WO2019054720A1 - Method for manufacturing electrochromic device - Google Patents

Method for manufacturing electrochromic device Download PDF

Info

Publication number
WO2019054720A1
WO2019054720A1 PCT/KR2018/010599 KR2018010599W WO2019054720A1 WO 2019054720 A1 WO2019054720 A1 WO 2019054720A1 KR 2018010599 W KR2018010599 W KR 2018010599W WO 2019054720 A1 WO2019054720 A1 WO 2019054720A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrochromic
electrochromic layer
ion storage
manufacturing
Prior art date
Application number
PCT/KR2018/010599
Other languages
French (fr)
Korean (ko)
Inventor
김용찬
김기환
손정우
조필성
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180106524A external-priority patent/KR102118358B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/645,728 priority Critical patent/US11680309B2/en
Priority to EP18856359.7A priority patent/EP3686666B1/en
Priority to CN201880058151.9A priority patent/CN111095094B/en
Publication of WO2019054720A1 publication Critical patent/WO2019054720A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details

Definitions

  • the present application relates to a method of manufacturing an electrochromic device.
  • the term " electrochromism " refers to a phenomenon in which an optical property of an electrochromic material is changed by an electrochemical oxidation or reduction reaction.
  • the electrochromic device is a device using the phenomenon described above.
  • the electrochromic device generally includes an electrochromic layer, an electrolyte layer, and an ion storage layer between two opposing electrodes, and each of the electrochromic layer and the ion storage layer contains a discoloring substance whose reaction for color development is opposite to each other do.
  • the electrochromic layer may contain WO 3 , which is transparent in itself but is colored blue when subjected to a reduction reaction, and the ion storage layer may contain an oxidized state (Fe III [Fe II (CN) 6 ] - ) Prussian blue (PB), which has a blue color and changes in transparency during the reduction reaction, may be included.
  • WO 3 transparent in itself but is colored blue when subjected to a reduction reaction
  • the ion storage layer may contain an oxidized state (Fe III [Fe II (CN) 6 ] - ) Prussian blue (PB), which has a blue color and changes in transparency during the reduction reaction, may be included.
  • PB Prussian blue
  • both the electrochromic layer and the ion storage layer are in a colorless or transparent state (a discolored state) or both of them have a predetermined color (colored state).
  • an electrochromic material having an oxidative electrochromic material such as PB A voltage higher than the driving potential was applied to the layer for a predetermined time to forcibly insert the electrolyte ions, and the PB was subjected to a decoloring (reduction) treatment.
  • a decoloring (reduction) treatment Such an operation is called a so-called initialization operation.
  • a discoloring substance such as PB which is subjected to decolorization (reduction) treatment, does not have ions (electrolytes) participating in the discoloration reaction per se.
  • One object of the present invention is to provide an electrochromic device improved in driving durability and a method of manufacturing the same.
  • the present application relates to a method of manufacturing an electrochromic device.
  • the present invention relates to a method of manufacturing an electrochromic device in which an electrolyte layer and an ion storage layer are successively placed on an electrochromic layer containing a reducing electrochromic material.
  • each layer structure used in the electrochromic device of the present application has a transmittance of 80% or more with respect to a visible light wavelength in the range of 380 to 780 nm Or 85% or more.
  • the manufacturing method of the present application includes the step of inserting monovalent cations into the electrochromic layer before placing the electrolyte layer on the electrochromic layer.
  • the electrochromic layer in the electrochromic layer can be reduced and the electrochromic layer can be colored. Accordingly, the electrochromic layer in which the monovalent cation is inserted may have a colored state in the same manner as the ion storage layer containing the oxidative electrochromic material, and as a result, The device may not require initialization.
  • the insertion of monovalent cations to the electrochromic layer can be accomplished by a dry process.
  • the insertion of monovalent cations to the electrochromic layer can be performed by deposition.
  • the electrochromic layer has an excellent adhesion to the adjacent layer and a separate cleaning step is not required.
  • the monovalent cation insertion to the electrochromic layer can be accomplished by thermal evaporation or thermal evaporation deposition.
  • a high heat in a vacuum state can be applied to the metal source to vaporize the metal into an ionic state and insert it into the electrochromic layer.
  • the monovalent cation that is inserted by deposition may be Li + , Na + , K + , Rb +, or Cs + . That is, in the thermal evaporation deposition, a metal such as Li, Na, K, Rb or Cs may be used as a source for the monovalent cation.
  • the thermal evaporation that is, the step of inserting monovalent cations
  • a separate layer composed of a source of monovalent cations is not formed.
  • the thermal evaporation process of the present application may be such that no separate lithium layer is formed on the electrochromic layer.
  • a metal layer such as a lithium layer
  • cell performance may be deteriorated.
  • the formation of the metal layer can increase the reflectivity inside the electrochromic device, which may hinder the function of the electrochromic device which provides low transparency in coloring and high transparency in decolorization.
  • the conditions of the thermal evaporation deposition are not particularly limited as long as the thermal evaporation is carried out to such an extent that a separate layer composed of a small amount of positive ions is not formed.
  • the thermal evaporation may be performed at a pressure of 10 mTorr or less, 5 mTorr or less, 3 mTorr or less, 1 mTorr or less, 0.1 mTorr or less, or 0.01 mTorr or less.
  • the lower limit thereof is not particularly limited, but may be, for example, 0.0001 mTorr or more.
  • the thermal evaporation may be performed under a temperature condition where the melting point of the metal ion to be inserted is considered.
  • thermal evaporation can be performed at a temperature above the melting point of the source metal of monovalent cations.
  • the thermal evaporation may be performed at a temperature of 180 ° C or higher, which is the melting point of lithium, considering that the melting point of lithium is about 180 ° C.
  • the thermal evaporation may be performed at a temperature of about 500 to 700 ⁇ ⁇ .
  • the time for which the abnormal thermal evaporation deposition satisfying the above conditions is performed is not limited.
  • thermal evaporation may be performed for a few seconds to several minutes under the above-described pressure and temperature conditions.
  • the content of monovalent cations inserted into the electrochromic layer is 1.0 per cm 2 of the electrochromic layer ⁇ 10 - 8 mol to 1.0 ⁇ 10 - 6 mol of the range, and more specifically may be within 5.0 ⁇ 10 -8 mol to 5.0 ⁇ 10 -7 mol range.
  • the content of the monovalent cations inserted into the electrochromic layer that is, the number of moles can be obtained from the relationship between the amount of charge of the electrochromic layer in which monovalent cations exist and the mole number of electrons.
  • a monovalent cation is inserted into the electrochromic layer using thermal evaporation deposition and the charge amount of the electrochromic layer is A (C / cm 2 )
  • a value obtained by dividing the charge amount A by the Faraday constant F (A / F ) May be the number of moles of electrons present per cm < 2 > of the electrochromic layer.
  • the maximum amount of monovalent cations present in the electrochromic layer that is, the maximum number of moles may be equal to the number of electrons obtained from the above.
  • the method of measuring the amount of charge in relation to the content of monovalent cations is not particularly limited.
  • the charge quantity can be measured by a known method such as potential step chronoamperometry (PSCA) using a potentiostat device.
  • PSCA potential step chronoamperometry
  • the form in which the inserted monovalent cation exists in the electrochromic layer may include all of the following cases.
  • the monovalent cation incorporated in the electrochromic layer in the present application may be contained in the electrochromic layer in the form of an ion and / or chemically bonded to the discoloring substance constituting the electrochromic layer. have.
  • the electrochromic layer includes a reducing electrochromic material.
  • the reductive electrochromic material may be a material that undergoes coloration when subjected to a reduction reaction.
  • the electrochromic layer may have a discolored state, that is, a colored state.
  • the electrochromic layer may comprise a reducing metal oxide that may be formed by a deposition method.
  • the electrochromic layer may be a deposition layer composed of at least one oxide selected from the group consisting of Ti, Nb, Mo, Ta, and W.
  • the electrochromic layer may be formed by a dry coating method, for example, a vapor deposition method.
  • a dry coating method for example, a vapor deposition method.
  • the inventors of the present application have confirmed that the durability of the electrochromic device can be changed depending on the method of forming the electrochromic layer and the method of inserting the monovalent cation into the electrochromic layer.
  • an electrochromic layer is formed by a wet coating method such as a heat treatment after applying a coating composition, rather than being formed by a dry coating method such as vapor deposition, a monovalent cation, which is not possessed by the electrochromic layer.
  • a method of introducing (or inserting) into the discoloration layer a method of additionally adding a precursor capable of providing a monovalent cation to a coating composition containing a solvent and discolored particles such as WO 3 can be considered .
  • the injection of the monovalent cation by the wet coating method proceeds in the organic electrolytic solution, if the cleaning step is not performed after the injection step, the adhering force to the laminated structure such as the electrolyte layer is lowered.
  • the electrochromic layer may be formed by sputtering deposition.
  • the process conditions of the sputtering deposition are not particularly limited.
  • sputter deposition may be performed at a pressure in the range of 1 mTorr to 100 mTorr, more specifically, at least 3 mTorr, at least 5 mTorr, or at least 10 mTorr and at most 80 mTorr, at least 60 mTorr, at least 40 mTorr, Under the following pressure conditions.
  • the sputtering deposition may be performed in a range of 50 W to 500 W, more specifically, 80 W or more, 100 W or more, 120 W or 130 W or more and 450 W or less, 400 W or less, 350 W or 300 W Or less.
  • the flow rate of argon and oxygen gas to be used is not particularly limited.
  • the sputtering deposition under the above conditions can be performed within a range of several minutes to several hours.
  • the electrochromic layer may be formed on a conductive substrate or a release substrate.
  • the insertion of the monovalent cation may be performed on the opposite surface of one side of the electrochromic layer in contact with the conductive substrate, or on the opposite surface of the electrochromic layer in contact with the releasable substrate.
  • the electrochromic layer is formed on the release substrate, a step of laminating the electrochromic layer, which is a deposition layer, with a separately formed electroconductive substrate is required. Therefore, it is more preferable in terms of processability to directly form the electrochromic layer on the electroconductive substrate .
  • the electrochromic layer may be formed by a roll-to-roll method.
  • the method may be a method including a step of withdrawing the conductive film from a roll on which the conductive film is wound, and depositing an electrochromic layer on the electroconductive film.
  • the roll-to-roll method it is advantageous in securing productivity and fairness.
  • the insertion of the monovalent cations can be effected on a laminate moving along a predetermined path in a roll-to-roll fashion.
  • the laminate is a laminate including an electrically conductive substrate and an electrochromic layer sequentially, monovalent cations can be inserted into one surface of the electrochromic layer in the laminate.
  • the thickness of the electrochromic layer is not particularly limited.
  • the thickness of the electrochromic layer may be 1 ⁇ ⁇ or less. Specifically, it may be 50 nm or more, 100 nm or more, 150 nm or more, or 200 nm or more, and 900 nm or less, 700 nm or less, 500 nm or less, or 400 nm or less.
  • the electrochromic layer may be a layer formed on a conductive substrate.
  • the conductive substrate in the present application may mean a layer capable of acting as a so-called electrode.
  • the conductive substrate may have a thickness in the range of, for example, 50 nm to 400 nm.
  • the conductive substrate may comprise a transparent conductive compound, a metal mesh, or an oxide / metal / oxide (OMO).
  • OMO oxide / metal / oxide
  • a transparent conductive oxide ITO (Indium Tin Oxide), In 2 O 3 (indium oxide), IGO (indium galium oxide), FTO (Fluor doped Tin Oxide), (Aluminium doped Zinc Oxide) AZO, (GZO), antimony doped tin oxide (ATO), indium doped zinc oxide (IZO), niobium doped titanium oxide (NTO), zinc oxide (ZnO), or cesium tungsten oxide have.
  • the materials listed above do not limit the material of the transparent conductive oxide.
  • the metal mesh may have a lattice shape comprising Ag, Cu, Al, Mg, Au, Pt, W, Mo, Ti, Ni or alloys thereof.
  • the materials usable for the metal mesh are not limited to the metal materials listed above.
  • the OMO may include an upper layer, a lower layer, and a metal layer provided between the two layers.
  • the upper layer in the present application may mean a layer located relatively far from the electrolyte layer among the layers constituting the OMO. Since OMO has a lower sheet resistance than that of the transparent conductive oxide represented by ITO, the coloring speed of the electrochromic device can be shortened.
  • the upper and lower layers of the OMO electrode may include metal oxides of Sb, Ba, Ga, Ge, Hf, In, La, Se, Si, Ta, Se, Ti, V, Y, Zn, .
  • the types of the metal oxides included in the upper layer and the lower layer may be the same or different.
  • the thickness of the upper layer may range from 10 nm to 120 nm or from 20 nm to 100 nm.
  • the refractive index of the upper layer may be in the range of 1.0 to 3.0 or in the range of 1.2 to 2.8. Having the refractive indices and thicknesses in the above range, an appropriate level of optical properties can be imparted to the device.
  • the thickness of the lower layer may be in the range of 10 nm to 100 nm or in the range of 20 nm to 80 nm.
  • the visible light refractive index of the lower layer may range from 1.3 to 2.7 or from 1.5 to 2.5. Having the refractive indices and thicknesses in the above range, an appropriate level of optical properties can be imparted to the device.
  • the metal layer included in the OMO may comprise a low resistance metal material. Although not particularly limited, for example, at least one of Ag, Cu, Zn, Au, Pd, and alloys thereof may be included in the metal layer.
  • the metal layer may have a thickness in the range of 3 nm to 30 nm, or in the range of 5 nm to 20 nm.
  • the metal layer may have a visible light refractive index of 1 or less or 0.5 or less. When the refractive indices and the thicknesses are within the above ranges, an appropriate level of optical characteristics can be imparted to the conductive elements.
  • the electrolyte layer is a structure for providing electrolyte ions involved in the electrochromic reaction. Electrolyte ions may be inserted into the electrochromic layer and may participate in the discoloration reaction, and may be of the same kind as monovalent cations inserted into the electrochromic layer.
  • the electrolyte layer may be a gel polymer electrolyte (GPE).
  • GPE gel polymer electrolyte
  • the gel polymer electrolyte can solve the problem of durability deterioration due to electrolyte leakage when using a liquid electrolyte. It is generally known that the ionic conductivity of a gel polymer electrolyte to an electrode is lower than that of a liquid electrolyte.
  • monovalent cations can be sufficiently transferred to the electrochromic layer by the thermal evaporation deposition as described above, so that it is possible to provide the electrochromic device with improved ionic transfer as compared with the prior art. This advantage can be confirmed by comparing the durability of the electrochromic device driven for a long time as in the following experimental example.
  • the gel polymer electrolyte layer may be formed from a crosslinkable monomer-containing composition capable of forming a polymer matrix upon crosslinking.
  • the gel polymer electrolyte is obtained by applying a composition comprising a crosslinkable monomer, a metal salt capable of providing a monovalent cation incorporated in the electrochromic layer, and an organic solvent onto a release substrate and then thermally or photo-curing Can be.
  • the curing conditions are not particularly limited.
  • the thickness of the electrolyte layer formed after curing may be, for example, about 50 nm or more, about 100 nm or more, about 500 nm or more, about 1 ⁇ ⁇ or more, and the upper limit may be about 200 ⁇ ⁇ or less, about 100 ⁇ ⁇ or less, Or about 10 ⁇ or less.
  • the kind of the crosslinkable monomer is not particularly limited.
  • a polyfunctional (meth) acrylate or the like may be used as the crosslinkable monomer.
  • the metal salt may be an alkali metal salt compound capable of providing a monovalent cation, for example, Li + , Na + , K + , Rb + , or Cs + .
  • the kind of the metal salt is not particularly limited.
  • the alkali metal salt compound include LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiBF 4 , LiSbF 6 , LiN (C 2 F 5 SO 2 ) 2 , LiAlO 4 , LiAlCl 4 , LiCo 0 . 2 Ni 0 . 56 Mn 0 . 27 O 2 , LiCoO 2 , LiSO 3 CF 3 or LiClO 4 , or a sodium salt compound such as NaClO 4 may be used.
  • a carbonate compound may be used as the organic solvent. Since the carbonate compound has a high dielectric constant, the conductivity of the electrolyte ion can be increased.
  • the carbonate compound for example, propylene carbonate (EC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), or ethylmethyl carbonate (EMC) may be used.
  • the composition used to form the electrolyte layer may further comprise a light or thermal initiator.
  • These initiators can be of any known type without limitation.
  • the ion storage layer may mean a layer formed to match a charge balance with the electrochromic layer during a reversible oxidation / reduction reaction for discoloration of the electrochromic material. Accordingly, unlike the electrochromic layer, the ion storage layer includes an oxidative electrochromic material.
  • the oxidative electrochromic material may be a material which undergoes coloration when subjected to an oxidation reaction. For example, when electrolyte ions of the same kind as the univalent cations described above are inserted into an ion storage layer containing an oxidative electrochromic material, the ion storage layer may be discolored and have a state close to transparent.
  • the kind of the oxidative electrochromic material usable for the ion storage layer is not particularly limited.
  • the oxidative electrochromic material included in the ion storage layer may include at least one oxide selected from the group consisting of Cr, Mn, Fe, Co, Ni, Rh, and Ir; Or prussian blue, for example.
  • the ion storage layer may be formed by a wet coating method.
  • the ion storage layer may comprise at least one oxide particle selected from the group consisting of Cr, Mn, Fe, Co, Ni, Rh, and Ir; Or prussian blue particles on a substrate, followed by drying or heat treatment.
  • the substrate to which the coating composition is applied may be a release type substrate or a conductive substrate.
  • the particle diameter of the oxidative discoloration particles is not particularly limited, but may be, for example, 5 nm or more, 10 nm or more, or 15 nm or more, and 100 nm or less, 50 nm or less or 30 nm or less.
  • the coating composition for forming the ion storage layer may further comprise an organic solvent and / or a silane-based compound.
  • the kind of the organic solvent or silane compound is not particularly limited and any known compound can be used without any limitation.
  • water or alcohol may be used as the organic solvent.
  • silane compound for example, a (meth) acrylic silane coupling agent, an epoxy silane coupling agent, an amino silane coupling agent, or an alkoxy silane coupling agent may be used as the silane compound. However, It is not.
  • the heat treatment conditions for the ion storage layer-forming composition are not particularly limited.
  • the heat treatment may be performed at a temperature of about 200 ⁇ ⁇ or less by adding several seconds to several minutes or several seconds to several tens minutes. At this temperature, the alcohol solvent is removed, and at the same time, the solid storage layer can be formed as a result of condensation and hydrolysis of the silane-based compound.
  • the lower limit of the heat treatment temperature is not particularly limited, but may be, for example, 70 ° C or higher, 75 ° C or higher, 80 ° C or higher, 85 ° C or higher, 90 ° C or higher, 95 ° C or higher or 100 ° C or higher.
  • the ion storage layer when the ion storage layer is formed by a wet coating method, the ion storage layer may be a porous layer.
  • the porous layer it is possible to improve the long-term driving durability of the electrochromic device in that the migration of ions can be smoothly performed.
  • the thickness of the ion storage layer is not particularly limited.
  • the ion storage layer may have a thickness of 1 [mu] m or less. Specifically, it may be 50 nm or more, 100 nm or more, 150 nm or more, or 200 nm or more, and 900 nm or less, 700 nm or less, 500 nm or less, or 400 nm or less.
  • the ion storage layer may be a layer formed directly on the conductive substrate. That is, in the present application, the composition for forming the ion storage layer may be formed by applying directly on the conductive base material and then heat-treating the conductive base material.
  • the conductive base material that is in direct contact with the ion storage layer may be referred to as a second conductive base material for the purpose of distinguishing the electrochromic layer from the adjacent conductive base material, and the specific structure thereof may be the same as that described above.
  • the method of the present application may be a method including a step of laminating the layer structure so that the electrolyte layer, the ion storage layer, and the second conductive base material are sequentially positioned on one surface of the electrochromic layer. More specifically, the method further comprises laminating a first laminate comprising a conductive substrate and an electrochromic layer through a second laminate comprising a second conductive substrate and an ion storage layer and a gel polymer electrolyte layer . ≪ / RTI > At this time, a specific method for laminating the layer constitution is not particularly limited, and a known lamination method and the like can be suitably applied.
  • the ion storage layer may be a layer formed on the electrolyte layer. More specifically, a coating composition for forming an ion storage layer is applied on an electrolyte layer of a laminate including a laminate, an electrochromic layer and an electrolyte layer sequentially containing a conductive substrate, an electrochromic layer and an electrolyte layer in sequence And then dried to form a layer. Alternatively, it may be a layer formed by applying a coating composition for forming an ion storage layer on a gel polymer electrolyte layer existing on a release type substrate or as a single layer, followed by heat treatment.
  • the electrochromic device may further include a light-transmitting substrate on the outer surface of each conductive substrate.
  • the type of the light-transmitting substrate is not particularly limited, and glass or a polymer resin can be used.
  • a polyester film such as PC (Polycarbonate), PEN (poly (ethylene naphthalate)) or PET (poly ethylene terephthalate), an acrylic film such as PMMA (poly (methyl methacrylate) Or a polyolefin film such as polypropylene (PP) or the like can be used as a light-transmitting substrate.
  • the method is characterized in that, prior to forming the electrochromic layer on the electroconductive substrate or before forming the ion storage layer on the second electroconductive substrate, And then forming the conductive base material having the above-described constitution on the base material.
  • monovalent cations are already inserted into the electrochromic layer by a dry process before the interlayer arrangements for element formation, so that both the electrochromic layer and the ion storage layer are colored . Accordingly, since no separate initializing operation is required after laminating, it is possible to prevent the durability of the electrochromic device from deteriorating. Further, according to the present application, since the formation of the electrochromic layer and the insertion of monovalent cations can be formed in a roll-to-roll manner, the present application can improve the processability and productivity of the electrochromic device.
  • Transmittance at Coloring It refers to the final coloring state transmittance observed after elapse of the time (50s) during which the potential for coloring is applied. Table 1 shows the colored film transmittance at the time of 500 cycle operation.
  • Transmittance in decolorization It refers to the final decolorized state transmittance observed after elapse of the time (50s) during which the potential for decolorization is applied. Table 1 shows the decolorized film transmittance at 500 cycles of operation.
  • Coloring time (unit: second): The time taken to reach the level 80 when the transmittance of the final coloring state observed after elapse of the time (50s) for applying the potential for coloring is 100. Table 1 shows the time it takes for the decolorized film to be colored until it meets the above level at the time of 500 cycle operation.
  • Decolorization time (unit: second): The time taken to reach the level of 80 when the final decolored state transmittance observed after elapse of the time (50s) for application of dislocation for decolorization is 100. Table 1 shows the time taken for the pigmented film to decolorize until the colored film satisfies the above level at the time of 500 cycle operation.
  • a 300 nm thick WO 3 layer was deposited on a 250 nm thick ITO / PET laminate using a sputtering method (process pressure 15 mTorr, deposition power 200 W, and deposition time 30 min). Specifically, a WO 3 layer was formed on one side of the ITO film by winding the film from the roll on which the laminate film was wound using a roll-to-roll apparatus. Then, lithium ion (Li + ) was inserted into WO 3 of the ITO / WO 3 laminate at 10 -6 Torr and 640 ° C using a thermal evaporation desposition method to color the WO 3 layer . At this time, the heat and evaporation, the time is 10 seconds to perform, the Li doping amount is 2.0363 ⁇ 10 -7 (mol / cm 2).
  • the ITO / WO 3 laminate was laminated with a PB / ITO / PET laminate through a gel polymer electrolyte (GPE) having a thickness of 150 nm to prepare electrochromic films of PET / ITO / WO 3 / GPE / PB / ITO / A film was prepared.
  • GPE gel polymer electrolyte
  • the PB layer was formed by coating a coating solution containing 30 wt% Prussian blue particles having a diameter of 20 nm, 65 wt% ethanol, and 5 wt% TEOS (Tetraethoxysilane) on ITO using a bar coater, Lt; / RTI > for 5 minutes.
  • the thickness of the PB layer is 250 nm.
  • An electrochromic film having the same structure was prepared in the same manner as in Example 1, except that the time during which the thermal evaporation was performed was 20 seconds (lithium doping amount: 3.1090 ⁇ 10 -7 (mol / cm 2 )).
  • An electrochromic film having the same structure was prepared in the same manner as in Example 1, except that the time during which thermal evaporation was performed was 30 seconds (lithium doping amount was 4.1090 ⁇ 10 -7 (mol / cm 2 )).
  • An electrochromic device having the same lamination structure as in Example 1 was prepared in the same manner as in Example 1 except that the process of inserting lithium ions by thermal evaporation was omitted.

