WO2018199572A1 - Conductive laminate and electrochromic device comprising same - Google Patents

Conductive laminate and electrochromic device comprising same Download PDF

Info

Publication number
WO2018199572A1
WO2018199572A1 PCT/KR2018/004674 KR2018004674W WO2018199572A1 WO 2018199572 A1 WO2018199572 A1 WO 2018199572A1 KR 2018004674 W KR2018004674 W KR 2018004674W WO 2018199572 A1 WO2018199572 A1 WO 2018199572A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
conductive laminate
conductive
oxide
Prior art date
Application number
PCT/KR2018/004674
Other languages
French (fr)
Korean (ko)
Inventor
김용찬
장성호
김기환
조필성
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180045421A external-priority patent/KR20180119120A/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2019557571A priority Critical patent/JP2020518003A/en
Priority to CN201880027087.8A priority patent/CN110574127A/en
Priority to EP18790462.8A priority patent/EP3618082A4/en
Priority to US16/604,893 priority patent/US20200255723A1/en
Publication of WO2018199572A1 publication Critical patent/WO2018199572A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present application relates to a conductive laminate and an electrochromic device including the same.
  • Electrochromic refers to a phenomenon in which the optical properties of an electrochromic material are changed by an electrochemical oxidation or reduction reaction, and the device using the phenomenon is called an electrochromic device.
  • Electrochromic devices generally include a working electrode, a counter electrode, and an electrolyte, and the optical properties of each electrode may be reversibly changed by an electrochemical reaction.
  • the working electrode or the counter electrode may include a transparent conductive material and an electrochromic material, respectively, in the form of a film.
  • Such electrochromic devices are attracting attention as smart windows, smart mirrors, and other next-generation building window materials because they can manufacture devices with a large area at low cost and have low power consumption.
  • the discoloration rate is slow. This disadvantage is more pronounced when the surface resistance of the transparent conductive electrode is high or when a large area of the electrochromic device is required.
  • One object of the present application is to provide an electrochromic conductive laminate.
  • Another object of the present application is to provide a conductive laminate in which the color change rate is improved.
  • Another object of the present application is to provide a conductive laminate having excellent durability and an improved usable level.
  • Another object of the present application is to provide a conductive laminate in which the permeability control can be made fine.
  • Still another object of the present application is to provide an electrochromic device including the conductive laminate.
  • the present application relates to a conductive laminate.
  • the conductive laminate has a variable transmittance characteristic by electrochromic color.
  • the conductive laminate includes an electrochromic material, and since the optical property may change as a result of electrochromic reaction due to an electrochemical reaction, it may be used as one configuration of an electrochromic device. Electrochromic can occur in one or more layers included in the conductive laminate.
  • the conductive laminate includes a metal oxynitride layer, a metal oxide layer, and a conductive layer.
  • the form in which the said electroconductive laminated body contains each laminated constitution is not specifically limited.
  • the conductive laminate may sequentially include a metal oxynitride layer, a metal oxide layer, and a conductive layer, or may sequentially include a metal oxide layer, a metal oxynitride layer, and a conductive layer.
  • a separate layer may be present between the layers, or one surface of each layer may directly contact each other to form a conductive laminate.
  • the metal oxide layer, the metal oxynitride layer, and the conductive layer may have light transmittance.
  • the term “transmittance” may mean a case where the optical property such as a color change occurring in the electrochromic device is transparent enough to clearly recognize, for example, a state without external factors such as potential application ( And / or in a decolorized state), the light transmittance of the layer may be at least 60% or more. More specifically, the lower limit of the light transmittance of the metal oxide layer, the metal oxynitride layer, and the conductive layer may be 60% or more, 70% or more, or 75% or more, and the upper limit of the light transmittance may be 95% or less, 90% or less, Or 85% or less.
  • the change in the optical properties of the electrochromic device due to electrochromic that is, reversible coloring and decolorization according to the potential application can be sufficiently visible to the user. That is, when it has the said light transmittance in the uncolored state, it is suitable for an electrochromic element.
  • the term "light” in the present application may mean visible light in a wavelength range of 380 nm to 780 nm, and more specifically, visible light in a 550 nm wavelength.
  • the transmittance can be measured using a known haze meter (HM).
  • the metal oxide layer may include an electrochromic material, that is, an electrochromic metal oxide.
  • the metal oxide layer may include a reducing (inorganic) discoloration material in which coloration occurs during the reduction reaction.
  • a reducing (inorganic) discoloration material in which coloration occurs during the reduction reaction.
  • the kind of reducing (inorganic) discoloration material that can be used is not particularly limited, but oxides of Ti, Nb, Mo, Ta, or W may be used.
  • WO 3 , MoO 3 , Nb 2 O 5 , Ta 2 O 5, TiO 2 , or the like can be used.
  • the metal oxide layer may include an oxidative discoloration material that is colored when oxidized.
  • the type of oxidative discoloration material that can be used is not particularly limited, but an oxide of Cr, Mn, Fe, Co, Ni, Rh, or Ir may be used.
  • LiNiOx, IrO 2 , NiO, V 2 O 5 , LixCoO 2, Rh 2 O 3, CrO 3, or the like may be used.
  • the thickness of the metal oxide layer may range from 50 nm to 450 nm.
  • the method for forming the metal oxide layer is not particularly limited.
  • the layer may be formed using various kinds of known deposition methods.
  • the metal oxynitride layer may include an oxynitride containing two or more metals at the same time.
  • the metal oxynitride layer may have an oxynitride including two or more metals selected from Ti, Nb, Mo, Ta and W simultaneously.
  • the metal oxynitride layer may include Mo and Ti at the same time.
  • nitrides, oxides or oxynitrides containing only Mo are poor in adhesion to adjacent thin films, and nitrides, oxides or oxynitrides containing only Ti are poor in durability, such as decomposing upon application of potential.
  • nitrides or oxynitrides containing any one of the metals listed above, such as Ti alone or Mo only are for example 40% or less, 35% or less or 30% or less, even when no potential is applied. Since it has low light transmittance, such as having a visible light transmittance of, it is not suitable for use as an electrochromic film member requiring transparency when bleached. In addition, in the case of using a material having a low transmittance as described above, it is difficult for the user to see a clear change in the optical properties of coloring and discoloration required in the electrochromic device.
  • the metal oxynitride included in the metal oxynitride layer may be represented by the following formula (1).
  • a means an element content ratio of Mo
  • b means an element content ratio of Ti
  • x means an element content ratio of O
  • y means an element content ratio of N
  • the term "element content ratio" in the present application may be atomic%, and may be measured by X-ray photoelectron spectroscopy (XPS). When the element content ratio (a / b) is satisfied, a metal oxynitride layer excellent in adhesion as well as other layer constitutions may be provided.
  • the metal oxynitride layer may have a light transmittance of 60% or more.
  • the element content ratio (y / x) is not satisfied, as the oxynitride layer has a very low light transmittance (transparency), such as having a light transmittance of 40% or less or 35% or less, the oxynitride layer Cannot be used as a member for electrochromic elements.
  • the thin film density ( ⁇ ) of the metal oxynitride layer may be 15 g / cm 3 or less.
  • the lower limit of the thin film density ( ⁇ ) value may be 0.5 g / cm 3 or more, 0.7 g / cm 3 or more, or 1 g / cm 3 or more
  • the upper limit of the thin film density ( ⁇ ) value is 13 or less g / cm 3 or 10 g / cm 3 or less.
  • Thin film density can be measured by X-ray reflectivity (XRR).
  • the thickness of the metal oxynitride layer may be 150 nm or less.
  • the metal oxynitride layer may have a thickness of 140 nm or less, 130 nm or less, 120 nm or less, 110 nm or less, or 100 nm or less.
  • the lower limit of the thickness of the metal oxynitride layer is not particularly limited, but may be, for example, 10 nm or more, 20 nm or more, or 30 nm or more. If it is less than 10 nm, the film stability is not good.
  • the visible light refractive index of the metal oxynitride layer may be in the range of 1.5 to 3.0 or 1.8 to 2.8.
  • appropriate light transmittance may be implemented in the conductive laminate.
  • the method for forming the metal oxynitride layer is not particularly limited.
  • the layer may be formed using various kinds of known deposition methods.
  • monovalent cations may be present in at least one or more layers of the layer structures constituting the conductive laminate.
  • the monovalent cation may be present in either of the metal oxynitride layer and the metal oxide layer, or the monovalent cation may be present in both the metal oxynitride layer and the metal oxide layer.
  • the presence of a monovalent cation in any layer of the conductive laminate for example, when the monovalent cation is included (inserted) in each layer in the form of an ion such as Li + , and the inserted monovalent
  • the cation may be used to encompass a case where the cation is chemically bonded to the metal oxynitride or the metal oxide and included in each layer.
  • the insertion of the monovalent cation may be made before the fabrication of the electrochromic device (formed by laminating the electrolyte layer and the conductive laminate).
  • the monovalent cation may be a cation of an element different from the metal contained in the metal oxynitride layer or the metal oxide layer.
  • the monovalent cation may be, for example, H + , Li + , Na + , K + , Rb + or Cs + .
  • the monovalent cation can also be used as electrolyte ions that may be involved in electrochromic reactions, for example, coloring or decolorization of the metal oxide layer.
  • the presence of monovalent cations in the layer contributes to the transfer of monovalent cations between the electrolyte and each layer that is required later for the reversible discoloration reaction, and allows the initialization work to be omitted, as described below.
  • the first metal oxide layer there is a cation wherein the monovalent cation is a metal oxide layer
  • cm 2 1.0 ⁇ 10 per - 8 mol to 1.0 ⁇ 10 - content range of 6 mol, more specifically, 5.0 ⁇ 10 - 8 mol to 1.0 ⁇ 10 - 7 mol may be present in a content range.
  • the monovalent cation is present in the above content range, the above-described object can be achieved.
  • the one on the metal oxynitride layer there is a cation wherein the monovalent cations, metal oxynitride layers cm 2 per 5.0 ⁇ 10 - 9 mol to 5.0 ⁇ 10 - content range of 7 mol, more specifically, the 2.5 ⁇ 10 - 7 mol content may be in the range - 8 mol to 2.5 ⁇ 10.
  • the monovalent cation is present in the above content range, the above-described object can be achieved.
  • the content of monovalent cations present in each layer can be determined from the relationship between the charge amount of each layer in which the monovalent cation is present and the number of moles of electrons.
  • the amount of charge of the metal oxynitride layer in the conductive laminate is A (C / cm 2 ). If the charge amount A divided by the Faraday constant F (A / F) is the metal oxynitride layer cm 2 It may be the number of moles of electrons present in the sugar.
  • the maximum content of the monovalent cation present in each layer may be equal to the mole number of the electrons obtained from the above.
  • the method of measuring the amount of charge is not particularly limited, and a known method can be used.
  • the amount of charge can be measured by potential step chrono amperometry (PSCA) using a potentiostat device.
  • the presence of monovalent cations in some layers of the layered composition constituting the conductive laminate is a potentiostat device. It can be made using. Specifically, a three-electrode potentiometer device comprising a counter electrode including an operating electrode, a reference electrode containing Ag, and a lithium foil is provided in an electrolyte solution containing a monovalent cation, and the conductive laminate is connected to the operating electrode. Thereafter, the monovalent cation can be inserted into the conductive laminate by applying a predetermined voltage.
  • the magnitude of the predetermined voltage applied for the monovalent cation insertion may include the degree of content of the monovalent cations included in the electrolyte described below, the degree of insertion of the monovalent cations required in the conductive laminate, the optical properties of the conductive laminate required, Or it may be determined in consideration of the coloring level of the electrochromic layer.
  • the term "coloring level” refers to an electrochemical reaction caused by a voltage of a predetermined magnitude applied to an electrochromic layer or a laminate including the same, and as a result, the electrochromic layer is colored and the layer or As in the case where the transmittance of the laminate is lowered, it may mean the “minimum size (absolute value)” of the voltage applied to the electrochromic layer to cause discoloration (coloring and / or discoloration). For example, when a voltage is applied in the order of -0.1 V, -0.5 V, -1 V and -1.5 V at a predetermined time interval to the conductive laminate, the coloring of the metal oxide layer is prevented from applying -1 V.
  • the coloring level of a metal oxide layer can be said to be 1V. Since the coloring level, i.e., the minimum magnitude (absolute value) of the voltage causing coloring, functions as a kind of barrier for coloring, when a potential of a magnitude smaller than the minimum magnitude (absolute value) of the layer coloring level is applied, In fact, the coloring of the layer does not occur (although a slight discoloration occurs, it is difficult to be seen by the observer).
  • the colored levels of the metal oxynitride layer and the metal oxide layer may be different from each other. More specifically, the metal oxynitride layer may also be colored and bleached by an electrochemical reaction like the metal oxide layer, but the minimum magnitude (absolute value) of the voltage causing the coloring of the metal oxide layer and the metal The minimum magnitudes (absolute values) of the voltages that cause coloring of the oxynitride layers may differ from one another. For this purpose, as described above, the type and / or content of the metal included in each layer oxide and oxynitride may be appropriately adjusted.
  • the colored level of the metal oxynitride layer may have a value greater than the colored level of the metal oxide layer.
  • the coloring level of the metal oxide layer may be 0.5V.
  • the coloring level of the metal oxynitride layer may be 1V.
  • the coloring level of the metal oxynitride layer may be 2V or 3V.
  • the coloring level of the metal oxide layer having the above configuration may be 1V.
  • the metal oxide layer of the conductive laminate can be colored. More specifically, by appropriately adjusting the predetermined voltage applied during the insertion of the monovalent cation described above, the metal oxynitride layer having a higher color level than the metal oxide layer can be colored, and only the metal oxide layer can be colored. have.
  • the light transmittance of the colored metal oxide layer may be 45% or less or 40% or less, and the uncolored metal oxynitride layer may maintain visible light transmittance of 60% or more or 70% or more.
  • the light transmittance of the conductive laminate including the colored metal oxide layer may be 45% or less, 40% or less, 35% or less, or 30% or less.
  • the lower limit of the light transmittance of the conductive laminate including the colored metal oxide layer is not particularly limited, but may be, for example, 20% or more.
  • the oxynitride layer including the oxynitride of Chemical Formula 1 may be colored under a voltage application condition of -2 V or less, for example, -2.5 V or less or -3 V or less. That is, the coloring level of the oxynitride layer may be 2 V, 2.5 V or 3 V. For example, when a voltage of ⁇ 1.5 V and ⁇ 2.0 V is applied to the conductive laminate or a device including the same at predetermined time intervals, the oxynitride layer may gradually become colored after the time when ⁇ 2.0 V is applied. (Coloring may be visible to the user).
  • the oxynitride layer satisfying Formula 1 may be colored in a (dark) gray or black color.
  • the coloring level of an oxynitride layer may change to some extent according to the structure used together with an electrochromic film in the range of 2V or more.
  • the conductive layer may have a thickness of 50 nm to 400 nm or less.
  • the conductive layer may include a transparent conductive compound, a metal mesh, or OMO (oxide / metal / oxide), and may be referred to as an electrode layer.
  • ITO Indium Tin Oxide
  • IGO Indium Galium Oxide
  • FTO Fluor doped Tin Oxide
  • AZO Alignium
  • Zinc Oxide GZO
  • Galium doped Zinc Oxide GZO
  • Antimony doped Tin Oxide ATO
  • Indium doped Zinc Oxide IZO
  • Niobium doped Titanium Oxide NTO
  • Zink Oxide ZnO
  • Cesium Tungsten Oxide (CTO) Etc can be mentioned.
  • the materials listed above are not limited to the material of the transparent conductive compound.
  • the metal mesh used for the conductive layer may include Ag, Cu, Al, Mg, Au, Pt, W, Mo, Ti, Ni, or an alloy thereof, and may have a lattice form.
  • the materials usable for the metal mesh are not limited to the metal materials listed above.
  • the conductive layer may include oxide / metal / oxide (OMO). Since the OMO has a lower sheet resistance than the transparent conductive oxide represented by ITO, it is possible to improve the electrical properties of the conductive laminate, such as reducing the discoloration rate of the electrochromic device.
  • OMO oxide / metal / oxide
  • the OMO may include a top layer, a bottom layer, and a metal layer provided between the two layers.
  • the upper layer may mean a layer located relatively farther from the metal oxynitride layer among the layers constituting the OMO.
  • the top and bottom layers of the OMO electrode may comprise oxides of Sb, Ba, Ga, Ge, Hf, In, La, Se, Si, Ta, Se, Ti, V, Y, Zn, Zr or their alloys. It may include.
  • the type of each metal oxide included in the upper layer and the lower layer may be the same or different.
  • the thickness of the top layer may range from 10 nm to 120 nm or from 20 nm to 100 nm.
  • the visible light refractive index of the upper layer may be in the range of 1.0 to 3.0 or 1.2 to 2.8. When having a refractive index and a thickness in the above range, an appropriate level of optical properties can be imparted to the conductive laminate.
  • the thickness of the lower layer may range from 10 nm to 100 nm or from 20 nm to 80 nm.
  • the visible light refractive index of the lower layer may be in the range of 1.3 to 2.7 or 1.5 to 2.5.
  • the metal layer included in the OMO electrode may include a low resistance metal material.
  • a low resistance metal material for example, one or more of Ag, Cu, Zn, Au, Pd, and alloys thereof may be included in the metal layer.
  • the metal layer may have a thickness in the range of 3 nm to 30 nm or in the range of 5 nm to 20 nm.
  • the metal layer may have a visible light refractive index of 1 or less or 0.5 or less. When having a refractive index and a thickness in the above range, an appropriate level of optical properties can be imparted to the conductive laminate.
  • the present application relates to an electrochromic device.
  • the electrochromic device may sequentially include the above-described conductive laminate, electrolyte layer, and counter electrode layer.
  • One surface of the conductive laminate, the electrolyte layer, and the counter electrode layer may directly contact each other, or a separate layer or other configuration may be interposed therebetween.
  • the electrochromic device may be configured such that the metal oxynitride layer is located closest to the electrolyte layer of the conductive laminate. More specifically, the electrochromic device may sequentially include a conductive layer, a metal oxide layer, a metal oxynitride layer, an electrolyte layer, and a counter electrode layer.
  • the conductive laminate includes an electrochromic metal oxide and a metal oxynitride layer.
  • the metal oxide may include a reducing discoloration material or an oxidizing discoloration material.
  • the metal oxide layer includes a reducing discoloration material, since the two metal components included in the metal oxynitride layer are selected from metals that can be used in the metal oxide layer, the metal oxide layer is included in the conductive laminate.
  • the metal oxynitride layer and the metal oxide layer are considered to have similar physical / chemical properties.
  • the electrolyte ions when electrolyte ions are inserted from the electrolyte layer into the conductive laminate, the electrolyte ions can be inserted into the metal oxide layer, which is an electrochromic layer, without interference by the metal oxynitride layer. The same applies to the case where electrolyte ions are released from each layer.
  • the metal oxynitride layer is determined to improve the driving characteristics of the electrochromic device. Specifically, since there is a difference in reactivity or oxidation tendency between the metal components used in each layer, when the movement of electrolyte ions between layers is repeated, the metal used in any layer, for example, a conductive layer or a metal layer, elutes. There may be a problem. This problem is more clearly observed when OMO is used. However, in the present application, since the metal oxynitride layer capable of containing electrolyte ions functions as a kind of buffer or passivation layer, deterioration of the metal material used for each layer, such as a conductive layer or a metal layer, Can be prevented.
  • the electrochromic device of the present application can have excellent durability, improved discoloration speed, and sufficiently improved usable level.
  • the present application can more precisely control the optical properties of the electrochromic device.
  • the configuration of the counter electrode layer is not particularly limited. For example, it may have the same material and / or the same configuration as the conductive layer described above.
  • the electrolyte layer may be configured to provide electrolyte ions involved in the electrochromic reaction.
  • Electrolyte ions may be monovalent cations, such as H + , Li + , Na + , K + , Rb + , or Cs + , which are inserted into the conductive laminate and may participate in the discoloration reaction.
  • the kind of electrolyte included in the electrolyte layer is not particularly limited.
  • liquid electrolytes, gel polymer electrolytes or inorganic solid electrolytes can be used without limitation.
  • the specific composition of the electrolyte used in the electrolyte layer is not particularly limited as long as it can include a compound capable of providing a monovalent cation, that is, H + , Li + , Na + , K + , Rb + , or Cs + .
  • the electrolyte layer may be LiClO 4 , LiBF 4 , LiAsF 6 , or LiPF 6. It may include a lithium salt compound, such as, or a sodium salt compound such as NaClO 4 .
  • the electrolyte may further include a carbonate compound as a solvent.
  • a carbonate type compound has high dielectric constant, ionic conductivity can be improved.
  • a solvent such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC) or ethylmethyl carbonate (EMC) may be used as the carbonate-based compound.
  • the electrolyte layer comprises a gel polymer electrolyte
  • a gel polymer electrolyte for example, polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polymethyl methacrylate (Polymethyl methacrylate, PMMA), polyvinyl chloride (PVC), polyethylene oxide (PEO), polypropylene oxide (PPO), poly (vinylidene fluoride-hexafluoro fluoropropylene) (Poly (vinylidene fluoride-hexafluoro propylene), PVdF-HFP), polyvinyl acetate (Polyvinyl acetate, PVAc), polyoxyethylene (Polyoxyethylene, POE), polyamideimide (Polyamideimide, PAI) and the like polymers may be used.
  • PVdF polyvinylidene fluoride
  • PAN polyacrylonitrile
  • PAN polymethyl methacrylate
  • PMMA polymethyl methacrylate
  • the light transmittance of the electrolyte layer may range from 60% to 95%, and the thickness thereof may range from 10 ⁇ m to 200 ⁇ m, but is not particularly limited.
  • the electrochromic device of the present application may further include an ion storage layer.
  • the ion storage layer may refer to a layer formed to balance the charge balance with the metal oxide layer and / or the metal oxynitride layer during the reversible oxidation / reduction reaction for discoloration of the electrochromic material.
  • An ion storage layer may be located between the electrode layer and the electrolyte layer.
  • the ion storage layer may include an electrochromic material having a color development characteristic different from that of the electrochromic material used for the metal oxide layer.
  • the metal oxide layer includes a reducing color change material
  • the ion storage layer may include an oxidative color change material. The reverse is also possible.
  • the ion storage layer may include an oxidative discoloration material. Specifically, oxides of Cr, Mn, Fe, Co, Ni, Rh, or Ir; Hydroxides of Cr, Mn, Fe, Co, Ni, Rh, or Ir; And one or more selected from prussian blue may be included in the ion storage layer.
  • the thickness of the ion storage layer may range from 50 nm to 450 nm, and the light transmittance may range from 60% to 95%.
  • each layer containing the electrochromic materials should have the same colored or discolored state.
  • the metal oxide layer containing the reductive electrochromic material is colored
  • the ion storage layer including the oxidative electrochromic material should also have a colored state.
  • the metal oxide layer containing the reductive electrochromic material is decolorized.
  • the ion storage layer containing the oxidative electrochromic material should also be decolorized.
  • two electrochromic materials having different color development properties do not contain electrolyte ions by themselves, there is additional work to match the coloration or decolorization state between layers containing each electrochromic material. Is required.
  • these tasks are called initialization tasks.
  • the first layer contains transparent WO 3 which is colored by reduction but is almost colorless in itself, and the Prussian blue colored as such is included in the second layer
  • a high voltage is applied to a second layer of an electrochromic device in which an electrode layer, a first layer, an electrolyte layer, a second layer, and an electrode layer are laminated to perform decolorization treatment (reduction treatment) on Prussian blue.
  • decolorization treatment reduction treatment
  • the initialization work performed at a high potential has a problem of lowering the durability of the device, such as causing side reactions between the electrode and the electrolyte layer.
  • a monovalent cation that can be used as an electrolyte ion is previously inserted into a conductive laminate, and in some cases, a metal oxide layer and / or a metal oxynitride layer Since it may be colored, the above initialization operation is not necessary. Therefore, the device can be driven without deterioration in durability due to the initialization operation.
  • the electrochromic device may further include a substrate.
  • the substrate may be located on an outer surface of the device, specifically, an outer surface of the conductive layer of the counter electrode layer or the conductive laminate.
  • the substrate may also be light transmissive, ie having a light transmittance in the range of 60% to 95%. If the transmittance in the above range is satisfied, the kind of substrate to be used is not particularly limited.
  • glass or polymer resins can be used. More specifically, a polyester film such as polycarbonate (PC), polyethylene (phthalene naphthalate) (PEN) or polyethylene (ethylene terephthalate) (PET), an acrylic film such as poly (methyl methacrylate) (PMMA), or polyethylene (PE) Or a polyolefin film such as PP (polypropylene) may be used, but is not limited thereto.
  • the electrochromic device may further include a power source.
  • the manner of electrically connecting the power source to the device is not particularly limited and may be appropriately made by those skilled in the art.
  • the voltage applied by the power source may be a constant voltage.
  • the power source may alternately apply a voltage at a level capable of discoloring and coloring the electrochromic material for a predetermined time interval.
  • the power source may change the magnitude of the voltage applied at predetermined time intervals.
  • the power supply may apply a plurality of coloring voltages that sequentially increase or decrease at predetermined time intervals, and may apply a plurality of decolorization voltages that sequentially increase or decrease at predetermined time intervals. .
  • the power source may sequentially apply the colored level of the metal oxide layer and the colored level of the metal oxynitride layer.
  • the metal oxide layer is first colored, and then the metal oxynitride layer is additionally colored. Accordingly, the electrochromic device of the present application can realize a very low level of light transmittance, for example, a light transmittance of 10% or less or 5% or less in a state of being colored to the metal oxynitride layer.
  • the metal oxide layer and / or the ion storage layer is colored, for example, if the light transmittance of about 20% or 15% can be achieved, in the device of the present application to which the metal oxynitride is gradually colored 10 Visible light transmittance of less than or equal to 5% may be realized.
  • This level of light transmittance is a value that is difficult to realize in the prior art using only the configuration corresponding to the metal oxide layer and the ion storage layer. Further, in the prior art using only the structures corresponding to the metal oxide layer and the ion storage layer, it is not expected to finely adjust the light transmittance step by step as in the present application.
  • an electrochromic conductive laminate is provided.
  • the conductive laminate and the electrochromic device including the same have excellent durability as well as an improved electrochromic speed.
  • FIG. 1 is a graph showing a state in which a laminate including a metal oxynitride layer of the present application having a translucent and electrochromic state is driven without deterioration of durability when a voltage of ⁇ 5 V is applied.
  • Figure 2 is a graph relating to driving characteristics of the device. Specifically, Figure 2 (a) is a graph showing the change in the charge amount of the device of Example 1 as the cycle increases, Figure 2 (b) shows the change in the charge amount of the device of Comparative Example 1 as the cycle increases. It is a graph shown.
  • Figure 3 is a graph relating to driving characteristics of the device. Specifically, Figure 3 (a) is a graph showing the change in the amount of current and charge measured in accordance with Example 2 in a specific cycle period (second time), Figure 3 (b) is measured in accordance with Comparative Example 2 The graph shows the change in the amount of current and charge in a specific cycle period.
  • Figure 4 is a graph showing the optical characteristics of the electrochromic device of the present application that can adjust the transmittance step by step according to the applied voltage.
  • ITO having a light transmittance of about 90% was formed on one surface of glass (galss) having a light transmittance of about 98%.
  • an oxynitride (Mo a Ti b O x N y ) layer including Mo and Ti was formed on a surface of ITO (as opposed to the glass position) by using sputter deposition to a thickness of 30 nm.
  • the weight percent ratio of the target of Mo and Ti was 1: 1, the deposition power was 100 W, the process pressure was deposited at 15 mTorr, and each flow rate of Ar, N 2 and O 2 was 30 sccm, 5 sccm, and 5 sccm.
  • the flow rate of nitrogen was 10 sccm, and the oxynitride layer was formed in the same manner as in Preparation Example 1, except that the content ratio was changed as shown in Table 1.
  • the flow rate of nitrogen was 15 sccm, and the oxynitride layer was formed in the same manner as in Preparation Example 1, except that the content ratio was changed as shown in Table 1.
  • the oxynitride layers of Preparation Examples 2 to 4 have a very low transmittance, but the oxynitride layer comprising the oxynitride of Preparation Example 1 has a transmittance of about 90%.
  • the oxynitride layer of Preparation Example 1 having high light transmittance is suitable as a member for an electrochromic device.
  • the glass / ITO / oxynitride (Mo a Ti b O x N y ) laminate prepared from Preparation Example 1 was immersed in an electrolyte containing LiClO 4 (1M) and propylene carbonate (PC). At 25 ° C., a coloring voltage of ⁇ 3 V and a decolorization voltage of +3 V were applied alternately for 50 seconds, respectively.
  • the currents, transmittances, and discoloration times at the time of coloring and decolorization thus measured are as listed in Table 2.
  • the laminate of Preparation Example 1 has discoloration characteristics (coloring) according to the voltage applied.
  • 1 is a graph which records the state in which the laminated body of manufacture example 1 drives (electrochromic) when a drive electric potential is +/- 5V.
  • Mo a Ti b O x N y having the same content ratio as the oxynitride of Preparation Example 1
  • a conductive laminate comprising a layer, a WO 3 layer, and an OMO electrode layer was sequentially prepared.
  • 100 ppm of an electrolytic solution containing LiClO 4 (1M) and propylene carbonate (PC) and a potentiostat device were prepared, and a voltage of ⁇ 1 V was applied for 50 seconds to provide Mo a Ti b O x N y. Li + in the layer and WO 3 layer Inserted. It was confirmed that the WO 3 layer was colored in a blue series color.
  • the content of Li + present per cm 2 WO 3 layer is 1.0 ⁇ 10 -8 mol to 1.0 ⁇ 10 - 6 mol are included in the range, Mo a Ti b O x N y
  • the content of the Li + layer present per cm 2 was 5.0 ⁇ 10 - it was confirmed is included in the range to 7 mol range - 9 mol to 5.0 ⁇ 10.
  • the manufactured electrochromic device has a laminated structure of OMO / WO 3 / Mo a Ti b O x N y / GPE / PB / ITO.
  • the change in charge amount of the device over time was observed while repeatedly applying a bleaching voltage and a coloring voltage to the manufactured device at regular intervals.
  • the decolorization voltage per cycle was applied for 50 seconds at (+) 1.0 V, and the coloring voltage was applied for 50 seconds selected from the range of (-) 1.0 to (-) 3.0 V.
  • the result is shown in FIG. 2 (a).
  • An electrochromic device was prepared in the same manner except that the Mo a Ti b O x N y layer was not included, and the charge amount change of the device was observed in the same manner. The result is shown in FIG. 2 (b).
  • the level at which cycling can be performed while the device is not damaged when driving the device is called an available level of the device.
  • Mo a Ti b O x N y The embodiment including the layer does not decrease the amount of charge even if more than 1,000 cycling is performed, it can be said that the usable level is improved compared to the comparative example.
  • FIG. 3 (a) shows that the peaks of the charge amount and the current are steep. Specifically, FIG. 3 (b) shows the time required for the charge amount and the current to converge to a specific value in the range of approximately 20 seconds to 30 seconds, while FIG. 3 (a) shows that time within 10 seconds. This means that the discoloration speed in the example device is faster than that of the comparative device.
  • the laminate and the electrochromic device of the present application including two layers having different colored levels from each other can be controlled in stages of light transmittance.
  • the light blocking property is very high.
  • the metal oxide layer including WO 3 is colored in light blue
  • the metal oxynitride layer including Mo and Ti is dark gray. It can be seen that very low light transmittance is observed while coloring with).

