WO2019056319A1 - 电源提供电路、电源提供设备以及控制方法 - Google Patents

电源提供电路、电源提供设备以及控制方法 Download PDF

Info

Publication number
WO2019056319A1
WO2019056319A1 PCT/CN2017/103009 CN2017103009W WO2019056319A1 WO 2019056319 A1 WO2019056319 A1 WO 2019056319A1 CN 2017103009 W CN2017103009 W CN 2017103009W WO 2019056319 A1 WO2019056319 A1 WO 2019056319A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
supply circuit
unit
output
Prior art date
Application number
PCT/CN2017/103009
Other languages
English (en)
French (fr)
Inventor
田晨
张加亮
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2017/103009 priority Critical patent/WO2019056319A1/zh
Priority to CN201780062045.3A priority patent/CN109819686B/zh
Priority to KR1020207001139A priority patent/KR102343010B1/ko
Priority to JP2020500866A priority patent/JP6902155B2/ja
Priority to EP17925721.7A priority patent/EP3540898B1/en
Publication of WO2019056319A1 publication Critical patent/WO2019056319A1/zh
Priority to US16/510,143 priority patent/US11258289B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4258Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a regulated and galvanically isolated DC output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • the present application relates to the field of charging, and more particularly, to a power supply circuit, a power supply device, and a control method.
  • a power supply circuit can be used to charge the battery within the device to be charged.
  • the charging process of the battery generally includes multiple charging stages, and different charging stages require different charging voltages and/or charging currents.
  • the output voltage of the power supply circuit is a constant voltage.
  • a conversion circuit is arranged inside the device to be charged, and the output voltage and/or output current of the power supply circuit can be converted into the charging phase where the battery is currently located. Required charging voltage and / or charging current.
  • Setting the conversion circuit inside the device to be charged may cause serious heat generation of the device to be charged.
  • the present application provides a power supply circuit, a power supply device, and a control method, which can reduce the amount of heat generated by the device to be charged during charging.
  • a power supply circuit comprising: a primary unit configured to generate a first voltage to be modulated according to an input alternating current; a modulation unit configured to modulate the first voltage to generate a second voltage; And generating a third voltage according to the second voltage; a secondary rectification filtering unit, configured to rectify and filter the third voltage to generate an output voltage of the power supply circuit; and a voltage feedback unit, configured to receive And outputting a feedback signal to the adjusting unit when the voltage value of the output voltage reaches a preset voltage value; the modulating unit is configured to perform the The first voltage is modulated to generate a second voltage to limit a voltage value of the output voltage to be within a first voltage value range or a second voltage value range, wherein the first voltage value range and the first The two voltage values are different in range; the control unit is configured to communicate with the device to be charged, adjust an output power of the power supply circuit, so that the power supply circuit outputs Match the voltage and / or the output current of the charging device with
  • a power supply device including the power supply as described in the first aspect road.
  • a control method of a power supply circuit comprising: a primary unit configured to generate a first voltage to be modulated according to an input alternating current; and a modulation unit configured to perform the first voltage Modulating to generate a second voltage; a transformer for generating a third voltage according to the second voltage; a secondary rectifying filtering unit, configured to rectify and filter the third voltage to generate an output voltage of the power supply circuit a voltage feedback unit, configured to receive the output voltage, and send a feedback signal to the adjusting unit when a voltage value of the output voltage reaches a preset voltage value; the modulating unit is configured to perform a feedback signal, performing a process of modulating the first voltage to generate a second voltage to limit a voltage value of the output voltage within a first voltage value range or a second voltage value range, wherein the a voltage value range is different from the second voltage value range; the control method includes: communicating with the device to be charged, adjusting an output of the power supply circuit Rate, the power supply
  • the application provides a power supply circuit with adjustable output power, which can adjust the output voltage and/or output current of the power supply circuit according to the charging phase in which the battery is currently located. In this way, the device to be charged does not need to change the output voltage and/or the output current of the power supply circuit through the internal conversion circuit, thereby reducing the heat generation amount of the device to be charged. Further, the power supply circuit can flexibly control its output voltage within a first voltage value range or a second voltage value range.
  • FIG. 1A is a schematic structural diagram of a power supply circuit provided by an embodiment of the present invention.
  • FIG. 1B is a schematic structural diagram of a power supply circuit provided by an embodiment of the present invention.
  • Fig. 2 is a comparison diagram of voltage waveforms before and after modulation.
  • FIG. 3 is a schematic flowchart of a fast charging process according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a power supply circuit according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a power supply circuit according to still another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a power supply circuit according to still another embodiment of the present invention.
  • Fig. 7 is a view showing an example of a waveform of a first voltage to be modulated which is obtained after the liquid electrolytic capacitor on the primary side is removed.
  • FIG. 8 is a view showing an example of a waveform of a second voltage obtained after the first voltage shown in FIG. 7 is modulated.
  • FIG. 9 is a schematic structural diagram of a power supply device according to an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of a control method provided by an embodiment of the present invention.
  • the device to be charged mentioned in the present application may be a mobile terminal, such as a "communication terminal” (or simply “terminal”), including but not limited to being configured to be connected via a wireline (eg via a public switched telephone network) , PSTN), digital subscriber line (DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (eg, for cellular networks, wireless local area networks) , WLAN), digital television networks such as digital video broadcasting handheld (DVB-H) networks, satellite networks, amplitude modulation-frequency modulation (AM-FM) broadcast transmitters, and/or A device for receiving/transmitting a communication signal by a wireless interface of a communication terminal.
  • a wireline eg via a public switched telephone network
  • PSTN public switched telephone network
  • DSL digital subscriber line
  • digital cable direct cable connection, and/or another data connection/network
  • WLAN wireless local area networks
  • digital television networks such as digital video broadcasting handheld (DVB-H) networks, satellite networks
  • Wireless communication terminals that are arranged to communicate over a wireless interface may be referred to as “wireless communication terminals,” “wireless terminals,” and/or “mobile terminals.”
  • mobile terminals include, but are not limited to, satellite or cellular telephones; personal communication system (PCS) terminals that can combine cellular radio telephones with data processing, fax, and data communication capabilities; may include radio telephones, pagers, the Internet/ Intranet access, web browser, memo pad, calendar, and/or personal digital assistant (PDA) for global positioning system (GPS) receivers; and conventional laptop and/or palm Receiver or other electronic device including a radiotelephone transceiver.
  • PCS personal communication system
  • PDA personal digital assistant
  • GPS global positioning system
  • a power supply circuit for charging a device to be charged is mentioned in the related art.
  • the power supply circuit operates in a constant voltage mode.
  • the output voltage of the power supply circuit is maintained substantially constant, such as 5V, 9V, 12V or 20V.
  • the output voltage of the power supply circuit is not suitable for direct loading to both ends of the battery, but needs to be converted by a conversion circuit in the device to be charged to obtain the expected charging voltage and/or charging current of the battery in the device to be charged. .
  • the conversion circuit can be used to transform the output voltage of the power supply circuit to meet the desired charging voltage and/or charging current of the battery.
  • the conversion circuit can refer to a charge management module, such as an integrated circuit (IC). Used to manage the charging voltage and/or charging current of the battery during charging of the battery.
  • the conversion circuit can have the function of a voltage feedback module and/or have the function of a current feedback module to enable management of the charging voltage and/or charging current of the battery.
  • the charging process of the battery may include one or more of a trickle charging phase, a constant current charging phase, and a constant voltage charging phase.
  • the conversion circuit can utilize a current feedback loop such that the current entering the battery during the trickle charge phase meets the magnitude of the charge current expected by the battery (eg, the first charge current).
  • the conversion circuit can utilize the current feedback loop such that the current entering the battery during the constant current charging phase meets the expected charging current of the battery (eg, the second charging current, which can be greater than the first charging current) .
  • the conversion circuit can utilize a voltage feedback loop such that the magnitude of the voltage applied across the battery during the constant voltage charging phase satisfies the expected charging voltage of the battery.
  • the conversion circuit when the voltage output by the power supply circuit is greater than the expected charging voltage of the battery, the conversion circuit can be used to step down the voltage of the power supply circuit output so that the charging voltage obtained after the step-down conversion satisfies the battery Expected charging voltage requirements. As still another example, when the voltage output by the power supply circuit is less than the charging voltage expected by the battery, the conversion circuit can be used to boost the voltage output by the power supply circuit so that the charging voltage obtained after the boost conversion satisfies the battery. The expected charging voltage requirement.
  • the conversion circuit for example, Buck is lowered.
  • the voltage circuit can step down the voltage outputted by the power supply circuit so that the charging voltage obtained after the voltage reduction satisfies the charging voltage demand expected by the battery.
  • a conversion circuit (such as a boost voltage boosting circuit) can boost the voltage of the power supply circuit output so that the charging voltage obtained after boosting satisfies the charging voltage demand expected by the battery.
  • the conversion circuit is limited by the low conversion efficiency of the circuit, so that the electric energy of the unconverted portion is dissipated as heat. This part of the heat will focus on the inside of the device to be charged.
  • the design space and heat dissipation space of the device to be charged are very small (for example, the physical size of the mobile terminal used by the user is getting thinner and lighter, and a large number of electronic components are densely arranged in the mobile terminal to improve the performance of the mobile terminal), which is not only
  • the design difficulty of the conversion circuit is improved, and the heat focused on the device to be charged is difficult to remove in time, thereby causing an abnormality of the device to be charged.
  • the heat accumulated on the conversion circuit may cause thermal interference to the electronic components near the conversion circuit, causing abnormal operation of the electronic components.
  • the heat accumulated on the conversion circuit may shorten the life of the conversion circuit and nearby electronic components.
  • Another example is to convert the heat accumulated on the circuit, It may cause thermal interference to the battery, which may cause abnormal battery charging and discharging.
  • Another example is the heat accumulated on the circuit, which may cause the temperature of the device to be charged to rise, which affects the user's experience in charging.
  • the heat accumulated on the conversion circuit may cause a short circuit of the conversion circuit itself, so that the voltage output from the power supply circuit is directly loaded on both ends of the battery, causing abnormal charging. If the battery is in an overvoltage state for a long time, it may even cause The explosion of the battery jeopardizes user safety.
  • an embodiment of the present invention provides a power supply circuit 10.
  • the power supply circuit 10 may include a primary unit 11, a modulation unit 12, a transformer 13, and a secondary rectification filtering unit 14.
  • the primary unit 11 can be used to generate a first voltage to be modulated based on the input alternating current.
  • the primary unit 11 may include a primary rectifying unit.
  • the primary rectifying unit can be used to rectify the input alternating current to output a voltage whose voltage value periodically changes.
  • the incoming alternating current AC
  • the input alternating current can be, for example, 220V alternating current or 110V alternating current.
  • the embodiment of the present invention does not specifically limit the form of the primary rectifying unit.
  • the primary rectifying unit may use a full-bridge rectifying circuit composed of four diodes, or other forms of rectifying circuits, such as a half-bridge rectifying circuit.
  • the primary unit 11 may also include a liquid electrolytic capacitor for primary filtering.
  • a liquid electrolytic capacitor can be used to filter the voltage output from the primary rectifier unit.
  • the liquid electrolytic capacitor has a large capacitance and has a strong filtering capability, and can filter the output of the primary rectifying unit into a constant direct current. Therefore, in this embodiment, the first voltage to be modulated is a voltage having a constant voltage value.
  • the primary unit 11 may not include the liquid electrolytic capacitor described above. Therefore, in this embodiment, the first voltage to be modulated is a voltage whose voltage value is periodically converted. The implementation of the removal of the electrolytic capacitor on the primary side will be described in detail below with reference to FIGS. 7-8, which will not be described in detail herein.
  • Modulation unit 12 is operative to modulate the first voltage to be modulated to generate a second voltage.
  • modulation unit 12 may also be referred to as a chopper unit or chopper.
  • modulation unit 12 may also be referred to as a chopping unit or a chopper.
  • the working mode of the modulation unit 12 is not specifically limited in the embodiment of the present invention.
  • the modulating unit 12 may modulate the first voltage by means of pulse width modulation (PWM), or may modulate the first voltage by means of frequency modulation.
  • PWM pulse width modulation
  • the above-mentioned to be modulated The waveform of the first voltage and the modulated second voltage is as shown in FIG. 2. As can be seen from Fig. 2, after the processing by the modulating unit 12, the constant voltage signal is split into a plurality of small square wave pulse signals of equal amplitude.
  • the transformer 13 can be configured to generate a third voltage based on the second voltage.
  • the transformer 13 can be used to couple the second voltage from the primary to the secondary of the transformer to obtain a third voltage.
  • the transformer 13 can be used to perform a voltage-dependent operation on the second transformer to obtain a third voltage.
  • the transformer 13 can be an ordinary transformer or a high frequency transformer operating at a frequency of 50 kHz to 2 MHz.
  • the transformer 13 may include a primary winding and a secondary winding. The form of the primary winding and the secondary winding in the transformer 13, and the manner in which the primary winding, the secondary winding are connected to other units in the power supply circuit 10, and the type of switching power supply employed by the power supply circuit 10 are related.
  • the power supply circuit 10 may be a power supply circuit based on a flyback switching power supply, a power supply circuit based on a forward switching power supply, or a power supply circuit based on a push-pull switching power supply.
  • the type of the switching power supply on which the power supply circuit is based is different, and the specific form and the connection mode of the primary winding and the secondary winding of the transformer 13 are different, which is not specifically limited in the embodiment of the present invention.
  • FIG. 1A shows only one possible connection of the transformer 13.
  • the secondary rectification filtering unit 14 may include a secondary rectification unit and a secondary filtering unit.
  • the embodiment of the present invention does not specifically limit the rectification mode of the secondary rectifying unit.
  • the secondary rectifying unit can synchronously rectify the voltage (or current) sensed by the secondary winding of the transformer using a synchronous rectifier (SR) chip.
  • the secondary rectifying unit may employ a diode for secondary rectification.
  • a secondary filtering unit can be used to secondary filter the voltage after secondary rectification.
  • the secondary filtering unit may include one or more solid capacitors, or may also include a combination of a solid capacitor and a common capacitor such as a ceramic capacitor.
  • the power supply control circuit 10 is a power supply circuit with adjustable output power.
  • the power supply circuit 10 can include a control unit 15.
  • the control unit 15 can communicate with the device to be charged to adjust its own output voltage and/or output current such that the output voltage and/or output current of the power supply circuit 10 and the current charging phase of the battery in the device to be charged Match.
  • the charging phase in which the battery is currently located may include at least one of the following phases: a trickle charging phase, a constant voltage charging phase, and a constant current charging phase.
  • the above is connected to the device to be charged.
  • the signal is adjusted to adjust the output power of the power supply circuit such that the output voltage and/or the output current of the power supply circuit is matched with the current charging phase of the battery in the device to be charged, which may include: during the constant voltage charging phase of the battery,
  • the device to be charged communicates to adjust the output power of the power supply circuit such that the output voltage of the power supply circuit matches the charging voltage corresponding to the constant voltage charging phase.
  • the above-mentioned communication with the device to be charged communicates with the output power of the power supply circuit so that the output voltage and/or output current of the power supply circuit is in the device to be charged.
  • the matching of the charging phase currently in the battery may include: communicating with the device to be charged during the constant current charging phase of the battery to adjust the output power of the power supply circuit, so that the output current of the power supply circuit corresponds to the constant current charging phase. The charging current is matched.
  • the power supply circuit 10 having the communication function provided by the embodiment of the present invention is described in more detail below.
  • the power supply circuit 10 can acquire status information of the battery.
  • the status information of the battery may include current battery information and/or voltage information of the battery.
  • the power supply circuit 10 can adjust the output voltage of the power supply circuit 10 itself according to the acquired state information of the battery to meet the demand of the battery's expected charging voltage and/or charging current, and the power supply circuit 10 adjusts the output voltage. It can be directly loaded to the battery to charge the battery (hereinafter referred to as "direct charge"). Further, during the constant current charging phase of the battery charging process, the voltage outputted by the power supply circuit 10 can be directly loaded at both ends of the battery to charge the battery.
  • the power supply circuit 10 can have the function of a voltage feedback module and the function of a current feedback module to enable management of the charging voltage and/or charging current of the battery.
  • the power supply circuit 10 adjusts the output voltage of the power supply circuit 10 according to the acquired state information of the battery.
  • the power supply circuit 10 can obtain the state information of the battery in real time, and according to the battery that is acquired each time.
  • the real-time status information adjusts the voltage output by the power supply circuit 10 itself to satisfy the charging voltage and/or charging current expected by the battery.
  • the power supply circuit 10 adjusts the output voltage of the power supply circuit 10 according to the state information of the battery acquired in real time. It may mean that the power supply circuit 10 can acquire different times during the charging process as the battery voltage increases during the charging process.
  • the current state information of the battery, and the output voltage of the power supply circuit 10 itself is adjusted in real time according to the current state information of the battery to meet the demand of the battery for the expected charging voltage and/or charging current.
  • the charging process of the battery may include at least one of a trickle charging phase, a constant current charging phase, and a constant voltage charging phase.
  • the power supply circuit 10 can be trickle charged
  • the stage outputs a first charging current to charge the battery to meet the demand for the charging current expected by the battery (the first charging current can be a constant direct current).
  • the power supply circuit 10 can utilize the current feedback loop such that the current supplied by the power supply circuit 10 during the constant current charging phase and the current entering the battery meets the demand for the charging current expected by the battery (eg, the second charging current, For the current of the pulsating waveform, the second charging current may be greater than the first charging current, and the current peak value of the pulsating waveform in the constant current charging phase may be greater than the constant DC current in the trickle charging phase, and the constant current in the constant current charging phase may be It means that the current peak or average value of the pulsating waveform remains basically unchanged).
  • the power supply circuit 10 can utilize the voltage feedback loop to keep the voltage output from the power supply circuit 10 to the device to be charged (i.e., constant DC voltage) constant during the constant voltage charging phase.
  • the power supply circuit 10 mentioned in the embodiment of the present invention can be mainly used to control the constant current charging phase of the battery in the device to be charged.
  • the control functions of the trickle charging phase and the constant voltage charging phase of the battery in the device to be charged may also be coordinated by the power supply circuit 10 and the additional charging chip in the device to be charged, which are mentioned in the embodiments of the present invention;
  • the charging power received by the battery in the trickle charging phase and the constant voltage charging phase is small, and the efficiency conversion loss and heat accumulation of the internal charging chip of the device to be charged are acceptable.
  • the constant current charging phase or the constant current phase mentioned in the embodiment of the present invention may refer to a charging mode that controls the output current of the power supply circuit 10, and does not require that the output current of the power supply circuit 10 remains completely constant.
  • the constant for example, may be that the current peak or average value of the pulsation waveform outputted by the power supply circuit 10 remains substantially constant, or remains substantially constant for a period of time.
  • the power supply circuit 10 is typically charged in a constant current charging phase using a piecewise constant current.
  • the multi-stage constant current charging may have N constant current stages (N is an integer not less than 2), and the segmented constant current charging starts the first stage charging with a predetermined charging current, the points The N constant current phases of the segment constant current charging are sequentially performed from the first phase to the Nth phase.
  • N is an integer not less than 2
  • the current constant current phase in the constant current phase is transferred to the next constant current phase, the current peak value or average of the pulsating waveform is obtained.
  • the value may be small; when the battery voltage reaches the charge termination voltage threshold, the previous constant current phase in the constant current phase will shift to the next constant current phase.