Abstract

The present application relates to a method for manufacturing an electrochromic device. The manufacturing method of the present application manufactures a device by inserting, in advance, a monovalent cation into a reductive electrochromic layer through a dry process, and then laminating the colored electrochromic layer, an electrolyte layer and an ion storage layer containing an oxidative chromic material, which is itself in a colored state. Therefore, the present application can improve the operation durability of an electrochromic device.

Description

전기변색소자의 제조방법Method for manufacturing electrochromic device
관련 출원들과의 상호 인용Mutual citation with related applications
본 출원은 2017.09.18 자 한국 특허 출원 제10-2017-0119271호 및 2018.09.06 자 한국 특허 출원 제10-2018-0106524호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0119271 and Korean Patent Application No. 10-2018-0106524 filed on September 18, 2017, The contents of which are incorporated herein by reference.
기술분야Technical field
본 출원은 전기변색소자의 제조방법에 관한 것이다.The present application relates to a method of manufacturing an electrochromic device.
전기변색이란 전기화학적 산화 또는 환원 반응에 의하여 전기변색물질의 광학적 성질이 변하는 현상을 말하며, 상기 현상을 이용한 소자를 전기변색소자라 한다. 전기변색소자는 일반적으로 2개의 대향하는 전극 사이에, 전기변색층, 전해질층, 및 이온저장층을 포함하며, 전기변색층과 이온저장층 각각에는 발색을 위한 반응이 서로 상반되는 변색물질이 포함된다. 예를 들어, 전기변색층에는 그 자체로서는 투명하지만 환원 반응시 푸른색으로 착색이 이루어지는 WO3가 포함될 수 있고, 이온저장층에는 산화된 상태(FeIII[FeII(CN)6]-)로 푸른색을 가지며 환원 반응시 투명하게 변하는 프러시안 블루(prusian blue: PB)가 포함될 수 있다.The term " electrochromism " refers to a phenomenon in which an optical property of an electrochromic material is changed by an electrochemical oxidation or reduction reaction. The electrochromic device is a device using the phenomenon described above. The electrochromic device generally includes an electrochromic layer, an electrolyte layer, and an ion storage layer between two opposing electrodes, and each of the electrochromic layer and the ion storage layer contains a discoloring substance whose reaction for color development is opposite to each other do. For example, the electrochromic layer may contain WO 3 , which is transparent in itself but is colored blue when subjected to a reduction reaction, and the ion storage layer may contain an oxidized state (Fe III [Fe II (CN) 6 ] - ) Prussian blue (PB), which has a blue color and changes in transparency during the reduction reaction, may be included.
이처럼, 발색을 일으키는 반응이 서로 상반되는 변색물질이 서로 다른 층에 사용되는 경우, 전기변색소자의 구동을 위해서는, 실제 소자 구동 전에, 각 층의 상태를 일치시킬 필요가 있다. 구체적으로, 전기변색층과 이온저장층 모두가 무색 또는 투명한 상태이거나(탈색 상태), 두 층 모두가 소정의 색을 갖도록(착색 상태) 하는 조치가 필요하다. 이러한 조치와 관련하여, 종래에는, 전극층, 전기변색층, 전해질층 및 이온저장층과 같은 구성 층이 모두 합지된 전기변색소자를 제조한 후, 실제 구동 전에, PB와 같이 산화성 전기변색물질을 갖는 층에 대하여 구동 전위 보다 높은 전압을 소정 시간 인가하여 전해질 이온을 강제로 삽입하고, PB에 대한 탈색(환원)처리를 수행하였다. 이러한 작업을 소위 초기화 작업이라고 한다. 그런데, 탈색(환원)처리의 대상이 되는 PB와 같은 변색물질은 그 자체로서 변색 반응에 관여하는 (전해질)이온을 갖지 않을 뿐 아니라, 소자에 겔 폴리머 전해질이 사용되는 경우에는 액상 전해질을 사용하는 경우보다 전해질 이온의 양이 적은 문제도 있기 때문에, PB를 완전히 탈색시키기 위해서는 과전압이 요구되었다. 그러나, 과전압은 전극층 및 전기변색층의 열화와, 그로 인한 소자의 구동 내구성 저하를 야기한다.In this way, when the discoloring materials having opposite colors to each other are used in different layers, it is necessary to match the states of the respective layers before driving the actual device in order to drive the electrochromic device. Specifically, it is necessary to take measures such that both the electrochromic layer and the ion storage layer are in a colorless or transparent state (a discolored state) or both of them have a predetermined color (colored state). Conventionally, after the electrochromic device in which all of the constituent layers such as the electrode layer, the electrochromic layer, the electrolyte layer and the ion storage layer are laminated, and before the actual driving, an electrochromic material having an oxidative electrochromic material such as PB A voltage higher than the driving potential was applied to the layer for a predetermined time to forcibly insert the electrolyte ions, and the PB was subjected to a decoloring (reduction) treatment. Such an operation is called a so-called initialization operation. However, a discoloring substance such as PB, which is subjected to decolorization (reduction) treatment, does not have ions (electrolytes) participating in the discoloration reaction per se. In addition, when a gel polymer electrolyte is used in the device, a liquid electrolyte is used There is a problem that the amount of the electrolytic ion is smaller than that of the case. Therefore, overvoltage is required to completely decolorize the PB. However, the overvoltage causes deterioration of the electrode layer and the electrochromic layer, resulting in deterioration of driving durability of the device.
본 출원의 일 목적은 구동 내구성이 개선된 전기변색소자 및 그 제조방법을 제공하는 것이다.One object of the present invention is to provide an electrochromic device improved in driving durability and a method of manufacturing the same.
본 출원의 상기 목적 및 기타 그 밖의 목적은 하기 상세히 설명되는 본 출원에 의하여 모두 해결될 수 있다.The above and other objects of the present application can be resolved by the present application which is described in detail below.
본 출원에 관한 일례에서, 본 출원은 전기변색소자의 제조방법에 관한 것이다. 구체적으로, 본 출원은 환원성 전기변색물질을 포함하는 전기변색층 상에 전해질층 및 이온저장층을 순차로 위치시키는 전기변색소자의 제조방법에 관한 것이다.In one example of this application, the present application relates to a method of manufacturing an electrochromic device. Specifically, the present invention relates to a method of manufacturing an electrochromic device in which an electrolyte layer and an ion storage layer are successively placed on an electrochromic layer containing a reducing electrochromic material.
본 출원에서, 착색시 투과율이 크게 낮아지는 전기변색층과 이온저장층 구성을 제외하고, 본 출원 전기변색소자에 사용되는 각 층 구성은 380 내지 780 nm 범위의 가시광 파장에 대한 투과율이 80% 이상 또는 85% 이상일 수 있다.In the present application, except for the structure of the electrochromic layer and the ion storage layer in which the transmittance is significantly lowered during coloring, each layer structure used in the electrochromic device of the present application has a transmittance of 80% or more with respect to a visible light wavelength in the range of 380 to 780 nm Or 85% or more.
본 출원의 제조방법은 전해질층을 전기변색층 상에 위치시키기 전에, 1가 양이온을 상기 전기변색층에 삽입하는 단계를 포함한다. 상기 1가 양이온의 삽입을 통해, 전기변색층 내의 환원성 전기변색물질이 환원되면서 전기변색층이 착색(colored)될 수 있다. 그에 따라 1가 양이온이 삽입된 전기변색층은 산화성 전기변색물질을 포함하는 이온저장층과 동일하게 착색된 상태(colored state)를 가질 수 있고, 결과적으로 본 출원의 제조방법에 따라 제조된 전기변색소자에는 초기화 작업이 필요하지 않을 수 있다.The manufacturing method of the present application includes the step of inserting monovalent cations into the electrochromic layer before placing the electrolyte layer on the electrochromic layer. Through the insertion of the monovalent cation, the electrochromic layer in the electrochromic layer can be reduced and the electrochromic layer can be colored. Accordingly, the electrochromic layer in which the monovalent cation is inserted may have a colored state in the same manner as the ion storage layer containing the oxidative electrochromic material, and as a result, The device may not require initialization.
본 출원에서, 전기변색층에 대한 1가 양이온의 삽입은 드라이 프로세스(dry process)에 의해 이루어질 수 있다. 예를 들어, 전기변색층에 대한 1가 양이온의 삽입은 증착(deposition)에 의해 수행될 수 있다. 하기 설명되는 바와 같이, 드라이 프로세스(dry process)에 의해 1가 양이온을 삽입할 경우, 인접층에 대한 전기변색층의 부착력이 우수하며, 별도의 클리닝 공정이 필요 없게 되는 이점이 있다. In the present application, the insertion of monovalent cations to the electrochromic layer can be accomplished by a dry process. For example, the insertion of monovalent cations to the electrochromic layer can be performed by deposition. As described below, when monovalent cations are inserted by a dry process, there is an advantage that the electrochromic layer has an excellent adhesion to the adjacent layer and a separate cleaning step is not required.
하나의 예시에서, 전기변색층에 대한 1가 양이온 삽입은 열 증발 증착 또는 열 기상 증착(thermal evaporation deposition)에 의해 이루어질 수 있다. 상기 방법에 따르면, 진공 상태에서 높은 열을 금속원에 가하여 금속을 이온 상태로 기화시키고, 이를 전기변색층으로 삽입할 수 있다. In one example, the monovalent cation insertion to the electrochromic layer can be accomplished by thermal evaporation or thermal evaporation deposition. According to the above method, a high heat in a vacuum state can be applied to the metal source to vaporize the metal into an ionic state and insert it into the electrochromic layer.
하나의 예시에서, 증착에 의해 삽입되는 1가 양이온은 Li+, Na+, K+, Rb+ 또는 Cs+ 일 수 있다. 즉, 상기 열 증발 증착에서는 상기 1가 양이온에 대한 소스(source)로서 Li, Na, K, Rb 또는 Cs과 같은 금속이 사용될 수 있다.In one example, the monovalent cation that is inserted by deposition may be Li + , Na + , K + , Rb +, or Cs + . That is, in the thermal evaporation deposition, a metal such as Li, Na, K, Rb or Cs may be used as a source for the monovalent cation.
본 출원에서, 상기 열 증발 증착, 즉 1가 양이온의 삽입 공정은 1가 양이온의 소스로 구성된 별도의 층(금속층)이 형성되지 않도록 수행될 수 있다. 예를 들어, 리튬이온(Li+)을 전기변색층에 삽입하고자 하는 경우, 본 출원의 열 증발 증착 공정은 전기변색층 상에 별도의 리튬층이 형성되지 않도록 이루어질 수 있다. 리튬층과 같은 금속층이 형성될 경우, 셀 성능이 저하될 수 있다. 그리고, 금속층의 형성은 전기변색소자 내부의 반사성을 증가시킬 수 있어서, 착색시 낮은 투명성과 탈색시 높은 투명성을 제공하는 전기변색소자의 기능에 장애가 될 수 있다.In the present application, the thermal evaporation, that is, the step of inserting monovalent cations, can be performed so that a separate layer (metal layer) composed of a source of monovalent cations is not formed. For example, in the case where lithium ion (Li + ) is to be inserted into the electrochromic layer, the thermal evaporation process of the present application may be such that no separate lithium layer is formed on the electrochromic layer. When a metal layer such as a lithium layer is formed, cell performance may be deteriorated. Further, the formation of the metal layer can increase the reflectivity inside the electrochromic device, which may hinder the function of the electrochromic device which provides low transparency in coloring and high transparency in decolorization.
1가 양이온의 소소로 구성된 별도의 층을 형성하지 않을 수 있을 정도로 열 증발 증착이 수행되는 경우라면 상기 열 증발 증착의 조건은 특별히 제한되지 않는다. 예를 들어, 상기 열 증발 증착은 10 mTorr 이하, 5 mTorr 이하, 3 mTorr 이하, 1 mTorr 이하, 0.1 mTorr 이하, 또는 0.01 mTorr 이하의 압력 조건에서 수행될 수 있다. 그 하한은 특별히 제한되지 않으나, 예를 들어 0.0001 mTorr 이상일 수 있다.The conditions of the thermal evaporation deposition are not particularly limited as long as the thermal evaporation is carried out to such an extent that a separate layer composed of a small amount of positive ions is not formed. For example, the thermal evaporation may be performed at a pressure of 10 mTorr or less, 5 mTorr or less, 3 mTorr or less, 1 mTorr or less, 0.1 mTorr or less, or 0.01 mTorr or less. The lower limit thereof is not particularly limited, but may be, for example, 0.0001 mTorr or more.