Abstract

The present application relates to a conductive laminate and an electrochromic device comprising the same. The conductive laminate comprises a metal oxynitride layer, a metal oxide layer, and a conductive layer. The conductive laminate and the electrochromic device according to the present application not only have superior durability and are excellent in the rate of color change, but can also gradationally control optical properties.

Description

도전성 적층체 및 이를 포함하는 전기변색소자Conductive laminates and electrochromic devices comprising the same
관련 출원들과의 상호 인용Cross Citation with Related Applications
본 출원은 2017년 4월 24일 자 한국 특허 출원 제10-2017-0052043호 및 2018년 4월 19일 자 한국 특허 출원 제10-2018-0045421호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0052043 dated April 24, 2017 and Korean Patent Application No. 10-2018-0045421 dated April 19, 2018, and the Korean patent All content disclosed in the literature of the application is included as part of this specification.
기술분야Field of technology
본 출원은 도전성 적층체 및 이를 포함하는 전기변색소자에 관한 것이다.The present application relates to a conductive laminate and an electrochromic device including the same.
전기변색이란 전기화학적 산화 또는 환원 반응에 의하여 전기변색물질의 광학적 성질이 변하는 현상을 말하며, 상기 현상을 이용한 소자를 전기변색소자라 한다. 전기변색소자는 일반적으로 작업전극, 상대전극, 및 전해질을 포함하며, 전기화학적 반응에 의해 각 전극의 광학적 성질이 가역적으로 변화할 수 있다. 예를 들어, 작업전극 또는 상대전극은 투명 도전성 물질과 전기변색물질을 각각 필름형태로 포함할 수 있는데, 소자에 전위가 인가될 경우 전해질 이온이 전기변색물질 함유 필름에 삽입되거나 이로부터 탈리되고, 동시에 외부 회로를 통해 전자가 이동하게 되면서 전기변색물질의 광학적 성질변화가 나타나게 된다.Electrochromic refers to a phenomenon in which the optical properties of an electrochromic material are changed by an electrochemical oxidation or reduction reaction, and the device using the phenomenon is called an electrochromic device. Electrochromic devices generally include a working electrode, a counter electrode, and an electrolyte, and the optical properties of each electrode may be reversibly changed by an electrochemical reaction. For example, the working electrode or the counter electrode may include a transparent conductive material and an electrochromic material, respectively, in the form of a film. When a potential is applied to the device, electrolyte ions are inserted into or detached from the electrochromic material-containing film, At the same time, as electrons move through the external circuit, the optical properties of the electrochromic material appear.
이러한, 전기변색소자는 적은 비용으로도 넓은 면적의 소자를 제조할 수 있고, 소비전력이 낮기 때문에, 스마트 윈도우나 스마트 거울, 그 밖에 차세대 건축 창호 소재로서 주목받고 있다. 그러나, 변색층 전면적의 광학적 특성 변화를 위한 전해질 이온의 삽입 및/또는 탈리에는 상당 시간이 소요되기 때문에, 변색속도가 느리다는 단점이 있다. 이러한 단점은, 투명 도전성 전극의 면 저항이 높은 경우나, 전기변색소자의 대면적화가 요구되는 경우에 더욱 두드러진다.Such electrochromic devices are attracting attention as smart windows, smart mirrors, and other next-generation building window materials because they can manufacture devices with a large area at low cost and have low power consumption. However, since the insertion and / or desorption of electrolyte ions for changing the optical properties of the entire discoloration layer takes a long time, the discoloration rate is slow. This disadvantage is more pronounced when the surface resistance of the transparent conductive electrode is high or when a large area of the electrochromic device is required.
한편, 최근에는 전기변색소자에 대한 수요가 증가하고, 적용 분야도 다양화되고 있기 때문에, 내구성이 우수하면서도 광학적 특성을 세밀하게 조절할 수 있는 소자에 대한 개발이 요구되고 있다.On the other hand, in recent years, as the demand for electrochromic devices increases and the field of application is diversified, there is a demand for the development of devices having excellent durability and fine control of optical characteristics.
본 출원의 일 목적은, 전기변색 가능한 도전성 적층체를 제공하는 것이다. One object of the present application is to provide an electrochromic conductive laminate.
본 출원의 다른 목적은, 변색속도가 개선된 도전성 적층체를 제공하는 것이다.Another object of the present application is to provide a conductive laminate in which the color change rate is improved.
본 출원의 다른 목적은, 내구성이 우수하고, 가용 준위가 개선된 도전성 적층체를 제공하는 것이다.Another object of the present application is to provide a conductive laminate having excellent durability and an improved usable level.
본 출원의 또 다른 목적은, 투과도 조절이 세밀하게 이루어질 수 있는 도전성 적층체를 제공하는 것이다.Another object of the present application is to provide a conductive laminate in which the permeability control can be made fine.
본 출원의 또 다른 목적은, 상기 도전성 적층체를 포함하는 전기변색소자를 제공하는 것이다.Still another object of the present application is to provide an electrochromic device including the conductive laminate.
본 출원의 상기 목적 및 기타 그 밖의 목적은 하기 상세히 설명되는 본 출원에 의해 모두 해결될 수 있다.The above and other objects of the present application can all be solved by the present application described in detail below.
본 출원에 관한 일례에서, 본 출원은 도전성 적층체에 관한 것이다. 상기 도전성 적층체는 전기변색에 의한 투과도 가변 특성을 갖는다. 구체적으로, 상기 도전성 적층체는 전기변색물질을 포함하고, 전기화학적 반응에 따른 전기변색의 결과로 광학적 성질이 변화할 수 있기 때문에, 전기변색소자의 일 구성으로 사용될 수 있다. 전기변색은 도전성 적층체에 포함되는 하나 이상의 층에서 일어날 수 있다.In one example of the present application, the present application relates to a conductive laminate. The conductive laminate has a variable transmittance characteristic by electrochromic color. Specifically, the conductive laminate includes an electrochromic material, and since the optical property may change as a result of electrochromic reaction due to an electrochemical reaction, it may be used as one configuration of an electrochromic device. Electrochromic can occur in one or more layers included in the conductive laminate.
상기 도전성 적층체는 금속산질화물층, 금속산화물층 및 도전층을 포함한다. 상기 도전성 적층체가 각 층 구성을 포함하는 형태는 특별히 제한되지 않는다. 예를 들어, 상기 도전성 적층체는 금속산질화물층, 금속산화물층 및 도전층을 순차로 포함하거나, 금속산화물층, 금속산질화물층 및 도전층을 순차로 포함할 수 있다. 이때, 상기 각 층 사이에는 별도의 층이 존재하거나, 또는 각 층의 일면이 서로 직접 접하면서 도전성 적층체를 구성할 수도 있다.The conductive laminate includes a metal oxynitride layer, a metal oxide layer, and a conductive layer. The form in which the said electroconductive laminated body contains each laminated constitution is not specifically limited. For example, the conductive laminate may sequentially include a metal oxynitride layer, a metal oxide layer, and a conductive layer, or may sequentially include a metal oxide layer, a metal oxynitride layer, and a conductive layer. In this case, a separate layer may be present between the layers, or one surface of each layer may directly contact each other to form a conductive laminate.
하나의 예시에서, 금속산화물층, 금속산질화물층, 및 도전층은 투광성을 가질 수 있다. 본 출원에서 「투광성」이란, 전기변색소자에서 일어나는 색 변화와 같은 광학 특성의 변화를 뚜렷하게 시인할 수 있을 만큼 투명한 경우를 의미할 수 있으며, 예를 들어, 전위 인가와 같은 외부 요인이 없는 상태(및/또는 탈색 상태)에서, 해당 층이 갖는 광 투과율이 최소 60% 이상인 경우를 의미할 수 있다. 보다 구체적으로, 상기 금속산화물층, 금속산질화물층, 및 도전층의 광 투과율 하한은 60% 이상, 70% 이상, 또는 75% 이상일 수 있고, 광 투과율의 상한은 95% 이하, 90% 이하, 또는 85% 이하 일 수 있다. 상기 범위의 투광성을 만족하는 경우, 전위인가에 따른 전기변색, 즉 가역적인 착색과 탈색에 의한 전기변색소자의 광학 특성 변화가 사용자에게 충분히 시인될 수 있다. 즉, 착색되지 않은 상태에서 상기 투광성을 갖는 경우, 전기변색소자에 적합하다. 특별히 언급하지 않는 이상, 본 출원에서 「광」이라 함은, 380 nm 내지 780 nm 파장 범위의 가시광, 보다 구체적으로는 550 nm 파장의 가시광을 의미할 수 있다. 상기 투과율은 공지된 헤이즈 미터(haze meter: HM)를 이용하여 측정될 수 있다.In one example, the metal oxide layer, the metal oxynitride layer, and the conductive layer may have light transmittance. In the present application, the term “transmittance” may mean a case where the optical property such as a color change occurring in the electrochromic device is transparent enough to clearly recognize, for example, a state without external factors such as potential application ( And / or in a decolorized state), the light transmittance of the layer may be at least 60% or more. More specifically, the lower limit of the light transmittance of the metal oxide layer, the metal oxynitride layer, and the conductive layer may be 60% or more, 70% or more, or 75% or more, and the upper limit of the light transmittance may be 95% or less, 90% or less, Or 85% or less. When satisfying the light transmittance in the above range, the change in the optical properties of the electrochromic device due to electrochromic, that is, reversible coloring and decolorization according to the potential application can be sufficiently visible to the user. That is, when it has the said light transmittance in the uncolored state, it is suitable for an electrochromic element. Unless otherwise specified, the term "light" in the present application may mean visible light in a wavelength range of 380 nm to 780 nm, and more specifically, visible light in a 550 nm wavelength. The transmittance can be measured using a known haze meter (HM).
금속산화물층은 전기변색물질, 즉 전기변색 가능한 금속산화물(metal oxide)을 포함할 수 있다.The metal oxide layer may include an electrochromic material, that is, an electrochromic metal oxide.
하나의 예시에서, 금속산화물층은, 환원반응시 착색(coloration)이 일어나는 환원성 (무기) 변색물질을 포함할 수 있다. 사용 가능한 환원성 (무기) 변색물질의 종류는 특별히 제한되지 않으나, Ti, Nb, Mo, Ta 또는 W의 산화물이 사용될 수 있다. 예를 들어, WO3, MoO3, Nb2O5, Ta2O5 또는 TiO2 등이 사용될 수 있다.In one example, the metal oxide layer may include a reducing (inorganic) discoloration material in which coloration occurs during the reduction reaction. The kind of reducing (inorganic) discoloration material that can be used is not particularly limited, but oxides of Ti, Nb, Mo, Ta, or W may be used. For example, WO 3 , MoO 3 , Nb 2 O 5 , Ta 2 O 5, TiO 2 , or the like can be used.
또 하나의 예시에서, 상기 금속산화물층은 산화될 때 착색이 이루어지는 산화성 변색물질을 포함할 수 있다. 사용 가능한 산화성 변색물질의 종류는 특별히 제한되지 않으나, Cr, Mn, Fe, Co, Ni, Rh, 또는 Ir 의 산화물이 사용될 수 있다. 예를 들어, LiNiOx, IrO2, NiO, V2O5, LixCoO2, Rh2O3 또는 CrO3 등이 사용될 수 있다.In another example, the metal oxide layer may include an oxidative discoloration material that is colored when oxidized. The type of oxidative discoloration material that can be used is not particularly limited, but an oxide of Cr, Mn, Fe, Co, Ni, Rh, or Ir may be used. For example, LiNiOx, IrO 2 , NiO, V 2 O 5 , LixCoO 2, Rh 2 O 3, CrO 3, or the like may be used.
특별히 제한되지는 않으나, 상기 금속산화물층의 두께는 50 nm 내지 450 nm 범위일 수 있다. Although not particularly limited, the thickness of the metal oxide layer may range from 50 nm to 450 nm.
상기 금속산화물층을 형성하는 방법은 특별히 제한되지 않는다. 예를 들어, 다양한 종류의 공지된 증착 방식을 사용하여 상기 층을 형성할 수 있다.The method for forming the metal oxide layer is not particularly limited. For example, the layer may be formed using various kinds of known deposition methods.
금속산질화물층은, 2 이상의 금속을 동시에 포함하는 산질화물(oxynitride)을 포함할 수 있다. The metal oxynitride layer may include an oxynitride containing two or more metals at the same time.
하나의 예시에서, 상기 금속산질화물층은 Ti, Nb, Mo, Ta 및 W 중에서 선택되는 2 이상의 금속을 동시에 포함하는 산질화물을 가질 수 있다.In one example, the metal oxynitride layer may have an oxynitride including two or more metals selected from Ti, Nb, Mo, Ta and W simultaneously.
보다 구체적으로, 상기 금속산질화물층은 Mo과 Ti을 동시에 포함할 수 있다. 이와 관련하여, Mo만을 포함하는 질화물, 산화물 또는 산질화물은 인접 박막과의 부착성이 좋지 못하고, Ti만을 포함하는 질화물, 산화물 또는 산질화물은 전위 인가시 분해되는 등 내구성이 좋지 못하다. 특히, 상기 나열된 금속 중 어느 하나의 금속, 예를 들어 Ti 만을 또는 Mo 만을 포함하는 질화물이나 산질화물은, 예를 들어 전위 등이 인가되지 않는 상태에서도, 40% 이하, 35% 이하 또는 30% 이하의 가시광 투과율을 갖는 것과 같이, 낮은 투광성을 갖기 때문에, 탈색(bleached)시 투명성이 요구되는 전기변색필름용 부재로 사용하기에 부적합하다. 또한, 상기와 같이 투과율이 낮은 물질을 사용할 경우에는, 전기변색소자에서 요구되는 착색과 탈색의 뚜렷한 광학 특성 변화가 사용자에게 시인되기 어렵다.More specifically, the metal oxynitride layer may include Mo and Ti at the same time. In this regard, nitrides, oxides or oxynitrides containing only Mo are poor in adhesion to adjacent thin films, and nitrides, oxides or oxynitrides containing only Ti are poor in durability, such as decomposing upon application of potential. In particular, nitrides or oxynitrides containing any one of the metals listed above, such as Ti alone or Mo only, are for example 40% or less, 35% or less or 30% or less, even when no potential is applied. Since it has low light transmittance, such as having a visible light transmittance of, it is not suitable for use as an electrochromic film member requiring transparency when bleached. In addition, in the case of using a material having a low transmittance as described above, it is difficult for the user to see a clear change in the optical properties of coloring and discoloration required in the electrochromic device.
하나의 예시에서, 상기 금속산질화물층이 포함하는 금속산질화물은 하기 화학식 1로 표시될 수 있다.  In one example, the metal oxynitride included in the metal oxynitride layer may be represented by the following formula (1).
[화학식 1][Formula 1]
MoaTibOxNy Mo a Ti b O x N y
화학식 1에서, a는 Mo의 원소 함량비를 의미하고, b는 Ti의 원소 함량비를 의미하고, x는 O의 원소 함량비를 의미하고, y는 N의 원소 함량비를 의미하고, a>0, b>0, x>0, y>0이고, 0.5 < a/b < 4.0이고, 0.005 < y/x < 0.02일 수 있다. 본 출원에서 용어 「원소 함량비」는 atomic%일 수 있고, XPS(X-ray photoelectron spectroscopy)에 의해 측정될 수 있다. 상기 원소 함량비(a/b)를 만족할 경우, 내구성뿐 아니라 다른 층 구성과의 부착성이 우수한 금속산질화물층이 제공될 수 있다. 상기 원소 함량비(y/x)를 만족할 경우, 금속산질화물층은 60% 이상의 광 투과율을 가질 수 있다. 특히, 상기 원소 함량비(y/x)를 만족하지 못하는 경우에는, 40% 이하 또는 35% 이하의 광 투과율을 갖는 것과 같이, 산질화물층이 매우 낮은 투광성(투명성)을 갖게 되므로, 산질화물층을 전기변색소자용 부재로서 사용할 수 없다.In Formula 1, a means an element content ratio of Mo, b means an element content ratio of Ti, x means an element content ratio of O, y means an element content ratio of N, a> 0, b> 0, x> 0, y> 0, 0.5 <a / b <4.0, and 0.005 <y / x <0.02. The term "element content ratio" in the present application may be atomic%, and may be measured by X-ray photoelectron spectroscopy (XPS). When the element content ratio (a / b) is satisfied, a metal oxynitride layer excellent in adhesion as well as other layer constitutions may be provided. When the element content ratio (y / x) is satisfied, the metal oxynitride layer may have a light transmittance of 60% or more. In particular, when the element content ratio (y / x) is not satisfied, as the oxynitride layer has a very low light transmittance (transparency), such as having a light transmittance of 40% or less or 35% or less, the oxynitride layer Cannot be used as a member for electrochromic elements.
