carbon
  • SiC silicon carbide
  • SiO2 silicon dioxide
  • Si3N4 silicon nitride
  • Al2O3 aluminum oxide
  • the organic material can be, for example, a poly Amide (PI) or polymethymmethacrylate (PMMA).
  • the first alignment layer 113 or the second alignment layer 123 is formed into a plurality of grooves 1131.
  • this embodiment is an example in which the first alignment layer 113 is formed with a plurality of grooves 1131 in one direction.
  • a plurality of grooves may be formed on the second alignment layer 123, or the first alignment layer 113 and the second alignment layer 123 may be formed into a plurality of grooves, which are not limited in the present application.
  • the first alignment layer 113 may be patterned, for example, by imprinting to define a pattern of the first alignment layer 113 such that the first alignment layer 113 has a plurality of grooves 1131, and in a plan view
  • the grooves 1131 are, for example, in a zigzag shape.
  • a liquid crystal layer 13 is formed between the first alignment layer 113 and the second alignment layer 123, wherein the liquid crystal layer 13 includes a plurality of negative dielectric anisotropy n-type liquid crystal molecules and a plurality Photoreactive monomer (monomer, not shown).
  • a negative dielectric anisotropic n-type liquid crystal molecule and a photoreactive monomer are added to the first alignment layer 113 and the second alignment layer 123 by One Drop Filling (ODF).
  • ODF One Drop Filling
  • a liquid crystal layer 13 is formed between the first substrate 111 and the second substrate 121.
  • the photoreactive monomer is, for example but not limited to, a UV curable resin, and the weight percentage thereof may be, for example, 0.2%.
  • a light is irradiated and applied to the liquid crystal molecules 131 at a threshold voltage greater than the liquid crystal molecules 131, and the photoreactive monomers and the liquid crystal molecules 131 are polymerized and cured to define the light rays.
  • the tilt direction of the liquid crystal molecules 131 under the action of a voltage.
  • the light is ultraviolet (UV), and its wavelength may be, for example, between 300 nm and 450 nm, and the intensity of the radiation is, for example, 30 mW or higher.
  • FIG. 4A to FIG. 4C are respectively schematic diagrams of reactions when liquid crystal molecules and photoreactive monomers are irradiated with light.
  • the liquid crystal molecules 131 are vertically aligned (n-type liquid crystal molecules), and the photoreactive monomer 15 and the liquid crystal molecules 131 are not polymerized.
  • a threshold voltage (voltage V) greater than the liquid crystal molecules 131 is applied, an electric field is applied to the liquid crystal molecules 131 and the photoreactive monomers 15, and the liquid crystal molecules 131 are tilted.
  • the photoreactive monomers 15 are also inclined in a similar manner.
  • the ultraviolet ray R is away from the first substrate 111.
  • the liquid crystal molecules 131 and the photoreactive monomers 15 are irradiated on one side of the second substrate 121, and the photoreactive monomer 15 is polymerized with the liquid crystal molecules 131 to control the direction of the liquid crystal molecules 131.
  • the purpose of applying a voltage is to generate an electric field between the common electrode 112 and the patterned pixel electrode 122, and to polymerize and cure the photoreactive monomer 15 and the liquid crystal molecule 131 while irradiating the ultraviolet ray, and to cure the cured monomer.
  • the manufacturing method of the liquid crystal display device may further include a step T07 of respectively disposing a first polarizing plate 14 and a second polarizing plate 15 on the first substrate 111.
  • the surface of the second substrate 121 away from the liquid crystal layer 13 is as shown in FIG. 2G.
  • the first polarizing plate 14 and the second polarizing plate 15 may include, for example, a crossed Nicol prism structure having an absorption axis of an angular direction of 45 degrees, thereby aligning the directions of the liquid crystal molecules 131.
  • the liquid crystal display device 1 of the present embodiment includes a liquid crystal display panel including a first substrate 11 , a second substrate 12 , a first alignment layer 113 , a second alignment layer 123 , a liquid crystal layer 13 , and a first polarizing plate 14 . And the second polarizing plate 15.
  • the first substrate 11 includes a common electrode 112, a color filter layer CF, a black matrix layer BM, and a first substrate 111.
  • the color filter layer CF is disposed on the first substrate 111, and the black matrix layer BM surrounds the color filter layer CF.
  • the common electrode 112 is disposed on the color filter layer CF and the black matrix layer BM.
  • the second substrate 12 includes a matrix circuit and a second substrate 121.
  • the matrix circuit is disposed on the second substrate 121 and may include a thin film transistor (not shown) and the patterned pixel electrode 122, and the thin film transistor and the pattern are formed.
  • the pixel electrodes 122 are connected, and one pixel can be divided into at least two sub-regions by the patterned pixel electrode 122 in one direction.
  • the first alignment layer 113 is disposed on the common electrode 112
  • the second alignment layer 123 is disposed on the patterned pixel electrode 122 of the matrix circuit, wherein the first alignment layer 113 has a plurality of grooves 1131, and in a plan view The grooves 1131 may be in a zigzag shape.
  • the liquid crystal layer 13 is disposed between the first alignment layer 113 and the second alignment layer 123, wherein the liquid crystal layer 13 includes a plurality of negative dielectric anisotropic n-type liquid crystal molecules 131 and a plurality of photoreactive monomers 15, and
  • the liquid crystal molecules 131 and the photoreactive monomers 15 are irradiated by ultraviolet rays, for example, to polymerize and cure the photoreactive monomers 15 and the liquid crystal molecules 131 to define the liquid crystal molecules 131 in one The direction of tilt under voltage.
  • the first polarizing plate 14 and the second polarizing plate 15 are respectively disposed on surfaces of the first substrate 111 and the second substrate 121 away from the liquid crystal layer 13 .
  • the first polarizing plate 14 and the second polarizing plate 15 include a Nicol prism structure having an orthogonal absorption axis in a 45-degree angular direction.
  • the liquid crystal molecules 131 can be made by controlling the intensity of the electric field between the patterned pixel electrode 122 and the common electrode 112 by the first polarizing plate 14 and the second polarizing plate 15 which are substantially different from each other by 90 degrees (orthogonal). Deflection is generated to modulate the polarization characteristics of the light to achieve the purpose of displaying the image.
  • FIG. 5 is a schematic diagram of a liquid crystal display device 1a according to another embodiment of the present application.
  • the main difference from the liquid crystal display device 1 of FIG. 2G is that the color filter layer CF of the liquid crystal display device 1a of the present embodiment is disposed on the second substrate 121, and the patterned pixel electrode 122 can pass through the color filter layer CF.
  • a through hole is connected to the drain D of the thin film transistor T, and the second alignment layer 123 is disposed on the patterned pixel electrode 122 and the color filter layer CF.
  • the filter portion of the color filter layer CF is formed and covered on the matrix circuit such that the second substrate 12 becomes a substrate of a color filter on array (COA).
  • COA color filter on array
  • the ultraviolet rays may be irradiated to the liquid crystal molecules 131 and the photoreactive monomers 15 from the side of the second substrate 121 away from the first substrate 111.
  • the liquid crystal display device 1a of the present embodiment can have a higher transmittance than the liquid crystal display device 1.
  • liquid crystal display device 1a can refer to the same components of the liquid crystal display device 1, and will not be described again.
  • the liquid crystal molecules can be pre-tilted without an applied driving voltage by the arrangement of the grooves 1131 of the patterned first alignment layer 113 and the polymer stable alignment technique.
  • the liquid crystal molecules 131 can be rotated in the direction of the pre-tilt, in addition to speeding up the reaction speed of the liquid crystal, the liquid crystal molecules 131 of the pixel can be vertically aligned in multiple regions (Multi- The purpose of the domain vertical Alignment (MVA) is to further improve the viewing angle of the liquid crystal display devices 1, 1a.
  • MVA domain vertical Alignment
  • FIG. 6 is a schematic diagram of a liquid crystal display device 2 according to another embodiment of the present application.
  • the liquid crystal display device 2 can include a liquid crystal display panel 3 and a backlight module 4 (Backlight Module).
  • the liquid crystal display panel 3 can be one of the liquid crystal display panels of the above embodiments, or a variation thereof. For details, refer to the above description, and details are not described herein.
  • backlight module 4 The backlight module 4 is disposed opposite to the liquid crystal display panel 3, and the backlight module 4 can be disposed on a side of the second substrate 12 away from the first substrate 11. When the light E emitted from the backlight module 4 passes through the liquid crystal display panel 3, an image can be formed by displaying colors of each pixel of the liquid crystal display panel 3.
  • the patterning arrangement of the grooves of the first alignment layer or the second alignment layer and the polymer stable alignment technique cause the liquid crystal molecules to have no applied voltage.
  • the liquid crystal molecules can be rotated in the direction of the pre-tilt, in addition to speeding up the reaction speed of the liquid crystal, the purpose of multi-area vertical alignment can be achieved, thereby
  • the applied liquid crystal display device has an effect of improving the viewing angle.
  • FIG. 7 is a flow chart showing a method of manufacturing a liquid crystal display device according to a second embodiment of the present application.