  • the current conversion process between two adjacent constant current phases may be gradual, or may be a stepped jump change.
  • the constant current mode may refer to a charging mode that controls the peak or average value of the periodically varying current, that is, the control power supply.
  • the peak value of the output current supplied to the circuit 10 does not exceed the current corresponding to the constant current mode.
  • the constant current mode may refer to a charging mode that controls the peak value of the alternating current.
  • the power supply circuit 10 can support the first charging mode and the second charging mode, and the power supply circuit 10 charges the battery faster than the power supply circuit 10 in the second charging mode.
  • the charging speed of the battery in charging mode In other words, the power supply circuit operating in the second charging mode is less time consuming to charge the battery of the same capacity than the power supply circuit operating in the first charging mode.
  • the power supply circuit 10 in the first charging mode, charges the battery through the second charging channel, and in the second charging mode, the power supply circuit 10 charges the battery through the first charging channel.
  • the first charging mode may be a normal charging mode
  • the second charging mode may be a fast charging mode.
  • the normal charging mode refers to the power supply circuit outputting a relatively small current value (usually less than 2.5A) or charging the battery in the charging device with relatively small power (usually less than 15W), thinking in the normal charging mode.
  • a relatively small current value usually less than 2.5A
  • the power supply circuit can output a relatively large current (usually greater than 2.5A). , for example, 4.5A, 5A or higher) or charging the battery in the charging device with relatively large power (usually greater than or equal to 15W).
  • the power supply circuit is in the fast charging mode compared to the normal charging mode. The charging time required to fully charge a battery of the same capacity can be significantly shortened and the charging speed is faster.
  • the device to be charged may perform bidirectional communication with the power supply circuit 10 (or the control unit 15 in the power supply circuit 10) to control the output of the power supply circuit 10 in the second charging mode (ie, control the second charge)
  • the power supply in the mode provides the charging voltage and/or charging current provided by the circuit 10.
  • the device to be charged may include a charging interface, and the device to be charged may communicate with the power supply circuit 10 through a data line in the charging interface.
  • the charging interface as a USB interface as an example, the data line can be a D+ line and/or a D- line in the USB interface.
  • the device to be charged may also be in wireless communication with the power supply circuit 10.
  • the embodiment of the present invention does not specifically limit the communication content of the power supply circuit 10 and the device to be charged, and the control mode of the device to be charged to the output of the power supply circuit 10 in the second charging mode.
  • the device to be charged can be provided with a power source.
  • the circuit 10 communicates, interacting with the current total voltage of the battery in the device to be charged and/or the current total amount of power, and adjusting the output voltage or output current of the power supply circuit 10 based on the current total voltage of the battery and/or the current total amount of power.
  • the communication content between the charging device and the power supply circuit 10 will be described in detail below in conjunction with the specific embodiment, and the manner in which the device to be charged controls the output of the power supply circuit 10 in the second charging mode will be described in detail.
  • the above description of the embodiments of the present invention does not refer to the power supply circuit 10 and the main device to be charged.
  • the power supply circuit 10 and any device to be charged can initiate a two-way communication session as a master device, and accordingly the other party can act as a slave device to initiate communication with the master device.
  • First response or first reply can be confirmed by comparing the level of the power supply circuit 10 side and the device to be charged with respect to the earth during communication.
  • the embodiment of the present invention does not limit the specific implementation manner of the two-way communication between the power supply circuit 10 and the device to be charged.
  • the power supply circuit 10 and any device to be charged initiate a communication session as the master device.
  • the other party as the slave device makes a first response or a first reply to the communication session initiated by the master device, and the master device can make a second response to the first response or the first reply of the slave device.
  • the negotiation process of one charging mode is completed between the master and the slave device.
  • the master and slave devices can perform the charging operation between the master and the slave device after completing the negotiation of the multiple charging mode to ensure the safe and reliable charging process after the negotiation. Executed.
  • One way in which the master device can make a second response according to the first response or the first reply of the slave device for the communication session may be that the master device side can receive the slave device side for the communication session. And generating a first response or a first reply, and making a targeted second response according to the received first response or the first reply of the slave device. For example, when the master device receives the first response or the first reply of the slave device for the communication session within a preset time, the master device makes a first response or a first reply to the slave device.
  • the specific second response is specifically: the master device side and the slave device side complete the negotiation of the one charging mode, and the master device side and the slave device side perform the charging operation according to the first charging mode or the second charging mode according to the negotiation result, That is, the power supply circuit 10 operates to charge the device to be charged in the first charging mode or the second charging mode according to the negotiation result.
  • One way that the master device can make a further second response according to the first response or the first response of the slave device to the communication session may also be that the master device does not receive the preset time.
  • the master device side also makes a targeted second response to the first response or the first reply of the slave device. For example, when the master device does not receive the first response or the first response of the slave device for the communication session within a preset time, the master device also responds to the first response or the first response of the slave device.
  • the targeted second response is specifically: the master device side and the slave device side complete the negotiation of one charging mode, and the charging operation is performed according to the first charging mode between the master device side and the slave device side, that is, the power supply circuit 10 works in the first charging mode to charge the device to be charged.
  • the power supply circuit 10 when the device to be charged initiates a communication session as the master device, the power supply circuit 10 does not need to wait after making a first response or a first reply to the communication session initiated by the device to the master device.
  • the charging device makes a targeted second response to the first response or the first reply of the power supply circuit 10, that is, the negotiation process of the primary charging mode is completed between the power supply providing circuit 10 and the device to be charged, and then the power supply circuit is provided. 10 can determine, according to the negotiation result, charging the device to be charged in the first charging mode or the second charging mode.
  • the process in which the device to be charged performs bidirectional communication with the power supply circuit 10 to control the output of the power supply circuit 10 in the second charging mode includes: the device to be charged and the power supply circuit 10 perform Two-way communication to negotiate a charging mode between the power supply circuit 10 and the device to be charged.
  • the device to be charged performs two-way communication with the power supply circuit 10 to negotiate a charging mode between the power supply circuit 10 and the device to be charged, including: the device to be charged receives the first transmission by the power supply circuit 10. An instruction for inquiring whether the device to be charged has turned on the second charging mode; the device to be charged sends a reply command of the first instruction to the power supply circuit 10, and the reply command of the first command is used to indicate whether the device to be charged agrees to open The second charging mode; in the case that the device to be charged agrees to turn on the second charging mode, the device to be charged controls the power supply circuit 10 to charge the battery through the first charging channel.
  • the process in which the device to be charged performs bidirectional communication with the power supply circuit 10 to control the output of the power supply circuit 10 in the second charging mode includes: the device to be charged and the power supply circuit 10 Two-way communication is performed to determine a charging voltage output by the power supply circuit 10 for charging the device to be charged in the second charging mode.
  • the device to be charged performs two-way communication with the power supply circuit 10 to determine a charging voltage output by the power supply circuit 10 for charging the device to be charged in the second charging mode, including:
  • the charging device receives a second command sent by the power supply circuit 10, the second command is for inquiring whether the output voltage of the power supply circuit 10 matches the current total voltage of the battery of the device to be charged; the device to be charged transmits the second to the power supply circuit 10.
  • the reply command of the command, the reply command of the second command is used to indicate that the output voltage of the power supply circuit 10 matches the current total voltage of the battery, being high or low.
  • the second instruction may be used to query whether the current output voltage of the power supply circuit 10 is suitable as the charging voltage for charging the device to be charged outputted by the power supply circuit 10 in the second charging mode, the second instruction Reply command can be used It indicates that the output voltage of the current power supply circuit 10 is appropriate, high or low.
  • the current output voltage of the power supply circuit 10 matches the current total voltage of the battery, or the current output voltage of the power supply circuit 10 is suitable as the charging voltage for charging the device to be charged outputted by the power supply circuit 10 in the second charging mode. It can be said that the difference between the current output voltage of the power supply circuit 10 and the current total voltage of the battery is within a preset range (usually on the order of several hundred millivolts).
  • the current output voltage is higher than the current total battery voltage includes that the difference between the output voltage of the power supply circuit 10 and the current total voltage of the battery is higher than a preset range.
  • the current output voltage is lower than the current total battery voltage includes that the difference between the output voltage of the power supply circuit 10 and the current total voltage of the battery is lower than a preset range.
  • the process in which the device to be charged performs bidirectional communication with the power supply circuit 10 to control the output of the power supply circuit 10 in the second charging mode may include: the device to be charged and the power supply circuit 10 Two-way communication is performed to determine a charging current output by the power supply circuit 10 for charging the device to be charged in the second charging mode.
  • the device to be charged performs two-way communication with the power supply circuit 10 to determine that the charging current output by the power supply circuit 10 for charging the device to be charged in the second charging mode may include: The device to be charged receives the third command sent by the power supply circuit 10, the third command is used to query the maximum charging current currently supported by the device to be charged; the device to be charged sends a reply command of the third command to the power supply circuit 10, the third command The reply command is used to indicate the maximum charging current currently supported by the device to be charged, so that the power supply circuit 10 determines the output of the power supply circuit 10 in the second charging mode for the device to be charged based on the maximum charging current currently supported by the device to be charged. Charging current.
  • the maximum charging current currently supported by the device to be charged may be obtained according to the capacity of the battery of the device to be charged, the battery system, or the like, or may be a preset value.
  • the charging device determines the charging current for charging the device to be charged outputted by the power supply circuit 10 in the second charging mode according to the maximum charging current currently supported by the device to be charged.
  • the power supply circuit 10 can determine the maximum charging current currently supported by the device to be charged as the charging current for charging the device to be charged outputted by the power supply circuit 10 in the second charging mode, and can also comprehensively consider the device to be charged. After the currently supported maximum charging current and its own current output capability, etc., the charging current output by the power supply circuit 10 for charging the device to be charged in the second charging mode is determined.
  • the device to be charged is bidirectionally connected to the power supply circuit 10.
  • the process of controlling the output of the power supply circuit 10 in the second charging mode may include: in the process of charging using the second charging mode, the device to be charged performs bidirectional communication with the power supply circuit 10 to adjust the power supply circuit 10 output current.
  • the device to be charged performs two-way communication with the power supply circuit 10 to adjust the output current of the power supply circuit 10, which may include: the device to be charged receives the fourth command sent by the power supply circuit 10, and the fourth command is used for the inquiry.
  • the power supply circuit 10 provides an output current.
  • the process in which the device to be charged performs bidirectional communication with the power supply circuit 10 to control the output of the power supply circuit 10 in the second charging mode may include: the device to be charged and the power supply circuit 10 perform Two-way communication to determine if the charging interface is in poor contact.
  • the device to be charged performs two-way communication with the power supply circuit 10 to determine whether the charging interface is in poor contact.
  • the method may include: the device to be charged receives a fourth command sent by the power supply circuit 10, and the fourth command is used to inquire about charging. The current voltage of the battery of the device; the device to be charged sends a reply command of the fourth command to the power supply circuit 10, and the reply command of the fourth command is used to indicate the current voltage of the battery of the device to be charged, so that the power supply circuit 10 provides the circuit according to the power supply The output voltage of 10 and the current voltage of the battery of the device to be charged determine whether the charging interface is in poor contact.
  • the power supply circuit 10 determines that the voltage difference between the output voltage of the power supply circuit 10 and the current voltage of the device to be charged is greater than a preset voltage threshold, indicating that the voltage difference is obtained by dividing the current value output by the power supply circuit 10 at this time.
  • the impedance is greater than the preset impedance threshold to determine poor contact of the charging interface.
  • poor charging interface contact may also be determined by the device to be charged.
  • the device to be charged sends a sixth command to the power supply circuit 10, the sixth command is used to inquire the output voltage of the power supply circuit 10; the device to be charged receives the reply command of the sixth command sent by the power supply circuit 10, and the sixth command
  • the reply command is for indicating the output voltage of the power supply circuit 10; the device to be charged determines whether the charging interface is in poor contact according to the current voltage of the battery and the output voltage of the power supply circuit 10.
  • the device to be charged may send a fifth command to the power supply circuit 10, and the fifth command is used to indicate that the charging interface is in poor contact.
  • the power supply circuit 10 can exit the second charging mode after receiving the fifth command.
  • FIG. 3 is only intended to help those skilled in the art to understand the embodiments of the present invention, and the embodiments of the present invention are not limited to the specific numerical values or specific examples illustrated. A person skilled in the art will be able to make various modifications or changes in the form of the embodiment of FIG. 3, and such modifications or variations are also within the scope of the embodiments of the present invention.
  • the communication flow (or fast charge communication flow) between the power supply circuit 10 and the device to be charged may include the following five stages:
  • the device to be charged can detect the type of the power supply circuit 10 through the data lines D+, D-.
  • the current to be charged by the device to be charged may be greater than a preset current threshold I2 (for example, may be 1A).
  • I2 for example, may be 1A
  • the power supply circuit 10 may consider the type of the device to be charged to be identified by the power supply circuit. Has been completed.
  • the power supply circuit 10 turns on the negotiation process with the device to be charged, and sends an instruction 1 (corresponding to the first instruction) to the device to be charged to ask whether the device to be charged agrees that the power supply circuit 10 treats the second charging mode.
  • the charging device is charging.
  • the power supply circuit 10 When the power supply circuit 10 receives the reply command of the command 1 sent by the device to be charged, and the reply command of the command 1 indicates that the device to be charged does not agree that the power supply circuit 10 charges the device to be charged in the second charging mode, the power supply circuit 10 detects the output current of the power supply circuit 10 again. When the output current of the power supply circuit 10 is still greater than or equal to I2 within a preset continuous time period (for example, may be continuous T1 time), the power supply circuit 10 again sends an instruction 1 to the device to be charged, asking whether the device to be charged agrees The power supply circuit 10 charges the device to be charged in the second charging mode.
  • a preset continuous time period for example, may be continuous T1 time
  • the power supply circuit 10 repeats the above-described steps of the stage 1 until the device to be charged agrees that the power supply circuit 10 charges the device to be charged in the second charging mode, or the output current of the power supply circuit 10 no longer satisfies the condition of greater than or equal to I2.
  • the power supply circuit 10 sends an instruction 2 (corresponding to the second instruction described above) to the device to be charged to inquire whether the output voltage (current output voltage) of the power supply circuit 10 matches the current voltage of the battery in the device to be charged.
  • the device to be charged sends a reply command of the command 2 to the power supply circuit 10 to indicate that the output voltage of the power supply circuit 10 matches the current voltage of the battery of the device to be charged, which is high or low. If the reply command for the instruction 2 indicates that the output voltage of the power supply circuit 10 is high or low, the power supply circuit 10 can lower or increase the output voltage of the power supply circuit 10 and send the command 2 to the device to be charged again. It is re-inquired whether the output voltage of the power supply circuit 10 matches the current voltage of the battery. The above steps of phase 2 are repeated until the device to be charged determines that the output voltage of the power supply circuit 10 matches the current voltage of the battery of the device to be charged, and proceeds to phase 3.
  • the output voltage of the power supply circuit 10 can be adjusted in various ways. For example, a plurality of voltage gear positions from low to high may be set in advance for the output voltage of the power supply circuit 10. The higher the voltage gear position, the larger the output voltage of the power supply circuit 10. If the reply command of the instruction 2 indicates that the output voltage of the power supply circuit 10 is high, the voltage level of the output voltage of the power supply circuit 10 can be lowered from the current voltage level by one gear position; if the return command of the instruction 2 indicates the power supply If the output voltage of the providing circuit 10 is low, the voltage level of the output voltage of the power supply circuit 10 can be increased from the current voltage level by one gear.
  • the power supply circuit 10 sends an instruction 3 (corresponding to the third instruction described above) to the device to be charged, and queries the maximum charging current currently supported by the device to be charged.
  • the device to be charged sends a reply command of instruction 3 to the power supply circuit 10 to indicate the maximum charging current currently supported by the device to be charged, and enters phase 4.
  • the power supply circuit 10 determines the charging current for charging the device to be charged, which is output by the power supply circuit 10 in the second charging mode, according to the maximum charging current currently supported by the device to be charged, and then enters phase 5, that is, the constant current charging phase.
  • the power supply circuit 10 can send an instruction 4 (corresponding to the fourth instruction described above) to the device to be charged every interval of time to query the current voltage of the battery of the device to be charged.
  • the device to be charged can send a reply command of the command 4 to the power supply circuit 10 to feed back the current voltage of the battery.
  • the power supply circuit 10 can judge whether the contact of the charging interface is good or not, and whether it is necessary to lower the output current of the power supply circuit 10, based on the current voltage of the battery.
  • the command 5 can be sent to the device to be charged (corresponding to the fifth command), the power supply circuit 10 will exit the second charging mode, and then reset and re-enter.
  • phase 1 the command 4 (corresponding to the fourth instruction described above) to the device to be charged every interval of time to query the current voltage of the battery of the device to be charged.
  • the device to be charged can send a reply command of the command 4 to the power supply circuit 10 to feed back the current voltage of the battery.
  • the power supply circuit 10 can judge whether the contact of
  • the device to be charged agrees that the power supply circuit 10 charges the device to be charged in the second charging mode to the power supply circuit 10 to adjust the output voltage of the power supply circuit 10 to
  • the time experienced by a suitable charging voltage can be controlled within a certain range. If the time exceeds the predetermined range, the power supply circuit 10 or the device to be charged may determine that the communication process is abnormal, reset to re-enter phase 1.
  • the device to be charged may The power supply circuit 10 transmits a reply command of the command 2 to instruct the output voltage of the power supply circuit 10 to match the voltage of the battery of the device to be charged.
  • the adjustment speed of the output current of the power supply circuit 10 can be controlled within a certain range, so that an abnormality in the charging process due to the excessive adjustment speed can be avoided.
  • the magnitude of the change in the output current of the power supply circuit 10 may be controlled within 5%.
  • the power supply circuit 10 can monitor the impedance of the charging path in real time. Specifically, the power supply circuit 10 can monitor the impedance of the charging path according to the output voltage of the power supply circuit 10, the output current, and the current voltage of the battery fed back by the device to be charged.
  • the power supply circuit 10 stops charging the device to be charged in the second charging mode.
  • the communication time interval between the power supply circuit 10 and the device to be charged may be controlled within a certain range. Avoid communication short intervals and cause an abnormality in the communication process.
  • the stopping of the charging process (or the stopping of the charging process of the powering device to be charged in the second charging mode) may be divided into a recoverable stop and an unrecoverable stop.
