WO2017155295A1 - Electrochromic device - Google Patents

Electrochromic device Download PDF

Info

Publication number
WO2017155295A1
WO2017155295A1 PCT/KR2017/002491 KR2017002491W WO2017155295A1 WO 2017155295 A1 WO2017155295 A1 WO 2017155295A1 KR 2017002491 W KR2017002491 W KR 2017002491W WO 2017155295 A1 WO2017155295 A1 WO 2017155295A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochromic
layer
layers
density
different densities
Prior art date
Application number
PCT/KR2017/002491
Other languages
French (fr)
Korean (ko)
Inventor
강수희
장성호
김충완
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170028748A external-priority patent/KR102010753B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/774,773 priority Critical patent/US10877348B2/en
Priority to CN201780004513.1A priority patent/CN108369363B/en
Publication of WO2017155295A1 publication Critical patent/WO2017155295A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • G02F2001/1536Constructional details structural features not otherwise provided for additional, e.g. protective, layer inside the cell

Definitions

  • the present application relates to the use of electrochromic devices and electrochromic devices.
  • Electrochromism refers to a phenomenon in which optical properties such as color or transmittance of an electrochromic active material change depending on an electrochemical oxidation and reduction reaction of a material. Electrochromic device using this phenomenon can be manufactured in a large area of the device at a low cost, and because it has a low power consumption, it can be used in various fields such as smart windows, smart mirrors, electronic paper (Patent Document 1: Korean Patent Publication No. 2008-0051280).
  • electrochromic material examples include transition metal oxides.
  • WO 3 , MoO 3 , TiO 2 , and the like may be exemplified as the coloring material by reduction
  • LiNiOx, NIOx, V 2 O 5 , IrO 2 , and the like may be exemplified as the coloring material by oxidation.
  • the electrochromic material may be thinned using sputter vacuum equipment.
  • the vacuum deposition method has a high process cost and maintenance cost, and a thin film of several hundred nm thickness is required for stable driving of the electrochromic device, but it is difficult to apply to mass production due to the low deposition rate.
  • there is a method of coating an electrochromic material there is a method of coating an electrochromic material. The coating method is simpler than the vacuum deposition method, and thus, the process cost is reduced, but additional processes such as treatment treatment may be required due to the reduction in adhesion between the coating layer and the substrate.
  • the problem to be solved by the present application is to increase the productivity of the electrochromic device and to solve and complement the problem of process stability due to the material, to provide an electrochromic device with improved productivity, electrochromic speed and durability and a manufacturing method thereof It is.
  • the present application relates to an electrochromic device.
  • the electrochromic device of the present application may sequentially include a first electrode layer, a composite electrochromic layer, an electrolyte layer, an ion storage layer, and a second electrode layer.
  • the composite electrochromic layer may include a stacked structure of a plurality of electrochromic layers. At least two electrochromic layers of the plurality of electrochromic layers may have different densities from each other. Among the two electrochromic layers having different densities from each other, a higher density electrochromic layer may be disposed adjacent to the first electrode layer than the lower density electrochromic layer.
  • the first and second electrode layers may be provided on the first and second substrates, respectively.
  • the electrochromic device of the present application may be implemented through a laminated structure of relatively small thicknesses of electrochromic layers, thereby increasing productivity.
  • the electrochromic device of the present application prevents ions (eg, Li + ions) in the electrolyte layer from penetrating into the electrode layer through the arrangement of a plurality of electrochromic layers having different densities from each other. Deterioration due to side reactions of the electrode layer material (eg, ITO) can be reduced, thereby exhibiting excellent electrochromic speed and durability.
  • an electrochromic device may include a first substrate 10, a first electrode layer 11, a composite electrochromic layer 12, an electrolyte layer 3, and an ion storage layer. 22, the second electrode layer 21, and the second substrate 20 may be sequentially included.
  • the composite electrochromic layer 12 may include at least two electrochromic layers 121 and 122 having different densities from each other, and a higher density of the first electrochromic layer 121 may include a second electrochromic layer having a lower density. It may be disposed closer to the first electrode layer 11 than to the color change layer.
  • the higher density of the first electrochromic layer 121 is adjacent to the first electrode layer 11, and the lower density of the second electrochromic layer 122 is the electrolyte layer 3. Adjacent to).
  • an electrode layer adjacent to the composite electrochromic layer may be referred to as a first electrode layer, and an electrode layer adjacent to the ion storage layer may be referred to as a second electrode layer.
  • the first and second electrode layers may perform a function of supplying charge to the composite electrochromic layer or the ion storage layer.
  • the first electrode layer may be referred to as an electrode, for example, an active electrode, which is electrochromic in the electrochromic device while adjacent to the composite electrochromic layer.
  • the second electrode layer may be referred to as an electrode, for example, a counter electrode, adjacent to the ion storage layer and capable of receiving hydrogen or lithium ions desorbed from the active electrode.
  • both the first electrode layer and the second electrode layer may be active electrodes and function as counter electrodes.
  • the first and second electrode layers may each comprise a transparent conductive material.
  • each of the first and second electrode layers may include at least one of a transparent conductive oxide, a conductive polymer, a silver nanowire, or a metal mesh.
  • the transparent conductive oxide includes indium tin oxide (ITO), fluor doped tin oxide (FTO), aluminum doped zinc oxide (AZO), gallium doped zinc oxide (GZO), antimony doped tin oxide (ATO), IZO (Indium doped Zinc Oxide), Niobium doped Titanium Oxide (NTO), ZnO, or CTO may be used, but is not limited thereto.
  • the first and second electrode layers may be formed in a structure in which two or more of the above-mentioned transparent conductive oxides are stacked.
  • the first or second electrode layer can be produced by, for example, forming an electrode material containing transparent conductive oxide particles in a thin film form on a transparent glass substrate through a process such as sputtering or digital printing.
  • the first or second electrode layer can be designed to have low thickness and sheet resistance and high transmittance. As the sheet resistance of the first or second electrode layer is lower, the coloring and decolorization conversion time of the electrochromic device tends to decrease. In consideration of this point, the physical properties of the first or second electrode layer can be appropriately adjusted.
  • the thickness of the first or second electrode layer can be 1 nm to 500 nm.
  • the voltage applied to the first or second electrode layer through an external circuit can be appropriately adjusted within a range that does not impair the purpose of the present application.
  • the voltage applied to the first or second electrode layer through the external circuit can be appropriately adjusted.
  • the voltage applied to the first or second electrode layer through an external circuit may be -5 V to + 5 V, but is not limited thereto.
  • the voltages at the time of coloring and decoloring may be the same or different, which may be appropriately adjusted as necessary.
  • the voltage may be applied by an AC power source, and a power supply device or a method of applying the voltage may be appropriately selected by those skilled in the art.
  • the electrochromic device of the present application may further include first and second substrates disposed on one surface of the first and second electrode layers, respectively.
  • the first and second substrates may be glass substrates or polymer substrates, respectively.
  • the first and second substrates may be any one selected from the group consisting of glass, glass fiber, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyethersulfone, polyimide, and combinations thereof.
  • the first substrate may be a glass substrate and the second substrate may be a polymer substrate.
  • the composite electrochromic layer can have a stacked structure of a plurality of electrochromic layers.
  • the stacked structure of the plurality of electrochromic layers may refer to a stacked structure of at least two electrochromic layers.
  • the electrochromic layer when not limited to “composite” or “plural”, the electrochromic layer may refer to one electrochromic layer formed independently.
  • the composite electrochromic layer may have a stacked structure of two, three, four, five, or more electrochromic layers as needed.
  • At least two electrochromic layers of the plurality of electrochromic layers may have different densities from each other.
  • a higher density electrochromic layer may be disposed closer to the first electrode layer than the lower density electrochromic layer.
  • This arrangement prevents ions (eg Li + ions) in the electrolyte layer from penetrating into the electrode layer, thereby reducing degradation due to side reactions of the ions in the electrolyte layer and the electrode layer material (eg ITO). Can exhibit excellent electrochromic speed and durability.
  • a higher density electrochromic layer may be disposed adjacent to the first electrode layer, and the lower density The layer may be disposed adjacent to the electrolyte layer.
  • the composite electrochromic layer has a laminated structure of three or more electrochromic layers having different densities from each other, the highest electrochromic layer is adjacent to the first electrode layer, and the lowest electrochromic is made.
  • the layer can be disposed adjacent to the electrolyte layer.
  • the lower the density of the electrochromic layers from the first electrode layer side toward the electrolyte layer side may be disposed.
  • the plurality of electrochromic layers may be disposed such that at least two electrochromic layers having different densities are adjacent to each other. Therefore, according to the electrochromic device of the present application, at least two electrochromic layers having different densities from each other may be driven to be adjacent to each other.
  • the plurality of electrochromic layers may be, for example, at least two electrochromic layers having different densities from each other directly stacked on each other.
  • a and B are directly stacked on each other may mean that A and B are laminated to each other without the presence of an intermediate layer such as an adhesive layer or an adhesive layer.
  • Directly stacking the two or more electrochromic layers with each other may be performed, for example, by depositing or coating another electrochromic layer on one electrochromic layer.
  • the density difference between two electrochromic layers having different densities may be appropriately selected in consideration of the purpose of the present application.
  • the density difference is 0.1 g / cm 3 , 0.2 g / cm 3 , 0.3 g / cm 3 , 0.4 g / cm 3 Or 0.5 g / cm 3 or more.
  • the upper limit of the density difference may be 3.0 g / cm 3 or less.
  • the density of each of the two electrochromic layers having different densities from each other may be appropriately selected in consideration of the purpose of the present application.
  • the higher density of the electrochromic layer among the two electrochromic layers having different densities may be 5.0 g / cm 3 to 8.0 g / cm 3 .
  • the denser electrochromic layer has a density of at least 5.0 g / cm 3, at least 5.25 g / cm 3, at least 5.5 g / cm 3, at least 5.75 g / cm 3, at least 6 g / cm 3, or 6.25 g.
  • the density of the lower electrochromic layer may be 3.0 g / cm 3 to 7.0 g / cm 3 .
  • the lower density electrochromic layer has a density of at least 3.0 g / cm 3, at least 3.5 g / cm 3, at least 4.0 g / cm 3, at least 4.5 g / cm 3, at least 5.5 g / cm 3, or 5.5 g.
  • / cm 3 or more may be 7.0 g / cm 3 or less, 6.5 g / cm 3 or less, or 6.0 g / cm 3 or less.
  • productivity may be increased, and it may be advantageous in terms of implementing an electrochromic device having excellent electrochromic speed and durability.
  • the thickness of the individual electrochromic layers included in the composite electrochromic layer may be appropriately selected in consideration of the purpose of the present application.
  • the thickness of the individual electrochromic layers can each be between 10 nm and 800 nm.
  • the thickness of the electrochromic layer having a higher density among the two electrochromic layers having different densities may be 10 nm to 800 nm, and the thickness of the lower density electrochromic layer may be 10 nm to 800 nm.
  • the higher density of the electrochromic layer may be 10 nm or more, 20 nm or more, 30 nm or more, 60 nm or more, or 90 nm or more, and 400 nm or less, 300 nm or less, 200 nm or less, or 100 nm or less.
  • the lower density of the electrochromic layer may be 10 nm or more, 50 nm or more, 100 nm or more, or 150 nm or more, and 400 nm or less, 300 nm or less, or 200 nm or less.
  • the entire thickness of the composite electrochromic layer may be 20 nm to 810 nm.
  • the total thickness of the composite electrochromic layer may be 20 nm or more, 60 nm or more, 100 nm or more, 140 nm or more, or 180 nm or more, and may be 810 nm or less, 700 nm or less, 600 nm or less, 500 nm or less, 400 nm or less, or 300 nm or less.
  • productivity may be increased, and an electrochromic device having excellent electrochromic speed and durability may be advantageous in terms of implementing the electrochromic device.
  • At least two electrochromic layers having different densities may be implemented through different physical structures.
  • the electrochromic layer of any one of at least two electrochromic layers having different densities may be a porous film.
  • the lower density electrochromic layer among the at least two electrochromic layers having different densities may be a porous film as compared to the higher density electrochromic layer.
  • the porous film may mean a film having a porous structure, that is, a film having a plurality of porosity (Porosity) in the interior or surface of the film.
  • A is a porous film as compared to B, which may mean that A includes more voids than B.
  • the plurality of electrochromic layers may be, for example, at least two electrochromic layers having different densities from each other may include an electrochromic material.
  • Electrochromism is a phenomenon in which the color is reversibly changed in response to an electrical signal. Electrochromism may be caused by an insertion / extraction process of electrons and ions (H + , Li +, etc.) in the electrochromic material. Electrochromic materials can be classified into reducing electrochromic materials that are reversibly colored by ion insertion and oxidative electrochromic materials that are reversibly colored by ion extraction.
  • electrochromic material a metal oxide electrochromic material, a metal complex, an organic electrochromic material, or a conductive polymer electrochromic material may be used.
  • metal oxide electrochromic materials include tungsten (W), titanium (Ti), vanadium (V), molybdenum (Mo), niobium (Nb), chromium (Cr), manganese (Mn), and tantalum (Ta). At least one of metal oxides of iron (Fe), nickel (Ni), cobalt (Co), iridium (Ir), and lithium nickel (LiNi) may be used.
  • Metal oxides such as tungsten (W), titanium (Ti), vanadium (V), molybdenum (Mo), and niobium (Nb) may be classified as reducing electrochromic materials, vanadium (V), chromium (Cr), Manganese (Mn), tantalum (Ta), iron (Fe), nickel (Ni), cobalt (Co), iridium (Ir) or lithium nickel (LiNi) may be classified as oxidative electrochromic materials.
  • metal complex for example, Prussian blue, Phthalocyanines or Bismuth may be used.
  • organic electrochromic material for example, viologen or quinone may be used.
  • Examples of the conductive polymer electrochromic material include polythiophene, polyaniline, polypyrrole, polyanthracene, polyfluorene, polycarbazole, polyphenylene One or more of polyphenylenevinylene and derivatives thereof can be used.
  • the plurality of electrochromic layers for example, at least two electrochromic layers having different densities from each other may include the same kind of electrochromic material.
  • two or more electrochromic layers having different densities may include tungsten oxide (WOx).
  • the electrochromic device of the present application implements different density of two or more electrochromic layers including the same kind of electrochromic material, thereby solving and supplementing the problem of increased productivity of the electrochromic device and process stability due to materials. can do.
  • the ion storage layer may serve to receive and recharge the charge of ions necessary to cause the electrochromic layer to discolor.
  • the ion storage layer may comprise a conductive material complementary to the electrochromic layer.
  • the ion storage layer may comprise an oxidative conductive material when the composite electrochromic layer comprises a reducing electrochromic material.
  • the ion storage layer may comprise a reducing conductive material when the composite electrochromic layer comprises an oxidizing electrochromic material.
  • the conductive material included in the ion storage layer may be an electrochromic material. If the composite electrochromic layer comprises a reducing electrochromic material, the ion storage layer may comprise an oxidizing electrochromic material, and if the composite electrochromic layer comprises an oxidizing electrochromic material, the ion storage layer comprises a reducing electrochromic material. can do. According to one embodiment of the present application, when tungsten oxide (WO 3 ) is used in the composite electrochromic layer, lithium nickel oxide (LiNixOy) may be used in the ion storage layer.
  • tungsten oxide WO 3
  • LiNixOy lithium nickel oxide
  • the ion storage layer may comprise a suitable conductive material, for example conductive material such as conductive graphite, regardless of whether the composite electrochromic layer contains a reducing color change material or an oxidizing color change material.
  • the thickness of the ion storage layer may be appropriately selected within a range that does not impair the purpose of the present application.
  • the thickness of the ion storage layer may be 20 nm to 810 nm.
  • the electrolyte layer may comprise an electrolyte salt.
  • the electrolyte layer may be any one selected from the group consisting of a liquid electrolyte, a gel electrolyte, a solid electrolyte, a polymer electrolyte, and a gel polymer electrolyte in which an electrolyte salt is dissolved, and in the case of a liquid electrolyte, an electrolyte salt may be dissolved in a solvent. have.
  • the electrolyte may be a gel polymer electrolyte.
  • the electrolyte salt may be an organic electrolyte salt or an inorganic electrolyte salt. More specifically, the electrolyte salt may include a lithium salt, potassium salt, sodium salt or ammonium salt, for example, the electrolyte salt is n-Bu 4 NClO 4 , n-Bu 4 NPF 6 , NaBF 4 , LiClO 4 , Any one selected from the group consisting of LiPF 6 , LiBF 4 , LiN (SO 2 C 2 F 5 ) 2 , LiCF 3 SO 3 , C 2 F 6 LiNO 4 S 2 , K 4 Fe (CN) 6, and combinations thereof Can be.
  • the solvent may be applied as long as it is a non-aqueous solvent, and specifically, dichloromethane, chloroform, acetonitrile, ethylene carbonate (EC), propylene carbonate (PC), tetrahydrofuran (THF), butylene carbonate, and combinations thereof. It may be any one selected from the group consisting of.
  • the thickness of the electrolyte layer may be appropriately selected within a range that does not impair the purpose of the present application.
  • the thickness of the electrolyte layer may be 400 nm to 2000 nm.
  • the thickness of the electrolyte layer satisfies the above range, it is possible to provide an electrochromic device having improved electrochromic speed and stability.
  • the present application also relates to a method of manufacturing an electrochromic device.
  • the manufacturing method may be a manufacturing method of the electrochromic device described above.
  • the manufacturing method may include sequentially stacking a composite electrochromic layer, an electrolyte layer, an ion storage layer, and a second electrode layer on the first electrode layer.
  • the composite electrochromic layer includes a plurality of electrochromic layers, wherein at least two electrochromic layers of the plurality of electrochromic layers have different densities from each other, and among the two electrochromic layers having different densities from each other.
  • the higher density electrochromic layer may be stacked so as to be adjacent to the first electrode layer as compared to the lower density electrochromic layer.
  • the details of the first electrode layer, the composite electrochromic layer, the electrolyte layer, the ion storage layer and the second electrode layer may be the same as described in the items of the electrochromic device.
  • the interlayer lamination method can be made by appropriately selecting a known method.
  • sputtering, sol-gel, e-beam evaporation, pulsed laser deposition, chemical vapor deposition, spin coating, or Each layer can be formed using any of dip coating methods.
  • differently controlling the density of the two or more electrochromic layers may be performed by laminating one electrochromic layer in the form of a porous film as compared to another adjacent electrochromic layer. Details of the porous film may be the same as described in the item of the electrochromic device.
  • laminating the electrochromic layer in the form of a porous film may be achieved by applying a sputtering process in order to deposit the electrochromic layer, but adjusting process pressure conditions or an E-beam evaporation process. By applying but adjusting the gas conditions. Process pressure conditions in the sputter process or gas conditions in the electron beam deposition process may be appropriately selected depending on the density to be implemented.
  • the higher the process pressure the less the density of the electrochromic layer tends to decrease.
  • the density of the electrochromic layer tends to decrease as the process pressure increases through gas injection.
  • the source of the sputtering process is a solid solid of the metal component
  • the source of the electron beam deposition process is a solid in the form of Granule
  • the electrochromic device of the present application has the effect of improving the electrochromic speed and stability.
  • Such electrochromic devices may be usefully used in various devices such as smart windows, smart mirrors, displays, electronic paper, and active camouflage.
  • the manner of configuring such a device is not particularly limited and a conventional manner may be applied as long as the electrochromic device of the present application is applied.
  • the present application can provide an electrochromic device having increased productivity and improved electrochromic speed and durability.
  • electrochromic devices may be usefully used in various devices such as smart windows, smart mirrors, displays, electronic paper, and active camouflage.
  • FIG. 1 exemplarily shows an electrochromic device according to an embodiment of the present application.
  • FIG. 6 is a coloration and decolorization image at 750 cycles of Example 1.
  • FIG. 7 is a coloration and decolorization image at 750 cycles of Example 2.
  • FIG. 8 is a color image of 400 cycles of Example 3.
  • 15 to 16 are graphs of the charge amounts of Example 2 and Comparative Example 2, respectively.
  • FIG. 17 is a color image of 50 cycles of Comparative Example 2.
  • FIG. 18 is a graph showing transmittance and charge amount of Comparative Example 2.
  • the density of the electrochromic layer thin film was measured for 1 second every 0.002 degrees from 2theta 0.2 degree to 2.4 degree using X-ray reflectometry (XRR) analysis.
  • XRR X-ray reflectometry
  • Example 1 (Stack: Glass / ITO / WOx (One)/ WOx (2)/ GPE Of LiNixOy / ITO / PET film)
  • the first electrochromic layer 121 was formed by providing a thin film having a thickness of about 30 nm.
  • WOx (tungsten oxide) was formed on the first electrochromic layer 121 by electron beam evaporation at a deposition rate of 6.03 kV at a high voltage of 0.5 nm / sec.
  • a second electrochromic layer 122 was formed.
  • the density of the first electrochromic layer 121 is about 6.3 ⁇ 0.1 g / cm 3 and the density of the second electrochromic layer 122 is about 5.8 ⁇ 0.1 g / cm 3 .
  • LiNixOy After forming a plasma on the LiNiO 2 target by using a DC sputter on the ITO layer laminated on the PET film, and injecting Ar and O 2 Gas into the chamber through a reactive reaction, LiNixOy has a thickness of about 75nm
  • the ion storage layer 22 was formed by being provided as a thin film.
  • the working and counter electrodes are arranged so that the second electrochromic layer 122 and the ion storage layer 21 contact the gel polymer electrolyte 3.
  • the gel polymer electrolyte comprising a mixture of propylene carbonate (PC) and LiClO 4 .
  • Example 2 (Stack: Glass / ITO / WOx (One)/ WOx (2)/ GPE Of LiNixOy / ITO / PET film)
  • the electrochromic color was changed in the same manner as in Example 1, except that the DC sputtering time was doubled to provide a thin film having a thickness of about 60 nm.
  • the device was manufactured.
  • the density of the first electrochromic layer thin film 121 is about 6.3 ⁇ 0.1 g / cm 3
  • the density of the second electrochromic layer thin film 122 is about 5.8 ⁇ 0.1 g / cm 3 .
  • Example 3 (Stack: Glass / ITO / WOx (One)/ WOx (2)/ GPE Of LiNixOy / ITO / PET film)
  • Example 1 the first electrochromic layer thin film 121 was formed in the same manner as in Example 1 except that the DC sputtering time was increased three times to provide a thin film having a thickness of about 90 nm. A color change device was prepared.
  • the density of the first electrochromic layer thin film 121 is about 6.3 ⁇ 0.1 g / cm 3
  • the density of the second electrochromic layer thin film 122 is about 5.8 ⁇ 0.1 g / cm 3 .
  • Comparative example 1 (Stack: Glass / ITO / WOx Of GPE Of LiNixOy / ITO / PET film)
  • Example 1 In manufacturing the working electrode in Example 1, in forming the first electrochromic layer thin film 121, except that the electrochromic layer formed of a single layer structure of a thin film of about 420nm thickness by increasing the DC sputtering time by 14 times Then, an electrochromic device was manufactured in the same manner as in Example 1.
  • the density of the electrochromic layer thin film is about 6.3 ⁇ 0.1 g / cm 3 .
  • Comparative example 2 (Stack: Glass / ITO / WOx (2)/ WOx (One)/ GPE Of LiNixOy / ITO / PET film)
  • a second electrochromic layer 122 having a density of about 5.8 ⁇ 0.1 g / cm 3 is first formed on the ITO electrode layer, and then on the second electrochromic layer 122
  • An electrochromic device was manufactured in the same manner as in Example 2, except that a first electrochromic layer 121 having a density of about 6.3 ⁇ 0.1 g / cm 3 was formed.
  • Comparative Example 1 does not deteriorate after 100 cycles, whereas Examples 1 to 2 do not deteriorate even after 800 cycles, and Example 3 deteriorates up to about 150 cycles. It can be confirmed that the durability is superior to Comparative Example 1.
  • 7 and 8 are colored and decolorized images after driving 750 cycles of the electrochromic devices of Examples 1 and 2, respectively, and FIG. 9 is a colored image after driving 400 cycles for Example 3.
  • FIG. 9 is a colored image after driving 400 cycles for Example 3.
  • 9 to 11 show changes in the amount of charge during discoloration and decoloration with the elapsed time of the electrochromic elements of Examples 1 to 3, respectively.
  • As the amount of charge increases it may mean that Li + ions contribute a lot to coloring, decoloring, or electrochromic color.
  • FIGS. 9 and 11 in Examples 1 and 2, it can be seen that up to about 750 cycles exhibits stable electrochromic properties without a decrease in charge amount.
  • 12 to 14 show changes in transmittance and charge amount during coloration and decoloration according to the number of cycles of the electrochromic devices of Examples 1 to 3, respectively.
  • Example 15 to 16 show changes in charge amount during discoloration and decoloration with elapsed time of the electrochromic devices of Example 2 and Comparative Example 2, respectively.
  • Example 2 shows a stable electrochromic properties without a decrease in the amount of charge over time
  • Comparative Example 2 can be seen that the amount of charge decreases after 50 Cycle.
  • 17 is a coloring image after driving 50 cycles of Comparative Example 2.
  • FIG. 18 shows changes in transmittance and charge amount during coloration and decoloration according to the number of cycles of the electrochromic device of Comparative Example 2.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

The present application relates to an electrochromic device and a method for manufacturing the electrochromic device. The present application can provide an electrochromic device having increased productivity and having improved electrochromism speed and durability, and a method for manufacturing the electrochromic device. The electrochromic device can be useful in various apparatuses such as a smart window, a smart mirror, a display, electronic paper and adaptive camouflage.