  • the manufacturing process of the liquid crystal display device may include the steps of: forming a common electrode on a first substrate (step V01), forming a matrix circuit on a second substrate, wherein the matrix circuit comprises a a thin film transistor and a patterned pixel electrode, the thin film transistor is connected to the patterned pixel electrode, and one pixel is divided into at least two sub-regions in one direction by the patterned pixel electrode (step V02), forming an insulating layer on the common electrode or the patterned pixel The electrode, wherein the insulating layer comprises a plurality of slits (step V03), forming a first alignment layer on the common electrode, and forming a second alignment layer on the patterned pixel electrode, wherein the insulating layer is sandwiched between the common electrode and Between the first alignment layer or between the patterned pixel electrode and the second alignment layer (step V04), forming a liquid crystal layer between the first alignment layer and the second alignment layer, wherein the liquid crystal layer comprises a plurality of negative layers
  • the manufacturing method of the liquid crystal display device may further include: forming a color filter layer on the first substrate or the second substrate, wherein the color filter layer comprises a plurality of filter portions, and forming a black matrix The layer is on the first substrate, wherein the black matrix layer is disposed corresponding to the filter portions.
  • FIG. 7 and FIG. 8A to FIG. 8G are respectively schematic diagrams showing a manufacturing process of the liquid crystal display device 1 according to an embodiment of the present application.
  • the step V01 is: forming the common electrode 112 on the first substrate 111.
  • a whole layer of the common electrode 112 is formed on the surface of the first substrate 111 (FIG. 8A shows the reverse, that is, the common electrode 112 is located on the lower surface of the first substrate 111).
  • the present embodiment first forms the color filter layer CF and the black matrix layer BM on the surface of the first substrate 111, and causes the black matrix layer BM to correspond to the color filter layer. After the CF is set, the common electrode 112 is formed on the color filter layer CF and the black matrix layer BM.
  • step V02 is: forming a matrix circuit on the second substrate 121, wherein the matrix circuit comprises a thin film transistor T and a patterned pixel electrode 122, the thin film transistor T is connected to the patterned pixel electrode 122, and one pixel is patterned pixel electrode 122 is divided into at least two sub-areas in one direction.
  • the pixel electrode is patterned by an etching process. As shown in FIG. 3, the pixel electrode 122 is patterned to have a plurality of slits, and one pixel can be patterned by the pixel electrode.
  • the slits of 122 are divided into at least two sub-regions in one direction, and according to the pattern of the pixel electrodes, when a voltage is applied, the liquid crystal molecules can be tilted in, for example, four different directions (a, b, c, d). To enhance the perspective.
  • the thin film transistor T of the present embodiment may include a gate G, a gate dielectric layer GI, a channel layer C, a source S, and a drain D.
  • the gate G is formed on the second substrate 121.
  • the gate dielectric layer GI is formed and covers the gate G.
  • the gate dielectric layer GI needs to completely cover the gate G, and may partially or completely cover the second substrate 121.
  • the channel layer C is formed on the gate dielectric layer GI with respect to the gate G position.
  • the source S and the drain D are respectively formed on the channel layer C, and one ends of the source S and the drain D are respectively in contact with the channel layer C.
  • the channel layer C of the thin film transistor T is not turned on, the source S and the drain D are electrically separated.
  • the drain D of the thin film transistor T can be connected to the patterned pixel electrode 122. Therefore, when the channel layer C of the thin film transistor T is turned on, the data voltage of the pixel can be transmitted to the corresponding data line, the source S and the drain D.
  • the pixel electrode 122 is patterned.
  • the source S and the drain D of the thin film transistor T of the present embodiment are directly formed on the channel layer C and connected to the channel layer C.
  • an etching may be formed on the channel layer C. After terminating the layer (not shown), one end of the source S and the drain D are respectively brought into contact with the channel layer C by etching one of the openings of the layer.
  • the etch stop layer may be an organic material such as an organosilicon oxide compound, or a single layer inorganic material such as silicon nitride, silicon oxide, silicon oxynitride, silicon carbide, aluminum oxide, hafnium oxide, or a combination of the above materials. .
  • step V01 is performed first and then step V02 is performed, but to this end, in different embodiments, the order of the two may be reversed or performed simultaneously.
  • the matrix circuit may further include a plurality of data lines and a plurality of scan lines, and the data lines are interleaved with the scan lines to define a plurality of pixels.
  • One pixel may correspond to one thin film transistor T and one patterned pixel electrode 122, and one pixel may correspond to one filter of the color filter layer CF.
  • step V03 is performed to form the insulating layer 114 on the common electrode 112 or the patterned pixel electrode 122, wherein the insulating layer 114 includes a plurality of slits 1141.
  • an insulating layer 114 is formed on the common electrode 112, and the insulating layer 114 is etched to have a plurality of slits 1141 as an example.
  • an insulating layer may be formed on the patterned pixel electrode 122 and the insulating layer may be formed with a plurality of slits; or, a plurality of layers may be simultaneously formed on the common electrode 112 and the patterned pixel electrode 122.
  • the insulating layer of the slit is not limited in this application. Further, in a plan view, the slits 1411 are in a zigzag shape.
  • the step V04 is performed to: form the first alignment layer 113 on the common electrode 112, and form the second alignment layer 123 on the patterned pixel electrode 122, wherein the insulating layer 114 is sandwiched between the common electrode 112 and the first alignment layer 113. Between or between the patterned pixel electrode 122 and the second alignment layer 123. As shown in FIG. 8D, in this embodiment, since the insulating layer 114 is disposed on the common electrode 112, when the first alignment layer 113 is formed on the common electrode 112, the insulating layer 114 is sandwiched between the common electrode 112 and the first. Between the alignment layers 113.
  • the material of the first alignment layer 113 may be filled in the slit 1141 of the insulating layer 114, so that the first alignment layer 113 may also be patterned according to the pattern of the insulating layer 114 to have a plurality of grooves 1131 in one direction. And in the case of a plan view, the grooves 1131 are also saw-toothed.
  • the second alignment layer 123 of the present embodiment is overlaid on the patterned pixel electrode 122 of the matrix circuit.
  • the insulating layer when the slits of the insulating layer are formed on the patterned pixel electrode 122, the insulating layer is sandwiched between the patterned pixel electrode 122 and the second alignment layer 123, and the second alignment Layer 123 will also form a plurality of grooves due to the slits.
  • a liquid crystal layer 13 is formed between the first alignment layer 113 and the second alignment layer 123, wherein the liquid crystal layer 13 includes a plurality of negative dielectric anisotropy n-type liquid crystal molecules and a plurality Photoreactive monomer (monomer, not shown).
  • the photoreactive monomer is, for example but not limited to, a UV curable resin, and the weight percentage thereof may be, for example, 0.2%.
  • a light is irradiated and applied to the liquid crystal molecules 131 at a threshold voltage greater than the liquid crystal molecules 131, and the photoreactive monomers and the liquid crystal molecules 131 are polymerized and cured to define the light.
  • the tilt direction of the liquid crystal molecules 131 under the action of a voltage.
  • the light is ultraviolet (UV), and its wavelength may be, for example, between 300 nm and 450 nm, and the radiation intensity is, for example, 30 mW or higher.
  • FIG. 9A to FIG. 9C are respectively schematic diagrams of reactions when liquid crystal molecules and photoreactive monomers are irradiated with light.
  • FIG. 9A in the initial state where no voltage is applied, the liquid crystal molecules 131 are vertically aligned (n-type liquid crystal molecules), and the photoreactive monomer 15 and the liquid crystal molecules 131 are not polymerized.
  • FIG. 9B when a threshold voltage (voltage V) greater than the liquid crystal molecules 131 is applied, an electric field is applied to the liquid crystal molecules 131 and the photoreactive monomers 15, and the liquid crystal molecules 131 are tilted.
  • V threshold voltage
  • the pattern of the grooves 1131 of the first alignment layer 113 and the direction defined by the patterned pixel electrode 122, and the photoreactive monomers 15 are also inclined in a similar manner.
  • the ultraviolet ray R may illuminate the liquid crystal molecules 131 and the photoreactive monomers 15 from the side of the first substrate 111 away from the second substrate 121, and react lightly.
  • the monomer 15 will polymerize with the liquid crystal molecules 131 to control the direction of the liquid crystal molecules 131.
  • the purpose of applying a voltage is to generate an electric field between the common electrode 112 and the patterned pixel electrode 122, and to polymerize and cure the photoreactive monomer 15 and the liquid crystal molecule 131 while irradiating the ultraviolet ray, and to cure the cured monomer.
  • Arranging according to the pattern of the slit 1141 (the recesses 1131) and the patterned pixel electrode 122 to define the tilt direction of the liquid crystal molecules 131 under a voltage to pass through the hardening monomer to achieve the liquid crystal molecules The purpose of 131 alignment, thereby improving the optical performance of the liquid crystal display panel.
  • the liquid crystal molecules 131 can be pretilted in a plurality of directions.
  • the manufacturing method of the liquid crystal display device may further include a step V07: respectively providing a first polarizing plate 14 and a second polarizing plate 15 on the first substrate 111.
  • the surface of the second substrate 121 away from the liquid crystal layer 13 is as shown in FIG. 8G.