하나의 예시에서, 상기 금속산질화물층의 박막밀도(ρ)는 15 g/cm3 이하일 수 있다. 예를 들어, 박막밀도(ρ) 값의 하한은 0.5 g/cm3 이상, 0.7 g/cm3 이상, 또는 1 g/cm3 이상일 수 있고, 박막밀도(ρ) 값의 상한은 13 이하 g/cm3 또는 10 g/cm3이하일 수 있다. 박막밀도는 XRR(X-ray reflectivity)에 의해 측정될 수 있다. In one example, the thin film density (ρ) of the metal oxynitride layer may be 15 g / cm 3 or less. For example, the lower limit of the thin film density (ρ) value may be 0.5 g / cm 3 or more, 0.7 g / cm 3 or more, or 1 g / cm 3 or more, and the upper limit of the thin film density (ρ) value is 13 or less g / cm 3 or 10 g / cm 3 or less. Thin film density can be measured by X-ray reflectivity (XRR).
하나의 예시에서, 상기 금속산질화물층의 두께는 150 nm 이하일 수 있다. 예를 들어, 상기 금속산질화물층은 140 nm 이하, 130 nm 이하, 120 nm 이하, 110 nm 이하, 또는 100 nm 이하의 두께를 가질 수 있다. 상기 두께의 상한을 초과하는 경우, 전해질 이온의 삽입이나 탈리가 저하될 수 있으며, 변색속도에 악영향을 끼칠 수 있다. 금속산질화물층의 두께 하한은 특별히 제한되지 않으나, 예를 들어, 10 nm 이상, 20 nm 이상 또는 30 nm 이상 일 수 있다. 10 nm 미만일 경우, 박막 안정성이 좋지 못하다.In one example, the thickness of the metal oxynitride layer may be 150 nm or less. For example, the metal oxynitride layer may have a thickness of 140 nm or less, 130 nm or less, 120 nm or less, 110 nm or less, or 100 nm or less. When the upper limit of the thickness is exceeded, the insertion or desorption of electrolyte ions may be lowered and may adversely affect the discoloration rate. The lower limit of the thickness of the metal oxynitride layer is not particularly limited, but may be, for example, 10 nm or more, 20 nm or more, or 30 nm or more. If it is less than 10 nm, the film stability is not good.
하나의 예시에서, 상기 금속산질화물층의 가시광 굴절률은 1.5 내지 3.0 범위 또는 1.8 내지 2.8 범위일 수 있다. 금속산질화물층이 상기 범위의 가시광 굴절률을 가질 경우, 도전성 적층체 내에서 적절한 투광성이 구현될 수 있다. In one example, the visible light refractive index of the metal oxynitride layer may be in the range of 1.5 to 3.0 or 1.8 to 2.8. When the metal oxynitride layer has a visible light refractive index in the above range, appropriate light transmittance may be implemented in the conductive laminate.
상기 금속산질화물층을 형성하는 방법은 특별히 제한되지 않는다. 예를 들어, 다양한 종류의 공지된 증착 방식을 사용하여 상기 층을 형성할 수 있다.The method for forming the metal oxynitride layer is not particularly limited. For example, the layer may be formed using various kinds of known deposition methods.
본 출원에서, 상기 도전성 적층체를 구성하는 층 구성 중 적어도 하나 이상의 층에는 1가 양이온이 존재할 수 있다. 예를 들어, 1가 양이온은 금속산질화물층과 금속산화물층 중 어느 하나의 층에 존재할 수 있고, 또는 금속산질화물층과 금속산화물층 모두에 1가 양이온이 존재할 수 있다. 본 출원에서, 도전성 적층체의 어느 층에 1가 양이온이 존재한다는 것은, 예를 들어, 1가 양이온이 Li+ 과 같은 이온의 형태로 각 층에 포함(삽입)된 경우, 및 삽입된 1가 양이온이 금속산질화물이나 금속산화물과 화학적으로 결합하여 각 층에 포함되는 경우를 포괄하는 의미로 사용될 수 있다. 본 출원에서, 1가 양이온의 삽입은 (전해질층과 도전성 적층체를 합지하여 형성된) 전기변색소자 제조 이전에 이루어질 수 있다.In the present application, monovalent cations may be present in at least one or more layers of the layer structures constituting the conductive laminate. For example, the monovalent cation may be present in either of the metal oxynitride layer and the metal oxide layer, or the monovalent cation may be present in both the metal oxynitride layer and the metal oxide layer. In the present application, the presence of a monovalent cation in any layer of the conductive laminate, for example, when the monovalent cation is included (inserted) in each layer in the form of an ion such as Li + , and the inserted monovalent The cation may be used to encompass a case where the cation is chemically bonded to the metal oxynitride or the metal oxide and included in each layer. In the present application, the insertion of the monovalent cation may be made before the fabrication of the electrochromic device (formed by laminating the electrolyte layer and the conductive laminate).
상기 1가 양이온은, 금속산질화물층이나 금속산화물층에 포함되는 금속과는 상이한 원소의 양이온일 수 있다. 특별히 제한되지는 않으나, 1가 양이온은 예를 들어, H+, Li+, Na+, K+, Rb+ 또는 Cs+ 일 수 있다. 상기 1가 양이온은, 하기 설명되는 바와 같이, 전기변색반응, 예를 들어 금속산화물층의 착색이나 탈색에 관여할 수 있는 전해질 이온으로서도 사용될 수 있다. 따라서, 상기 층 내 1가 양이온의 존재는, 가역적인 변색반응을 위하여 추후 요구되는 전해질과 각 층 간 1가 양이온의 이동에 기여하고, 하기 설명되는 바와 같이 초기화 작업을 생략할 수 있게 한다.The monovalent cation may be a cation of an element different from the metal contained in the metal oxynitride layer or the metal oxide layer. Although not particularly limited, the monovalent cation may be, for example, H + , Li + , Na + , K + , Rb + or Cs + . The monovalent cation can also be used as electrolyte ions that may be involved in electrochromic reactions, for example, coloring or decolorization of the metal oxide layer. Thus, the presence of monovalent cations in the layer contributes to the transfer of monovalent cations between the electrolyte and each layer that is required later for the reversible discoloration reaction, and allows the initialization work to be omitted, as described below.
하나의 예시에서, 금속산화물층에 1가 양이온이 존재하는 경우, 상기 1가 양이온은 금속산화물층 cm2 당 1.0 × 10- 8 mol 내지 1.0 × 10- 6 mol의 함량 범위, 보다 구체적으로는 5.0 × 10- 8 mol 내지 1.0 × 10- 7 mol 함량 범위로 존재할 수 있다. 1가 양이온이 상기 함량 범위로 존재하는 경우, 상기 설명된 목적을 달성할 수 있다.When in one example, the first metal oxide layer there is a cation, wherein the monovalent cation is a metal oxide layer, cm 2 1.0 × 10 per - 8 mol to 1.0 × 10 - content range of 6 mol, more specifically, 5.0 × 10 - 8 mol to 1.0 × 10 - 7 mol may be present in a content range. When the monovalent cation is present in the above content range, the above-described object can be achieved.
또 하나의 예시에서, 금속산질화물층에 1가 양이온이 존재하는 경우, 상기 1가 양이온은, 금속산질화물층 cm2 당 5.0 × 10- 9 mol 내지 5.0 × 10- 7 mol의 함량 범위, 보다 구체적으로는 2.5 × 10- 8 mol 내지 2.5 × 10- 7 mol 함량 범위로 존재할 수 있다. 1가 양이온이 상기 함량 범위로 존재하는 경우, 상기 설명된 목적을 달성할 수 있다.In the case that in one example, the one on the metal oxynitride layer there is a cation, wherein the monovalent cations, metal oxynitride layers cm 2 per 5.0 × 10 - 9 mol to 5.0 × 10 - content range of 7 mol, more specifically, the 2.5 × 10 - 7 mol content may be in the range - 8 mol to 2.5 × 10. When the monovalent cation is present in the above content range, the above-described object can be achieved.
본 출원에서, 각 층에 존재하는 1가 양이온의 함량, 즉, 몰수는, 1가 양이온이 존재하는 각 층의 전하량과 전자의 몰수 관계로부터 구해질 수 있다. 예를 들어, 하기 설명되는 포텐쇼스탯(potentiostat) 장치를 이용하여 상기 구성의 도전성 적층체에 1가 양이온을 삽입한 경우, 도전성 적층체 중 금속산질화물층의 전하량이 A (C/cm2)라면, 전하량 A를 패러데이 상수 F로 나눈 값(A/F)은 금속산질화물층 cm2 당 존재하는 전자의 몰(mol) 수 일 수 있다. 한편, 전자(e-)와 1가 양이온은 1 : 1로 반응할 수 있기 때문에, 각 층에 존재하는 1가 양이온의 최대 함량, 즉 최대 몰수는 상기로부터 구해진 전자의 몰수와 같을 수 있다. 1가 양이온의 함량과 관련하여, 전하량을 측정하는 방법은 특별히 제한되지 않으며, 공지된 방법이 사용될 수 있다. 예를 들어, 포텐쇼스탯(potentiostat) 장치를 이용한 전위 스텝 시간대 전류법(potential step chrono amperometry, PSCA)에 의해 전하량이 측정될 수 있다.In the present application, the content of monovalent cations present in each layer, that is, the number of moles, can be determined from the relationship between the charge amount of each layer in which the monovalent cation is present and the number of moles of electrons. For example, when a monovalent cation is inserted into the conductive laminate of the above constitution using a potentiostat device described below, the amount of charge of the metal oxynitride layer in the conductive laminate is A (C / cm 2 ). If the charge amount A divided by the Faraday constant F (A / F) is the metal oxynitride layer cm 2 It may be the number of moles of electrons present in the sugar. On the other hand, since the electron (e ) and the monovalent cation can react with 1: 1, the maximum content of the monovalent cation present in each layer, that is, the maximum mole number, may be equal to the mole number of the electrons obtained from the above. Regarding the content of the monovalent cation, the method of measuring the amount of charge is not particularly limited, and a known method can be used. For example, the amount of charge can be measured by potential step chrono amperometry (PSCA) using a potentiostat device.
하나의 예시에서, 도전성 적층체를 구성하는 층 구성 중 일부 층에 1가 양이온이 존재하도록 하는 것, 즉, 도전성 적층체의 일부 층에 1가 양이온을 삽입하는 것은, 포텐쇼스탯(potentiostat) 장치를 이용하여 이루어질 수 있다. 구체적으로, 동작전극, Ag 포함 기준전극, 및 리튬 호일 등을 포함하는 대향전극으로 구성된 3 전극 퍼텐쇼스탯 장치를 1가 양이온을 포함하는 전해액 내에 마련하고, 상기 도전성 적층체를 동작전극에 연결한 후, 소정의 전압을 걸어주는 방식으로 1가 양이온을 상기 도전성 적층체에 삽입할 수 있다. 1가 양이온 삽입을 위해 인가되는 소정 전압의 크기는, 하기 설명되는 전해질이 포함하는 1가 양이온의 함량 정도, 도전성 적층체에서 요구되는 1가 양이온의 삽입 정도, 요구되는 도전성 적층체의 광학 특성, 또는 전기변색 가능한 층의 착색 준위 등을 고려하여 결정될 수 있다.In one example, the presence of monovalent cations in some layers of the layered composition constituting the conductive laminate, ie, the insertion of monovalent cations in some layers of the conductive laminate, is a potentiostat device. It can be made using. Specifically, a three-electrode potentiometer device comprising a counter electrode including an operating electrode, a reference electrode containing Ag, and a lithium foil is provided in an electrolyte solution containing a monovalent cation, and the conductive laminate is connected to the operating electrode. Thereafter, the monovalent cation can be inserted into the conductive laminate by applying a predetermined voltage. The magnitude of the predetermined voltage applied for the monovalent cation insertion may include the degree of content of the monovalent cations included in the electrolyte described below, the degree of insertion of the monovalent cations required in the conductive laminate, the optical properties of the conductive laminate required, Or it may be determined in consideration of the coloring level of the electrochromic layer.
본 출원에서, 「착색 준위」란, 전기 변색 가능한 층 또는 이를 포함하는 적층체에 인가되는 소정 크기 전압에 의해 전기화학반응이 유발되고, 그 결과 상기 전기변색 가능한 층이 색채를 갖게 되면서 상기 층 또는 적층체의 투과율이 저하되는 경우와 같이, 전기변색 가능한 층에 인가되어 변색(착색 및/또는 탈색)을 일으킬 수 있는 전압의 “최소 크기(절대값)”를 의미할 수 있다. 예를 들어, 도전성 적층체에 소정의 시간 간격을 두면서 - 0.1 V, - 0.5 V, - 1 V 및 - 1.5 V 순서로 전압을 인가하였을 때, - 1 V를 인가하면서부터 금속산화물층의 착색이 이루어졌다면, 금속산화물층의 착색 준위는 1 V라고 할 수 있다. 착색 준위, 즉 착색을 일으키는 전압의 최소 크기(절대값)는 착색에 관한 일종의 장벽(barrier)으로서 기능하기 때문에, 해당 층 착색 준위의 최소 크기(절대값) 보다 작은 크기의 전위가 인가되는 경우에는, 사실상 해당 층의 착색은 일어나지 않는다(미세하게 변색이 일어나더라도 관찰자에게 시인되기 어렵다). In the present application, the term "coloring level" refers to an electrochemical reaction caused by a voltage of a predetermined magnitude applied to an electrochromic layer or a laminate including the same, and as a result, the electrochromic layer is colored and the layer or As in the case where the transmittance of the laminate is lowered, it may mean the “minimum size (absolute value)” of the voltage applied to the electrochromic layer to cause discoloration (coloring and / or discoloration). For example, when a voltage is applied in the order of -0.1 V, -0.5 V, -1 V and -1.5 V at a predetermined time interval to the conductive laminate, the coloring of the metal oxide layer is prevented from applying -1 V. If made, the coloring level of a metal oxide layer can be said to be 1V. Since the coloring level, i.e., the minimum magnitude (absolute value) of the voltage causing coloring, functions as a kind of barrier for coloring, when a potential of a magnitude smaller than the minimum magnitude (absolute value) of the layer coloring level is applied, In fact, the coloring of the layer does not occur (although a slight discoloration occurs, it is difficult to be seen by the observer).
하나의 예시에서, 상기 금속산질화물층과 금속산화물층의 착색 준위는 서로 상이할 수 있다. 보다 구체적으로, 상기 금속산질화물층 역시 금속산화물층과 마찬가지로 전기화학적 반응에 의해 착색(colored) 및 탈색(bleached)될 수 있으나, 금속산화물층의 착색을 일으키는 전압의 최소 크기(절대값)와 금속산질화물층의 착색을 일으키는 전압의 최소 크기(절대값)는 서로 상이할 수 있다. 이를 위하여 상기 설명된 바와 같이, 각 층 산화물과 산질화물에 포함되는 금속의 종류 및/또는 함량이 적절히 조절될 수 있다.In one example, the colored levels of the metal oxynitride layer and the metal oxide layer may be different from each other. More specifically, the metal oxynitride layer may also be colored and bleached by an electrochemical reaction like the metal oxide layer, but the minimum magnitude (absolute value) of the voltage causing the coloring of the metal oxide layer and the metal The minimum magnitudes (absolute values) of the voltages that cause coloring of the oxynitride layers may differ from one another. For this purpose, as described above, the type and / or content of the metal included in each layer oxide and oxynitride may be appropriately adjusted.
하나의 예시에서, 금속산질화물층의 착색 준위는 금속산화물층의 착색 준위 보다 큰 값을 가질 수 있다. 예를 들어, 금속산화물층의 착색 준위가 0.5 V 인 경우, 금속산질화물층의 착색 준위는 1 V 일 수 있다. 또는, 금속산화물층의 착색 준위가 1 V 인 경우, 금속산질화물층의 착색 준위는 2 V 또는 3V 일 수 있다. 하나의 예시에서, 상기 구성을 갖는 금속산화물층의 착색 준위는 1V 일 수 있다.In one example, the colored level of the metal oxynitride layer may have a value greater than the colored level of the metal oxide layer. For example, when the coloring level of the metal oxide layer is 0.5V, the coloring level of the metal oxynitride layer may be 1V. Alternatively, when the coloring level of the metal oxide layer is 1V, the coloring level of the metal oxynitride layer may be 2V or 3V. In one example, the coloring level of the metal oxide layer having the above configuration may be 1V.
