WO2019056368A1 - 上行信道侦听的方法和装置 - Google Patents

上行信道侦听的方法和装置 Download PDF

Info

Publication number
WO2019056368A1
WO2019056368A1 PCT/CN2017/103176 CN2017103176W WO2019056368A1 WO 2019056368 A1 WO2019056368 A1 WO 2019056368A1 CN 2017103176 W CN2017103176 W CN 2017103176W WO 2019056368 A1 WO2019056368 A1 WO 2019056368A1
Authority
WO
WIPO (PCT)
Prior art keywords
cws
uplink burst
lbt
time unit
uplink
Prior art date
Application number
PCT/CN2017/103176
Other languages
English (en)
French (fr)
Inventor
李�远
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201780095217.7A priority Critical patent/CN111133828B/zh
Priority to BR112020005866-1A priority patent/BR112020005866A2/pt
Priority to PCT/CN2017/103176 priority patent/WO2019056368A1/zh
Priority to CN202210377909.3A priority patent/CN115334689A/zh
Priority to EP17925544.3A priority patent/EP3678444B1/en
Priority to RU2020114612A priority patent/RU2747845C1/ru
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES17925544T priority patent/ES2925776T3/es
Priority to JP2020517195A priority patent/JP6955093B2/ja
Priority to EP21214259.0A priority patent/EP4037419A1/en
Publication of WO2019056368A1 publication Critical patent/WO2019056368A1/zh
Priority to US16/828,332 priority patent/US11357043B2/en
Priority to US17/741,114 priority patent/US11792847B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance

Definitions

  • the present application relates to the field of communications, and in particular, to a method and apparatus for uplink channel sensing in the field of communications.
  • LAA-LTE Long Term Evolution
  • 4G fourth generation
  • eLAA enhanced licensed-assisted access
  • the LAA and eLAA technologies can extend the available spectrum to the 5 GHz unlicensed band through carrier aggregation (CA) technology.
  • CA carrier aggregation
  • network devices and terminal devices can transmit downlink and uplink information on the unlicensed spectrum.
  • the Multefire 1.0 standard further implements the uplink and downlink transmission of the LTE system completely in the unlicensed spectrum, independent of the assistance of the licensed spectrum.
  • 5G NR Fifth Generation New Radio
  • LAA, eLAA and Multefire systems use listen before sending (listen before talk, LBT) Channel access mechanism, the network device needs to listen to the channel before performing downlink transmission or the terminal device performs uplink transmission, wherein the interception mode includes clear channel assessment (CCA) of random backoff, CCA
  • CCA clear channel assessment
  • the value of the initial random backoff counter is determined by the contention window size (CWS).
  • the terminal device dynamically adjusts the CWS according to the hybrid automatic repeat request (HARQ) status information fed back by the network device, and achieves the purpose of adapting to the channel state and being friendly with the competition node.
  • HARQ hybrid automatic repeat request
  • a Grant Free Uplink or Grantless Uplink (GUL) transmission mechanism is introduced, or
  • AUL Autonomous UL
  • the terminal device does not need to send a scheduling request (SR) and wait for an uplink grant (UL grant), but can directly send uplink data on the AUL resource after the LBT succeeds.
  • SR scheduling request
  • UL grant uplink grant
  • Channel interception for SR and UL grants is removed.
  • the network device does not correctly receive the AUL transmission of the terminal device and does not identify the corresponding terminal device, so that the terminal device does not receive any HARQ state information.
  • the adjustment criterion of the uplink CWS in the prior art is not applicable to the scenario in which the terminal device does not receive the HARQ state information in the AUL transmission, and cannot solve the channel adaptation problem of the terminal device in the AUL transmission.
  • Embodiments of the present invention provide an uplink channel listening method and apparatus to provide a method for adjusting an uplink CWS.
  • an embodiment of the present invention provides an uplink channel listening method.
  • the terminal device sends the LBT after the first first listening, and after the first LBT succeeds, sends the first data packet on the first uplink burst.
  • the terminal device determines a second contention window size CWS, and performs a second LBT according to the second CWS.
  • the terminal device does not receive the first indication information indicating the HARQ state after the first uplink burst
  • the second CWS is greater than the first CWS.
  • the second CWS can be 7, and the first CWS is 3.
  • the first time length is less than or equal to the first time threshold, and the terminal device does not receive the first indication information for indicating the HARQ state after the first uplink burst.
  • the second CWS is equal to the first CWS.
  • the terminal device In a third mode, if the first time length is less than or equal to the first time threshold, and the terminal device does not receive the first indication information for indicating the HARQ state after the first uplink burst,
  • the second CWS is determined according to the second indication information, where the second indication information is indication information that is received by the terminal device before the first uplink burst to indicate a HARQ state.
  • the interval between the first reference time unit and the second reference time unit corresponding to the first uplink burst is a first time length
  • the first CWS is the CWS corresponding to the previous LBT of the second LBT.
  • the first reference time unit is later than the second reference time unit.
  • an implementation of the present invention provides a wireless device comprising a processor and a memory and transceiver coupled to the processor.
  • the processor is configured to: after the first first listening, send the LBT; the transceiver is further configured to: after the first LBT succeeds, send the first data packet on the first uplink burst; the processor Also used to determine the second contention window size CWS.
  • the wireless device In the first mode, if the first time length is greater than or equal to the first time threshold, and the wireless device does not receive the first indication information for indicating the HARQ state after the first uplink burst, The second CWS is greater than the first CWS.
  • the first time length is less than or equal to the first time threshold, and the wireless device does not receive the first indication information for indicating the HARQ state after the first uplink burst.
  • the second CWS is equal to the first CWS.
  • the wireless device does not receive the first indication information for indicating the HARQ state after the first uplink burst
  • the second CWS is determined according to the second indication information, where the second indication information is indication information that is received before the first uplink burst to indicate a HARQ state.
  • the processor is further configured to perform a second LBT according to the second CWS,
  • the interval between the first reference time unit and the second reference time unit corresponding to the first uplink burst is a first time length
  • the first CWS is the CWS corresponding to the previous LBT of the second LBT.
  • the first reference time unit is later than the second reference time unit.
  • the above three methods can be used independently as an independent solution, or any two as a whole solution, or the three solutions can be used as a whole solution.
  • the first method alone
  • other methods may be used, and are not limited to the methods provided by the embodiments of the present invention.
  • the second method may be used alone.
  • other methods may be used, and are not limited to the methods provided by the embodiments of the present invention.
  • all the parallel manners are the same, and will not be described later.
  • the terminal device sends a second data packet on the second uplink burst, where the second uplink burst is later than the first uplink burst.
  • the first indication information that the terminal device does not receive the indication for the HARQ state after the first uplink burst may be that the terminal device is the second uplink after the first uplink burst
  • the first indication information for indicating the HARQ state is not received before the burst, or may be that the terminal device does not receive the first reference time unit after the second reference time unit corresponding to the first uplink burst.
  • the first indication information indicating the HARQ state, or the terminal device may not receive the first indication for the HARQ state within the first time threshold starting from the second reference time unit corresponding to the first uplink burst An indication message.
  • the first uplink burst and the second uplink burst are bursts of Autonomous UL (AUL) transmission, and it should be understood that the description is applicable to all uplink bursts in the embodiment of the present invention.
  • the previous LBT of the second LBT is the previous LBT based on the random backoff CCA, and it should be understood that the description is equally applicable to all LBTs in the embodiments of the present invention.
  • the CWS is determined by combining a time threshold, such as a timer.
  • a time threshold such as a timer.
  • the terminal device sends an uplink burst (referred to as a first uplink burst)
  • the indication information with the HARQ state (referred to as first indication information) is not received, for example, in the first uplink burst and the second
  • the first indication information is not received between the uplink bursts, and the first reference time unit exceeds the first time threshold corresponding to the first uplink burst, that is, the timer duration corresponding to the first uplink burst, and the second uplink is performed.
  • Channel interception is performed after the burst corresponding CWS is increased.
  • the CWS is added if the first reference time unit exceeds the timer and the HARQ status information is not received, thereby avoiding the delay due to the feedback HARQ status information, after an uplink burst.
  • the failure to receive the HARQ status information fed back by the network device within a time interval increases the CWS, thereby avoiding excessively increasing the CWS and reducing the success rate of the terminal device accessing the channel, so that the terminal device is performing AUL. It is more reasonable to adapt to the channel state during uplink transmission.
  • an embodiment of the present invention provides a method for uplink channel sounding.
  • the terminal device sends the first data packet on the first uplink burst.
  • the terminal device performs a first LBT, and after the first LBT succeeds, sends a second data packet on the second uplink burst.
  • the second uplink burst is later than the first uplink burst.
  • the terminal device determines a second contention window size CWS, and performs a second LBT according to the second CWS. In case the second LBT is successful, the terminal device sends a third data packet on the third uplink burst, the third uplink burst being later than the second uplink burst.
  • the second reference time unit corresponding to the first uplink burst is separated by a first time length, and the first reference time unit is separated from the second reference time unit corresponding to the second uplink burst. a second time length, where the second time length is greater than or equal to the first time threshold, and the first time length is greater than or equal to the first time threshold, and the terminal device does not receive after the first uplink burst
  • the second CWS is a CWS added once on the basis of the first CWS
  • the first CWS is the CWS corresponding to the previous LBT of the first LBT.
  • an embodiment of the present invention provides a wireless device including a processor and a memory and a transceiver coupled to the processor.
  • the transceiver is configured to send a first data packet on a first uplink burst; the processor is further configured to perform a first LBT; the transceiver is further configured to: after the first LBT succeeds, send a second data packet on the second uplink burst, where the second uplink burst is later than the first uplink burst
  • the processor is further configured to determine a second contention window size CWS, and perform a second LBT according to the second CWS;
  • the second reference time unit corresponding to the first uplink burst is separated by a first time length, and the first reference time unit is a second reference time unit corresponding to the second uplink burst. Interval of a second time length; the second time length is greater than or equal to the first time threshold, and the first time length is greater than or equal to the first time threshold, and the terminal device is after the first uplink burst
  • the second CWS is a CWS added once on the basis of the first CWS, and the first CWS is the CWS corresponding to the previous LBT of the first LBT. ;
  • the processor is further configured to: control, when the second LBT is successful, send a third data packet on a third uplink burst, where the third uplink burst is later than the second Upstream burst
  • the first reference time unit exceeds the first time threshold corresponding to the first uplink burst, that is, the timer duration corresponding to the first uplink burst, and the first reference time unit further exceeds the second uplink. If the HARQ status information is not received after the first uplink burst, that is, if the terminal device exceeds the timer corresponding to the multiple uplink bursts and does not receive the HARQ status information, The terminal device only increases the CWS once, avoids excessive punishment for the CWS in the case of multiple timeouts, and increases the rationality of the terminal device adjusting the CWS in the AUL scenario.
  • the second CWS is determined according to the second indication information, where the second CWS is smaller than the first CWS when the second indication information is an ACK or the NDI is a flip state, and the second indication information is When the NACK or NDI is not flipped UL grant, the second CWS is greater than the first CWS.
  • the second reference time unit corresponding to the first uplink burst is in the first uplink burst. Time unit.
  • the second reference time unit corresponding to the first uplink burst is a time unit that is separated from the start time unit of the first uplink burst by a third time length, and the second reference time unit After the start time unit of the first uplink burst.
  • the second reference time unit corresponding to the first uplink burst may be a start time unit of the first uplink burst.
  • the first CWS and the second CWS correspond to the same access priority.
  • an embodiment of the present invention provides a method for a terminal device to listen to an uplink channel.
  • the terminal device sends the first data packet on the first uplink burst.
  • the terminal device performs a first LBT, and after the first LBT succeeds, sends a second data packet on the second uplink burst, where the second uplink burst is later than the first uplink burst.
  • the terminal device determines a second contention window size CWS, and performs a second LBT according to the second CWS.
  • the second reference time unit corresponding to the first uplink burst is separated by a first time length, and the first reference time unit is separated from the second reference time unit corresponding to the second uplink burst. Two length of time.
  • the terminal device sends a third data packet on the third uplink burst, the third uplink burst being later than the second uplink burst.
  • the second time length is less than the first time threshold, and the first time length is greater than or equal to the first time threshold, and the terminal device does not receive after the first uplink burst.
  • the first indication information of the state and in the case where the first CWS corresponding to the first LBT is not increased compared to the third CWS, the second CWS is greater than the fourth CWS, the fourth CWS For the CWS corresponding to the previous LBT of the second LBT, the third CWS is the CWS corresponding to the previous LBT of the first LBT.
  • the second time length is less than the first time threshold, and the first time length is greater than or equal to the first time threshold, and the terminal device does not receive after the first uplink burst.
  • the second CWS is equal to the fourth CWS
  • the fourth The CWS is the CWS corresponding to the previous LBT of the second LBT
  • the third CWS is the CWS corresponding to the previous LBT of the first LBT.
  • an embodiment of the present invention provides a wireless device including a processor and a memory and a transceiver coupled to the processor.
  • the transceiver is configured to send a first data packet on a first uplink burst, where the processor is configured to perform a first LBT, and the transceiver is further configured to: after the first LBT succeeds, in a second Sending a second data packet on the uplink burst, where the second uplink burst is later than the first uplink burst; the processor is further configured to determine a second contention window size CWS, according to the second The CWS performs a second LBT, where the first reference time unit is separated from the second reference time unit corresponding to the first uplink burst by a first time length, and the first reference time unit corresponds to the second uplink burst The second reference time unit is spaced apart by a second length of time;
  • the second time length is less than the first time threshold, and the first time length is greater than or equal to the first time threshold, and the wireless device does not receive after the first uplink burst
  • the wireless device does not receive after the first uplink burst
  • the first indication information of the HARQ state and in the case where the first CWS corresponding to the first LBT is not increased compared to the third CWS, the second CWS is greater than the fourth CWS, the The fourth CWS is the CWS corresponding to the previous LBT of the second LBT, and the third CWS is the CWS corresponding to the previous LBT of the first LBT; and/or,
  • the second time length is less than the first time threshold, and the first time length is greater than or equal to the first time threshold, and the wireless device does not receive after the first uplink burst.
  • the second CWS is equal to the fourth CWS, the fourth CWS is the CWS corresponding to the previous LBT of the second LBT, and the third CWS is the CWS corresponding to the previous LBT of the first LBT;
  • the transceiver is further configured to: when the second LBT is successful, send a third data packet on the third uplink burst, where the third uplink burst is later than the second uplink burst.
  • the third uplink burst exceeds the timer corresponding to the first uplink burst, that is, the first time length is greater than or equal to the first time threshold
  • the first uplink burst and the third uplink burst There is a second uplink burst between, wherein, in a case that the first CWS corresponding to the first LBT is increased compared to the third CWS, the third CWS is the CWS corresponding to the previous LBT of the first LBT.
  • the CWS corresponding to the second uplink burst is a CWS that is increased compared to the CWS corresponding to the previous LBT, and the third uplink burst does not exceed the timer corresponding to the second uplink burst, that is, the second time length is smaller than the first
  • the terminal device does not increase the second CWS, that is, the second CWS is equal to the fourth CWS.
  • the terminal device restarts a new timer with the second uplink burst that has been adjusted by the CWS, and according to the HARQ state between the second uplink burst and the third uplink burst.
  • the reception condition and time interval determine the CWS corresponding to the third uplink burst.
  • the method provided in this embodiment does not receive the HARQ state information after the first uplink burst, and the terminal device has increased the CWS corresponding to the second uplink burst between the first uplink burst and the third uplink burst, and If the first reference time unit does not exceed the timer duration of the second uplink burst, the terminal device no longer increases the third uplink burst corresponding to the third uplink burst exceeding the timer duration corresponding to the first uplink burst. CWS, while keeping the CWS corresponding to the third uplink burst unchanged. Compared with the method of increasing the CWS by the terminal device as long as the first reference time exceeds the timer duration, the embodiment improves the rationality of the terminal device adjusting the CWS in the AUL scenario.
  • first mode and the second mode herein may be used as a whole solution or may be used as a separate solution.
  • the second reference time unit corresponding to the first uplink burst is a time unit in the first uplink burst; or the second reference time unit corresponding to the first uplink burst is The start time unit of the first uplink burst is separated by a time unit of a third time length, and the second reference time unit is after the start time unit of the first uplink burst;
  • the second reference time unit corresponding to the second uplink burst is a time unit in the second uplink burst; or the second reference time unit corresponding to the second uplink burst is the second uplink
  • the burst start time unit is separated by a time unit of a third time length, and the second reference time unit is after the start time unit of the first uplink burst.
  • the second reference time unit corresponding to the first uplink burst and the second reference time unit corresponding to the second uplink burst may be different.
  • the second reference time unit corresponding to the first uplink burst is a start time unit of the first uplink burst; or the second reference time unit corresponding to the second uplink burst is The start time unit of the second upstream burst.
  • the second CWS and the third CWS correspond to the same access priority
  • the first CWS and the fourth CWS correspond to the same access priority
  • the first reference time unit is a time unit for determining, by the terminal device, the second CWS.
  • embodiments of the foregoing aspects may further include: sending, when the second LBT is successful, sending a second data packet on the second uplink burst, where the second uplink burst is later than the first Upstream burst.
  • the first reference time unit is a start time unit of the second uplink burst.
  • the previous LBT of the second LBT is the same as the first LBT.
  • the second length of time may be predefined or received from a network device.
  • the third time length may be related to a delay in which the network device feeds back the HARQ state.
  • the second CWS and the first CWS correspond to the same access priority.
  • the determining, by the terminal device, the second CWS further includes: the first time length is greater than or equal to the first time threshold, and the terminal device is after the first uplink burst and the second uplink burst The first indication information for indicating the HARQ state is not received in the previous time, and the second uplink burst is the first uplink burst after the third reference time unit corresponding to the first uplink burst.
  • the second CWS The first CWS is greater than the first CWS, and the first CWS is the CWS corresponding to the LBT of the previous LBT, and the third reference time unit corresponding to the first uplink burst is later than the first uplink burst.
  • the second reference time unit, the time interval between the third reference time unit corresponding to the first uplink burst and the second reference time unit corresponding to the first uplink burst is the first time threshold.
  • the second CWS is greater than the first CWS.
  • the second CWS is the next-level CWS of the first CWS, that is, the minimum of the CWS set is greater than the first CWS. CWS.
  • the CWS values that the terminal device can use form a CWS set, and when the terminal device increases the CWS, it is added to the next higher value in the CWS set.
  • the CWS collection can be: ⁇ 3, 7 ⁇ , or ⁇ 7, 15 ⁇ , or ⁇ 15, 31, 63, 127, 255, 511, 1023 ⁇ .
  • the terminal device when the terminal device reduces the CWS, the CWS is reduced to the minimum value in the CWS set.
  • a communication device for performing a function of a terminal device behavior in the above method.
  • These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • a computer storage medium comprising instructions which, when run on a computer, cause the computer to perform the functions of the terminal device in practice.
  • FIG. 1 is a schematic diagram of a communication system applied to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of communication of an uplink channel listening method according to an embodiment of the present invention.
  • FIG. 3 to FIG. 7 are sequence diagrams of an uplink channel listening method according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of communication of another uplink channel listening method according to an embodiment of the present invention.
  • FIG. 10 are sequence diagrams of another uplink channel listening method according to an embodiment of the present invention.
  • FIG. 11 is a timing diagram of still another uplink channel listening method according to an embodiment of the present invention.
  • FIG. 12 is a schematic block diagram of an uplink channel listening apparatus according to an embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • LTE Long Term Evolution
  • LAA licensed licensed assisted access
  • eLAA Enhanced Licensed assisted access
  • FeLAA Step Enhanced Enhanced Spectrumd Assisted Access
  • the communication system 100 includes a network device 102 that can include multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114. Additionally, network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , demodulator, demultiplexer or antenna, etc.). Network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122. However, it will be appreciated that network device 102 can communicate with any number of terminal devices similar to terminal device 116 or 122.
  • terminal device 116 is in communication with network device 102, wherein network device 102 transmits information to terminal device 116 over downlink 118 and receives information from terminal device 116 over uplink 120.
  • terminal device 122 is in communication with network device 102, wherein network device 102 transmits information to terminal device 122 over downlink 124 and receives information from terminal device 122 over uplink 126.
  • downlink 118 and uplink 120 may use the same frequency band
  • downlink 124 and uplink 126 may use the same frequency band.
  • the communication system 100 may be a public land mobile network (PLMN) network or a D2D network or an M2M network or other network.
  • PLMN public land mobile network
  • FIG. 1 is only a simplified schematic diagram of the example, and the network may also include other network devices, FIG. 1 Not drawn in the middle.
  • the terminal device may also be referred to as a user equipment (User Equipment, UE), a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), etc., and the terminal device may be connected to a Radio Access Network (RAN).
  • UE User Equipment
  • MS Mobile Station
  • RAN Radio Access Network
  • One or more core networks communicate, for example, the terminal device is a device with wireless transceiving function, which can be deployed on land, including indoor or outdoor, handheld or on-board; or can be deployed on the water surface (such as a ship, etc.); It can also be deployed in the air (such as airplanes, balloons, satellites, etc.).
  • the terminal device may be a mobile phone, a tablet (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and industrial control ( Wireless terminal in industrial control, wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety A wireless terminal, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • the network device (for example, the network device 201) in the embodiment of the present invention is a device deployed in the radio access network to provide a wireless communication function for the terminal device.
  • the network device may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and the like.
  • the network device may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB, NB) in WCDMA, or may be an evolved Node B (eNB or e in LTE or eLTE).
  • -NodeB which may also be a next generation mobile network, such as a base station gNB ((next) generation NodeB) in 5G (fifth generation).
  • time-frequency resources for wireless communication used by the communication system 100 will be described in detail.
  • the time domain resource used by the network device and the terminal device to transmit information may be divided into multiple time units in the time domain.
  • a plurality of time units may be continuous, or a preset interval may be provided between some adjacent time units, which is not specifically limited in the embodiment of the present invention.
  • the time unit may be a time unit including transmissions for uplink information (eg, uplink data) and/or downlink information (eg, downlink data).
  • uplink information eg, uplink data
  • downlink information eg, downlink data
  • the length of a time unit can be arbitrarily set, which is not specifically limited in the embodiment of the present invention.
  • one time unit may include one or more subframes.
  • one time unit may include one or more time slots.
  • one time unit may include one or more symbols.
  • one time unit may include one or more TTIs (Transmission Time Intervals, TTIs).
  • TTIs Transmission Time Intervals, TTIs
  • one time unit may include one or more short transmission time intervals (sTTIs).
  • sTTIs short transmission time intervals
  • the time-frequency resource used by the communication system 100 for wireless communication may be divided into multiple TTIs in the time domain, and the TTI is a commonly used parameter in the current communication system (for example, an LTE system).
  • the scheduling unit that schedules information transmission in the wireless link.
  • the TTI may be a 1 ms TTI, or a subframe, and the length is 1 ms, or may be an sTTI shorter than 1 ms or a mini-slot, and the time occupied by the sTTI.
  • the length of the domain resource is shorter than 1 ms TTI. That is, when the TTI corresponding to a certain data channel is sTTI, the time domain resource occupied by the data channel is shorter than 1 ms.
  • the TTI is the time domain granularity of uplink resource allocation or uplink transmission, or TTI is the minimum time domain unit for the terminal device to perform uplink transmission.
  • the hourly service requirement causes the physical layer to introduce a shorter TTI frame structure to further shorten the scheduling interval and improve the user experience.
  • the TTI length in an LTE system can be shortened from 1 ms to 1 symbol (symbol) to 1 slot (including 7 symbols).
  • the symbols mentioned above may be Orthogonal Frequency Division Multiplexing (OFDM) symbols or Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbols in an LTE system, and may also be Is a symbol in other communication systems.