  • the first polarizing plate 14 and the second polarizing plate 15 may include, for example, a crossed Nicol prism structure having an absorption axis of an angular direction of 45 degrees, thereby aligning the directions of the liquid crystal molecules 131.
  • the liquid crystal display device 1 of the present embodiment includes a liquid crystal display panel including a first substrate 11, a second substrate 12, an insulating layer 114, a first alignment layer 113, a second alignment layer 123, and a liquid crystal layer 13.
  • the first polarizing plate 14 and the second polarizing plate 15 are provided.
  • the first substrate 11 includes a common electrode 112, a color filter layer CF, a black matrix layer BM, and a first substrate 111.
  • the color filter layer CF is disposed on the first substrate 111, and the black matrix layer BM surrounds the color filter layer CF.
  • the common electrode 112 is disposed on the color filter layer CF and the black matrix layer BM.
  • the second substrate 12 includes a matrix circuit and a second substrate 121.
  • the matrix circuit is disposed on the second substrate 121 and may include a thin film transistor (not shown) and the patterned pixel electrode 122, the thin film transistor and the patterned pixel electrode. 122 is connected, and one pixel is divided into at least two sub-regions in one direction by the patterned pixel electrode 122.
  • the insulating layer 114 is disposed on the common electrode 112 or the patterned pixel electrode 122.
  • the insulating layer 114 includes a plurality of slits 1141, and the slits 1141 may be saw-toothed in a plan view.
  • the first alignment layer 113 is disposed on the common electrode 112, and the second alignment layer 123 is disposed on the patterned pixel electrode 122 of the matrix circuit, wherein the insulating layer 114 is sandwiched between the common electrode 112 and the first alignment layer 113, or is sandwiched Placed between the patterned pixel electrode 122 and the second alignment layer 123.
  • the liquid crystal layer 13 is disposed between the first alignment layer 113 and the second alignment layer 123, wherein the liquid crystal layer 13 includes a plurality of negative dielectric anisotropic n-type liquid crystal molecules 131 and a plurality of photoreactive monomers 15, and
  • the liquid crystal molecules 131 and the photoreactive monomers 15 are irradiated, for example, by ultraviolet rays, and the photoreactive monomers 15 and the liquid crystal molecules 131 are polymerized and cured to define the liquid crystal molecules 131 under a voltage.
  • the direction of the tilt the first polarizing plate 14 and the second polarizing plate 15 are respectively disposed on surfaces of the first substrate 111 and the second substrate 121 away from the liquid crystal layer 13 .
  • the first polarizing plate 14 and the second polarizing plate 15 include a Nicol prism structure having an orthogonal absorption axis in a 45-degree angular direction.
  • the liquid crystal molecules 131 can be made by controlling the intensity of the electric field between the patterned pixel electrode 122 and the common electrode 112 by the first polarizing plate 14 and the second polarizing plate 15 which are substantially different from each other by 90 degrees (orthogonal). Deflection is generated to modulate the polarization characteristics of the light to achieve the purpose of displaying the image.
  • FIG. 10 is a schematic diagram of a liquid crystal display device 1a according to another embodiment of the present application.
  • the main difference from the liquid crystal display device 1 of FIG. 8G is that the color filter layer CF of the liquid crystal display device 1a of the present embodiment is disposed on the second substrate 121, and the patterned pixel electrode 122 can pass through the color filter layer CF.
  • a through hole is connected to the drain D of the thin film transistor T, and the second alignment layer 123 is disposed on the patterned pixel electrode 122 and the color filter layer CF.
  • the filter portion of the color filter layer CF may be formed and covered on the matrix circuit such that the second substrate 12 becomes a color filter on array (COA) substrate.
  • COA color filter on array
  • the ultraviolet rays may be irradiated to the liquid crystal molecules 131 and the photoreactive monomers 15 from the side of the second substrate 121 away from the first substrate 111.
  • the liquid crystal display device 1a of the present embodiment can have a higher transmittance than the liquid crystal display device 1.