하나의 예시에서, 도전성 적층체 중 금속산화물층만이 착색될 수 있다. 보다 구체적으로, 상기 설명된 1가 양이온 삽입시 인가되는 소정의 전압 크기를 적절히 조절함으로써, 금속산화물층 보다 착색 준위가 높은 금속산질화물층은 착색되지 않고, 금속산화물층만 착색될 수 있도록 할 수 있다. 예를 들어, 착색된 금속산화물층의 광 투과율은 45% 이하 또는 40% 이하이고, 착색되지 않은 금속산질화물층은 60% 이상 또는 70% 이상의 가시광 투과율을 유지할 수 있다. 이 경우, 착색된 금속산화물층을 포함하는 도전성 적층체의 광 투과율은 45% 이하, 40% 이하, 35% 이하, 또는 30% 이하일 수 있다. 착색된 금속산화물층을 포함하는 도전성 적층체의 광 투과율 하한은 특별히 제한되지 않으나, 예를 들어 20 % 이상일 수 있다.In one example, only the metal oxide layer of the conductive laminate can be colored. More specifically, by appropriately adjusting the predetermined voltage applied during the insertion of the monovalent cation described above, the metal oxynitride layer having a higher color level than the metal oxide layer can be colored, and only the metal oxide layer can be colored. have. For example, the light transmittance of the colored metal oxide layer may be 45% or less or 40% or less, and the uncolored metal oxynitride layer may maintain visible light transmittance of 60% or more or 70% or more. In this case, the light transmittance of the conductive laminate including the colored metal oxide layer may be 45% or less, 40% or less, 35% or less, or 30% or less. The lower limit of the light transmittance of the conductive laminate including the colored metal oxide layer is not particularly limited, but may be, for example, 20% or more.
하나의 예시에서, 상기 화학식 1의 산질화물을 포함하는 산질화물층은 -2 V 이하, 예를 들어, - 2.5 V 이하 또는 - 3 V 이하 전압 인가 조건에서 착색될 수 있다. 즉, 상기 산질화물층의 착색 준위는 2 V, 2.5 V 또는 3 V일 수 있다. 예를 들어, 도전성 적층체 또는 이를 포함하는 소자에 소정의 시간 간격을 두면서 - 1.5 V 및 - 2.0 V의 전압을 인가한 경우, 상기 산질화물층은 - 2.0 V가 인가된 시점 이후부터 점점 착색될 수 있다(착색이 사용자에게 시인될 수 있다). 상기 화학식 1을 만족하는 산질화물층은 (다크) 그레이 또는 블랙 계통의 색으로 착색될 수 있다. 산질화물층의 착색 준위는, 2 V 이상의 범위에서, 전기변색필름에 함께 사용되는 구성에 따라, 다소 변화할 수 있다.In one example, the oxynitride layer including the oxynitride of Chemical Formula 1 may be colored under a voltage application condition of -2 V or less, for example, -2.5 V or less or -3 V or less. That is, the coloring level of the oxynitride layer may be 2 V, 2.5 V or 3 V. For example, when a voltage of −1.5 V and −2.0 V is applied to the conductive laminate or a device including the same at predetermined time intervals, the oxynitride layer may gradually become colored after the time when −2.0 V is applied. (Coloring may be visible to the user). The oxynitride layer satisfying Formula 1 may be colored in a (dark) gray or black color. The coloring level of an oxynitride layer may change to some extent according to the structure used together with an electrochromic film in the range of 2V or more.
특별히 제한되지는 않으나, 도전층은 50 nm 내지 400 nm 이하의 두께를 가질 수 있다. 상기 도전층은 투명 도전성 화합물, 메탈메쉬, 또는 OMO(oxide/metal/oxide)를 포함할 수 있고, 전극층이라 호칭될 수도 있다.Although not particularly limited, the conductive layer may have a thickness of 50 nm to 400 nm or less. The conductive layer may include a transparent conductive compound, a metal mesh, or OMO (oxide / metal / oxide), and may be referred to as an electrode layer.
하나의 예시에서, 도전층에 사용되는 투명 도전성 화합물로는, ITO(Indium Tin Oxide), In2O3(Indium Oxide), IGO(Indium Galium Oxide), FTO(Fluor doped Tin Oxide), AZO(Aluminium doped Zinc Oxide), GZO(Galium doped Zinc Oxide), ATO(Antimony doped Tin Oxide), IZO(Indium doped Zinc Oxide), NTO(Niobium doped Titanium Oxide), ZnO(Zink Oxide), 또는 CTO (Cesium Tungsten Oxide) 등을 예로 들 수 있다. 그러나, 상기 나열된 물질로 투명 도전성 화합물의 재료가 제한되는 것은 아니다.In one example, as the transparent conductive compound used in the conductive layer, ITO (Indium Tin Oxide), In 2 O 3 (Indium Oxide), IGO (Indium Galium Oxide), FTO (Fluor doped Tin Oxide), AZO (Aluminium) doped Zinc Oxide (GZO), Galium doped Zinc Oxide (GZO), Antimony doped Tin Oxide (ATO), Indium doped Zinc Oxide (IZO), Niobium doped Titanium Oxide (NTO), Zink Oxide (ZnO), or Cesium Tungsten Oxide (CTO) Etc. can be mentioned. However, the materials listed above are not limited to the material of the transparent conductive compound.
하나의 예시에서, 도전층에 사용되는 메탈메쉬는 Ag, Cu, Al, Mg, Au, Pt, W, Mo, Ti, Ni 또는 이들의 합금을 포함하고, 격자 형태를 가질 수 있다. 그러나, 메탈메쉬에 사용가능한 재료가 상기 나열된 금속 재료로 제한되는 것은 아니다.In one example, the metal mesh used for the conductive layer may include Ag, Cu, Al, Mg, Au, Pt, W, Mo, Ti, Ni, or an alloy thereof, and may have a lattice form. However, the materials usable for the metal mesh are not limited to the metal materials listed above.
하나의 예시에서, 도전층은 OMO(oxide/metal/oxide)를 포함할 수 있다. 상기 OMO는 ITO로 대표되는 투명 도전성 산화물 대비 좀 더 낮은 면저항을 갖기 때문에, 전기변색소자의 변색 속도를 단축하는 등 도전성 적층체의 전기적 특성을 개선할 수 있다.In one example, the conductive layer may include oxide / metal / oxide (OMO). Since the OMO has a lower sheet resistance than the transparent conductive oxide represented by ITO, it is possible to improve the electrical properties of the conductive laminate, such as reducing the discoloration rate of the electrochromic device.
상기 OMO는 상부층, 하부층, 및 상기 2개 층 사이에 마련되는 금속층을 포함할 수 있다. 본 출원에서 상부층이란, OMO를 구성하는 층 중에서 금속산질화물층으로부터 상대적으로 더 멀리 위치한 층을 의미할 수 있다.The OMO may include a top layer, a bottom layer, and a metal layer provided between the two layers. In the present application, the upper layer may mean a layer located relatively farther from the metal oxynitride layer among the layers constituting the OMO.
하나의 예시에서, 상기 OMO 전극의 상부층 및 하부층은 Sb, Ba, Ga, Ge, Hf, In, La, Se, Si, Ta, Se, Ti, V, Y, Zn, Zr 또는 이들 합금의 산화물을 포함할 수 있다. 상기 상부층 및 하부층이 포함하는 각 금속산화물의 종류는 동일하거나 상이할 수 있다.In one example, the top and bottom layers of the OMO electrode may comprise oxides of Sb, Ba, Ga, Ge, Hf, In, La, Se, Si, Ta, Se, Ti, V, Y, Zn, Zr or their alloys. It may include. The type of each metal oxide included in the upper layer and the lower layer may be the same or different.
하나의 예시에서, 상기 상부층의 두께는 10 nm 내지 120 nm 범위 또는 20 nm 내지 100 nm 범위일 수 있다. 또한, 상기 상부층의 가시광 굴절률은 1.0 내지 3.0 범위 또는 1.2 내지 2.8 범위일 수 있다. 상기 범위의 굴절률 및 두께를 가질 경우, 적절한 수준의 광학 특성이 도전성 적층체에 부여될 수 있다.In one example, the thickness of the top layer may range from 10 nm to 120 nm or from 20 nm to 100 nm. In addition, the visible light refractive index of the upper layer may be in the range of 1.0 to 3.0 or 1.2 to 2.8. When having a refractive index and a thickness in the above range, an appropriate level of optical properties can be imparted to the conductive laminate.
하나의 예시에서, 상기 하부층의 두께는 10 nm 내지 100 nm 범위 또는 20 nm 내지 80 nm 범위일 수 있다. 또한, 상기 하부층의 가시광 굴절률은 1.3 내지 2.7 범위 또는 1.5 내지 2.5 범위일 수 있다. 상기 범위의 굴절률 및 두께를 가질 경우, 적절한 수준의 광학 특성이 도전성 적층체에 부여될 수 있다.In one example, the thickness of the lower layer may range from 10 nm to 100 nm or from 20 nm to 80 nm. In addition, the visible light refractive index of the lower layer may be in the range of 1.3 to 2.7 or 1.5 to 2.5. When having a refractive index and a thickness in the above range, an appropriate level of optical properties can be imparted to the conductive laminate.
하나의 예시에서, 상기 OMO 전극에 포함되는 금속층은 저저항 금속재료를 포함할 수 있다. 특별히 제한되지 않으나, 예를 들어, Ag, Cu, Zn, Au, Pd, 및 이들의 합금 중에서 하나 이상이 금속층에 포함될 수 있다.In one example, the metal layer included in the OMO electrode may include a low resistance metal material. Although not particularly limited, for example, one or more of Ag, Cu, Zn, Au, Pd, and alloys thereof may be included in the metal layer.
하나의 예시에서, 상기 금속층은 3 nm 내지 30 nm 범위 또는 5 nm 내지 20 nm 범위의 두께를 가질 수 있다. 또한, 상기 금속층은 1 이하 또는 0.5 이하의 가시광 굴절률을 가질 수 있다. 상기 범위의 굴절률 및 두께를 가질 경우, 적절한 수준의 광학 특성이 도전성 적층체에 부여될 수 있다.In one example, the metal layer may have a thickness in the range of 3 nm to 30 nm or in the range of 5 nm to 20 nm. In addition, the metal layer may have a visible light refractive index of 1 or less or 0.5 or less. When having a refractive index and a thickness in the above range, an appropriate level of optical properties can be imparted to the conductive laminate.
본 출원에 관한 다른 일례에서, 본 출원은 전기변색소자에 관한 것이다. 전기변색소자는, 상기 설명된 도전성 적층체, 전해질층, 및 상대 전극층을 순차로 포함할 수 있다. 도전성 적층체, 전해질층, 및 상대 전극층의 일면은 서로 직접 접할 수 있으며, 또는 이들 사이에 별도의 층 또는 다른 구성이 개재될 수 있다.In another example of the present application, the present application relates to an electrochromic device. The electrochromic device may sequentially include the above-described conductive laminate, electrolyte layer, and counter electrode layer. One surface of the conductive laminate, the electrolyte layer, and the counter electrode layer may directly contact each other, or a separate layer or other configuration may be interposed therebetween.
하나의 예시에서, 상기 전기변색소자는, 도전성 적층체의 구성 중 금속산질화물층이 전해질층과 가장 가깝게 위치하도록 구성될 수 있다. 보다 구체적으로, 상기 전기변색소자는 도전층, 금속산화물층, 금속산질화물층, 전해질층, 및 상대 전극층을 순차로 포함할 수 있다.In one example, the electrochromic device may be configured such that the metal oxynitride layer is located closest to the electrolyte layer of the conductive laminate. More specifically, the electrochromic device may sequentially include a conductive layer, a metal oxide layer, a metal oxynitride layer, an electrolyte layer, and a counter electrode layer.
상기 설명된 본 출원에 관한 일례에서와 같이, 도전성 적층체는 전기변색 가능한 금속산화물과 금속산질화물층을 포함한다. 그리고, 금속산화물은 환원성 변색물질 또는 산화성 변색물질을 포함할 수 있다. 하나의 예시에서, 상기 금속산화물층이 환원성 변색물질을 포함하는 경우, 금속산질화물층에 포함되는 2개의 금속 성분은 금속산화물층에 사용될 수 있는 금속 중에서 선택되는 것이기 때문에, 도전성 적층체에 포함되는 금속산질화물층과 금속산화물층은 유사한 물리/화학특성을 갖는 것으로 생각된다. 그에 따라, 전해질층으로부터 전해질 이온이 도전성 적층체로 삽입되는 경우에, 금속산질화물층에 의한 방해 없이, 전기변색층인 금속산화물층으로 전해질 이온이 삽입될 수 있다. 전해질 이온이 각 층으로부터 탈리되는 경우도 마찬가지이다. As in one example of the present application described above, the conductive laminate includes an electrochromic metal oxide and a metal oxynitride layer. The metal oxide may include a reducing discoloration material or an oxidizing discoloration material. In one example, when the metal oxide layer includes a reducing discoloration material, since the two metal components included in the metal oxynitride layer are selected from metals that can be used in the metal oxide layer, the metal oxide layer is included in the conductive laminate. The metal oxynitride layer and the metal oxide layer are considered to have similar physical / chemical properties. Accordingly, when electrolyte ions are inserted from the electrolyte layer into the conductive laminate, the electrolyte ions can be inserted into the metal oxide layer, which is an electrochromic layer, without interference by the metal oxynitride layer. The same applies to the case where electrolyte ions are released from each layer.
또한, 상기 금속산질화물층은 전기변색소자의 구동 특성을 개선하는 것으로 판단된다. 구체적으로, 각 층에 사용되는 금속 성분 사이에는 반응성 또는 산화 경향성 차이가 존재하기 때문에, 층 간 전해질 이온의 이동이 반복될 경우, 어느 층, 예를 들어, 도전층 또는 금속층에 사용되는 금속이 용출되는 문제가 있을 수 있다. 이러한 문제는 OMO가 사용되는 경우에 더욱 뚜렷하게 관찰된다. 그러나, 본 출원에서는, 전해질 이온을 함유할 수 있는 금속산질화물층이 일종의 버퍼(buffer) 또는 패시베이션층(passivation layer)으로서 기능하기 때문에, 도전층 또는 금속층과 같은 각 층에 사용되는 금속 재료의 열화를 방지할 수 있다. 결과적으로, 본 출원의 전기변색소자는 우수한 내구성과 개선된 변색 속도, 및 충분히 개선된 가용 준위를 가질 수 있다. 그뿐 아니라, 하기 설명되는 바와 같이, 금속산화물층과 착색 준위가 상이한 금속산질화물층으로 인해, 본 출원은 전기변색소자의 광학 특성을 더욱 세밀하게 조절할 수 있다.In addition, the metal oxynitride layer is determined to improve the driving characteristics of the electrochromic device. Specifically, since there is a difference in reactivity or oxidation tendency between the metal components used in each layer, when the movement of electrolyte ions between layers is repeated, the metal used in any layer, for example, a conductive layer or a metal layer, elutes. There may be a problem. This problem is more clearly observed when OMO is used. However, in the present application, since the metal oxynitride layer capable of containing electrolyte ions functions as a kind of buffer or passivation layer, deterioration of the metal material used for each layer, such as a conductive layer or a metal layer, Can be prevented. As a result, the electrochromic device of the present application can have excellent durability, improved discoloration speed, and sufficiently improved usable level. In addition, as described below, due to the metal oxynitride layer having a different color level from the metal oxide layer, the present application can more precisely control the optical properties of the electrochromic device.
상기 상대 전극층의 구성은 특별히 제한되지 않는다. 예를 들어, 상기 설명된 도전층과 동일한 재료 및/또는 동일한 구성을 가질 수 있다.The configuration of the counter electrode layer is not particularly limited. For example, it may have the same material and / or the same configuration as the conductive layer described above.
전해질층은 전기변색 반응에 관여하는 전해질 이온을 제공하는 구성일 수 있다. 전해질 이온은 상기 도전성 적층체에 삽입되고, 그 변색 반응에 관여할 수 있는 1가 양이온, 예를 들어, H+, Li+, Na+, K+, Rb+, 또는 Cs+ 일 수 있다.The electrolyte layer may be configured to provide electrolyte ions involved in the electrochromic reaction. Electrolyte ions may be monovalent cations, such as H + , Li + , Na + , K + , Rb + , or Cs + , which are inserted into the conductive laminate and may participate in the discoloration reaction.
전해질층에 포함되는 전해질의 종류는 특별히 제한되지 않는다. 예를 들어, 액체 전해질, 겔 폴리머 전해질 또는 무기 고체 전해질이 제한없이 사용될 수 있다. The kind of electrolyte included in the electrolyte layer is not particularly limited. For example, liquid electrolytes, gel polymer electrolytes or inorganic solid electrolytes can be used without limitation.