하나의 예시에서, 상기 열 증발 증착은 삽입되는 금속 이온의 용융점이 고려된 온도 조건 아래에서 수행될 수 있다. 예를 들어, 1가 양이온의 소스 금속이 갖는 용융점 이상의 온도에서 열 증발 증착이 수행될 수 있다. 구체적으로, 삽입하고자 하는 1가 양이온이 Li+인 경우, 리튬의 용융점은 약 180 ℃인 점을 고려하여, 상기 열 증발 증착은 리튬의 용융점인 180 ℃ 이상의 온도 조건에서 이루어질 수 있다. 구체적으로는, 상기 열 증발 증착은 약 500 내지 700 ℃ 범위 내의 온도 조건에서 수행될 수 있다. In one example, the thermal evaporation may be performed under a temperature condition where the melting point of the metal ion to be inserted is considered. For example, thermal evaporation can be performed at a temperature above the melting point of the source metal of monovalent cations. Specifically, when the monovalent cation to be inserted is Li + , the thermal evaporation may be performed at a temperature of 180 ° C or higher, which is the melting point of lithium, considering that the melting point of lithium is about 180 ° C. Specifically, the thermal evaporation may be performed at a temperature of about 500 to 700 占 폚.
상기 조건을 만족하는 이상 열 증발 증착이 수행되는 시간은 제한되지 않는다. 예를 들어, 상기 압력 및 온도 조건하에서 수초 내지 수분 간 열 증발 증착이 수행될 수 있다.The time for which the abnormal thermal evaporation deposition satisfying the above conditions is performed is not limited. For example, thermal evaporation may be performed for a few seconds to several minutes under the above-described pressure and temperature conditions.
하나의 예시에서, 1가 양이온의 소소로 구성된 별도의 층을 형성하지 않을 수 있을 정도로 열 증발 증착이 수행되는 경우, 상기 전기변색층으로 삽입되는 1가 양이온의 함량은 전기변색층 cm2 당 1.0 × 10- 8 mol 내지 1.0 × 10- 6 mol의 범위, 보다 구체적으로는 5.0 × 10-8 mol 내지 5.0 × 10-7 mol 범위 내 일 수 있다.In one example, when thermal evaporation is performed to such an extent that a monolayer does not form a separate layer composed of a source of a cation, the content of monovalent cations inserted into the electrochromic layer is 1.0 per cm 2 of the electrochromic layer × 10 - 8 mol to 1.0 × 10 - 6 mol of the range, and more specifically may be within 5.0 × 10 -8 mol to 5.0 × 10 -7 mol range.
전기변색층에 삽입되는 1가 양이온의 함량, 즉, 몰수는, 1가 양이온이 존재하는 전기변색층의 전하량과 전자의 몰수 관계로부터 구해질 수 있다. 예를 들어, 열 증발 증착을 이용하여 전기변색층에 1가 양이온을 삽입한 경우, 전기변색층의 전하량이 A (C/cm2)라면, 전하량 A를 패러데이 상수 F로 나눈 값(A/F)은 전기변색층 cm2 당 존재하는 전자의 몰(mol) 수 일 수 있다. 한편, 전자(e-)와 1가 양이온은 1 : 1로 반응할 수 있기 때문에, 전기변색층에 존재하는 1가 양이온의 최대 함량, 즉 최대 몰수는 상기로부터 구해진 전자의 몰수와 같을 수 있다. 1가 양이온의 함량과 관련하여 전하량을 측정하는 방법은 특별히 제한되지 않는다. 예를 들어, 포텐쇼스탯(potentiostat) 장치를 이용한 전위 스텝 시간대 전류법(potential step chrono amperometry, PSCA)과 같은 공지된 방법에 의해 전하량이 측정될 수 있다.The content of the monovalent cations inserted into the electrochromic layer, that is, the number of moles can be obtained from the relationship between the amount of charge of the electrochromic layer in which monovalent cations exist and the mole number of electrons. For example, when a monovalent cation is inserted into the electrochromic layer using thermal evaporation deposition and the charge amount of the electrochromic layer is A (C / cm 2 ), a value obtained by dividing the charge amount A by the Faraday constant F (A / F ) May be the number of moles of electrons present per cm < 2 > of the electrochromic layer. On the other hand, since the electrons (e - ) and monovalent cations can react at a ratio of 1: 1, the maximum amount of monovalent cations present in the electrochromic layer, that is, the maximum number of moles may be equal to the number of electrons obtained from the above. The method of measuring the amount of charge in relation to the content of monovalent cations is not particularly limited. For example, the charge quantity can be measured by a known method such as potential step chronoamperometry (PSCA) using a potentiostat device.
본 출원에서, 삽입된 1가 양이온이 전기변색층에 존재하는 형태는 다음의 경우를 모두 포함할 수 있다. 구체적으로, 본 출원에서 전기변색층에 삽입된 1가 양이온은 이온 형태로 전기변색층에 포함될 수 있고, 및/또는 전기변색층을 구성하는 변색물질과 화학적으로 결합한 형태로도 각 층에 포함될 수 있다.In the present application, the form in which the inserted monovalent cation exists in the electrochromic layer may include all of the following cases. Specifically, the monovalent cation incorporated in the electrochromic layer in the present application may be contained in the electrochromic layer in the form of an ion and / or chemically bonded to the discoloring substance constituting the electrochromic layer. have.
본 출원에서, 상기 전기변색층은 환원성 전기변색물질을 포함한다. 본 출원에서 환원성 전기변색물질이란, 환원반응을 하는 경우에 착색이 이루어지는 물질일 수 있다. 환원성 전기변색물질을 포함하는 전기변색층에 상기와 같이 1가 양이온이 삽입되는 경우, 전기변색층은 변색, 즉 착색된 상태를 가질 수 있다.In the present application, the electrochromic layer includes a reducing electrochromic material. In the present application, the reductive electrochromic material may be a material that undergoes coloration when subjected to a reduction reaction. When the monovalent cation is inserted into the electrochromic layer containing a reducing electrochromic material as described above, the electrochromic layer may have a discolored state, that is, a colored state.
전기변색층에 사용가능한 환원성 전기변색물질의 종류는 특별히 제한되지 않는다. 하나의 예시에서, 상기 전기변색층은 증착 방식에 의해 형성될 수 있는 환원성 금속 산화물을 포함할 수 있다. 예를 들어, 상기 전기변색층은 Ti, Nb, Mo, Ta 및 W로 구성되는 금속 중 하나 이상의 산화물로 구성된 증착층일 수 있다.The kind of the reducing electrochromic material usable in the electrochromic layer is not particularly limited. In one example, the electrochromic layer may comprise a reducing metal oxide that may be formed by a deposition method. For example, the electrochromic layer may be a deposition layer composed of at least one oxide selected from the group consisting of Ti, Nb, Mo, Ta, and W.
본 출원에서, 상기 전기변색층은 건식 코팅법, 예를 들어, 증착에 의해 형성될 수 있다. 본 출원의 발명자는 전기변색층의 형성 방식과 상기 전기변색층에 대한 1가 양이온의 삽입 방식에 따라 전기변색소자의 내구성이 달라질 수 있다는 것을 확인하였다. 예를 들어 전기변색층이 증착과 같은 건식 코팅법에 의해 형성되는 것이 아니라, 코팅 조성물을 도포한 후 열처리하는 것과 같은 습식 코팅법에 의해 형성되는 경우, 전기변색층이 갖지 못하는 1가 양이온을 전기변색층에 도입(또는 삽입)하는 방법으로는, 예를 들어, WO3와 같은 변색 입자와 용매를 함유하는 코팅 조성물에 1가 양이온을 제공할 수 있는 전구체를 추가 투입하는 방법이 고려될 수 있다. 그러나, 이러한 습식 코팅 방식에 의한 1가 양이온의 주입은 유기 전해액 내에서 진행되기 때문에, 주입 공정 후 세정 공정을 거치지 않을 경우 전해질층과 같은 합지 구성에 대한 부착력 저하가 발생하고, 결과적으로는 소자의 구동 내구성을 저하시키는 문제를 야기한다. 특히, 습식 코팅을 따를 경우, 전극 상에 직접 전기변색 물질 함유 조성물을 도포하여 전기변색층을 형성하는 것이 일반적인데, 상기와 같이 전기변색층을 갖는 전극 적층체(전극/전기변색층)에 대해서는, 삽입된 전해질 이온의 유실이나 적층체의 손상과 같은 현실적인 이유로 세정이 어려운 문제가 있다. 그리고, 상기와 같은 습식 코팅 방식은 롤-투-롤(roll-to-roll)을 이용한 전기변색소자의 연속적인 제조 공정에도 부적합하므로, 대량 생산성도 좋지 못하다. 이러한 점을 고려하여, 본 출원에서는 건식 방법에 의해 형성된 전기변색층에 대하여, 상기 설명된 바와 같이 건식 방법에 의해 1가 양이온을 주입한다.In the present application, the electrochromic layer may be formed by a dry coating method, for example, a vapor deposition method. The inventors of the present application have confirmed that the durability of the electrochromic device can be changed depending on the method of forming the electrochromic layer and the method of inserting the monovalent cation into the electrochromic layer. For example, when an electrochromic layer is formed by a wet coating method such as a heat treatment after applying a coating composition, rather than being formed by a dry coating method such as vapor deposition, a monovalent cation, which is not possessed by the electrochromic layer, As a method of introducing (or inserting) into the discoloration layer, a method of additionally adding a precursor capable of providing a monovalent cation to a coating composition containing a solvent and discolored particles such as WO 3 can be considered . However, since the injection of the monovalent cation by the wet coating method proceeds in the organic electrolytic solution, if the cleaning step is not performed after the injection step, the adhering force to the laminated structure such as the electrolyte layer is lowered. As a result, Resulting in a problem of lowering drive durability. In particular, when a wet coating is applied, it is common to directly form an electrochromic layer by applying a composition containing an electrochromic material directly on the electrode. With respect to the electrode stack (electrode / electrochromic layer) having the electrochromic layer as described above, , There is a problem that cleaning is difficult for practical reasons such as loss of inserted electrolyte ions or damage to the stacked body. In addition, since the wet coating method described above is also unsuitable for a continuous manufacturing process of an electrochromic device using a roll-to-roll method, mass productivity is also poor. Taking this into consideration, in the present application, monovalent cations are injected into the electrochromic layer formed by the dry method by the dry method as described above.
하나의 예시에서, 상기 전기변색층은 스퍼터링 증착에 의해 형성될 수 있다. 스퍼터링 증착의 공정 조건은 특별히 제한되지 않는다. 예를 들어, 스퍼터링 증착은 1 mTorr 내지 100 mTorr 범위 내의 압력, 보다 구체적으로는, 3 mTorr 이상, 5 mTorr 이상, 또는 10 mTorr 이상, 그리고 80 mTorr 이하, 60 mTorr 이하, 40 mTorr 이하, 또는 30 mTorr 이하의 압력 조건 아래에서 수행될 수 있다. 또한, 상기 스퍼터링 증착은 50 W 내지 500 W 범위의 파워, 보다 구체적으로는 80 W 이상, 100 W 이상, 120 W 이상 또는 130 W 이상, 그리고 450 W 이하, 400 W 이하, 350 W 이하 또는 300 W 이하의 파워 조건에서 수행될 수 있다. 이때, 사용되는 아르곤과 산소 가스의 유량은 특별히 제한되지 않는다. 또한, 상기 조건에서의 스퍼터링 증착은 수분 내지 수시간 범위 내에서 이루어질 수 있다.In one example, the electrochromic layer may be formed by sputtering deposition. The process conditions of the sputtering deposition are not particularly limited. For example, sputter deposition may be performed at a pressure in the range of 1 mTorr to 100 mTorr, more specifically, at least 3 mTorr, at least 5 mTorr, or at least 10 mTorr and at most 80 mTorr, at least 60 mTorr, at least 40 mTorr, Under the following pressure conditions. More specifically, the sputtering deposition may be performed in a range of 50 W to 500 W, more specifically, 80 W or more, 100 W or more, 120 W or 130 W or more and 450 W or less, 400 W or less, 350 W or 300 W Or less. At this time, the flow rate of argon and oxygen gas to be used is not particularly limited. Further, the sputtering deposition under the above conditions can be performed within a range of several minutes to several hours.