  • other technical features of the liquid crystal display device 1a can refer to the same components of the liquid crystal display device 1, and will not be described again.
  • the insulating layer 114 may be disposed on the common electrode 112 or the patterned pixel electrode 122, and the insulating layer 114 may include a plurality of slits 1141.
  • the patterned first alignment layer 113 or the second alignment layer 123 may be formed according to the pattern of the slits of the insulating layer.
  • the liquid crystal molecules are pre-tilted in a plurality of directions when no driving voltage is applied, and when the driving voltage is applied, the liquid crystal molecules 131 can be rotated in the original pretilt direction, in addition to speeding up the liquid crystal.
  • the liquid crystal molecules 131 of the pixel can be multi-domain vertical alignment (MVA), and the liquid crystal display devices 1, 1a have the effect of improving the viewing angle.
  • MVA multi-domain vertical alignment
  • the liquid crystal molecules are pre-tilted in multiple directions without an applied voltage by the patterning arrangement of the slits of the insulating layer and the polymer stable alignment technique.
  • the driving voltage is applied, the liquid crystal molecules can be rotated in the direction of the pre-tilt.
  • the multi-area vertical alignment can be achieved, thereby making the liquid crystal display device of the present application have the lifting. The effect of the perspective.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

液晶显示装置(1,1a)及其制造方法。制造方法包括:形成一共同电极(112)于一第一基材(111)上(步骤T01)、形成一矩阵电路于一第二基材(121)上,矩阵电路的薄膜晶体管(T)与图案化像素电极(122)连接,一个像素被图案化像素电极(122)在一方向上区分成至少二个子区域(步骤T02)、形成一第一配向层(113)于共同电极(112)上,及形成一第二配向层(123)于图案化像素电极(122)上(步骤T03)、在第一配向层(113)或第二配向层(123)上形成复数个凹槽(1131)(步骤T04)、形成一液晶层(13)于第一配向层(113)与第二配向层(123)之间,其中液晶层(13)包含复数负介电异向性之n型液晶分子(131)及光反应性单体(步骤T05)、及照射一光线,以大于液晶分子(131)之一阈值电压施加于液晶分子(131)(步骤T06)。

Description

液晶显示装置及其制造方法 技术领域
本申请关于一种显示装置及其制造方法,特别关于一种具有负介电常数异向性(Anisotropy)之液晶显示装置及其制造方法。
背景技术
随着科技的进步,平面显示装置已经广泛的被运用在各种领域,尤其是液晶显示装置,因具有体型轻薄、低功率消耗及无辐射等优越特性,已经渐渐地取代传统阴极射线管显示装置,而应用至许多种类之电子产品中,例如行动电话、可携式多媒体装置、笔记型计算机、液晶电视及液晶屏幕等等。
液晶显示装置是利用电场控制液晶分子的旋转,让光线可穿过液晶分子而显示影像。公知一种TN型液晶显示装置有视角(view angle)狭窄的问题,当观看者偏离显示画面的正面时,影像将产生大幅失真,尤其在大型化的屏幕时,影像失真现象更加明显。以往最方便改善视角的方式是贴上广视角膜,但广视角膜是日本一家厂商独占的材料,成本并不便宜。因此,各大面板厂商便不断投入人力、时间与金钱研发新的液晶材料或新的面板结构来改善视角,以提升产品的竞争力。
发明内容
本申请的目的为提供一种液晶显示装置及其制造方法,可达到提升视角的效果。
为实现上述目的,本申请提出一种液晶显示装置的制造方法,包括:形成一共同电极于一第一基材上;形成一矩阵电路于一第二基材上,其中矩阵电路包含一薄膜晶体管及一图案化像素电极,薄膜晶体管与图案化像素电极连接,一个像素被图案化像素电极在一方向上区分成至少二个子区域;形成一第一配向层于共同电极上,及形成一第二配向层于图案化像素电极上;使第一配向层或第二配向层形成复数个凹槽;形成一液晶层于第一配向层与第二配向层之间,其中液晶层包含复数负介电异向性之n型液晶分子及复数光反应性单体;以及照射一光线,并以大于该些液晶分子之一阈值电压施加于该些液晶分子,使该些光反应性单体与该些液晶分子聚合固化,以定义该些液 晶分子在一电压作用下的倾斜方向。
可选地,在俯视的情况下,所述该些凹槽为锯齿状。
可选地,所述的制造方法更包括:形成一彩色滤光层于所述第一基材或所述第二基材上,其中所述彩色滤光层包含多个滤光部;及形成一黑色矩阵层于所述第一基材上,其中所述黑色矩阵层对应于所述该些滤光部设置。
可选地,所述黑色矩阵层围绕着所述该些滤光部而设置。
可选地,所述共同电极形成于所述彩色滤光层与所述黑色矩阵层上。
可选地,所述彩色滤光层设置于所述第二基材上,所述第二配向层设置于所述像素电极及所述彩色滤光层上。
可选地,所述矩阵电路更可包含复数数据线与复数扫描线,所述该些数据线与所述该些扫描线交错设置以定义出复数像素,一个所述像素对应一个所述薄膜晶体管及一个所述像素电极。
可选地,制造方法更包括:分别设置一第一偏光板与一第二偏光板于所述第一基材与所述第二基材远离所述液晶层的表面。
可选地,所述第一偏光板与所述第二偏光板包含45度角方向的吸收轴之正交的尼科耳棱镜结构。
可选地,所述光线为紫外线,并由所述第一基材远离所述第二基材的一侧照射所述该些液晶分子与所述该些光反应性单体,或由所述第二基材远离所述第一基材的一侧照射所述该些液晶分子与所述该些光反应性单体。
此外,为实现上述目的,本申请另提出一种液晶显示装置,包括一第一基板、一第二基板、一第一配向层、一第二配向层以及一液晶层。第一基板包含一共同电极及一第一基材,共同电极设置于第一基材上。第二基板包含一矩阵电路及一第二基材,矩阵电路设置于第二基材上,并包含一薄膜晶体管及一图案化像素电极,薄膜晶体管与图案化像素电极连接,一个像素被图案化像素电极在一方向上区分成至少二个子区域。第一配向层设置于共同电极上,第二配向层设置于图案化像素电极上,其中第一配向层或第二配向层具有复数个凹槽。液晶层设置于第一配向层与第二配向层之间,液晶层包含复数负介电异向性之n型液晶分子及复数光反应性单体,其中,通过一光线照射该些液晶分子与该些光反应性单体,使该些光反应性单体与该些液晶分子聚合固化,以定义该些液晶分子在一电压作用下的倾斜方向。
可选地,所述第一基材或所述第二基材为一软性基材,所述软性基材包含有机高分子材料。
可选地,所述第一基板更包括一彩色滤光层与一黑色矩阵层,所述彩色滤光层设置于所述第一基材或所述第二基材上,所述彩色滤光层包含多个滤光部,所述黑色矩阵层设置于所述第一基材上,所述黑色矩阵层对应于所述该些滤光部设置。
可选地,液晶显示装置,更包括一第一偏光板与一第二偏光板,第一偏光板与第二偏光板分别设置于所述第一基材与所述第二基材远离所述液晶层的表面。
此外,为实现上述目的,本申请又提出一种液晶显示装置,包括一第一基板、一第二基板、一第一配向层、一第二配向层、一液晶层、一第一偏光板与一第二偏光板以及一背光模块。第一基板包含一共同电极、一彩色滤光层、一黑色矩阵层及一第一基材,彩色滤光层设置于第一基材上,黑色矩阵层围绕彩色滤光层设置,共同电极设置于彩色滤光层与黑色矩阵层上。第二基板包含一矩阵电路及一第二基材,矩阵电路设置于第二基材上,并包含一薄膜晶体管及一图案化像素电极,薄膜晶体管与图案化像素电极连接,一个像素被图案化像素电极在一方向上区分成至少二个子区域。第一配向层设置于共同电极上,第二配向层设置于图案化像素电极上,其中第一配向层或第二配向层具有复数个凹槽,且在俯视的情况下,该些凹槽为锯齿状。液晶层设置于第一配向层与第二配向层之间,其中其中液晶层包含复数负介电异向性之n型液晶分子及复数光反应性单体,且是通过一光线照射该些液晶分子与该些光反应性单体,使该些光反应性单体与该些液晶分子聚合固化,以定义该些液晶分子在一电压作用下的倾斜方向。第一偏光板与第二偏光板分别设置于第一基材与第二基材远离液晶层的表面。背光模块设置于第二基板远离第一基板的一侧。
本申请技术方案中,通过第一配向层或第二配向层的该些凹槽的图案化配置及聚合物稳定配向技术使液晶分子在无外加电压时预倾斜(pre-t i lt)于多个方向,当施加驱动电压时,可使液晶分子顺着原本预倾斜的方向转动,除了可加快液晶的反应速度之外,更可达到多区域垂直配向的目的,进而使得本申请的液晶显示装置具有提升视角的效果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请第一实施例之一种液晶显示装置的制造方法的流程步骤图。