1가 양이온, 즉 H+, Li+, Na+, K+, Rb+, 또는 Cs+ 을 제공할 수 있는 화합물을 포함할 수 있다면, 전해질층에 사용되는 전해질의 구체적인 조성은 특별히 제한되지 않는다. 예를 들어, 전해질층은 LiClO4, LiBF4, LiAsF6, 또는 LiPF6 와 같은 리튬염 화합물이나, NaClO4와 같은 나트륨염 화합물을 포함할 수 있다.The specific composition of the electrolyte used in the electrolyte layer is not particularly limited as long as it can include a compound capable of providing a monovalent cation, that is, H + , Li + , Na + , K + , Rb + , or Cs + . For example, the electrolyte layer may be LiClO 4 , LiBF 4 , LiAsF 6 , or LiPF 6. It may include a lithium salt compound, such as, or a sodium salt compound such as NaClO 4 .
또 하나의 예시에서, 상기 전해질은, 용매로서 카보네이트 화합물을 추가로 포함할 수 있다. 카보네이트계 화합물은 유전율이 높기 때문에, 이온 전도도를 높일 수 있다. 비제한적인 일례로서, PC(propylene carbonate), EC(ethylene carbonate), DMC(dimethyl carbonate), DEC(diethyl carbonate) 또는 EMC(ethylmethyl carbonate) 와 같은 용매가 카보네이트계 화합물로 사용될 수 있다.In another example, the electrolyte may further include a carbonate compound as a solvent. Since a carbonate type compound has high dielectric constant, ionic conductivity can be improved. As a non-limiting example, a solvent such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC) or ethylmethyl carbonate (EMC) may be used as the carbonate-based compound.
또 하나의 예시에서, 상기 전해질층이 겔 폴리머 전해질을 포함하는 경우, 예를 들어, 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVdF), 폴리아크릴로나이트릴(Polyacrylonitrile, PAN), 폴리메틸 메타크릴레이트(Polymethyl methacrylate, PMMA), 폴리비닐 클로라이드(Polyvinyl chloride, PVC), 폴리에틸렌 옥사이드(Polyethylene oxide, PEO), 폴리프로필렌 옥사이드(Polypropylene oxide, PPO), 폴리(비닐리덴 플루오라이드-헥사플루오로 플루오로프로필렌)(Poly(vinylidene fluoride-hexafluoro propylene), PVdF-HFP), 폴리비닐아세테이트(Polyvinyl acetate, PVAc), 폴리옥시에틸렌(Polyoxyethylene, POE), 폴리아미드이미드(Polyamideimide, PAI) 등의 고분자가 사용될 수 있다.In another example, when the electrolyte layer comprises a gel polymer electrolyte, for example, polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polymethyl methacrylate (Polymethyl methacrylate, PMMA), polyvinyl chloride (PVC), polyethylene oxide (PEO), polypropylene oxide (PPO), poly (vinylidene fluoride-hexafluoro fluoropropylene) (Poly (vinylidene fluoride-hexafluoro propylene), PVdF-HFP), polyvinyl acetate (Polyvinyl acetate, PVAc), polyoxyethylene (Polyoxyethylene, POE), polyamideimide (Polyamideimide, PAI) and the like polymers may be used.
상기 전해질층의 광 투과율은 60 % 내지 95 % 범위일 수 있고, 그 두께는 10 ㎛ 내지 200 ㎛ 범위일 수 있으나, 특별히 제한되는 것은 아니다.The light transmittance of the electrolyte layer may range from 60% to 95%, and the thickness thereof may range from 10 μm to 200 μm, but is not particularly limited.
하나의 예시에서, 본 출원의 전기변색소자는 이온저장층을 추가로 포함할 수 있다. 이온저장층은 전기변색물질의 변색을 위한 가역적 산화··환원 반응시, 상기 금속산화물층 및/또는 금속산질화물층과의 전하 균형(charge balance)을 맞추기 위해 형성된 층을 의미할 수 있다. 이온저장층은 상기 전극층과 전해질층 사이에 위치할 수 있다.In one example, the electrochromic device of the present application may further include an ion storage layer. The ion storage layer may refer to a layer formed to balance the charge balance with the metal oxide layer and / or the metal oxynitride layer during the reversible oxidation / reduction reaction for discoloration of the electrochromic material. An ion storage layer may be located between the electrode layer and the electrolyte layer.
상기 이온저장층은, 상기 금속산화물층에 사용되는 전기변색물질과는 발색 특성이 상이한 전기변색물질을 포함할 수 있다. 예를 들어, 상기 금속산화물층이 환원성 변색물질을 포함하는 경우, 상기 이온저장층은 산화성 변색물질을 포함할 수 있다. 또한 그 반대의 경우도 가능하다. The ion storage layer may include an electrochromic material having a color development characteristic different from that of the electrochromic material used for the metal oxide layer. For example, when the metal oxide layer includes a reducing color change material, the ion storage layer may include an oxidative color change material. The reverse is also possible.
하나의 예시에서, 상기 이온저장층은 산화성 변색물질을 포함할 수 있다. 구체적으로, Cr, Mn, Fe, Co, Ni, Rh, 또는 Ir 의 산화물; Cr, Mn, Fe, Co, Ni, Rh, 또는 Ir 의 수산화물; 및 프러시안 블루(prussian blue) 중에서 선택되는 하나 이상이 이온저장층에 포함될 수 있다. In one example, the ion storage layer may include an oxidative discoloration material. Specifically, oxides of Cr, Mn, Fe, Co, Ni, Rh, or Ir; Hydroxides of Cr, Mn, Fe, Co, Ni, Rh, or Ir; And one or more selected from prussian blue may be included in the ion storage layer.
특별히 제한되지는 않으나, 상기 이온저장층의 두께는 50 nm 내지 450 nm 범위이고, 광 투과율은 60 % 내지 95 % 범위일 수 있다.Although not particularly limited, the thickness of the ion storage layer may range from 50 nm to 450 nm, and the light transmittance may range from 60% to 95%.
전기변색소자가 발색 특성이 상이한 2종의 전기변색물질을 별도의 층에 포함하는 경우, 전기변색물질을 포함하는 각 층은 서로 동일한 착색 또는 탈색 상태를 가져야 한다. 예를 들어, 환원성 전기변색물질을 포함하는 금속산화물층이 착색된 경우에는 산화성 전기변색물질을 포함하는 이온저장층 역시 착색 상태를 가져야 하고, 반대로 환원성 전기변색물질을 포함하는 금속산화물층이 탈색된 경우에는 산화성 전기변색물질을 포함하는 이온저장층 역시 탈색 상태이어야 한다. 그러나, 상기 설명된 바와 같이, 상이한 발색 특성을 갖는 2종의 전기변색물질은 그 자체로서 전해질 이온을 포함하지 않기 때문에, 각 전기변색물질을 포함하는 층 간의 착색 또는 탈색 상태를 일치시키는 작업이 추가로 요구된다. 일반적으로, 이러한 작업을 초기화 작업이라고 부른다. 예를 들어, 환원에 의하여 착색되지만 그 자체로서는 무색에 가까운 투명의 WO3가 제1층에 포함되고, 그 자체로서 착색되어 있는 프러시안 블루가 제2층(counter layer)에 포함되는 경우라면, 종래에는 전극층, 제1층, 전해질층, 제2층 및 전극층이 합지되어 구성된 전기변색소자 중 제2층에 고전압을 인가하여 프러시안 블루에 대한 탈색 처리(환원 처리)를 수행하였다. 그러나, 고 전위에서 이루어지는 초기화 작업은, 전극과 전해질층에서의 부반응(side reaction)을 야기하는 등 소자의 내구성을 저하시키는 문제가 있다. 반면에, 본 출원에서는, 소자 형성을 위한 각 층 구성의 합지 전에, 전해질이온으로서 사용 가능한 1가 양이온을 미리 도전성 적층체에 삽입하고, 경우에 따라서는 금속산화물층 및/또는 금속산질화물층을 착색시킬 수도 있으므로, 상기와 같은 초기화 작업이 필요하지 않다. 따라서, 초기화 작업으로 인한 내구성 저하없이 소자를 구동시킬 수 있다.When the electrochromic device includes two electrochromic materials having different color development properties in separate layers, each layer containing the electrochromic materials should have the same colored or discolored state. For example, when the metal oxide layer containing the reductive electrochromic material is colored, the ion storage layer including the oxidative electrochromic material should also have a colored state. On the contrary, the metal oxide layer containing the reductive electrochromic material is decolorized. In this case, the ion storage layer containing the oxidative electrochromic material should also be decolorized. However, as described above, since two electrochromic materials having different color development properties do not contain electrolyte ions by themselves, there is additional work to match the coloration or decolorization state between layers containing each electrochromic material. Is required. In general, these tasks are called initialization tasks. For example, if the first layer contains transparent WO 3 which is colored by reduction but is almost colorless in itself, and the Prussian blue colored as such is included in the second layer, Conventionally, a high voltage is applied to a second layer of an electrochromic device in which an electrode layer, a first layer, an electrolyte layer, a second layer, and an electrode layer are laminated to perform decolorization treatment (reduction treatment) on Prussian blue. However, the initialization work performed at a high potential has a problem of lowering the durability of the device, such as causing side reactions between the electrode and the electrolyte layer. On the other hand, in the present application, before lamination of each layer configuration for element formation, a monovalent cation that can be used as an electrolyte ion is previously inserted into a conductive laminate, and in some cases, a metal oxide layer and / or a metal oxynitride layer Since it may be colored, the above initialization operation is not necessary. Therefore, the device can be driven without deterioration in durability due to the initialization operation.
하나의 예시에서, 상기 전기변색소자는 기재를 추가로 포함할 수 있다. 상기 기재는 소자의 외측면, 구체적으로, 상기 상대 전극층 또는 상기 도전성 적층체 중 도전층의 외측면에 위치할 수 있다.In one example, the electrochromic device may further include a substrate. The substrate may be located on an outer surface of the device, specifically, an outer surface of the conductive layer of the counter electrode layer or the conductive laminate.
상기 기재 역시, 투광성, 즉 60 % 내지 95 % 범위의 광 투과율을 가질 수 있다. 상기 범위의 투과율을 만족한다면, 사용되는 기재의 종류는 특별히 제한되지 않는다. 예를 들어 유리 또는 고분자 수지가 사용될 수 있다. 보다 구체적으로, PC(Polycarbonate), PEN(poly(ethylene naphthalate)) 또는 PET(poly(ethylene terephthalate))와 같은 폴리에스테르 필름, PMMA(poly(methyl methacrylate))와 같은 아크릴 필름, 또는 PE(polyethylene) 또는 PP(polypropylene)와 같은 폴리올레핀 필름 등이 사용될 수 있으나, 이에 제한되는 것은 아니다.The substrate may also be light transmissive, ie having a light transmittance in the range of 60% to 95%. If the transmittance in the above range is satisfied, the kind of substrate to be used is not particularly limited. For example glass or polymer resins can be used. More specifically, a polyester film such as polycarbonate (PC), polyethylene (phthalene naphthalate) (PEN) or polyethylene (ethylene terephthalate) (PET), an acrylic film such as poly (methyl methacrylate) (PMMA), or polyethylene (PE) Or a polyolefin film such as PP (polypropylene) may be used, but is not limited thereto.
상기 전기변색소자는 전원을 더 포함할 수 있다. 전원을 소자에 전기적으로 연결하는 방식은 특별히 제한되지 않으며, 당업자에 의해 적절히 이루어질 수 있다. 상기 전원이 인가하는 전압은 정전압일 수 있다.The electrochromic device may further include a power source. The manner of electrically connecting the power source to the device is not particularly limited and may be appropriately made by those skilled in the art. The voltage applied by the power source may be a constant voltage.
하나의 예시에서, 상기 전원은, 전기변색물질을 탈색 및 착색시킬 수 있는 수준의 전압을, 소정의 시간 간격 동안 번갈아가면서 인가할 수 있다.In one example, the power source may alternately apply a voltage at a level capable of discoloring and coloring the electrochromic material for a predetermined time interval.
또 하나의 예시에서, 상기 전원은 소정의 시간 간격마다 인가되는 전압의 크기를 변경할 수 있다. 구체적으로, 상기 전원은, 소정의 시간 간격을 두고 순차로 증가 또는 감소하는 복수의 착색 전압을 인가하고, 그리고, 소정의 시간 간격을 두고 순차로 증가 또는 감소하는 복수의 탈색 전압을 인가할 수 있다.In another example, the power source may change the magnitude of the voltage applied at predetermined time intervals. Specifically, the power supply may apply a plurality of coloring voltages that sequentially increase or decrease at predetermined time intervals, and may apply a plurality of decolorization voltages that sequentially increase or decrease at predetermined time intervals. .
또 하나의 예시에서, 금속산질화물층의 착색 준위가 금속산화물층의 착색 준위 보다 큰 경우, 상기 전원은 금속산화물층의 착색 준위와 금속산질화물층의 착색 준위를 순차로 인가할 수 있다. 이 경우, 금속산화물층이 먼저 착색되고, 이후 금속산질화물층이 추가적으로 착색된다. 그에 따라, 본 출원의 전기변색소자는 금속산질화물층까지 착색된 상태에서, 매우 낮은 수준의 광 투과율, 예를 들어 10% 이하 또는 5% 이하의 광 투과율을 구현할 수 있다. 즉, 금속산화물층 및/또는 이온저장층만이 착색되는 경우에는, 예를 들어, 최저 20% 또는 15% 가량의 광 투과율을 구현할 수 있었다면, 단계적으로 금속산질화물까지 착색되는 본 출원의 소자에서는 10% 이하 또는 5% 이하의 가시광 투과율이 구현될 수 있는 것이다. 상기 수준의 광 투과율은 금속산화물층과 이온저장층에 대응하는 구성만을 사용하는 종래 기술에서는 현실적으로 구현하기 어려운 수치이다. 또한, 금속산화물층과 이온저장층에 대응하는 구성만을 사용하는 종래 기술에서는 본 출원에서와 같이 단계적으로 광 투과율을 세밀하게 조절하는 것이 기대될 수 없다. 또한, 본 출원에서는, 상기와 같은 미세한 광 투과율 조절을 위해 금속산화물층의 착색 준위 보다 높은 전압을 인가하더라도, 금속산질화물층이 일종의 패시베이션층으로서 기능하기 때문에 금속산화물층의 열화를 방지할 수 있다.In another example, when the colored level of the metal oxynitride layer is larger than the colored level of the metal oxide layer, the power source may sequentially apply the colored level of the metal oxide layer and the colored level of the metal oxynitride layer. In this case, the metal oxide layer is first colored, and then the metal oxynitride layer is additionally colored. Accordingly, the electrochromic device of the present application can realize a very low level of light transmittance, for example, a light transmittance of 10% or less or 5% or less in a state of being colored to the metal oxynitride layer. That is, when only the metal oxide layer and / or the ion storage layer is colored, for example, if the light transmittance of about 20% or 15% can be achieved, in the device of the present application to which the metal oxynitride is gradually colored 10 Visible light transmittance of less than or equal to 5% may be realized. This level of light transmittance is a value that is difficult to realize in the prior art using only the configuration corresponding to the metal oxide layer and the ion storage layer. Further, in the prior art using only the structures corresponding to the metal oxide layer and the ion storage layer, it is not expected to finely adjust the light transmittance step by step as in the present application. In addition, in the present application, even if a voltage higher than the coloring level of the metal oxide layer is applied to control the fine light transmittance as described above, deterioration of the metal oxide layer can be prevented because the metal oxynitride layer functions as a kind of passivation layer. .
본 출원의 일례에 따르면, 전기변색 가능한 도전성 적층체가 제공된다. 상기 도전성 적층체 및 이를 포함하는 전기변색소자는 우수한 내구성뿐 아니라 개선된 전기변색속도를 갖는다. 또한, 본 출원에 따른 적층체 또는 소자를 사용할 경우, 광학적 성질을 단계적으로 세밀히 조절할 수 있다.According to one example of the present application, an electrochromic conductive laminate is provided. The conductive laminate and the electrochromic device including the same have excellent durability as well as an improved electrochromic speed. In addition, when using the laminate or the device according to the present application, it is possible to finely adjust the optical properties step by step.
도 1은, 투광성을 갖고, 전기변색가능한 본 출원의 금속 산질화물층을 포함하는 적층체가, ± 5V 전압 인가시, 내구성 저하 없이 구동하는 모습을 보여주는 그래프이다.1 is a graph showing a state in which a laminate including a metal oxynitride layer of the present application having a translucent and electrochromic state is driven without deterioration of durability when a voltage of ± 5 V is applied.