Description

전기변색 소자Electrochromic device
본 출원은 전기변색 소자 및 전기변색 소자의 용도에 관한 것이다. The present application relates to the use of electrochromic devices and electrochromic devices.
본 출원은 2016년 3월 8일자 한국 특허 출원 제10-2016-0027597호 및 2017년 3월 7일자 한국 특허 출원 제10-2017-0028748호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0027597 dated March 8, 2016 and Korean Patent Application No. 10-2017-0028748 dated March 7, 2017. All content disclosed in the literature is included as part of this specification.
전기변색(Electrochromism)은 물질의 전기화학적 산화 및 환원 반응에 따라, 전기변색 활성물질의 색(color)이나 투과도(transmittance)와 같은 광학적 성질이 변하는 현상을 말한다. 이러한 현상을 이용한 전기변색 소자는 적은 비용으로도 넓은 면적의 소자로 제조될 수 있고, 낮은 소비전력을 갖기 때문에, 스마트 윈도우, 스마트 거울, 전자 종이 등 다양한 분야에 이용될 수 있다(특허문헌 1: 대한민국 특허공개공보 제2008-0051280호).Electrochromism refers to a phenomenon in which optical properties such as color or transmittance of an electrochromic active material change depending on an electrochemical oxidation and reduction reaction of a material. Electrochromic device using this phenomenon can be manufactured in a large area of the device at a low cost, and because it has a low power consumption, it can be used in various fields such as smart windows, smart mirrors, electronic paper (Patent Document 1: Korean Patent Publication No. 2008-0051280).
전기변색 물질로는 전이금속 산화물을 예시할 수 있다. 예를 들어, 환원에 의한 발색 재료로는 WO3, MoO3, TiO2 등을 예시할 수 있고, 산화에 의한 발색 재료로는 LiNiOx, NIOx, V2O5, IrO2 등을 예시할 수 있다. Examples of the electrochromic material include transition metal oxides. For example, WO 3 , MoO 3 , TiO 2 , and the like may be exemplified as the coloring material by reduction, and LiNiOx, NIOx, V 2 O 5 , IrO 2 , and the like may be exemplified as the coloring material by oxidation.
상기 전기변색 물질을 전기변색 소자에 적용하기 위해서는 박막의 형태로 제공하는 것이 필요하다. 하나의 예시에서, 상기 전기변색 물질은 스퍼터 진공 장비를 이용하여 박막화될 수 있다. 그러나 진공 증착 방식은 공정 단가 및 유지 비용이 고가이며, 전기변색 소자의 안정적인 구동을 위해서는 수백 nm 두께의 박막이 필요하지만, 증착 속도가 느려 양산 시 적용이 어렵다는 문제점이 있다. 상기 진공 증착 방식의 대안으로, 전기변색 물질을 코팅하는 방식이 있다. 코팅 방식은, 진공 증착 방식에 비하여, 공정이 단순하며 이로 인해 공정 원가 절감 효과도 있으나, 코팅 층과 기재의 부착력 감소로 트리트먼트 처리와 같은 추가 공정이 필요할 수도 있다. In order to apply the electrochromic material to the electrochromic device it is necessary to provide in the form of a thin film. In one example, the electrochromic material may be thinned using sputter vacuum equipment. However, the vacuum deposition method has a high process cost and maintenance cost, and a thin film of several hundred nm thickness is required for stable driving of the electrochromic device, but it is difficult to apply to mass production due to the low deposition rate. As an alternative to the vacuum deposition method, there is a method of coating an electrochromic material. The coating method is simpler than the vacuum deposition method, and thus, the process cost is reduced, but additional processes such as treatment treatment may be required due to the reduction in adhesion between the coating layer and the substrate.
한편, 전기변색 소자 분야에서는, 사이클링 테스트시, 안정적인 전기변색 특성을 유지하고 열적 안정성 및 내구성을 가지는 것이 요구된다. 또한, 전기변색 소자에 열화 (Degradation)가 발생하면 전기변색 특성이 저하되거나 구현되지 않으며, 열화가 육안으로도 관찰되는 문제점이 있으므로, 스마트 윈도우 등에 사용하기 위해서는 전기변색 안정성을 개선하는 것이 필요하다. On the other hand, in the field of electrochromic devices, it is required to maintain stable electrochromic properties and have thermal stability and durability during cycling tests. In addition, when the degradation occurs in the electrochromic device (degradation), the electrochromic properties are not degraded or implemented, and there is a problem that the degradation is also observed by the naked eye, it is necessary to improve the electrochromic stability for use in smart windows and the like.
본 출원이 해결하고자 하는 과제는 전기변색 소자의 생산성을 증대하고 재료에 기인한 공정 안정성의 문제를 해결 및 보완하기 위한 것으로, 생산성, 전기변색 속도 및 내구성이 향상된 전기변색 소자 및 이의 제조 방법을 제공하는 것이다. The problem to be solved by the present application is to increase the productivity of the electrochromic device and to solve and complement the problem of process stability due to the material, to provide an electrochromic device with improved productivity, electrochromic speed and durability and a manufacturing method thereof It is.
본 출원은 전기변색 소자에 관한 것이다. 본 출원의 전기변색 소자는 제1 전극 층, 복합 전기변색 층, 전해질 층, 이온저장 층 및 제2 전극층을 순차로 포함할 수 있다. 상기 복합 전기변색 층은 복수의 전기변색 층들의 적층 구조를 포함할 수 있다. 상기 복수의 전기변색 층들 중 적어도 2장의 전기변색 층들은 밀도가 서로 상이할 수 있다. 상기 밀도가 서로 상이한 2장의 전기변색 층들 중 밀도가 더 높은 전기변색 층이 밀도가 더 낮은 전기변색 층에 비하여 상기 제1 전극 층에 인접하게 배치될 수 있다. 상기 제1 및 제2 전극 층은 각각 제1 및 제2 기판상에 제공될 수 있다.The present application relates to an electrochromic device. The electrochromic device of the present application may sequentially include a first electrode layer, a composite electrochromic layer, an electrolyte layer, an ion storage layer, and a second electrode layer. The composite electrochromic layer may include a stacked structure of a plurality of electrochromic layers. At least two electrochromic layers of the plurality of electrochromic layers may have different densities from each other. Among the two electrochromic layers having different densities from each other, a higher density electrochromic layer may be disposed adjacent to the first electrode layer than the lower density electrochromic layer. The first and second electrode layers may be provided on the first and second substrates, respectively.
본 출원의 전기변색 소자는 상대적으로 적은 두께의 전기변색 층들의 적층 구조를 통하여 구현될 수 있으므로 생산성을 증대할 수 있다. 또한, 본 출원의 전기변색 소자는 밀도가 서로 상이한 복수의 전기변색 층들의 배치를 통하여 전해질 층 내의 이온(예를 들어, Li+ 이온)이 전극 층 내로 침투하는 것을 방지함으로써, 전해질 층 내의 이온과 전극층 재료(예를 들어, ITO)의 부반응으로 인한 열화 현상을 감소시킬 수 있으므로 우수한 전기변색 속도 및 내구성을 나타낼 수 있다.The electrochromic device of the present application may be implemented through a laminated structure of relatively small thicknesses of electrochromic layers, thereby increasing productivity. In addition, the electrochromic device of the present application prevents ions (eg, Li + ions) in the electrolyte layer from penetrating into the electrode layer through the arrangement of a plurality of electrochromic layers having different densities from each other. Deterioration due to side reactions of the electrode layer material (eg, ITO) can be reduced, thereby exhibiting excellent electrochromic speed and durability.
도 1은 본 출원의 일 실시예에 따른 전기변색 소자를 예시적으로 나타낸다. 도 1에 도시된 바와 같이 본 출원의 일 실시예에 따른 전기변색 소자는 제1 기판(10), 제1 전극층(11), 복합 전기변색 층(12), 전해질 층(3), 이온저장 층(22), 제2 전극 층(21) 및 제2 기판(20)을 순차로 포함할 수 있다. 상기 복합 전기변색 층(12)은 밀도가 서로 상이한 적어도 2장의 전기변색 층(121, 122)들을 포함할 수 있고, 밀도가 더 높은 제1 전기변색 층(121)이 밀도가 더 낮은 제2 전기변색 층에 비하여 제1 전극 층(11)에 더 가깝게 배치될 수 있다. 도 1에 따른 전기변색 소자는, 상기 밀도가 더 높은 제1 전기변색 층(121)이 제1 전극층(11)에 인접하고, 밀도가 더 낮은 제2 전기변색 층(122)이 전해질 층(3)에 인접하고 있다. 1 exemplarily shows an electrochromic device according to an embodiment of the present application. As shown in FIG. 1, an electrochromic device according to an exemplary embodiment of the present application may include a first substrate 10, a first electrode layer 11, a composite electrochromic layer 12, an electrolyte layer 3, and an ion storage layer. 22, the second electrode layer 21, and the second substrate 20 may be sequentially included. The composite electrochromic layer 12 may include at least two electrochromic layers 121 and 122 having different densities from each other, and a higher density of the first electrochromic layer 121 may include a second electrochromic layer having a lower density. It may be disposed closer to the first electrode layer 11 than to the color change layer. In the electrochromic device according to FIG. 1, the higher density of the first electrochromic layer 121 is adjacent to the first electrode layer 11, and the lower density of the second electrochromic layer 122 is the electrolyte layer 3. Adjacent to).
이하, 본 출원의 전기변색 소자에 대하여 구체적으로 설명한다. Hereinafter, the electrochromic device of the present application will be described in detail.
[전극층][Electrode layer]
본 명세서에서는 복합 전기변색 층에 인접한 전극 층을 제1 전극 층으로 호칭하고, 이온저장 층에 인접한 전극층을 제2 전극 층으로 호칭할 수 있다. 제1 및 제2 전극층은 복합 전기변색 층 또는 이온저장 층에 전하를 공급하는 기능을 수행할 수 있다. 상기 제1 전극 층은 복합 전기변색 층에 인접하면서 전기변색 소자에서 전기변색 작용을 하는 전극, 예를 들어 활동 전극으로 호칭될 수 있다. 상기 제2 전극 층은 이온저장 층에 인접하면서 활동전극으로부터 탈리된 수소 또는 리튬 이온 등을 수용할 수 있는 전극, 예를 들어 상대 전극으로 호칭될 수 있다. 다만 후술하는 바와 같이 이온저장 층도 전기변색 물질을 포함하는 경우에는 제1 전극 층 및 제2 전극 층은 모두 활동 전극임과 동시에 상대 전극으로 기능할 수 있다. In the present specification, an electrode layer adjacent to the composite electrochromic layer may be referred to as a first electrode layer, and an electrode layer adjacent to the ion storage layer may be referred to as a second electrode layer. The first and second electrode layers may perform a function of supplying charge to the composite electrochromic layer or the ion storage layer. The first electrode layer may be referred to as an electrode, for example, an active electrode, which is electrochromic in the electrochromic device while adjacent to the composite electrochromic layer. The second electrode layer may be referred to as an electrode, for example, a counter electrode, adjacent to the ion storage layer and capable of receiving hydrogen or lithium ions desorbed from the active electrode. However, as will be described later, when the ion storage layer also includes an electrochromic material, both the first electrode layer and the second electrode layer may be active electrodes and function as counter electrodes.
제1 및 제2 전극 층은 각각 투명 전도성 물질을 포함할 수 있다. 구체적으로 제 1 및 제2 전극 층은 각각 투명 전도성 산화물(transparent conductive oxide), 전도성 고분자, 은나노 와이어, 또는 메탈메쉬(Metal mesh) 중 어느 하나 이상을 포함할 수 있다. 하나의 예시에서, 투명 전도성 산화물로는 ITO(Indium Tin Oxide), FTO(Fluor doped Tin Oxide), AZO(Aluminium doped Zinc Oxide), GZO(Galium doped Zinc Oxide), ATO(Antimony doped Tin Oxide), IZO(Indium doped Zinc Oxide), NTO(Niobium doped Titanium Oxide), ZnO, 또는 CTO 등이 사용될 수 있으나, 이에 제한되는 것은 아니다. 또 다른 예시에서, 상기 제1 및 제2 전극 층은, 상기 언급된 투명 전도성 산화물 중 2 이상의 물질이 적층된 구조로 형성될 수 있다.The first and second electrode layers may each comprise a transparent conductive material. Specifically, each of the first and second electrode layers may include at least one of a transparent conductive oxide, a conductive polymer, a silver nanowire, or a metal mesh. In one example, the transparent conductive oxide includes indium tin oxide (ITO), fluor doped tin oxide (FTO), aluminum doped zinc oxide (AZO), gallium doped zinc oxide (GZO), antimony doped tin oxide (ATO), IZO (Indium doped Zinc Oxide), Niobium doped Titanium Oxide (NTO), ZnO, or CTO may be used, but is not limited thereto. In another example, the first and second electrode layers may be formed in a structure in which two or more of the above-mentioned transparent conductive oxides are stacked.