  • the charging process is stopped, the charging communication process is reset, and the charging process re-enters Phase 1. Then, the device to be charged does not agree that the power supply circuit 10 charges the device to be charged in the second charging mode, and then the communication The process does not enter phase 2.
  • the stop of the charging process in this case can be considered as an unrecoverable stop.
  • the charging process is stopped, the charging communication process is reset, and the charging process re-enters the phase 1.
  • the device to be charged agrees that the power supply circuit 10 charges the device to be charged in the second charging mode to resume the charging process.
  • the stopping of the charging process in this case can be regarded as a recoverable stop.
  • the device to be charged detects an abnormality in the battery, the charging process is stopped, resets, and re-enters Phase 1. Then, the device to be charged does not agree that the power supply circuit 10 charges the device to be charged in the second charging mode. When the battery returns to normal and the requirements of phase 1 are met, the device to be charged agrees that the power supply circuit 10 charges the device to be charged in the second charging mode.
  • the stop of the fast charge process in this case can be considered as a recoverable stop.
  • the communication steps or operations illustrated above with respect to FIG. 3 are merely examples.
  • the handshake communication between the device to be charged and the power supply circuit 10 can also be initiated by the device to be charged, that is, the device to be charged sends an instruction 1 to inquire about the power supply. Whether the circuit 10 turns on the second charging mode.
  • the power supply circuit 10 starts to charge the device in the second charging mode. The battery is charged.
  • a constant voltage charging phase can also be included.
  • the device to be charged may feed back the current voltage of the battery to the power supply circuit 10.
  • the charging phase transitions from the constant current charging phase to the constant voltage charging phase.
  • the charging current is gradually decreased, and when the current drops to a certain threshold, it indicates that the battery of the device to be charged has been fully charged, and the entire charging process is stopped.
  • power supply circuit 10 can also include a voltage feedback unit 16.
  • the voltage feedback unit 16 can be configured to receive the output voltage and send a feedback signal to the adjustment unit when the voltage value of the output voltage reaches a preset set voltage value.
  • the modulating unit 12 is configured to perform a process of modulating the first voltage to generate a second voltage according to the feedback signal, to limit the voltage value of the output voltage to be within the first voltage value range or the second voltage value range, where the first The voltage value range is different from the second voltage value range.
  • the power supply circuit 10 determines whether the voltage value that the voltage feedback unit 16 can adjust ranges from the first voltage value range to the second voltage value range according to actual conditions. For example, when the power supply is powered When the circuit 10 needs to charge one battery cell, the voltage value range that the voltage feedback unit 16 can adjust can be set to a first voltage value range (such as 3-5V); when the power supply circuit 10 needs to be two sections connected in series When the battery is charged, the voltage value range that the voltage feedback unit 16 can adjust can be set to a second voltage value range (for example, 6-10V).
  • a first voltage value range such as 3-5V
  • the voltage value range that the voltage feedback unit 16 can adjust can be set to a second voltage value range (for example, 6-10V).
  • the voltage value range that can be adjusted by the voltage feedback unit 16 is the first voltage value range, and the voltage limit value of the voltage feedback unit 16 is the upper limit of the first voltage value range (the voltage limit value can be any within the first voltage range) Value)
  • the modulation unit 12 modulates the first voltage to generate a second voltage.
  • the modulation unit 12 is a modulation unit based on a PWM controller, when the power supply circuit 10 is just starting to operate, the output voltage of the power supply circuit 10 is relatively small, and the modulation unit 12 can increase the duty ratio of the PWM control signal.
  • the first voltage is modulated to generate a second voltage, so that the power supply circuit 10 can extract more energy from the input alternating current per unit time, so that the output voltage of the power supply circuit 10 is continuously increased.
  • the modulation unit 12 receives the feedback signal sent by the voltage feedback unit 16.
  • the modulating unit 12 may modulate the first voltage to generate a second voltage in such a manner that the duty ratio of the control PWM control signal remains unchanged, so that the output voltage of the power supply circuit 10 does not exceed the first voltage value range.
  • the voltage feedback unit 16 described above may include a first voltage feedback unit 161 and a second voltage feedback unit 162.
  • the first voltage feedback unit 161 and the modulation unit 12 can be used to limit the output voltage of the power supply circuit 10 within a first voltage value range.
  • the first voltage feedback unit 161 can be configured to receive the output voltage of the power supply circuit 10, and send the first feedback signal to the modulation unit if the voltage value of the output voltage reaches the voltage limit value of the first voltage feedback unit 161.
  • the voltage limit value of the first voltage feedback unit 161 is any one of the voltage values in the range of the first voltage value.
  • the modulating unit may be configured to perform a process of modulating the first voltage to generate a second voltage according to the first feedback signal to limit a voltage value of the output voltage of the power supply circuit 10 below a voltage limit value of the first voltage feedback unit 161.
  • the second voltage feedback unit 162 and the modulation unit 12 can be used to limit the output voltage of the power supply circuit 10 within a second voltage value range.
  • the second voltage feedback unit 162 can be configured to receive the output voltage of the power supply circuit 10, and if the voltage value of the output voltage reaches the voltage limit value of the second voltage feedback unit 162, The modulation unit transmits a second feedback signal.
  • the voltage limit value of the second voltage feedback unit 162 is any one of the voltage values in the range of the second voltage value.
  • the modulating unit 12 is configured to perform a process of modulating the first voltage to generate a second voltage according to the second feedback signal, to limit a voltage value of the output voltage of the power supply circuit 10 to a voltage limit value of the second voltage feedback unit 162 .
  • the power supply circuit 10 can also include a switch unit 18.
  • the switching unit 18 can be used to control switching between the first voltage feedback unit 161 and the second voltage feedback unit 162.
  • the switch unit 18 may be, for example, a single-pole double-throw switch, or may be another type of switching device such as a metal oxide semiconductor (MOS) tube.
  • MOS metal oxide semiconductor
  • the control unit 15 can also be used to select the currently used voltage feedback unit from the first voltage feedback unit 161 and the second voltage feedback unit 162 through the switch unit 18.
  • control unit 15 selects the currently used voltage feedback unit in the embodiment of the present invention are not specifically limited.
  • the control unit 15 may select the currently used voltage feedback unit according to the number of cells connected in series in the device to be charged.
  • the control unit 15 can communicate with the device to be charged to obtain the number of cells connected in series with each other contained in the battery within the device to be charged.
  • a voltage feedback unit having a smaller voltage value range may be selected from the first voltage feedback unit 161 and the second voltage feedback unit 162 as the currently used voltage feedback unit; when the battery includes the series connection
  • a voltage feedback unit having a large voltage value range may be selected from the first voltage feedback unit 161 and the second voltage feedback unit 162 as the currently used voltage feedback unit.
  • the control unit 15 may select the currently used voltage feedback unit based on the charging phase in which the battery is currently located.
  • the power supply circuit 10 provided by the embodiment of the present invention has a plurality of voltage feedback units. Different voltage feedback units can limit the output voltage of the power supply circuit 10 to different voltage value ranges. Therefore, the power supply circuit 10 can select between different voltage feedback units according to actual needs, thereby improving the flexibility of the charging control process.
  • the battery of the device to be charged may include a single cell, or may include a plurality of cells connected in series with each other.
  • the number of cells included in the battery is different, and the demand for the output voltage of the power supply circuit 10 is different for the device to be charged.
  • the battery in the device to be charged includes a single cell, and the demand for the output voltage of the power supply circuit 10 is usually between 3-5 V; the battery in the device to be charged includes two cells.
  • the demand for the output voltage of the power supply circuit 10 by the device to be charged is usually between 6 and 10V.
  • the embodiment of the present invention may be used to provide a plurality of voltage feedback units, and the range of voltage values that can be adjusted by different voltage feedback units may be designed for the number of cells connected in series in the device to be charged.
  • the first voltage value range that the first voltage feedback unit 161 can adjust can be designed for one cell, such as setting the first voltage value range to 3-5V; the second voltage that the second voltage feedback unit 162 can adjust
  • the range of values can be designed for two cells that are connected in series with each other, such as setting the second voltage range to 6-10V.
  • the first voltage feedback unit 161 can be controlled by the switch unit 18 so that the output voltage of the power supply circuit 10 can be adjusted between 3-5V; when the power supply circuit 10 is required When charging the series of double cells, the second voltage feedback unit 162 can be controlled by the switching unit 18 so that the output voltage of the power supply circuit 10 is adjustable between 6-10V.
  • the control unit 15 selects a first voltage feedback unit capable of limiting the output voltage of the power supply circuit 10 to between 3-5 V as the currently used voltage feedback unit. In this way, even if the control unit 15 fails during charging, the charging voltage of the single cell does not exceed 5V, which improves the charging safety.
  • the first voltage feedback unit 161 and the second voltage feedback unit 162 may be two voltage feedback units that are physically independent of each other and are composed of different physical devices. Alternatively, the first voltage feedback unit 161 and the second voltage feedback unit 162 may share a portion of the physical device. For example, the first voltage feedback unit 161 and the second voltage feedback unit 162 can perform voltage feedback using a common operational amplifier, but the output voltage of the power supply circuit 10 can be sampled using different resistors.
  • the first voltage value range and the second voltage value range may partially overlap or may not overlap each other.
  • the first voltage feedback unit 161 and the second voltage feedback unit 162 may be directly connected to the modulating unit 12 or may be indirectly connected to the modulating unit 12 through an optocoupler, which is not specifically limited in this embodiment of the present invention. If the first voltage feedback unit 161 and the second voltage feedback unit 162 are indirectly connected to the modulation unit 12 through the optocoupler, the first voltage feedback unit 161 and the second voltage feedback unit 162 The feedback signal sent to the modulation unit needs to be photoelectrically converted through the optocoupler.
  • the first voltage feedback unit 161 may include a first voltage sampling unit formed by the first resistor R1 and the second resistor R2, and an op amp OPA1.
  • the first voltage sampling unit may sample the output voltage of the power supply circuit 10 based on the first resistor R1 and the second resistor R2, and divide the voltage obtained by dividing the second resistor R2 as the sampling voltage output by the first voltage sampling unit.
  • the second voltage feedback unit 162 may include a second voltage sampling unit formed by the third resistor R3 and the fourth resistor R4, and the op amp OPA1 (in the implementation manner corresponding to FIG. 4, the first The voltage feedback unit 161 and the second voltage feedback unit 162 share the same operational amplifier).
  • the second voltage sampling unit may sample the output voltage of the power supply circuit 10 based on the third resistor R3 and the fourth resistor R4, and divide the voltage obtained by dividing the fourth resistor R4 as the sampling voltage output by the second voltage sampling unit.
  • the switch unit 18 is specifically a single pole double throw switch S1 in FIG.
  • the switch S1 can be in contact with the electric shock 41 to control the op amp OPA1 to receive the first voltage.
  • the sampling voltage output by the sampling unit When the second voltage feedback unit is the currently used voltage feedback unit, under the control of the control unit, the switch S1 can be in contact with the electric shock 42 to control the op amp OPA1 to receive the sampling voltage output by the second voltage sampling unit.
  • the output of the op amp OPA1 is coupled to the modulation unit 12 via an optocoupler 43 for transmitting a feedback signal to the modulation unit 12.
  • the above-described configuration of the first resistor R1 to the fourth resistor R4 may cause the range of voltage values that the first voltage feedback unit 161 and the second voltage feedback unit 162 can adjust to exhibit a double relationship.
  • the voltage value that can be adjusted by the first voltage feedback unit 161 is 3-5V
  • the first voltage feedback unit 161 can be used as the currently used voltage feedback unit, thereby limiting the output voltage of the power supply circuit 10 to between 3-5V; when to be charged
  • the second voltage feedback unit 162 can be used as the current voltage feedback list. The element thus limits the output voltage of the power supply circuit 10 to between 6 and 10 volts.
  • the reference voltage input to the positive input of the op amp OPA1 can be a fixed value.
  • the forward input of the op amp OPA1 can be connected to the control unit (not shown in FIG. 4) via the DAC 1 as shown in FIG. 4, so that the control unit can adjust the reference voltage of the OPA1 by changing the value of the DAC1.
  • the first voltage feedback unit 161 may include a first voltage sampling unit and an operational amplifier OPA1 composed of a first resistor R1, a second resistor R2, and a third resistor R3.
  • the first voltage sampling unit may sample the output voltage of the power supply circuit 10 based on the first resistor R1, the second resistor R2, and the third resistor R3, and divide the voltage obtained by the second resistor R2 and the third resistor R3 together as a voltage.
  • the sampling voltage output by the first voltage sampling unit may include a first voltage sampling unit and an operational amplifier OPA1 composed of a first resistor R1, a second resistor R2, and a third resistor R3.
  • the second voltage feedback unit 162 may include a second voltage sampling unit and an operational amplifier OPA1 composed of a first resistor R1 and a second resistor R2.
  • the second voltage sampling unit may sample the output voltage of the power supply circuit 10 based on the first resistor R1 and the second resistor R2, and divide the voltage obtained by dividing the second resistor R2 as the sampling voltage output by the second voltage sampling unit.
  • the switching unit 18 is specifically a MOS transistor Q1 in FIG.
  • the MOS transistor Q1 When the first voltage feedback unit is the voltage feedback unit currently used by the power supply circuit 10, under the control of the control unit (not shown in FIG. 5), the MOS transistor Q1 is in an off state, so that the operational amplifier OPA1 receives the first voltage sampling unit. The sampled voltage of the output.
  • the second voltage feedback unit 162 is the voltage feedback unit currently used by the power supply circuit 10 under the control of the control unit (not shown in FIG. 5), the MOS transistor Q1 is in an on state, so that the operational amplifier OPA1 receives the second voltage.
  • the sampling voltage output by the sampling unit When the second voltage feedback unit 162 is the voltage feedback unit currently used by the power supply circuit 10, under the control of the control unit (not shown in FIG. 5), the MOS transistor Q1 is in an on state, so that the operational amplifier OPA1 receives the second voltage. The sampling voltage output by the sampling unit.
  • the above-described configuration of the first resistor R1 to the third resistor R3 may cause the range of voltage values that the first voltage feedback unit 161 and the second voltage feedback unit 162 can adjust to exhibit a double relationship.
  • the voltage value that can be adjusted by the first voltage feedback unit 161 is 3-5V
  • the first voltage feedback unit 161 can be used as the currently used voltage feedback unit, thereby limiting the output voltage of the power supply circuit 10 to between 3-5V; when to be charged
  • the second voltage feedback unit 162 can be used as the currently used voltage feedback unit, thereby limiting the output voltage of the power supply circuit 10 to between 6-10V.
  • the reference voltage input to the positive input of the op amp OPA1 can be a fixed value.
  • the forward input of the OPA1 can be connected to the control unit (not shown in FIG. 5) through the DAC1 as shown in FIG. 5, so that the control unit can adjust the reference voltage of the OPA1 by changing the value of the DAC1.
  • the primary unit may comprise a primary rectifying unit and a liquid electrolytic capacitor for primary filtering.
  • the presence of the liquid electrolytic capacitor allows the output of the power supply circuit to be a constant direct current.
  • liquid electrolytic capacitors have short life and explosive properties, resulting in short life and unsafe operation of the power supply circuit.
  • charging the battery in the device to be charged with a constant direct current causes polarization and lithium evolution of the battery, which may reduce the service life of the battery.
  • Embodiments of the present invention provide a power supply circuit in which a liquid electrolytic capacitor on a primary side is removed.
  • the primary unit 11 may include a primary rectifying unit 111.
  • the first voltage to be modulated described above is a voltage whose voltage value output by the primary rectifying unit 111 periodically changes.
  • the waveform of the first voltage may be a pulsation waveform, or a smash wave, and the waveform thereof can be seen in FIG. 7.
  • the power supply circuit provided by the embodiment of the present invention removes the liquid electrolytic capacitor for secondary filtering, and directly modulates the first voltage whose primary rectified output voltage value periodically changes.
  • the waveform of the first voltage as the waveform shown in FIG. 7 as an example
  • the waveform of the second voltage obtained after the modulation can be seen in FIG. 8.
  • the second voltage also contains many small pulse signals, but the amplitudes of these pulse signals are not equal, but periodically varied.
  • the dotted line of Fig. 8 is the envelope of the pulse signal constituting the second voltage.
  • the envelope of the pulse signal constituting the second voltage is substantially the same as the waveform of the first voltage.
  • the power supply circuit 10 removes the liquid electrolytic capacitor on the primary side, thereby reducing the volume of the power supply circuit and improving the service life and safety of the power supply circuit.
  • the embodiment of the present invention further provides a power supply device.
  • the power supply device 900 can include the power supply circuit 10 provided by any of the above embodiments.
  • the power supply device 900 may be, for example, an adapter or a power bank or the like dedicated to charging, or may be another device capable of providing power and data services, such as a computer.
  • the power supply circuit and the power supply device provided by the embodiments of the present invention are described in detail above with reference to FIGS. 1A-9.
  • the control method of the power supply circuit provided by the embodiment of the present invention is described in detail below with reference to FIG.
  • the power supply circuit may be the power supply circuit described in any of the above embodiments 10, the description related to the power supply circuit can be referred to the foregoing, and the repeated description is omitted as appropriate.
  • the power supply circuit includes a primary rectifying unit, a modulating unit, a transformer, a secondary rectifying and filtering unit, and a voltage feedback unit.
  • the primary unit can be configured to generate a first voltage to be modulated based on the input alternating current.
  • a modulation unit is operative to modulate the first voltage to generate a second voltage.
  • a transformer can be used to generate a third voltage based on the second voltage.
  • a secondary rectification filtering unit is operative to rectify and filter the third voltage to generate an output voltage of the power supply circuit.
  • the voltage feedback unit is configured to receive the output voltage, and send a feedback signal to the adjusting unit when the voltage value of the output voltage reaches a preset set voltage value.
  • the modulating unit may be configured to perform a process of modulating the first voltage to generate a second voltage according to the feedback signal, to limit a voltage value of the output voltage to a first voltage value range or a second voltage Within a range of values, wherein the first range of voltage values is different from the range of second voltage values.
  • the method of FIG. 10 can include step 1010.
  • step 1010 in communication with the device to be charged, adjusting the output power of the power supply circuit such that the output voltage and/or output current of the power supply circuit and the current charging phase of the battery in the device to be charged Match.
  • the voltage feedback unit may include a first voltage feedback unit and a second voltage feedback unit.
  • the first voltage feedback unit and the modulation unit can be configured to limit the output voltage within the first voltage value range.
  • the second voltage feedback unit and the modulation unit are operable to limit the output voltage to be within the second voltage value range.
  • the power supply circuit further includes a switch unit.
  • a switching unit is operative to control switching between the first voltage feedback unit and the second voltage feedback unit.
  • the method of FIG. 10 can also include step 1020. In step 1020, the currently used voltage feedback unit is selected from the first voltage feedback unit and the second voltage feedback unit by the switching unit.
  • the first voltage feedback unit is configured to limit a voltage value of the output voltage between a third voltage value and a first voltage value
  • the second voltage feedback unit is configured to: Limiting a voltage value of the output voltage between a fourth voltage value and a second voltage value, wherein the third voltage value is less than the first voltage value, and the fourth voltage value is less than the second voltage value And the first voltage value is less than or equal to the third voltage value.
  • the method of FIG. 10 may further include: communicating with the device to be charged to obtain the number of cells connected in series with each other included in the device to be charged; step 1020 may include: according to The number of cells connected in series is selected, and the currently used voltage feedback unit is selected from the first voltage feedback unit and the second voltage feedback unit by the switching unit.
  • the charging phase of the power supply circuit to the battery includes at least one of a trickle charging phase, a constant voltage charging phase, and a constant current charging phase.
  • step 1010 may include: communicating with the device to be charged during a constant voltage charging phase of the battery to adjust an output power of the power supply circuit such that the power supply is provided The output voltage of the circuit matches the charging voltage corresponding to the constant voltage charging phase.
  • step 1010 may include: communicating with the device to be charged during a constant current charging phase of the battery to adjust an output power of the power supply circuit such that the power supply is provided The output current of the circuit matches the charging current corresponding to the constant current charging phase.
  • the primary unit includes a primary rectifying unit
  • the first voltage to be modulated is a voltage that periodically changes a voltage value output by the primary rectifying unit.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (such as a digital video disc (DVD)), or a semiconductor medium (such as a solid state disk (SSD)).
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium such as a digital video disc (DVD)
  • a semiconductor medium such as a solid state disk (SSD)
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Abstract