도 2는, 소자의 구동 특성에 관한 그래프이다. 구체적으로, 도 2(a)는 사이클 증가에 따라 실시예 1 소자의 전하량이 변화하는 모습을 도시한 그래프이고, 도 2(b)는 사이클 증가에 따라 비교예 1 소자의 전하량이 변화하는 모습을 도시한 그래프이다.2 is a graph relating to driving characteristics of the device. Specifically, Figure 2 (a) is a graph showing the change in the charge amount of the device of Example 1 as the cycle increases, Figure 2 (b) shows the change in the charge amount of the device of Comparative Example 1 as the cycle increases. It is a graph shown.
도 3은, 소자의 구동 특성에 관한 그래프이다. 구체적으로, 도 3(a)는 실시예 2에 따라 측정된 전류와 전하량의 변화를 특정 사이클 구간(초단위 시간)에서 확대 도시한 그래프이고, 도 3(b)는 비교예 2에 따라 측정된 전류와 전하량의 변화를 특정 사이클 구간에서 확대 도시한 그래프이다.3 is a graph relating to driving characteristics of the device. Specifically, Figure 3 (a) is a graph showing the change in the amount of current and charge measured in accordance with Example 2 in a specific cycle period (second time), Figure 3 (b) is measured in accordance with Comparative Example 2 The graph shows the change in the amount of current and charge in a specific cycle period.
도 4는, 인가되는 전압에 따라 단계적으로 투과율을 조절할 수 있는 본 출원 전기변색 소자의 광학 특성을 보여주는 그래프이다.Figure 4 is a graph showing the optical characteristics of the electrochromic device of the present application that can adjust the transmittance step by step according to the applied voltage.
이하, 실시예를 통해 본 출원을 상세히 설명한다. 그러나, 본 출원의 보호범위가 하기 설명되는 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present application will be described in detail through examples. However, the protection scope of the present application is not limited by the examples described below.
실험례Experimental Example 1:  One: 금속산질화물층의Metal oxynitride layer 투광성Translucent 확인 Confirm
제조예Production Example 1 One
적층체의 제조: 광 투과율이 약 98% 가량인 유리(galss) 일면에 광 투과율이 약 90% 가량인 ITO를 형성하였다. 이후, 스퍼터링 증착을 이용하여 (유리 위치와 반대되는) ITO 일면 상에 Mo와 Ti를 포함하는 산질화물(MoaTibOxNy)층을 30 nm 두께로 형성하였다. 구체적으로, Mo과 Ti의 타겟(target)의 중량% 비율은 1 : 1로, 증착 파워는 100 W로, 공정압은 15 mTorr로 증착을 진행하였으며, Ar, N2 및 O2 의 각 유량은 30 sccm, 5 sccm 및 5 sccm로 하였다. Preparation of the laminate : ITO having a light transmittance of about 90% was formed on one surface of glass (galss) having a light transmittance of about 98%. Subsequently, an oxynitride (Mo a Ti b O x N y ) layer including Mo and Ti was formed on a surface of ITO (as opposed to the glass position) by using sputter deposition to a thickness of 30 nm. Specifically, the weight percent ratio of the target of Mo and Ti was 1: 1, the deposition power was 100 W, the process pressure was deposited at 15 mTorr, and each flow rate of Ar, N 2 and O 2 was 30 sccm, 5 sccm, and 5 sccm.
물성 측정: 산질화물층 각 원소의 함량비와 적층체의 투과율을 측정하고, 표 1에 기재하였다. 원소 함량(atomic%)은 XPS(X-ray photoelectron spectroscopy)에 의해 측정하였고, 투과율은 haze meter(solidspec 3700)를 이용하여 측정하였다. Physical property measurement: The content ratio of each element of the oxynitride layer and the transmittance of the laminate were measured, and are shown in Table 1 below. Elemental content (atomic%) was measured by X-ray photoelectron spectroscopy (XPS), and transmittance was measured using a haze meter (solidspec 3700).
제조예Production Example 2 2
증착시 질소의 유량을 10 sccm으로 하고, 표 1에서와 같이 함량비를 달리한 것을 제외하고, 제조예 1과 동일한 방법으로 산질화물층을 형성하였다.During deposition, the flow rate of nitrogen was 10 sccm, and the oxynitride layer was formed in the same manner as in Preparation Example 1, except that the content ratio was changed as shown in Table 1.
제조예Production Example 3 3
증착시 질소의 유량을 15 sccm으로 하고, 표 1에서와 같이 함량비를 달리한 것을 제외하고, 제조예 1과 동일한 방법으로 산질화물층을 형성하였다.During deposition, the flow rate of nitrogen was 15 sccm, and the oxynitride layer was formed in the same manner as in Preparation Example 1, except that the content ratio was changed as shown in Table 1.
제조예Production Example 4 4
증착시 질소의 유량을 0 sccm으로 하고, 표 1에서와 같이 함량비를 달리한 것을 제외하고, 제조예 1과 동일한 방법으로 산화물층을 형성하였다.When the deposition rate of nitrogen was 0 sccm, except that the content ratio was changed as shown in Table 1, an oxide layer was formed in the same manner as in Preparation Example 1.
[표 1]TABLE 1
Figure PCTKR2018004674-appb-I000001
Figure PCTKR2018004674-appb-I000001
표 1로부터, 제조예 2 내지 4의 산질화물층은 매우 낮은 투과율을 갖지만, 제조예 1의 산질화물을 포함하는 산질화물층은 약 90% 가량의 투과율을 갖는 다는 것을 유추할 수 있다. 투광성이 높은 제조예 1의 산질화물층은 전기변색소자용 부재로 적합하다.From Table 1, it can be inferred that the oxynitride layers of Preparation Examples 2 to 4 have a very low transmittance, but the oxynitride layer comprising the oxynitride of Preparation Example 1 has a transmittance of about 90%. The oxynitride layer of Preparation Example 1 having high light transmittance is suitable as a member for an electrochromic device.
실험례Experimental Example 2:  2: 금속산질화물의Metal oxynitride 변색 특성 확인 Discoloration check
상기 제조예 1로부터 제조된 유리(glass)/ITO/산질화물(MoaTibOxNy) 적층체(half-cell)를, LiClO4(1M)와 프로필렌카보네이트(PC) 함유 전해액에 담그고, 25 ℃에서, - 3 V의 착색 전압과 + 3 V의 탈색 전압을 각각 50 초간 교대로 인가하였다. 그에 따라 측정된 착색 및 탈색시의 전류, 투과율, 및 변색 시간은 표 2에 기재된 것과 같다. The glass / ITO / oxynitride (Mo a Ti b O x N y ) laminate prepared from Preparation Example 1 was immersed in an electrolyte containing LiClO 4 (1M) and propylene carbonate (PC). At 25 ° C., a coloring voltage of −3 V and a decolorization voltage of +3 V were applied alternately for 50 seconds, respectively. The currents, transmittances, and discoloration times at the time of coloring and decolorization thus measured are as listed in Table 2.
상기와 같은 측정을 ± 4 V 및 ± 5 V에 대해서도 수행하고, 그 결과를 표 2에 기재하였다.The same measurements were also performed for ± 4 V and ± 5 V, and the results are shown in Table 2.
[표 2]TABLE 2
Figure PCTKR2018004674-appb-I000002
Figure PCTKR2018004674-appb-I000002
표 2에서와 같이, 제조예 1의 적층체는, 인가되는 전압에 따라 변색 특성(착색)을 갖게 됨을 확인할 수 있다. 한편, 도 1은, 구동 전위가 ± 5 V인 경우에, 제조예 1의 적층체가 구동(전기변색)하는 모습을 기록한 그래프이다. As in Table 2, it can be confirmed that the laminate of Preparation Example 1 has discoloration characteristics (coloring) according to the voltage applied. 1 is a graph which records the state in which the laminated body of manufacture example 1 drives (electrochromic) when a drive electric potential is +/- 5V.
실험례Experimental Example 3: 도전성  3: conductivity 적층체Laminate 및 이를 포함하는 전기변색소자의 구동 시간(cycling) 및 가용 준위 비교 Comparison of driving time and available level of electrochromic device including the same
실시예Example 1 One
제조예 1의 산질화물과 원소 함량비가 동일한 MoaTibOxNy 층, WO3층, 및 OMO 전극층을 순차로 포함하는 도전성 적층체를 제조하였다. LiClO4(1M)와 프로필렌카보네이트(PC) 함유 전해액 100 ppm과 potentiostat 장치를 준비하고, -1 V의 전압을 50초간 인가하여, MoaTibOxNy 층과 WO3 층에 Li+ 삽입하였다. WO3층이 블루계열 색상으로 착색된 것을 확인하였다. 이때, WO3층 cm2 당 존재하는 Li+의 함량은 1.0 × 10-8 mol 내지 1.0 × 10- 6 mol 범위에 포함되고, MoaTibOxNy 층 cm2 당 존재하는 Li+의 함량은 5.0 × 10- 9 mol 내지 5.0 × 10- 7 mol 범위에 범위에 포함됨을 확인하였다.Mo a Ti b O x N y having the same content ratio as the oxynitride of Preparation Example 1 A conductive laminate comprising a layer, a WO 3 layer, and an OMO electrode layer was sequentially prepared. 100 ppm of an electrolytic solution containing LiClO 4 (1M) and propylene carbonate (PC) and a potentiostat device were prepared, and a voltage of −1 V was applied for 50 seconds to provide Mo a Ti b O x N y. Li + in the layer and WO 3 layer Inserted. It was confirmed that the WO 3 layer was colored in a blue series color. At this time, the content of Li + present per cm 2 WO 3 layer is 1.0 × 10 -8 mol to 1.0 × 10 - 6 mol are included in the range, Mo a Ti b O x N y The content of the Li + layer present per cm 2 was 5.0 × 10 - it was confirmed is included in the range to 7 mol range - 9 mol to 5.0 × 10.
이후, 필름 형태의 GPE(gel polymer electrolyte)를 매개로, 프러시안 블루(PB)와 ITO의 적층체를 상기 도전성 적층체에 합착하였다. 제조된 전기변색소자는 OMO/WO3/MoaTibOxNy/GPE/PB/ITO의 적층 구조를 갖는다.Subsequently, a laminate of Prussian blue (PB) and ITO was bonded to the conductive laminate through a GPE (gel polymer electrolyte) in the form of a film. The manufactured electrochromic device has a laminated structure of OMO / WO 3 / Mo a Ti b O x N y / GPE / PB / ITO.
제조된 소자에, 탈색(bleaching) 전압과 착색(coloration) 전압을 일정 주기로 반복 인가하면서, 시간에 따른 소자의 전하량 변화를 관찰하였다. 1 주기(cycle)당 탈색 전압은 (+) 1.0 V로 50 초간 인가되었고, 착색 전압은 (-) 1.0 내지 (-) 3.0 V 범위에서 선택하여 50 초간 인가되었다. 그 결과는 도 2(a)와 같다.The change in charge amount of the device over time was observed while repeatedly applying a bleaching voltage and a coloring voltage to the manufactured device at regular intervals. The decolorization voltage per cycle was applied for 50 seconds at (+) 1.0 V, and the coloring voltage was applied for 50 seconds selected from the range of (-) 1.0 to (-) 3.0 V. The result is shown in FIG. 2 (a).
비교예Comparative example 1 One
MoaTibOxNy층을 포함하지 않는 것을 제외하고, 동일하게 전기변색소자를 제조하고, 동일한 방식으로 소자의 전하량 변화를 관찰하였다. 그 결과는 도 2(b)와 같다.An electrochromic device was prepared in the same manner except that the Mo a Ti b O x N y layer was not included, and the charge amount change of the device was observed in the same manner. The result is shown in FIG. 2 (b).
도 2(b)로부터 비교예 소자의 경우 대략 500 cycle 구동이 한계임을 확인할 수 있다. 그러나, 도 2(a)와 같이, 실시예의 소자는 비교예 대비 2.5 배 이상의 시간을 구동하더라도 성능 저하가 관찰되지 않았음을 확인할 수 있다. 이는 실시예 소자의 MoaTibOxNy 층이, 인접하는 OMO 또는 WO3의 열화를 방지하여 소자의 내구성이 개선된 결과로 판단된다.It can be seen from FIG. 2 (b) that the driving of the comparative example device is limited to approximately 500 cycles. However, as shown in Figure 2 (a), it can be confirmed that even if the device of the embodiment is driven 2.5 times or more compared to the comparative example, no performance degradation was observed. This is the Mo a Ti b O x N y of the example device The layer is judged to be the result of improving the durability of the device by preventing deterioration of adjacent OMO or WO 3 .
한편, 전기변색소자와 관련하여, 소자 구동시 소자에 손상(damage)이 가지 않는 상태에서 사이클링이 이루어질 수 있는 준위를 소자의 가용 준위라고 한다. 비교예와 달리, MoaTibOxNy 층을 포함하는 실시예는 1,000 사이클링 이상이 이루어지더라도 전하량이 감소하지 않으므로, 비교예 대비 가용 준위가 개선되었다고 할 수 있다.On the other hand, with respect to the electrochromic device, the level at which cycling can be performed while the device is not damaged when driving the device is called an available level of the device. Unlike the comparative example, Mo a Ti b O x N y The embodiment including the layer does not decrease the amount of charge even if more than 1,000 cycling is performed, it can be said that the usable level is improved compared to the comparative example.
실험례Experimental Example 4: 도전성  4: conductive 적층체Laminate 및 이를 포함하는 전기변색소자의 변색시간 비교 And discoloration time of the electrochromic device comprising the same
실시예Example 2 2
Solidspec 3700 장비를 이용하여, 실시예 1에서 수행된 실험 중 어느 정도 착탈색 변화가 이루어진 시점에 소자의 전하량과 전류를 측정하였다. 그 결과는 도 3(a)와 같다. 도 3(a) 그래프에서 X축은 시간을 의미한다.Using a Solidspec 3700 equipment, the amount of charge and the current of the device were measured at the time when the change in the discoloration of some of the experiments performed in Example 1. The result is shown in FIG. 3 (a). In the graph of FIG. 3 (a), the X axis represents time.
비교예Comparative example 2 2
비교예 1의 소자에 대하여, 실시예 2와 동일하게 소자의 전하량과 전류를 측정하였다. 그 결과는 도 3(b)와 같다.For the device of Comparative Example 1, the charge amount and the current of the device were measured in the same manner as in Example 2. The result is shown in FIG. 3 (b).
도 3(b)와 달리, 도 3(a)는 전하량과 전류의 피크가 가파르게 나타남을 확인할 수 있다. 구체적으로, 도 3(b)는 전하량과 전류가 특정 값에 수렴하는데 소요되는 시간이 대략 20초 내지 30초 범위로 나타나지만, 도 3(a)는 그 시간이 10초 이내로 나타난다. 이는, 비교예 소자 대비 실시예 소자에서의 변색 속도가 빠르다는 것을 의미한다.Unlike FIG. 3 (b), FIG. 3 (a) shows that the peaks of the charge amount and the current are steep. Specifically, FIG. 3 (b) shows the time required for the charge amount and the current to converge to a specific value in the range of approximately 20 seconds to 30 seconds, while FIG. 3 (a) shows that time within 10 seconds. This means that the discoloration speed in the example device is faster than that of the comparative device.
실험례Experimental Example 4: 도전성  4: conductive 적층체Laminate 및 이를 포함하는 전기변색소자의 미세한 투과율 조절 기능 확인 And check the fine transmittance control function of the electrochromic device including the same
실시예Example 3 3
실시예 1의 소자에 대하여, 착색 준위로는 - 1 V, - 2 V, 및 - 3 V를 단계적으로 인가하였고, 탈색 전위로는 0.5V를 인가하였다. Solidspec 3700 장비를 이용하여 측정된 각 전압에서의 투과율과 색상은 하기 표 3 및 도 4와 같다.For the device of Example 1, -1 V, -2 V, and -3 V were applied stepwise as the coloring level, and 0.5 V as the discoloration potential. The transmittance and color at each voltage measured using the Solidspec 3700 device are shown in Table 3 and FIG. 4.
[표 3]TABLE 3
Figure PCTKR2018004674-appb-I000003
Figure PCTKR2018004674-appb-I000003
표 3 및 도 4로부터, 착색 준위가 서로 상이한 2개 층을 포함하는 본 출원의 적층체 및 전기변색소자는 광 투과율이 단계적으로 조절될 수 있으며, 특히 착색시 산질화물층과 산화물층이 모두 착색되는 경우에는 매우 높은 광 차단성을 가진다는 점을 확인할 수 있다. 구체적으로, -1 V가 인가되면서부터 WO3를 포함하는 금속산화물층이 옅은 블루로 착색되고, - 2 V가 인가된 시점 이후에는 Mo와 Ti를 포함하는 금속산질화물층이 다크 그레이(dark gray)로 착색되면서 매우 낮은 광 투과율이 관찰되는 것을 확인할 수 있다.From Table 3 and FIG. 4, the laminate and the electrochromic device of the present application including two layers having different colored levels from each other can be controlled in stages of light transmittance. In this case, it can be confirmed that the light blocking property is very high. Specifically, since -1 V is applied, the metal oxide layer including WO 3 is colored in light blue, and after -2 V is applied, the metal oxynitride layer including Mo and Ti is dark gray. It can be seen that very low light transmittance is observed while coloring with).