  • the length of the TTI in the 5G communication system is also less than 1 ms.
  • a TTI having a length of less than 1 ms may be referred to as an sTTI.
  • the length of the sTTI may be any one of 1 to 7 symbols, or the sTTI length may be a combination of at least 2 different lengths of 1 to 7 symbols, for example, 6 sTTIs in 1 ms.
  • Each sTTI length may be 3 symbols, 2 symbols, 2 symbols, 2 symbols, 2 symbols, 3 symbols, or 4 sTTIs in 1 ms, and each sTTI length may be 3 symbols, respectively. 4 symbols, 3 symbols, 4 symbols, each sTTI length can also be a combination of other different lengths.
  • the TTI and the sTTI specified by the prior art (for example, the LTE system) (for example, the length is 1 ms or the length is greater than 1 ms) are collectively referred to as TTI, and, in the embodiment of the present invention, the length of the TTI. It can be changed according to actual needs.
  • one time unit can be one subframe.
  • one time unit may include one sTTI, or one time unit may include one slot (slot), and one time unit may include one or more ( For example, a positive integer number less than 7 or a positive integer number less than 6; one time unit may also be 1 subframe.
  • any one of the at least one symbol may be a complete symbol or a partial symbol, where the partial symbol refers to a part of the time domain resource sending information that the device occupies the symbol, and The rest does not send information or is reserved for idle.
  • the length of the time unit for transmitting information may be 1 ms or less than 1 ms.
  • the frequency domain resource used by the communication system 100 includes an unlicensed frequency band.
  • the present invention is applicable to wireless cellular communication network systems that use unlicensed spectrum communications.
  • LTE Long Term Evolution
  • LAA licensed spectrum assisted access
  • eLAA Enhanced Licensed Assisted Access
  • FeLAA further enhanced licensed spectrum assisted access
  • communication systems using unlicensed spectrum in 5G communication systems and MulteFire systems operating independently in unlicensed spectrum.
  • the embodiment of the present invention is exemplified by the simplified communication system 100, and does not constitute a limitation of the technical solution provided by the embodiment of the present invention. Those skilled in the art may know that with the evolution of the network architecture and the emergence of new service scenarios, The technical solutions provided by the embodiments of the invention are equally applicable to similar technical problems.
  • LBT Listen-Before-Talk
  • the sending node detects that the channel is idle before the resource that it wants to occupy, which is called LBT listening success, otherwise it is called LBT listening failure.
  • the LBT process used by the sending node (the network device or the terminal device) to occupy the channel before the transmission includes the Clear Channel Assessment (CCA) process, and the downlink transmission of the network device is taken as an example, and the CCA process is specific.
  • CCA Clear Channel Assessment
  • the process can be described as follows: the network device uniformly generates a back-off counter N randomly between 0 and the contention window size (CWS), and detects the granularity of the listening time slot (CCA slot, for example, the duration is 9 us).
  • the backoff counter is decremented by one, and if the channel is busy, the backoff counter is suspended, that is, the backoff counter N remains unchanged during the channel busy time until When the back-off counter is reduced to 0 (referred to as the back-off counter is zero), the LBT is successfully detected, and the network device can immediately occupy the channel to send downlink information.
  • the network device may wait for a period of time without immediately transmitting the downlink information, and wait for the end, and then listen for an additional time slot before the time when the downlink information needs to be sent, if If the channel is idle in the extra time slot, the channel is considered to be successful and the information can be sent immediately. If the backoff counter is zeroed before the downlink information is completed, or the additional listening time slot is busy, the channel listening is said to have failed.
  • the network device adopts a dynamically adjusted CWS in the downlink transmission process, and the network device dynamically adjusts the CWS for the downlink transmission according to the HARQ state of the downlink reference subframe fed back by the terminal device, and the negative acknowledgement (Negative acknowledgement, NACK) corresponding to the downlink reference subframe.
  • NACK negative acknowledgement
  • the network device Increase the CWS, use the increased CWS for channel interception at the next LBT, avoid collision with surrounding competing nodes at the cost of lengthening the listening time, and achieve friendly coexistence;
  • ACK acknowledgement
  • the network device reduces the CWS, thereby reducing the listening time and accessing the channel faster.
  • the uplink burst involved in the embodiment of the present invention may include one or more temporally consecutive time units, and the concept of the time unit may refer to the above description.
  • the transmitting device completes a successful LBT, it is allowed to continuously transmit information for a period of time continuously on the spectrum, and this period is referred to as a maximum channel occupation time.
  • the transmitting device does not need to interrupt the transmission to re-listen the channel.
  • the transmitting device must stop transmitting to re-perform the channel, and the LBT can be sent again after the LBT is successful again.
  • the uplink burst involved in the present invention is one or more time units continuously sent after the terminal device completes a successful LBT, and the total duration of the one or more time units does not exceed the maximum channel occupation time. If the terminal device needs to continue to send uplink information after an uplink burst interrupt, channel interception must be performed again, and the LBT can be started again before the next uplink burst can be started.
  • the terminal device may send one or a combination of uplink data, uplink control information, or uplink reference signal in an uplink burst.
  • two consecutive time units in the uplink burst may be discontinuous in time, for example, there may be a gap between two adjacent time units included in the uplink burst, for example, the uplink burst does not occupy some time.
  • the time domain resource of the start symbol and/or end symbol of the unit may be discontinuous in time, for example, there may be a gap between two adjacent time units included in the uplink burst, for example, the uplink burst does not occupy some time.
  • the terminal device does not need to send the SR and wait for the UL grant, and removes the channel sensing for the SR and the UL grant, and can directly reserve the reserved AUL resources after the LBT succeeds.
  • the AUL transmission mechanism described in the embodiment of the present invention includes at least one of the following features:
  • the uplink information of the terminal device does not need to send a scheduling request (SR) to the network device, and is dynamically scheduled by the network device, but is determined by the terminal device to transmit.
  • SR scheduling request
  • the network device semi-statically or semi-continuously allocates AUL radio resources used by the terminal device for AUL transmission, including time domain and frequency domain resources.
  • the AUL radio resource is configured to the terminal device by semi-static RRC signaling and/or semi-persistent DCI signaling.
  • the AUL time domain resource is periodic, or the AUL time domain resource is a persistent time domain resource, and the SUL based uplink information is valid only for a limited number of time units.
  • the A-UCI Autonomous Uplink Control Information
  • the A-UCI includes HARQ process number information, New Data Indicator (NDI) information of the HARQ process corresponding to the uplink information, Redundancy Version (RV) information corresponding to the uplink information, and the terminal.
  • NDI New Data Indicator
  • RV Redundancy Version
  • UE ID user identification
  • the LBT process needs to be performed before the terminal device performs uplink transmission.
  • the LBT process for occupying the uplink channel also includes a CCA process of random backoff, which is called LBT based on random backoff CCA.
  • the terminal device uniformly generates a back-off counter N randomly between 0 and CWS, and performs channel sounding on the carrier with a granularity of the listening time slot (for example, a duration of 9 us), if the detection is within the listening time slot. When the channel is idle, it will fall back The counter is decremented by one.
  • the backoff counter is suspended, that is, the backoff counter N remains unchanged during the channel busy time until the channel is detected to be idle.
  • the back counter is counted.
  • the terminal device may wait for a period of time without immediately transmitting the uplink information, and wait for the end, and then listen for an additional time slot before the time when the uplink information needs to be sent, if If the channel is idle in the extra time slot, the channel is considered to be successful and the information can be sent immediately.
  • the channel listening is said to have failed.
  • the mechanism for dynamically adjusting the CWS is also adopted, and the terminal device dynamically adjusts the CWS for the uplink burst according to the HARQ state of the uplink reference subframe, and the HARQ of the uplink reference subframe.
  • the terminal device decreases the CWS; otherwise, the terminal device increases the CWS.
  • receiving HARQ status information includes the following cases:
  • the terminal device receives an uplink grant (UL grant) sent by the network device, and the network device indicates the receiving state of the AUL data, that is, the HARQ state, while scheduling the terminal device. For example, in a case where the network device does not correctly receive the AUL data but detects the terminal device to which the AUL data belongs by correctly detecting the sequence information of the AUL transmission (such as the sequence of the uplink demodulation reference signal), the network device transmits the UL grant scheduling terminal. The device retransmits on the SUL resource.
  • UL grant uplink grant
  • the NDI in the UL grant does not reverse the NDI corresponding to the AUL data, that is, the NDI value does not change, indicating that the AUL data is not correctly received, which is equivalent to the NACK feedback of the AUL data.
  • the terminal device increases the CWS; when the NDI corresponding to the AUL data of the NDI in the UL grant is reversed, it corresponds to the ACK feedback of the AUL data, and the terminal device reduces the CWS.
  • the terminal device receives the HARQ-ACK feedback information sent by the network device, and indicates whether the previous transmission performed by the terminal device using a certain HARQ process ID is correctly received. For example, if the previous transmission by a certain HARQ process ID is correctly received, the network device sends an ACK to the terminal device, and if the previous transmission by a certain HARQ process number is not correctly received, the network device sends a NACK to the terminal device. .
  • the HARQ-ACK feedback information may be multiple HARQ-ACK information corresponding to multiple AUL HARQ processes, and thus may be carried by an independent downlink control channel, where the downlink control channel generally does not need to include resource allocation information. , but may include information such as power control.
  • the HARQ-ACK feedback information may also include resource allocation information, power control information, and the like.
  • the CWS values that the terminal device can use constitute a CWS set, and when the terminal device increases the CWS, it is added to the next higher value in the CWS set; when the terminal device decreases the CWS, the CWS is reduced to the CWS.
  • the minimum value in the collection can be: ⁇ 3, 7 ⁇ , or ⁇ 7, 15 ⁇ , or ⁇ 15, 31, 63, 127, 255, 511, 1023 ⁇ .
  • increasing the CWS may be to increase the previous CWS to the next level, for example, 3 is increased to 7, 63 is increased to 127.
  • the network device does not know in advance that the terminal device sends the AUL transmission, so after the terminal device sends the AUL transmission, when the network device does not correctly receive the AUL transmission of the terminal device
  • the terminal device corresponding to the AUL transmission is not identified, the terminal device cannot be fed back the corresponding HARQ state (UL grant or HARQ-ACK feedback, etc.) information.
  • the terminal device corresponding to the AUL transmission is not identified, which may be caused by the collision of multiple terminal devices on the reserved resources at the same time, so that the network device does not recognize the uplink sequence sent by any terminal device (such as the uplink demodulation reference). Signal), or even if the uplink sequence is identified, but the terminal device cannot be identified only by the uplink sequence.
  • the network device may not correctly receive or decode the uplink control information, and the uplink control information carries the identifier of the terminal device. information.
  • the terminal device does not receive any HARQ state information after the AUL transmission, and cannot adjust the uplink CWS according to the HARQ state information fed back by the network device to adapt to the channel state.
  • the network device identifies the terminal device of the AUL transmission by uplink sequence detection, or correctly decodes the uplink control information and the uplink data information, but the network device does not immediately consider the system overhead problem.
  • the AUL terminal device is fed back the HARQ status information, and waits for the terminal device to perform multiple AUL transmissions, and then feeds back the HARQ-ACK feedback information corresponding to the multiple AUL transmitted HARQ processes by one downlink transmission.
  • the failure to receive the HARQ status information for a period of time after an uplink burst does not represent the deterioration of the uplink channel state. If the terminal device increases the CWS in this case, the terminal device may be longer. The channel cannot be occupied in time, which may cause a decrease in channel resource utilization and may cause a decrease in transmission efficiency of the terminal device.
  • the embodiment of the present invention provides an uplink channel listening method, which is used to adjust the CWS reasonably when the terminal device does not receive the HARQ state information in the scenario of the non-scheduled permission transmission on the unlicensed spectrum. Achieve the goal of adapting to the channel state and avoiding excessive penalties for the uplink CWS.
  • FIG. 2 is a schematic diagram of a channel listening method according to an embodiment of the present invention.
  • Step 210 The terminal device performs a first LBT.
  • This step may be implemented by the modem processor 124 of the terminal device in FIG.
  • Step 220 After the first LBT succeeds, the terminal device sends the first data packet on the first uplink burst.
  • an uplink burst is a time-frequency resource that the terminal device performs after the LBT of the random back-off based CBT succeeds in transmitting the data packet.
  • the uplink burst includes at least one time unit, which may be contiguous in time, for example, the TTI of the uplink burst or the sequence number of the subframe is continuous.
  • the at least one time unit may also be discontinuous in time, and there may be a gap between any two adjacent time units included in the uplink burst, for example, the uplink burst does not occupy the start and end of the time unit.
  • the time domain resource is not limited in this embodiment of the present invention.
  • the terminal device sends uplink information of the scheduling-free grant AUL on the first uplink burst, or sends partial AUL uplink information on the first burst, and the above description is equally applicable to other uplink bursts in the embodiment of the present invention.
  • the second uplink burst and the third uplink burst Any two different upstream bursts are discontinuous in time, such as the first upstream burst and the second upstream burst in FIG.
  • the action sent in this step can be implemented by the transceiver 121 of the terminal device in FIG. 12, and of course, the modem processor 124 of the terminal device in FIG. 12 can be used to control the implementation of the transceiver 121.
  • Step 230 The terminal device determines a second contention window size CWS.
  • the terminal device In the first mode, if the first time length is greater than or equal to the first time threshold, and the terminal device does not receive the first indication information indicating the HARQ state after the first uplink burst, Said The second CWS is greater than the first CWS.
  • This step may be implemented by the modem processor 124 of the terminal device in FIG.
  • the terminal device sends a second data packet on the second uplink burst, where the second uplink burst is later than the first uplink burst.
  • the first indication information of the HARQ state includes the HARQ state information corresponding to the AUL transmission and the SUL transmission, or the first indication information of the HARQ state includes the HARQ state information corresponding to the AUL transmission and does not include the corresponding to the SUL transmission.
  • HARQ status information It should be understood that the above description of the first indication information for the HARQ state is equally applicable to other embodiments of the present invention.
  • the embodiment of the present invention introduces a timer to determine the CWS.
  • the second reference time unit corresponding to the first uplink burst is the start point of the timer corresponding to the first uplink burst.
  • the start time of the timer is The end time or the start time of the second reference time unit
  • the length of the timer is the first time threshold.
  • the start time of the timer is taken as the end time of the second reference time unit. It should be understood that the above description of the start and length of the timer is also applicable to the timers corresponding to other bursts in the embodiment of the present invention.
  • the second reference time unit corresponding to the second uplink burst is used. The starting point of the timer corresponding to the second uplink burst.
  • the second reference time unit corresponding to the first uplink burst has the following possible scenarios:
  • the second reference time unit corresponding to the first uplink burst is a certain one of the first uplink bursts, for example, a certain subframe or TTI.
  • the second reference time unit corresponding to the first uplink burst is a subframe or TTI that ends in the first uplink burst.
  • the start point of the timer corresponding to the first uplink burst is the first uplink.
  • the end time of the transmission is as shown in (a) of Fig. 2 .
  • the second reference time unit corresponding to the first uplink burst is the earliest subframe or TTI in the first uplink burst.
  • the start point of the timer corresponding to the first uplink burst is the first uplink.
  • the earliest subframe or the end time of the TTI as shown in (b) of Figure 2.
  • the second reference time unit corresponding to the first uplink burst is a time unit of a third time length after the target time unit in the first uplink burst, and optionally, the target time unit in the first uplink burst is the first The first time unit in the uplink burst, for example, the target time unit is the first subframe or TTI in the first uplink burst, specifically, the start of the timer corresponding to the first uplink burst is the first The time of the first subframe in the uplink burst or the third time interval after the TTI is as shown in (c) of FIG. 2 .
  • the second length of time may be defined by a protocol or a regulation, for example, may be preset in the terminal device.
  • the second length of time may be that the network device is configured through high layer signaling or is notified by physical layer signaling.
  • the second time length may be a HARQ state information feedback delay or greater than the feedback delay.
  • the network device delays the HARQ state information feedback on the data information.
  • the HARQ state information corresponding to the data information on the time unit #n can be fed back at #n+k at the earliest.
  • the HARQ state information feedback delay is k time units.
  • the second time length may be k subframes or TTI.
  • the two possible situations in which the second reference time unit corresponding to the first uplink burst exists are also applicable to the second reference time corresponding to the other uplink bursts in the embodiment of the present invention, for example, the second uplink burst corresponds to the second reference time. Second reference time, etc., will not be described later.
  • the first reference time unit determines a time unit of the second CWS for the terminal device, for example, the terminal device determines the second CWS at a certain TTI, then the first reference time unit is the TTI, or
  • the start time unit of the second uplink burst for example, the start time unit may be a start time unit determined by the terminal device according to the timing relationship.
  • the first reference time unit determines a time unit of the second CWS for the terminal device, where the first time length is between the start point of the timer corresponding to the first uplink burst and the time unit of the second CWS determined by the terminal device length of time.
  • the first time length is greater than the first time threshold, indicating that the terminal device determines that the time unit of the second CWS exceeds the end of the timer corresponding to the first uplink burst, and is referred to as the first reference time unit exceeding the timer.
  • the terminal device determines that the time unit of the second CWS is a time unit before the terminal device performs the second LBT. For example, the terminal device has uplink AUL information that needs to be sent, and needs to determine before performing the second LBT to occupy the unlicensed channel.
  • the second CWS corresponding to the two LBTs.
  • the terminal device determines a time unit of the second CWS, and the terminal device does not have uplink AUL information that needs to be sent. For example, when the timer corresponding to the first uplink burst times out and the HARQ status information is not received, the terminal device immediately increases the CWS, that is, determines the second CWS, and the terminal device has the uplink AUL information to be sent after a period of time. The terminal device performs the second LBT according to the second CWS, and sends the uplink information on the second uplink burst if the second LBT succeeds.
  • the first reference time unit is a start time unit of the second uplink burst, for example, the start time unit may be a start time unit determined by the terminal device according to the timing relationship.
  • the start time unit of the second uplink burst may be the first (earliest) subframe or TTI of the second uplink burst.
  • the first time length is greater than the first time threshold, indicating that the start time unit or the start time of the second uplink burst exceeds the end of the timer corresponding to the first uplink burst, which is referred to as a first reference time. The unit has exceeded the timer.
  • first reference time unit the two possible situations included in the first reference time unit are also applicable to the first reference time corresponding to other uplink bursts in the embodiment of the present invention, for example, the first reference time corresponding to the third uplink burst, etc., Do not repeat them.
  • the interval between the first reference time unit and the second reference time unit corresponding to the first uplink burst is a first time length, that is, the first reference time unit is separated from the start interval of the timer corresponding to the first uplink burst by the first time. length.
  • the terminal device does not receive the first indication information for indicating the HARQ state after the first uplink burst
  • the second CWS is greater than The first CWS
  • the first CWS is the CWS corresponding to the LBT of the previous LBT.
  • the terminal device does not receive the first indication information indicating the HARQ state and the first reference corresponding to the second uplink burst after the first uplink burst.
  • the time unit exceeds the timer T1 corresponding to the first uplink burst.
  • the first indication information indicating the HARQ state as described above includes at least one of HARQ-ACK feedback information and a UL grant.
  • the terminal device increases the CWS, that is, the second CWS is greater than the first CWS, and the first CWS is the CWS corresponding to the previous LBT of the second LBT.
  • the previous LBT of the second LBT refers to the LBT based on the random back-off CCA
  • the LBT described in the embodiment of the present invention is an LBT based on the random back-off CCA, and will not be described later.
  • the CWS corresponding to the LBT of the terminal device is adjusted on the basis of the CWS corresponding to the previous LBT of the terminal device, wherein the adjustment includes adding, maintaining, and decreasing. For example, if you determine this time If the CWS corresponding to the LBT is increased, the CWS corresponding to the previous LBT is increased to the next higher value in the CWS set. If it is determined that the CWS corresponding to the LBT remains unchanged, the CWS corresponding to the previous LBT is maintained. the same.
  • the first CWS and the second CWS correspond to the same access priority.
  • the first CWS is the CWS of the same LBT that the previous LBT corresponds to the same access priority.
  • each terminal device may perform LBT by using one of at least two access priority classes according to the service type when accessing the channel.
  • the CWS set of access priority 1 is ⁇ 3, 7 ⁇
  • the CWS set of access priority 2 For ⁇ 7, 15 ⁇
  • the CWS set of access priority 3 is ⁇ 15, 31, 63, 127, 255, 511, 1023 ⁇
  • the CWS set of access priority 4 is ⁇ 15, 31, 63, 127, 255, 511, 1023 ⁇ .
  • the adjustment operation of the CWS added or decreased or remains unchanged is performed for each of the at least two access priorities, and is not limited to the execution of the LBT.
  • Access priority For example, for the four access priorities, the terminal device uses the access priority 1 to perform the LBT before, and if the CWS needs to be added, the CWS is added to the access priority for each of the four access priorities. The next higher value in the corresponding CWS value set, and then the LBT is performed using the CWS value adjusted by the access priority 1. Therefore, the size relationship between any two CWSs described in the embodiments of the present invention refers to the relationship between two CWSs under the same access priority.
  • the second CWS is greater than the first CWS, and the first CWS corresponding to the first LBT is added to the second CWS corresponding to the second LBT for any access priority.
  • the second CWS is equal to the first CWS, and the second CWS corresponding to the second LBT is kept equal to the first CWS corresponding to the first LBT for any access priority.
  • the first indication information that the terminal device does not receive the indication for the HARQ state after the first uplink burst may be that the terminal device is the second uplink after the first uplink burst
  • the first indication information for indicating the HARQ state is not received before the burst, or may be that the terminal device does not receive the first reference time unit after the second reference time unit corresponding to the first uplink burst.
  • the first indication information indicating the HARQ state, or the terminal device may not receive the first indication for the HARQ state within the first time threshold starting from the second reference time unit corresponding to the first uplink burst An indication message.
  • the first time length is greater than the first time threshold, and the terminal device does not receive the HARQ state for indicating the time between the second reference time corresponding to the first uplink burst and the first reference time unit.
  • the second CWS is greater than the first CWS, and the first CWS is the CWS corresponding to the previous LBT of the second LBT, that is, the terminal device increases the CWS.
  • the terminal device receives a second reference time unit corresponding to the first uplink burst, that is, before the start of the timer and after the first uplink burst, and is used to indicate the HARQ state.
  • the first indication information at this time, for the second uplink burst of the first reference time unit exceeding the timer, the terminal device increases the CWS.
  • the first time length is greater than the first time threshold, and the terminal device does not receive the first one for indicating the HARQ state within the first time threshold from the second reference time corresponding to the first uplink burst.
  • the second CWS is greater than the first CWS, and the first CWS is the previous LBT corresponding to the second LBT.
  • the CWS, the terminal device adds CWS.
  • the terminal device receives the first indication information for indicating the HARQ state after the timer timing corresponding to the first uplink burst ends and before the first reference time unit, where When the first reference time unit exceeds the second uplink burst of the timer, the terminal device increases the CWS.