一种电源提供电路、电源提供设备和控制方法。该电源提供电路包括初级单元(11)、调制单元(12)、变压器(13)、次级整流滤波单元(14)、电压反馈单元(16)和控制单元(15)。该电源提供电路中的控制单元可以与待充电设备通信,以调整电源提供电路的输出电压和/或输出电流,使其与待充电设备内的电池当前所处的充电阶段相匹配。该电源提供电路可以灵活地将其输出电压控制在第一电压值范围或第二电压值范围内。

Description

电源提供电路、电源提供设备以及控制方法 技术领域
本申请涉及充电领域,并且更为具体地,涉及一种电源提供电路、电源提供设备以及控制方法。
背景技术
电源提供电路可用于为待充电设备内的电池充电。电池的充电过程一般包括多个充电阶段,不同充电阶段对充电电压和/或充电电流的需求不同。
相关技术中,电源提供电路的输出电压为恒定的电压。为了满足电池在不同充电阶段对充电电压和/或充电电流的需求,待充电设备内部设置有变换电路,可以将电源提供电路的输出电压和/或输出电流转换成电池当前所处的充电阶段所需的充电电压和/或充电电流。
在待充电设备内部设置变换电路会导致待充电设备的发热现象严重。
发明内容
本申请提供一种电源提供电路、电源提供设备以及控制方法,可以降低待充电设备在充电过程中的发热量。
第一方面,提供一种电源提供电路,包括:初级单元,用于根据输入的交流电生成待调制的第一电压;调制单元,用于对所述第一电压进行调制以生成第二电压;变压器,用于根据所述第二电压生成第三电压;次级整流滤波单元,用于对所述第三电压进行整流和滤波以生成所述电源提供电路的输出电压;电压反馈单元,用于接收所述输出电压,并在所述输出电压的电压值达到预设设定的电压值时,向所述调整单元发送反馈信号;所述调制单元,用于根据所述反馈信号,执行对所述第一电压进行调制以生成第二电压的过程,以将所述输出电压的电压值限定在第一电压值范围内或第二电压值范围内,其中所述第一电压值范围与所述第二电压值范围不同;控制单元,用于与待充电设备通信,调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电压和/或输出电流与所述待充电设备中的电池当前所处的充电阶段相匹配。
第二方面,提供一种电源提供设备,包括如第一方面所述的电源提供电 路。
第三方面,提供一种电源提供电路的控制方法,所述电源提供电路包括:初级单元,用于根据输入的交流电生成待调制的第一电压;调制单元,用于对所述第一电压进行调制以生成第二电压;变压器,用于根据所述第二电压生成第三电压;次级整流滤波单元,用于对所述第三电压进行整流和滤波以生成所述电源提供电路的输出电压;电压反馈单元,用于接收所述输出电压,并在所述输出电压的电压值达到预设设定的电压值时,向所述调整单元发送反馈信号;所述调制单元,用于根据所述反馈信号,执行对所述第一电压进行调制以生成第二电压的过程,以将所述输出电压的电压值限定在第一电压值范围内或第二电压值范围内,其中所述第一电压值范围与所述第二电压值范围不同;所述控制方法包括:与待充电设备通信,调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电压和/或输出电流与所述待充电设备中的电池当前所处的充电阶段相匹配。
本申请提供一种输出功率可调的电源提供电路,可以根据电池当前所处的充电阶段调整电源提供电路的输出电压和/或输出电流。这样一来,待充电设备无需通过内部的变换电路对电源提供电路的输出电压和/或输出电流进行变换,降低了待充电设备的发热量。进一步地,该电源提供电路可以灵活地将其输出电压控制在第一电压值范围或第二电压值范围内。
附图说明
图1A是本发明一个实施例提供的电源提供电路的示意性结构图。
图1B是本发明一个实施例提供的电源提供电路的示意性结构图。
图2是调制前后的电压波形对比图。
图3是本发明实施例提供的快充过程的示意性流程图。
图4是本发明另一实施例提供的电源提供电路的示意性结构图。
图5是本发明又一实施例提供的电源提供电路的示意性结构图。
图6是本发明又一实施例提供的电源提供电路的示意性结构图。
图7是去掉初级侧的液态电解电容之后得到的待调制的第一电压的波形示例图。
图8是图7所示的第一电压经过调制之后得到的第二电压的波形示例图。
图9是本发明实施例提供的电源提供设备的示意性结构图。
图10是本发明实施例提供的控制方法的示意性流程图。
具体实施方式
本申请提及的待充电设备可以是移动终端,如“通信终端”(或简称为“终端”),包括但不限于被设置成经由有线线路连接(如经由公共交换电话网络(public switched telephone network,PSTN)、数字用户线路(digital subscriber line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(wireless local area network,WLAN)、诸如手持数字视频广播(digital video broadcasting handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(amplitude modulation-frequency modulation,AM-FM)广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的通信终端可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(Personal Digital Assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。
相关技术中提到了用于为待充电设备进行充电的一电源提供电路。该电源提供电路工作在恒压模式下。在恒压模式下,该电源提供电路的输出电压基本维持恒定,比如5V,9V,12V或20V等。
该电源提供电路的输出电压并不适合直接加载到电池两端,而是需要先经过待充电设备内的变换电路进行变换,以得到待充电设备内的电池所预期的充电电压和/或充电电流。
变换电路可用于对电源提供电路的输出电压进行变换,以满足电池所预期的充电电压和/或充电电流的需求。
作为一种示例,该变换电路可指充电管理模块,例如充电集成电路(integrated circuit,IC)。在电池的充电过程中,用于对电池的充电电压和/或充电电流进行管理。该变换电路可以具有电压反馈模块的功能,和/或,具有电流反馈模块的功能,以实现对电池的充电电压和/或充电电流的管理。
举例来说,电池的充电过程可包括涓流充电阶段,恒流充电阶段和恒压充电阶段中的一个或者多个。在涓流充电阶段,变换电路可利用电流反馈环使得在涓流充电阶段进入到电池的电流满足电池所预期的充电电流大小(譬如第一充电电流)。在恒流充电阶段,变换电路可利用电流反馈环使得在恒流充电阶段进入电池的电流满足电池所预期的充电电流大小(譬如第二充电电流,该第二充电电流可大于第一充电电流)。在恒压充电阶段,变换电路可利用电压反馈环使得在恒压充电阶段加载到电池两端的电压的大小满足电池所预期的充电电压大小。
作为一种示例,当电源提供电路输出的电压大于电池所预期的充电电压时,变换电路可用于对电源提供电路输出的电压进行降压处理,以使降压转换后得到的充电电压满足电池所预期的充电电压需求。作为又一种示例,当电源提供电路输出的电压小于电池所预期的充电电压时,变换电路可用于对电源提供电路输出的电压进行升压处理,以使升压转换后得到的充电电压满足电池所预期的充电电压需求。
作为又一示例,以电源提供电路输出5V恒定电压为例,当电池包括单个电芯(以锂电池电芯为例,单个电芯的充电截止电压为4.2V)时,变换电路(例如Buck降压电路)可对电源提供电路输出的电压进行降压处理,以使得降压后得到的充电电压满足电池所预期的充电电压需求。
作为又一示例,以电源提供电路输出5V恒定电压为例,当电源提供电路为串联有两个及两个以上单电芯的电池(以锂电池电芯为例,单个电芯的充电截止电压为4.2V)充电时,变换电路(例如Boost升压电路)可对电源提供电路输出的电压进行升压处理,以使得升压后得到的充电电压满足电池所预期的充电电压需求。
变换电路受限于电路转换效率低下的原因,致使未被转换部分的电能以热量的形式散失。这部分热量会聚焦在待充电设备内部。待充电设备的设计空间和散热空间都很小(例如,用户使用的移动终端物理尺寸越来越轻薄,同时移动终端内密集排布了大量的电子元器件以提升移动终端的性能),这不但提升了变换电路的设计难度,还会导致聚焦在待充电设备内的热量很难及时移除,进而引发待充电设备的异常。
例如,变换电路上聚集的热量可能会对变换电路附近的电子元器件造成热干扰,引发电子元器件的工作异常。又如,变换电路上聚集的热量,可能会缩短变换电路及附近电子元件的使用寿命。又如,变换电路上聚集的热量, 可能会对电池造成热干扰,进而导致电池充放电异常。又如变换电路上聚集的热量,可能会导致待充电设备的温度升高,影响用户在充电时的使用体验。又如,变换电路上聚集的热量,可能会导致变换电路自身的短路,使得电源提供电路输出的电压直接加载在电池两端而引起充电异常,如果电池长时间处于过压充电状态,甚至会引发电池的爆炸,危及用户安全。
如图1A所示,本发明实施例提供一种电源提供电路10。该电源提供电路10可以包括初级单元11、调制单元12、变压器13、次级整流滤波单元14。
初级单元11可用于根据输入的交流电生成待调制的第一电压。
初级单元11可以包括初级整流单元。初级整流单元可用于对输入的交流电进行整流以输出电压值周期性变化的电压。在一些情况下,输入的交流电(AC)也可称为市电。输入的交流电例如可以是220V的交流电,也可以是110V的交流电。本发明实施例对初级整流单元的形式不做具体限定。初级整流单元可以采用四个二极管构成的全桥整流电路,也可以采用其他形式的整流电路,如半桥整流电路。
进一步地,在一些实施例中,初级单元11还可包括用于初级滤波的液态电解电容。液态电解电容可用于对初级整流单元输出的电压进行滤波。液态电解电容的容值很大,具有很强的滤波能力,可以将初级整流单元的输出滤成恒定直流电。因此,在该实施例中,待调制的第一电压为电压值恒定的电压。
可选地,在另一些实施例中,初级单元11也可以不包含上述液态电解电容。因此,在该实施例中,上述待调制的第一电压为电压值周期性变换的电压。下文会结合图7-图8,对初级侧去掉电解电容的实现方式进行详细描述,此处暂不详述。
调制单元12可用于对待调制的第一电压进行调制以生成第二电压。在某些情况下,调制单元12也可称为斩波单元或斩波器。或者,在某些情况下,调制单元12也可称为截波单元或截波器。本发明实施例对调制单元12的工作方式不做具体限定。作为一个示例,调制单元12可以采用脉冲宽度调制(pulse width modulation,PWM)的方式对第一电压进行调制,也可以采用频率调制的方式对第一电压进行调制。
以初级单元11包含用于初级滤波的液态电解电容为例,则上述待调制 的第一电压和调制后的第二电压的波形如图2所示。从图2可以看出,经过调制单元12的处理,恒定的电压信号被斩成许多小的幅值相等的方波脉冲信号。
变压器13可用于根据第二电压生成第三电压。换句话说,变压器13可用于将第二电压从变压器的初级耦合至次级,得到第三电压。例如,变压器13可用于对第二变压进行变压相关操作,得到第三电压。变压器13可以是普通变压器,也可以是工作频率为50KHz-2MHz的高频变压器。变压器13可以包括初级绕组和次级绕组。变压器13中的初级绕组和次级绕组的形式,以及初级绕组、次级绕组与电源提供电路10中的其他单元的连接方式与电源提供电路10所采用的开关电源的类型有关。例如,电源提供电路10可以是基于反激式开关电源的电源提供电路,也可以是基于正激式开关电源的电源提供电路,还可以是基于推挽式开关电源的电源提供电路。电源提供电路所基于的开关电源的类型不同,变压器13的初级绕组、次级绕组的具体形式和连接方式就会相应不同,本发明实施例对此不做具体限定。图1A示出的仅是变压器13的一种可能的连接方式。
次级整流滤波单元14可以包括次级整流单元和次级滤波单元。本发明实施例对次级整流单元的整流方式不做具体限定。作为一个示例,次级整流单元可以使用同步整流(synchronous rectifier,SR)芯片,对变压器的次级绕组感应到的电压(或电流)进行同步整流。作为另一示例,次级整流单元可以采用二极管进行次级整流。次级滤波单元可用于对次级整流之后的电压进行次级滤波。次级滤波单元可以包括一个或多个固态电容,或者也可以包括固态电容与普通电容(如陶瓷电容)的组合。第三电压经过次级整流滤波单元处理之后,可以得到电源提供电路10的输出电压。
为了降低待充电设备在充电过程中的发热量。本发明实施例提供的电源提供控制电路10是一种输出功率可调的电源提供电路。该电源提供电路10可以包括控制单元15。该控制单元15可以与待充电设备进行通信,调整其自身的输出电压和/或输出电流,使得电源提供电路10的输出电压和/或输出电流与待充电设备中的电池当前所处的充电阶段相匹配。
应理解,电池当前所处的充电阶段可以包括以下阶段中的至少一个:涓流充电阶段、恒压充电阶段、恒流充电阶段。
以电池当前所处的充电阶段为恒压充电阶段为例,上述与待充电设备通 信,以调整电源提供电路的输出功率,使得电源提供电路的输出电压和/或输出电流与待充电设备中的电池当前所处的充电阶段相匹配可包括:在电池的恒压充电阶段,与待充电设备进行通信,以调整电源提供电路的输出功率,使得电源提供电路的输出电压与恒压充电阶段对应的充电电压相匹配。
以电池当前所处的充电阶段为恒流充电阶段为例,上述与待充电设备通信,以调整电源提供电路的输出功率,使得电源提供电路的输出电压和/或输出电流与待充电设备中的电池当前所处的充电阶段相匹配可包括:在电池的恒流充电阶段,与待充电设备进行通信,以调整电源提供电路的输出功率,使得电源提供电路的输出电流与恒流充电阶段对应的充电电流相匹配。
下面对本发明实施例提供的具有通信功能的电源提供电路10进行更为详细的举例说明。
该电源提供电路10可以获取电池的状态信息。电池的状态信息可以包括电池当前的电量信息和/或电压信息。该电源提供电路10可以根据获取到的电池的状态信息来调节电源提供电路10自身的输出电压,以满足电池所预期的充电电压和/或充电电流的需求,电源提供电路10调节后输出的电压可直接加载到电池两端为电池充电(下称“直充”)。进一步地,在电池充电过程的恒流充电阶段,电源提供电路10调节后输出的电压可直接加载在电池的两端为电池充电。
该电源提供电路10可以具有电压反馈模块的功能和电流反馈模块的功能,以实现对电池的充电电压和/或充电电流的管理。
该电源提供电路10根据获取到的电池的状态信息来调节电源提供电路10自身的输出电压可以指:该电源提供电路10能够实时获取到电池的状态信息,并根据每次所获取到的电池的实时状态信息来调节电源提供电路10自身输出的电压,以满足电池所预期的充电电压和/或充电电流。
该电源提供电路10根据实时获取到的电池的状态信息来调节电源提供电路10自身的输出电压可以指:随着充电过程中电池电压的不断上升,电源提供电路10能够获取到充电过程中不同时刻电池的当前状态信息,并根据电池的当前状态信息来实时调节电源提供电路10自身的输出电压,以满足电池所预期的充电电压和/或充电电流的需求。
举例来说,电池的充电过程可包括涓流充电阶段、恒流充电阶段和恒压充电阶段中的至少一个。在涓流充电阶段,电源提供电路10可在涓流充电 阶段输出一第一充电电流对电池进行充电以满足电池所预期的充电电流的需求(第一充电电流可为恒定直流电流)。在恒流充电阶段,电源提供电路10可利用电流反馈环使得在恒流充电阶段由电源提供电路10输出且进入到电池的电流满足电池所预期的充电电流的需求(譬如第二充电电流,可为脉动波形的电流,该第二充电电流可大于第一充电电流,可以是恒流充电阶段的脉动波形的电流峰值大于涓流充电阶段的恒定直流电流大小,而恒流充电阶段的恒流可以指的是脉动波形的电流峰值或平均值保持基本不变)。在恒压充电阶段,电源提供电路10可利用电压反馈环使得在恒压充电阶段由电源提供电路10输出到待充电设备的电压(即恒定直流电压)保持恒定。
举例来说,本发明实施例中提及的电源提供电路10可主要用于控制待充电设备内电池的恒流充电阶段。在其他实施例中,待充电设备内电池的涓流充电阶段和恒压充电阶段的控制功能也可由本发明实施例提及的电源提供电路10和待充电设备内额外的充电芯片来协同完成;相较于恒流充电阶段,电池在涓流充电阶段和恒压充电阶段接受的充电功率较小,待充电设备内部充电芯片的效率转换损失和热量累积是可以接受的。需要说明的是,本发明实施例中提及的恒流充电阶段或恒流阶段可以是指对电源提供电路10的输出电流进行控制的充电模式,并非要求电源提供电路10的输出电流保持完全恒定不变,例如可以是泛指电源提供电路10输出的脉动波形的电流峰值或平均值保持基本不变,或者是一个时间段保持基本不变。例如,实际中,电源提供电路10在恒流充电阶段通常采用分段恒流的方式进行充电。