图2A至图2G分别为本申请一实施例的液晶显示装置的制造过程示意图。
图3为一实施例的图案化像素电极的示意图。
图4A至图4C分别为液晶分子与光反应性单体照射光线时的反应示意图。
图5为本申请另一实施态样的液晶显示装置的示意图。
图6为本申请另一实施例之一种液晶显示装置的示意图。
图7为本申请第二实施例之一种液晶显示装置的制造方法的流程步骤图。
图8A至图8G分别为本申请一实施例的液晶显示装置的制造过程示意图。
图9A至图9C分别为液晶分子与光反应性单体照射光线时的反应示意图。
图10为本申请另一实施态样的液晶显示装置的示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中如涉及“第一”、“第二”等的描述仅用于描述目的, 而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
另外,本申请各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
以下将参照相关图式,说明依本申请较佳实施例之液晶显示装置及其制造方法,其中相同的组件将以相同的参照符号加以说明。
以下实施例的液晶显示装置包含一液晶显示面板,液晶显示面板可为一垂直配向模态(vertical alignment mode,VA mode)的液晶显示面板。在VA型液晶显示面板中,在不施加驱动电压的状态下,大部分之液晶分子皆对上、下基板垂直排列,而成为穿透率(Transmittance)为零之状态(即黑色显示),在施加预定电压(给定电极)的驱动电压时,则液晶分子大致可成为水平排列而使液晶显示面板得到白色显示,而在施加小于预定电压的驱动电压时,大部分之液晶分子为倾斜而可获得均匀的中间色调显示。
第一实施例
图1为本申请第一实施例之一种液晶显示装置的制造方法的流程步骤图。
如图1所示,液晶显示装置的制造流程可包括以下步骤:形成一共同电极于一第一基材上(步骤T01)、形成一矩阵电路于一第二基材上,其中矩阵电路包含一薄膜晶体管及一图案化像素电极,薄膜晶体管与图案化像素电极连接,一个像素被图案化像素电极在一方向上区分成至少二个子区域(步骤T02)、形成一第一配向层于共同电极上,及形成一第二配向层于图案化像素 电极上(步骤T03)、使第一配向层或第二配向层形成复数个凹槽(步骤T04)、形成一液晶层于第一配向层与第二配向层之间,其中液晶层包含复数负介电异向性之n型液晶分子及复数光反应性单体(步骤T05)、以及照射一光线,并以大于该些液晶分子之一阈值电压施加于该些液晶分子,使该些光反应性单体与该些液晶分子聚合固化,以定义该些液晶分子在一电压作用下的倾斜方向(步骤T06)。
除此之外,液晶显示装置的制造方法更可包括:形成一彩色滤光层于第一基材或第二基材上,其中彩色滤光层包含多个滤光部、以及形成一黑色矩阵层于第一基材上,其中黑色矩阵层对应于该些滤光部设置。
以下,请参照图1并配合图2A至图2G所示,以说明上述的制造方法。其中,图2A至图2G分别为本申请一实施例的液晶显示装置1的制造过程示意图。
首先,步骤T01为:形成共同电极112于第一基材111上。如图2A所示,是在第一基材111的表面上形成一整层的共同电极112(图2A是显示反置,即共同电极112位于第一基材111的下表面)。不过,在形成共同电极112的步骤T01之前,本实施例是先在第一基材111的表面上形成彩色滤光层CF及黑色矩阵层BM,并使黑色矩阵层BM对应于彩色滤光层CF设置后,再将共同电极112形成于彩色滤光层CF与黑色矩阵层BM上。其中,黑色矩阵层BM为不透光材料,例如可为金属或树脂,而金属例如可为铬、氧化铬或氮氧铬化合物。由于黑色矩阵层BM为不透光材质,因此可于第一基材111上形成不透光的区域,进而界定出可透光的区域。彩色滤光层CF可包含一红色、一绿色及一蓝色等多个滤光部,而其材料为可透光材质,例如可为颜料或染料,并可通过染色法、颜料分散法、印刷法、干膜法或电着法等方式将不同颜色的滤光部分别形成于第一基材111。于此,该些滤光部并不限定只有红色、绿色或蓝色滤光部,而黑色矩阵层BM可围绕着该些滤光部而设置。另外,本实施例的彩色滤光层CF是形成于第一基材111上,但在不同的实施例中,彩色滤光层CF也可形成于第二基材121上。
接着,步骤T02为:形成矩阵电路于第二基材121上,其中矩阵电路包含薄膜晶体管T及图案化像素电极122,薄膜晶体管T与图案化像素电极122连接,且一个像素被图案化像素电极122在一方向上区分成至少二个子区域。 其中,薄膜晶体管T与图案化像素电极122可为二维阵列排列,并为液晶显示面板之一个像素(pixel)的开关组件与像素电极。于此,可通过半导体薄膜制程将薄膜晶体管T与图案化像素电极122形成于第二基材121上。上述的薄膜制程可包含低温多晶硅(LTPS)制程、非晶硅(a-Si)制程或金属氧化物(如氧化铟镓锌,IGZO)半导体制程等,并不限制。另外,是可先形成像素电极之后,再通过蚀刻制程来图案化该像素电极,如图3所示,以成为图案化像素电极122而具有多个狭缝,且一个像素可被图案化像素电极122的这些狭缝在一方向上区分成至少二个子区域,进而根据此像素电极的图案,当一电压被应用时,液晶分子可倾斜在例如四个不同方向(a、b、c、d),以提升视角。
另外,如图2B所示,本实施例的薄膜晶体管T可包含一闸极G、一闸极介电层GI、一通道层C、一源极S及一汲极D。闸极G形成于第二基材121上,闸极G之材质可为金属(例如为铝、铜、银、钼、或钛)或其合金所构成的单层或多层结构。部分用以传输驱动讯号之导线,可以使用与闸极G同层且同一制程之结构,彼此电性相连,例如扫描线(图未显示)。闸极介电层GI形成并覆盖于闸极G上,且闸极介电层GI可为有机材质例如为有机硅氧化合物,或无机材质例如为氮化硅、氧化硅、氮氧化硅、碳化硅、氧化铝、氧化铪、或上述材质之多层结构。闸极介电层GI需完整覆盖闸极G,并可选择部分或全部覆盖第二基材121上。
通道层C相对闸极G位置形成于闸极介电层GI上。在实施上,通道层C例如但不限于包含一氧化物半导体。其中,前述之氧化物半导体包括氧化物,且氧化物包括铟、镓、锌及锡其中之一,例如为氧化铟镓锌(Indium Gallium Zinc Oxide,IGZO)。另外,源极S与汲极D分别形成于通道层C上,且源极S和汲极D之一端分别与通道层C接触。于薄膜晶体管T之通道层C未导通时,源极S和汲极D电性分离。部分用以传输驱动讯号之导线,可以使用与源极S与汲极D同层且同一制程之结构,例如数据线(图未显示)。其中,薄膜晶体管T之汲极D可与图案化像素电极122连接,因此,当薄膜晶体管T之通道层C导通时,像素的数据电压可通过数据线、源极S与汲极D而传输到对应的图案化像素电极122。其中,源极S与汲极D之材质可为金属(例如铝、铜、银、钼、或钛)或其合金所构成的单层或多层结构并不限定。
本实施例之薄膜晶体管T之源极S与汲极D是直接形成于通道层C上而与通道层C连接,不过,在不同的实施例中,也可在通道层C上形成一层蚀刻终止层(未绘示)后,再分别通过蚀刻终止层之一开口而使源极S与汲极D的一端分别与通道层C接触。上述的蚀刻终止层可为有机材质例如为有机硅氧化合物,或单层无机材质例如氮化硅、氧化硅、氮氧化硅、碳化硅、氧化铝、氧化铪、或上述材质组合之多层结构。
另外,第一基材111或第二基材121可为一硬性基材,并为透光材质所制成,例如可为一玻璃基材、一石英基材或一塑料基材,并不限定。在另一些实施例中,第一基材111或第二基材121可为一软性基材,使得液晶显示面板为一软性面板而具有可挠性。软性基材可包含有机高分子材料,有机高分子材料的玻璃转换温度(Glass Transition Temperature,Tg)可介于摄氏400度至摄氏600度之间,藉由如此高的玻璃转换温度,可使软性基材于后续的薄膜制程中,特性不会被破坏。有机高分子材料可为热塑性材料,例如为聚酰亚胺(PI)、聚乙烯(Polyethylene,PE)、聚氯乙烯(Polyvinylchloride,PVC)、聚苯乙烯(PS)、压克力(丙烯,acrylic)、氟化聚合物(Fluoropolymer)、聚酯纤维(polyester)或尼龙(nylon)。另外,共同电极112与图案化像素电极122的材料例如可为铟锡氧化物(ITO)、铟锌氧化物(IZO)、铝锌氧化物(AZO)、镉锡氧化物(CTO)、氧化锡(SnO2)、或氧化锌(ZnO)等透明导电材料,并不限定。
值得一提的是,本实施例是先进行步骤T01之后再进行步骤T02,然并不以此为限,在不同的实施例中,两者顺序可相反,或是同时进行。此外,矩阵电路更可包含复数数据线与复数扫描线,该些数据线与该些扫描线交错设置以定义出复数像素。其中,一个像素可对应有一个薄膜晶体管T及一个图案化像素电极122,且一个像素可对应彩色滤光层CF的一个滤光部。
接着,进行步骤T03为:形成第一配向层113于共同电极112上,及形成第二配向层123于图案化像素电极122上。如图2C与图2D所示,本实施例的第一配向层113覆盖在共同电极112上,且第二配向层123覆盖在矩阵电路的图案化像素电极122上。第一配向层113与第二配向层123可以例如涂布、印刷或沉积方式分别形成于共同电极112与矩阵电路上。第一配向层113与第二配向层123的材料例如可为无机材料或有机材料,无机材料例可可 为类钻碳膜(Diamond-like Carbon,DLC)、碳化硅(SiC)、二氧化硅(SiO2)、氮化硅(Si3N4)或氧化铝(Al2O3)、…等,而有机材料例如可为聚亚酰胺(PI)或聚甲基丙烯酸甲酯(Polymethy lmethacrylate,PMMA)。
接着,步骤T04为:使第一配向层113或第二配向层123形成复数个凹槽1131,。如图2E所示,本实施例是使第一配向层113在一个方向上形成复数个凹槽1131为例。不过,在不同实施例中,也可在第二配向层123上形成复数个凹槽,或者使第一配向层113与第二配向层123分别形成复数个凹槽,本申请皆不限制。在一些实施例中,可以例如以压印方式图案化第一配向层113,以定义出第一配向层113的图案,使第一配向层113具有多个凹槽1131,且在俯视的情况下,该些凹槽1131例如为锯齿状。
接着,步骤T05为:如图2F所示,形成液晶层13于第一配向层113与第二配向层123之间,其中液晶层13包含复数负介电异向性之n型液晶分子及复数光反应性单体(monomer,图未标示)。于此,例如但不限于以滴下式注入法(One Drop Filling,ODF)加入负介电异向性之n型液晶分子及光反应性单体到第一配向层113与第二配向层123之间,使第一基材111与第二基材121之间形成一层液晶层13。其中,光反应性单体例如但不限于为紫外线可硬化树脂(UV curable resin),其重量百分比例如可为0.2%。