  • the first time length is less than or equal to the first time threshold, and the terminal device does not receive the first indication information for indicating the HARQ state after the first uplink burst.
  • the second CWS is equal to the first CWS.
  • the previous LBT of the second LBT refers to the LBT based on the random back-off CCA.
  • the terminal device does not receive the first indication information for indicating the HARQ state after the first uplink burst, and the first reference time unit corresponding to the second uplink burst does not exceed the first uplink burst corresponding to the first uplink burst.
  • the timer T1 it should be understood that the first indication information indicating the HARQ state as described above includes at least one of HARQ-ACK feedback information and a UL grant.
  • the terminal device does not increase the CWS, that is, the second CWS is equal to the first CWS, and the first CWS is the CWS corresponding to the LBT of the previous LBT.
  • the determining, by the terminal device, the second CWS includes: when the first reference time unit is no later than In the case of the second reference time unit corresponding to the first uplink burst, or when the first time length is less than the first time threshold, and the second reference time unit and the first reference time corresponding to the terminal device in the first uplink burst
  • the terminal device does not increase the CWS, that is, the second CWS is equal to the first CWS, and the first CWS is the CWS corresponding to the LBT of the previous LBT.
  • the first time length is less than or equal to the first time threshold, and the terminal device does not receive the first indication for indicating the HARQ state after the first uplink burst.
  • the second CWS is determined according to the second indication information, where the second indication information is indication information that is received by the terminal device before the first uplink burst to indicate a HARQ state. .
  • the terminal device does not receive the first indication information for indicating the HARQ state after the first uplink burst, and the first reference time unit corresponding to the second uplink burst does not exceed the first uplink burst corresponding to the first uplink burst.
  • the timer T1 it should be understood that the first indication information indicating the HARQ state as described above includes at least one of HARQ-ACK feedback information and a UL grant.
  • the terminal device determines the second CWS according to the HARQ state information before the first uplink burst, wherein the terminal device adjusts the CWS according to the HARQ state information to reuse the method in the prior art.
  • the first time length is greater than or equal to the first time threshold, and the terminal device does not receive the time after the first uplink burst and before the second uplink burst.
  • the terminal device increases the CWS, that is, the second CWS is greater than The first CWS, the first CWS is the CWS corresponding to the LBT of the previous LBT, and the third reference time unit corresponding to the first uplink burst is later than the second reference time corresponding to the first uplink burst.
  • the unit, the time interval between the third reference time unit corresponding to the first uplink burst and the second reference time unit corresponding to the first uplink burst is a first time threshold. It should be understood that the third reference time unit corresponding to the first uplink burst is a timer corresponding to the first uplink burst. End time unit. In this possible design, the terminal device only increases the CWS for the first uplink burst that occurs after the timer corresponding to the first uplink burst expires.
  • the second uplink burst may be the first AUL uplink burst after the third reference time unit corresponding to the first uplink burst.
  • the second uplink burst may be an uplink burst of the LBT based on the random backoff CCA for the first one after the third reference time unit corresponding to the first uplink burst.
  • the second uplink burst may be an AUL uplink burst of the LBT based on the random backoff CCA for the first one after the third reference time unit corresponding to the first uplink burst.
  • the terminal device determines the CWS by performing a method provided by the embodiment of the present invention by combining a time threshold, such as a timer.
  • a time threshold such as a timer.
  • the terminal device sends an uplink burst (referred to as a first uplink burst)
  • the indication information with the HARQ state (referred to as first indication information) is not received, for example, in the first uplink burst and the second
  • the first indication information is not received between the uplink bursts, and the first reference time unit exceeds the first time threshold corresponding to the first uplink burst, that is, the timer duration corresponding to the first uplink burst, and the second uplink is performed.
  • Channel interception is performed after the burst corresponding CWS is increased.
  • the CWS is added if the first reference time unit exceeds the timer and the HARQ status information is not received, thereby avoiding the delay due to the feedback HARQ status information, after an uplink burst.
  • the failure to receive the HARQ status information fed back by the network device within a time interval increases the CWS, thereby avoiding excessively increasing the CWS and reducing the success rate of the terminal device accessing the channel, so that the terminal device is performing AUL. It is more reasonable to adapt to the channel state during uplink transmission.
  • FIG. 8 is a schematic diagram of a process of an uplink channel listening method according to an embodiment of the present invention.
  • FIG. 9 and FIG. 10 are timing diagrams of a method according to an embodiment of the present invention, which are described below in conjunction with FIG. 8-10. The method provided by the embodiment of the invention.
  • Step 810 The terminal device sends the first data packet on the first uplink burst.
  • Step 820 The terminal device performs the first LBT.
  • This step may be implemented by the modem processor 124 of the terminal device in FIG.
  • Step 830 After the first LBT succeeds, send a second data packet on the second uplink burst, where the second uplink burst is later than the first uplink burst.
  • the action transmitted in the above steps can be implemented by the transceiver 121 of the terminal device in FIG. 12, and of course, the modem processor 124 of the terminal device in FIG. 12 can be used to control the implementation of the transceiver 121.
  • Step 840 The terminal device determines a second contention window size CWS.
  • the second reference time unit corresponding to the first uplink time interval is separated by a first time length, and the second reference time unit corresponding to the second uplink time interval is separated by a second time length;
  • the second time length is less than the first time threshold, and the first time length is greater than or equal to the first time threshold, and the terminal device does not receive the HARQ state within the time after the first uplink burst.
  • the second CWS is greater than the fourth CWS, and the fourth CWS is the previous LBT corresponding to the second LBT.
  • the CWS, the third CWS is the CWS corresponding to the previous LBT of the first LBT.
  • the second time length is less than the first time threshold, and the first time length is greater than or equal to the first time threshold, and the terminal device does not receive the HARQ state within the time after the first uplink burst.
  • the second CWS is equal to the fourth CWS, and the fourth CWS is corresponding to the previous LBT of the second LBT.
  • the third CWS is the CWS corresponding to the previous LBT of the first LBT.
  • the terminal device does not increase the second CWS.
  • the terminal device restarts a new timer with the second uplink burst that has been adjusted by the CWS, and determines the third according to the reception condition and the time interval of the HARQ state between the second uplink burst and the third uplink burst.
  • the CWS corresponding to the upstream burst.
  • adjusting the CWS by the terminal device for the second uplink burst means that the terminal device increases the CWS for the second uplink burst. That is, if there is a certain uplink burst between the first uplink burst and the third uplink burst, the CWS corresponding to the uplink burst remains unchanged compared to the CWS corresponding to the previous LBT, or compared to the previous If the CWS corresponding to the LBT is reduced, the terminal device needs to increase the second CWS.
  • the terminal device does not increase the second CWS corresponding to the third uplink burst, and avoids repeatedly penalizing the CWS; if the second uplink burst keeps the CWS unchanged or reduced
  • the terminal device increases the CWS, that is, the second CWS is greater than the fourth CWS, and the fourth CWS is the CWS corresponding to the previous LBT of the second LBT.
  • the previous LBT of the second LBT refers to the LBT based on the random back-off CCA.
  • the CWS corresponding to the second uplink burst may be added according to the indication information that includes the HARQ state.
  • the terminal device is a NACK according to the HARQ state information received before the first uplink burst. Therefore, the terminal device increases the CWS corresponding to the second uplink burst.
  • the CWS corresponding to the second uplink burst may be increased due to the HARQ state receiving timeout. As shown in FIG. 8, for example, the second uplink burst exceeds a previous burst timer, and twice. The HARQ status information is not received between bursts, so the terminal device increases the CWS corresponding to the second uplink burst.
  • first mode and the second mode herein may be used as a whole solution or may be used as a separate solution.
  • This step may be implemented by the modem processor 124 of the terminal device in FIG.
  • Step 850 Perform a second LBT according to the second CWS.
  • This step may be implemented by the modem processor 124 of the terminal device in FIG.
  • Step 860 In the case that the second LBT is successful, the third data packet is sent on the third uplink burst, and the third uplink burst is later than the second uplink burst.
  • the action sent in this step can be implemented by the transceiver 121 of the terminal device in FIG. 12, and of course, the modem processor 124 of the terminal device in FIG. 12 can be used to control the implementation of the transceiver 121.
  • the first reference time unit determines a time unit of the second CWS for the terminal device, for example, the terminal device determines the second CWS at a certain TTI, then the first reference time unit is the TTI, or
  • the start time unit of the third uplink burst for example, the start time unit may be a start time unit determined by the terminal device according to the timing relationship.
  • the second reference time unit corresponding to the first uplink burst is a time unit in the first uplink burst; or the second reference time unit corresponding to the first uplink burst is The start time unit of the first uplink burst is separated by a time unit of a third time length, and the second reference time unit is in the After the start time unit of an upstream burst;
  • the second reference time unit corresponding to the second uplink burst is a time unit in the second uplink burst; or the second reference time unit corresponding to the second uplink burst is the second uplink
  • the burst start time unit is separated by a time unit of a third time length, and the second reference time unit is after the start time unit of the first uplink burst.
  • the second reference time unit corresponding to the first uplink burst and the second reference time unit corresponding to the second uplink burst may be different.
  • the second reference time unit corresponding to the first uplink burst is a start time unit of the first uplink burst; or the second reference time unit corresponding to the second uplink burst is The start time unit of the second upstream burst.
  • the first CWS and the third CWS correspond to the same access priority
  • the second CWS and the fourth CWS correspond to the same access priority
  • the CWS corresponding to the LBT of the terminal device is adjusted on the basis of the CWS corresponding to the previous LBT of the terminal device, wherein the adjustment includes adding, maintaining, and decreasing. For example, if it is determined that the CWS corresponding to the LBT is increased, the CWS corresponding to the previous LBT is increased to the next higher value in the CWS set, and if it is determined that the CWS corresponding to the LBT remains unchanged, then The CWS corresponding to the previous LBT is the same.
  • each terminal device may perform LBT by using one of at least two access priority classes according to the service type when accessing the channel.
  • the CWS set of access priority 1 is ⁇ 3, 7 ⁇
  • the CWS set of access priority 2 For ⁇ 7, 15 ⁇
  • the CWS set of access priority 3 is ⁇ 15, 31, 63, 127, 255, 511, 1023 ⁇
  • the CWS set of access priority 4 is ⁇ 15, 31, 63, 127, 255, 511, 1023 ⁇ .
  • the adjustment operation of the CWS added or decreased or remains unchanged is performed for each of the at least two access priorities, and is not limited to the execution of the LBT.
  • Access priority For example, for the four access priorities, the terminal device uses the access priority 1 to perform the LBT before, and if the CWS needs to be added, the CWS is added to the access priority for each of the four access priorities. The next higher value in the corresponding CWS value set, and then the LBT is performed using the CWS value adjusted by the access priority 1. Therefore, the size relationship between any two CWSs described in the embodiments of the present invention refers to the relationship between two CWSs under the same access priority.
  • the second CWS is greater than the first CWS, and the first CWS corresponding to the first LBT is added to the second CWS corresponding to the second LBT for any access priority.
  • the second CWS is equal to the first CWS, and the second CWS corresponding to the second LBT is kept equal to the first CWS corresponding to the first LBT for any access priority.
  • the first reference time unit determines, for the terminal device, a time unit of the second CWS.
  • the first reference time unit is a start time unit of the second uplink burst.
  • the previous LBT of the second LBT is the same as the first LBT.
  • the second length of time may be predefined or received from a network device.
  • the third time length may be related to a delay in which the network device feeds back the HARQ state.
  • the method provided in this embodiment does not receive the HARQ state information after the first uplink burst, and the If the terminal device has increased the CWS corresponding to the second uplink burst between the uplink burst and the third uplink burst, and the first reference time unit does not exceed the timer duration of the second uplink burst, the terminal device does not The CWS corresponding to the third uplink burst is increased because the third uplink burst exceeds the timer duration corresponding to the first uplink burst, and the CWS corresponding to the third uplink burst is kept unchanged.
  • FIG. 11 is a timing diagram of still another uplink channel listening method according to an embodiment of the present invention. A further method provided by the embodiment of the present invention is described below with reference to FIG. 8 and FIG.
  • Step 810 The terminal device sends the first data packet on the first uplink burst.
  • Step 820 The terminal device performs a first LBT.
  • This step may be implemented by the modem processor 124 of the terminal device in FIG.
  • Step 830 After the first LBT succeeds, send a second data packet on the second uplink burst, where the second uplink burst is later than the first uplink burst.
  • Step 840 The terminal device determines a second contention window size CWS
  • the second reference time unit corresponding to the first uplink burst is separated by a first time length, and the first reference time unit is a second reference time unit corresponding to the second uplink burst. Interval of a second time length; the second time length is greater than or equal to the first time threshold, and the first time length is greater than or equal to the first time threshold, and the terminal device is after the first uplink burst
  • the second CWS is a CWS added once on the basis of the first CWS, and the first CWS is the CWS corresponding to the previous LBT of the first LBT.
  • the third uplink burst exceeds the timer corresponding to the first uplink burst, that is, the first time length is greater than or equal to the first time threshold, and the third uplink burst exceeds the timer corresponding to the second uplink burst, That is, if the second time length is greater than or equal to the first time threshold, and the terminal device does not receive the first indication information indicating the HARQ state after the first uplink burst and before the third uplink burst, the terminal device only The CWS is added once, that is, the first CWS is the CWS after the addition of the second CWS, and the second CWS is the CWS corresponding to the previous LBT of the first LBT.
  • the third uplink burst exceeds the timer T1 corresponding to the first uplink burst and the timer T2 corresponding to the second uplink burst, and the terminal device is in the first uplink burst and the third uplink burst.
  • the first indication information for indicating the HARQ state is not received, in which case the terminal device only increases the CWS once.
  • the first CWS corresponding to the third uplink burst is greater than the second CWS, and the second CWS
  • the CWS corresponding to the previous LBT of the first LBT, and the first CWS is the smallest CWS of the CWSs of the same access priority that is larger than the CWS of the second CWS.
  • This step may be implemented by the modem processor 124 of the terminal device in FIG.
  • Step 850 Perform a second LBT according to the second CWS.
  • This step may be implemented by the modem processor 124 of the terminal device in FIG.
  • Step 860 In the case that the second LBT is successful, sending a third data packet on the third uplink burst, where the third uplink burst is later than the second uplink burst.
  • the action transmitted in the above steps can be implemented by the transceiver 121 of the terminal device in FIG. 12, and of course, the modem processor 124 of the terminal device in FIG. 12 can be used to control the implementation of the transceiver 121.
  • the first reference time unit determines a time unit of the second CWS for the terminal device, for example, the terminal device determines the second CWS at a certain TTI, then the first reference time unit is the TTI, or
  • the start time unit of the third uplink burst for example, the start time unit may be a start time unit determined by the terminal device according to the timing relationship.
  • the second reference time unit corresponding to the first uplink burst is a time unit in the first uplink burst; or the second reference time unit corresponding to the first uplink burst is The start time unit of the first uplink burst is separated by a time unit of a third time length, and the second reference time unit is after the start time unit of the first uplink burst;
  • the second reference time unit corresponding to the second uplink burst is a time unit in the second uplink burst; or the second reference time unit corresponding to the second uplink burst is the second uplink
  • the burst start time unit is separated by a time unit of a third time length, and the second reference time unit is after the start time unit of the first uplink burst.
  • the second reference time unit corresponding to the first uplink burst and the second reference time unit corresponding to the second uplink burst may be different.
  • the second reference time unit corresponding to the first uplink burst is a start time unit of the first uplink burst; or the second reference time unit corresponding to the second uplink burst is The start time unit of the second upstream burst.
  • the first reference time unit determines, for the terminal device, a time unit of the second CWS.
  • the first reference time unit is a start time unit of the second uplink burst.
  • the first CWS and the second CWS correspond to the same access priority.
  • the previous LBT of the second LBT is the same as the first LBT.
  • the second length of time may be predefined or received from a network device.
  • the third time length may be related to a delay in which the network device feeds back the HARQ state.
  • the first reference time unit exceeds the first time threshold corresponding to the first uplink burst, that is, the timer duration corresponding to the first uplink burst, and the first reference time unit further exceeds the timing corresponding to the second uplink burst. If the device does not receive the HARQ status information after the first uplink burst, that is, if the terminal device exceeds the timer corresponding to the multiple uplink bursts and does not receive the HARQ status information, the terminal device only increases.
  • a CWS avoids excessive penalties for CWS in the case of multiple timeouts, increasing the rationality of the terminal device adjusting CWS in the AUL scenario.
  • FIG. 12 is a schematic structural diagram of a terminal device.
  • the terminal device is capable of performing the method provided by the embodiment of the present invention.
  • the terminal device may be any of the two terminal devices 116 and 122 in FIG.
  • the terminal device includes a transceiver 121, an application processor 122, a memory 123, and a modem processor 124.
  • the transceiver 121 can condition (e.g., analog convert, filter, amplify, upconvert, etc.) the output samples and generate an uplink signal that is transmitted via an antenna to the network device described in the above embodiments. On the downlink, the antenna receives the downlink signal transmitted by the network device.
  • the transceiver 121 can condition (eg, filter, amplify, downconvert, digitize, etc.) the signals received from the antenna and provide input samples.
  • the transceiver 121 can implement the function of sending and receiving the terminal device in the foregoing method embodiment, including the function of sending a data packet on the uplink burst.
  • the technical features in the foregoing method embodiments are also applicable to the device embodiment, and the specific details are not here. Give a brief description.
  • Modem processor 124 also sometimes referred to as a controller or processor, may include a baseband processor (BBP) (not shown) that processes the digitized received signal to extract information conveyed in the signal Or data bits.
  • BBP baseband processor
  • the BBP is typically implemented in one or more numbers within the modem processor 124 or as a separate integrated circuit (IC), as needed or desired.
  • a modem processor 1004 may include an encoder 1241, a modulator 1242, a decoder 1243, and a demodulator 1244.
  • the encoder 1241 is for encoding the signal to be transmitted.
  • encoder 1241 can be used to receive traffic data and/or signaling messages to be transmitted on the uplink and to process (eg, format, encode, or interleave, etc.) the traffic data and signaling messages.
  • Modulator 1242 is used to modulate the output signal of encoder 1241.
  • the modulator can perform symbol mapping and/or modulation processing on the encoder's output signals (data and/or signaling) and provide output samples.
  • a demodulator 1244 is used to demodulate the input signal.
  • demodulator 1244 processes the input samples and provides symbol estimates.
  • the decoder 1243 is configured to decode the demodulated input signal.
  • the decoder 1243 de-interleaves, and/or decodes the demodulated input signal and outputs the decoded signal (data and/or signaling).
  • Encoder 1241, modulator 1242, demodulator 1244, and decoder 1243 may be implemented by a composite modem processor 124. These units are processed according to the radio access technology employed by the radio access network.
  • Modem processor 124 receives digitized data representative of voice, data or control information from application processor 122 and processes the digitized data for transmission.
  • the associated modem processor can support one or more of a variety of wireless communication protocols of various communication systems, such as LTE, new air interface, Universal Mobile Telecommunications System (UMTS), high speed packet access (High Speed) Packet Access, HSPA) and more.
  • UMTS Universal Mobile Telecommunications System
  • High Speed Packet Access High Speed Packet Access
  • one or more memories may also be included in the modem processor 124.
  • modem processor 124 and the application processor 122 may be integrated in one processor chip.
  • the modem processor 124 can implement the processing functions of the terminal device in the foregoing method embodiment, including determining the CWS and performing the LBT, and the modem processor 124 can also implement the function of transmitting the data packet and performing the LBT together with the transceiver 121.
  • the technical features in the method embodiments are also applicable to the device embodiments, and the specific details are not described herein.
  • the memory 123 is used to store program codes (sometimes referred to as programs, instructions, software, etc.) and/or data for supporting communication of the terminal device.
  • the memory 123 may include one or more storage units, for example, may be a modem processor 124 for storing program code or a storage unit inside the application processor 122, or may be associated with the modem processor 124 or Application processor 122 independent external storage unit, or may also be a package A memory unit internal to modem processor 124 or application processor 122 and components of an external memory unit separate from modem processor 124 or application processor 122 are included.
  • the modem processor 121 can be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), and a field programmable gate. Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, other integrated circuit, or any combination thereof. Modem processor 121 may implement or perform various exemplary logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing function devices, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, or a system-on-a-chip (SOC) or the like.
  • the modem processor 121 controls and manages the actions of the terminal for performing the operations performed by the terminal device in the above embodiment.
  • the transceiver 121 is coupled to the modem processor 121 and transmits or receives wireless signals through an antenna, which may be a single antenna or multiple antennas.
  • the memory 123 is configured to store data generated by the terminal device during the execution of the method of the embodiment of the present invention and program code for supporting communication of the terminal device.
  • the present invention also provides an apparatus (e.g., an integrated circuit, a wireless device, a circuit module, etc.) for implementing the above method.
  • an apparatus e.g., an integrated circuit, a wireless device, a circuit module, etc.
  • the means for implementing the methods described herein may be stand-alone devices or may be part of a larger device.
  • the device may be (i) a self-contained IC; (ii) a set having one or more 1Cs, which may include a memory IC for storing data and/or instructions; (iii) an RFIC, such as an RF receiver or RF transmitter (iv) an ASIC, such as a mobile station modem; (v) a module that can be embedded in other devices; (vi) a receiver, a cellular phone, a wireless device, a handset, or a mobile unit; (vii) other, etc. Wait.
  • a self-contained IC may include a memory IC for storing data and/or instructions; (iii) an RFIC, such as an RF receiver or RF transmitter (iv) an ASIC, such as a mobile station modem; (v) a module that can be embedded in other devices; (vi) a receiver, a cellular phone, a wireless device, a handset, or a mobile unit; (vii) other, etc. Wait.
  • the method and apparatus provided by the embodiments of the present invention can be applied to a terminal device.
  • the terminal device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software.
  • the embodiment of the present invention does not limit the specific structure of the execution body of the method, as long as the transmission signal according to the embodiment of the present invention can be executed by running a program recording the code of the method of the embodiment of the present invention.
  • the method can be communicated.
  • the execution body of the method for wireless communication in the embodiment of the present invention may be a terminal device, or A function module that calls the program and executes the program.
  • a computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (DVD). Etc.), smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, sticks or key drivers, etc.).
  • a magnetic storage device eg, a hard disk, a floppy disk, or a magnetic tape, etc.
  • CD compact disc
  • DVD digital versatile disc
  • Etc. smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the embodiments of the present invention, or the part contributing to the prior art or the part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or an access network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例提供了一种上行信道侦听的方法和装置。在该方法和装置中,通过结合一个时间门限,例如定时器,来确定竞争窗大小CWS。当终端设备在发送一个上行突发之后,如果未接收到带有HARQ状态的指示信息,则将CWS增加后再执行信道侦听。通过设置时间门限,例如定时器,避免了因为反馈HARQ状态信息存在时延,在一次上行突发之后的一个时间间隔(例如小于时延的时间间隔)内未接收到网络设备反馈的HARQ状态信息就增加CWS,因此,避免过度增加CWS而降低终端设备接入信道的成功率,使得终端设备在进行免调度许可上行传输时更合理地适应信道状态。