하나의 예시에서, 전기변색층은 도전성 기재 또는 이형 기재 상에서 형성될 수 있다. 각각의 경우 1가 양이온의 삽입은 도전성 기재와 접하는 전기변색층 일면의 반대 일면에 대하여 이루어지거나, 또는 이형 기재와 접하는 전기변색층 일면의 반대 일면에 대하여 이루어질 수 있다. 이형 기재 상에 전기변색층이 형성되는 경우, 증착층인 전기변색층을 별도로 형성된 도전성 기재와 합지하는 공정이 필요하기 때문에, 도전성 기재 상에 전기변색층을 직접 형성하는 것이 공정성 측면에서 보다 바람직하다.In one example, the electrochromic layer may be formed on a conductive substrate or a release substrate. In each case, the insertion of the monovalent cation may be performed on the opposite surface of one side of the electrochromic layer in contact with the conductive substrate, or on the opposite surface of the electrochromic layer in contact with the releasable substrate. In the case where the electrochromic layer is formed on the release substrate, a step of laminating the electrochromic layer, which is a deposition layer, with a separately formed electroconductive substrate is required. Therefore, it is more preferable in terms of processability to directly form the electrochromic layer on the electroconductive substrate .
하나의 예시에서, 상기 전기변색층은 롤-투-롤 방식에 의해 형성될 수 있다. 예를 들어, 상기 방법은 도전성 필름이 권취된 롤로부터 상기 도전성 필름을 권출하고, 상기 권출된 도전성 필름 상에 전기변색층을 증착하는 단계를 포함하는 방법일 수 있다. 롤-투-롤 방식을 이용할 경우, 생산성 및 공정성 확보에 유리하다.In one example, the electrochromic layer may be formed by a roll-to-roll method. For example, the method may be a method including a step of withdrawing the conductive film from a roll on which the conductive film is wound, and depositing an electrochromic layer on the electroconductive film. When the roll-to-roll method is used, it is advantageous in securing productivity and fairness.
하나의 예시에서, 상기 1가 양이온의 삽입은 롤-투-롤 방식에 따라 소정 경로를 이동하는 적층체에 대하여 이루어질 수 있다. 예를 들어, 상기 적층체가 도전성 기재 및 전기변색층을 순차로 포함하는 적층체인 경우, 상기 적층체 중 전기변색층의 일면에 대하여 1가 양이온의 삽입이 이루어질 수 있다.In one example, the insertion of the monovalent cations can be effected on a laminate moving along a predetermined path in a roll-to-roll fashion. For example, when the laminate is a laminate including an electrically conductive substrate and an electrochromic layer sequentially, monovalent cations can be inserted into one surface of the electrochromic layer in the laminate.
본 출원에서, 전기변색층의 두께는 특별히 제한되지는 않는다. 예를 들어, 전기변색층의 두께는 1 ㎛ 이하일 수 있다. 구체적으로, 50 nm 이상, 100 nm 이상, 150 nm 이상, 또는 200 nm 이상일 수 있고, 그리고 900 nm 이하, 700 nm 이하, 500 nm 이하, 또는 400 nm 이하일 수 있다.In the present application, the thickness of the electrochromic layer is not particularly limited. For example, the thickness of the electrochromic layer may be 1 占 퐉 or less. Specifically, it may be 50 nm or more, 100 nm or more, 150 nm or more, or 200 nm or more, and 900 nm or less, 700 nm or less, 500 nm or less, or 400 nm or less.
하나의 예시에서, 상기 전기변색층은 도전성 기재 상에 형성된 층일 수 있다. 본 출원에서 도전성 기재라 함은, 소위 전극 역할을 수행할 수 있는 층을 의미할 수 있다. 본 출원에서, 도전성 기재는 예를 들어, 50 nm 내지 400 nm 범위의 두께를 가질 수 있다. In one example, the electrochromic layer may be a layer formed on a conductive substrate. The conductive substrate in the present application may mean a layer capable of acting as a so-called electrode. In the present application, the conductive substrate may have a thickness in the range of, for example, 50 nm to 400 nm.
도전성 기재에 사용되는 물질의 종류는 특별히 제한되지 않는다. 예를 들어, 도전성 기재는 투명 도전성 화합물, 메탈메쉬, 또는 OMO(oxide/metal/oxide)를 포함할 수 있다.The kind of the material used for the conductive substrate is not particularly limited. For example, the conductive substrate may comprise a transparent conductive compound, a metal mesh, or an oxide / metal / oxide (OMO).
하나의 예시에서, 투명 도전성 산화물로는, ITO(Indium Tin Oxide), In2O3(indium oxide), IGO(indium galium oxide), FTO(Fluor doped Tin Oxide), AZO(Aluminium doped Zinc Oxide), GZO(Galium doped Zinc Oxide), ATO(Antimony doped Tin Oxide), IZO(Indium doped Zinc Oxide), NTO(Niobium doped Titanium Oxide), ZnO(zink oxide), 또는 CTO (Cesium Tungsten Oxide) 등을 예로 들 수 있다. 그러나, 상기 나열된 물질로 투명 도전성 산화물의 재료가 제한되는 것은 아니다.In one example, a transparent conductive oxide, ITO (Indium Tin Oxide), In 2 O 3 (indium oxide), IGO (indium galium oxide), FTO (Fluor doped Tin Oxide), (Aluminium doped Zinc Oxide) AZO, (GZO), antimony doped tin oxide (ATO), indium doped zinc oxide (IZO), niobium doped titanium oxide (NTO), zinc oxide (ZnO), or cesium tungsten oxide have. However, the materials listed above do not limit the material of the transparent conductive oxide.
하나의 예시에서, 메탈메쉬는 Ag, Cu, Al, Mg, Au, Pt, W, Mo, Ti, Ni 또는 이들의 합금을 포함하는 격자 형태를 가질 수 있다. 그러나, 메탈메쉬에 사용가능한 재료가 상기 나열된 금속 재료로 제한되는 것은 아니다.In one example, the metal mesh may have a lattice shape comprising Ag, Cu, Al, Mg, Au, Pt, W, Mo, Ti, Ni or alloys thereof. However, the materials usable for the metal mesh are not limited to the metal materials listed above.
하나의 예시에서, OMO는 상부층, 하부층, 및 상기 2개 층 사이에 마련되는 금속층을 포함할 수 있다. 본 출원에서 상부층이란, OMO를 구성하는 층 중에서 전해질층으로부터 상대적으로 더 멀리 위치한 층을 의미할 수 있다. OMO는 ITO로 대표되는 투명 도전성 산화물 대비 좀 더 낮은 면저항을 갖기 때문에, 전기변색소자의 변색 속도를 단축할 수 있다.In one example, the OMO may include an upper layer, a lower layer, and a metal layer provided between the two layers. The upper layer in the present application may mean a layer located relatively far from the electrolyte layer among the layers constituting the OMO. Since OMO has a lower sheet resistance than that of the transparent conductive oxide represented by ITO, the coloring speed of the electrochromic device can be shortened.
상기 OMO 전극의 상부층 및 하부층은 Sb, Ba, Ga, Ge, Hf, In, La, Se, Si, Ta, Se, Ti, V, Y, Zn, Zr 또는 이들 합금의 금속 산화물을 포함할 수 있다. 상기 상부층 및 하부층이 포함하는 각 금속산화물의 종류는 동일하거나 상이할 수 있다. 상기 상부층의 두께는 10 nm 내지 120 nm 범위 또는 20 nm 내지 100 nm 범위일 수 있다. 또한, 상기 상부층의 가시광 굴절률은 1.0 내지 3.0 범위 또는 1.2 내지 2.8 범위일 수 있다. 상기 범위의 굴절률 및 두께를 가질 경우, 적절한 수준의 광학 특성이 소자에 부여될 수 있다. 또한, 상기 하부층의 두께는 10 nm 내지 100 nm 범위 또는 20 nm 내지 80 nm 범위일 수 있다. 또한, 상기 하부층의 가시광 굴절률은 1.3 내지 2.7 범위 또는 1.5 내지 2.5 범위일 수 있다. 상기 범위의 굴절률 및 두께를 가질 경우, 적절한 수준의 광학 특성이 소자에 부여될 수 있다.The upper and lower layers of the OMO electrode may include metal oxides of Sb, Ba, Ga, Ge, Hf, In, La, Se, Si, Ta, Se, Ti, V, Y, Zn, . The types of the metal oxides included in the upper layer and the lower layer may be the same or different. The thickness of the upper layer may range from 10 nm to 120 nm or from 20 nm to 100 nm. The refractive index of the upper layer may be in the range of 1.0 to 3.0 or in the range of 1.2 to 2.8. Having the refractive indices and thicknesses in the above range, an appropriate level of optical properties can be imparted to the device. Further, the thickness of the lower layer may be in the range of 10 nm to 100 nm or in the range of 20 nm to 80 nm. In addition, the visible light refractive index of the lower layer may range from 1.3 to 2.7 or from 1.5 to 2.5. Having the refractive indices and thicknesses in the above range, an appropriate level of optical properties can be imparted to the device.
OMO에 포함되는 금속층은 저저항 금속재료를 포함할 수 있다. 특별히 제한되지 않으나, 예를 들어, Ag, Cu, Zn, Au, Pd, 및 이들의 합금 중에서 하나 이상이 금속층에 포함될 수 있다. 하나의 예시에서, 상기 금속층은 3 nm 내지 30 nm 범위 또는 5 nm 내지 20 nm 범위의 두께를 가질 수 있다. 또한, 상기 금속층은 1 이하 또는 0.5 이하의 가시광 굴절률을 가질 수 있다. 상기 범위의 굴절률 및 두께를 가질 경우, 적절한 수준의 광학 특성이 도전성 소자에 부여될 수 있다.The metal layer included in the OMO may comprise a low resistance metal material. Although not particularly limited, for example, at least one of Ag, Cu, Zn, Au, Pd, and alloys thereof may be included in the metal layer. In one example, the metal layer may have a thickness in the range of 3 nm to 30 nm, or in the range of 5 nm to 20 nm. In addition, the metal layer may have a visible light refractive index of 1 or less or 0.5 or less. When the refractive indices and the thicknesses are within the above ranges, an appropriate level of optical characteristics can be imparted to the conductive elements.
전해질층은 전기변색 반응에 관여하는 전해질 이온을 제공하는 구성이다. 전해질 이온은 상기 전기변색층에 삽입되고, 그 변색 반응에 관여할 수 있는 이온으로서, 전기변색층에 삽입된 1가 양이온과 동일한 종류의 것일 수 있다. The electrolyte layer is a structure for providing electrolyte ions involved in the electrochromic reaction. Electrolyte ions may be inserted into the electrochromic layer and may participate in the discoloration reaction, and may be of the same kind as monovalent cations inserted into the electrochromic layer.
하나의 예시에서, 상기 전해질층은 겔 폴리머 전해질(gel polymer electrolyte: GPE)일 수 있다. 겔 폴리머 전해질은 액상 전해질 사용시 나타나는 전해액 누출에 의한 내구성 저하 문제를 해결할 수 있다. 일반적으로 전극에 대한 겔 폴리머 전해질의 이온 전달성은 액상 전해질 보다 낮다고 알려져 있다. 그러나, 본 출원에서는 상기와 같은 열 증발 증착에 의해 1가 양이온을 충분히 전기변색층에 전달할 수 있기 때문에, 종래 기술에서 우려되던 것보다 개선된 이온 전달성을 전기변색소자에 제공할 수 있다. 이러한 장점은, 하기 실험례에서와 같이, 장시간 구동된 전기변색소자의 내구성 비교를 통해 확인할 수 있다. In one example, the electrolyte layer may be a gel polymer electrolyte (GPE). The gel polymer electrolyte can solve the problem of durability deterioration due to electrolyte leakage when using a liquid electrolyte. It is generally known that the ionic conductivity of a gel polymer electrolyte to an electrode is lower than that of a liquid electrolyte. However, in the present application, monovalent cations can be sufficiently transferred to the electrochromic layer by the thermal evaporation deposition as described above, so that it is possible to provide the electrochromic device with improved ionic transfer as compared with the prior art. This advantage can be confirmed by comparing the durability of the electrochromic device driven for a long time as in the following experimental example.
하나의 예시에서, 상기 겔 폴리머 전해질층은 가교시 고분자 매트릭스를 형성할 수 있는 가교성 단량체 함유 조성물로부터 형성될 수 있다. 구체적으로, 겔 폴리머 전해질은, 가교성 단량체, 전기변색층에 삽입된 1가 양이온을 제공할 수 있는 금속염, 및 유기용매를 포함하는 조성물을 이형 기재 상에 도포 한 후, 열 또는 광 경화함으로써 얻어질 수 있다. 경화 조건은 특별히 제한되지 않는다. 경화 후 형성된 전해질층의 두께는 예를 들어, 약 50 nm 이상, 약 100 nm 이상, 약 500 nm 이상, 약 1 ㎛ 이상일 수 있고, 그 상한은 약 200 ㎛ 이하, 약 100 ㎛ 이하, 약 50 ㎛ 이하 또는 약 10 ㎛ 이하일 수 있다.In one example, the gel polymer electrolyte layer may be formed from a crosslinkable monomer-containing composition capable of forming a polymer matrix upon crosslinking. Specifically, the gel polymer electrolyte is obtained by applying a composition comprising a crosslinkable monomer, a metal salt capable of providing a monovalent cation incorporated in the electrochromic layer, and an organic solvent onto a release substrate and then thermally or photo-curing Can be. The curing conditions are not particularly limited. The thickness of the electrolyte layer formed after curing may be, for example, about 50 nm or more, about 100 nm or more, about 500 nm or more, about 1 占 퐉 or more, and the upper limit may be about 200 占 퐉 or less, about 100 占 퐉 or less, Or about 10 탆 or less.