最后,步骤T06为:照射一光线,并以大于该些液晶分子131之阈值电压施加于该些液晶分子131,使该些光反应性单体与该些液晶分子131聚合固化,以定义该些液晶分子131在电压作用下的倾斜方向。在一些实施例中,光线为紫外线(UV),其波长例如可介于300nm至450nm之间,幅射强度例如为30mW或更高强度。
请先参照图4A至图4C所示,其分别为液晶分子与光反应性单体照射光线时的反应示意图。如图4A所示,在无施加电压的起始状态下,该些液晶分子131被垂直地校准(n型液晶分子),并且光反应性单体15与该些液晶分子131未聚合。如图4B所示,当大于该些液晶分子131之阈值电压(电压V)被应用时,一电场施加于该些液晶分子131与该些光反应性单体15,该些液晶分子131将倾斜在由第一配向层113的该些凹槽1131的图案与图案化像素电极122所定义的方向上,且该些光反应性单体15也以类似的方式倾斜。在施加电压且以光线照射时,如图4C所示,紫外线R是由第一基材111远离第 二基材121的一侧照射该些液晶分子131与该些光反应性单体15,光反应性单体15将与液晶分子131产生聚合作用,以控制该些液晶分子131的方向。其中,施加电压的目的是使共同电极112与图案化像素电极122之间产生一电场,并于照射紫外线的同时使光反应性单体15与液晶分子131聚合固化,并使固化后的单体依据凹槽1131的图案与图案化像素电极122进行排列,以定义该些液晶分子131在一电压作用下的倾斜方向,以透过此硬化单体来达到使液晶分子131配向的目的,藉此提高液晶显示面板的光学性能。当电压去除后,由于硬化的光反应性单体15聚合于液晶分子131,因此可使该些液晶分子131预倾斜于多个方向。
另外,在图1中,除了步骤T01至步骤T06之外,液晶显示装置的制造方法更可包括一步骤T07:分别设置一第一偏光板14与一第二偏光板15于第一基材111与第二基材121远离液晶层13的表面,如图2G所示。其中,第一偏光板14与第二偏光板15可例如包含有45度角方向的吸收轴之正交的尼科耳(crossed Nicol)棱镜结构,藉此校准该些液晶分子131的方向。
因此,本实施例的液晶显示装置1包含液晶显示面板,液晶显示面板包含第一基板11、第二基板12、第一配向层113、第二配向层123、液晶层13、第一偏光板14与第二偏光板15。
第一基板11包含共同电极112、彩色滤光层CF、黑色矩阵层BM及第一基材111,彩色滤光层CF设置于第一基材111上,黑色矩阵层BM围绕彩色滤光层CF设置,而共同电极112设置于彩色滤光层CF与黑色矩阵层BM上。另外,第二基板12包含矩阵电路及第二基材121,矩阵电路设置于第二基材121上,并可包含一薄膜晶体管(图未标示)及图案化像素电极122,薄膜晶体管与图案化像素电极122连接,且一个像素可被图案化像素电极122在一方向上区分成至少二个子区域。另外,第一配向层113设置于共同电极112上,第二配向层123设置于矩阵电路的图案化像素电极122上,其中第一配向层113具有复数个凹槽1131,且在俯视的情况下,该些凹槽1131可为锯齿状。另外,液晶层13设置于第一配向层113与第二配向层123之间,其中液晶层13包含复数负介电异向性之n型液晶分子131及复数光反应性单体15,而且,是通过例如紫外线照射该些液晶分子131与该些光反应性单体15,使该些光反应性单体15与该些液晶分子131聚合固化,以定义该些液晶分子131在一 电压作用下的倾斜方向。此外,第一偏光板14与第二偏光板15分别设置于第一基材111与第二基材121远离液晶层13的表面。其中,第一偏光板14与第二偏光板15包含有45度角方向的吸收轴之正交的尼科耳棱镜结构。通过两吸收轴实质上相差90度(正交)的第一偏光板14与第二偏光板15,再利用控制图案化像素电极122与共同电极112之间的电场强弱,可使液晶分子131产生偏转以调变光线之偏光特性,达到显示影像的目的。
另外,请参照图5所示,其为本申请另一实施态样的液晶显示装置1a的示意图。
与图2G的液晶显示装置1主要的不同在于,本实施例的液晶显示装置1a的彩色滤光层CF设置于第二基材121上,而图案化像素电极122可通过彩色滤光层CF的一通孔而与薄膜晶体管T之汲极D连接,且第二配向层123设置于图案化像素电极122及彩色滤光层CF上。于此,彩色滤光层CF的滤光部是形成并覆盖在矩阵电路上,使得第二基板12成为彩色滤光层在阵列上(color filter on array,COA)的基板。值得一提的是,在此实施例中,紫外线可由第二基材121远离第一基材111的一侧照射该些液晶分子131与该些光反应性单体15。相较于液晶显示装置1而言,本实施例的液晶显示装置1a可具有较高的穿透率。
此外,液晶显示装置1a的其它技术特征可参照液晶显示装置1的相同组件,不再赘述。
承上,在上述的液晶显示装置1、1a中,可通过图案化的第一配向层113的该些凹槽1131的配置及聚合物稳定配向技术使液晶分子在无外加驱动电压时预倾斜于多个方向,当施加驱动电压时,可使液晶分子131顺着原本预倾斜的方向转动,除了可加快液晶的反应速度之外,更可使像素的液晶分子131达到多区域垂直配向(Multi-domain Vertical Alignment,MVA)的目的,进而使液晶显示装置1、1a具有提升视角的效果。
另外,请参照图6所示,其为本申请另一实施例之一种液晶显示装置2的示意图。
液晶显示装置2可包括一液晶显示面板3以及一背光模块4(Backlight Module)。其中,液晶显示面板3可为上述实施例的液晶显示面板的其中之一,或其变化态样,具体技术内容可参照上述,于此不再赘述。而背光模块4 与液晶显示面板3相对设置,且背光模块4可设置于第二基板12远离第一基板11的一侧。当背光模块4发出的光线E穿过液晶显示面板3时,可通过液晶显示面板3之各像素显示色彩而形成影像。
承上所述,在本申请之液晶显示装置及其制造方法中,通过第一配向层或第二配向层的该些凹槽的图案化配置及聚合物稳定配向技术使液晶分子在无外加电压时预倾斜于多个方向,当施加驱动电压时,可使液晶分子顺着原本预倾斜的方向转动,除了可加快液晶的反应速度之外,更可达到多区域垂直配向的目的,进而使得本申请的液晶显示装置具有提升视角的效果。
第二实施例
图7为本申请第二实施例之一种液晶显示装置的制造方法的流程步骤图。
如图7所示,液晶显示装置的制造流程可包括以下步骤:形成一共同电极于一第一基材上(步骤V01)、形成一矩阵电路于一第二基材上,其中矩阵电路包含一薄膜晶体管及一图案化像素电极,薄膜晶体管与图案化像素电极连接,一个像素被图案化像素电极在一方向上区分成至少二个子区域(步骤V02)、形成一绝缘层于共同电极或图案化像素电极上,其中绝缘层包含复数个狭缝(步骤V03)、形成一第一配向层于共同电极上,及形成一第二配向层于图案化像素电极上,其中绝缘层夹置于共同电极与第一配向层之间,或夹置于图案化像素电极与第二配向层之间(步骤V04)、形成一液晶层于第一配向层与第二配向层之间,其中液晶层包含复数负介电异向性之n型液晶分子及复数光反应性单体(步骤V05)、以及照射一光线,并以大于该些液晶分子之一阈值电压施加于该些液晶分子,使所述该些光反应性单体与所述该些液晶分子聚合固化,以定义该些液晶分子在一电压作用下的倾斜方向(步骤V06)。
除此之外,液晶显示装置的制造方法更可包括:形成一彩色滤光层于第一基材或第二基材上,其中彩色滤光层包含多个滤光部、以及形成一黑色矩阵层于第一基材上,其中黑色矩阵层对应于该些滤光部设置。
以下,请参照图7并配合图8A至图8G所示,以说明上述的制造方法。其中,图8A至图8G分别为本申请一实施例的液晶显示装置1的制造过程示意图。
首先,步骤V01为:形成共同电极112于第一基材111上。如图8A所示, 是在第一基材111的表面上形成一整层的共同电极112(图8A是显示反置,即共同电极112位于第一基材111的下表面)。不过,在形成共同电极112的步骤V01之前,本实施例是先在第一基材111的表面上形成彩色滤光层CF及黑色矩阵层BM,并使黑色矩阵层BM对应于彩色滤光层CF设置后,再将共同电极112形成于彩色滤光层CF与黑色矩阵层BM上。
接着,步骤V02为:形成矩阵电路于第二基材121上,其中矩阵电路包含薄膜晶体管T及图案化像素电极122,薄膜晶体管T与图案化像素电极122连接,且一个像素被图案化像素电极122在一方向上区分成至少二个子区域。另外,是可先形成像素电极之后,再通过蚀刻制程来图案化该像素电极,如图3所示,以成为图案化像素电极122而具有多个狭缝,且一个像素可被图案化像素电极122的这些狭缝在一方向上区分成至少二个子区域,进而根据此像素电极的图案,当一电压被应用时,液晶分子可倾斜在例如四个不同方向(a、b、c、d),以提升视角。
另外,如图8B所示,本实施例的薄膜晶体管T可包含一闸极G、一闸极介电层GI、一通道层C、一源极S及一汲极D。闸极G形成于第二基材121上。闸极介电层GI形成并覆盖于闸极G上。闸极介电层GI需完整覆盖闸极G,并可选择部分或全部覆盖第二基材121上。
信道层C相对闸极G位置形成于闸极介电层GI上。另外,源极S与汲极D分别形成于通道层C上,且源极S和汲极D之一端分别与通道层C接触。于薄膜晶体管T之通道层C未导通时,源极S和汲极D电性分离。薄膜晶体管T之汲极D可与图案化像素电极122连接,因此,当薄膜晶体管T之通道层C导通时,像素的数据电压可通过数据线、源极S与汲极D而传输到对应的图案化像素电极122。
本实施例之薄膜晶体管T之源极S与汲极D是直接形成于通道层C上而与通道层C连接,不过,在不同的实施例中,也可在通道层C上形成一层蚀刻终止层(未绘示)后,再分别通过蚀刻终止层之一开口而使源极S与汲极D的一端分别与通道层C接触。上述的蚀刻终止层可为有机材质例如为有机硅氧化合物,或单层无机材质例如氮化硅、氧化硅、氮氧化硅、碳化硅、氧化铝、氧化铪、或上述材质组合之多层结构。
值得一提的是,本实施例是先进行步骤V01之后再进行步骤V02,然并不 以此为限,在不同的实施例中,两者顺序可相反,或是同时进行。此外,矩阵电路更可包含复数数据线与复数扫描线,该些数据线与该些扫描线交错设置以定义出复数像素。其中,一个像素可对应有一个薄膜晶体管T及一个图案化像素电极122,且一个像素可对应彩色滤光层CF的一个滤光部。
接着,进行步骤V03为:形成绝缘层114于共同电极112或图案化像素电极122上,其中绝缘层114包含复数个狭缝1141。如图8C所示,本实施例是于共同电极112上形成一层绝缘层114,并例如以蚀刻方式使绝缘层114具有复数个狭缝1141为例。在不同的实施例中,也可将绝缘层形成于图案化像素电极122上,并使绝缘层形成有复数个狭缝;或者,在共同电极112与图案化像素电极122上同时形成具有复数个狭缝的绝缘层,本申请并不限制。另外,在俯视的情况下,该些狭缝1411为锯齿状。