Description

上行信道侦听的方法和装置 技术领域
本申请涉及通信领域,特别涉及通信领域中上行信道侦听的方法和装置。
背景技术
第四代(4G)移动通信技术的Release 13中引入授权辅助接入的长期演进(licensed-assisted access using Long Term Evolution,LAA-LTE)技术(即LAA技术),在Release 14增强授权辅助接入(enhanced licensed-assisted access,eLAA)技术。LAA和eLAA技术通过载波聚合(carrier aggregation,CA)技术,可以将可用的频谱扩展到5GHz非授权频段,通过授权频谱的辅助,网络设备和终端设备可以在非授权频谱上传输下行和上行信息。Multefire 1.0标准在LAA和eLAA的基础上,进一步地将LTE系统的上下行传输完全在非授权频谱实现,不依赖于授权频谱的辅助。在未来的第五代新空口(fifth generation New Radio,5G NR)系统中,也存在在非授权频谱上的传输。
为了实现在非授权频谱上满足和不同运营商的网络设备以及终端设备,以及Wi-Fi等异系统无线节点的友好共存,LAA、eLAA和Multefire系统采用先侦听后发送(listen before talk,LBT)的信道接入机制,网络设备在进行下行传输或终端设备在进行上行传输之前需要对信道进行侦听,其中侦听方式包括随机回退的空闲信道评测(clear channel assessment,CCA),CCA的初始随机回退计数器的取值由竞争窗长度(contention window size,CWS)决定。对于基于调度的上行传输,终端设备根据网络设备反馈的混合自动重传请求(hybrid automatic repeat request,HARQ)状态信息动态地调整CWS,达到适应信道状态并与竞争节点友好相处的目的。
在Release 15引入的进一步增强的授权辅助接入(Further enhanced licensed-assisted access,FeLAA)系统以及Multefire 1.1系统中,引入了免调度许可上行(Grant free Uplink或Grantless Uplink,GUL)传输机制,或者称为自主上行(Autonomous UL,AUL)传输机制,终端设备不需要发送调度请求(scheduling request,SR)和等待上行许可(UL grant),而是可以在LBT成功之后直接在AUL的资源上发送上行数据,去除了针对SR和UL grant的信道侦听。对于免调度许可的上行传输而言,在终端设备发送AUL传输之后,存在网络设备没有正确接收终端设备的AUL传输且没有识别相应的终端设备的情况,造成终端设备接收不到任何HARQ状态信息。现有技术中的上行CWS的调整准则不适用于AUL传输中终端设备接收不到HARQ状态信息的场景,不能解决终端设备在AUL传输中的信道适应问题。
发明内容
本发明实施例提供了一种上行信道侦听方法和装置,以提供一种调整上行CWS的方法。
第一方面,本发明实施例提供了一种上行信道侦听方法。该方法中,终端设备进行第一先侦听后发送LBT,在所述第一LBT成功后,在第一上行突发上发送第一数据包。所述终端设备确定第二竞争窗大小CWS,并根据该第二CWS进行第二LBT。
第一种方式中,在第一时间长度大于或等于第一时间门限,以及所述终端设备在所述第一上行突发之后未接收到用于指示HARQ状态的第一指示信息的情况下,所述第二CWS大于第一CWS。例如,第二CWS可以是7,第一CWS是3.
第二种方式中,在所述第一时间长度小于或等于第一时间门限,并且所述终端设备在所述第一上行突发之后未接收到用于指示HARQ状态的第一指示信息的情况下,所述第二CWS等于第一CWS。
第三种方式中,在第一时间长度小于或等于第一时间门限,以及所述终端设备在所述第一上行突发之后未接收到用于指示HARQ状态的第一指示信息的情况下,所述第二CWS是根据第二指示信息确定的,其中,第二指示信息为所述终端设备在所述第一上行突发之前接收到的用于指示HARQ状态的指示信息。
其中,第一参考时间单元与所述第一上行突发对应的第二参考时间单元之间的间隔为第一时间长度,所述第一CWS为所述第二LBT前一次的LBT对应的CWS,所述第一参考时间单元晚于所述第二参考时间单元。
第二方面,本发明实施提供了一种无线装置,包括处理器和与所述处理器耦合的存储器和收发器。
所述处理器用于,进行第一先侦听后发送LBT;所述收发器还用于,在所述第一LBT成功后,在第一上行突发上发送第一数据包;所述处理器还用于,确定第二竞争窗大小CWS。
第一种方式中,在第一时间长度大于或等于第一时间门限,以及所述无线装置在所述第一上行突发之后未接收到用于指示HARQ状态的第一指示信息的情况下,所述第二CWS大于第一CWS。
第二种方式中,在所述第一时间长度小于或等于第一时间门限,并且所述无线装置在所述第一上行突发之后未接收到用于指示HARQ状态的第一指示信息的情况下,所述第二CWS等于第一CWS。
第三种方式中,在第一时间长度小于或等于第一时间门限,以及所述无线装置在所述第一上行突发之后未接收到用于指示HARQ状态的第一指示信息的情况下,所述第二CWS是根据第二指示信息确定的,其中,第二指示信息为在所述第一上行突发之前接收到的用于指示HARQ状态的指示信息。
所述处理器还用于,根据所述第二CWS进行第二LBT,
其中,第一参考时间单元与所述第一上行突发对应的第二参考时间单元之间的间隔为第一时间长度,所述第一CWS为所述第二LBT前一次的LBT对应的CWS,所述第一参考时间单元晚于所述第二参考时间单元。
需要说明的是,上述三种方式可以作为独立的方案独立使用,或者任意两种作为一个整体方案,或者,三种方案可以作为一个整体方案。例如,单独使用第一种方式, 另外一种情况下,可以使用其他方式,而不限于本发明实施例提供的方法。或者,单独使用第二种方式,另外一种情况下,可以使用其他方式,而不限于本发明实施例提供的方法。此外,本发明实施例中,所有的并列的方式均如此,后文不再赘述。
可选的,所述终端设备在所述第二LBT成功的情况下,在第二上行突发上发送第二数据包,所述第二上行突发晚于所述第一上行突发。
可选的,所述终端设备在所述第一上行突发之后未接收到用于指示HARQ状态的第一指示信息可以是所述终端设备在所述第一上行突发之后所述第二上行突发之前未接收到用于指示HARQ状态的第一指示信息,或者可以是所述终端设备在所述第一上行突发对应的第二参考时间单元之后第一参考时间单元之前未接收到用于指示HARQ状态的第一指示信息,或者可以是所述终端设备在所述第一上行突发对应的第二参考时间单元开始的第一时间门限之内未接收到用于指示HARQ状态的第一指示信息。
所述第一上行突发与第二上行突发是自主上行(Autonomous UL,AUL)传输的突发,应理解该描述适用于本发明实施例中的所有上行突发。所述第二LBT前一次的LBT为前一次基于随机回退CCA的LBT,应理解该描述同样适用于本发明实施例中的所有LBT。
上述实施例中,通过结合一个时间门限,例如定时器,来确定CWS。当终端设备在发送一个上行突发(称为第一上行突发)之后,如果未接收到带有HARQ状态的指示信息(称为第一指示信息),例如在第一上行突发和第二上行突发之间未接收到该第一指示信息,且第一参考时间单元超出第一上行突发对应的第一时间门限,即第一上行突发对应的定时器时长,则将第二上行突发对应的CWS增加后再执行信道侦听。通过设置时间门限,例如定时器,在第一参考时间单元超出定时器且未接收到HARQ状态信息的情况下增加CWS,从而避免了因为反馈HARQ状态信息存在时延,在一次上行突发之后的一个时间间隔(例如小于时延的时间间隔)内未接收到网络设备反馈的HARQ状态信息就增加CWS,因此,避免过度增加CWS而降低终端设备接入信道的成功率,使得终端设备在进行AUL上行传输时更合理地适应信道状态。
第三方面,本发明实施例提供了一种上行信道侦听的方法。该方法中,终端设备在第一上行突发上发送第一数据包。该终端设备进行第一LBT,在所述第一LBT成功后,在第二上行突发上发送第二数据包。该第二上行突发晚于所述第一上行突发。终端设备确定第二竞争窗大小CWS,根据所述第二CWS进行第二LBT。在所述第二LBT成功的情况下,终端设备在第三上行突发上发送第三数据包,所述第三上行突发晚于所述第二上行突发。第一参考时间单元与所述第一上行突发对应的第二参考时间单元间隔第一时间长度,所述第一参考时间单元与所述第二上行突发对应的第二参考时间单元间隔第二时间长度,在所述第二时间长度大于或等于第一时间门限,和第一时间长度大于或等于所述第一时间门限,以及所述终端设备在所述第一上行突发之后未接收到HARQ状态的第一指示信息的情况下,所述第二CWS为在第一CWS的基础上增加一次的CWS,所述第一CWS为所述第一LBT的前一次LBT对应的CWS。
第四方面,本发明实施例提供了一种无线装置,包括处理器和与所述处理器耦合的存储器和收发器。
所述收发器用于,在第一上行突发上发送第一数据包;所述处理器还用于,进行 第一LBT;所述收发器还用于,在所述第一LBT成功后,在第二上行突发上发送第二数据包,所述第二上行突发晚于所述第一上行突发;所述处理器还用于,确定第二竞争窗大小CWS,根据所述第二CWS进行第二LBT;
其中,第一参考时间单元与所述第一上行突发对应的第二参考时间单元间隔第一时间长度,所述第一参考时间单元与所述第二上行突发对应的第二参考时间单元间隔第二时间长度;在所述第二时间长度大于或等于第一时间门限,和第一时间长度大于或等于所述第一时间门限,以及所述终端设备在所述第一上行突发之后未接收到HARQ状态的第一指示信息的情况下,所述第二CWS为在第一CWS的基础上增加一次的CWS,所述第一CWS为所述第一LBT的前一次LBT对应的CWS;
所述处理器还用于,控制所述终端设备在所述第二LBT成功的情况下,在第三上行突发上发送第三数据包,所述第三上行突发晚于所述第二上行突发
上述第三方面和第四方面中,第一参考时间单元超出第一上行突发对应的第一时间门限,即第一上行突发对应的定时器时长,第一参考时间单元还超出第二上行突发对应的定时器时长,且在第一上行突发之后未接收到HARQ状态信息的情况下,即在终端设备超出多个上行突发对应的定时器且未接收到HARQ状态信息的情况下,终端设备只增加一次CWS,避免了多次超时的情况下对CWS的过度惩罚,增加了AUL场景下终端设备调整CWS的合理性。
可选的,所述第二CWS是根据第二指示信息确定的可以是当第二指示信息为ACK或NDI为翻转态的UL grant时,第二CWS小于第一CWS;当第二指示信息为NACK或NDI未翻转的UL grant时,第二CWS大于第一CWS。
可选的,所述第一上行突发对应的第二参考时间单元为所述第一上行突发中的。时间单元。
可选的,所述第一上行突发对应的第二参考时间单元为与所述第一上行突发的起始时间单元间隔第三时间长度的时间单元,并且,所述第二参考时间单元在所述第一上行突发的起始时间单元之后。进一步的,所述第一上行突发对应的第二参考时间单元可以是所述第一上行突发的起始时间单元。
可选的,所述第一CWS与所述第二CWS对应于同一接入优先级。
第五方面,本发明实施例提供了一种终端设备侦听上行信道的方法。该方法中,终端设备在第一上行突发上发送第一数据包。所述终端设备进行第一LBT,在所述第一LBT成功后,在第二上行突发上发送第二数据包,其中,所述第二上行突发晚于所述第一上行突发。所述终端设备确定第二竞争窗大小CWS,根据所述第二CWS进行第二LBT。第一参考时间单元与所述第一上行突发对应的第二参考时间单元间隔第一时间长度,所述第一参考时间单元与所述第二上行突发对应的第二参考时间单元间隔第二时间长度。在所述第二LBT成功的情况下,终端设备在第三上行突发上发送第三数据包,所述第三上行突发晚于所述第二上行突发。
第一种方式中,在所述第二时间长度小于第一时间门限,和第一时间长度大于或等于所述第一时间门限,以及所述终端设备在所述第一上行突发之后未接收到HARQ 状态的第一指示信息的情况下,并且,在所述第一LBT对应的第一CWS相比于第三CWS未增加的情况下,所述第二CWS大于第四CWS,所述第四CWS为所述第二LBT的前一次LBT对应的CWS,所述第三CWS为所述第一LBT前一次LBT对应的CWS。
第二种方式中,在所述第二时间长度小于第一时间门限,和第一时间长度大于或等于所述第一时间门限,以及所述终端设备在所述第一上行突发之后未接收到HARQ状态的第一指示信息的情况下,并且,在所述第一LBT对应的第一CWS相比于第三CWS增加的情况下,所述第二CWS等于第四CWS,所述第四CWS为所述第二LBT的前一次LBT对应的CWS,所述第三CWS为所述第一LBT前一次LBT对应的CWS。
第六方面,本发明实施例提供了一种无线装置,包括处理器和与所述处理器耦合的存储器和收发器。
所述收发器用于,在第一上行突发上发送第一数据包;所述处理器用于,进行第一LBT;所述收发器还用于,在所述第一LBT成功后,在第二上行突发上发送第二数据包,其中,所述第二上行突发晚于所述第一上行突发;所述处理器还用于,确定第二竞争窗大小CWS,根据所述第二CWS进行第二LBT;其中,第一参考时间单元与所述第一上行突发对应的第二参考时间单元间隔第一时间长度,所述第一参考时间单元与所述第二上行突发对应的第二参考时间单元间隔第二时间长度;
第一种方式中,在所述第二时间长度小于第一时间门限,和第一时间长度大于或等于所述第一时间门限,以及所述无线装置在所述第一上行突发之后未接收到HARQ状态的第一指示信息的情况下,并且,在所述第一LBT对应的第一CWS相比于第三CWS未增加的情况下,所述第二CWS大于第四CWS,所述第四CWS为所述第二LBT的前一次LBT对应的CWS,所述第三CWS为所述第一LBT前一次LBT对应的CWS;和/或,
第二种方式中,在所述第二时间长度小于第一时间门限,和第一时间长度大于或等于所述第一时间门限,以及所述无线装置在所述第一上行突发之后未接收到HARQ状态的第一指示信息的情况下,并且,在所述第一LBT对应的第一CWS相比于第三CWS增加的情况下,所述第二CWS等于第四CWS,所述第四CWS为所述第二LBT的前一次LBT对应的CWS,所述第三CWS为所述第一LBT前一次LBT对应的CWS;
所述收发器还用于,在所述第二LBT成功的情况下,在第三上行突发上发送第三数据包,所述第三上行突发晚于所述第二上行突发。
上述实施例中,在第三上行突发超出第一上行突发对应的定时器,即第一时间长度大于或等于第一时间门限的情况下,当第一上行突发和第三上行突发之间存在一个第二上行突发,其中在所述第一LBT对应的第一CWS相比于第三CWS增加的情况下,所述第三CWS为所述第一LBT前一次LBT对应的CWS,即第二上行突发对应的CWS为相比前一次LBT对应的CWS增加过的CWS,且第三上行突发未超出第二上行突发对应的定时器,即第二时间长度小于第一时间门限,则终端设备不增加第二CWS,即第二CWS等于第四CWS。可选的,终端设备以已经调整过CWS的第二上行突发重启一个新的定时器,并根据第二上行突发和第三上行突发之间的HARQ状态 的接收情况和时间间隔确定第三上行突发对应的CWS。
通过本实施例提供的方法在第一上行突发之后未接收到HARQ状态信息,以及第一上行突发和第三上行突发之间终端设备已经增加过第二上行突发对应的CWS,且第一参考时间单元未超出第二上行突发的定时器时长的情况下,终端设备不再由于第三上行突发超出第一上行突发对应的定时器时长而增加第三上行突发对应的CWS,而保持第三上行突发对应的CWS不变。相比于只要第一参考时间超出定时器时长终端设备就增加CWS的方法,本实施例提高了AUL场景下终端设备调整CWS的合理性。
需要说明的是,这里的第一种方式和第二种方式可以作为一个整体方案,或者可以作为独立的方案单独使用。
可选的,所述第一上行突发对应的第二参考时间单元为所述第一上行突发中的时间单元;或者,所述第一上行突发对应的第二参考时间单元为与所述第一上行突发的起始时间单元间隔第三时间长度的时间单元,并且,所述第二参考时间单元在所述第一上行突发的起始时间单元之后;以及
所述第二上行突发对应的第二参考时间单元为所述第二上行突发中的时间单元;或者,所述第二上行突发对应的第二参考时间单元为与所述第二上行突发的起始时间单元间隔第三时间长度的时间单元,并且,所述第二参考时间单元在所述第一上行突发的起始时间单元之后。
进一步的,所述第一上行突发对应的第二参考时间单元和所述第二上行突发对应的第二参考时间单元可以是不同的。
可选的,所述第一上行突发对应的第二参考时间单元为所述第一上行突发的起始时间单元;或所述第二上行突发对应的第二参考时间单元为所述第二上行突发的起始时间单元。
可选的,所述第二CWS与所述第三CWS对应于同一接入优先级,所述第一CWS与所述第四CWS对应于同一接入优先级。
可选的,上述各方面中,所述第一参考时间单元为所述终端设备确定所述第二CWS的时间单元。
进一步的,上述各方面的实施例还可以包括:在所述第二LBT成功的情况下,在第二上行突发上发送第二数据包,所述第二上行突发晚于所述第一上行突发。
可选的,所述第一参考时间单元为所述第二上行突发的起始时间单元。
可选的,所述第二LBT的前一次LBT与所述第一LBT相同。
进一步的,所述第二时间长度可以为预先定义的或者为从网络设备接收到的。
可选的,所述第三时间长度可以与网络设备反馈HARQ状态的时延相关。例如,
可选的,所述第二CWS与所述第一CWS对应同一接入优先级。
可选的,终端设备确定第二CWS还包括:在所述第一时间长度大于或等于第一时间门限,以及所述终端设备在所述第一上行突发之后和所述第二上行突发之前的时间内未接收到用于指示HARQ状态的第一指示信息,以及所述第二上行突发为所述第一上行突发对应的第三参考时间单元之后的第一个上行突发的情况下;所述第二CWS 大于所述第一CWS,所述第一CWS为所述第二LBT前一次的LBT对应的CWS,所述第一上行突发对应的第三参考时间单元晚于所述第一上行突发对应的第二参考时间单元,所述第一上行突发对应的第三参考时间单元与所述第一上行突发对应的第二参考时间单元之间的时间间隔为所述第一时间门限。
可选的,本发明实施例中,第二CWS大于第一CWS可以是指,在CWS集合中,第二CWS为第一CWS的下一级CWS,即该CWS集合中大于第一CWS的最小的CWS。
例如,终端设备可使用的CWS取值组成一个CWS集合,当终端设备增加CWS时,增加至CWS集合中的下一个更高取值。例如,CWS集合可以是:{3,7},或者{7,15},或者{15,31,63,127,255,511,1023}。
可选的,当终端设备减小CWS时,将CWS减小至CWS集合中的最小值
第七方面,提供了一种通信装置,所述通信装置用于执行上述方法实际中终端设备行为的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第八方面,提供了一种包含指令的计算机存储介质,当其在计算机上运行时,使得计算机执行上述方法实际中终端设备行为的功能。
附图说明
图1是应用于本发明实施例的通信系统的示意图;
图2是本发明实施例提供的一种上行信道侦听方法的通信示意图;
图3至图7是本发明实施例提供的一种上行信道侦听方法的时序图;
图8是本发明实施例提供的另一种上行信道侦听方法的通信示意图;
图9至图10是本发明实施例提供的另一种上行信道侦听方法的时序图;
图11是本发明实施例提供的又一种上行信道侦听方法的时序图;
图12是本发明实施例提供的上行信道侦听装置的示意性框图。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行描述。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
应理解,本发明适用于使用非授权频谱通信的无线蜂窝通信网络系统。例如,长期演进(Long Term Evolution,LTE)的授权频谱辅助接入(Licensed assisted access,LAA)系统、增强授权频谱辅助接入(Enhanced Licensed assisted access,eLAA)系统、进一 步增强授权频谱辅助接入(Further Enhanced Licensed Assisted Access,FeLAA)系统、5G通信系统中使用非授权频谱的通信系统、独立工作在非授权频谱的MulteFire系统,以及未来移动通信网络中使用非授权频谱的通信系统等。
图1是应用于本发明实施例的通信系统的示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括多个天线例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。
如图1所示,终端设备116与网络设备102通信,其中网络设备102通过下行链路118向终端设备116发送信息,并通过上行链路120从终端设备116接收信息。此外,终端设备122与网络设备102通信,其中网络设备102通过下行链路124向终端设备122发送信息,并通过上行链路126从终端设备122接收信息。
例如,在非授权频段上,下行链路118和上行链路120可使用相同的频段,下行链路124和上行链路126可使用相同的频段。
此外,该通信系统100可以是公共陆地移动网络(Public Land Mobile Network,PLMN)网络或者D2D网络或者M2M网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
本发明实施例结合终端设备描述了各个实施例。终端设备也可称之为用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal)等,该终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
此外,本发明实施例中网络设备(例如网络设备201)是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置。所述网络设备可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。网络设备可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),也可以是LTE或eLTE中的演进型基站(Evolutional Node B,eNB或e-NodeB),也可以是下一代移动网络,例如5G(fifth generation)中的基站gNB((next)generation NodeB)。
下面,对该通信系统100所使用的用于无线通信的时频资源进行详细说明。
在本发明实施例中,网络设备和终端设备用于传输信息的时域资源在时域上可以划分为多个时间单元。
并且,在本发明实施例中,多个时间单元可以是连续的,也可以是某些相邻的时间单元之间设有预设的间隔,本发明实施例并未特别限定。
在本发明实施例中,时间单元可以是包括用于上行信息(例如,上行数据)传输和/或下行信息(例如,下行数据)传输的时间单元。
在本发明实施例中,一个时间单元的长度可以任意设定,本发明实施例并未特别限定。
例如,1个时间单元可以包括一个或多个子帧。
或者,1个时间单元可以包括一个或多个时隙。
或者,1个时间单元可以包括一个或多个符号。
或者,1个时间单元可以包括一个或多个TTI(Transmission Time Interval,TTI)。
或者,1个时间单元可以包括一个或多个短传输时间间隔(short Transmission Time Interval,sTTI)。
在本发明实施例中,通信系统100所使用的用于无线通信的时频资源在时域上可以划分为多个TTI,TTI是目前通信系统(例如,LTE系统)中的普遍使用的参数,是指在无线链路中调度信息传输的调度单位。
应理解,在本发明实施例中TTI可以是1ms TTI,或者称为子帧,长度为1ms,也可以是短于1ms的sTTI或者称为迷你时隙(mini-slot),sTTI所占用的时域资源长度短于1ms TTI,也就是说,当某个数据信道对应的TTI为sTTI时,其占用的时域资源长度短于1ms。对于上行传输而言,TTI是上行资源分配或上行传输的时域粒度,或者说TTI是终端设备进行上行传输的最小时域单元。