分段恒流充电(Multi-stage constant current charging)可具有N个恒流阶段(N为一个不小于2的整数),分段恒流充电以预定的充电电流开始第一阶段充电,所述分段恒流充电的N个恒流阶段从第1个阶段到第N个阶段依次被执行,当恒流阶段中的当前恒流阶段转到下一个恒流阶段后,脉动波形的电流峰值或平均值可变小;当电池电压到达充电终止电压阈值时,恒流阶段中的前一个恒流阶段会转到下一个恒流阶段。相邻两个恒流阶段之间的电流转换过程可以是渐变的,或,也可以是台阶式的跳跃变化。
进一步地,在电源提供电路10的输出电流为周期性变化的电流(如脉动直流电)的情况下,恒流模式可以指对周期性变化的电流的峰值或均值进行控制的充电模式,即控制电源提供电路10的输出电流的峰值不超过恒流模式对应的电流。此外,电源提供电路10的输出电流为交流电的情况下,恒流模式可以指对交流电的峰值进行控制的充电模式。
可选地,在一些实施例中,电源提供电路10可以支持第一充电模式和第二充电模式,电源提供电路10在第二充电模式下对电池的充电速度快于电源提供电路10在第一充电模式下对电池的充电速度。换句话说,相较于工作在第一充电模式下的电源提供电路来说,工作在第二充电模式下的电源提供电路充满相同容量的电池的耗时更短。进一步地,在一些实施例中,在第一充电模式下,电源提供电路10通过第二充电通道为电池充电,在第二充电模式下,电源提供电路10通过第一充电通道为电池充电。
第一充电模式可为普通充电模式,第二充电模式可为快速充电模式。该普通充电模式是指电源提供电路输出相对较小的电流值(通常小于2.5A)或者以相对较小的功率(通常小于15W)来对待充电设备中的电池进行充电,在普通充电模式下想要完全充满一较大容量电池(如3000毫安时容量的电池),通常需要花费数个小时的时间;而在快速充电模式下,电源提供电路能够输出相对较大的电流(通常大于2.5A,比如4.5A,5A甚至更高)或者以相对较大的功率(通常大于等于15W)来对待充电设备中的电池进行充电,相较于普通充电模式而言,电源提供电路在快速充电模式下完全充满相同容量电池所需要的充电时间能够明显缩短、充电速度更快。
进一步地,待充电设备可以与电源提供电路10(或与电源提供电路10中的控制单元15)进行双向通信,以控制在第二充电模式下的电源提供电路10的输出(即控制第二充电模式下的电源提供电路10提供的充电电压和/或充电电流)。待充电设备可以包括充电接口,待充电设备可以通过充电接口中的数据线与电源提供电路10进行通信。以充电接口为USB接口为例,数据线可以是USB接口中的D+线和/或D-线。或者,待充电设备也可以与电源提供电路10进行无线通信。
本发明实施例对电源提供电路10与待充电设备的通信内容,以及待充电设备对电源提供电路10在第二充电模式下的输出的控制方式不作具体限定,例如,待充电设备可以与电源提供电路10通信,交互待充电设备中的电池的当前总电压和/或当前总电量,并基于电池的当前总电压和/或当前总电量调整电源提供电路10的输出电压或输出电流。下面结合具体的实施例对待充电设备与电源提供电路10之间的通信内容,以及待充电设备对在第二充电模式下的电源提供电路10的输出的控制方式进行详细描述。
本发明实施例的上述描述并不会对电源提供电路10与待充电设备的主 从性进行限定,换句话说,电源提供电路10与待充电设备中的任何一方均可作为主设备方发起双向通信会话,相应地另外一方可以作为从设备方对主设备方发起的通信做出第一响应或第一回复。作为一种可行的方式,可以在通信过程中,通过比较电源提供电路10侧和待充电设备侧相对于大地的电平高低来确认主、从设备的身份。
本发明实施例并未对电源提供电路10与待充电设备之间双向通信的具体实现方式作出限制,即言,电源提供电路10与待充电设备中的任何一方作为主设备方发起通信会话,相应地另外一方作为从设备方对主设备方发起的通信会话做出第一响应或第一回复,同时主设备方能够针对所述从设备方的第一响应或第一回复做出第二响应,即可认为主、从设备之间完成了一次充电模式的协商过程。作为一种可行的实施方式,主、从设备方之间可以在完成多次充电模式的协商后,再执行主、从设备方之间的充电操作,以确保协商后的充电过程安全、可靠的被执行。
作为主设备方能够根据所述从设备方针对通信会话的第一响应或第一回复做出第二响应的一种方式可以是:主设备方能够接收到所述从设备方针对通信会话所做出的第一响应或第一回复,并根据接收到的所述从设备的第一响应或第一回复做出针对性的第二响应。作为举例,当主设备方在预设的时间内接收到所述从设备方针对通信会话的第一响应或第一回复,主设备方会对所述从设备的第一响应或第一回复做出针对性的第二响应具体为:主设备方与从设备方完成了一次充电模式的协商,主设备方与从设备方之间根据协商结果按照第一充电模式或者第二充电模式执行充电操作,即电源提供电路10根据协商结果工作在第一充电模式或者第二充电模式下为待充电设备充电。
作为主设备方能够根据所述从设备方针对通信会话的第一响应或第一回复做出进一步的第二响应的一种方式还可以是:主设备方在预设的时间内没有接收到所述从设备方针对通信会话的第一响应或第一回复,主设备方也会对所述从设备的第一响应或第一回复做出针对性的第二响应。作为举例,当主设备方在预设的时间内没有接收到所述从设备方针对通信会话的第一响应或第一回复,主设备方也会对所述从设备的第一响应或第一回复做出针对性的第二响应具体为:主设备方与从设备方完成了一次充电模式的协商,主设备方与从设备方之间按照第一充电模式执行充电操作,即电源提供电路 10工作在第一充电模式下为待充电设备充电。
可选地,在一些实施例中,当待充电设备作为主设备发起通信会话,电源提供电路10作为从设备对主设备方发起的通信会话做出第一响应或第一回复后,无需要待充电设备对电源提供电路10的第一响应或第一回复做出针对性的第二响应,即可认为电源提供电路10与待充电设备之间完成了一次充电模式的协商过程,进而电源提供电路10能够根据协商结果确定以第一充电模式或者第二充电模式为待充电设备进行充电。
可选地,在一些实施例中,待充电设备与电源提供电路10进行双向通信,以控制在第二充电模式下的电源提供电路10的输出的过程包括:待充电设备与电源提供电路10进行双向通信,以协商电源提供电路10与待充电设备之间的充电模式。
可选地,在一些实施例中,待充电设备与电源提供电路10进行双向通信,以协商电源提供电路10与待充电设备之间的充电模式包括:待充电设备接收电源提供电路10发送的第一指令,第一指令用于询问待充电设备是否开启第二充电模式;待充电设备向电源提供电路10发送第一指令的回复指令,第一指令的回复指令用于指示待充电设备是否同意开启第二充电模式;在待充电设备同意开启第二充电模式的情况下,待充电设备控制电源提供电路10通过第一充电通道为电池充电。
可选地,在一些实施例中,待充电设备与电源提供电路10进行双向通信,以控制在第二充电模式下的电源提供电路10的输出的过程,包括:待充电设备与电源提供电路10进行双向通信,以确定在第二充电模式下的电源提供电路10输出的用于对待充电设备进行充电的充电电压。
可选地,在一些实施例中,待充电设备与电源提供电路10进行双向通信,以确定在第二充电模式下的电源提供电路10输出的用于对待充电设备进行充电的充电电压包括:待充电设备接收电源提供电路10发送的第二指令,第二指令用于询问电源提供电路10的输出电压与待充电设备的电池的当前总电压是否匹配;待充电设备向电源提供电路10发送第二指令的回复指令,第二指令的回复指令用于指示电源提供电路10的输出电压与电池的当前总电压匹配、偏高或偏低。可替换地,第二指令可用于询问将电源提供电路10的当前输出电压作为在第二充电模式下的电源提供电路10输出的用于对待充电设备进行充电的充电电压是否合适,第二指令的回复指令可用于 指示当前电源提供电路10的输出电压合适、偏高或偏低。
电源提供电路10的当前输出电压与电池的当前总电压匹配,或者电源提供电路10的当前输出电压适合作为在第二充电模式下的电源提供电路10输出的用于对待充电设备进行充电的充电电压可以指:电源提供电路10的当前输出电压与电池的当前总电压之间的差值在预设范围内(通常在几百毫伏的量级)。当前输出电压与电池当前总电压偏高包括:电源提供电路10的输出电压与电池的当前总电压之间的差值高于预设范围。当前输出电压与电池当前总电压偏低包括:电源提供电路10的输出电压与电池的当前总电压之间的差值低于预设范围。
可选地,在一些实施例中,待充电设备与电源提供电路10进行双向通信,以控制在第二充电模式下的电源提供电路10的输出的过程可包括:待充电设备与电源提供电路10进行双向通信,以确定在第二充电模式下的电源提供电路10输出的用于对待充电设备进行充电的充电电流。
可选地,在一些实施例中,待充电设备与电源提供电路10进行双向通信,以确定在第二充电模式下的电源提供电路10输出的用于对待充电设备进行充电的充电电流可包括:待充电设备接收电源提供电路10发送的第三指令,第三指令用于询问待充电设备当前支持的最大充电电流;待充电设备向电源提供电路10发送第三指令的回复指令,第三指令的回复指令用于指示待充电设备当前支持的最大充电电流,以便电源提供电路10基于待充电设备当前支持的最大充电电流确定在第二充电模式下的电源提供电路10输出的用于对待充电设备进行充电的充电电流。
待充电设备当前支持的最大充电电流可根据待充电设备的电池的容量、电芯体系等得出,或者为预设值。
应理解,待充电设备根据待充电设备当前支持的最大充电电流确定在第二充电模式下的电源提供电路10输出的用于对待充电设备进行充电的充电电流的方式有多种。例如,电源提供电路10可以将待充电设备当前支持的最大充电电流确定为在第二充电模式下的电源提供电路10输出的用于对待充电设备进行充电的充电电流,也可以综合考虑待充电设备当前支持的最大充电电流以及自身的电流输出能力等因素之后,确定在第二充电模式下的电源提供电路10输出的用于对待充电设备进行充电的充电电流。
可选地,在一些实施例中,待充电设备与电源提供电路10进行双向通 信,以控制在第二充电模式下的电源提供电路10的输出的过程可包括:在使用第二充电模式充电的过程中,待充电设备与电源提供电路10进行双向通信,以调整电源提供电路10的输出电流。
在一些实施例中,待充电设备与电源提供电路10进行双向通信,以调整电源提供电路10的输出电流可包括:待充电设备接收电源提供电路10发送的第四指令,第四指令用于询问电池的当前总电压;待充电设备向电源提供电路10发送第四指令的回复指令,第四指令的回复指令用于指示电池的当前总电压,以便电源提供电路10根据电池的当前总电压,调整电源提供电路10的输出电流。
可选地,在一些实施例中,待充电设备与电源提供电路10进行双向通信,以控制在第二充电模式下电源提供电路10的输出的过程可包括:待充电设备与电源提供电路10进行双向通信,以确定充电接口是否接触不良。
在一些实施例中,待充电设备与电源提供电路10进行双向通信,以便确定充电接口是否接触不良可包括:待充电设备接收电源提供电路10发送的第四指令,第四指令用于询问待充电设备的电池的当前电压;待充电设备向电源提供电路10发送第四指令的回复指令,第四指令的回复指令用于指示待充电设备的电池的当前电压,以便电源提供电路10根据电源提供电路10的输出电压和待充电设备的电池的当前电压,确定充电接口是否接触不良。例如,电源提供电路10确定电源提供电路10的输出电压和待充电设备的当前电压的压差大于预设的电压阈值,则表明此时压差除以电源提供电路10输出的当前电流值所得到的阻抗大于预设的阻抗阈值,即可确定充电接口接触不良。
可选地,在一些实施例中,充电接口接触不良也可由待充电设备进行确定。例如,待充电设备向电源提供电路10发送第六指令,第六指令用于询问电源提供电路10的输出电压;待充电设备接收电源提供电路10发送的第六指令的回复指令,第六指令的回复指令用于指示电源提供电路10的输出电压;待充电设备根据电池的当前电压和电源提供电路10的输出电压,确定充电接口是否接触不良。在待充电设备确定充电接口接触不良后,待充电设备可以向电源提供电路10发送第五指令,第五指令用于指示充电接口接触不良。电源提供电路10在接收到第五指令之后,可以退出第二充电模式。
下面结合图3,更加详细地描述电源提供电路10与待充电设备之间的通 信过程。应注意,图3的例子仅仅是为了帮助本领域技术人员理解本发明实施例,而非要将本发明实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图3的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本发明实施例的范围内。
如图3所示,电源提供电路10和待充电设备之间的通信流程(或称快充通信流程)可以包括以下五个阶段:
阶段1:
待充电设备与电源提供电路10连接后,待充电设备可以通过数据线D+、D-检测电源提供电路10的类型。当检测到电源提供电路10为如适配器等专门用于充电的电源提供电路时,待充电设备吸收的电流可以大于预设的电流阈值I2(例如可以是1A)。当电源提供电路10检测到预设时长(例如,可以是连续T1时间)内电源提供电路10的输出电流大于或等于I2时,则电源提供电路10可以认为待充电设备对于电源提供电路的类型识别已经完成。接着,电源提供电路10开启与待充电设备之间的协商过程,向待充电设备发送指令1(对应于上述第一指令),以询问待充电设备是否同意电源提供电路10以第二充电模式对待充电设备进行充电。
当电源提供电路10收到待充电设备发送的指令1的回复指令,且该指令1的回复指令指示待充电设备不同意电源提供电路10以第二充电模式对待充电设备进行充电时,电源提供电路10再次检测电源提供电路10的输出电流。当电源提供电路10的输出电流在预设的连续时长内(例如,可以是连续T1时间)仍然大于或等于I2时,电源提供电路10再次向待充电设备发送指令1,询问待充电设备是否同意电源提供电路10以第二充电模式对待充电设备进行充电。电源提供电路10重复阶段1的上述步骤,直到待充电设备同意电源提供电路10以第二充电模式对待充电设备进行充电,或电源提供电路10的输出电流不再满足大于或等于I2的条件。
当待充电设备同意电源提供电路10以第二充电模式对待充电设备进行充电后,通信流程进入阶段2。
阶段2:
电源提供电路10向待充电设备发送指令2(对应于上述第二指令),以询问电源提供电路10的输出电压(当前的输出电压)与待充电设备中的电池的当前电压是否匹配。
待充电设备向电源提供电路10发送指令2的回复指令,以指示电源提供电路10的输出电压与待充电设备电池的当前电压匹配、偏高或偏低。如果针对指令2的回复指令指示电源提供电路10的输出电压偏高或偏低,电源提供电路10可以将电源提供电路10的输出电压调低或调高,并再次向待充电设备发送指令2,重新询问电源提供电路10的输出电压与电池的当前电压是否匹配。重复阶段2的上述步骤直到待充电设备确定电源提供电路10的输出电压与待充电设备电池的当前电压匹配,进入阶段3。电源提供电路10的输出电压的调整方式可以有多种。例如,可以预先为电源提供电路10的输出电压设置由低到高的多个电压档位,电压档位越高,表明电源提供电路10的输出电压越大。如果指令2的回复指令指示电源提供电路10的输出电压偏高,则可以将电源提供电路10的输出电压的电压档位从当前电压档位调低一个档位;如果指令2的回复指令指示电源提供电路10的输出电压偏低,则可以将电源提供电路10的输出电压的电压档位从当前电压档位调高一个档位。
阶段3:
电源提供电路10向待充电设备发送指令3(对应于上述第三指令),询问待充电设备当前支持的最大充电电流。待充电设备向电源提供电路10发送指令3的回复指令,以指示待充电设备当前支持的最大充电电流,并进入阶段4。
阶段4:
电源提供电路10根据待充电设备当前支持的最大充电电流,确定在第二充电模式下电源提供电路10输出的用于对待充电设备进行充电的充电电流,然后进入阶段5,即恒流充电阶段。
阶段5:
在进入恒流充电阶段后,电源提供电路10可以每间隔一段时间向待充电设备发送指令4(对应于上述第四指令),询问待充电设备电池的当前电压。待充电设备可以向电源提供电路10发送指令4的回复指令,以反馈电池的当前电压。电源提供电路10可以根据电池的当前电压,判断充电接口的接触是否良好,以及是否需要降低电源提供电路10的输出电流。当电源提供电路10判断充电接口的接触不良时,可以向待充电设备发送指令5(对应于上述第五指令),电源提供电路10会退出第二充电模式,然后复位并重新进 入阶段1。