Claims (20)

  1. 금속산질화물층, 금속산화물층, 및 도전층을 포함하고,A metal oxynitride layer, a metal oxide layer, and a conductive layer,
    상기 금속산질화물층 또는 금속산화물층에는 1가 양이온이 존재하는 도전성 적층체.A conductive laminate in which a monovalent cation is present in the metal oxynitride layer or the metal oxide layer.
  2. 제1항에 있어서, 상기 금속산질화물층 및 상기 금속산화물층에는 1가 양이온이 존재하는 도전성 적층체.The conductive laminate of claim 1, wherein monovalent cations are present in the metal oxynitride layer and the metal oxide layer.
  3. 제1항 또는 제2항에 있어서, 상기 금속산질화물층 cm2 당 5.0 × 10- 9 mol 내지 5.0 × 10- 7 mol 의 1가 양이온이 존재하고, 상기 금속산화물층 cm2 당 1.0 × 10-8 mol 내지 1.0 × 10-6 mol 의 1가 양이온이 존재하는 도전성 적층체.The process according to any one of the preceding claims, characterized in that the metal oxynitride layer 5.0 × 10 per cm 2 - 9 mol to 5.0 × 10 - 7 mol 1 is 1.0 × 10 per there is a cation, and the metal oxide layer cm 2 of the - A conductive laminate in which 8 mol to 1.0 × 10 -6 mol of monovalent cation is present.
  4. 제1항에 있어서, 상기 1가 양이온은 H+, Li+, Na+, K+, Rb+, 또는 Cs+ 인 도전성 적층체.The conductive laminate of claim 1, wherein the monovalent cation is H + , Li + , Na + , K + , Rb + , or Cs + .
  5. 제1항에 있어서, 상기 도전성 적층체의 가시광 투과율은 45% 이하인 도전성 적층체.The conductive laminate according to claim 1, wherein the visible light transmittance of the conductive laminate is 45% or less.
  6. 제1항에 있어서, 상기 금속산화물층은 환원성 변색물질 또는 산화성 변색물질을 포함하는 도전성 적층체.The conductive laminate of claim 1, wherein the metal oxide layer comprises a reducing color change material or an oxidative color change material.
  7. 제6항에 있어서, 상기 환원성 변색물질은 Ti, Nb, Mo, Ta 또는 W의 산화물을 포함하는 도전성 적층체.The conductive laminate of claim 6, wherein the reducing discoloration material comprises an oxide of Ti, Nb, Mo, Ta, or W. 8.
  8. 제7항에 있어서, 상기 금속산질화물층은 Ti, Nb, Mo, Ta 및 W 중에서 선택되는 2 이상의 금속을 포함하는 산질화물을 갖는 도전성 적층체.8. The conductive laminate according to claim 7, wherein the metal oxynitride layer has an oxynitride containing two or more metals selected from Ti, Nb, Mo, Ta, and W.
  9. 제8항에 있어서, 상기 금속산질화물층은 Mo 및 Ti을 포함하는 도전성 적층체.The conductive laminate of claim 8, wherein the metal oxynitride layer includes Mo and Ti.
  10. 제9항에 있어서, 상기 금속산질화물층은 하기 화학식 1로 표시되는 도전성 적층체:The conductive laminate of claim 9, wherein the metal oxynitride layer is represented by Formula 1 below:
    [화학식 1][Formula 1]
    MoaTibOxNy Mo a Ti b O x N y
    (단, a는 Mo의 원소 함량비를 의미하고, b는 Ti의 원소 함량비를 의미하고, x는 O의 원소 함량비를 의미하고, y는 N의 원소 함량비를 의미하고, a>0, b>0, x>0, y>0이고, 0.5 < a/b < 4.0이고, 0.005 < y/x < 0.02이다.)(Where a means an element content ratio of Mo, b means an element content ratio of Ti, x means an element content ratio of O, y means an element content ratio of N, and a> 0 , b> 0, x> 0, y> 0, 0.5 <a / b <4.0, and 0.005 <y / x <0.02.)
  11. 제1항에 있어서, 상기 금속산질화물층의 두께는 150 nm 이하인 도전성 적층체.The conductive laminate according to claim 1, wherein the metal oxynitride layer has a thickness of 150 nm or less.
  12. 제1항에 있어서, 상기 도전층은 투명 도전성 화합물, 메탈메쉬, 또는 OMO(oxide/metal/oxide)를 포함하는 도전성 적층체.The conductive laminate of claim 1, wherein the conductive layer comprises a transparent conductive compound, a metal mesh, or an oxide / metal / oxide (OMO).
  13. 제12항에 있어서, 상기 OMO(oxide/metal/oxide)는 상부층 및 하부층을 포함하고, 상기 상부층 및 하부층은 Sb, Ba, Ga, Ge, Hf, In, La, Se, Si, Ta, Se, Ti, V, Y, Zn, Zr 또는 이들 합금의 산화물을 포함하는 도전성 적층체.The method of claim 12, wherein the oxide / metal / oxide (OMO) comprises an upper layer and a lower layer, wherein the upper and lower layers are Sb, Ba, Ga, Ge, Hf, In, La, Se, Si, Ta, Se, A conductive laminate comprising an oxide of Ti, V, Y, Zn, Zr or these alloys.
  14. 제13항에 있어서, 상기 상부층은 10 nm 내지 120 nm 범위의 두께 및 1.0 내지 3.0 범위의 가시광 굴절률을 갖고, 상기 하부층은 10 nm 내지 100 nm 범위의 두께 및 1.3 내지 2.7 범위의 가시광 굴절률을 갖는 도전성 적층체.The conductive layer of claim 13, wherein the upper layer has a thickness ranging from 10 nm to 120 nm and a visible refractive index ranging from 1.0 to 3.0, and the lower layer has a thickness ranging from 10 nm to 100 nm and a visible refractive index ranging from 1.3 to 2.7. Laminate.
  15. 제13항에 있어서, 상기 OMO(oxide/metal/oxide)는 상기 상부층과 하부층 사이에 금속층을 포함하고, 상기 금속층은 Ag, Cu, Zn, Au, Pd, 또는 이들의 합금을 포함하는 도전성 적층체.The conductive laminate of claim 13, wherein the oxide / metal / oxide (OMO) includes a metal layer between the upper layer and the lower layer, and the metal layer includes Ag, Cu, Zn, Au, Pd, or an alloy thereof. .
  16. 제15항에 있어서, 상기 금속층은 3 nm 내지 30 nm 범위의 두께 및 1 이하의 가시광 굴절률을 갖는 도전성 적층체.The conductive laminate of claim 15, wherein the metal layer has a thickness ranging from 3 nm to 30 nm and a visible light index of refraction of 1 or less.
  17. 제1항에 따른 상기 도전성 적층체; 전해질층; 및 상대 전극층을 순차로 포함하는 전기변색소자.The conductive laminate according to claim 1; An electrolyte layer; And a counter electrode layer sequentially including the counter electrode layer.
  18. 제17항에 있어서, 상기 전해질층은 H+, Li+, Na+, K+, Rb+, 또는 Cs+ 를 제공하는 화합물을 포함하는 전기변색소자.The electrochromic device of claim 17, wherein the electrolyte layer comprises a compound providing H + , Li + , Na + , K + , Rb + , or Cs + .
  19. 제17항에 있어서, 상기 상대 전극층과 상기 전해질층 사이에 이온저장층을 더 포함하는 전기변색소자.The electrochromic device of claim 17, further comprising an ion storage layer between the counter electrode layer and the electrolyte layer.
  20. 제19항에 있어서, 상기 이온저장층은 상기 금속산화물층이 포함하는 변색물질과 발색 특성이 상이한 변색물질을 포함하는 전기변색소자.The electrochromic device of claim 19, wherein the ion storage layer comprises a color change material having a color development property different from that of a color change material included in the metal oxide layer.
PCT/KR2018/004674 2017-04-24 2018-04-23 Conductive laminate and electrochromic device comprising same WO2018199572A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019557571A JP2020518003A (en) 2017-04-24 2018-04-23 Conductive laminate and electrochromic element containing the same
CN201880027087.8A CN110574127A (en) 2017-04-24 2018-04-23 Conductive laminate and electrochromic device including same
EP18790462.8A EP3618082A4 (en) 2017-04-24 2018-04-23 Conductive laminate and electrochromic device comprising same
US16/604,893 US20200255723A1 (en) 2017-04-24 2018-04-23 Conductive laminate and an electrochromic device comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170052043 2017-04-24
KR10-2017-0052043 2017-04-24
KR10-2018-0045421 2018-04-19
KR1020180045421A KR20180119120A (en) 2017-04-24 2018-04-19 A conductive stack and a device comprising the same