小时延的业务需求导致物理层需要引入更短的TTI帧结构,以进一步缩短调度间隔,提高用户体验。例如,LTE系统中TTI长度可以从1ms缩短为1符号(symbol)到1时隙(包括7个符号)之间。上述提及的符号可以是LTE系统中的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号或单载波频分多址(Single Carrier-Frequency Division Multiple Access,SC-FDMA)符号,还可以是其他通信系统中的符号。又例如,5G通信系统中TTI长度也小于1ms。
长度小于1ms的TTI可以称为sTTI。例如,LTE系统中,sTTI的长度可以为1~7个符号中任意一种长度,或者,sTTI长度也可以是1~7个符号中至少2种不同长度的组合,例如1ms内包含6个sTTI,各sTTI长度可以分别是3个符号、2个符号、2个符号、2个符号、2个符号、3个符号,或者,1ms内包含4个sTTI,各sTTI长度可以分别是3个符号、4个符号、3个符号、4个符号,各sTTI长度还可以是其他不同长度的组合。
在本发明实施例中,可以将现有技术(例如LTE系统)规定的(例如,长度为1ms或长度大于1ms的)TTI和sTTI统称为TTI,并且,在本发明实施例中,TTI的长度可以根据实际需要进行变更。
应理解,以上列举的时间单元的结构仅为示例性说明,本发明实施例并未特别限定,可以根据实际需要对时间单元的结构进行任意变更,例如,对于不支持sTTI的 LTE系统而言,1个时间单元可以为1个子帧(Subframe)。再例如,对于支持sTTI的LTE系统而言,1个时间单元可以包括1个sTTI,或者说,1个时间单元可以包括1个时隙(Slot),1个时间单元可以包括一个或多个(例如,小于7的正整数个或小于6的正整数个)符号;1个时间单元也可以为1个子帧。
应理解,一个时间单元包括至少一个符号时,该至少一个符号中的任意一个符号可以是完整符号,也可以是部分符号,其中部分符号是指设备占用该符号的一部分时域资源发送信息,而剩余部分不发送信息或者说预留为空闲。
需要说明的是,在本发明实施例中,时间单元用于传输信息的长度(或者说,信息传输时长)可以是1ms,也可以小于1ms。
在本发明实施例中,通信系统100所使用的频域资源包括非授权频段。应理解,本发明适用于使用非授权频谱通信的无线蜂窝通信网络系统。例如,长期演进(Long Term Evolution,LTE)的授权频谱辅助接入(Licensed assisted access,LAA)系统、增强授权频谱辅助接入(Enhanced Licensed assisted access,eLAA)系统、进一步增强授权频谱辅助接入(Further Enhanced Licensed Assisted Access,FeLAA)系统、5G通信系统中使用非授权频谱的通信系统、独立工作在非授权频谱的MulteFire系统等。本发明的实施例以简化的通信系统100为例,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
为了实现在非授权频谱上满足和不同运营商的网络设备、终端设备,以及Wi-Fi等异系统无线节点的友好共存,工作在非授权频谱上的系统,例如LAA/eLAA/Multefire系统等,需要采用先听后发(Listen-Before-Talk,LBT)信道接入机制,网络设备在进行下行传输或终端设备在进行上行传输之前需要对信道进行侦听,侦听到信道空闲后再占用信道进行传输。发送节点在想要占用的资源之前侦听到信道空闲称之为LBT侦听成功,反之称之为LBT侦听失败。
发送节点(网络设备或终端设备)在进行传输之前用于占用信道的LBT流程中包括随机回退空闲信道评测(Clear Channel Assessment,CCA)过程,以网络设备进行下行传输为例,CCA过程的具体流程可以描述为:网络设备在0~竞争窗长度(Contention Window Size,CWS)之间均匀随机生成一个回退计数器N,并且以侦听时隙(CCA slot,例如时长为9us)为粒度进行侦听,如果侦听时隙内检测到信道空闲,则将回退计数器减一,反之检测到信道忙碌,则将回退计数器挂起,即回退计数器N在信道忙碌时间内保持不变,直到检测到信道空闲;当回退计数器减为0(称之为回退计数器归零)时,称为LBT侦听成功,网络设备可以立即占用该信道发送下行信息。另外,网络设备也可以在回退计数器归零后,不立即发送下行信息而自行等待一段时间,等待结束后,在需要发送下行信息的时刻之前再在一个额外的时隙侦听一次,若该额外的时隙内侦听到信道空闲则认为信道侦听成功,可以立即发送信息。若在该下行信息之前未完成回退计数器归零,或者该额外的侦听时隙为忙碌,则称信道侦听失败。网络设备进行下行传输过程中采用动态调整的CWS,网络设备根据终端设备反馈的针对下行参考子帧的HARQ状态动态调整针对下行传输的CWS,当下行参考子帧对应的否定确认(negative acknowledgement,NACK)反馈的比例较大时,网络设备 增加CWS,在下一次LBT时利用增加的CWS进行信道侦听,以拉长侦听时间为代价避免与周围竞争节点的碰撞,实现友好共存;当确认(acknowledgement,ACK)反馈的比例较大时,网络设备减小CWS,从而降低侦听时间,更快接入信道。
本发明实施例中涉及的上行突发可以包括一个或多个时间上连续的时间单元,时间单元的概念可以参考上述描述。具体的,在非授权频谱上,发送设备完成某次成功的LBT之后,被允许在该频谱上最长连续发送一段时间的信息,这段时间称为最大信道占用时间。在最大信道占用时间内发送设备不需要中断发送来重新侦听信道,一旦超过了最大信道占用时间,发送设备必须停止发送来重新进行信道侦听,LBT再次成功后才可以再次发送。本发明涉及的上行突发为终端设备完成一次成功的LBT之后连续发送的一个或多个时间单元,该一个或多个时间单元的总时长不超过最大信道占用时间。如果终端设备在一次上行突发中断之后需要继续发送上行信息,则必须重新进行信道侦听,LBT再次成功后才可以开始下一个上行突发。可选的,终端设备可以在上行突发中发送上行数据、上行控制信息或上行参考信号中的一种或组合。可选的,上行突发中连续的两个时间单元可以在时间上不连续,例如上行突发中包含的两个相邻时间单元之间可以存在空隙,比如,上行突发不占用某些时间单元的起始符号和/或结尾符号的时域资源。
在Release 15引入的进一步增强的授权辅助接入(Further enhanced Licensed-Assisted Access,FeLAA)系统以及Multefire 1.1系统中,引入了免调度许可上行(Grant free Uplink或Grantless Uplink,GUL)传输机制,或者称为自主上行(Autonomous UL,AUL)传输机制,使终端设备不需要发送SR和等待UL grant,去除了针对SR和UL grant的信道侦听,而可以在LBT成功之后直接在预留的AUL的资源上发送上行数据。其中,本发明实施例中描述的AUL传输机制包含以下特征中的至少一种:
1、终端设备的上行信息不需要向网络设备发送调度请求(Scheduling Request,SR),并由网络设备动态调度,而是由终端设备自主决定发送。
2、区别于基于调度的上行传输(Schedule based Uplink,SUL),网络设备半静态或半持续配置给终端设备用于AUL传输的AUL无线资源,包括时域和或频域资源。具体的说,该AUL无线资源通过半静态的RRC信令和/或半持续的DCI信令配置给终端设备。具体地说,该AUL时域资源是周期性的,或者说,该AUL时域资源是持续性的时域资源,而基于SUL的上行信息仅针对有限个数的时间单元生效。
3、该终端设备发送AUL上行信息时上报免调度许可上行控制信息(Autonomous Uplink Control Information,A-UCI),该A-UCI为该上行数据所对应的控制信息。该A-UCI包括与该上行信息对应的HARQ进程的HARQ进程号信息、新数据指示(New Data Indicator,NDI)信息、与该上行信息对应的冗余版本(Redundancy Version,RV)信息以及该终端设备的用户标识(记为UE ID)信息中的至少一种信息。
终端设备进行上行传输之前也需要执行LBT流程,用于占用上行信道的LBT流程也包括随机回退的CCA过程,称为基于随机回退CCA的LBT。类似于下行LBT,终端设备在0~CWS之间均匀随机生成一个回退计数器N,并且以侦听时隙(例如时长为9us)为粒度对载波进行信道侦听,如果侦听时隙内检测到信道空闲,则将回退 计数器减一,反之,如果侦听时隙内检测到信道忙碌,则将回退计数器挂起,即,回退计数器N在信道忙碌时间内保持不变,直到检测到信道空闲时,才重新对回退计数器进行计数。当回退计数器归零时,则认为信道侦听成功,终端设备可以立即占用该信道发送上行信息。另外,终端设备也可以在回退计数器归零后,不立即发送上行信息而自行等待一段时间,等待结束后,在需要发送上行信息的时刻之前再在一个额外的时隙侦听一次,若该额外的时隙内侦听到信道空闲则认为信道侦听成功,可以立即发送信息。若在该上行信息之前未完成回退计数器归零,或者该额外的侦听时隙为忙碌,则称信道侦听失败。类似于下行,当终端设备进行占用信道的LBT流程时,也采用动态调整CWS的机制,终端设备根据上行参考子帧的HARQ状态来动态调整针对上行突发的CWS,当上行参考子帧的HARQ状态为确认时,终端设备减小CWS;反之,终端设备增加CWS。
应理解,对于支持AUL传输的终端设备而言,接收到HARQ状态信息包括以下情况:
1、终端设备接收到网络设备发送的上行授权(uplink grant,UL grant),网络设备在调度终端设备的同时指示AUL数据的接收状态,即HARQ状态。例如,在网络设备没有正确接收AUL数据,但通过检测AUL传输的序列信息(比如上行解调参考信号的序列)正确识别了该AUL数据所属的终端设备的情况下,网络设备发送UL grant调度终端设备在SUL资源上进行重传,UL grant中的NDI相比于AUL数据对应的NDI未发生翻转,即NDI值未发生变化,代表该AUL数据未正确接收,相当于对该AUL数据的NACK反馈,此时终端设备增加CWS;在UL grant中的NDI相比的AUL数据对应的NDI发生翻转的情况下,相当于该AUL数据的ACK反馈,此时终端设备减小CWS。
2、终端设备接收到网络设备发送的HARQ-ACK反馈信息,指示终端设备使用某个HARQ进程号进行的前一次传输是否被正确接收。例如,如果某个HARQ进程号进行的前一次传输被正确接收,则网络设备发送ACK给终端设备,如果某个HARQ进程号进行的前一次传输没有被正确接收,则网络设备发送NACK给终端设备。进一步的,该HARQ-ACK反馈信息可以是多个AUL HARQ进程分别对应的多份HARQ-ACK信息,因此可以用一个独立的下行控制信道来承载,该下行控制信道中一般不需要包含资源分配信息,但可能会包含功率控制等信息。可选的,HARQ-ACK反馈信息中也可以包含资源分配信息和功率控制信息等。
应理解,终端设备可使用的CWS取值组成一个CWS集合,当终端设备增加CWS时,增加至CWS集合中的下一个更高取值;当终端设备减小CWS时,将CWS减小至CWS集合中的最小值。例如,CWS集合可以是:{3,7},或者{7,15},或者{15,31,63,127,255,511,1023}。
本实施例中,增加CWS可以是将前一个CWS增加到下一个等级,例如3增加到7,63增加到127。
对于免调度许可的上行传输而言,网络设备提前不知道终端设备发送AUL传输,因此在终端设备发送AUL传输之后,当网络设备没有正确接收终端设备的AUL传输 且没有识别AUL传输对应的终端设备时,无法给终端设备反馈相应的HARQ状态(UL grant或HARQ-ACK反馈等)信息。没有识别到AUL传输对应的终端设备,可能是由于多个终端设备同时在预留的资源上进行AUL传输造成冲突,使得网络设备没有识别到任何一个终端设备发送的上行序列(比如上行解调参考信号),或者即使识别到上行序列,但无法只通过该上行序列来识别终端设备,例如,网络设备可能没有正确接收或译码上行控制信息,而该上行控制信息中会承载该终端设备的标识信息。在上述情况下,终端设备在AUL传输之后接收不到任何HARQ状态信息,无法使用现有技术根据网络设备反馈的HARQ状态信息来调整上行CWS,以适应信道状态。
在另一种可能的情况下,网络设备通过上行序列检测识别到了该AUL传输的终端设备,或者正确译码了上行控制信息和上行数据信息,但是,考虑到系统开销的问题,网络设备没有立即给该AUL终端设备反馈HARQ状态信息,而是等待终端设备进行多次AUL传输,然后通过一次下行传输同时反馈多个AUL传输的HARQ进程对应的HARQ-ACK反馈信息。在这种情况下,一次上行突发之后的一段时间内未接收到HARQ状态信息并不能代表上行信道状态变差,如果终端设备在这种情况下就增加CWS,终端设备可能会在更长的时间内不能占用信道,从而可能会造成信道资源利用率的下降,以及可能会造成终端设备的传输效率下降。
为了解决上述问题,本发明实施例提出了一种上行信道侦听方法,用于在非授权频谱上的免调度许可传输的场景下,终端设备在未接收到HARQ状态信息时合理地调整CWS,达到适应信道状态并避免对上行CWS的过度惩罚的目的。
下面结合图2至图9详细说明本发明实施例提供的方法,图2给出了本发明实施例的一种信道侦听方法的示意图。
步骤210:终端设备进行第一LBT。
本步骤的操作可以是由图12中的终端设备的调制解调处理器124实现。
步骤220:在第一LBT成功后,终端设备在第一上行突发上发送第一数据包。
应理解,一次上行突发为终端设备进行一次基于随机回退的CCA的LBT成功后发送数据包占用的时频资源。上行突发包括至少一个时间单元,该至少一个时间单元可以是在时间上连续的,例如,上行突发包括的TTI或子帧的序号是连续的。该至少一个时间单元也可以是在时间上不连续的,该上行突发中包含的任意两个相邻时间单元之间可以有空隙,例如,上行突发不占用时间单元起始与结尾处的时域资源,本发明实施例对此不作限定。
还应理解,终端设备在第一上行突发上发送免调度许可AUL的上行信息,或者在第一突发上发送部分AUL上行信息,以上描述同样适用于本发明实施例中的其他上行突发,例如第二上行突发和第三上行突发。任意两个不同的上行突发在时间上不连续,例如图2中的第一上行突发和第二上行突发。
本步骤中发送的动作可以由图12中的终端设备的收发器121来实现,当然,也可以是图12中的终端设备的调制解调器处理器124来控制收发器121实现。
步骤230:终端设备确定第二竞争窗大小CWS。
第一种方式中,在第一时间长度大于或等于第一时间门限,以及所述终端设备在所述第一上行突发之后未接收到用于指示HARQ状态的第一指示信息的情况下,所述 第二CWS大于第一CWS。
本步骤的操作可以是由图12中的终端设备的调制解调处理器124实现。
可选的,所述终端设备在所述第二LBT成功的情况下,在第二上行突发上发送第二数据包,所述第二上行突发晚于所述第一上行突发。
可选的,HARQ状态的第一指示信息包括对应于AUL传输和SUL传输的HARQ状态信息,或者,HARQ状态的第一指示信息包括对应于AUL传输的HARQ状态信息而不包括对应于SUL传输的HARQ状态信息。应理解,上述对于HARQ状态的第一指示信息的描述同样适用于本发明的其他实施例。
本发明实施例引入一个定时器来确定CWS,第一上行突发对应的第二参考时间单元为第一上行突发对应的定时器的起点,具体的说,该定时器的起始时刻为第二参考时间单元的结束时刻或起始时刻,定时器的长度为第一时间门限。本发明实施例中以定时器的起始时刻为第二参考时间单元的结束时刻进行举例。应理解,以上对定时器起点和长度的描述同样适用于本发明实施例中其他突发对应的定时器,例如,本发明另一个实施例中,第二上行突发对应的第二参考时间单元为第二上行突发对应的定时器的起点。
需要说明的是,第一上行突发对应的第二参考时间单元有以下几种可能的情形:
情形1
第一上行突发对应的第二参考时间单元为第一上行突发中的某一个时间单元,例如,某一个子帧或TTI。可选的,第一上行突发对应的第二参考时间单元为第一上行突发中结束的子帧或TTI,具体的说,第一上行突发对应的定时器的起点为第一上行突发的结束时刻,如图2中(a)所示。可选的,第一上行突发对应的第二参考时间单元为第一上行突发中最早的子帧或TTI,具体的说,第一上行突发对应的定时器的起点为第一上行突发中最早的子帧或TTI的结束时刻,如图2中(b)所示。
情形2
第一上行突发对应的第二参考时间单元为第一上行突发中的目标时间单元之后间隔第三时间长度的时间单元,可选的,第一上行突发中的目标时间单元为第一上行突发中的第一个时间单元,例如,目标时间单元为第一上行突发中的第一个子帧或TTI,具体的说,第一上行突发对应的定时器的起点为第一上行突发中第一个子帧或TTI之后间隔第三时间长度的时刻,如图2中(c)所示。
可选的,第二时间长度可以是协议或法规定义的,例如,可以预先设置在终端设备中。或者,该第二时间长度可以是网络设备通过高层信令配置或者通过物理层信令通知的。进一步的,第二时间长度可以为HARQ状态信息反馈时延或者大于该反馈时延。具体的,网络设备接收到上行数据信息后,对该数据信息进行HARQ状态信息反馈存在时延,例如,时间单元#n上的数据信息对应的HARQ状态信息最早可以在#n+k上反馈,这种情况称HARQ状态信息反馈时延为k个时间单元,可选的,第二时间长度可以为k个子帧或TTI,例如,第二时间长度可以为k=4个子帧或TTI。
应理解,第一上行突发对应的第二参考时间单元存在的两种可能的情形同样适用于本发明实施例中其他上行突发对应的第二参考时间,例如第二上行突发对应的第二参考时间等,后文不再赘述。
在一种可能的设计中,第一参考时间单元为终端设备确定第二CWS的时间单元,例如,终端设备在某一个TTI确定第二CWS,则,该第一参考时间单元为该TTI,或者,为第二上行突发的起始时间单元,例如,该起始时间单元可以是终端设备根据时序关系确定的一个起始时间单元。下文分别描述第一参考时间单元包括的两种可能:
可能性1:第一参考时间单元为终端设备确定第二CWS的时间单元,此时第一时间长度为第一上行突发对应的定时器起点到终端设备确定第二CWS的时间单元之间的时间长度。在该种可能性中,第一时间长度大于第一时间门限表明终端设备确定第二CWS的时间单元超过第一上行突发对应的定时器的终点,称为第一参考时间单元超出定时器。
应理解,终端设备确定第二CWS的时间单元是终端设备进行第二LBT之前的一个时间单元,例如,终端设备有需要发送的上行AUL信息,在进行第二LBT占用非授权信道之前需要确定第二LBT对应的第二CWS。
可选地,在终端设备确定第二CWS的时间单元,终端设备没有需要发送的上行AUL信息。例如,在第一上行突发对应的定时器超时,且未接收到HARQ状态信息的情况下,终端设备立即增加CWS,即确定第二CWS,一段时间后终端设备有需发送的上行AUL信息时,终端设备根据第二CWS进行第二LBT,在第二LBT成功的情况下在第二上行突发上发送上行信息。
可能性2:第一参考时间单元为第二上行突发的起始时间单元,例如,该起始时间单元可以是终端设备根据时序关系确定的一个起始时间单元。可选的,第二上行突发的起始时间单元可以为第二上行突发中第一个(最早的)子帧或TTI。在该种可能性中,第一时间长度大于第一时间门限表明第二上行突发的起始时间单元或起始时刻超过第一上行突发对应的定时器的终点,称为第一参考时间单元超出定时器。
应理解,第一参考时间单元包括的两种可能的情况同样适用于本发明实施例中其他上行突发对应的第一参考时间,例如第三上行突发对应的第一参考时间等,后文不予赘述。
第一参考时间单元与第一上行突发对应的第二参考时间单元之间的间隔为第一时间长度,即第一参考时间单元与第一上行突发对应的定时器的起点间隔第一时间长度。
在第一时间长度大于或等于第一时间门限,以及所述终端设备在所述第一上行突发之后未接收到用于指示HARQ状态的第一指示信息的情况下,所述第二CWS大于第一CWS,第一CWS为第二LBT前一次的LBT对应的CWS。如图2(a),(b),(c)所示,终端设备在第一上行突发之后未收到用于指示HARQ状态的第一指示信息且第二上行突发对应的第一参考时间单元超出第一上行突发对应的定时器T1,应理解,如前文所述指示HARQ状态的第一指示信息包括HARQ-ACK反馈信息和UL grant中的至少一个。在这种情况下,终端设备增加CWS,即第二CWS大于第一CWS,第一CWS为第二LBT前一次的LBT对应的CWS。具体的,第二LBT前一次的LBT指前一次基于随机回退CCA的LBT,如非特别说明本发明实施例中描述的LBT均为基于随机回退CCA的LBT,之后不予赘述。
应理解,终端设备每一次进行LBT对应的CWS是在终端设备前一次LBT对应的CWS的基础上调整的,其中调整包括增加、保持不变和减小。例如,如果确定本次 LBT对应的CWS增加,则相比于前一次LBT对应的CWS增加到CWS集合中下一个更高的取值,如果确定本次LBT对应的CWS保持不变,则保持与前一次LBT对应的CWS相同。
所述第一CWS与所述第二CWS对应于同一接入优先级。或者说,所述第一CWS为所述第二LBT前一次LBT对应于同一接入优先级的CWS。
应理解,每个终端设备在接入信道时可以根据业务类型,使用至少两种接入优先级(Priority class)中的其中一种进行LBT。对于每种接入优先级,对应特定的一套CWS取值集合,例如对于4种接入优先级,接入优先级1的CWS集合为{3,7},接入优先级2的CWS集合为{7,15},接入优先级3的CWS集合为{15,31,63,127,255,511,1023},接入优先级4的CWS集合为{15,31,63,127,255,511,1023}。终端设备每次执行LBT之前调整CWS时,执行的CWS增加或减小或保持不变的调整操作是针对该至少两种接入优先级中的每一种的,而不仅限于执行该LBT所使用的接入优先级。例如对于4种接入优先级,终端设备使用接入优先级1执行LBT前,若需要增加CWS,则对4种接入优先级中的每一种,都将CWS增加到该接入优先级对应的CWS取值集合中的下一个更高的取值,然后使用接入优先级1调整后的CWS取值执行LBT。因此,本发明实施例中描述的任意两个CWS之间的大小关系都是指同一接入优先级下的两个CWS之间的关系。例如第二CWS大于第一CWS,是指对于任一接入优先级,将第一LBT对应的第一CWS增加至第二LBT对应的第二CWS。再例如第二CWS等于第一CWS,是指对于任一接入优先级,使第二LBT对应的第二CWS保持与第一LBT对应的第一CWS相等。
应理解,上述第一CWS和第二CWS的对应于同一接入优先级的描述,同样适用于本发明的其他实施例,本发明实施例中描述的任意两个CWS之间的大小关系都是指同一接入优先级下的两个CWS之间的关系。
可选的,所述终端设备在所述第一上行突发之后未接收到用于指示HARQ状态的第一指示信息可以是所述终端设备在所述第一上行突发之后所述第二上行突发之前未接收到用于指示HARQ状态的第一指示信息,或者可以是所述终端设备在所述第一上行突发对应的第二参考时间单元之后第一参考时间单元之前未接收到用于指示HARQ状态的第一指示信息,或者可以是所述终端设备在所述第一上行突发对应的第二参考时间单元开始的第一时间门限之内未接收到用于指示HARQ状态的第一指示信息。
可选的,在第一时间长度大于第一时间门限,以及终端设备在第一上行突发对应的第二参考时间和第一参考时间单元之间的时间内未接收到用于指示HARQ状态的第一指示信息的情况下,第二CWS大于第一CWS,第一CWS为第二LBT前一次的LBT对应的CWS,即终端设备增加CWS。如图3所示,在一种可能的情况下,终端设备在第一上行突发对应的第二参考时间单元,即定时器起点之前以及第一上行突发之后收到用于指示HARQ状态的第一指示信息,此时对于第一参考时间单元超出定时器的第二上行突发,终端设备增加CWS。
可选的,在第一时间长度大于第一时间门限,以及终端设备在从第一上行突发对应的第二参考时间开始的第一时间门限之内未接收到用于指示HARQ状态的第一指示信息的情况下,第二CWS大于第一CWS,第一CWS为第二LBT前一次的LBT对应 的CWS,即终端设备增加CWS。如图4所示,在一种可能的情况下,终端设备在第一上行突发对应的定时器定时结束之后和第一参考时间单元之前接收到用于指示HARQ状态的第一指示信息,此时对于第一参考时间单元超出定时器的第二上行突发,终端设备增加CWS。
第二种方式中,在所述第一时间长度小于或等于第一时间门限,并且所述终端设备在所述第一上行突发之后未接收到用于指示HARQ状态的第一指示信息的情况下,所述第二CWS等于第一CWS。