제1 또는 제2 전극 층은 예를 들어 투명 전도성 산화물 입자를 포함하는 전극 재료를, 스퍼터링이나 디지털 프린팅 등의 공정을 통해, 투명한 유리 기판상에 박막형태로 형성함으로써 제조될 수 있다.The first or second electrode layer can be produced by, for example, forming an electrode material containing transparent conductive oxide particles in a thin film form on a transparent glass substrate through a process such as sputtering or digital printing.
제1 또는 제2 전극 층의 물성은 본 출원의 목적을 손상시키지 않은 범위 내에서 적절히 조절될 수 있다. 하나의 예로, 제1 또는 제2 전극 층은 두께와 면저항은 낮도록, 투과도는 높도록 설계될 수 있다. 상기 제1 또는 제2 전극 층의 면저항이 낮을수록 전기변색 소자의 착색 및 탈색 변환 시간이 감소하는 경향이 있다. 이러한 점을 고려하여 제1 또는 제2 전극 층의 물성을 적절히 조절할 수 있다. 예를 들어, 제1 또는 제2 전극 층의 두께는 1nm 내지 500nm일 수 있다. Physical properties of the first or second electrode layer can be appropriately adjusted within a range that does not impair the purpose of the present application. As an example, the first or second electrode layer may be designed to have low thickness and sheet resistance and high transmittance. As the sheet resistance of the first or second electrode layer is lower, the coloring and decolorization conversion time of the electrochromic device tends to decrease. In consideration of this point, the physical properties of the first or second electrode layer can be appropriately adjusted. For example, the thickness of the first or second electrode layer can be 1 nm to 500 nm.
제1 또는 제2 전극 층에 외부 회로를 통하여 인가되는 전압은 본 출원의 목적을 손상시키지 않는 범위 내에서 적절히 조절될 수 있다. 제1 또는 제2 전극 층에 인가되는 전압이 높을수록 전기변색 소자의 특성은 우수하지만 소자의 열화를 가속시켜 내구성은 저하될 수도 있다. 이러한 점을 고려하여, 제1 또는 제2 전극 층에 외부 회로를 통하여 인가되는 전압을 적절히 조절할 수 있다. 예를 들어, 제1 또는 제2 전극 층에 외부 회로를 통하여 인가되는 전압은 -5 V 내지 + 5 V 일 수 있으나, 이에 제한되는 것은 아니다. 또한, 착색 및 탈색 시의 전압은 동일 또는 상이할 수 있으며, 이는 필요에 따라 적절히 조절될 수 있다. 상기 전압은 교류 전원에 의해 인가될 수 있으며, 상기 전압을 인가하는 전원장치나 그 방식은 당업자에 의해 적절히 선택될 수 있다.The voltage applied to the first or second electrode layer through an external circuit can be appropriately adjusted within a range that does not impair the purpose of the present application. The higher the voltage applied to the first or second electrode layer, the better the characteristics of the electrochromic device, but the durability may be lowered by accelerating deterioration of the device. In view of this, the voltage applied to the first or second electrode layer through the external circuit can be appropriately adjusted. For example, the voltage applied to the first or second electrode layer through an external circuit may be -5 V to + 5 V, but is not limited thereto. In addition, the voltages at the time of coloring and decoloring may be the same or different, which may be appropriately adjusted as necessary. The voltage may be applied by an AC power source, and a power supply device or a method of applying the voltage may be appropriately selected by those skilled in the art.
도 1에 도시한 바와 같이, 본 출원의 전기변색 소자는 상기 제1 및 제2 전극 층의 일면에 각각 배치된 제1 및 제2 기판을 더 포함할 수 있다. 상기 제1 및 제 2 기판은 각각 유리 기판 또는 폴리머 기판일 수 있다. 구체적으로 제1 및 제 2 기판은 각각 유리, 유리섬유, 폴리에틸렌 테레프탈레이트, 폴리에틸렌 나프탈레이트, 폴리카보네이트, 폴리에테르설폰, 폴리이미드 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있다. 본 출원의 일 실시예에 의하면 제1 기판은 유리 기판일 수 있고 제2 기판은 폴리머 기판일 수 있다. As shown in FIG. 1, the electrochromic device of the present application may further include first and second substrates disposed on one surface of the first and second electrode layers, respectively. The first and second substrates may be glass substrates or polymer substrates, respectively. Specifically, the first and second substrates may be any one selected from the group consisting of glass, glass fiber, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyethersulfone, polyimide, and combinations thereof. According to an embodiment of the present application, the first substrate may be a glass substrate and the second substrate may be a polymer substrate.
[복합 전기변색 층][Compound Electrochromic Layer]
복합 전기변색 층은 복수의 전기변색 층들의 적층 구조를 가질 수 있다. 본 명세서에서 복수의 전기변색 층들의 적층 구조는 적어도 2장 이상의 전기변색 층들의 적층 구조를 의미할 수 있다. 본 명세서에서 전기변색 층을 언급하면서, "복합" 또는 "복수"로 한정하지 않는 경우, 그 전기변색 층은 독립적으로 형성된 1장의 전기변색 층을 의미할 수 있다. 상기 복합 전기변색 층은 필요에 따라 2장, 3장, 4장, 5장 또는 그 이상의 수의 전기변색 층들의 적층 구조를 가질 수 있다. The composite electrochromic layer can have a stacked structure of a plurality of electrochromic layers. In this specification, the stacked structure of the plurality of electrochromic layers may refer to a stacked structure of at least two electrochromic layers. When referring to the electrochromic layer herein, when not limited to "composite" or "plural", the electrochromic layer may refer to one electrochromic layer formed independently. The composite electrochromic layer may have a stacked structure of two, three, four, five, or more electrochromic layers as needed.
상기 복수의 전기변색 층들 중 적어도 2장의 전기변색 층들은 밀도가 서로 상이할 수 있다. 상기 밀도가 서로 상이한 2장의 전기변색 층들 중 밀도가 더 높은 전기변색 층이 밀도가 더 낮은 전기변색 층에 비하여 상기 제1 전극 층에 더 가깝게 배치될 수 있다. 상기 배치를 통하여 전해질 층 내의 이온(예를 들어, Li+ 이온)이 전극 층 내로 침투하는 것을 방지함으로써, 전해질 층 내의 이온과 전극층 재료(예를 들어, ITO)의 부반응으로 인한 열화 현상을 감소시킬 수 있으므로 우수한 전기변색 속도 및 내구성을 나타낼 수 있다. At least two electrochromic layers of the plurality of electrochromic layers may have different densities from each other. Among the two electrochromic layers having different densities, a higher density electrochromic layer may be disposed closer to the first electrode layer than the lower density electrochromic layer. This arrangement prevents ions (eg Li + ions) in the electrolyte layer from penetrating into the electrode layer, thereby reducing degradation due to side reactions of the ions in the electrolyte layer and the electrode layer material (eg ITO). Can exhibit excellent electrochromic speed and durability.
하나의 예시에서, 상기 복합 전기변색 층이 밀도가 서로 상이한 2장의 전기변색 층들의 적층 구조를 갖는 경우, 밀도가 더 높은 전기변색 층이 제1 전극층에 인접하게 배치될 수 있고, 밀도가 더 낮은 층이 전해질 층에 인접하게 배치될 수 있다. 다른 하나의 예시에서, 상기 복합 전기변색 층이 밀도가 서로 상이한 3장 이상의 전기변색 층들의 적층 구조를 갖는 경우, 밀도가 가장 높은 전기변색 층이 제1 전극층에 인접하고, 밀도가 가장 낮은 전기변색 층이 전해질 층에 인접하도록 배치될 수 있다. 또한, 제1 전극 층 측에서 전해질 층 측으로 갈수록 전기변색 층들의 밀도가 낮아질수록 배치될 수 있다. In one example, when the composite electrochromic layer has a laminated structure of two electrochromic layers having different densities from each other, a higher density electrochromic layer may be disposed adjacent to the first electrode layer, and the lower density The layer may be disposed adjacent to the electrolyte layer. In another example, when the composite electrochromic layer has a laminated structure of three or more electrochromic layers having different densities from each other, the highest electrochromic layer is adjacent to the first electrode layer, and the lowest electrochromic is made. The layer can be disposed adjacent to the electrolyte layer. In addition, the lower the density of the electrochromic layers from the first electrode layer side toward the electrolyte layer side may be disposed.
상기 복수의 전기변색 층들은, 예를 들어, 밀도가 서로 상이한 적어도 2장의 전기변색 층들은 서로 인접하도록 배치될 수 있다. 따라서, 본 출원의 전기변색 소자에 따르면, 상기 밀도가 서로 상이한 적어도 2장의 전기변색 층이 서로 인접한 상태로 구동할 수 있다. For example, the plurality of electrochromic layers may be disposed such that at least two electrochromic layers having different densities are adjacent to each other. Therefore, according to the electrochromic device of the present application, at least two electrochromic layers having different densities from each other may be driven to be adjacent to each other.
상기 복수의 전기변색 층들은, 예를 들어, 밀도가 서로 상이한 적어도 2장의 전기변색 층은 서로 직접 적층되어 있을 수 있다. 본 명세서에서 A 및 B가 서로 직접 적층되어 있다는 것은 A와 B의 사이에 점착제 층 또는 접착제 층 등의 중간층의 존재 없이 서로 적층되어 있음을 의미할 수 있다. 상기 2장 이상의 전기변색 층을 서로 직접 적층하는 것은 예를 들어 어느 하나의 전기변색 층 상에 다른 하나의 전기변색 층을 증착하거나 코팅하는 것에 의하여 수행될 수 있다. The plurality of electrochromic layers may be, for example, at least two electrochromic layers having different densities from each other directly stacked on each other. In the present specification, A and B are directly stacked on each other may mean that A and B are laminated to each other without the presence of an intermediate layer such as an adhesive layer or an adhesive layer. Directly stacking the two or more electrochromic layers with each other may be performed, for example, by depositing or coating another electrochromic layer on one electrochromic layer.
상기 밀도가 서로 상이한 2장의 전기변색 층의 밀도 차는 본 출원의 목적을 고려하여 적절히 선택될 수 있다. 하나의 예시에서, 상기 밀도 차는 0.1 g/cm3, 0.2 g/cm3, 0.3 g/cm3, 0.4 g/cm3 또는 0.5 g/cm3 이상일 수 있다. 또한, 상기 밀도 차의 상한은 3.0 g/cm3 이하일 수 있다. 상기 밀도가 서로 상이한 2장의 전기변색 층의 밀도 차가 상기 범위인 경우, 생산성이 증대되고, 전기변색 속도 및 내구성이 우수한 전기변색 소자를 구현한다는 측면에서 유리할 수 있다. The density difference between two electrochromic layers having different densities may be appropriately selected in consideration of the purpose of the present application. In one example, the density difference is 0.1 g / cm 3 , 0.2 g / cm 3 , 0.3 g / cm 3 , 0.4 g / cm 3 Or 0.5 g / cm 3 or more. In addition, the upper limit of the density difference may be 3.0 g / cm 3 or less. When the density difference between the two electrochromic layers having different densities is within the above range, productivity may be increased, and it may be advantageous in terms of implementing an electrochromic device having excellent electrochromic speed and durability.