可选地,在一些实施例中,在阶段2中,从待充电设备同意电源提供电路10在第二充电模式下对待充电设备进行充电到电源提供电路10将电源提供电路10的输出电压调整到合适的充电电压所经历的时间可以控制在一定范围之内。如果该时间超出预定范围,则电源提供电路10或待充电设备可以判定通信过程异常,复位以重新进入阶段1。
可选地,在一些实施例中,在阶段2中,当电源提供电路10的输出电压比待充电设备电池的当前电压高ΔV(ΔV可以设定为200~500mV)时,待充电设备可以向电源提供电路10发送指令2的回复指令,以指示电源提供电路10的输出电压与待充电设备的电池的电压匹配。
可选地,在一些实施例中,在阶段4中,电源提供电路10的输出电流的调整速度可以控制一定范围之内,这样可以避免由于调整速度过快而导致充电过程发生异常。
可选地,在一些实施例中,在阶段5中,电源提供电路10的输出电流的变化幅度可以控制在5%以内。
可选地,在一些实施例中,在阶段5中,电源提供电路10可以实时监测充电通路的阻抗。具体地,电源提供电路10可以根据电源提供电路10的输出电压、输出电流及待充电设备反馈的电池的当前电压,监测充电通路的阻抗。当“充电通路的阻抗”>“待充电设备的通路阻抗+充电线缆的阻抗”时,可以认为充电接口接触不良,电源提供电路10停止在第二充电模式下对待充电设备进行充电。
可选地,在一些实施例中,电源提供电路10开启在第二充电模式下对待充电设备进行充电之后,电源提供电路10与待充电设备之间的通信时间间隔可以控制在一定范围之内,避免通信间隔过短而导致通信过程发生异常。
可选地,在一些实施例中,充电过程的停止(或电源提供电路10在第二充电模式下对待充电设备的充电过程的停止)可以分为可恢复的停止和不可恢复的停止两种。
例如,当检测到待充电设备的电池充满或充电接口接触不良时,充电过程停止,充电通信过程复位,充电过程重新进入阶段1。然后,待充电设备不同意电源提供电路10在第二充电模式下对待充电设备进行充电,则通信 流程不进入阶段2。这种情况下的充电过程的停止可以视为不可恢复的停止。
又例如,当电源提供电路10与待充电设备之间出现通信异常时,充电过程停止,充电通信过程复位,充电过程重新进入阶段1。在满足阶段1的要求后,待充电设备同意电源提供电路10在第二充电模式下对待充电设备进行充电以恢复充电过程。这种情况下的充电过程的停止可以视为可恢复的停止。
又例如,当待充电设备检测到电池出现异常时,充电过程停止,复位并重新进入阶段1。然后,待充电设备不同意电源提供电路10在第二充电模式下对待充电设备进行充电。当电池恢复正常,且满足阶段1的要求后,待充电设备同意电源提供电路10在第二充电模式下对待充电设备进行充电。这种情况下的快充过程的停止可以视为可恢复的停止。
以上对图3示出的通信步骤或操作仅是示例。例如,在阶段1中,待充电设备与电源提供电路10连接后,待充电设备与电源提供电路10之间的握手通信也可以由待充电设备发起,即待充电设备发送指令1,询问电源提供电路10是否开启第二充电模式。当待充电设备接收到电源提供电路10的回复指令指示电源提供电路10同意电源提供电路10在第二充电模式下对待充电设备进行充电时,电源提供电路10开始在第二充电模式下对待充电设备的电池进行充电。
又如,在阶段5之后,还可包括恒压充电阶段。具体地,在阶段5中,待充电设备可以向电源提供电路10反馈电池的当前电压,当电池的当前电压达到恒压充电电压阈值时,充电阶段从恒流充电阶段转入恒压充电阶段。在恒压充电阶段中,充电电流逐渐减小,当电流下降至某一阈值时,表示待充电设备的电池已经被充满,停止整个充电过程。
如图1A所示,在一些实施例中,电源提供电路10还可包括电压反馈单元16。电压反馈单元16可用于接收输出电压,并在输出电压的电压值达到预设设定的电压值时,向调整单元发送反馈信号。调制单元12可用于根据反馈信号,执行对第一电压进行调制以生成第二电压的过程,以将输出电压的电压值限定在第一电压值范围内或第二电压值范围内,其中第一电压值范围与第二电压值范围不同。
首先,电源提供电路10会根据实际情况确定电压反馈单元16能够调整的电压值范围为第一电压值范围还是第二电压值范围。例如,当电源提供电 路10需要为一节电芯充电时,可以将电压反馈单元16能够调整的电压值范围设定为第一电压值范围(如3-5V);当电源提供电路10需要为相互串联的两节电芯充电时,可以将电压反馈单元16能够调整的电压值范围设定为第二电压值范围(如6-10V)。
下面以电压反馈单元16能够调整的电压值范围为第一电压值范围,电压反馈单元16的限压值为该第一电压值范围的上限(该限压值可以是第一电压范围内的任意值)为例,说明调制单元12对第一电压进行调制以生成第二电压的过程。假设调制单元12为基于PWM控制器的调制单元,电源提供电路10刚开始工作时,电源提供电路10的输出电压比较小,调制单元12可以以不断增大PWM控制信号的占空比的方式对第一电压进行调制以生成第二电压,使得电源提供电路10在单位时间内可以从输入的交流电中抽取更多的能量,从而使得电源提供电路10的输出电压不断增大。在电源提供电路10的输出电压达到第一电压值范围的上限时,调制单元12会接收到电压反馈单元16发送的反馈信号。此时,调制单元12可以以控制PWM控制信号的占空比保持不变的方式对第一电压进行调制以生成第二电压,使得电源提供电路10的输出电压不超过该第一电压值范围的上限。
如图1B所示,上述电压反馈单元16可以包括第一电压反馈单元161和第二电压反馈单元162。
第一电压反馈单元161和调制单元12可用于将电源提供电路10的输出电压限定在第一电压值范围内。
例如,第一电压反馈单元161可用于接收电源提供电路10的输出电压,并在该输出电压的电压值达到第一电压反馈单元161的限压值的情况下,向调制单元发送第一反馈信号。第一电压反馈单元161的限压值为第一电压值范围内的任意一个电压值。
调制单元可用于根据第一反馈信号执行对第一电压进行调制以生成第二电压的过程,以将电源提供电路10的输出电压的电压值限定在第一电压反馈单元161的限压值以下。
第二电压反馈单元162和调制单元12可用于将电源提供电路10的输出电压限定在第二电压值范围内。
例如,第二电压反馈单元162可用于接收电源提供电路10的输出电压,并在该输出电压的电压值达到第二电压反馈单元162的限压值的情况下,向 调制单元发送第二反馈信号。第二电压反馈单元162的限压值为第二电压值范围内的任意一个电压值。
调制单元12可用于根据第二反馈信号执行对第一电压进行调制以生成第二电压的过程,以将电源提供电路10的输出电压的电压值限定在第二电压反馈单元162的限压值以下。
电源提供电路10还可包括开关单元18。开关单元18可用于控制第一电压反馈单元161和第二电压反馈单元162之间的切换。开关单元18例如可以是单刀双掷开关,也可以是金属氧化物半导体(metal oxide semiconductor,MOS)管等其他类型的开关器件。
控制单元15还可用于通过开关单元18从第一电压反馈单元161和第二电压反馈单元162中选取当前使用的电压反馈单元。
本发明实施例对控制单元15选取当前使用的电压反馈单元时所需考虑的因素不做具体限定。作为一个示例,控制单元15可以根据待充电设备中的相互串联的电芯的数量选取当前使用的电压反馈单元。例如,控制单元15可以与待充电设备进行通信,以获取待充电设备内的电池所包含的相互串联的电芯数量。当电池包含单节电芯时,可以从第一电压反馈单元161和第二电压反馈单元162中选取出电压值范围较小的电压反馈单元作为当前使用的电压反馈单元;当电池包含相互串联的多节电芯时,可以从第一电压反馈单元161和第二电压反馈单元162中选取出电压值范围较大的电压反馈单元作为当前使用的电压反馈单元。作为另一个示例,控制单元15可以根据电池当前所处的充电阶段选取当前使用的电压反馈单元。
本发明实施例提供的电源提供电路10具有多个电压反馈单元。不同电压反馈单元可以将电源提供电路10的输出电压限定在不同的电压值范围内。因此,电源提供电路10可以根据实际需要从不同电压反馈单元之间进行选择,提高了充电控制过程的灵活性。
待充电设备的电池可以包括单节电芯,也可以包括相互串联的多节电芯。电池所包含的电芯数量不同,待充电设备对电源提供电路10的输出电压的需求也不同。以待充电设备中的电池包含单节电芯为例,该待充电设备对电源提供电路10的输出电压的需求通常在3-5V之间;以待充电设备中的电池包含两节电芯为例,该待充电设备对电源提供电路10的输出电压的需求通常在6-10V之间。为了兼容单电芯和双电芯对输出电压的不同需求,一 种可行的方式是在电源提供电路10内部设置一个电压反馈单元,且在该电压反馈单元的控制下,电源提供电路10的输出电压在3-10V可调。但是,这样的方案存在如下问题:假设待充电设备中的电池包括单节电芯,在该单节电芯的充电过程中,如果电源提供电路10内部的控制单元失效,则无法对电源提供电路10的输出电压进行控制,由于电源提供电路10的输出电压在3-10V可调,因此,失去了控制单元的控制,电源提供电路10的输出电压可能会超过5V,导致该单节电芯过压,引发危险。
为了避免上述问题的发生,可以采用本发明实施例,设置多个电压反馈单元,且不同电压反馈单元能够调整的电压值范围可以针对待充电设备内的相互串联的电芯数量而设计。例如,第一电压反馈单元161能够调整的第一电压值范围可针对1节电芯而设计,如将第一电压值范围设置为3-5V;第二电压反馈单元162能够调整的第二电压值范围可针对相互串联的两节电芯而设计,如将第二电压值范围设置为6-10V。当电源提供电路10需要为单电芯充电时,可以通过开关单元18控制第一电压反馈单元161工作,使得电源提供电路10的输出电压可以在3-5V之间调节;当电源提供电路10需要为串联的双电芯充电时,可以通过开关单元18控制第二电压反馈单元162工作,使得电源提供电路10的输出电压在6-10V之间可调。
在单电芯充电的情况下,控制单元15会选取能够将电源提供电路10的输出电压限定在3-5V之间的第一电压反馈单元作为当前使用的电压反馈单元。这样一来,即使控制单元15在充电过程中失效,单节电芯的充电电压也不会超过5V,提高了充电安全性。
第一电压反馈单元161和第二电压反馈单元162可以为物理上相互独立的两个电压反馈单元,由不同的物理器件构成。或者,第一电压反馈单元161和第二电压反馈单元162可以共用一部分物理器件。比如,第一电压反馈单元161和第二电压反馈单元162可以使用公共的运放进行电压反馈,但可以使用不同的电阻对电源提供电路10的输出电压进行采样。
第一电压值范围和第二电压值范围可以部分重叠,也可以互不重叠。
上述第一电压反馈单元161和第二电压反馈单元162可以直接与调制单元12相连,也可以通过光耦与调制单元12间接相连,本发明实施例对此不做具体限定。如果第一电压反馈单元161和第二电压反馈单元162通过光耦与调制单元12间接相连,则第一电压反馈单元161和第二电压反馈单元162 向调制单元发送到的反馈信号需要先经过光耦进行光电转换。
下面结合图4和图5,给出第一电压反馈单元161和第二电压反馈单元162的两种具体的实现方式。
在图4对应的实现方式中,第一电压反馈单元161可以包括由第一电阻R1和第二电阻R2形成的第一电压采样单元,以及运放OPA1。第一电压采样单元可以基于第一电阻R1和第二电阻R2对电源提供电路10的输出电压进行采样,并将第二电阻R2分压得到的电压作为该第一电压采样单元输出的采样电压。
在图4对应的实现方式中,第二电压反馈单元162可以包括由第三电阻R3和第四电阻R4形成的第二电压采样单元,以及运放OPA1(图4对应的实现方式中,第一电压反馈单元161和第二电压反馈单元162共用同一运放)。第二电压采样单元可以基于第三电阻R3和第四电阻R4对电源提供电路10的输出电压进行采样,并将第四电阻R4分压得到的电压作为第二电压采样单元输出的采样电压。
开关单元18在图4中具体为单刀双掷开关S1。当第一电压反馈单元作为电源提供电路10当前使用的电压反馈单元时,在控制单元(图4未示出)的控制下,开关S1可以与触电41接触,以控制运放OPA1接收第一电压采样单元输出的采样电压。当第二电压反馈单元为当前使用的电压反馈单元时,在控制单元的控制下,开关S1可以与触电42接触,以控制运放OPA1接收第二电压采样单元输出的采样电压。
在图4对应的实现方式中,运放OPA1的输出端通过光耦43与调制单元12相连,用于向调制单元12发送反馈信号。
进一步地,在一些实施例中,第一电阻R1、第二电阻R2、第三电阻R3和第四电阻R4的阻值可以满足如下关系:R2/(R1+R2)=2R4/(R3+R4)。第一电阻R1至第四电阻R4的上述配置方式可以使得第一电压反馈单元161和第二电压反馈单元162能够调整的电压值范围呈现二倍的关系。以第一电压反馈单元161能够调整的电压值范围为3-5V为例,则第二电压反馈单元162能够调整的电压值范围为6-10V。当待充电设备中的电池包含单节电芯时,可以将第一电压反馈单元161作为当前使用的电压反馈单元,从而将电源提供电路10的输出电压限定在3-5V之间;当待充电设备中的电池包含相互串联的双节电芯时,可以将第二电压反馈单元162作为当前使用的电压反馈单 元,从而将电源提供电路10的输出电压限定在6-10V之间。
此外,运放OPA1的正输入端输入的参考电压可以为固定值。或者,运放OPA1的正向输入端可以通过如图4所示的DAC1与控制单元(图4未示出)相连,以便控制单元可以通过更改DAC1的数值调整OPA1的参考电压的。
如图5所示,第一电压反馈单元161可以包括由第一电阻R1、第二电阻R2和第三电阻R3构成的第一电压采样单元和运放OPA1。第一电压采样单元可以基于第一电阻R1、第二电阻R2和第三电阻R3对电源提供电路10的输出电压进行采样,并将第二电阻R2和第三电阻R3共同分压得到的电压作为第一电压采样单元输出的采样电压。
第二电压反馈单元162可以包括由第一电阻R1和第二电阻R2构成的第二电压采样单元和运放OPA1。第二电压采样单元可以基于第一电阻R1和第二电阻R2对电源提供电路10的输出电压进行采样,并将第二电阻R2分压得到的电压作为第二电压采样单元输出的采样电压。
开关单元18在图5中具体为MOS管Q1。当第一电压反馈单元为电源提供电路10当前使用的电压反馈单元时,在控制单元(图5未示出)的控制下,MOS管Q1处于截止状态,使得运放OPA1接收第一电压采样单元输出的采样电压。当第二电压反馈单元162为电源提供电路10当前使用的电压反馈单元时,在控制单元(图5未示出)的控制下,MOS管Q1处于导通状态,使得运放OPA1接收第二电压采样单元输出的采样电压。
进一步地,在一些实施例中,第一电阻R1、第二电阻R2和第三电阻R3的阻值可以满足如下关系:2R2/(R1+R2)=(R2+R3)/(R1+R2+R3)。第一电阻R1至第三电阻R3的上述配置方式可以使得第一电压反馈单元161和第二电压反馈单元162能够调整的电压值范围呈现二倍的关系。以第一电压反馈单元161能够调整的电压值范围为3-5V为例,则第二电压反馈单元162能够调整的电压值范围为6-10V。当待充电设备中的电池包含单节电芯时,可以将第一电压反馈单元161作为当前使用的电压反馈单元,从而将电源提供电路10的输出电压限定在3-5V之间;当待充电设备中的电池包含相互串联的双节电芯时,可以将第二电压反馈单元162作为当前使用的电压反馈单元,从而将电源提供电路10的输出电压限定在6-10V之间。
此外,运放OPA1的正输入端输入的参考电压可以为固定值。或者,运 放OPA1的正向输入端可以通过如图5所示的DAC1与控制单元(图5未示出)相连,以便控制单元可以通过更改DAC1的数值调整OPA1的参考电压的。
上文指出,初级单元可以包括初级整流单元,以及用于初级滤波的液态电解电容。该液态电解电容的存在使得电源提供电路的输出可以为恒定直流电。但是,液态电解电容具有寿命短、易爆浆等特性,导致电源提供电路使用寿命短,且不安全。此外,利用恒定直流电为待充电设备中的电池充电会导致电池的极化和析锂现象,从而可能会降低该电池的使用寿命。为了提高电源提供电路的使用寿命和安全性,并缓解电池在充电过程的极化和析锂现象。本发明实施例提供一种去掉了初级侧的液态电解电容的电源提供电路。
如图6所示,初级单元11可以包括初级整流单元111。在该实施例中,上文描述的待调制的第一电压为初级整流单元111输出的电压值周期性变化的电压。该第一电压的波形可以为脉动波形,或称馒头波,其波形可以参见图7。