应理解,第二LBT前一次的LBT指前一次基于随机回退CCA的LBT。
如图5所示,终端设备在第一上行突发之后未收到用于指示HARQ状态的第一指示信息且第二上行突发对应的第一参考时间单元未超出第一上行突发对应的定时器T1,应理解,如前文所述指示HARQ状态的第一指示信息包括HARQ-ACK反馈信息和UL grant中的至少一个。在这种情况下,终端设备不增加CWS,即第二CWS等于第一CWS,第一CWS为第二LBT前一次的LBT对应的CWS。
可选的,在该种可能的设计中,当第一上行突发对应的第二参考时间满足前文所述的情形3时,终端设备确定第二CWS包括:当第一参考时间单元不晚于第一上行突发对应的第二参考时间单元的情况下,或者,当第一时间长度小于第一时间门限,以及终端设备在第一上行突发对应的第二参考时间单元和第一参考时间单元之间未接收到包含HARQ状态的第一指示信息的情况下,终端设备不增加CWS,即第二CWS等于第一CWS,第一CWS为第二LBT前一次的LBT对应的CWS。
可选的,在第三种方式中,在第一时间长度小于或等于第一时间门限,以及所述终端设备在所述第一上行突发之后未接收到用于指示HARQ状态的第一指示信息的情况下,所述第二CWS是根据第二指示信息确定的,其中,第二指示信息为所述终端设备在所述第一上行突发之前接收到的用于指示HARQ状态的指示信息。
如图6所示,终端设备在第一上行突发之后未收到用于指示HARQ状态的第一指示信息且第二上行突发对应的第一参考时间单元未超出第一上行突发对应的定时器T1,应理解,如前文所述指示HARQ状态的第一指示信息包括HARQ-ACK反馈信息和UL grant中的至少一个。在这种情况下,终端设备根据第一上行突发之前的HARQ状态信息来确定第二CWS,其中,终端设备根据HARQ状态信息调整CWS可以复用现有技术中的方法。
需要说明的是,上述三种方式可以作为独立的方案独立使用,或者任意两种作为一个整体方案,或者,三种方案可以作为一个整体方案。
可选的,在一种可能的设计中,在第一时间长度大于或等于第一时间门限,以及终端设备在第一上行突发之后和第二上行突发之前的时间内未接收到用于指示HARQ状态的第一指示信息,以及第二上行突发为第一上行突发对应的第三参考时间单元之后的第一个上行突发的情况下;终端设备增加CWS,即第二CWS大于所述第一CWS,第一CWS为第二LBT前一次的LBT对应的CWS,所述第一上行突发对应的第三参考时间单元晚于所述第一上行突发对应的第二参考时间单元,第一上行突发对应的第三参考时间单元与第一上行突发对应的第二参考时间单元之间的时间间隔为第一时间门限。应理解,第一上行突发对应的第三参考时间单元为第一上行突发对应的定时器 的结束时间单元。在该种可能的设计中,终端设备只对第一上行突发对应的定时器超时之后出现的第一个上行突发增加CWS。可选的,第二上行突发可以为第一上行突发对应的第三参考时间单元之后的第一个AUL上行突发。可选的,第二上行突发可以为第一上行突发对应的第三参考时间单元之后的第一个进行基于随机回退CCA的LBT的上行突发。可选的,第二上行突发可以为第一上行突发对应的第三参考时间单元之后的第一个进行基于随机回退CCA的LBT的AUL上行突发。
终端设备通过执行本发明实施例提供的方法,通过结合一个时间门限,例如定时器,来确定CWS。当终端设备在发送一个上行突发(称为第一上行突发)之后,如果未接收到带有HARQ状态的指示信息(称为第一指示信息),例如在第一上行突发和第二上行突发之间未接收到该第一指示信息,且第一参考时间单元超出第一上行突发对应的第一时间门限,即第一上行突发对应的定时器时长,则将第二上行突发对应的CWS增加后再执行信道侦听。通过设置时间门限,例如定时器,在第一参考时间单元超出定时器且未接收到HARQ状态信息的情况下增加CWS,从而避免了因为反馈HARQ状态信息存在时延,在一次上行突发之后的一个时间间隔(例如小于时延的时间间隔)内未接收到网络设备反馈的HARQ状态信息就增加CWS,因此,避免过度增加CWS而降低终端设备接入信道的成功率,使得终端设备在进行AUL上行传输时更合理地适应信道状态。
图8给出了本发明实施例提供的一种上行信道侦听方法的过程示意图,图9和图10给出了本发明实施例提供的一种方法的时序图,下面结合图8-10描述本发明实施例提供的方法。
步骤810:终端设备在第一上行突发上发送第一数据包。
步骤820:终端设备进行第一LBT。
本步骤的操作可以是由图12中的终端设备的调制解调处理器124实现。
步骤830:在第一LBT成功后,在第二上行突发上发送第二数据包,其中,第二上行突发晚于第一上行突发。
上述步骤中发送的动作可以由图12中的终端设备的收发器121来实现,当然,也可以是图12中的终端设备的调制解调器处理器124来控制收发器121实现。
步骤840:终端设备确定第二竞争窗大小CWS。
其中,第一参考时间单元与第一上行突发对应的第二参考时间单元间隔第一时间长度,第一参考时间单元与第二上行突发对应的第二参考时间单元间隔第二时间长度;
第一种方式中,在第二时间长度小于第一时间门限,和第一时间长度大于或等于第一时间门限,以及终端设备在第一上行突发之后的时间内未接收到HARQ状态的第一指示信息的情况下,并且,在第一LBT对应的第一CWS相比于第三CWS未增加的情况下,第二CWS大于第四CWS,第四CWS为第二LBT的前一次LBT对应的CWS,第三CWS为第一LBT前一次LBT对应的CWS。
第二种方式中,在第二时间长度小于第一时间门限,和第一时间长度大于或等于第一时间门限,以及终端设备在第一上行突发之后的时间内未接收到HARQ状态的第一指示信息的情况下,并且,在第一LBT对应的第一CWS相比于第三CWS增加的情况下,第二CWS等于第四CWS,第四CWS为第二LBT的前一次LBT对应的CWS, 第三CWS为第一LBT前一次LBT对应的CWS。
具体的,在第三上行突发超出第一上行突发对应的定时器,即第一时间长度大于或等于第一时间门限的情况下,当第一上行突发和第三上行突发之间存在一个第二上行突发,其中第二上行突发对应的CWS为调整过的CWS,且第一参考时间未超出第二上行突发对应的定时器,即第二时间长度小于第一时间门限,则终端设备不增加第二CWS。或者说,终端设备以已经调整过CWS的第二上行突发重启一个新的定时器,并根据第二上行突发和第三上行突发之间的HARQ状态的接收情况和时间间隔确定第三上行突发对应的CWS。
进一步的,终端设备针对第二上行突发调整过CWS是指终端设备针对第二上行突发增加过CWS。也就是说,如果第一上行突发和第三上行突发之间存在某个上行突发,该上行突发对应的CWS相比于前一次LBT对应的CWS保持不变,或者相比于前一次LBT对应的CWS减小过,则终端设备需要增加第二CWS。只有当第二上行突发对应的CWS为增加过的CWS时,终端设备才不增加第三上行突发对应的第二CWS,避免重复惩罚CWS;如果第二上行突发保持CWS不变或减小了CWS,则终端设备增加CWS,即第二CWS大于第四CWS,第四CWS为第二LBT的前一次LBT对应的CWS。应理解,第二LBT前一次的LBT指前一次基于随机回退CCA的LBT。
可选的,第二上行突发对应的CWS可以是根据包含HARQ状态的指示信息增加的,如图7所示,例如,终端设备根据第一上行突发之前收到的HARQ状态信息为NACK,因此终端设备增加第二上行突发对应的CWS。
可选的,第二上行突发对应的CWS可以是由于HARQ状态接收超时而增加的,如图8所示,例如,第二上行突发超出了之前某个突发的定时器,且两次突发之间未接收到HARQ状态信息,因此终端设备增加第二上行突发对应的CWS。
需要说明的是,这里的第一种方式和第二种方式可以作为一个整体方案,或者可以作为独立的方案单独使用。
本步骤的操作可以是由图12中的终端设备的调制解调处理器124实现。
步骤850:根据第二CWS进行第二LBT。
本步骤的操作可以是由图12中的终端设备的调制解调处理器124实现。
步骤860:在第二LBT成功的情况下,在第三上行突发上发送第三数据包,第三上行突发晚于第二上行突发。
本步骤中发送的动作可以由图12中的终端设备的收发器121来实现,当然,也可以是图12中的终端设备的调制解调器处理器124来控制收发器121实现。
应理解,前文中关于CWS和LBT的描述同样适用于本实施例,此处不予赘述。
在一种可能的设计中,第一参考时间单元为终端设备确定第二CWS的时间单元,例如,终端设备在某一个TTI确定第二CWS,则,该第一参考时间单元为该TTI,或者,为第三上行突发的起始时间单元,例如,该起始时间单元可以是终端设备根据时序关系确定的一个起始时间单元。
可选的,所述第一上行突发对应的第二参考时间单元为所述第一上行突发中的时间单元;或者,所述第一上行突发对应的第二参考时间单元为与所述第一上行突发的起始时间单元间隔第三时间长度的时间单元,并且,所述第二参考时间单元在所述第 一上行突发的起始时间单元之后;以及
所述第二上行突发对应的第二参考时间单元为所述第二上行突发中的时间单元;或者,所述第二上行突发对应的第二参考时间单元为与所述第二上行突发的起始时间单元间隔第三时间长度的时间单元,并且,所述第二参考时间单元在所述第一上行突发的起始时间单元之后。
进一步的,所述第一上行突发对应的第二参考时间单元和所述第二上行突发对应的第二参考时间单元可以是不同的。
可选的,所述第一上行突发对应的第二参考时间单元为所述第一上行突发的起始时间单元;或所述第二上行突发对应的第二参考时间单元为所述第二上行突发的起始时间单元。
可选的,所述第一CWS与所述第三CWS对应于同一接入优先级,所述第二CWS与所述第四CWS对应于同一接入优先级。
应理解,终端设备每一次进行LBT对应的CWS是在终端设备前一次LBT对应的CWS的基础上调整的,其中调整包括增加、保持不变和减小。例如,如果确定本次LBT对应的CWS增加,则相比于前一次LBT对应的CWS增加到CWS集合中下一个更高的取值,如果确定本次LBT对应的CWS保持不变,则保持与前一次LBT对应的CWS相同。
应理解,每个终端设备在接入信道时可以根据业务类型,使用至少两种接入优先级(Priority class)中的其中一种进行LBT。对于每种接入优先级,对应特定的一套CWS取值集合,例如对于4种接入优先级,接入优先级1的CWS集合为{3,7},接入优先级2的CWS集合为{7,15},接入优先级3的CWS集合为{15,31,63,127,255,511,1023},接入优先级4的CWS集合为{15,31,63,127,255,511,1023}。终端设备每次执行LBT之前调整CWS时,执行的CWS增加或减小或保持不变的调整操作是针对该至少两种接入优先级中的每一种的,而不仅限于执行该LBT所使用的接入优先级。例如对于4种接入优先级,终端设备使用接入优先级1执行LBT前,若需要增加CWS,则对4种接入优先级中的每一种,都将CWS增加到该接入优先级对应的CWS取值集合中的下一个更高的取值,然后使用接入优先级1调整后的CWS取值执行LBT。因此,本发明实施例中描述的任意两个CWS之间的大小关系都是指同一接入优先级下的两个CWS之间的关系。例如第二CWS大于第一CWS,是指对于任一接入优先级,将第一LBT对应的第一CWS增加至第二LBT对应的第二CWS。再例如第二CWS等于第一CWS,是指对于任一接入优先级,使第二LBT对应的第二CWS保持与第一LBT对应的第一CWS相等。
可选的,所述第一参考时间单元为所述终端设备确定所述第二CWS的时间单元。
可选的,所述第一参考时间单元为所述第二上行突发的起始时间单元。
可选的,所述第二LBT的前一次LBT与所述第一LBT相同。
进一步的,所述第二时间长度可以为预先定义的或者为从网络设备接收到的。
可选的,所述第三时间长度可以与网络设备反馈HARQ状态的时延相关。例如,
通过本实施例提供的方法在第一上行突发之后未接收到HARQ状态信息,以及第 一上行突发和第三上行突发之间终端设备已经增加过第二上行突发对应的CWS,且第一参考时间单元未超出第二上行突发的定时器时长的情况下,终端设备不再由于第三上行突发超出第一上行突发对应的定时器时长而增加第三上行突发对应的CWS,而保持第三上行突发对应的CWS不变。相比于只要第一参考时间超出定时器时长终端设备就增加CWS的方法,可以避免在短时间内已经增加过CWS的情况下再次由于定时器超时而增加CWS,避免了对CWS的过度惩罚,提高了AUL场景下终端设备调整CWS的合理性。
图11给出了本发明实施例提供的又一种上行信道侦听方法的时序图,下面结合图8和图11描述本发明实施例提供的又一种方法。
步骤810:终端设备在第一上行突发上发送第一数据包;
步骤820:所述终端设备进行第一LBT;
本步骤的操作可以是由图12中的终端设备的调制解调处理器124实现。
步骤830:在所述第一LBT成功后,在第二上行突发上发送第二数据包,所述第二上行突发晚于所述第一上行突发;
步骤840:所述终端设备确定第二竞争窗大小CWS;
其中,第一参考时间单元与所述第一上行突发对应的第二参考时间单元间隔第一时间长度,所述第一参考时间单元与所述第二上行突发对应的第二参考时间单元间隔第二时间长度;在所述第二时间长度大于或等于第一时间门限,和第一时间长度大于或等于所述第一时间门限,以及所述终端设备在所述第一上行突发之后未接收到HARQ状态的第一指示信息的情况下,所述第二CWS为在第一CWS的基础上增加一次的CWS,所述第一CWS为所述第一LBT的前一次LBT对应的CWS。
应理解,前文中关于CWS和LBT的描述同样适用于本实施例,此处不予赘述。
具体的,在第三上行突发超出第一上行突发对应的定时器,即第一时间长度大于或等于第一时间门限,且第三上行突发超出第二上行突发对应的定时器,即第二时间长度大于或等于第一时间门限,以及终端设备在第一上行突发之后和第三上行突发之前未接收到用于指示HARQ状态的第一指示信息的情况下,终端设备只增加一次CWS,即第一CWS为在第二CWS的基础上增加一次之后的CWS,第二CWS为所述第一LBT的前一次LBT对应的CWS。
如图9所示,第三上行突发同时超出第一上行突发对应的定时器T1和第二上行突发对应的定时器T2,且终端设备在第一上行突发和第三上行突发之间未接收到用于指示HARQ状态的第一指示信息,在这种情况下终端设备只增加一次CWS,具体的说,第三上行突发对应的第一CWS大于第二CWS,第二CWS为所述第一LBT的前一次LBT对应的CWS,且第一CWS为同一接入优先级的CWS集合中大于第二CWS的CWS中最小的CWS。需要说明的是,接入优先级的概念如前文所述,此处不再赘述。
本步骤的操作可以是由图12中的终端设备的调制解调处理器124实现。
步骤850:根据所述第二CWS进行第二LBT。
本步骤的操作可以是由图12中的终端设备的调制解调处理器124实现。
步骤860:在所述第二LBT成功的情况下,在第三上行突发上发送第三数据包,所述第三上行突发晚于所述第二上行突发;
上述步骤中发送的动作可以由图12中的终端设备的收发器121来实现,当然,也可以是图12中的终端设备的调制解调器处理器124来控制收发器121实现。
在一种可能的设计中,第一参考时间单元为终端设备确定第二CWS的时间单元,例如,终端设备在某一个TTI确定第二CWS,则,该第一参考时间单元为该TTI,或者,为第三上行突发的起始时间单元,例如,该起始时间单元可以是终端设备根据时序关系确定的一个起始时间单元。
可选的,所述第一上行突发对应的第二参考时间单元为所述第一上行突发中的时间单元;或者,所述第一上行突发对应的第二参考时间单元为与所述第一上行突发的起始时间单元间隔第三时间长度的时间单元,并且,所述第二参考时间单元在所述第一上行突发的起始时间单元之后;以及
所述第二上行突发对应的第二参考时间单元为所述第二上行突发中的时间单元;或者,所述第二上行突发对应的第二参考时间单元为与所述第二上行突发的起始时间单元间隔第三时间长度的时间单元,并且,所述第二参考时间单元在所述第一上行突发的起始时间单元之后。
进一步的,所述第一上行突发对应的第二参考时间单元和所述第二上行突发对应的第二参考时间单元可以是不同的。
可选的,所述第一上行突发对应的第二参考时间单元为所述第一上行突发的起始时间单元;或所述第二上行突发对应的第二参考时间单元为所述第二上行突发的起始时间单元。
可选的,所述第一参考时间单元为所述终端设备确定所述第二CWS的时间单元。
可选的,所述第一参考时间单元为所述第二上行突发的起始时间单元。
可选的,第一CWS与第二CWS对应同一接入优先级。
可选的,所述第二LBT的前一次LBT与所述第一LBT相同。
进一步的,所述第二时间长度可以为预先定义的或者为从网络设备接收到的。
可选的,所述第三时间长度可以与网络设备反馈HARQ状态的时延相关。
上述实施例中,第一参考时间单元超出第一上行突发对应的第一时间门限,即第一上行突发对应的定时器时长,第一参考时间单元还超出第二上行突发对应的定时器时长,且在第一上行突发之后未接收到HARQ状态信息的情况下,即在终端设备超出多个上行突发对应的定时器且未接收到HARQ状态信息的情况下,终端设备只增加一次CWS,避免了多次超时的情况下对CWS的过度惩罚,增加了AUL场景下终端设备调整CWS的合理性。
图12为终端设备的一种可能的结构示意图。该终端设备能够执行本发明实施例提供的方法。该终端设备可以是图1中两个终端设备116和122中的任一个。所述终端设备包括收发器121,应用处理器(application processor)122,存储器123和调制解调器处理器(modem processor)124。
收发器121可以调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的网络设备。在下行链路上,天线接收网络设备发射的下行链路信号。收发器121可以调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。收发器121可以实现上述方法实施例中终端设备的发送和接收功能,包括在上行突发上发送数据包的功能,上述方法实施例中的技术特征同样适用于装置实施例,具体细节此处不予赘述。
调制解调器处理器124有时也称为控制器或处理器,可包括基带处理器(baseband processor,BBP)(未示出),该基带处理器处理经数字化的收到信号以提取该信号中传达的信息或数据比特。BBP通常按需或按期望实现在调制解调器处理器124内的一个或多个数字中或实现为分开的集成电路(IC)。
在一个设计中,调制解调器处理器(modem processor)1004可包括编码器1241,调制器1242,解码器1243,解调器1244。编码器1241用于对待发送信号进行编码。例如,编码器1241可用于接收要在上行链路上发送的业务数据和/或信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码、或交织等)。调制器1242用于对编码器1241的输出信号进行调制。例如,调制器可对编码器的输出信号(数据和/或信令)进行符号映射和/或调制等处理,并提供输出采样。解调器1244用于对输入信号进行解调处理。例如,解调器1244处理输入采样并提供符号估计。解码器1243用于对解调后的输入信号进行解码。例如,解码器1243对解调后的输入信号解交织、和/或解码等处理,并输出解码后的信号(数据和/或信令)。编码器1241、调制器1242、解调器1244和解码器1243可以由合成的调制解调处理器124来实现。这些单元根据无线接入网采用的无线接入技术来进行处理。
调制解调器处理器124从应用处理器122接收可表示语音、数据或控制信息的数字化数据,并对这些数字化数据处理后以供传输。所属调制解调器处理器可以支持多种通信系统的多种无线通信协议中的一种或多种,例如LTE,新空口,通用移动通信系统(Universal Mobile Telecommunications System,UMTS),高速分组接入(High Speed Packet Access,HSPA)等等。可选的,调制解调器处理器124中也可以包括一个或多个存储器。
可选的,该调制解调器处理器124和应用处理器122可以是集成在一个处理器芯片中。
调制解调处理器124可以实现上述方法实施例中终端设备的处理功能,包括确定CWS和进行LBT,调制解调处理器124也可以和收发器121一起实现发送数据包和进行LBT的功能,上述方法实施例中的技术特征同样适用于装置实施例,具体细节此处不予赘述。
存储器123用于存储用于支持所述终端设备通信的程序代码(有时也称为程序,指令,软件等)和/或数据。
需要说明的是,该存储器123可以包括一个或多个存储单元,例如,可以是用于存储程序代码的调制解调器处理器124或应用处理器122内部的存储单元,或者可以是与调制解调器处理器124或应用处理器122独立的外部存储单元,或者还可以是包 括调制解调器处理器124或应用处理器122内部的存储单元以及与调制解调器处理器124或应用处理器122独立的外部存储单元的部件。
调制解调器处理器121可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件、其他集成电路、或者其任意组合。调制解调器处理器121可以实现或执行结合本发明实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能器件的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合或者片上系统(system-on-a-chip,SOC)等等。
本领域技术人员能够理解,结合本申请所公开的诸方面描述的各种解说性逻辑块、模块、电路和算法可被实现为电子硬件、存储在存储器中或另一计算机可读介质中并由处理器或其它处理设备执行的指令、或这两者的组合。作为示例,本文中描述的设备可用在任何电路、硬件组件、IC、或IC芯片中。本申请所公开的存储器可以是任何类型和大小的存储器,且可被配置成存储所需的任何类型的信息。为清楚地解说这种可互换性,以上已经以其功能性的形式一般地描述了各种解说性组件、框、模块、电路和步骤。此类功能性如何被实现取决于具体应用、设计选择和/或加诸于整体系统上的设计约束。本领域技术人员可针对每种特定应用以不同方式来实现所描述的功能性,但此类实现决策不应被解读为致使脱离本发明的范围。
调制解调器处理器121对终端的动作进行控制管理,用于执行上述实施例中由终端设备进行的动作。收发器121连接至调制解调器处理器121并且通过天线发送或接收无线信号,所述天线可以单个天线或多个天线。存储器123用于存储终端设备在执行本发明实施例方法过程中产生的数据和用于支持所述终端设备通信的程序代码。
本发明示例还提供一种装置(例如,集成电路、无线设备、电路模块等)用于实现上述方法。实现本文描述方法的装置可以是自立设备或者可以是较大设备的一部分。设备可以是(i)自立的IC;(ii)具有一个或多个1C的集合,其可包括用于存储数据和/或指令的存储器IC;(iii)RFIC,诸如RF接收机或RF发射机/接收机;(iv)ASIC,诸如移动站调制解调器;(v)可嵌入在其他设备内的模块;(vi)接收机、蜂窝电话、无线设备、手持机、或者移动单元;(vii)其他等等。
本发明实施例提供的方法和装置,可以应用于终端设备。该终端设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、以及即时通信软件等应用。并且,在本发明实施例中,本发明实施例并不限定方法的执行主体的具体结构,只要能够通过运行记录有本发明实施例的方法的代码的程序,以根据本发明实施例的传输信号的方法进行通信即可,例如,本发明实施例的无线通信的方法的执行主体可以是终端设备,或者,是终端设备中能 够调用程序并执行程序的功能模块。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明实施例的范围。
此外,本发明实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
应理解,在本发明实施例的各种实施例中,上述各过程的描述顺序的先后并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者接入网设备等)执行本发明实施例各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明实施例的具体实施方式,但本发明实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明实施例的保护范围之内。