상기 밀도가 서로 상이한 2장의 전기변색 층의 각각의 밀도는 본 출원의 목적을 고려하여 적절히 선택될 수 있다. 하나의 예시에서, 상기 밀도가 서로 상이한 2장의 전기변색 층 중에서 밀도가 더 높은 전기변색 층의 밀도는 5.0 g/cm3 내지 8.0 g/cm3일 수 있다. 구체적으로, 밀도가 더 높은 전기변색 층의 밀도는 5.0 g/cm3 이상, 5.25 g/cm3 이상, 5.5 g/cm3 이상, 5.75 g/cm3 이상, 6 g/cm3 이상 또는 6.25 g/cm3 이상일 수 있고, 8.0 g/cm3 이하, 7.5 g/cm3 이하, 7.0 g/cm3 이하 또는 6.5 g/cm3 이하일 수 있다. 상기 밀도가 서로 상이한 2장의 전기변색 층 중에서 밀도가 더 낮은 전기변색 층의 밀도는 3.0 g/cm3 내지 7.0 g/cm3 일 수 있다. 구체적으로, 밀도가 더 낮은 전기변색 층의 밀도는 3.0 g/cm3 이상, 3.5 g/cm3 이상, 4.0 g/cm3 이상, 4.5 g/cm3 이상, 5.5 g/cm3 이상 또는 5.5 g/cm3 이상일 수 있고, 7.0 g/cm3 이하, 6.5 g/cm3 이하 또는 6.0 g/cm3 이하일 수 있다. 전기변색 층의 각 밀도가 상기 범위인 경우, 생산성이 증대되고, 전기변색속도 및 내구성이 우수한 전기변색 소자를 구현한다는 측면에서 유리할 수 있다.The density of each of the two electrochromic layers having different densities from each other may be appropriately selected in consideration of the purpose of the present application. In one example, the higher density of the electrochromic layer among the two electrochromic layers having different densities may be 5.0 g / cm 3 to 8.0 g / cm 3 . Specifically, the denser electrochromic layer has a density of at least 5.0 g / cm 3, at least 5.25 g / cm 3, at least 5.5 g / cm 3, at least 5.75 g / cm 3, at least 6 g / cm 3, or 6.25 g. / cm 3 or greater, 8.0 g / cm 3 or less, 7.5 g / cm 3 or less, 7.0 g / cm 3 or less, or 6.5 g / cm 3 or less. Among the two electrochromic layers having different densities, the density of the lower electrochromic layer may be 3.0 g / cm 3 to 7.0 g / cm 3 . Specifically, the lower density electrochromic layer has a density of at least 3.0 g / cm 3, at least 3.5 g / cm 3, at least 4.0 g / cm 3, at least 4.5 g / cm 3, at least 5.5 g / cm 3, or 5.5 g. / cm 3 or more, and may be 7.0 g / cm 3 or less, 6.5 g / cm 3 or less, or 6.0 g / cm 3 or less. When each density of the electrochromic layer is in the above range, productivity may be increased, and it may be advantageous in terms of implementing an electrochromic device having excellent electrochromic speed and durability.
상기 복합 전기변색 층에 포함되는 개별 전기변색 층들의 두께는 본 출원의 목적을 고려하여 적절히 선택될 수 있다. 하나의 예시에서, 개별 전기변색 층의 두께는 각각 10nm 내지 800nm일 수 있다. 구체적으로, 밀도가 서로 상이한 2장의 전기변색 층 중에서 밀도가 더 높은 전기변색 층의 두께는 10nm 내지 800nm일 수 있고, 밀도가 더 낮은 전기변색 층의 두께는 10nm 내지 800nm일 수 있다. 보다 구체적으로, 밀도가 더 높은 전기변색 층의 두께는 10nm 이상, 20nm 이상, 30nm 이상, 60nm 이상 또는 90nm 이상일 수 있고, 400nm 이하, 300nm 이하, 200nm 이하 또는 100nm 이하일 수 있다. 보다 구체적으로 밀도가 더 낮은 전기변색 층의 두께는 10nm 이상, 50nm 이상, 100nm 이상 또는 150nm 이상일 수 있고, 400nm 이하, 300nm 이하 또는 200nm 이하일 수 있다. 또한, 복합 전기변색 층 전체의 두께는 20nm 내지 810nm 일 수 있다. 보다 구체적으로, 복합 전기변색 층 전체의 두께는 20nm 이상, 60nm 이상, 100nm 이상, 140nm 이상 또는 180nm 이상일 수 있고, 810nm 이하, 700nm 이하, 600nm 이하, 500nm 이하, 400nm 이하 또는 300nm 이하일 수 있다. 복합 전기변색 층의 두께가 상기 범위를 만족하는 경우 생산성이 증대되고, 전기변색속도 및 내구성이 우수한 전기변색 소자를 구현한다는 측면에서 유리할 수 있다.The thickness of the individual electrochromic layers included in the composite electrochromic layer may be appropriately selected in consideration of the purpose of the present application. In one example, the thickness of the individual electrochromic layers can each be between 10 nm and 800 nm. Specifically, the thickness of the electrochromic layer having a higher density among the two electrochromic layers having different densities may be 10 nm to 800 nm, and the thickness of the lower density electrochromic layer may be 10 nm to 800 nm. More specifically, the higher density of the electrochromic layer may be 10 nm or more, 20 nm or more, 30 nm or more, 60 nm or more, or 90 nm or more, and 400 nm or less, 300 nm or less, 200 nm or less, or 100 nm or less. More specifically, the lower density of the electrochromic layer may be 10 nm or more, 50 nm or more, 100 nm or more, or 150 nm or more, and 400 nm or less, 300 nm or less, or 200 nm or less. In addition, the entire thickness of the composite electrochromic layer may be 20 nm to 810 nm. More specifically, the total thickness of the composite electrochromic layer may be 20 nm or more, 60 nm or more, 100 nm or more, 140 nm or more, or 180 nm or more, and may be 810 nm or less, 700 nm or less, 600 nm or less, 500 nm or less, 400 nm or less, or 300 nm or less. When the thickness of the composite electrochromic layer satisfies the above range, productivity may be increased, and an electrochromic device having excellent electrochromic speed and durability may be advantageous in terms of implementing the electrochromic device.
상기 밀도가 서로 상이한 적어도 2장의 전기변색 층은 서로 다른 물리적 구조를 통하여 구현될 수 있다. 하나의 예시에서, 상기 밀도가 서로 상이한 적어도 2장의 전기변색 층들 중 어느 하나의 전기변색 층은 다공성 필름일 수 있다. 하나의 구체적인 예로, 상기 밀도가 서로 상이한 적어도 2장의 전기변색 층 중에서 밀도가 더 낮은 전기변색 층은 밀도가 더 높은 전기변색 층에 비하여 다공성 필름일 수 있다. 본 명세서에서 다공성 필름은 다공성 구조를 가지는 필름, 즉 필름의 내부 또는 표면에 복수의 공극(Porosity)이 존재하는 구조의 필름을 의미할 수 있다. 본 명세서에서 A가 B에 비하여 다공성 필름이라는 것은 A가 B에 비하여 공극을 더 많이 포함하는 것을 의미할 수 있다. At least two electrochromic layers having different densities may be implemented through different physical structures. In one example, the electrochromic layer of any one of at least two electrochromic layers having different densities may be a porous film. As one specific example, the lower density electrochromic layer among the at least two electrochromic layers having different densities may be a porous film as compared to the higher density electrochromic layer. In the present specification, the porous film may mean a film having a porous structure, that is, a film having a plurality of porosity (Porosity) in the interior or surface of the film. As used herein, A is a porous film as compared to B, which may mean that A includes more voids than B.
상기 복수의 전기변색 층들은, 예를 들어, 상기 밀도가 서로 상이한 적어도 2장의 전기변색 층들은 각각 전기변색 물질을 포함할 수 있다. 전기변색은 전기 신호에 따라 색이 가역적으로 변하는 현상으로서 전기변색은 전기변색 물질에 전자 및 이온(H+, Li+등)의 삽입/추출 과정에 의해 발생할 수 있다. 전기변색 물질은 이온 삽입에 의해 가역적으로 색깔을 띠는 환원 전기변색 물질과 이온 추출에 의해 가역적으로 색깔을 띠는 산화 전기변색 물질로 분류할 수 있다. The plurality of electrochromic layers may be, for example, at least two electrochromic layers having different densities from each other may include an electrochromic material. Electrochromism is a phenomenon in which the color is reversibly changed in response to an electrical signal. Electrochromism may be caused by an insertion / extraction process of electrons and ions (H + , Li +, etc.) in the electrochromic material. Electrochromic materials can be classified into reducing electrochromic materials that are reversibly colored by ion insertion and oxidative electrochromic materials that are reversibly colored by ion extraction.
전기변색 물질로는 금속 산화물 전기변색물질, 금속 착화합물, 유기물 전기변색물질 또는 전도성 고분자 전기변색물질 등을 사용할 수 있다. As the electrochromic material, a metal oxide electrochromic material, a metal complex, an organic electrochromic material, or a conductive polymer electrochromic material may be used.
금속 산화물 전기변색물질로는 예를 들어 텅스텐(W), 티타늄(Ti), 바나듐(V), 몰리므덴(Mo), 니오븀(Nb), 크롬(Cr), 망간(Mn), 탄탈륨(Ta), 철(Fe), 니켈(Ni), 코발트(Co), 이리듐(Ir) 및 리튬니켈(LiNi)의 금속 산화물 중 하나 이상을 사용할 수 있다. 텅스텐(W), 티타늄(Ti), 바나듐(V), 몰리므덴(Mo), 니오븀(Nb) 등의 금속 산화물은 환원 전기변색 물질로 분류될 수 있고, 바나듐(V), 크롬(Cr), 망간(Mn), 탄탈륨(Ta), 철(Fe), 니켈(Ni), 코발트(Co), 이리듐(Ir) 또는 리튬니켈(LiNi) 등은 산화 전기변색 물질로 분류될 수 있다. Examples of metal oxide electrochromic materials include tungsten (W), titanium (Ti), vanadium (V), molybdenum (Mo), niobium (Nb), chromium (Cr), manganese (Mn), and tantalum (Ta). At least one of metal oxides of iron (Fe), nickel (Ni), cobalt (Co), iridium (Ir), and lithium nickel (LiNi) may be used. Metal oxides such as tungsten (W), titanium (Ti), vanadium (V), molybdenum (Mo), and niobium (Nb) may be classified as reducing electrochromic materials, vanadium (V), chromium (Cr), Manganese (Mn), tantalum (Ta), iron (Fe), nickel (Ni), cobalt (Co), iridium (Ir) or lithium nickel (LiNi) may be classified as oxidative electrochromic materials.
금속착화합물로는 예를 들어 프러시안 블루(Prussian blue), 프탈로시아닌(Phthalocyanines) 또는 비스무트(Bismuth) 등을 사용할 수 있다. As the metal complex, for example, Prussian blue, Phthalocyanines or Bismuth may be used.
유기물 전기변색 물질로는 예를 들어 비올로겐 또는 퀴논 등을 사용할 수 있다. As the organic electrochromic material, for example, viologen or quinone may be used.
전도성 고분자 전기변색 물질로는 예를 들어 폴리티오펜(polythiophene), 폴리아닐린(polyaniline), 폴리피롤(polypyrrole), 폴리안트라센(polyanthracene), 폴리플루오렌(polyfluorene), 폴리카바졸(polycarbazole), 폴리페닐렌비닐렌(polyphenylenevinylene) 및 이들의 유도체 중 하나 이상을 사용할 수 있다. Examples of the conductive polymer electrochromic material include polythiophene, polyaniline, polypyrrole, polyanthracene, polyfluorene, polycarbazole, polyphenylene One or more of polyphenylenevinylene and derivatives thereof can be used.
하나의 예시에서, 상기 복수의 전기변색 층들은, 예를 들어, 상기 밀도가 서로 상이한 적어도 2장의 전기변색 층들은 각각 동일한 종류의 전기변색 물질을 포함할 수 있다. 하나의 예로 밀도가 서로 상이한 2장 이상의 전기변색 층은 각각 텅스텐 산화물(WOx)을 포함할 수 있다. 본 출원의 전기변색 소자는 서로 동일한 종류의 전기변색 물질을 포함하는 2장 이상의 전기변색 층의 밀도를 서로 상이하게 구현하므로 전기변색 소자의 생산성 증대 및 재료에 기인한 공정 안정성의 문제를 해결 및 보완할 수 있다. In one example, the plurality of electrochromic layers, for example, at least two electrochromic layers having different densities from each other may include the same kind of electrochromic material. As one example, two or more electrochromic layers having different densities may include tungsten oxide (WOx). The electrochromic device of the present application implements different density of two or more electrochromic layers including the same kind of electrochromic material, thereby solving and supplementing the problem of increased productivity of the electrochromic device and process stability due to materials. can do.
[이온 저장층][Ion storage layer]
이온저장 층은 전기변색 층이 변색하도록 하는데 필요한 이온의 전하를 수용하고, 다시 내어주는 역할을 수행할 수 있다. 따라서, 이온저장 층과 전기변색 층간 전하 균형(charge balance)을 맞추기 위해, 이온저장 층은 전기변색 층에 상호보완적인 전도성 물질을 포함할 수 있다. The ion storage layer may serve to receive and recharge the charge of ions necessary to cause the electrochromic layer to discolor. Thus, in order to balance the charge balance between the ion storage layer and the electrochromic layer, the ion storage layer may comprise a conductive material complementary to the electrochromic layer.
이온저장 층은 복합 전기변색 층이 환원 전기변색 물질을 포함하는 경우 산화성 전도 물질을 포함할 수 있다. 또는 이온 저장층은 복합 전기변색 층이 산화 전기변색 물질을 포함하는 경우 환원성 전도 물질을 포함할 수 있다. The ion storage layer may comprise an oxidative conductive material when the composite electrochromic layer comprises a reducing electrochromic material. Alternatively, the ion storage layer may comprise a reducing conductive material when the composite electrochromic layer comprises an oxidizing electrochromic material.
하나의 예로, 이온저장 층에 포함되는 전도성 물질은 전기변색 물질일 수 있다. 복합 전기변색 층이 환원 전기변색 물질을 포함하는 경우 이온저장 층은 산화 전기변색 물질을 포함할 수 있고, 복합 전기변색 층이 산화 전기변색 물질을 포함하는 경우 이온저장 층은 환원 전기변색 물질을 포함할 수 있다. 본 출원의 일 실시예에 의하면, 텅스텐 산화물(WO3)이 복합 전기변색 층에 사용된 경우, 리튬니켈 산화물(LiNixOy) 이 이온저장 층에 사용될 수 있다. As one example, the conductive material included in the ion storage layer may be an electrochromic material. If the composite electrochromic layer comprises a reducing electrochromic material, the ion storage layer may comprise an oxidizing electrochromic material, and if the composite electrochromic layer comprises an oxidizing electrochromic material, the ion storage layer comprises a reducing electrochromic material. can do. According to one embodiment of the present application, when tungsten oxide (WO 3 ) is used in the composite electrochromic layer, lithium nickel oxide (LiNixOy) may be used in the ion storage layer.