本发明实施例提供的电源提供电路去掉了用于次级滤波的液态电解电容,直接对初级整流输出的电压值周期性变化的第一电压进行调制。以第一电压的波形为图7所示的波形为例,调制后得到的第二电压的波形可以参见图8。从图8可以看出,第二电压同样包含许多小的脉冲信号,但这些脉冲信号的幅值并不相等,而是周期性变化的。图8的虚线为组成第二电压的脉冲信号的包络。对比图7可以看出,组成第二电压的脉冲信号的包络与第一电压的波形基本相同。
由上文的描述可以看出,本发明实施例提供的电源提供电路10去掉了初级侧的液态电解电容,从而降低了电源提供电路的体积,并提高了电源提供电路的使用寿命和安全性。
本发明实施例还提供一种电源提供设备,如图9所示,该电源提供设备900可以包括上文任意实施例提供的电源提供电路10。该电源提供设备900例如可以是适配器或移动电源(power bank)等专门用于充电的设备,也可以是电脑等能够提供电源和数据服务的其他设备。
上文结合图1A-图9,详细描述了本发明实施例提供的电源提供电路和电源提供设备。下文结合图10,详细描述本发明实施例提供的电源提供电路的控制方法。该电源提供电路可以是上文任意实施例描述的电源提供电路 10,与电源提供电路相关的描述可以参见前文,此处适当省略重复的描述。
该电源提供电路包括初级整流单元、调制单元、变压器、次级整流滤波单元、电压反馈单元。
初级单元可用于根据输入的交流电生成待调制的第一电压。
调制单元可用于对所述第一电压进行调制以生成第二电压。
变压器可用于根据所述第二电压生成第三电压。
次级整流滤波单元可用于对所述第三电压进行整流和滤波以生成所述电源提供电路的输出电压。
电压反馈单元可用于接收所述输出电压,并在所述输出电压的电压值达到预设设定的电压值时,向所述调整单元发送反馈信号。
所述调制单元可用于根据所述反馈信号,执行对所述第一电压进行调制以生成第二电压的过程,以将所述输出电压的电压值限定在第一电压值范围内或第二电压值范围内,其中所述第一电压值范围与所述第二电压值范围不同。
图10的方法可以包括步骤1010。
在步骤1010中,与待充电设备通信,调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电压和/或输出电流与所述待充电设备中的电池当前所处的充电阶段相匹配。
可选地,在一些实施例中,所述电压反馈单元可包括第一电压反馈单元和第二电压反馈单元。所述第一电压反馈单元和所述调制单元可用于将所述输出电压限定在所述第一电压值范围内。所述第二电压反馈单元和所述调制单元可用于将所述输出电压限定在所述第二电压值范围内。所述电源提供电路还包括开关单元。开关单元可用于控制所述第一电压反馈单元和所述第二电压反馈单元之间的切换。图10的方法还可包括步骤1020。在步骤1020中,通过所述开关单元从所述第一电压反馈单元和所述第二电压反馈单元中选取当前使用的电压反馈单元。
可选地,在一些实施例中,所述第一电压反馈单元用于将所述输出电压的电压值限定在第三电压值和第一电压值之间,所述第二电压反馈单元用于将所述输出电压的电压值限定在第四电压值和第二电压值之间,其中所述第三电压值小于所述第一电压值,所述第四电压值小于所述第二电压值,且所述第一电压值小于或等于所述第三电压值。
可选地,在一些实施例中,图10的方法还可包括:与所述待充电设备通信,以获取所述待充电设备包含的相互串联的电芯的数量;步骤1020可包括:根据所述相互串联的电芯的数量,通过所述开关单元从所述第一电压反馈单元和所述第二电压反馈单元中选取所述当前使用的电压反馈单元。
可选地,在一些实施例中,所述电源提供电路对所述电池的充电阶段包括涓流充电阶段、恒压充电阶段、恒流充电阶段中的至少一个。
可选地,在一些实施例中,步骤1010可包括:在所述电池的恒压充电阶段,与所述待充电设备进行通信,以调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电压与所述恒压充电阶段对应的充电电压相匹配。
可选地,在一些实施例中,步骤1010可包括:在所述电池的恒流充电阶段,与所述待充电设备进行通信,以调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电流与所述恒流充电阶段对应的充电电流相匹配。
可选地,在一些实施例中,所述初级单元包括初级整流单元,所述待调制的第一电压为所述初级整流单元输出的电压值周期性变化的电压。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其他任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种电源提供电路,其特征在于,包括:
    初级单元,用于根据输入的交流电生成待调制的第一电压;
    调制单元,用于对所述第一电压进行调制以生成第二电压;
    变压器,用于根据所述第二电压生成第三电压;
    次级整流滤波单元,用于对所述第三电压进行整流和滤波以生成所述电源提供电路的输出电压;
    电压反馈单元,用于接收所述输出电压,并在所述输出电压的电压值达到预设设定的电压值时,向所述调整单元发送反馈信号;
    所述调制单元,用于根据所述反馈信号,执行对所述第一电压进行调制以生成第二电压的过程,以将所述输出电压的电压值限定在第一电压值范围内或第二电压值范围内,其中所述第一电压值范围与所述第二电压值范围不同;
    控制单元,用于与待充电设备通信,调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电压和/或输出电流与所述待充电设备中的电池当前所处的充电阶段相匹配。
  2. 如权利要求1所述的电源提供电路,其特征在于,所述电压反馈单元包括:
    第一电压反馈单元,所述第一电压反馈单元和所述调制单元用于将所述输出电压限定在所述第一电压值范围内;
    第二电压反馈单元,所述第二电压反馈单元和所述调制单元用于将所述输出电压限定在所述第二电压值范围内;
    所述电源提供电路还包括:
    开关单元,用于控制所述第一电压反馈单元和所述第二电压反馈单元之间的切换;
    所述控制单元,还用于通过所述开关单元从所述第一电压反馈单元和所述第二电压反馈单元中选取当前使用的电压反馈单元。
  3. 如权利要求2所述的电源提供电路,其特征在于,所述第一电压值范围和所述第二电压值范围互不重叠。
  4. 如权利要求3所述的电源提供电路,其特征在于,所述第一电压反馈单元包括第一电压采样单元和运放,所述第一电压采样单元基于第一电阻 和第二电阻对所述输出电压进行采样,并将所述第二电阻分压得到的电压作为所述第一电压采样单元输出的采样电压;
    所述第二电压反馈单元包括第二电压采样单元和所述运放,所述第二电压采样单元基于第三电阻和第四电阻对所述输出电压进行采样,并将所述第四电阻分压得到的电压作为所述第二电压采样单元输出的采样电压;
    当所述第一电压反馈单元为当前使用的电压反馈单元时,所述开关单元控制所述运放接收所述第一电压采样单元输出的采样电压;
    当所述第二电压反馈单元为当前使用的电压反馈单元时,所述开关单元控制所述运放用于接收所述第二电压采样单元输出的采样电压。
  5. 如权利要求4所述的电源提供电路,其特征在于,所述第一电阻、所述第二电阻、所述第三电阻和所述第四电阻的阻值满足如下关系:R2/(R1+R2)=2R4/(R3+R4),其中R1表示所述第一电阻的阻值,R2表示所述第二电阻的阻值,R3表示所述第三电阻的阻值,R4表示所述第四电阻的阻值。
  6. 如权利要求3所述的电源提供电路,其特征在于,所述第一电压反馈单元包括第一电压采样单元和运放,所述第一电压采样单元基于第一电阻、第二电阻和第三电阻对所述输出电压进行采样,并将所述第二电阻和所述第三电阻共同分压得到的电压作为所述第一电压采样单元输出的采样电压;
    所述第二电压反馈单元包括第二电压采样单元和所述运放,所述第二电压采样单元基于所述第一电阻和所述第二电阻对所述输出电压进行采样,并将所述第二电阻分压得到的电压作为所述第二电压采样单元输出的采样电压;
    当所述第一电压反馈单元为当前使用的电压反馈单元时,所述开关单元控制所述运放接收所述第一电压采样单元输出的采样电压;
    当所述第二电压反馈单元为当前使用的电压反馈单元时,所述开关单元控制所述运放用于接收所述第二电压采样单元输出的采样电压。
  7. 如权利要求6所述的电源提供电路,其特征在于,所述第一电阻、所述第二电阻和所述第三电阻的阻值满足如下关系:2R2/(R1+R2)=(R2+R3)/(R1+R2+R3),其中R1表示所述第一电阻的阻值,R2表示所述第二电阻的阻值,R3表示所述第三电阻的阻值。
  8. 如权利要求2-7中任一项所述的电源提供电路,其特征在于,所述控制单元还用于与所述待充电设备通信,以获取所述待充电设备包含的相互串联的电芯的数量;
    所述控制单元通过所述开关单元从所述第一电压反馈单元和所述第二电压反馈单元中选取当前使用的电压反馈单元,包括:
    所述控制单元根据所述相互串联的电芯的数量,通过所述开关单元从所述第一电压反馈单元和所述第二电压反馈单元中选取所述当前使用的电压反馈单元。
  9. 如权利要求1-8中任一项所述的电源提供电路,其特征在于,所述电源提供电路对所述电池的充电阶段包括涓流充电阶段、恒压充电阶段、恒流充电阶段中的至少一个。
  10. 如权利要求9所述的电源提供电路,其特征在于,所述与待充电设备通信,以调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电压和/或输出电流与所述待充电设备中的电池当前所处的充电阶段相匹配,包括:
    在所述电池的恒压充电阶段,与所述待充电设备进行通信,以调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电压与所述恒压充电阶段对应的充电电压相匹配。
  11. 如权利要求9或10所述的电源提供电路,其特征在于,所述与待充电设备通信,以调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电压和/或输出电流与所述待充电设备中的电池当前所处的充电阶段相匹配,包括:
    在所述电池的恒流充电阶段,与所述待充电设备进行通信,以调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电流与所述恒流充电阶段对应的充电电流相匹配。
  12. 如权利要求1-11中任一项所述的电源提供电路,其特征在于,所述初级单元包括初级整流单元,所述待调制的第一电压为所述初级整流单元输出的电压值周期性变化的电压。
  13. 一种电源提供设备,其特征在于,包括如权利要求1-12中任一项所述的电源提供电路。
  14. 如权利要求13所述的电源提供设备,其特征在于,所述电源提供 设备为适配器。
  15. 一种电源提供电路的控制方法,其特征在于,所述电源提供电路包括:
    初级单元,用于根据输入的交流电生成待调制的第一电压;
    调制单元,用于对所述第一电压进行调制以生成第二电压;
    变压器,用于根据所述第二电压生成第三电压;
    次级整流滤波单元,用于对所述第三电压进行整流和滤波以生成所述电源提供电路的输出电压;
    电压反馈单元,用于接收所述输出电压,并在所述输出电压的电压值达到预设设定的电压值时,向所述调整单元发送反馈信号;
    所述调制单元,用于根据所述反馈信号,执行对所述第一电压进行调制以生成第二电压的过程,以将所述输出电压的电压值限定在第一电压值范围内或第二电压值范围内,其中所述第一电压值范围与所述第二电压值范围不同;
    所述控制方法包括:
    与待充电设备通信,调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电压和/或输出电流与所述待充电设备中的电池当前所处的充电阶段相匹配。
  16. 如权利要求15所述的控制方法,其特征在于,所述电压反馈单元包括:
    第一电压反馈单元,所述第一电压反馈单元和所述调制单元用于将所述输出电压限定在所述第一电压值范围内;
    第二电压反馈单元,所述第二电压反馈单元和所述调制单元用于将所述输出电压限定在所述第二电压值范围内;
    所述电源提供电路还包括:
    开关单元,用于控制所述第一电压反馈单元和所述第二电压反馈单元之间的切换;
    所述控制方法还包括:
    通过所述开关单元从所述第一电压反馈单元和所述第二电压反馈单元中选取当前使用的电压反馈单元。
  17. 如权利要求16所述的控制方法,其特征在于,所述第一电压值范 围和所述第二电压值范围互不重叠。
  18. 如权利要求16或17所述的控制方法,其特征在于,所述控制方法还包括:
    与所述待充电设备通信,以获取所述待充电设备包含的相互串联的电芯的数量;
    所述通过所述开关单元从所述第一电压反馈单元和所述第二电压反馈单元中选取当前使用的电压反馈单元,包括:
    根据所述相互串联的电芯的数量,通过所述开关单元从所述第一电压反馈单元和所述第二电压反馈单元中选取所述当前使用的电压反馈单元。
  19. 如权利要求15-18中任一项所述的控制方法,其特征在于,所述电源提供电路对所述电池的充电阶段包括涓流充电阶段、恒压充电阶段、恒流充电阶段中的至少一个。
  20. 如权利要求19所述的控制方法,其特征在于,所述与待充电设备通信,以调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电压和/或输出电流与所述待充电设备中的电池当前所处的充电阶段相匹配,包括:
    在所述电池的恒压充电阶段,与所述待充电设备进行通信,以调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电压与所述恒压充电阶段对应的充电电压相匹配。
  21. 如权利要求19或20所述的控制方法,其特征在于,所述与待充电设备通信,以调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电压和/或输出电流与所述待充电设备中的电池当前所处的充电阶段相匹配,包括:
    在所述电池的恒流充电阶段,与所述待充电设备进行通信,以调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电流与所述恒流充电阶段对应的充电电流相匹配。
  22. 如权利要求15-21中任一项所述的控制方法,其特征在于,所述初级单元包括初级整流单元,所述待调制的第一电压为所述初级整流单元输出的电压值周期性变化的电压。
PCT/CN2017/103009 2017-09-22 2017-09-22 电源提供电路、电源提供设备以及控制方法 WO2019056319A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2017/103009 WO2019056319A1 (zh) 2017-09-22 2017-09-22 电源提供电路、电源提供设备以及控制方法
CN201780062045.3A CN109819686B (zh) 2017-09-22 2017-09-22 电源提供电路、电源提供设备以及控制方法
KR1020207001139A KR102343010B1 (ko) 2017-09-22 2017-09-22 전원 회로 및 어댑터
JP2020500866A JP6902155B2 (ja) 2017-09-22 2017-09-22 電源回路及びアダプター
EP17925721.7A EP3540898B1 (en) 2017-09-22 2017-09-22 Power supply circuit, power supply device, and control method
US16/510,143 US11258289B2 (en) 2017-09-22 2019-07-12 Power supply circuit and adaptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/103009 WO2019056319A1 (zh) 2017-09-22 2017-09-22 电源提供电路、电源提供设备以及控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/510,143 Continuation US11258289B2 (en) 2017-09-22 2019-07-12 Power supply circuit and adaptor