Claims (21)

  1. 一种终端设备侦听上行信道方法,其特征在于,包括:
    进行第一先侦听后发送LBT,在所述第一LBT成功后,在第一上行突发上发送第一数据包;
    确定第二竞争窗大小CWS,其中,
    在第一时间长度大于或等于第一时间门限,以及在所述第一上行突发之后未接收到用于指示HARQ状态的第一指示信息的情况下,所述第二CWS大于第一CWS;和/或
    在所述第一时间长度小于或等于第一时间门限,并且在所述第一上行突发之后未接收到用于指示HARQ状态的第一指示信息的情况下,所述第二CWS等于第一CWS;或者,
    在第一时间长度小于或等于第一时间门限,以及在所述第一上行突发之后未接收到用于指示HARQ状态的第一指示信息的情况下,所述第二CWS是根据第二指示信息确定的,其中,第二指示信息为在所述第一上行突发之前接收到的用于指示HARQ状态的指示信息;以及
    根据所述第二CWS进行第二LBT,
    其中,第一参考时间单元与所述第一上行突发对应的第二参考时间单元之间的间隔为第一时间长度,所述第一CWS为所述第二LBT前一次的LBT对应的CWS,所述第一参考时间单元晚于所述第二参考时间单元;
  2. 一种无线装置,包括处理器和与所述处理器耦合的存储器和收发器,其中,所述处理器用于,进行第一先侦听后发送LBT;
    所述收发器用于,在所述第一LBT成功后,在第一上行突发上发送第一数据包;
    所述处理器还用于,确定第二竞争窗大小CWS,其中,
    在第一时间长度大于或等于第一时间门限,以及所述无线装置在所述第一上行突发之后未接收到用于指示HARQ状态的第一指示信息的情况下,所述第二CWS大于第一CWS;和/或
    在所述第一时间长度小于或等于第一时间门限,并且所述无线装置在所述第一上行突发之后未接收到用于指示HARQ状态的第一指示信息的情况下,所述第二CWS等于第一CWS;或者,
    在第一时间长度小于或等于第一时间门限,以及所述无线装置在所述第一上行突发之后未接收到用于指示HARQ状态的第一指示信息的情况下,所述第二CWS是根据第二指示信息确定的,其中,第二指示信息为所述无线装置在所述第一上行突发之前接收到的用于指示HARQ状态的指示信息;以及
    所述处理器还用于,根据所述第二CWS进行第二LBT,
    其中,第一参考时间单元与所述第一上行突发对应的第二参考时间单元之间的间 隔为第一时间长度,所述第一CWS为所述第二LBT前一次的LBT对应的CWS,所述第一参考时间单元晚于所述第二参考时间单元。
  3. 根据权利要求1所述的方法或权利要求2所述的无线装置,其特征在于,
    所述第一上行突发对应的第二参考时间单元为所述第一上行突发中的时间单元;或者,
    所述第一上行突发对应的第二参考时间单元为与所述第一上行突发的起始时间单元间隔第三时间长度的时间单元,并且,所述第二参考时间单元在所述第一上行突发的起始时间单元之后。
  4. 根据权利要求1-3任一项所述的方法或无线装置,其特征在于,
    所述第一上行突发对应的第二参考时间单元为所述第一上行突发的起始时间单元。
  5. 根据权利要求1或3或4所述的方法,其特征在于,还包括:
    在所述第二LBT成功的情况下,在第二上行突发上发送第二数据包,所述第二上行突发晚于所述第一上行突发。
  6. 根据权利要求2或3或4所述的无线装置,其特征在于,所述收发器还用于:
    在所述第二LBT成功的情况下,在第二上行突发上发送第二数据包,所述第二上行突发晚于所述第一上行突发。
  7. 根据权利要求1-6任一项所述的方法或无线装置,其特征在于,
    所述第二上行突发为所述第一上行突发之后的第一个上行突发。
  8. 一种终端设备侦听上行信道的方法,其特征在于,包括:
    在第一上行突发上发送第一数据包;
    进行第一LBT,在所述第一LBT成功后,在第二上行突发上发送第二数据包,所述第二上行突发晚于所述第一上行突发;
    确定第二竞争窗大小CWS,根据所述第二CWS进行第二LBT;
    其中,第一参考时间单元与所述第一上行突发对应的第二参考时间单元间隔第一时间长度,所述第一参考时间单元与所述第二上行突发对应的第二参考时间单元间隔第二时间长度;
    在所述第二时间长度大于或等于第一时间门限,和第一时间长度大于或等于所述第一时间门限,以及在所述第一上行突发之后未接收到HARQ状态的第一指示信息的情况下,
    所述第二CWS为在第一CWS的基础上增加一次的CWS,所述第一CWS为所述第一LBT的前一次LBT对应的CWS;
    在所述第二LBT成功的情况下,在第三上行突发上发送第三数据包,所述第三上行突发晚于所述第二上行突发。
  9. 一种无线装置,包括处理器和与所述处理器耦合的存储器和收发器,其中,
    所述收发器用于,在第一上行突发上发送第一数据包;
    所述处理器用于,进行第一LBT;
    所述收发器还用于,在所述第一LBT成功后,在第二上行突发上发送第二数据包,所述第二上行突发晚于所述第一上行突发;
    所述处理器还用于,确定第二竞争窗大小CWS,根据所述第二CWS进行第二LBT;
    其中,第一参考时间单元与所述第一上行突发对应的第二参考时间单元间隔第一时间长度,所述第一参考时间单元与所述第二上行突发对应的第二参考时间单元间隔第二时间长度;
    在所述第二时间长度大于或等于第一时间门限,和第一时间长度大于或等于所述第一时间门限,以及所述无线装置在所述第一上行突发之后未接收到HARQ状态的第一指示信息的情况下,
    所述第二CWS为在第一CWS的基础上增加一次的CWS,所述第一CWS为所述第一LBT的前一次LBT对应的CWS;
    所述收发器还用于,在所述第二LBT成功的情况下,在第三上行突发上发送第三数据包,所述第三上行突发晚于所述第二上行突发;
  10. 根据权利要求1-9任一项所述的方法或无线装置,其特征在于,
    所述第一CWS与所述第二CWS对应于同一接入优先级。
  11. 一种终端设备侦听上行信道的方法,其特征在于,包括:
    在第一上行突发上发送第一数据包;
    进行第一LBT,在所述第一LBT成功后,在第二上行突发上发送第二数据包,其中,所述第二上行突发晚于所述第一上行突发;
    确定第二竞争窗大小CWS,根据所述第二CWS进行第二LBT;
    其中,第一参考时间单元与所述第一上行突发对应的第二参考时间单元间隔第一时间长度,所述第一参考时间单元与所述第二上行突发对应的第二参考时间单元间隔第二时间长度;
    在所述第二时间长度小于第一时间门限,和第一时间长度大于或等于所述第一时间门限,以及在所述第一上行突发之后未接收到HARQ状态的第一指示信息的情况下,并且,
    在所述第一LBT对应的第一CWS相比于第三CWS未增加的情况下,所述第二CWS大于第四CWS,所述第四CWS为所述第二LBT的前一次LBT对应的CWS,所述第三CWS为所述第一LBT前一次LBT对应的CWS;和/或,
    在所述第一LBT对应的第一CWS相比于第三CWS增加的情况下,所述第二CWS等于第四CWS,所述第四CWS为所述第二LBT的前一次LBT对应的CWS,所述第三CWS为所述第一LBT前一次LBT对应的CWS;
    在所述第二LBT成功的情况下,在第三上行突发上发送第三数据包,所述第三上行突发晚于所述第二上行突发。
  12. 一种无线装置,包括处理器和与所述处理器耦合的存储器和收发器,其中,
    所述收发器用于,在第一上行突发上发送第一数据包;
    所述处理器还用于,进行第一LBT,所述收发器还用于,在所述第一LBT成功后,在第二上行突发上发送第二数据包,其中,所述第二上行突发晚于所述第一上行突发;
    所述处理器还用于,确定第二竞争窗大小CWS,根据所述第二CWS进行第二LBT;
    其中,第一参考时间单元与所述第一上行突发对应的第二参考时间单元间隔第一时间长度,所述第一参考时间单元与所述第二上行突发对应的第二参考时间单元间隔第二时间长度;
    在所述第二时间长度小于第一时间门限,和第一时间长度大于或等于所述第一时间门限,以及所述无线装置在所述第一上行突发之后未接收到HARQ状态的第一指示信息的情况下,并且,
    在所述第一LBT对应的第一CWS相比于第三CWS未增加的情况下,所述第二CWS大于第四CWS,所述第四CWS为所述第二LBT的前一次LBT对应的CWS,所述第三CWS为所述第一LBT前一次LBT对应的CWS;和/或,
    在所述第一LBT对应的第一CWS相比于第三CWS增加的情况下,所述第二CWS等于第四CWS,所述第四CWS为所述第二LBT的前一次LBT对应的CWS,所述第三CWS为所述第一LBT前一次LBT对应的CWS;
    所述收发器还用于,在所述第二LBT成功的情况下,在第三上行突发上发送第三数据包,所述第三上行突发晚于所述第二上行突发。
  13. 根据权利要求8或11所述的方法或权利要求9或12所述的无线装置,其特征在于,
    所述第一上行突发对应的第二参考时间单元为所述第一上行突发中的时间单元;或者,所述第一上行突发对应的第二参考时间单元为与所述第一上行突发的起始时间单元间隔第三时间长度的时间单元,并且,所述第二参考时间单元在所述第一上行突发的起始时间单元之后;以及
    所述第二上行突发对应的第二参考时间单元为所述第二上行突发中的时间单元;或者,所述第二上行突发对应的第二参考时间单元为与所述第二上行突发的起始时间单元间隔第三时间长度的时间单元,并且,所述第二参考时间单元在所述第一上行突发的起始时间单元之后。
  14. 根据权利要求8-13所述的方法或无线装置,其特征在于,
    所述第一上行突发对应的第二参考时间单元为所述第一上行突发的起始时间单元;或
    所述第二上行突发对应的第二参考时间单元为所述第二上行突发的起始时间单元。
  15. 根据权利要求11-14所述的方法或无线装置,其特征在于,
    所述第一CWS与所述第三CWS对应于同一接入优先级,所述第二CWS与所述 第四CWS对应于同一接入优先级。
  16. 根据权利要求1-15所述的方法或无线装置,其特征在于,
    所述第一参考时间单元为确定所述第二CWS的时间单元。
  17. 根据权利要求1-15所述的方法或无线装置,其特征在于,
    所述第一参考时间单元为所述第三上行突发的起始时间单元。
  18. 根据权利要求1-17所述的方法或无线装置,其特征在于,
    所述第二LBT的前一次LBT与所述第一LBT相同。
  19. 根据权利要求1-18所述的方法或无线装置,其特征在于,
    所述第三时间长度为预先定义的或者为从网络设备接收到的。
  20. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求1或2-5或7-8或10或11或13-19中任一项所述的方法。
  21. 一种包含指令的计算存储介质,当其在计算机上运行时,使得计算机执行所述权利要求1或3-5或7-8或10或11或13-19中任一项所述的方法。
PCT/CN2017/103176 2017-09-25 2017-09-25 上行信道侦听的方法和装置 WO2019056368A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
BR112020005866-1A BR112020005866A2 (pt) 2017-09-25 2017-09-25 método para escuta em canal de enlace ascendente e aparelho
PCT/CN2017/103176 WO2019056368A1 (zh) 2017-09-25 2017-09-25 上行信道侦听的方法和装置
CN202210377909.3A CN115334689A (zh) 2017-09-25 2017-09-25 上行信道侦听的方法和装置
EP17925544.3A EP3678444B1 (en) 2017-09-25 2017-09-25 Uplink channel sensing method and device
RU2020114612A RU2747845C1 (ru) 2017-09-25 2017-09-25 Устройство и способ для прослушивания канала восходящей линии связи
CN201780095217.7A CN111133828B (zh) 2017-09-25 2017-09-25 上行信道侦听的方法和装置
ES17925544T ES2925776T3 (es) 2017-09-25 2017-09-25 Método y dispositivo de detección de canal en el enlace ascendente
JP2020517195A JP6955093B2 (ja) 2017-09-25 2017-09-25 アップリンクチャネル上でリッスンするための方法および装置
EP21214259.0A EP4037419A1 (en) 2017-09-25 2017-09-25 Method for listening on uplink channel and apparatus
US16/828,332 US11357043B2 (en) 2017-09-25 2020-03-24 Method for listening on uplink channel and apparatus
US17/741,114 US11792847B2 (en) 2017-09-25 2022-05-10 Method for listening on uplink channel and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/103176 WO2019056368A1 (zh) 2017-09-25 2017-09-25 上行信道侦听的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/828,332 Continuation US11357043B2 (en) 2017-09-25 2020-03-24 Method for listening on uplink channel and apparatus

Publications (1)

Publication Number Publication Date
WO2019056368A1 true WO2019056368A1 (zh) 2019-03-28

Family

ID=65809999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103176 WO2019056368A1 (zh) 2017-09-25 2017-09-25 上行信道侦听的方法和装置

Country Status (8)

Country Link
US (2) US11357043B2 (zh)
EP (2) EP4037419A1 (zh)
JP (1) JP6955093B2 (zh)
CN (2) CN115334689A (zh)
BR (1) BR112020005866A2 (zh)
ES (1) ES2925776T3 (zh)
RU (1) RU2747845C1 (zh)
WO (1) WO2019056368A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160485A1 (en) * 2018-02-16 2019-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Communication node and methods performed thereby
WO2021031914A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 一种竞争窗口维护方法及设备
EP3920644A4 (en) * 2019-03-29 2022-02-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD OF DETERMINING THE SIZE OF A COMPETITION WINDOW AND RELEVANT PRODUCT
US20220191926A1 (en) * 2018-10-18 2022-06-16 Qualcomm Incorporated Procedures for autonomous uplink transmissions

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210038574A (ko) 2018-08-01 2021-04-07 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 랜덤 액세스 방법, 단말기 디바이스 및 네트워크 디바이스
EP3629505A1 (en) * 2018-09-25 2020-04-01 Panasonic Intellectual Property Corporation of America User equipment and base station involved in transmission of data
US11363465B2 (en) * 2018-09-26 2022-06-14 Qualcomm Incorporated Licensed supplemental uplink as fallback with unlicensed uplink and downlink
DE102018222846A1 (de) * 2018-12-21 2020-06-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Bidirektionale Zeitplanung in Niedrigleistungs-Großraumnetzen
US11632786B2 (en) * 2019-12-13 2023-04-18 Qualcomm Incorporated Channel access contention management for ultra-reliable low-latency communication (URLLC)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559909A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 一种竞争窗调整方法和装置
CN106656428A (zh) * 2015-10-28 2017-05-10 中兴通讯股份有限公司 先听后说参数处理方法、竞争窗调整方法和装置
WO2017131476A1 (ko) * 2016-01-29 2017-08-03 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 하향링크 lbt 파라미터를 조절하는 방법 및 이를 지원하는 장치

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2580794C2 (ru) * 2010-05-10 2016-04-10 Телефонактиеболагет Л М Эрикссон (Пабл) Система и способ выделения ресурсов передачи
US10499421B2 (en) * 2014-03-21 2019-12-03 Qualcomm Incorporated Techniques for configuring preamble and overhead signals for transmissions in an unlicensed radio frequency spectrum band
CN104052745B (zh) * 2014-06-18 2017-02-15 中南大学 面向802.11e VoIP应用的竞争窗口调整方法
US10637619B2 (en) * 2014-11-03 2020-04-28 Samsung Electronics Co., Ltd. Method and apparatus for channel access for LTE on unlicensed spectrum
RU2702266C2 (ru) * 2014-11-07 2019-10-07 Телефонактиеболагет Л М Эрикссон (Пабл) Первый радиоузел и соответствующий способ выполнения прослушивания перед передачей (lbt) с помощью выбранного способа lbt
JP6524259B2 (ja) 2015-05-12 2019-06-05 エルジー エレクトロニクス インコーポレイティド 非免許帯域を支援する無線接続システムにおいて競争ウィンドウサイズを調整する方法及びこれを支援する装置
US10798728B2 (en) * 2015-09-21 2020-10-06 Lg Electronics Inc. Method for transceiving data in unlicensed band and apparatus for same
CN105306176B (zh) * 2015-11-13 2019-08-09 南京邮电大学 一种基于q学习的车载网mac协议的实现方法
HUE052472T2 (hu) * 2016-04-22 2021-05-28 Ericsson Telefon Ab L M Eljárás és berendezés nem ütemezett felfelé irányú átvitelek nem engedélyezett sávon való végrehajtására
US10687330B2 (en) * 2016-07-21 2020-06-16 Qualcomm Incorporated Techniques for communicating on an uplink in a shared radio frequency spectrum band
CN109804702B (zh) * 2016-08-12 2024-03-15 瑞典爱立信有限公司 针对srs传输的lbt参数
CN110622598B (zh) * 2017-03-24 2023-08-29 瑞典爱立信有限公司 控制在半持久分配的资源上的上行链路无线电传输
US11659592B2 (en) * 2018-01-19 2023-05-23 Apple Inc. Contention window adjustment mechanisms for FELAA systems
WO2020186166A1 (en) * 2019-03-14 2020-09-17 Apple Inc. Cws adjustment for nr systems operating on unlicensed spectrum
US11962531B2 (en) * 2019-03-29 2024-04-16 Apple Inc. Channel state information reference signal (CSI-RS) as part of discovery reference signal (DRS) configuration and indication for new radio-unlicensed (NR-U)
WO2020205728A1 (en) * 2019-03-29 2020-10-08 Apple Inc. Hybrid automatic repeat request (harq) transmissions for new radio (nr)
CN114080854B (zh) * 2019-07-08 2024-01-02 苹果公司 在未许可频谱上操作的nr系统的fbe框架
CN114642071A (zh) * 2019-11-07 2022-06-17 Lg 电子株式会社 无线通信系统中发送和接收上行链路信道的方法及其设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559909A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 一种竞争窗调整方法和装置
CN106656428A (zh) * 2015-10-28 2017-05-10 中兴通讯股份有限公司 先听后说参数处理方法、竞争窗调整方法和装置
WO2017131476A1 (ko) * 2016-01-29 2017-08-03 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 하향링크 lbt 파라미터를 조절하는 방법 및 이를 지원하는 장치

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160485A1 (en) * 2018-02-16 2019-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Communication node and methods performed thereby
US11425754B2 (en) 2018-02-16 2022-08-23 Telefonaktiebolaget Lm Ericsson (Publ) Sensing procedures in a wireless communication network
US11843938B2 (en) 2018-02-16 2023-12-12 Telefonaktiebolaget Lm Ericsson (Publ) Sensing procedures in a wireless communication network
US20220191926A1 (en) * 2018-10-18 2022-06-16 Qualcomm Incorporated Procedures for autonomous uplink transmissions
US11659593B2 (en) * 2018-10-18 2023-05-23 Qualcomm Incorporated Procedures for autonomous uplink transmissions
EP3920644A4 (en) * 2019-03-29 2022-02-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD OF DETERMINING THE SIZE OF A COMPETITION WINDOW AND RELEVANT PRODUCT
EP4255078A3 (en) * 2019-03-29 2023-12-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Competition window size determination method and related product
US12022508B2 (en) 2019-03-29 2024-06-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Competition window size determination method and related product
WO2021031914A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 一种竞争窗口维护方法及设备

Also Published As

Publication number Publication date
RU2747845C1 (ru) 2021-05-17
US20200288498A1 (en) 2020-09-10
JP6955093B2 (ja) 2021-10-27
CN115334689A (zh) 2022-11-11
EP3678444B1 (en) 2022-06-01
US11792847B2 (en) 2023-10-17
JP2020535714A (ja) 2020-12-03
CN111133828B (zh) 2022-04-22
CN111133828A (zh) 2020-05-08
EP3678444A4 (en) 2020-08-26
EP4037419A1 (en) 2022-08-03
BR112020005866A2 (pt) 2020-09-29
US11357043B2 (en) 2022-06-07
EP3678444A1 (en) 2020-07-08
ES2925776T3 (es) 2022-10-19
US20220272751A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
US11792847B2 (en) Method for listening on uplink channel and apparatus
US11457494B2 (en) Communication method, communications device, and network device
JP7184999B2 (ja) データ送信方法およびその装置
CN107548159B (zh) 处理上行链路传输的装置及方法
US11140713B2 (en) Preemptive retransmissions on Listen-Before-Talk cells
WO2018103702A1 (zh) 一种上行信息处理的方法及装置
CA3095219A1 (en) Discontinuous reception communication method and communications apparatus, communications device, and communications system
EP3703455B1 (en) Methods, terminal device and system for data transmission
US11343030B2 (en) Method for repeated transmission, and terminal device
JP7047061B2 (ja) 自律送信のための方法及び装置
CN110062464B (zh) 用于管理非授权频段的信道占用时长的方法和设备
US20170041957A1 (en) Wireless shared spectrum access contention based on harq feedback
WO2019056370A1 (zh) 一种通信方法和装置
TW201735685A (zh) 用於發送上行控制信息的方法、終端和基站
JP2022084639A (ja) 無線ネットワークにおける通信デバイスおよび方法
WO2020164635A1 (zh) 初始信号传输方法、装置
CN111512580B (zh) 用于在开放频谱上传输数据的第一装置及其操作方法
WO2019157919A1 (zh) 一种竞争窗管理的方法及发送设备
US11297648B2 (en) Method and device for managing channel occupancy duration of unlicensed frequency band
EP3429282B1 (en) Wireless communication system, terminal apparatus, base station apparatus, and wireless communication method
CN114557111A (zh) 用户设备和调度节点
CN114946269A (zh) 用于及时调度的方法及设备
WO2023178675A1 (zh) 通信方法及通信装置
WO2022021411A1 (zh) Harq进程确定方法、装置、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925544

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020517195

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017925544

Country of ref document: EP

Effective date: 20200331

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020005866

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020005866

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200324