가교 후 형성된 매트릭스가 투명할 수 있다면, 가교성 단량체의 종류는 특별히 제한되지 않는다. 예를 들어, 조성물을 광 경화하여 전해질층을 형성하는 경우, 다관능성 (메타)아크릴레이트 등이 가교성 단량체로서 사용될 수 있다.If the matrix formed after crosslinking can be transparent, the kind of the crosslinkable monomer is not particularly limited. For example, when the composition is photocured to form an electrolyte layer, a polyfunctional (meth) acrylate or the like may be used as the crosslinkable monomer.
금속염은 1가 양이온, 예를 들어, Li+, Na+, K+, Rb+, 또는 Cs+ 을 제공할 수 있는 알칼리 금속염 화합물일 수 있다. 금속염의 종류는 특별히 제한되지 않는다. 예를 들어, 알칼리 금속염 화합물로는, LiPF6, LiAsF6, LiCF3SO3, LiN(CF3SO2)2, LiBF4, LiSbF6, LiN(C2F5SO2)2, LiAlO4, LiAlCl4, LiCo0 . 2Ni0 . 56Mn0 . 27O2, LiCoO2, LiSO3CF3 또는 LiClO4와 같은 리튬염 화합물이나, NaClO4와 같은 나트륨염 화합물이 사용될 수 있다.The metal salt may be an alkali metal salt compound capable of providing a monovalent cation, for example, Li + , Na + , K + , Rb + , or Cs + . The kind of the metal salt is not particularly limited. Examples of the alkali metal salt compound include LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiBF 4 , LiSbF 6 , LiN (C 2 F 5 SO 2 ) 2 , LiAlO 4 , LiAlCl 4 , LiCo 0 . 2 Ni 0 . 56 Mn 0 . 27 O 2 , LiCoO 2 , LiSO 3 CF 3 or LiClO 4 , or a sodium salt compound such as NaClO 4 may be used.
하나의 예시에서, 유기 용매로는 카보네이트 화합물이 사용될 수 있다. 카보네이트계 화합물은 유전율이 높기 때문에, 전해질 이온의 전도도를 높일 수 있다. 카보네이트계 화합물로는, 예를 들어, PC(propylene carbonate), EC(ethylene carbonate), DMC(dimethyl carbonate), DEC(diethyl carbonate) 또는 EMC(ethylmethyl carbonate)가 사용될 수 있다.In one example, as the organic solvent, a carbonate compound may be used. Since the carbonate compound has a high dielectric constant, the conductivity of the electrolyte ion can be increased. As the carbonate compound, for example, propylene carbonate (EC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), or ethylmethyl carbonate (EMC) may be used.
하나의 예시에서, 전해질층 형성에 사용되는 조성물은, 광 또는 열 개시제를 추가로 포함할 수 있다. 이들 개시제로는 공지된 종류의 개시제가 제한없이 사용될 수 있다.In one example, the composition used to form the electrolyte layer may further comprise a light or thermal initiator. These initiators can be of any known type without limitation.
상기 이온저장층은 전기변색물질의 변색을 위한 가역적 산화·환원 반응시, 상기 전기변색층과의 전하 균형(charge balance)을 맞추기 위해 형성된 층을 의미할 수 있다. 그에 따라, 이온저장층은 전기변색층과 달리, 산화성 전기변색물질을 포함한다. 본 출원에서 산화성 전기변색물질이란, 산화 반응을 한 경우에 착색이 이루어지는 물질일 수 있다. 예를 들어, 산화성 전기변색물질을 포함하는 이온저장층에 상기 설명된 1가 양이온과 같은 종류의 전해질 이온이 삽입되는 경우, 상기 이온저장층은 탈색되어 투명에 가까운 상태를 가질 수 있다.The ion storage layer may mean a layer formed to match a charge balance with the electrochromic layer during a reversible oxidation / reduction reaction for discoloration of the electrochromic material. Accordingly, unlike the electrochromic layer, the ion storage layer includes an oxidative electrochromic material. In the present application, the oxidative electrochromic material may be a material which undergoes coloration when subjected to an oxidation reaction. For example, when electrolyte ions of the same kind as the univalent cations described above are inserted into an ion storage layer containing an oxidative electrochromic material, the ion storage layer may be discolored and have a state close to transparent.
이온저장층에 사용 가능한 산화성 전기변색물질의 종류는 특별히 제한되지 않는다. 예를 들어, 상기 이온저장층이 포함하는 산화성 전기변색물질로는, 예를 들어, Cr, Mn, Fe, Co, Ni, Rh, 및 Ir 중에서 선택되는 금속 중 하나 이상의 산화물; 또는 프러시안 블루(prussian blue)를 예로 들 수 있다.The kind of the oxidative electrochromic material usable for the ion storage layer is not particularly limited. For example, the oxidative electrochromic material included in the ion storage layer may include at least one oxide selected from the group consisting of Cr, Mn, Fe, Co, Ni, Rh, and Ir; Or prussian blue, for example.
하나의 예시에서, 상기 이온저장층은 습식 코팅법에 의해 형성될 수 있다. 구체적으로, 상기 이온저장층은 Cr, Mn, Fe, Co, Ni, Rh, 및 Ir 중에서 선택되는 금속 중 하나 이상의 산화물 입자; 또는 프러시안 블루(prussian blue) 입자를 포함하는 코팅 조성물을 기재 상에 도포 후 건조나 열 처리를 함으로써, 형성될 수 있다. 이때, 코팅 조성물이 도포되는 기재는, 이형 기재이거나 도전성 기재일 수 있다. In one example, the ion storage layer may be formed by a wet coating method. Specifically, the ion storage layer may comprise at least one oxide particle selected from the group consisting of Cr, Mn, Fe, Co, Ni, Rh, and Ir; Or prussian blue particles on a substrate, followed by drying or heat treatment. Here, the substrate to which the coating composition is applied may be a release type substrate or a conductive substrate.
하나의 예시에서, 상기 산화성 변색 입자의 입경은 특별히 제한되지는 않으나, 예를 들어 5 nm 이상, 10 nm 이상 또는 15 nm 이상이고, 그리고 100 nm 이하, 50 nm 이하 또는 30 nm 이하일 수 있다. In one example, the particle diameter of the oxidative discoloration particles is not particularly limited, but may be, for example, 5 nm or more, 10 nm or more, or 15 nm or more, and 100 nm or less, 50 nm or less or 30 nm or less.
하나의 예시에서, 이온저장층 형성을 위한 상기 코팅 조성물은 유기용매 및/또는 실란계 화합물을 더 포함할 수 있다. 유기용매나 실란계 화합물의 종류는 특별히 제한되지 않으며, 공지된 것을 제한없이 사용할 수 있다. 예를 들어, 유기용매로는 물 또는 알코올이 사용될 수 있다. 그리고, 예를 들어, 상기 실란계 화합물로는 (메타)아크릴계 실란 커플링제, 에폭시계 실란 커플링제, 아미노계 실란 커플링제 또는 알콕시계 실란 커플링제 등이 사용될 수 있으나, 상기 나열된 물질들로 특별히 제한되는 것은 아니다.In one example, the coating composition for forming the ion storage layer may further comprise an organic solvent and / or a silane-based compound. The kind of the organic solvent or silane compound is not particularly limited and any known compound can be used without any limitation. For example, water or alcohol may be used as the organic solvent. As the silane compound, for example, a (meth) acrylic silane coupling agent, an epoxy silane coupling agent, an amino silane coupling agent, or an alkoxy silane coupling agent may be used as the silane compound. However, It is not.
상기 이온저장층 형성용 조성물에 대한 열처리 조건은 특별히 제한되지 않는다. 예를 들어, 상기 열 처리는 약 200 ℃ 이하의 열이 수초 내지 수분 또는 수초 내지 수십분 가해지면서 이루어질 수 있다. 상기 온도에서 알코올 용매가 제거되고, 동시에 실란계 화합물의 응축 및 가수분해 반응의 결과로 고체상의 이온저장층이 형성될 수 있다. 상기 열처리 온도의 하한은 특별히 제한되지 않으나, 예를 들어, 70 ℃ 이상, 75 ℃ 이상, 80 ℃ 이상, 85 ℃ 이상, 90 ℃ 이상, 95 ℃ 이상 또는 100 ℃ 이상일 수 있다.The heat treatment conditions for the ion storage layer-forming composition are not particularly limited. For example, the heat treatment may be performed at a temperature of about 200 占 폚 or less by adding several seconds to several minutes or several seconds to several tens minutes. At this temperature, the alcohol solvent is removed, and at the same time, the solid storage layer can be formed as a result of condensation and hydrolysis of the silane-based compound. The lower limit of the heat treatment temperature is not particularly limited, but may be, for example, 70 ° C or higher, 75 ° C or higher, 80 ° C or higher, 85 ° C or higher, 90 ° C or higher, 95 ° C or higher or 100 ° C or higher.
하나의 예시에서, 상기 이온저장층이 습식 코팅법에 의해 형성되는 경우, 상기 이온저장층은 다공성층일 수 있다. 다공성층의 경우, 이온의 이동을 원활히 할 수 있다는 점에서 전기변색소자의 장기 구동 내구성을 개선하는데 도움을 줄 수 있다.In one example, when the ion storage layer is formed by a wet coating method, the ion storage layer may be a porous layer. In the case of the porous layer, it is possible to improve the long-term driving durability of the electrochromic device in that the migration of ions can be smoothly performed.
상기 이온저장층의 두께는 특별히 제한되지는 않는다. 예를 들어, 이온저장층은 1 ㎛ 이하의 두께를 가질 수 있다. 구체적으로, 50 nm 이상, 100 nm 이상, 150 nm 이상, 또는 200 nm 이상일 수 있고, 그리고 900 nm 이하, 700 nm 이하, 500 nm 이하, 또는 400 nm 이하일 수 있다.The thickness of the ion storage layer is not particularly limited. For example, the ion storage layer may have a thickness of 1 [mu] m or less. Specifically, it may be 50 nm or more, 100 nm or more, 150 nm or more, or 200 nm or more, and 900 nm or less, 700 nm or less, 500 nm or less, or 400 nm or less.
하나의 예시에서, 상기 이온저장층은 도전성 기재 상에 직접 형성된 층일 수 있다. 즉, 본 출원에서 상기 이온저장층 형성을 위한 조성물은 도전성 기재 상에 직접 도포된 후에 열처리 됨으로써 형성될 수 있다. 이온저장층과 직접 접하는 도전성 기재는, 전기변색층과 인접하는 도전성 기재와의 구별을 위해 제 2 도전성 기재로 호칭될 수 있고, 그 구체적인 구성은 앞에서 설명한 바와 동일할 수 있다. 이러한 경우, 본 출원의 방법은 전기변색층의 일면 상에 전해질층, 이온저장층 및 제 2 도전성 기재가 순차로 위치할 수 있도록 층 구성을 합지하는 단계를 더 포함하는 방법일 수 있다. 보다 구체적으로, 상기 방법은 도전성 기재와 전기변색층을 포함하는 제 1 적층체를, 제 2 도전성 기재와 이온저장층을 포함하는 제 2 적층체와 겔 폴리머 전해질층을 매개로 합지하는 단계를 더 포함하는 방법일 수 있다. 이때, 층 구성을 합지하기 위한 구체적인 방법은 특별히 제한되지 않으며, 공지된 라미네이션 방법 등이 적절히 적용될 수 있다.In one example, the ion storage layer may be a layer formed directly on the conductive substrate. That is, in the present application, the composition for forming the ion storage layer may be formed by applying directly on the conductive base material and then heat-treating the conductive base material. The conductive base material that is in direct contact with the ion storage layer may be referred to as a second conductive base material for the purpose of distinguishing the electrochromic layer from the adjacent conductive base material, and the specific structure thereof may be the same as that described above. In this case, the method of the present application may be a method including a step of laminating the layer structure so that the electrolyte layer, the ion storage layer, and the second conductive base material are sequentially positioned on one surface of the electrochromic layer. More specifically, the method further comprises laminating a first laminate comprising a conductive substrate and an electrochromic layer through a second laminate comprising a second conductive substrate and an ion storage layer and a gel polymer electrolyte layer . ≪ / RTI > At this time, a specific method for laminating the layer constitution is not particularly limited, and a known lamination method and the like can be suitably applied.
하나의 예시에서, 상기 이온저장층은 전해질층 상에 형성된 층일 수 있다. 보다 구체적으로, 도전성 기재, 전기변색층 및 전해질층을 순차로 포함하는 적층체나 전기변색층 및 전해질층을 순차로 포함하는 적층체의 전해질층 상에, 이온저장층 형성을 위한 코팅 조성물을 도포한 후 이를 건조시켜 형성된 층일 수 있다. 또는, 이형 기재 상에 또는 단일층으로서 존재하는 겔 폴리머 전해질 층 상에 이온저장층 형성을 위한 코팅 조성물을 도포한 후 이를 열처리하켜 형성된 층일 수 있다.In one example, the ion storage layer may be a layer formed on the electrolyte layer. More specifically, a coating composition for forming an ion storage layer is applied on an electrolyte layer of a laminate including a laminate, an electrochromic layer and an electrolyte layer sequentially containing a conductive substrate, an electrochromic layer and an electrolyte layer in sequence And then dried to form a layer. Alternatively, it may be a layer formed by applying a coating composition for forming an ion storage layer on a gel polymer electrolyte layer existing on a release type substrate or as a single layer, followed by heat treatment.