또는 이온저장 층은 복합 전기 변색 층이 환원 변색 물질을 포함하는지 산화 변색 물질을 포함하는지에 관계없이 적절한 전도성 물질, 예를 들어 전도성 그라파이트와 같은 전도성 물질을 포함할 수도 있다.Alternatively, the ion storage layer may comprise a suitable conductive material, for example conductive material such as conductive graphite, regardless of whether the composite electrochromic layer contains a reducing color change material or an oxidizing color change material.
이온 저장 층의 두께는 본 출원의 목적을 손상시키지 않는 범위 내에서 적절히 선택될 수 있다. 예를 들어 이온저장 층의 두께는 20nm 내지 810nm일 수 있다. 이온 저장 층의 두께가 상기 범위를 만족하는 경우 전기변색 속도 및 안정성이 향상된 전기변색 소자를 제공할 수 있다.The thickness of the ion storage layer may be appropriately selected within a range that does not impair the purpose of the present application. For example, the thickness of the ion storage layer may be 20 nm to 810 nm. When the thickness of the ion storage layer satisfies the above range, it is possible to provide an electrochromic device having improved electrochromic speed and stability.
[전해질 층][Electrolyte layer]
전해질 층은 전해질염을 포함할 수 있다. 구체적으로 전해질 층은 전해질염을 용해시킨 액상전해질, 젤상전해질, 고상전해질, 고분자전해질 및 젤상고분자전해질로 이루어진 군에서 선택된 어느 하나일 수 있고, 액상전해질의 경우에는 용매에 전해질염이 용해된 것일 수 있다. 본 출원의 일 실시에에 의하면 전해질은 젤상고분자전해질일 수 있다. The electrolyte layer may comprise an electrolyte salt. Specifically, the electrolyte layer may be any one selected from the group consisting of a liquid electrolyte, a gel electrolyte, a solid electrolyte, a polymer electrolyte, and a gel polymer electrolyte in which an electrolyte salt is dissolved, and in the case of a liquid electrolyte, an electrolyte salt may be dissolved in a solvent. have. According to one embodiment of the present application, the electrolyte may be a gel polymer electrolyte.
상기 전해질염은 유기 전해질염 또는 무기 전해질염일 수 있다. 보다 구체적으로 상기 전해질염은 리튬염, 포타슘염, 소듐염 또는 암모늄염 등을 포함할 수 있고, 예를 들어 전해질염은 n-Bu4NClO4, n-Bu4NPF6, NaBF4, LiClO4, LiPF6, LiBF4, LiN(SO2C2F5)2, LiCF3SO3, C2F6LiNO4S2, K4Fe(CN)6 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있다.The electrolyte salt may be an organic electrolyte salt or an inorganic electrolyte salt. More specifically, the electrolyte salt may include a lithium salt, potassium salt, sodium salt or ammonium salt, for example, the electrolyte salt is n-Bu 4 NClO 4 , n-Bu 4 NPF 6 , NaBF 4 , LiClO 4 , Any one selected from the group consisting of LiPF 6 , LiBF 4 , LiN (SO 2 C 2 F 5 ) 2 , LiCF 3 SO 3 , C 2 F 6 LiNO 4 S 2 , K 4 Fe (CN) 6, and combinations thereof Can be.
상기 용매는 비수성 용매라면 적용할 수 있고, 구체적으로 디클로메탄, 클로로포름, 아세토니트릴, 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 테트라하이드로퓨란(THF), 뷰틸렌 카보네이트 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있다.The solvent may be applied as long as it is a non-aqueous solvent, and specifically, dichloromethane, chloroform, acetonitrile, ethylene carbonate (EC), propylene carbonate (PC), tetrahydrofuran (THF), butylene carbonate, and combinations thereof. It may be any one selected from the group consisting of.
전해질 층의 두께는 본 출원의 목적을 손상시키지 않는 범위 내에서 적절히 선택될 수 있다. 예를 들어 전해질 층의 두께는 400nm 내지 2000nm일 수 있다. 전해질 층의 두께가 상기 범위를 만족하는 경우 전기변색 속도 및 안정성이 향상된 전기변색 소자를 제공할 수 있다.The thickness of the electrolyte layer may be appropriately selected within a range that does not impair the purpose of the present application. For example, the thickness of the electrolyte layer may be 400 nm to 2000 nm. When the thickness of the electrolyte layer satisfies the above range, it is possible to provide an electrochromic device having improved electrochromic speed and stability.
본 출원은 또한 전기변색 소자의 제조 방법에 관한 것이다. 상기 제조 방법은 전술한 전기변색 소자의 제조 방법일 수 있다. 상기 제조 방법은 제1 전극 층 상에 복합 전기변색 층, 전해질 층, 이온저장 층 및 제2 전극 층을 순차로 적층하는 공정을 포함할 수 있다. 상기 제조 방법에서 상기 복합 전기변색 층은 복수의 전기변색 층들을 포함하며, 상기 복수의 전기변색 층들 중 적어도 2장의 전기변색 층들은 밀도가 서로 상이하고, 상기 밀도가 서로 상이한 2장의 전기변색 층들 중 밀도가 더 높은 전기변색 층이 밀도가 더 낮은 전기변색 층에 비하여 상기 제1 전극 층에 인접하게 배치되도록 적층할 수 있다. 상기 제조 방법에서, 제1 전극층, 복합 전기변색 층, 전해질 층, 이온저장 층 및 제2 전극 층에 대한 세부적인 사항은 상기 전기변색 소자의 항목에서 기술한 내용이 동일하게 적용될 수 있다.The present application also relates to a method of manufacturing an electrochromic device. The manufacturing method may be a manufacturing method of the electrochromic device described above. The manufacturing method may include sequentially stacking a composite electrochromic layer, an electrolyte layer, an ion storage layer, and a second electrode layer on the first electrode layer. In the manufacturing method, the composite electrochromic layer includes a plurality of electrochromic layers, wherein at least two electrochromic layers of the plurality of electrochromic layers have different densities from each other, and among the two electrochromic layers having different densities from each other. The higher density electrochromic layer may be stacked so as to be adjacent to the first electrode layer as compared to the lower density electrochromic layer. In the above manufacturing method, the details of the first electrode layer, the composite electrochromic layer, the electrolyte layer, the ion storage layer and the second electrode layer may be the same as described in the items of the electrochromic device.
상기 제조 방법에 있어서, 층간 적층 방법은 공지된 방법을 적절히 선택하여 이루어질 수 있다. 하나의 예시에서, 스퍼터링(sputtering), 졸겔(sol-Gel)법, 전자빔 증착(e-beam evaporation), 펄스레이저증착(pulsed laser deposition), CVD(chemical vapor deposition), 스핀코팅(spin coating) 또는 딥코팅(dip coating) 중 어느 하나의 방법을 사용하여, 각 층을 형성할 수 있다. In the above production method, the interlayer lamination method can be made by appropriately selecting a known method. In one example, sputtering, sol-gel, e-beam evaporation, pulsed laser deposition, chemical vapor deposition, spin coating, or Each layer can be formed using any of dip coating methods.
상기 제조 방법에 있어서, 2장 이상의 전기변색 층의 밀도를 서로 상이하게 조절하는 것은 어느 하나의 전기변색 층을 다른 인접하는 전기변색 층에 비하여 다공성 필름의 형태로 적층하는 것에 의하여 수행될 수 있다. 다공성 필름에 대한 세부적인 사항은 상기 전기변색 소자의 항목에서 기술한 내용이 동일하게 적용될 수 있다. In the above production method, differently controlling the density of the two or more electrochromic layers may be performed by laminating one electrochromic layer in the form of a porous film as compared to another adjacent electrochromic layer. Details of the porous film may be the same as described in the item of the electrochromic device.
하나의 예시에서, 전기 변색 층을 다공성 필름의 형태로 적층하는 것은 전기 변색 층을 적층함에 있어서 스퍼터링(Sputtering) 공정을 적용하되 공정압 조건을 조절하는 것 또는 전자 빔 증착(E-beam evaporation) 공정을 적용하되 가스 조건을 조절하는 것에 의하여 수행될 수 있다. 스퍼터 공정에서 공정압 조건 또는 전자 빔 증착 공정에서 가스 조건은 구현하고자 하는 밀도에 따라 적절히 선택될 수 있다. In one example, laminating the electrochromic layer in the form of a porous film may be achieved by applying a sputtering process in order to deposit the electrochromic layer, but adjusting process pressure conditions or an E-beam evaporation process. By applying but adjusting the gas conditions. Process pressure conditions in the sputter process or gas conditions in the electron beam deposition process may be appropriately selected depending on the density to be implemented.
하나의 예로, 스퍼터링 공정을 적용하는 경우 공정압이 높을수록 전기변색 층의 밀도가 감소하는 경향이 있다. 혹은, 전자 빔 증착 공정을 적용하는 경우 가스 주입을 통하여 공정압이 높아질수록 전기변색 층의 밀도가 감소하는 경향이 있다. 한편, 스퍼터링 공정의 소스는 금속 성분의 단단한 고체이고, 전자 빔 증착 공정의 소스는 Granule 형태의 고체이므로, 스퍼터링과 전자 빔 증착의 소스의 차이로 인하여 공정 상의 밀도의 차이는 존재할 수 있다. As one example, when the sputtering process is applied, the higher the process pressure, the less the density of the electrochromic layer tends to decrease. Alternatively, when the electron beam deposition process is applied, the density of the electrochromic layer tends to decrease as the process pressure increases through gas injection. On the other hand, since the source of the sputtering process is a solid solid of the metal component, and the source of the electron beam deposition process is a solid in the form of Granule, there may be a difference in the density in the process due to the difference in the source of the sputtering and electron beam deposition.
본 출원의 전기변색 소자는 전기변색 속도 및 안정성이 향상되는 효과를 가진다. 이러한 전기변색 소자는 스마트 윈도우, 스마트 거울, 디스플레이, 전자 종이, 능동 미채(adaptive camouflage) 등의 다양한 장치에 유용하게 사용될 수 있다. 상기와 같은 장치를 구성하는 방식은 특별히 제한되지 않고 본 출원의 전기변색 소자가 적용되는 한 통상적인 방식이 적용될 수 있다. The electrochromic device of the present application has the effect of improving the electrochromic speed and stability. Such electrochromic devices may be usefully used in various devices such as smart windows, smart mirrors, displays, electronic paper, and active camouflage. The manner of configuring such a device is not particularly limited and a conventional manner may be applied as long as the electrochromic device of the present application is applied.
본 출원은 생산성이 증대되고, 전기변색 속도 및 내구성이 향상된 전기변색 소자를 제공할 수 있다. 이러한 전기변색 소자는 스마트 윈도우, 스마트 거울, 디스플레이, 전자 종이, 능동 미채(adaptive camouflage) 등의 다양한 장치에 유용하게 사용될 수 있다. The present application can provide an electrochromic device having increased productivity and improved electrochromic speed and durability. Such electrochromic devices may be usefully used in various devices such as smart windows, smart mirrors, displays, electronic paper, and active camouflage.
도 1은 본 출원 일 실시예에 따른 전기변색 소자를 예시적으로 나타낸다.1 exemplarily shows an electrochromic device according to an embodiment of the present application.
도 2 내지 5는 각각 실시예 1 내지 3 및 비교예 1의 전류 그래프이다.2 to 5 are graphs of currents of Examples 1 to 3 and Comparative Example 1, respectively.
도 6은 실시예 1의 750 cycle 시의 착색 및 탈색 이미지이다.6 is a coloration and decolorization image at 750 cycles of Example 1. FIG.
도 7은 실시예 2의 750 cycle 시의 착색 및 탈색 이미지이다.7 is a coloration and decolorization image at 750 cycles of Example 2. FIG.
도 8은 실시예 3의 400 cycle 시의 착색 이미지이다.8 is a color image of 400 cycles of Example 3. FIG.
도 9 내지 도 11은 각각 실시예 1 내지 3의 전하량 그래프이다. 9 to 11 are graphs of the charge amounts of Examples 1 to 3, respectively.
도 12 내지 도 14는 각각 실시예 1 내지 3의 투과도 및 전하량 그래프이다.12 to 14 are graphs of transmittance and charge amount of Examples 1 to 3, respectively.
도 15 내지 도 16은 각각 실시예 2 및 비교예 2의 전하량 그래프이다.15 to 16 are graphs of the charge amounts of Example 2 and Comparative Example 2, respectively.
도 17은 비교예 2의 50 cycle 시의 착색 이미지이다.17 is a color image of 50 cycles of Comparative Example 2. FIG.
도 18은 비교예 2의 투과도 및 전하량 그래프이다.18 is a graph showing transmittance and charge amount of Comparative Example 2. FIG.