接着,进行步骤V04为:形成第一配向层113于共同电极112上,及形成第二配向层123于图案化像素电极122上,其中绝缘层114夹置于共同电极112与第一配向层113之间,或夹置于图案化像素电极122与第二配向层123之间。如图8D所示,本实施例由于绝缘层114是设置于共同电极112上,因此,形成第一配向层113于共同电极112上时,将使绝缘层114夹置于共同电极112与第一配向层113之间。其中,第一配向层113的材料可填入绝缘层114的狭缝1141内,使得第一配向层113可根据绝缘层114的图案也形成图案化而在一个方向上具有复数个凹槽1131,且在俯视的情况下,该些凹槽1131也是锯齿状。另外,如图8E所示,本实施例的第二配向层123覆盖在矩阵电路的图案化像素电极122上。在不同的实施例中,当绝缘层的该些狭缝形成于图案化像素电极122上时,则绝缘层将夹置于图案化像素电极122与第二配向层123之间,且第二配向层123也将因该些狭缝而形成多个凹槽。
接着,步骤V05为:如图8F所示,形成液晶层13于第一配向层113与第二配向层123之间,其中液晶层13包含复数负介电异向性之n型液晶分子及复数光反应性单体(monomer,图未标示)。其中,光反应性单体例如但不限于为紫外线可硬化树脂(UV curable resin),其重量百分比例如可为0.2%。
最后,步骤V06为:照射一光线,并以大于该些液晶分子131之阈值电压施加于该些液晶分子131,使该些光反应性单体与该些液晶分子131聚合固化,以定义该些液晶分子131在电压作用下的倾斜方向。在一些实施例中, 光线为紫外线(UV),其波长例如可介于300nm至450nm之间,幅射强度例如为30mW或更高强度。
请先参照图9A至图9C所示,其分别为液晶分子与光反应性单体照射光线时的反应示意图。如图9A所示,在无施加电压的起始状态下,该些液晶分子131被垂直地校准(n型液晶分子),并且光反应性单体15与该些液晶分子131未聚合。如图9B所示,当大于该些液晶分子131之阈值电压(电压V)被应用时,一电场施加于该些液晶分子131与该些光反应性单体15,该些液晶分子131将倾斜在第一配向层113的该些凹槽1131的图案与图案化像素电极122所定义的方向上,且该些光反应性单体15也以类似的方式倾斜。在施加电压且以光线照射时,如图9C所示,紫外线R可由第一基材111远离第二基材121的一侧照射该些液晶分子131与该些光反应性单体15,光反应性单体15将与液晶分子131产生聚合作用,以控制该些液晶分子131的方向。其中,施加电压的目的是使共同电极112与图案化像素电极122之间产生一电场,并于照射紫外线的同时使光反应性单体15与液晶分子131聚合固化,并使固化后的单体依据狭缝1141(该些凹槽1131)与图案化像素电极122的图案进行排列,以定义该些液晶分子131在一电压作用下的倾斜方向,以透过此硬化单体来达到使液晶分子131配向的目的,藉此提高液晶显示面板的光学性能。当电压去除后,由于硬化的光反应性单体15聚合于液晶分子131,因此可使该些液晶分子131预倾斜于多个方向。
另外,在图7中,除了步骤V01至步骤V06之外,液晶显示装置的制造方法更可包括一步骤V07:分别设置一第一偏光板14与一第二偏光板15于第一基材111与第二基材121远离液晶层13的表面,如图8G所示。其中,第一偏光板14与第二偏光板15可例如包含有45度角方向的吸收轴之正交的尼科耳(crossed Nicol)棱镜结构,藉此校准该些液晶分子131的方向。
因此,本实施例的液晶显示装置1包含液晶显示面板,液晶显示面板包含第一基板11、第二基板12、一绝缘层114、第一配向层113、第二配向层123、液晶层13、第一偏光板14与第二偏光板15。
第一基板11包含共同电极112、彩色滤光层CF、黑色矩阵层BM及第一基材111,彩色滤光层CF设置于第一基材111上,黑色矩阵层BM围绕彩色滤光层CF设置,而共同电极112设置于彩色滤光层CF与黑色矩阵层BM上。
第二基板12包含矩阵电路及第二基材121,矩阵电路设置于第二基材121上,并可包含一薄膜晶体管(图未标示)及图案化像素电极122,薄膜晶体管与图案化像素电极122连接,一个像素被图案化像素电极122在一方向上区分成至少二个子区域。另外,绝缘层114设置于共同电极112或图案化像素电极122上,其中绝缘层114包含复数个狭缝1141,且在俯视的情况下,该些狭缝1141可为锯齿状。第一配向层113设置于共同电极112上,第二配向层123设置于矩阵电路的图案化像素电极122上,其中绝缘层114夹置于共同电极112与第一配向层113之间,或夹置于图案化像素电极122与第二配向层123之间。另外,液晶层13设置于第一配向层113与第二配向层123之间,其中液晶层13包含复数负介电异向性之n型液晶分子131及复数光反应性单体15,而且,是通过例如紫外线照射该些液晶分子131与该些光反应性单体15,使该些光反应性单体15与该些液晶分子131聚合固化,以定义该些液晶分子131在一电压作用下的倾斜方向。此外,第一偏光板14与第二偏光板15分别设置于第一基材111与第二基材121远离液晶层13的表面。其中,第一偏光板14与第二偏光板15包含有45度角方向的吸收轴之正交的尼科耳棱镜结构。通过两吸收轴实质上相差90度(正交)的第一偏光板14与第二偏光板15,再利用控制图案化像素电极122与共同电极112之间的电场强弱,可使液晶分子131产生偏转以调变光线之偏光特性,达到显示影像的目的。
另外,请参照图10所示,其为本申请另一实施态样的液晶显示装置1a的示意图。
与图8G的液晶显示装置1主要的不同在于,本实施例的液晶显示装置1a的彩色滤光层CF设置于第二基材121上,而图案化像素电极122可通过彩色滤光层CF的一通孔而与薄膜晶体管T之汲极D连接,且第二配向层123设置于图案化像素电极122及彩色滤光层CF上。于此,彩色滤光层CF的滤光部可形成并覆盖在矩阵电路上,使得第二基板12成为彩色滤光层在阵列上(color filter on array,COA)的基板。值得一提的是,在此实施例中,紫外线可由第二基材121远离第一基材111的一侧照射该些液晶分子131与该些光反应性单体15。相较于液晶显示装置1而言,本实施例的液晶显示装置1a可具有较高的穿透率。此外,液晶显示装置1a的其它技术特征可参照液晶显示装置1的相同组件,不再赘述。
承上,在上述的液晶显示装置1、1a中,可通过绝缘层114设置于共同电极112或图案化像素电极122上,并使绝缘层114包含有复数个狭缝1141的结构设计,让第一配向层113覆盖在绝缘层114上或第二配向层123覆盖在绝缘层上时,可根据绝缘层的该些狭缝的图案而形成图案化的第一配向层113或第二配向层123,另外,再利用聚合物稳定配向技术使液晶分子在无外加驱动电压时预倾斜于多个方向,当施加驱动电压时,可使液晶分子131顺着原本预倾斜的方向转动,除了可加快液晶的反应速度之外,更可使像素的液晶分子131达到多区域垂直配向(Multi-domain Vertical Alignment,MVA)的目的,进而使液晶显示装置1、1a具有提升视角的效果。
承上所述,在本申请之液晶显示装置及其制造方法中,通过绝缘层的该些狭缝的图案化配置及聚合物稳定配向技术使液晶分子在无外加电压时预倾斜于多个方向,当施加驱动电压时,可使液晶分子顺着原本预倾斜的方向转动,除了可加快液晶的反应速度之外,更可达到多区域垂直配向的目的,进而使得本申请的液晶显示装置具有提升视角的效果。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (20)

  1. 一种液晶显示装置的制造方法,包括:
    形成一共同电极于一第一基材上;
    形成一矩阵电路于一第二基材上,其中所述矩阵电路包含一薄膜晶体管及一图案化像素电极,所述薄膜晶体管与所述图案化像素电极连接,一个像素被所述图案化像素电极在一方向上区分成至少二个子区域;
    形成一第一配向层于所述共同电极上,及形成一第二配向层于所述图案化像素电极上;
    使所述第一配向层或所述第二配向层形成复数个凹槽;
    形成一液晶层于所述第一配向层与所述第二配向层之间,其中所述液晶层包含复数负介电异向性之n型液晶分子及复数光反应性单体;以及
    照射一光线,并以大于所述该些液晶分子之一阈值电压施加于所述该些液晶分子,使所述该些光反应性单体与所述该些液晶分子聚合固化,以定义所述该些液晶分子在一电压作用下的倾斜方向。
  2. 如权利要求1所述的制造方法,其中,在俯视的情况下,所述该些凹槽为锯齿状。
  3. 如权利要求1所述的制造方法,更包括:
    形成一彩色滤光层于所述第一基材或所述第二基材上,其中所述彩色滤光层包含多个滤光部;及
    形成一黑色矩阵层于所述第一基材上,其中所述黑色矩阵层对应于所述该些滤光部设置。
  4. 如权利要求3所述的制造方法,其中,所述黑色矩阵层围绕着所述该些滤光部而设置。
  5. 如权利要求3所述的制造方法,其中,所述共同电极形成于所述彩色滤光层与所述黑色矩阵层上。
  6. 如权利要求3所述的制造方法,其中,所述彩色滤光层设置于所述第二基材上,所述第二配向层设置于所述像素电极及所述彩色滤光层上。
  7. 如权利要求3所述的制造方法,其中,所述矩阵电路更可包含复数数据线与复数扫描线,所述该些数据线与所述该些扫描线交错设置以定义出复数像素,一个所述像素对应一个所述薄膜晶体管及一个所述像素电极。
  8. 如权利要求1所述的制造方法,更包括:
    分别设置一第一偏光板与一第二偏光板于所述第一基材与所述第二基材远离所述液晶层的表面。
  9. 如权利要求8所述的制造方法,其中,所述第一偏光板与所述第二偏光板包含45度角方向的吸收轴之正交的尼科耳棱镜结构。
  10. 如权利要求1所述的制造方法,其中,所述光线为紫外线,并由所述第一基材远离所述第二基材的一侧照射所述该些液晶分子与所述该些光反应性单体,或由所述第二基材远离所述第一基材的一侧照射所述该些液晶分子与所述该些光反应性单体。
  11. 一种液晶显示装置,包括:
    一第一基板,包含一共同电极及一第一基材,所述共同电极设置于所述第一基材上;
    一第二基板,包含一矩阵电路及一第二基材,所述矩阵电路设置于所述第二基材上,并包含一薄膜晶体管及一图案化像素电极,所述薄膜晶体管与所述图案化像素电极连接,一个像素被所述图案化像素电极在一方向上区分成至少二个子区域;
    一第一配向层,设置于所述共同电极上;
    一第二配向层,设置于所述图案化像素电极上,其中所述第一配向层或所述第二配向层具有复数个凹槽;以及