하나의 예시에서, 상기 전기변색소자는 각 도전성 기재의 외측면 상에 투광성 기재를 추가로 포함할 수 있다. 투광성 기재의 종류는 특별히 제한되지 않으며, 유리 또는 고분자 수지 등이 사용될 수 있다. 예를 들어, PC(Polycarbonate), PEN(poly(ethylene naphthalate)) 또는 PET(poly(ethylene terephthalate))와 같은 폴리에스테르 필름, PMMA(poly(methyl methacrylate))와 같은 아크릴 필름, 또는 PE(polyethylene) 또는 PP(polypropylene)와 같은 폴리올레핀 필름 등이 투광성 기재로서 사용될 수 있다. 상기와 같이, 전기변색소자가 투광성 기재를 더 포함하는 경우, 상기 방법은 도전성 기재 상에 전기변색층을 형성하기에 앞서서 또는 상기 제 2 도전성 기재 상에 이온저장층을 형성하기에 앞서서, 상기 투광성 기재 상에 상기 설명된 구성의 도전성 기재를 형성하는 단계를 더 포함하는 방법일 수 있다. In one example, the electrochromic device may further include a light-transmitting substrate on the outer surface of each conductive substrate. The type of the light-transmitting substrate is not particularly limited, and glass or a polymer resin can be used. For example, a polyester film such as PC (Polycarbonate), PEN (poly (ethylene naphthalate)) or PET (poly ethylene terephthalate), an acrylic film such as PMMA (poly (methyl methacrylate) Or a polyolefin film such as polypropylene (PP) or the like can be used as a light-transmitting substrate. As described above, when the electrochromic device further comprises a light-transmitting substrate, the method is characterized in that, prior to forming the electrochromic layer on the electroconductive substrate or before forming the ion storage layer on the second electroconductive substrate, And then forming the conductive base material having the above-described constitution on the base material.
본 출원의 일례에 따르면, 본 출원에서는 소자 형성을 위한 각 층 구성 간 합지 전에 이미 1가 양이온을 드라이 프로세스에 의해 전기변색층에 삽입하므로, 전기변색층과 이온저장층 모두는 착색된 상태로 합지될 수 있다. 그에 따라, 합지 후에 별도의 초기화 작업이 필요하지 않으므로, 전기변색소자의 내구성 저하를 방지할 수 있다. 또한, 본 출원에 따르면, 전기변색층의 형성과 1 가 양이온의 삽입이 롤-투-롤 방식으로 형성될 수 있으므로, 본 출원은 전기변색소자의 공정성과 생산성을 개선할 수 있다.According to one embodiment of the present application, in the present application, monovalent cations are already inserted into the electrochromic layer by a dry process before the interlayer arrangements for element formation, so that both the electrochromic layer and the ion storage layer are colored . Accordingly, since no separate initializing operation is required after laminating, it is possible to prevent the durability of the electrochromic device from deteriorating. Further, according to the present application, since the formation of the electrochromic layer and the insertion of monovalent cations can be formed in a roll-to-roll manner, the present application can improve the processability and productivity of the electrochromic device.
이하, 실시예를 통해 본 출원을 상세히 설명한다. 그러나, 본 출원의 보호범위가 하기 설명되는 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present application will be described in detail by way of examples. However, the scope of protection of the present application is not limited by the embodiments described below.
전기변색 필름의 구동 특성 측정 방법Method for measuring driving characteristics of electrochromic film
<전하량><Charge amount>
변색 필름의 구동 사이클을 증가시키면서, 포텐쇼스탯(potentiostat) 장치를 이용한 전위 스텝 시간대 전류법(potential step chrono amperometry, PSCA)을 이용하여 실시예와 비교예 각 필름의 전하량을 측정하고, 1 사이클 구동 시의 전하량과 500 사이클 경과 후의 전하량을 표 1에 비교 기재하였다.Examples and Comparative Examples Using the potential step chronoamperometry (PSCA) using a potentiostat device while increasing the driving cycle of the color-changing film, the charge amount of each film was measured, And the amount of charge after the elapse of 500 cycles are shown in Table 1.
<투과율><Transmittance>
* 착색시 투과율: 착색을 위한 전위가 인가되는 시간(50s)이 경과한 후 관찰되는 최종 착색 상태 투과율을 의미한다. 표 1에는 500 cycle 구동 당시, 착색된 필름 투과율을 기재하였다. * Transmittance at Coloring: It refers to the final coloring state transmittance observed after elapse of the time (50s) during which the potential for coloring is applied. Table 1 shows the colored film transmittance at the time of 500 cycle operation.
* 탈색시 투과율: 탈색을 위한 전위가 인가되는 시간(50s)이 경과한 후 관찰되는 최종 탈색 상태 투과율을 의미한다. 표 1에는 500 cycle 구동 당시, 탈색된 필름 투과율을 기재하였다. * Transmittance in decolorization: It refers to the final decolorized state transmittance observed after elapse of the time (50s) during which the potential for decolorization is applied. Table 1 shows the decolorized film transmittance at 500 cycles of operation.
<변색속도><Discoloration rate>
* 착색시간(단위: second): 착색을 위한 전위가 인가되는 시간(50s)이 경과한 후 관찰되는 최종 착색 상태 투과율을 100이라고 할 경우, 80 수준까지 도달하는데 걸린 시간을 의미한다. 표 1에는 500 cycle 구동 당시, 탈색된 필름이 상기 수준을 만족하기 까지 착색되는데 걸리는 시간을 기재하였다. * Coloring time (unit: second): The time taken to reach the level 80 when the transmittance of the final coloring state observed after elapse of the time (50s) for applying the potential for coloring is 100. Table 1 shows the time it takes for the decolorized film to be colored until it meets the above level at the time of 500 cycle operation.
* 탈색시간(단위: second): 탈색을 위한 전위가 인가되는 시간(50s)이 경과한 후 관찰되는 최종 탈색 상태 투과율을 100이라고 할 경우, 80 수준까지 도달하는데 걸린 시간을 의미한다. 표 1에는 500 cycle 구동 당시, 착색된 필름이 상기 수준을 만족하기 까지 탈색되는데 걸리는 시간을 기재하였다.* Decolorization time (unit: second): The time taken to reach the level of 80 when the final decolored state transmittance observed after elapse of the time (50s) for application of dislocation for decolorization is 100. Table 1 shows the time taken for the pigmented film to decolorize until the colored film satisfies the above level at the time of 500 cycle operation.
실시예Example  And 비교예Comparative Example
실시예Example 1 One
250nm 두께의 ITO/ PET 적층체 상에, 스퍼터링 방식을 이용하여 300 nm 두께의 WO3 층을 적층하였다(공정압 15 mTorr, 증착 파워 200 W, 및 증착 시간 30분). 구체적으로는, 롤-투-롤 장비를 이용하여 상기 적층체 필름이 권취된 롤로부터 상기 필름을 권출하면서 권출된 필름의 ITO 일면 상에 WO3 층을 형성하였다. 이후, 열 증착 증착(thermal evaporation desposition) 방식을 이용하여 10 -6 Torr 및 640℃조건에서, ITO/WO3 적층체의 WO3에 리튬이온(Li+)을 삽입하고, WO3 층을 착색시켰다. 이때, 열 증발 증착이 수행된 시간은 10초이고, 리튬 도핑량은 2.0363 × 10-7 (mol/cm2)이다.A 300 nm thick WO 3 layer was deposited on a 250 nm thick ITO / PET laminate using a sputtering method (process pressure 15 mTorr, deposition power 200 W, and deposition time 30 min). Specifically, a WO 3 layer was formed on one side of the ITO film by winding the film from the roll on which the laminate film was wound using a roll-to-roll apparatus. Then, lithium ion (Li + ) was inserted into WO 3 of the ITO / WO 3 laminate at 10 -6 Torr and 640 ° C using a thermal evaporation desposition method to color the WO 3 layer . At this time, the heat and evaporation, the time is 10 seconds to perform, the Li doping amount is 2.0363 × 10 -7 (mol / cm 2).
이후 150 nm 두께의 겔 폴리머 전해질(GPE)을 매개로, ITO/WO3 적층체를 PB/ITO/PET 적층체와 합착하여 PET/ITO/WO3/GPE/PB/ITO/PET 구조의 전기변색 필름을 제조하였다. 이로써, 실제 구동 전에 전기변색 필름이 비교적 낮은 투광성(착색 상태)을 갖도록 하였다. 상기 PB층은, 20 nm 입경의 프러시안 블루 입자 30 중량%, 에탄올 65 중량%, 및 TEOS(Tetraethoxysilane) 5 중량%를 포함하는 코팅 용액을 ITO 상에 바코터를 이용하여 코팅한 다음 약 110 ℃에서 5분간 건조하여 제조하였다. PB층의 두께는 250 nm 이다.Then, the ITO / WO 3 laminate was laminated with a PB / ITO / PET laminate through a gel polymer electrolyte (GPE) having a thickness of 150 nm to prepare electrochromic films of PET / ITO / WO 3 / GPE / PB / ITO / A film was prepared. Thus, the electrochromic film had a relatively low translucency (colored state) before actual driving. The PB layer was formed by coating a coating solution containing 30 wt% Prussian blue particles having a diameter of 20 nm, 65 wt% ethanol, and 5 wt% TEOS (Tetraethoxysilane) on ITO using a bar coater, Lt; / RTI &gt; for 5 minutes. The thickness of the PB layer is 250 nm.
상기 필름에 대하여, 1 주기당 ± 2V의 탈색 및 착색 전압을 각각 50 초씩 인가하면서, 투과율, 구동 전하량, 변색 속도를 관찰하였다. 그 결과는 표 1과 같다.The transmittance, the amount of drive charge, and the discoloration rate of the film were observed while applying a decoloring and coloring voltage of ± 2 V per cycle for 50 seconds each. The results are shown in Table 1.
실시예Example 2 2
열 증발 증착이 수행된 시간을 20 초(리튬 도핑량은 3.1090 × 10-7 (mol/cm2))로 한 것을 제외하고, 실시예 1과 동일한 방법으로 동일한 구조의 전기변색 필름을 제조하였다.An electrochromic film having the same structure was prepared in the same manner as in Example 1, except that the time during which the thermal evaporation was performed was 20 seconds (lithium doping amount: 3.1090 × 10 -7 (mol / cm 2 )).
실시예Example 3 3
열 증발 증착이 수행된 시간을 30 초(리튬 도핑량은 4.1090 × 10-7 (mol/cm2))로 한 것을 제외하고, 실시예 1과 동일한 방법으로 동일한 구조의 전기변색 필름을 제조하였다.An electrochromic film having the same structure was prepared in the same manner as in Example 1, except that the time during which thermal evaporation was performed was 30 seconds (lithium doping amount was 4.1090 × 10 -7 (mol / cm 2 )).
비교예Comparative Example 1 One
열 증착에 의한 리튬이온의 삽입 과정이 생략된 것을 제외하고, 실시예 1과 동일한 방법으로 실시예 1과 동일한 적층 구성의 전기변색 소자를 제조하였다.An electrochromic device having the same lamination structure as in Example 1 was prepared in the same manner as in Example 1 except that the process of inserting lithium ions by thermal evaporation was omitted.
이후, 상기 필름의 PB/ITO 측에 - 5 V의 전압을 3분간 인가하여 PB를 탈색시켰다. 이로써, 실제 구동 전에 전기변색 필름이 비교적 높은 투광성을 갖도록 하였다. 실시예와 마찬가지로, 상기 필름에 대하여, 동일한 크기의 착색 및 탈색 전압을 동일한 시간 간격으로 인가하면서, 투과율, 구동 전하량, 변색 속도를 관찰하였다. 그 결과는 표 1과 같다.Thereafter, a voltage of-5 V was applied to the PB / ITO side of the film for 3 minutes to discolor the PB. As a result, the electrochromic film had a relatively high light transmittance before actual driving. The transmittance, the amount of drive charge, and the discoloration rate were observed while applying the same coloring and decoloring voltages of the same size to the film at the same time intervals. The results are shown in Table 1.
열증착에 의한 리튬 도핑 시간Lithium Doping Time by Thermal Deposition 구동 전하량(mC)Driving charge amount (mC) 투과율(%, 500 cycle)Transmittance (%, 500 cycles) 변색속도(second, 500 cycle)Color change rate (second, 500 cycles)
1 cycle1 cycle 50 cycle50 cycles 착색coloring 탈색decolorization 착색coloring 탈색decolorization
비교예 1Comparative Example 1 00 148148 1414 5151 6868 1616 1616
실시예 1Example 1 10초10 seconds 250250 5050 4040 7070 1515 1818
실시예 2Example 2 20초20 seconds 285285 300300 2525 7070 1515 1919
실시예 3Example 3 30초30 seconds 302302 301301 2424 7070 1919 1717
상기 표 1로부터, 구동 시간이 경과함에 따라, 비교예 필름에서 관찰되는 구동 전하량 및 착/탈색 투과율의 감소폭이 실시예 대비 더 크다는 것을 알 수 있다. 이는 실시예에 따라 제조된 필름의 장기 구동 내구성이, 비교예의 그것 대비 우수함을 의미한다.From Table 1, it can be seen that as the drive time elapses, the amount of decrease in the amount of drive charge and the adherence / discoloration transmittance observed in the comparative film is larger than in the Examples. This means that the long-term driving durability of the film produced according to the embodiment is superior to that of the comparative example.