이하, 실시예 및 비교예를 통하여 본 출원의 내용을 보다 구체적으로 설명하지만, 본 출원의 범위가 하기 제시된 내용에 의하여 제한되는 것은 아니다. Hereinafter, the contents of the present application will be described in more detail with reference to Examples and Comparative Examples, but the scope of the present application is not limited to the following contents.
측정예 1Measurement Example 1
전기변색 층 박막의 밀도는 XRR(X-ray reflectometry) 분석 방식을 이용하여 2theta 0.2도로부터 2.4도까지 매 0.002도 마다 1초씩 측정하였다. The density of the electrochromic layer thin film was measured for 1 second every 0.002 degrees from 2theta 0.2 degree to 2.4 degree using X-ray reflectometry (XRR) analysis.
실시예Example 1 (Stack: Glass/ITO/ 1 (Stack: Glass / ITO / WOxWOx (1)/ (One)/ WOxWOx (2)/ (2)/ GPEGPE /Of LiNixOyLiNixOy /ITO/PET film)/ ITO / PET film)
작업 전극의 제조Manufacture of working electrodes
유리 기판 상에 적층된 ITO 층 상에 DC 스퍼터를 이용하여 W(텅스텐) target에 플라즈마를 형성한 후, Ar 및 O2 Gas를 챔버 내에 주입시켜 활성(Reactive) 반응을 통해 WOx(텅스텐 산화물)이 약 30nm 두께의 박막의 형태로 제공되도록 하여 제 1 전기변색 층(121)을 형성하였다. 상기 제1 전기변색 층(121) 상에 전자 빔 증착법에 의해 WOx Source를 High Voltage 6.03kV, Depo rate 0.5 nm/sec의 증착 속도로 셋팅하여 WOx(텅스텐 산화물)이 약 150 nm 두께의 박막의 형태로 제공되도록 하여 제 2 전기변색 층 (122)을 형성하였다. 상기 제 1 전기변색 층 (121)의 밀도는 약 6.3±0.1 g/cm3이고, 상기 제 2 전기변색 층 (122)의 밀도는 약 5.8±0.1 g/cm3이다. After plasma is formed on a W (tungsten) target by using a DC sputter on an ITO layer laminated on a glass substrate, Ar and O 2 Gas are injected into the chamber to remove WOx (tungsten oxide) through a reactive reaction. The first electrochromic layer 121 was formed by providing a thin film having a thickness of about 30 nm. WOx (tungsten oxide) was formed on the first electrochromic layer 121 by electron beam evaporation at a deposition rate of 6.03 kV at a high voltage of 0.5 nm / sec. And a second electrochromic layer 122 was formed. The density of the first electrochromic layer 121 is about 6.3 ± 0.1 g / cm 3 and the density of the second electrochromic layer 122 is about 5.8 ± 0.1 g / cm 3 .
상대 전극의 제조Preparation of counter electrode
PET 필름 상에 적층된 ITO 층 상에 DC 스퍼터를 이용하여 LiNiO2 Target에 플라즈마를 형성한 후, Ar 및 O2 Gas를 챔버 내에 주입시켜 활성(Reactive) 반응을 통해, LiNixOy가 약 75nm의 두께의 박막으로 제공되도록 하여 이온저장 층(22)을 형성하였다.After forming a plasma on the LiNiO 2 target by using a DC sputter on the ITO layer laminated on the PET film, and injecting Ar and O 2 Gas into the chamber through a reactive reaction, LiNixOy has a thickness of about 75nm The ion storage layer 22 was formed by being provided as a thin film.
전기변색 소자의 제조Preparation of Electrochromic Device
PC(propylene carbonate)와 LiClO4 의 혼합물을 포함하는 겔 폴리머 전해질을 이용하여, 제2 전기변색 층(122)과 이온 저장 층(21)이 겔 폴리머 전해질(3)에 접하도록 작업 전극과 상대 전극을 합착하여 전기변색 소자를 제조하였다. Using a gel polymer electrolyte comprising a mixture of propylene carbonate (PC) and LiClO 4 , the working and counter electrodes are arranged so that the second electrochromic layer 122 and the ion storage layer 21 contact the gel polymer electrolyte 3. Was bonded to prepare an electrochromic device.
실시예Example 2 (Stack: Glass/ITO/ 2 (Stack: Glass / ITO / WOxWOx (1)/ (One)/ WOxWOx (2)/ (2)/ GPEGPE /Of LiNixOyLiNixOy /ITO/PET film)/ ITO / PET film)
실시예 1에서 제 1 전기변색 층 (121)을 형성함에 있어서, DC 스퍼터 시간을 2배 증가시켜 약 60nm의 두께의 박막의 형태로 제공한 것을 제외하고는, 실시예 1과 동일한 방식으로 전기변색 소자를 제조하였다. 제1 전기변색 층 박막(121)의 밀도는 약 6.3±0.1 g/cm3이고, 제2 전기변색 층 박막(122)의 밀도는 약 5.8±0.1 g/cm3이다.In forming the first electrochromic layer 121 in Example 1, the electrochromic color was changed in the same manner as in Example 1, except that the DC sputtering time was doubled to provide a thin film having a thickness of about 60 nm. The device was manufactured. The density of the first electrochromic layer thin film 121 is about 6.3 ± 0.1 g / cm 3 , and the density of the second electrochromic layer thin film 122 is about 5.8 ± 0.1 g / cm 3 .
실시예Example 3 (Stack: Glass/ITO/ 3 (Stack: Glass / ITO / WOxWOx (1)/ (One)/ WOxWOx (2)/ (2)/ GPEGPE /Of LiNixOyLiNixOy /ITO/PET film)/ ITO / PET film)
실시예 1에서 제1 전기변색 층 박막(121)을 형성함에 있어서, DC 스퍼터 시간을 3배 증가시켜 약 90nm의 두께의 박막의 형태로 제공한 것을 제외하고는, 실시예 1과 동일한 방식으로 전기변색 소자를 제조하였다. 제1 전기변색 층 박막(121)의 밀도는 약 6.3±0.1 g/cm3이고, 제2 전기변색 층 박막(122)의 밀도는 약 5.8±0.1 g/cm3이다.In Example 1, the first electrochromic layer thin film 121 was formed in the same manner as in Example 1 except that the DC sputtering time was increased three times to provide a thin film having a thickness of about 90 nm. A color change device was prepared. The density of the first electrochromic layer thin film 121 is about 6.3 ± 0.1 g / cm 3 , and the density of the second electrochromic layer thin film 122 is about 5.8 ± 0.1 g / cm 3 .
비교예Comparative example 1 (Stack: Glass/ITO/ 1 (Stack: Glass / ITO / WOxWOx /Of GPEGPE /Of LiNixOyLiNixOy /ITO/PET film)/ ITO / PET film)
실시예 1에서 작업 전극을 제조함에 있어서, 제1 전기변색 층 박막(121)을 형성함에 있어서, DC 스퍼터 시간을 14배 증가시켜 약 420nm 두께의 박막의 단층 구조로 전기변색 층을 형성한 것을 제외하고는, 실시예 1과 동일한 방식으로 전기변색 소자를 제조하였다. 전기변색 층 박막의 밀도는 약 6.3±0.1 g/cm3이다.In manufacturing the working electrode in Example 1, in forming the first electrochromic layer thin film 121, except that the electrochromic layer formed of a single layer structure of a thin film of about 420nm thickness by increasing the DC sputtering time by 14 times Then, an electrochromic device was manufactured in the same manner as in Example 1. The density of the electrochromic layer thin film is about 6.3 ± 0.1 g / cm 3 .
비교예Comparative example 2 (Stack: Glass/ITO/ 2 (Stack: Glass / ITO / WOxWOx (2)/ (2)/ WOxWOx (1)/ (One)/ GPEGPE /Of LiNixOyLiNixOy /ITO/PET film)/ ITO / PET film)
실시예 2에서 작업 전극을 제조함에 있어서, ITO 전극층 상에 밀도가 약 5.8±0.1 g/cm3인 제2 전기변색 층(122)을 먼저 형성하고, 상기 제2 전기변색 층(122) 상에 밀도가 약 6.3±0.1 g/cm3인 제1 전기변색 층(121)을 형성한 것을 제외하고는 실시예 2와 동일한 방식으로 전기변색 소자를 제조하였다. In preparing the working electrode in Example 2, a second electrochromic layer 122 having a density of about 5.8 ± 0.1 g / cm 3 is first formed on the ITO electrode layer, and then on the second electrochromic layer 122 An electrochromic device was manufactured in the same manner as in Example 2, except that a first electrochromic layer 121 having a density of about 6.3 ± 0.1 g / cm 3 was formed.
전기변색 소자의 구동 및 열화 평가Evaluation of driving and deterioration of electrochromic devices
실시예 및 비교예에서 제조된 전기변색 소자에 대하여 하기 조건으로 구동하고 열화(Degradation) 여부를 평가하고, 그 결과를 도 2 내지 9에 도시하였다. The electrochromic devices manufactured in Examples and Comparative Examples were driven under the following conditions and evaluated for degradation, and the results are shown in FIGS. 2 to 9.
-구동 Bias: -2 내지 +2 V의 교류 전압Drive Bias: AC voltage of -2 to +2 V
-Duration Time: 100s (착색) - 100s (탈색)Duration Time: 100s (colored)-100s (discolored)
도 2 내지 도 5는 각각 실시예 1 내지 3 및 비교예 1의 전기변색 소자의 경과 시간 및 Cycle 수에 따른 착ㆍ탈색시의 전류량 변화를 나타낸다. 도 2 내지 도 5에 에 나타낸 바와 같이, 비교예 1은 100 Cycle 이후 열화가 발생하는 반면 실시예 1 내지 2은 800 Cycle 이상에서도 열화가 발생하지 않으며, 실시예 3은 약 150 Cycle까지 열화가 발생하지 않아 비교예 1에 비하여 내구성이 우수한 것을 확인할 수 있다. 도 7 및 도 8은 각각 실시예 1 및 2의 전기변색 소자의 750 Cycle 구동 후 착색 및 탈색 이미지이고, 도 9는 실시예 3에 대한 400 Cycle 구동 후 착색 이미지이다. 실시예 3은 400 Cycle에서 열화가 진행되어 착색 및 탈색 시의 색 차이가 없었다. 도 9 내지 도 11은 각각 실시예 1 내지 3의 전기변색 소자의 경과 시간에 따른 착ㆍ탈색시의 전하량(Charge) 변화를 나타낸다. 전하량이 많을수록 Li+ 이온이 착ㆍ탈색 또는 전기변색에 많은 기여를 하는 것을 의미할 수 있다. 도 9 및 도 11에 나타낸 바와 같이, 실시예 1 및 2의 경우 약 750 Cycle까지는 전하량 감소 없이 안정적인 전기변색 특성을 나타내는 것을 확인할 수 있다. 도 12 내지 14는 각각 실시예 1 내지 3의 전기변색 소자의 Cycle 수에 따른 착ㆍ탈색시의 투과도 및 전하량 변화를 나타낸다. 2 to 5 show changes in the amount of current during discoloration and decoloration according to the elapsed time and the number of cycles of the electrochromic devices of Examples 1 to 3 and Comparative Example 1, respectively. As shown in FIGS. 2 to 5, Comparative Example 1 does not deteriorate after 100 cycles, whereas Examples 1 to 2 do not deteriorate even after 800 cycles, and Example 3 deteriorates up to about 150 cycles. It can be confirmed that the durability is superior to Comparative Example 1. 7 and 8 are colored and decolorized images after driving 750 cycles of the electrochromic devices of Examples 1 and 2, respectively, and FIG. 9 is a colored image after driving 400 cycles for Example 3. FIG. In Example 3, deterioration progressed at 400 cycles, and there was no color difference at the time of coloring and decolorization. 9 to 11 show changes in the amount of charge during discoloration and decoloration with the elapsed time of the electrochromic elements of Examples 1 to 3, respectively. As the amount of charge increases, it may mean that Li + ions contribute a lot to coloring, decoloring, or electrochromic color. As shown in FIGS. 9 and 11, in Examples 1 and 2, it can be seen that up to about 750 cycles exhibits stable electrochromic properties without a decrease in charge amount. 12 to 14 show changes in transmittance and charge amount during coloration and decoloration according to the number of cycles of the electrochromic devices of Examples 1 to 3, respectively.
도 15 내지 도 16은 각각 실시예 2 및 비교예 2의 전기변색 소자의 경과 시간에 따른 착ㆍ탈색시의 전하량 변화를 나타낸다. 도 15 내지 도 16에 나타낸 바와 같이, 실시예 2는 경과 시간에 따른 전하량 감소 없이 안정적인 전기변색 특성을 나타내는 반면, 비교예 2는 50 Cycle 후에 전하량이 감소하는 것을 확인할 수 있다. 도 17은 비교예 2의 50 cycle 구동 후 착색 이미지이다. 비교예 2는 50 Cycle 구동 후 열화가 진행되어 착색 및 탈색 시의 색 차이가 없었다. 도 18은 비교예 2의 전기변색 소자의 Cycle 수에 따른 착ㆍ탈색시의 투과도 및 전하량 변화를 나타낸다.15 to 16 show changes in charge amount during discoloration and decoloration with elapsed time of the electrochromic devices of Example 2 and Comparative Example 2, respectively. As shown in Figures 15 to 16, Example 2 shows a stable electrochromic properties without a decrease in the amount of charge over time, Comparative Example 2 can be seen that the amount of charge decreases after 50 Cycle. 17 is a coloring image after driving 50 cycles of Comparative Example 2. FIG. In Comparative Example 2, the deterioration progressed after driving 50 cycles, and thus there was no color difference during coloring and decolorization. FIG. 18 shows changes in transmittance and charge amount during coloration and decoloration according to the number of cycles of the electrochromic device of Comparative Example 2. FIG.
[부호의 설명][Description of the code]
10: 제1 기판, 11: 제1 전극 층, 12: 복합 전기변색 층, 122: 제2 전기변색 층, 121: 제1 전기변색 층, 20: 제2 기판, 21: 제2 전극 층, 22: 이온저장 층, 3: 전해질층10: first substrate, 11: first electrode layer, 12: composite electrochromic layer, 122: second electrochromic layer, 121: first electrochromic layer, 20: second substrate, 21: second electrode layer, 22 : Ion storage layer, 3: electrolyte layer