Publications (1)

Publication Number Publication Date
WO2018199572A1 true WO2018199572A1 (en) 2018-11-01

Family

ID=63918437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004674 WO2018199572A1 (en) 2017-04-24 2018-04-23 Conductive laminate and electrochromic device comprising same

Country Status (1)

Country Link
WO (1) WO2018199572A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080086655A (en) * 2007-03-23 2008-09-26 주식회사 엘지화학 Electrode for electrochromic device having excellent water resistant property, and method for preparing the same
US20100053722A1 (en) * 2008-08-28 2010-03-04 Ppg Industries Ohio, Inc. Electrochromic device
US20120258295A1 (en) * 2011-04-08 2012-10-11 Saint-Gobain Performance Plastics Corporation Multilayer component for the encapsulation of a sensitive element
KR101221754B1 (en) * 2010-10-05 2013-01-11 제이 터치 코퍼레이션 Electrochromic module and stereo image display device having the same
KR101528015B1 (en) * 2010-02-19 2015-06-10 쌩-고벵 글래스 프랑스 Electrochromic glazing with series-connected cells, and production method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080086655A (en) * 2007-03-23 2008-09-26 주식회사 엘지화학 Electrode for electrochromic device having excellent water resistant property, and method for preparing the same
US20100053722A1 (en) * 2008-08-28 2010-03-04 Ppg Industries Ohio, Inc. Electrochromic device
KR101528015B1 (en) * 2010-02-19 2015-06-10 쌩-고벵 글래스 프랑스 Electrochromic glazing with series-connected cells, and production method therefor
KR101221754B1 (en) * 2010-10-05 2013-01-11 제이 터치 코퍼레이션 Electrochromic module and stereo image display device having the same
US20120258295A1 (en) * 2011-04-08 2012-10-11 Saint-Gobain Performance Plastics Corporation Multilayer component for the encapsulation of a sensitive element

Similar Documents

Publication Publication Date Title
KR102118361B1 (en) An electrochromic film and a device comprising the same
WO2019199011A1 (en) Electrochromic film
WO2017196035A1 (en) Electrochromic element
KR102078402B1 (en) An electrochromic device
WO2017217710A1 (en) Electrochromic device
WO2018199568A1 (en) Electrochromic film
WO2018199569A1 (en) Electrochromic film and electrochromic element comprising same
JP2020518003A (en) Conductive laminate and electrochromic element containing the same
WO2018199572A1 (en) Conductive laminate and electrochromic device comprising same
WO2018199566A1 (en) Electrochromic device
KR102126684B1 (en) method for operating an electrochromic device
WO2018199570A1 (en) Light-transmissive film and electrochromic element comprising same
EP3617771B1 (en) Light-transmissive film and electrochromic element comprising same
KR20210051216A (en) An electochromic sheet and device comprising the same
KR20190118120A (en) An electrochromic film
WO2019199012A1 (en) Electrochromic film
KR102113478B1 (en) An electrochromic film, an electrochromic device and method for preparing the same
WO2018174440A1 (en) Electrochromic device
WO2018199567A1 (en) Electrochromic device
WO2019054720A1 (en) Method for manufacturing electrochromic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557571

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018790462

Country of ref document: EP

Effective date: 20191125