Claims (11)

  1. 환원성 전기변색물질을 포함하는 전기변색층 상에 전해질층 및 이온저장층을 순차로 위치시키는 전기변색소자의 제조방법이고, 상기 방법은,A method of manufacturing an electrochromic device for sequentially positioning an electrolyte layer and an ion storage layer on an electrochromic layer comprising a reducing electrochromic material,
    전해질층을 전기변색층 상에 위치시키기 전에, 1가 양이온을 상기 전기변색층에 삽입하는 단계를 포함하는 전기변색소자의 제조방법.Inserting a monovalent cation into the electrochromic layer before placing the electrolyte layer on the electrochromic layer.
  2. 제 1 항에 있어서, 증착(deposition)에 의해 1가 양이온을 상기 전기변색층에 삽입하는 전기변색소자의 제조방법.The method of manufacturing an electrochromic device according to claim 1, wherein a monovalent cation is inserted into the electrochromic layer by deposition.
  3. 제 2 항에 있어서, 열 증발 증착(thermal evaporation desposition)에 의해 1가 양이온을 전기변색층으로 삽입하고, 3. The method of claim 2, wherein monovalent cations are inserted into the electrochromic layer by thermal evaporation desposition,
    상기 열 증발 증착을 10 mTorr 이하의 압력 및 180 ℃ 이상의 온도 조건 하에서 수행하는 전기변색소자의 제조방법.Wherein the thermal evaporation is performed at a pressure of 10 mTorr or less and a temperature of 180 DEG C or more.
  4. 제 3 항에 있어서, 상기 전기변색층으로 삽입되는 1가 양이온은 Li+, Na+, K+, Rb+ 또는 Cs+인 전기변색소자의 제조방법.The electrochromic device according to claim 3, wherein the monovalent cation to be inserted into the electrochromic layer is Li + , Na + , K + , Rb + or Cs + .
  5. 제 1 항에 있어서, 전기변색층은 Ti, Nb, Mo, Ta 및 W 중 선택되는 하나 이상 금속의 산화물을 포함하는 전기변색소자의 제조방법.The electrochromic device according to claim 1, wherein the electrochromic layer comprises an oxide of at least one selected from the group consisting of Ti, Nb, Mo, Ta and W.
  6. 제 5 항에 있어서, 롤-투-롤 장비를 이용하여 도전성 기재 상에 전기변색층을 형성하는 단계를 더 포함하는 전기변색소자의 제조방법.6. The method of manufacturing an electrochromic device according to claim 5, further comprising the step of forming a electrochromic layer on a conductive substrate using a roll-to-roll equipment.
  7. 제 6 항에 있어서, 도전성 기재를 롤-투-롤 장비로부터 권출하는 단계; 및 상기 권출된 도전성 기재 상에 전기변색층을 증착 방식에 의해 형성하는 단계를 포함하는 전기변색소자의 제조방법.7. The method of claim 6, further comprising: releasing the conductive substrate from the roll-to-roll equipment; And forming an electrochromic layer on the electroconductive substrate by a vapor deposition method.
  8. 제 7 항에 있어서, 스퍼터링 증착에 의해 상기 전기변색층을 도전성 기재 상에 형성하고, 8. The method of manufacturing a semiconductor device according to claim 7, wherein the electrochromic layer is formed on the electroconductive substrate by sputtering deposition,
    상기 스퍼터링 증착을 1 내지 100 mTorr 의 압력 및 50 내지 500 W의 파워 조건하에서 수행하는 전기변색소자의 제조방법.Wherein the sputtering deposition is performed under a pressure of 1 to 100 mTorr and a power of 50 to 500 W.
  9. 제 1 항에 있어서, 상기 전해질층은 전기변색층에 삽입된 1가 양이온과 동일한 종류의 양이온을 제공할 수 있는 금속염, 유기용매, 및 가교성 단량체를 포함하는 조성물로부터 형성되는 겔 폴리머 전해질을 갖는 전기변색소자의 제조방법.The method of claim 1, wherein the electrolyte layer has a gel polymer electrolyte formed from a composition comprising a metal salt capable of providing the same kind of cation as the monovalent cation inserted in the electrochromic layer, an organic solvent, and a crosslinkable monomer A method of manufacturing an electrochromic device.
  10. 제 1 항에 있어서, 상기 이온저장층은 전기변색 가능한 입자를 포함하는 코팅 조성물로부터 형성된 다공성층인 전기변색소자의 제조방법.2. The method of claim 1, wherein the ion storage layer is a porous layer formed from a coating composition comprising electrochromic particles.
  11. 제 10 항에 있어서, Cr, Mn, Fe, Co, Ni, Rh, 및 Ir 중에서 선택되는 하나 이상의 금속 산화물 입자; 또는 프러시안 블루(prussian blue) 입자를 포함하는 코팅 조성물을 제2 도전성 기재 상에 도포 후 열처리 하여 상기 이온저장층을 형성하는 전기변색소자의 제조방법.11. The method of claim 10, wherein at least one metal oxide particle selected from Cr, Mn, Fe, Co, Ni, Rh, and Ir; Or prussian blue particles is coated on a second conductive base material and then heat-treated to form the ion storage layer.
PCT/KR2018/010599 2017-09-18 2018-09-11 Method for manufacturing electrochromic device WO2019054720A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/645,728 US11680309B2 (en) 2017-09-18 2018-09-11 Method for preparing an electrochromic device
EP18856359.7A EP3686666B1 (en) 2017-09-18 2018-09-11 Method for manufacturing electrochromic device
CN201880058151.9A CN111095094B (en) 2017-09-18 2018-09-11 Method for preparing electrochromic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170119271 2017-09-18
KR10-2017-0119271 2017-09-18
KR10-2018-0106524 2018-09-06
KR1020180106524A KR102118358B1 (en) 2017-09-18 2018-09-06 Method for preparing an electrochromic device