    一液晶层,设置于所述第一配向层与所述第二配向层之间,所述液晶层包含复数负介电异向性之n型液晶分子及复数光反应性单体;
    其中,通过一光线照射所述该些液晶分子与所述该些光反应性单体,使所述该些光反应性单体与所述该些液晶分子聚合固化,以定义所述该些液晶分子在一电压作用下的倾斜方向。
  12. 如权利要求11所述的液晶显示装置,其中,所述第一基材或所述第二基材为一软性基材,所述软性基材包含有机高分子材料。
  13. 如权利要求11所述的液晶显示装置,其中,所述光线为紫外线,所述紫外线是由所述第一基材远离所述第二基材的一侧照射所述该些液晶分子与所述该些光反应性单体,或由所述第二基材远离所述第一基材的一侧照射所述该些液晶分子与所述该些光反应性单体。
  14. 如权利要求11所述的液晶显示装置,其中,所述第一基板更包括一彩色滤光层与一黑色矩阵层,所述彩色滤光层设置于所述第一基材或所述第二基材上,所述彩色滤光层包含多个滤光部,所述黑色矩阵层设置于所述第一基材上,所述黑色矩阵层对应于所述该些滤光部设置。
  15. 如权利要求14所述的液晶显示装置,其中,所述黑色矩阵层围绕着所述该些滤光部而设置。
  16. 如权利要求14所述的液晶显示装置,其中,所述共同电极形成于所述彩色滤光层与所述黑色矩阵层上。
  17. 如权利要求14所述的液晶显示装置,其中,所述彩色滤光层设置于所述第二基材上,所述第二配向层设置于所述像素电极及所述彩色滤光层上。
  18. 如权利要求11所述的液晶显示装置,更包括:
    一第一偏光板与一第二偏光板,分别设置于所述第一基材与所述第二基材远离所述液晶层的表面。
  19. 如权利要求18所述的液晶显示装置,其中,所述第一偏光板与所述第二偏光板包含45度角方向的吸收轴之正交的尼科耳棱镜结构。
  20. 一种液晶显示装置,包括:
    一第一基板,包含一共同电极、一彩色滤光层、一黑色矩阵层及一第一基材,所述彩色滤光层设置于所述第一基材上,所述黑色矩阵层围绕所述彩色滤光层设置,所述共同电极设置于所述彩色滤光层与所述黑色矩阵层上;
    一第二基板,包含一矩阵电路及一第二基材,所述矩阵电路设置于所述第二基材上,并包含一薄膜晶体管及一图案化像素电极,所述薄膜晶体管与所述图案化像素电极连接,一个像素被所述图案化像素电极在一方向上区分成至少二个子区域;
    一第一配向层,设置于所述共同电极上;
    一第二配向层,设置于所述图案化像素电极上,其中所述第一配向层或所述第二配向层具有复数个凹槽,且在俯视的情况下,所述该些凹槽为锯齿状;
    一液晶层,设置于所述第一配向层与所述第二配向层之间,其中所述液晶层包含复数负介电异向性之n型液晶分子及复数光反应性单体,且是通过一光线照射所述该些液晶分子与所述该些光反应性单体,使所述该些光反应 性单体与所述该些液晶分子聚合固化,以定义所述该些液晶分子在一电压作用下的倾斜方向;
    一第一偏光板与一第二偏光板,分别设置于所述第一基材与所述第二基材远离所述液晶层的表面;以及
    一背光模块,设置于所述第二基板远离所述第一基板的一侧。
PCT/CN2017/107319 2017-09-19 2017-10-23 液晶显示装置及其制造方法 WO2019056454A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710845041.4A CN107479247A (zh) 2017-09-19 2017-09-19 液晶显示装置及其制造方法
CN201710845041.4 2017-09-19

Publications (1)

Publication Number Publication Date
WO2019056454A1 true WO2019056454A1 (zh) 2019-03-28

Family

ID=60584072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107319 WO2019056454A1 (zh) 2017-09-19 2017-10-23 液晶显示装置及其制造方法

Country Status (2)

Country Link
CN (1) CN107479247A (zh)
WO (1) WO2019056454A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107436514A (zh) * 2017-09-19 2017-12-05 惠科股份有限公司 液晶显示装置及其制造方法
CN107608099A (zh) * 2017-09-19 2018-01-19 惠科股份有限公司 液晶显示装置及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1928669A (zh) * 2005-09-08 2007-03-14 中华映管股份有限公司 液晶显示面板及彩色滤光基板的制造方法
CN101349841A (zh) * 2008-09-05 2009-01-21 友达光电股份有限公司 聚合物稳定配向液晶面板与对向电极阵列基板及其制法
CN103109230A (zh) * 2010-07-27 2013-05-15 默克专利股份有限公司 液晶显示器及其制备方法
US20140022498A1 (en) * 2012-07-20 2014-01-23 Sung Hyuk KIM Display apparatus
CN105446025A (zh) * 2014-09-15 2016-03-30 群创光电股份有限公司 像素结构及液晶显示器
CN105842928A (zh) * 2015-01-30 2016-08-10 群创光电股份有限公司 显示面板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101814208B1 (ko) * 2010-04-06 2018-01-02 소니 주식회사 액정 표시 장치, 액정 표시 장치의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1928669A (zh) * 2005-09-08 2007-03-14 中华映管股份有限公司 液晶显示面板及彩色滤光基板的制造方法
CN101349841A (zh) * 2008-09-05 2009-01-21 友达光电股份有限公司 聚合物稳定配向液晶面板与对向电极阵列基板及其制法
CN103109230A (zh) * 2010-07-27 2013-05-15 默克专利股份有限公司 液晶显示器及其制备方法
US20140022498A1 (en) * 2012-07-20 2014-01-23 Sung Hyuk KIM Display apparatus
CN105446025A (zh) * 2014-09-15 2016-03-30 群创光电股份有限公司 像素结构及液晶显示器
CN105842928A (zh) * 2015-01-30 2016-08-10 群创光电股份有限公司 显示面板

Also Published As

Publication number Publication date
CN107479247A (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
EP2598943B1 (en) Liquid crystal display and method for preparation thereof
US7697098B2 (en) Manufacturing method of liquid crystal display device
US8274628B2 (en) Liquid crystal display device
JP4265652B2 (ja) 液晶表示素子およびその製造方法
JP2000056296A (ja) 液晶表示装置
TW201142445A (en) Liquid crystal display and method of manufacturing liquid crystal display
US20060139537A1 (en) Liquid crystal display device having a wide viewing angle
KR100262706B1 (ko) 액정 디스플레이 장치
US9250482B2 (en) Manufacturing method of a liquid crystal display device comprising a liquid crystal polymer composition having greater chemical affinity for a first thin film than for a first alignment layer
US20080153379A1 (en) Method of manufacturing liquid crystal display
WO2019056454A1 (zh) 液晶显示装置及其制造方法
US7593082B2 (en) Rubbing membrane material and liquid crystal display device using the same
JP5238127B2 (ja) 液晶表示装置
KR20040016404A (ko) 액정디스플레이
JP4028633B2 (ja) 液晶表示装置
WO2019056456A1 (zh) 液晶显示装置及其制造方法
KR20180019794A (ko) 액정 표시 장치 및 이의 제조 방법
KR20160083556A (ko) 곡면 액정패널, 이를 포함한 곡면 액정표시장치 및 그 제조방법
WO2019056453A1 (zh) 液晶显示装置及其制造方法
JP2007108720A (ja) 液晶表示装置の作製方法
KR100989262B1 (ko) 액정 표시 장치 및 그 제조 방법
WO2019056455A1 (zh) 液晶显示装置及其制造方法
KR20050092851A (ko) 액정표시장치 및 그 제조방법
JP2006208530A (ja) 液晶表示装置
JP5339247B2 (ja) 液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926208

Country of ref document: EP

Kind code of ref document: A1