Claims (15)

  1. 제1 전극층, 복합 전기변색 층, 전해질 층, 이온저장 층 및 제2 전극층을 순차로 포함하고, 상기 복합 전기변색 층은 복수의 전기변색 층들의 적층 구조를 포함하며, 상기 복수의 전기변색 층들 중 적어도 2장의 전기변색 층들은 밀도가 서로 상이하고, 상기 밀도가 서로 상이한 2장의 전기변색 층들 중 밀도가 더 높은 전기변색 층이 밀도가 더 낮은 전기변색 층에 비하여 상기 제1 전극층에 더 가깝게 배치되는 전기변색 소자. Sequentially comprising a first electrode layer, a composite electrochromic layer, an electrolyte layer, an ion storage layer, and a second electrode layer, wherein the composite electrochromic layer comprises a stacked structure of a plurality of electrochromic layers, wherein At least two electrochromic layers differ in density from each other, and wherein the higher density electrochromic layer of the two electrochromic layers having different densities is disposed closer to the first electrode layer than the lower density electrochromic layer. Electrochromic device.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 밀도가 서로 상이한 2장의 전기변색 층들은 서로 인접하여 구동하는 전기변색 소자.Two electrochromic layers having different densities driving adjacent to each other.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 밀도가 서로 상이한 2장의 전기변색 층들은 서로 직접 적층되어 있는 전기변색 소자. The two electrochromic layers having different densities from each other are directly stacked on each other.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 밀도가 서로 상이한 2장의 전기변색 층의 밀도 차는 0.1 g/cm3 이상인 전기변색소자. An electrochromic device having a density difference between two electrochromic layers having different densities of 0.1 g / cm 3 or more.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 밀도가 더 높은 전기변색 층의 밀도는 5.0 g/cm3 내지 8.0 g/cm3 인 전기 변색 소자.Wherein the higher electrochromic layer has a density of 5.0 g / cm 3 to 8.0 g / cm 3 .
  6. 제 1 항에 있어서,The method of claim 1,
    상기 밀도가 더 낮은 전기변색 층의 밀도는 3.0 g/cm3 내지 7.0 g/cm3 인 전기 변색 소자.And wherein the lower density of the electrochromic layer is between 3.0 g / cm 3 and 7.0 g / cm 3 .
  7. 제 1 항에 있어서,The method of claim 1,
    상기 밀도가 서로 상이한 2장의 전기변색 층들의 두께는 각각 10nm 내지 800 nm인 전기변색 소자.The electrochromic device of the two electrochromic layers having different densities are 10 nm to 800 nm, respectively.
  8. 제 1 항에 있어서, The method of claim 1,
    상기 밀도가 더 낮은 전기변색 층은 상기 밀도가 더 높은 전기변색 층에 비하여 다공성 필름인 전기변색 소자. Wherein said lower density electrochromic layer is a porous film as compared to said higher density electrochromic layer.
  9. 제 1 항에 있어서, The method of claim 1,
    상기 밀도가 서로 상이한 2장의 전기변색 층들은 각각 텅스텐(W), 티타늄(Ti), 바나듐(V), 몰리므덴(Mo), 니오븀(Nb), 크롬(Cr), 망간(Mn), 탄탈륨(Ta), 철(Fe), 니켈(Ni), 코발트(Co), 이리듐(Ir) 및 리튬니켈(LiNi)의 금속 산화물 중 하나 이상의 금속 산화물을 포함하는 전기변색 소자.The two electrochromic layers having different densities are made of tungsten (W), titanium (Ti), vanadium (V), molybdenum (Mo), niobium (Nb), chromium (Cr), manganese (Mn) and tantalum ( An electrochromic device comprising at least one metal oxide of Ta, iron (Fe), nickel (Ni), cobalt (Co), iridium (Ir), and lithium nickel (LiNi).
  10. 제 1 항에 있어서,The method of claim 1,
    상기 밀도가 서로 상이한 2장의 전기변색 층들은 각각 서로 동종의 전기변색 물질을 포함하는 전기변색 소자.The two electrochromic layers having different densities from each other include electrochromic materials of the same kind each other.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 이온저장 층은 복합 전기 변색 층이 환원 전기변색 물질을 포함하는 경우 산화성 전도 물질을 포함하며, 또는 복합 전기 변색층이 산화 전기변색 물질을 포함하는 경우 환원성 전도 물질을 포함하는 전기 변색 소자. The ion storage layer includes an oxidative conductive material when the composite electrochromic layer includes a reducing electrochromic material, or an electrochromic device comprising a reducing conductive material when the composite electrochromic layer includes an oxidizing electrochromic material.
  12. 제 1 항에 있어서, The method of claim 1,
    상기 전해질 층은 전해질 염을 포함하고, 상기 전극 층은 투명 전도성 물질을 포함하는 전기변색 소자.Wherein the electrolyte layer comprises an electrolyte salt and the electrode layer comprises a transparent conductive material.
  13. 제 1 항의 전기변색 소자의 제조 방법이고,The method of manufacturing the electrochromic device of claim 1,
    제1 전극 층 상에 복합 전기변색 층, 전해질 층, 이온저장 층 및 제 2 전극 층을 순차로 적층하는 공정을 포함하고, 상기 복합 전기변색 층은 복수의 전기변색 층들의 적층 구조를 포함하며, 상기 복수의 전기변색 층들 중 적어도 2장의 전기변색 층들은 밀도가 서로 상이하고, 상기 밀도가 서로 상이한 2장의 전기변색 층들 중 밀도가 더 높은 전기변색 층이 밀도가 더 낮은 전기변색 층에 비하여 상기 제1 전극층에 인접하게 배치되도록 적층하는 전기변색 소자의 제조 방법.Sequentially stacking a composite electrochromic layer, an electrolyte layer, an ion storage layer, and a second electrode layer on a first electrode layer, wherein the composite electrochromic layer includes a laminated structure of a plurality of electrochromic layers, At least two electrochromic layers of the plurality of electrochromic layers have different densities from each other, and a higher density electrochromic layer of the two electrochromic layers having different densities is different from that of the lower density electrochromic layer. 1 A manufacturing method of an electrochromic device laminated so as to be disposed adjacent to an electrode layer.
  14. 제 13 항에 있어서, The method of claim 13,
    상기 복수의 전기변색 층들의 밀도를 서로 상이하게 조절하는 것은 상기 복수의 전기변색 층들 중에서 어느 하나의 전기변색 층을 다른 어느 하나의 전기변색 층보다 다공성 필름의 형태로 적층 함으로써 수행되는 전기변색 소자의 제조 방법. Differently controlling the density of the plurality of electrochromic layers is performed by stacking any one of the plurality of electrochromic layers in the form of a porous film than any other electrochromic layer of the electrochromic device Manufacturing method.
  15. 제 14 항에 있어서, The method of claim 14,
    상기 전기 변색 층을 다공성 필름의 형태로 적층하는 것은 스퍼터(Sputter) 공정을 적용하되 공정압 조건을 조절하는 것 또는 전자 빔 증착(E-beam evaporation) 공정을 적용하되 가스 조건을 조절하는 것에 의하여 수행되는 전기변색 소자의 제조 방법. The electrochromic layer is laminated in the form of a porous film by applying a sputter process but adjusting process pressure conditions or by applying an e-beam evaporation process but adjusting gas conditions. Method for producing an electrochromic device.
PCT/KR2017/002491 2016-03-08 2017-03-08 Electrochromic device WO2017155295A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/774,773 US10877348B2 (en) 2016-03-08 2017-03-08 Electrochromic device
CN201780004513.1A CN108369363B (en) 2016-03-08 2017-03-08 Electrochromic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0027597 2016-03-08
KR20160027597 2016-03-08
KR1020170028748A KR102010753B1 (en) 2016-03-08 2017-03-07 Electrochromic device
KR10-2017-0028748 2017-03-07

Publications (1)

Publication Number Publication Date
WO2017155295A1 true WO2017155295A1 (en) 2017-09-14

Family

ID=59789633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002491 WO2017155295A1 (en) 2016-03-08 2017-03-08 Electrochromic device

Country Status (1)

Country Link
WO (1) WO2017155295A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108534930A (en) * 2018-03-23 2018-09-14 京东方科技集团股份有限公司 Pressure visualization device and preparation method thereof, detection device
CN109683418A (en) * 2019-01-10 2019-04-26 五邑大学 A kind of smart window and its manufacturing method
CN111880348A (en) * 2020-08-07 2020-11-03 中国科学院广州能源研究所 Novel electrochromic device and preparation method thereof
CN112596318A (en) * 2020-12-14 2021-04-02 中建材蚌埠玻璃工业设计研究院有限公司 Electrochromic intelligent glass composite film and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4303310A (en) * 1978-06-05 1981-12-01 Tokyo Shibaura Denki Kabushiki Kaisha Electrochromic display device
KR20030072123A (en) * 2002-03-05 2003-09-13 주식회사 엘지이아이 Electrochromic device and manufacturing method thereof
KR20070047597A (en) * 2005-11-02 2007-05-07 주식회사 엘지화학 Electrode structure of electrochromic device
JP2012098628A (en) * 2010-11-04 2012-05-24 Canon Inc Electrochromic device
KR20150076780A (en) * 2013-12-27 2015-07-07 한국전자통신연구원 A electrochromic device and methods of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4303310A (en) * 1978-06-05 1981-12-01 Tokyo Shibaura Denki Kabushiki Kaisha Electrochromic display device
KR20030072123A (en) * 2002-03-05 2003-09-13 주식회사 엘지이아이 Electrochromic device and manufacturing method thereof
KR20070047597A (en) * 2005-11-02 2007-05-07 주식회사 엘지화학 Electrode structure of electrochromic device
JP2012098628A (en) * 2010-11-04 2012-05-24 Canon Inc Electrochromic device
KR20150076780A (en) * 2013-12-27 2015-07-07 한국전자통신연구원 A electrochromic device and methods of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108534930A (en) * 2018-03-23 2018-09-14 京东方科技集团股份有限公司 Pressure visualization device and preparation method thereof, detection device
CN108534930B (en) * 2018-03-23 2019-12-10 京东方科技集团股份有限公司 Pressure visualization device, preparation method thereof and detection equipment
CN109683418A (en) * 2019-01-10 2019-04-26 五邑大学 A kind of smart window and its manufacturing method
CN111880348A (en) * 2020-08-07 2020-11-03 中国科学院广州能源研究所 Novel electrochromic device and preparation method thereof
CN111880348B (en) * 2020-08-07 2023-04-28 中国科学院广州能源研究所 Novel electrochromic device and preparation method thereof
CN112596318A (en) * 2020-12-14 2021-04-02 中建材蚌埠玻璃工业设计研究院有限公司 Electrochromic intelligent glass composite film and preparation method thereof
CN112596318B (en) * 2020-12-14 2022-09-20 中建材玻璃新材料研究院集团有限公司 Electrochromic intelligent glass composite film and preparation method thereof

Similar Documents

Publication Publication Date Title
US10877348B2 (en) Electrochromic device
KR102010733B1 (en) Electrochromic device
WO2017155295A1 (en) Electrochromic device
KR102038184B1 (en) An Electrochromic Device
EP2555048B1 (en) Electrochromic device
KR102141635B1 (en) Electrochromic device
WO2017196035A1 (en) Electrochromic element
KR20100057871A (en) Electrochromic display device and method for manufacturing the same
WO2017217710A1 (en) Electrochromic device
WO2019199011A1 (en) Electrochromic film
KR20190032200A (en) Method for preparing an electrochromic device
Tang et al. Structure evolution of electrochromic devices from ‘face-to-face’to ‘shoulder-by-shoulder’
WO2019050252A1 (en) Privacy protection device for display devices capable of switching between wide viewing angle mode and narrow viewing angle mode
KR102079142B1 (en) An Electrochromic Device
KR102056599B1 (en) An Electrochromic Device
KR102010734B1 (en) An Electrochromic Device
KR102108562B1 (en) An Electrochromic Device
KR102010754B1 (en) An Electrochromic Device
KR102101151B1 (en) An Electrochromic Device
KR102108553B1 (en) An Electrochromic Device
WO2018199569A1 (en) Electrochromic film and electrochromic element comprising same
KR102069486B1 (en) An Electrochromic Device
WO2017217635A1 (en) Flexible electrochromic device using high-quality graphene composite electrode and method for manufacturing same
KR102071901B1 (en) Electrochromic device
WO2018199572A1 (en) Conductive laminate and electrochromic device comprising same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763556

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763556

Country of ref document: EP

Kind code of ref document: A1