Publications (1)

Publication Number Publication Date
WO2019054720A1 true WO2019054720A1 (en) 2019-03-21

Family

ID=65723344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010599 WO2019054720A1 (en) 2017-09-18 2018-09-11 Method for manufacturing electrochromic device

Country Status (1)

Country Link
WO (1) WO2019054720A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090034948A (en) * 2006-08-04 2009-04-08 쌩-고벵 글래스 프랑스 Electrochemical and/or electrocontrolable device, of the glazing type, having variable optical and/or energetic properties
US20140307302A1 (en) * 2011-11-07 2014-10-16 Acreo Swedish Ict Ab Vertical electrochromic display
JP2015096879A (en) * 2013-11-15 2015-05-21 株式会社リコー Electrochromic device and manufacturing method thereof
KR20160127866A (en) * 2015-04-27 2016-11-07 곽준영 Method for manufacturing electrochromic layer and electrochromic device
KR20170025612A (en) * 2015-08-31 2017-03-08 한밭대학교 산학협력단 Microporous polymer membrane for electrochromic device and smart window including the same
KR20170119271A (en) 2016-04-15 2017-10-26 앰코 테크놀로지 인코포레이티드 System and method for laser assisted bonding of semiconductor die
KR20180106524A (en) 2017-03-20 2018-10-01 주식회사 케이씨씨 Curable composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090034948A (en) * 2006-08-04 2009-04-08 쌩-고벵 글래스 프랑스 Electrochemical and/or electrocontrolable device, of the glazing type, having variable optical and/or energetic properties
US20140307302A1 (en) * 2011-11-07 2014-10-16 Acreo Swedish Ict Ab Vertical electrochromic display
JP2015096879A (en) * 2013-11-15 2015-05-21 株式会社リコー Electrochromic device and manufacturing method thereof
KR20160127866A (en) * 2015-04-27 2016-11-07 곽준영 Method for manufacturing electrochromic layer and electrochromic device
KR20170025612A (en) * 2015-08-31 2017-03-08 한밭대학교 산학협력단 Microporous polymer membrane for electrochromic device and smart window including the same
KR20170119271A (en) 2016-04-15 2017-10-26 앰코 테크놀로지 인코포레이티드 System and method for laser assisted bonding of semiconductor die
KR20180106524A (en) 2017-03-20 2018-10-01 주식회사 케이씨씨 Curable composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3686666A4 *

Similar Documents

Publication Publication Date Title
KR102118358B1 (en) Method for preparing an electrochromic device
WO2019199011A1 (en) Electrochromic film
KR102149672B1 (en) Electrochromic device
KR102038184B1 (en) An Electrochromic Device
WO2017065472A1 (en) Electrochromic element and method for manufacturing same
WO2017155295A1 (en) Electrochromic device
KR102167224B1 (en) Gel Polymer Electolyte, an Electrochromic Device Comprising the Same and Method for Preparing thereof
WO2021029561A1 (en) Electrochromic device
WO2019054720A1 (en) Method for manufacturing electrochromic device
KR20170112190A (en) An Electrochromic Device
KR102101151B1 (en) An Electrochromic Device
KR102108562B1 (en) An Electrochromic Device
KR102010754B1 (en) An Electrochromic Device
KR102651653B1 (en) An electochromic sheet and device comprising the same
KR20210009866A (en) Electrochromic Laminate
WO2018199566A1 (en) Electrochromic device
WO2018199569A1 (en) Electrochromic film and electrochromic element comprising same
WO2018009001A1 (en) Electrochromic device and manufacturing method therefor
KR20190118120A (en) An electrochromic film
KR102010734B1 (en) An Electrochromic Device
KR20170112384A (en) An Electrochromic Device
KR102126684B1 (en) method for operating an electrochromic device
WO2017217635A1 (en) Flexible electrochromic device using high-quality graphene composite electrode and method for manufacturing same
KR102126683B1 (en) method for operating an electrochromic device
WO2019199012A1 (en) Electrochromic film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018856359

Country of ref document: EP

Effective date: 20200420