Publications (1)

Publication Number Publication Date
WO2019056319A1 true WO2019056319A1 (zh) 2019-03-28

Family

ID=65811062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103009 WO2019056319A1 (zh) 2017-09-22 2017-09-22 电源提供电路、电源提供设备以及控制方法

Country Status (6)

Country Link
US (1) US11258289B2 (zh)
EP (1) EP3540898B1 (zh)
JP (1) JP6902155B2 (zh)
KR (1) KR102343010B1 (zh)
CN (1) CN109819686B (zh)
WO (1) WO2019056319A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112564490A (zh) * 2020-11-11 2021-03-26 广州金升阳科技有限公司 一种开关电源的输出电压切换电路及其切换方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7263019B2 (ja) * 2019-01-15 2023-04-24 キヤノン株式会社 電圧検知装置及び画像形成装置
WO2021077271A1 (zh) * 2019-10-21 2021-04-29 宁德新能源科技有限公司 充电方法、电子装置以及存储介质
CN112924890B (zh) * 2021-02-18 2022-11-22 联想(北京)有限公司 一种检测电源的方法、装置和电子设备
GB2621980A (en) * 2022-08-23 2024-03-06 Dyson Technology Ltd Battery charger and method of charging a battery
CN117154866A (zh) * 2023-03-03 2023-12-01 荣耀终端有限公司 充电系统及充电器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295217B1 (en) * 1999-03-26 2001-09-25 Sarnoff Corporation Low power dissipation power supply and controller
CN104135043A (zh) * 2014-06-18 2014-11-05 徐州市恒源电器有限公司 一种两级安全保护反馈控制充电器
CN106207291A (zh) * 2016-07-12 2016-12-07 宁德新能源科技有限公司 一种充电方法、装置及电池系统
CN107124012A (zh) * 2016-02-25 2017-09-01 北京小米移动软件有限公司 充电方法、装置、充电器、终端和系统

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3564885B2 (ja) * 1996-08-08 2004-09-15 新神戸電機株式会社 密閉型鉛蓄電池を備えた電源装置
KR100265709B1 (ko) * 1996-10-15 2000-09-15 윤종용 2차 배터리 충전 장치
US5847543A (en) * 1997-06-30 1998-12-08 Compaq Computer Corporation AC adapter with automatically optimized output voltage and power
US5999433A (en) * 1998-01-12 1999-12-07 Vpt, Inc. Half-bridge DC to DC converter with low output current ripple
US6980441B2 (en) * 2003-07-28 2005-12-27 Astec International Limited Circuit and method for controlling a synchronous rectifier in a power converter
JP4406932B2 (ja) * 2005-09-13 2010-02-03 日立工機株式会社 充電装置
KR101129388B1 (ko) * 2007-04-30 2012-03-26 삼성전자주식회사 다중 출력을 갖는 전원공급장치
US8040699B2 (en) * 2007-07-09 2011-10-18 Active-Semi, Inc. Secondary side constant voltage and constant current controller
US8102679B2 (en) * 2008-08-15 2012-01-24 Infineon Technologies Ag Utilization of a multifunctional pin to control a switched-mode power converter
JP4735683B2 (ja) * 2008-08-22 2011-07-27 ソニー株式会社 充電装置及び充電方法
JP2010057247A (ja) * 2008-08-27 2010-03-11 Canon Inc 充電装置および充電制御方法
JP5316903B2 (ja) * 2010-11-30 2013-10-16 ブラザー工業株式会社 電源システム及び画像形成装置
US20140254215A1 (en) * 2011-08-29 2014-09-11 Power Systems Technologies Ltd. Controller for a power converter and method of operating the same
TWI496396B (zh) * 2012-02-18 2015-08-11 Richtek Technology Corp 隔離式電源轉換器電路及其中之控制電路與控制方法
CN202651863U (zh) * 2012-06-28 2013-01-02 华为终端有限公司 充电器及充电系统
US9582054B2 (en) * 2013-06-17 2017-02-28 System General Corp. Method and apparatus for selecting the output of programmable power adapter
KR101567648B1 (ko) * 2013-12-18 2015-11-10 현대자동차주식회사 배터리 충전 시스템 및 장치
JP2015180179A (ja) * 2014-02-27 2015-10-08 日立工機株式会社 充電装置
US20170099011A1 (en) * 2015-10-02 2017-04-06 Advanced Charging Technologies, LLC Electrical circuit for delivering power to consumer electronic devices
CN111211609B (zh) * 2016-02-05 2021-06-25 Oppo广东移动通信有限公司 充电方法、适配器和移动终端
KR102138109B1 (ko) * 2016-02-05 2020-07-28 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 어댑터 및 충전 제어 방법
US10069428B2 (en) * 2016-02-24 2018-09-04 Infineon Technologies Austria Ag Power supply systems and feedback through a transformer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295217B1 (en) * 1999-03-26 2001-09-25 Sarnoff Corporation Low power dissipation power supply and controller
CN104135043A (zh) * 2014-06-18 2014-11-05 徐州市恒源电器有限公司 一种两级安全保护反馈控制充电器
CN107124012A (zh) * 2016-02-25 2017-09-01 北京小米移动软件有限公司 充电方法、装置、充电器、终端和系统
CN106207291A (zh) * 2016-07-12 2016-12-07 宁德新能源科技有限公司 一种充电方法、装置及电池系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3540898A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112564490A (zh) * 2020-11-11 2021-03-26 广州金升阳科技有限公司 一种开关电源的输出电压切换电路及其切换方法

Also Published As

Publication number Publication date
KR20200017488A (ko) 2020-02-18
US11258289B2 (en) 2022-02-22
CN109819686B (zh) 2024-02-23
KR102343010B1 (ko) 2021-12-23
EP3540898A4 (en) 2020-01-15
CN109819686A (zh) 2019-05-28
EP3540898A1 (en) 2019-09-18
JP6902155B2 (ja) 2021-07-14
JP2020527015A (ja) 2020-08-31
US20190334365A1 (en) 2019-10-31
EP3540898B1 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
TWI674741B (zh) 電源供應電路、電源供應裝置和控制方法
CN108521838B (zh) 适配器和充电控制方法
WO2017133387A1 (zh) 适配器和充电控制方法
WO2019056319A1 (zh) 电源提供电路、电源提供设备以及控制方法
TWI700577B (zh) 電源供應電路、電源供應裝置以及控制方法
TWI636358B (zh) 適配器和充電控制方法
CN109804541B (zh) 电源提供电路、电源提供设备以及控制方法
CN109845082B (zh) 电源提供电路、电源提供设备以及控制方法
WO2018195776A1 (zh) 电源提供设备和充电控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017925721

Country of ref document: EP

Effective date: 20190612

ENP Entry into the national phase

Ref document number: 2020500866

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207001139

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE