WO2018199566A1 - Electrochromic device - Google Patents

Electrochromic device Download PDF

Info

Publication number
WO2018199566A1
WO2018199566A1 PCT/KR2018/004666 KR2018004666W WO2018199566A1 WO 2018199566 A1 WO2018199566 A1 WO 2018199566A1 KR 2018004666 W KR2018004666 W KR 2018004666W WO 2018199566 A1 WO2018199566 A1 WO 2018199566A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrochromic
area
electrode layer
conductive band
Prior art date
Application number
PCT/KR2018/004666
Other languages
French (fr)
Korean (ko)
Inventor
김용찬
김기환
조필성
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180045419A external-priority patent/KR102078402B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18789918.2A priority Critical patent/EP3617789B1/en
Priority to JP2019557785A priority patent/JP7062685B2/en
Priority to US16/604,355 priority patent/US11644730B2/en
Priority to CN201880027304.3A priority patent/CN110573957A/en
Publication of WO2018199566A1 publication Critical patent/WO2018199566A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes

Definitions

  • the present application relates to an electrochromic device.
  • Electrochromic refers to a phenomenon in which the optical properties of an electrochromic material are changed by an electrochemical oxidation or reduction reaction, and the device using the phenomenon is called an electrochromic device.
  • Electrochromic devices generally include a working electrode, a counter electrode, and an electrolyte, and the optical properties of each electrode may be reversibly changed by an electrochemical reaction.
  • the working electrode or the counter electrode may include a transparent conductive material and an electrochromic material, respectively, in the form of a film.
  • Such electrochromic devices are attracting attention as smart windows, smart mirrors, and other next-generation building window materials because they can manufacture devices with a large area at low cost and have low power consumption.
  • the discoloration rate is slow.
  • the discoloration rate is different depending on the position, there is a disadvantage that the degree of discoloration is uneven.
  • One object of the present application is to provide an electrochromic device with improved discoloration speed.
  • Another object of the present application is to provide an electrochromic device having a uniform discoloration degree.
  • the present application relates to an electrochromic device.
  • the electrochromic device of the present application may include a conductive band positioned on the electrode layer in addition to the electrode layer and the electrochromic layer positioned on the electrode layer.
  • the term "upper” used with respect to the position between the components is used in the meaning corresponding to "above” or “upper”, and unless otherwise stated, the configuration having the position directly contact another configuration While it may mean that the case exists on it, or it may mean that there is a different configuration between them.
  • the electrode layer may be a transparent electrode having transparency.
  • transparent may mean a case where transmittance with respect to visible light is 60% or more.
  • visible light may mean light in the wavelength range of 380 nm to 780 nm, specifically light of 550 nm wavelength.
  • the upper limit of the transmittance is not particularly limited, but may be, for example, 95% or less.
  • the light transmittance can be measured by a known haze meter.
  • the electrode layer may have a thickness in the range of 10 nm to 450 nm.
  • thickness means an average normal distance between one surface (bottom surface) of the layer to be measured and the other surface (top surface) of the layer to be measured when a virtual normal is drawn from the ground surface to the surface of the device. can do.
  • the electrode layer may include a transparent conductive oxide or OMO (oxide / metal / oxide) as a transparent transparent electrode material.
  • OMO oxide / metal / oxide
  • the transparent conductive oxide may include indium tin oxide (ITO), indium oxide (In 2 O 3 ), indium galium oxide (IGO), fluor doped tin oxide (FTO), aluminum doped zinc oxide (AZO), GZO (Galium doped Zinc Oxide), ATO (Antimony doped Tin Oxide), IZO (Indium doped Zinc Oxide), NTO (Niobium doped Titanium Oxide), ZnO (Zink Oxide), or CTO (Cesium Tungsten Oxide) .
  • ITO indium tin oxide
  • In 2 O 3 indium galium oxide
  • IGO indium galium oxide
  • FTO fluor doped tin oxide
  • AZO aluminum doped zinc oxide
  • GZO Gadium doped Zinc Oxide
  • ATO Antimony doped Tin Oxide
  • IZO Indium doped Zinc Oxide
  • NTO Niobium doped Titanium Oxide
  • ZnO Zink Oxide
  • CTO Certsten Oxide
  • the oxide / metal / oxide may include an upper metal oxide layer, a lower metal oxide layer, and a metal layer provided between the two layers.
  • the upper metal oxide layer may mean a layer located relatively farther from the electrochromic layer among the layers constituting the OMO. Since the OMO having the above configuration has a lower sheet resistance than the transparent conductive oxide represented by ITO, the color change rate of the electrochromic device can be improved.
  • the upper and lower metal oxide layers used in the OMO include Sb, Ba, Ga, Ge, Hf, In, La, Se, Si, Ta, Se, Ti, V, Y, Zn, Zr or metal oxides of these alloys. It may include.
  • the type of each metal oxide included in the upper and lower metal oxide layers may be the same or different.
  • the thickness of the upper metal oxide layer may range from 10 nm to 120 nm, or from 20 nm to 100 nm.
  • the visible light refractive index of the upper metal oxide layer may be in the range of 1.0 to 3.0 or 1.2 to 2.8.
  • the thickness of the lower metal oxide layer may range from 10 nm to 100 nm or from 20 nm to 80 nm.
  • the visible light refractive index of the lower metal oxide layer may be in the range of 1.3 to 2.7 or 1.5 to 2.5.
  • the metal layer included in the OMO may include a low resistance metal material.
  • a low resistance metal material For example, one or more metals selected from Ag, Cu, Zn, Au, Pd, and alloys thereof may be used in the metal layer as the low resistance metal material.
  • the metal layer of the OMO may have a thickness in the range of 3 nm to 30 nm or in the range of 5 nm to 20 nm.
  • the metal layer may have a visible light refractive index of 1 or less or 0.5 or less.
  • the method for providing the electrode layer is not particularly limited.
  • the electrode layer can be formed using a known wet or dry coating method using the electrode material or a known lamination method.
  • the electrochromic layer is a layer containing an electrochromic material that can be discolored by a reversible oxidation-reduction reaction.
  • an electrochromic material a known organic or inorganic material may be used.
  • the electrochromic layer may include a reducing color change material, that is, a material that changes color (coloration) upon reduction. More specifically, the electrochromic layer may include oxides of Ti, Nb, Mo, Ta, or W, such as WO 3 , MoO 3 , Nb 2 O 5 , Ta 2 O 5, or TiO 2 .
  • the electrochromic layer may include an oxidative color change material, that is, a material that changes color (coloring) upon oxidation. More specifically, the electrochromic layer may be an oxide of Cr, Mn, Fe, Co, Ni, Rh, or Ir, such as LiNiOx, IrO 2 , NiO, V 2 O 5 , LixCoO 2 , Rh 2 O 3 or CrO 3 . Hydroxides of Cr, Mn, Fe, Co, Ni, Rh, or Ir; And prussian blue.
  • the electrochromic layer may have a thickness of 400 nm or less. More specifically, the electrochromic layer may have a thickness of 30 nm or more, 50 nm or more, 100 nm or more, or 150 nm or more, and may have a thickness of 350 nm or less or 300 nm or less.
  • the method for preparing the electrochromic layer is also not particularly limited.
  • the electrochromic layer may be formed by applying and sintering a coating composition including the above-described discoloring material on an electrode layer or a substrate including the electrode layer.
  • the electrochromic layer including the above-mentioned material may be formed on the electrode layer or the substrate including the electrode layer through a deposition method.
  • a method of forming an electrochromic layer separately from the electrode layer and then laminating the electrode layer and the electrochromic layer with each other may be used.
  • the conductive band has a predetermined size and a predetermined thickness expressed in length, width or width.
  • the conductive strip includes a conductive material and has a closed ring shape, that is, a form in which both ends are joined together.
  • the specific shape of the closed ring is not particularly limited.
  • the shape of the ring visible at the top or bottom parallel to the normal to the device surface can be a circle, an ellipse, or a polymorph.
  • the shape of the electrochromic layer visible at the top or bottom parallel to the normal direction to the device surface and the closed ring shape of the conductive strips visible in the same direction may be the same.
  • the conductive strip may be in direct physical contact with the electrochromic layer.
  • the conductive bands in contact with the electrochromic layer form an equipotential section in the electrochromic layer, thereby improving the electrochromic speed and contributing to the uniform discoloration of the electrochromic layer. .
  • the conductive strip can contact the electrochromic layer, surrounding the side of the electrochromic layer.
  • the "side surface of a layer” can mean the surface other than the upper surface and lower surface which mutually oppose in the thickness direction of the layer demonstrated above.
  • the conductive strip may extend along the side of the electrochromic layer in physical contact with the side of the electrochromic layer, and may have a closed ring shape in which both ends are joined to each other. That is, the conductive strip may exist in a state surrounding the side of the electrochromic layer.
  • the conductive band in physical contact with the electrochromic layer in the above manner contributes to widening the equipotential section of the electrochromic layer.
  • the conductive band surrounds the electrochromic layer in contact with the four side edges of the electrochromic layer, so that the equipotential section by the conductive band is It can be formed evenly up to the center of the electrochromic layer.
  • the conductive band is not formed, or when the conductive band is formed only on a part of the side surface of the electrochromic layer, the expansion of the equipotential section, the uniformity of the degree of discoloration, and the improvement of the discoloration speed cannot be expected.
  • the electrode layer may have an area equal to or greater than the sum of the areas of the conductive strip and the area of the electrochromic layer.
  • area means an area, for example, an orthographic area, which is visible when the device is viewed from above or below in a direction parallel to the normal direction of the surface thereof. Can be. Therefore, the increase or decrease of the actual area due to the unevenness and the like of the structure to be compared with the area is not considered.
  • 1 schematically illustrates the area relationship between an electrode layer, an electrochromic layer and a conductive strip, according to an example of the present application. As shown in FIG.
  • the area S1 of the electrode layer may be the same size as the sum of the area S2 of the electrochromic layer and the area S3 of the conductive strip.
  • the shapes of the conductive strip and the electrochromic layer observed in the upper or lower part of the direction parallel to the normal direction of the element surface may be the same in quadrilateral.
  • each of the electrochromic layer and the conductive strip may directly contact the same side of the electrode layer.
  • the conductive strip may have a thickness of at least an electrochromic layer. Specifically, when the conductive strip and the electrochromic layer are positioned on the electrode layer while directly contacting the same side of the electrode layer, respectively, the normal length from the lower surface to the upper surface of the conductive strip may be the same as or larger than that of the electrochromic layer. have.
  • the method of forming the conductive strip so as to surround the side of the electrochromic layer and satisfy the area relationship described in FIG. 1 is not particularly limited.
  • the edge of the electrochromic layer is etched so that the area of the electrochromic layer is smaller than the area of the electrode layer, and the electrochromic layer is etched to surround the side of the electrochromic layer.
  • a conductive strip can be formed on the marked part.
  • an electrochromic layer having a smaller size than the electrode layer may be formed on the electrode layer, and a conductive strip may be formed to surround the side surface of the electrochromic layer.
  • the conductive strip may be attached to a predetermined portion in the form of a tape having an adhesive surface, or may be formed by applying a conductive composition to the predetermined portion and then sintering or drying the conductive strip.
  • the conductive strip may be located on the upper or lower surface of the electrochromic layer. More specifically, the conductive band may be in direct contact with the electrode layer and the electrochromic layer while being positioned between the electrode layer and the electrochromic layer, or may be directly in contact with the electrochromic layer while being located on the opposite side of one side of the electrochromic layer facing the electrode layer. have.
  • the electrochromic layer when the conductive strip is located on the upper or lower surface of the electrochromic layer, the electrochromic layer may have an area equal to or larger than the sum of the area of the conductive strip and the inner area of the closed ring of the conductive strip.
  • the area S4 of the electrochromic layer may be equal to or larger than the sum of the area of the conductive band S5 and the area S6 inside the ring.
  • the shape of the conductive strip and the electrochromic layer observed at the top or the bottom in a direction parallel to the normal direction of the device surface may be quadrilateral.
  • the electrochromic layer may have an area of the electrode layer or less.
  • a conductive layer may be formed by forming a conductive layer on the upper or lower surface of the electrochromic layer using a known coating method and etching the conductive layer to have a closed ring shape.
  • a conductive strip in the form of a tape can be used to provide a conductive strip on the upper or lower surface of the electrochromic layer.
  • the electrochromic device may further include a wiring unit (not shown) electrically connected to the conductive strip.
  • the wiring portion may be used to connect the electrode layer and the conductive strip.
  • the conductive strip may include a metal as a conductive material.
  • the type of metal is not particularly limited, and for example, nickel (Ni), aluminum (Al), silver (Ag), copper (Cu), zinc (Zn), gold (Au), palladium (Pd), platinum ( Pt) or alloys thereof can be used for the conductive strips.
  • the resistance value of the conductive strip may be 10% or less of the electrode layer resistance value. If the above relationship is satisfied, the discoloration speed of the device can be further improved.
  • the conductive strip may have a width or width of 100 nm or less.
  • the conductive band may have a width of 70 nm or less, 50 nm or less, 30 nm or less, 20 nm or less, or 15 nm or less, and may have a thickness of 1 nm or more, 3 nm or more, or 5 nm or more. .
  • the conductive strip may have a thickness of 1,200 nm or less. More specifically, it may have a thickness of 1,100 nm or less, 900 nm or less, 700 nm or less, or 500 nm or less, and have a thickness of 100 nm or more, 200 nm or more, 300 nm or more, 400 nm or more or 500 nm or more. Can be.
  • the electrochromic device may include an electrolyte layer on one surface opposite to one surface of the electrochromic layer facing the electrode layer.
  • the electrochromic device may sequentially include an electrode layer, a conductive strip, an electrochromic layer, and an electrolyte layer, or may sequentially include an electrode layer, an electrochromic layer, a conductive strip, and an electrolyte layer.
  • the electrochromic device may include an electrode layer, an electrochromic layer, and an electrolyte layer sequentially, such that a conductive band surrounding the side of the electrochromic layer is positioned between the electrode layer and the electrolyte layer like the electrochromic layer. have.
  • the electrolyte layer may be configured to provide electrolyte ions involved in the electrochromic reaction.
  • Electrolyte ions are monovalent cations inserted into the conductive laminate, and may be, for example, H + , Li + , Na + , K + , Rb + , or Cs + .
  • the electrolyte layer may include a gel polymer electrolyte.
  • Gel polymer electrolytes have ionic conductivity but no electrical conductivity. Therefore, as will be described below, in the case where the second conductive band is further present on one surface of the counter electrode layer, the gel polymer present between the two conductive bands can prevent the device from shorting.
  • the gel polymer electrolyte may also serve as a buffer for a step, that is, a thickness difference that may exist between the electrochromic layer and the conductive band.
  • the gel polymer electrolyte may comprise a polymer.
  • the polymer that can be used include, for example, polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), and polyvinyl chloride (polyvinyl chloride).
  • polyvinyl chloride PVC
  • polyethylene oxide PEO
  • polypropylene oxide PPO
  • poly (vinylidene fluoride-hexafluoro propylene) Poly (vinylidene fluoride-hexafluoro propylene), PVdF- HFP
  • polyvinyl acetate Polyvinyl acetate, PVAc
  • polyoxyethylene Polyoxyethylene, POE
  • polyamideimide Polyamideimide, PAI
  • the electrolyte layer may comprise a metal salt compound capable of providing monovalent cations to the electrochromic layer or the ion storage layer described below.
  • the electrolyte layer may be LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiBF 4 , LiSbF 6 , LiN (C 2 F 5 SO 2 ) 2 , LiAlO 4 , LiAlCl 4 , LiCo 0 . 2 Ni 0 . 56 Mn 0 .
  • Lithium salt compounds such as 27 O 2 , LiCoO 2 , LiSO 3 CF 3 or LiClO 4 , or sodium salt compounds such as NaClO 4 may be included.
  • the electrolyte layer may further include a carbonate compound as a solvent.
  • a carbonate type compound has high dielectric constant, ionic conductivity can be improved.
  • a solvent such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), or ethylmethyl carbonate (EMC) may be used as the carbonate-based compound.
  • the area of the electrolyte layer may have an area equal to or larger than the sum of the area of the conductive strip and the area of the electrochromic layer.
  • the area of the electrolyte layer may have an area equal to or larger than the sum of the area of the conductive band and the inner area of the ring of the conductive band. have.
  • the area of the electrolyte layer may be different from or the same as the area of the electrode layer described above.
  • the area of the electrolyte layer may be different from or the same as that of the counter electrode layer described below.
  • the light transmittance of the electrolyte layer may range from 60% to 95%, and the thickness may range from 10 ⁇ m to 300 ⁇ m.
  • the electrochromic device may further include a counter electrode layer on one surface opposite to one surface of the electrolyte layer facing the electrochromic layer.
  • the structure and other characteristics of the counter electrode layer are the same as those described in connection with the electrode layer.
  • the electrochromic device of the present application may further include an ion storage layer.
  • the ion storage layer refers to a layer formed to balance the charge balance with the electrochromic layer during the reversible oxidation / reduction reaction for discoloration of the electrochromic material.
  • the ion storage layer may be located on one surface of the counter electrode layer. More specifically, the ion storage layer may be located between the counter electrode layer and the electrolyte layer.
  • the ion storage layer may include an electrochromic material having a color development characteristic different from that of the electrochromic material used in the electrochromic layer.
  • the electrochromic layer may include a reducing electrochromic material
  • the ion storage layer may include an oxidative electrochromic material. The reverse is also possible.
  • the ion storage layer may have a thickness of 400 nm or less. More specifically, the ion storage layer may have a thickness of 30 nm or more, 50 nm or more, 100 nm or more, or 150 nm or more, and may have a thickness of 350 nm or less or 300 nm or less.
  • the electrochromic device of the present application may further include a second conductive band.
  • the two conductive bands included in the electrochromic device of the present application may be referred to as first and second conductive bands, respectively.
  • the configuration or characteristic of the second conductive strip itself, or the relationship with the adjacent layer, may be the same as that of the conductive strip described above.
  • the description of the electrochromic layer may be applied to the ion storage layer, and the description of the electrode layer may be applied to the counter electrode layer.
  • the second conductive band may be in direct physical contact with the ion storage layer.
  • the second conductive band may contact the ion storage layer while surrounding the side of the ion storage layer.
  • the counter electrode layer may have an area equal to or larger than the sum of the area of the second conductive band and the area of the ion storage layer.
  • each of the ion storage layer and the second conductive band may directly contact the same surface of the counter electrode layer.
  • the second conductive band may have a thickness greater than or equal to the ion storage layer.
  • the second conductive band may be located on the upper or lower surface of the ion storage layer. More specifically, the second conductive band may be directly contacted with the counter electrode layer and the ion storage layer while being positioned between the counter electrode layer and the ion storage layer. Alternatively, the ion storage layer may be directly in contact with the ion storage layer while being positioned on the opposite side of one surface of the ion storage layer facing the counter electrode layer, that is, between the electrolyte layer and the ion storage layer.
  • the ion storage layer when the second conductive band is located on the upper or lower surface of the ion storage layer, the ion storage layer is equal to or larger than the sum of the area of the second conductive band and the inner area of the closed ring of the second conductive band. It may have an area. In addition, although not particularly limited, in the above case, the ion storage layer may have an area of the counter electrode layer or less.
  • the electrochromic device when the second conductive band is located on the upper or lower surface of the ion storage layer and satisfies a specific area relationship, the electrochromic device further includes a wiring part electrically connected to the second conductive band. can do.
  • the wiring portion may be used to connect the counter electrode layer and the second conductive strip.
  • the area of the electrolyte layer is equal to or larger than the sum of the area of the second conductive band and the area of the ion storage layer.
  • the area of the electrolyte layer is equal to or equal to the sum of the area of the second conductive band and the ring inner area of the second conductive band. It can have a larger area.
  • the electrochromic device may further include a light transmissive substrate.
  • the light transmissive substrate may be located on the outer side of the device, specifically, on the outer side of the electrode layer and / or the counter electrode layer.
  • the light transmissive substrate may be, for example, a substrate having a visible light transmittance of about 60% to 95%. If the transmittance
  • glass or polymer resins can be used. More specifically, a polyester film such as polycarbonate (PC), polyethylene (phthalene naphthalate) (PEN) or polyethylene (ethylene terephthalate) (PET), an acrylic film such as poly (methyl methacrylate) (PMMA), or polyethylene (PE) Or a polyolefin film such as PP (polypropylene) may be used, but is not limited thereto.
  • the electrochromic device may further include a power source.
  • the manner of electrically connecting the power source to the device is not particularly limited and may be appropriately made by those skilled in the art.
  • the electrochromic device may apply a predetermined voltage necessary for electrochromic.
  • an electrochromic device having improved electrochromic speed and uniformity of color change can be provided.
  • FIG. 1 schematically illustrates the area relationship of an electrode layer, an electrochromic layer, and a conductive strip, according to an example of the present application.
  • FIG. 2 schematically illustrates the area relationship between the electrochromic layer and the conductive strip according to an example of the present application.
  • FIG 3 is a graph relating to driving characteristics of an embodiment device according to an example of the present application.
  • Permeability measured using oceanoptics. Specifically, at three points (B1, B2, B3 when decoloring; C1, C2, C3 when discoloring), the change in transmittance with time is measured. Each was measured.
  • Preparation of First Laminate Using an evaporation method, an ITO (thickness: 100 nm) layer and a WO 3 layer (thickness: 350 nm) were sequentially formed on a 150 nm thick PET substrate.
  • the planar area of the ITO layer and the WO 3 layer was such that the quadrilaterals were of the same size (width X length: 10 cm ⁇ 7 cm).
  • Second Laminate Using an evaporation method, an ITO (thickness: 100 nm) layer and a Prussian blue (PB) layer (thickness: 350 nm) were sequentially formed on a 150 nm thick PET substrate.
  • the planar width of the ITO layer and the PB layer was such that a quadrilateral of the same size (width ⁇ length: 10 cm ⁇ 7 cm) was obtained.
  • WO 3 layer of the first laminate and PB layer of the second laminate face each other via a gel polymer electrolyte (GPE) layer having an area size of 10 cm ⁇ 7 cm and a thickness of 50 ⁇ m.
  • GPE gel polymer electrolyte
  • the change in the amount of charge of the device over time was observed while repeatedly applying a bleaching voltage and a coloring voltage to the device manufactured from the above at regular intervals.
  • the bleaching and coloring voltages per cycle were ⁇ 1.2 V each, applied for 50 seconds each.
  • a predetermined cycle was driven for stabilization, and the change in desorption time with voltage application was observed. The result is shown in FIG. 3.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

The present application relates to an electrochromic device. The device comprises: an electrode layer; an electrochromic layer; and a closed ring-shaped conductive band. Such an electrochromic device changes color with superb speed and uniformity.

Description

전기변색소자Electrochromic device
관련 출원들과의 상호 인용Cross Citation with Related Applications
본 출원은 2017년 4월 27일 자 한국 특허 출원 제10-2017-0054315호 및 2018년 4월 19일 자 한국 특허 출원 제10-2018-0045419호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0054315 dated April 27, 2017 and Korean Patent Application No. 10-2018-0045419 dated April 19, 2018. All content disclosed in the literature of the application is included as part of this specification.
기술분야Field of technology
본 출원은 전기변색소자에 관한 것이다.The present application relates to an electrochromic device.
전기변색이란 전기화학적 산화 또는 환원 반응에 의하여 전기변색물질의 광학적 성질이 변하는 현상을 말하며, 상기 현상을 이용한 소자를 전기변색소자라 한다. 전기변색소자는 일반적으로 작업전극, 상대전극, 및 전해질을 포함하며, 전기화학적 반응에 의해 각 전극의 광학적 성질이 가역적으로 변화할 수 있다. 예를 들어, 작업전극 또는 상대전극은 투명 도전성 물질과 전기변색물질을 각각 필름형태로 포함할 수 있는데, 소자에 전위가 인가될 경우 전해질 이온이 전기변색물질 함유 필름에 삽입되거나 이로부터 탈리되고, 동시에 외부 회로를 통해 전자가 이동하게 되면서 전기변색물질의 광학적 성질변화가 나타나게 된다.Electrochromic refers to a phenomenon in which the optical properties of an electrochromic material are changed by an electrochemical oxidation or reduction reaction, and the device using the phenomenon is called an electrochromic device. Electrochromic devices generally include a working electrode, a counter electrode, and an electrolyte, and the optical properties of each electrode may be reversibly changed by an electrochemical reaction. For example, the working electrode or the counter electrode may include a transparent conductive material and an electrochromic material, respectively, in the form of a film. When a potential is applied to the device, electrolyte ions are inserted into or detached from the electrochromic material-containing film, At the same time, as electrons move through the external circuit, the optical properties of the electrochromic material appear.
이러한, 전기변색소자는 적은 비용으로도 넓은 면적의 소자를 제조할 수 있고, 소비전력이 낮기 때문에, 스마트 윈도우나 스마트 거울, 그 밖에 차세대 건축 창호 소재로서 주목받고 있다. 그러나, 변색층 전면적의 광학적 특성 변화를 위한 전해질 이온의 삽입 및/또는 탈리에는 상당 시간이 소요되기 때문에, 변색속도가 느리다는 단점이 있다. 또한, 전기변색층의 동일한 평면 상에서도 그 위치에 따라 변색속도가 상이하여, 변색 정도가 불균일하다는 단점이 있다.Such electrochromic devices are attracting attention as smart windows, smart mirrors, and other next-generation building window materials because they can manufacture devices with a large area at low cost and have low power consumption. However, since the insertion and / or desorption of electrolyte ions for changing the optical properties of the entire discoloration layer takes a long time, the discoloration rate is slow. In addition, even on the same plane of the electrochromic layer, the discoloration rate is different depending on the position, there is a disadvantage that the degree of discoloration is uneven.
본 출원의 일 목적은, 변색속도가 개선된 전기변색소자를 제공하는 것이다.One object of the present application is to provide an electrochromic device with improved discoloration speed.
본 출원의 다른 목적은, 변색 정도가 균일한 전기변색소자를 제공하는 것이다.Another object of the present application is to provide an electrochromic device having a uniform discoloration degree.
본 출원의 상기 목적 및 기타 그 밖의 목적은 하기 상세히 설명되는 본 출원에 의해 모두 해결될 수 있다.The above and other objects of the present application can all be solved by the present application described in detail below.
본 출원에 관한 일례에서, 본 출원은 전기변색소자에 관한 것이다. 본 출원의 전기변색소자는, 전극층 및 상기 전극층 상에 위치하는 전기변색층 외에, 상기 전극층 상에 위치하는 도전성 띠(band)를 포함할 수 있다. 본 출원에서, 구성 간 위치에 관하여 사용되는 「상」이라는 용어는 “위” 또는 “상부”에 대응하는 의미로 사용되며, 특별히 달리 기재하지 않은 이상, 해당 위치를 갖는 구성이 다른 구성에 직접 접하면서 그 위에 존재하는 경우를 의미할 수 있고, 또는 이들 사이에 다른 구성이 존재하는 경우를 의미할 수도 있다.In one example of the present application, the present application relates to an electrochromic device. The electrochromic device of the present application may include a conductive band positioned on the electrode layer in addition to the electrode layer and the electrochromic layer positioned on the electrode layer. In the present application, the term "upper" used with respect to the position between the components is used in the meaning corresponding to "above" or "upper", and unless otherwise stated, the configuration having the position directly contact another configuration While it may mean that the case exists on it, or it may mean that there is a different configuration between them.
상기 전극층은 투광성을 갖는 투명 전극일 수 있다. 본 출원에서 「투광성」이란, 가시광에 대한 투과율이 60 % 이상인 경우를 의미할 수 있다. 또한, 「가시광」은, 380 nm 내지 780 nm 파장 범위의 광, 구체적으로는 550 nm 파장의 광을 의미할 수 있다. 투과율의 상한은 특별히 제한되지 않으나, 예를 들어, 95% 이하일 수 있다. 상기 투광성은 공지된 헤이즈미터에 의해 측정될 수 있다.The electrode layer may be a transparent electrode having transparency. In the present application, the term “transparent” may mean a case where transmittance with respect to visible light is 60% or more. In addition, "visible light" may mean light in the wavelength range of 380 nm to 780 nm, specifically light of 550 nm wavelength. The upper limit of the transmittance is not particularly limited, but may be, for example, 95% or less. The light transmittance can be measured by a known haze meter.
상기 전극층은 10 nm 내지 450 nm 범위의 두께를 가질 수 있다. 본 출원에서 「두께」란, 지면으로부터 소자 표면을 향해 가상의 법선을 그은 경우, 측정 대상 층의 일 면(하면)과 그에 대향하는 해당 층 다른 일 면(상면) 사이의 평균 법선 거리”를 의미할 수 있다.The electrode layer may have a thickness in the range of 10 nm to 450 nm. In the present application, the term "thickness" means an average normal distance between one surface (bottom surface) of the layer to be measured and the other surface (top surface) of the layer to be measured when a virtual normal is drawn from the ground surface to the surface of the device. can do.
상기 전극층은 투광성 투명 전극 재료로서, 투명 도전성 산화물이나 OMO(oxide/metal/oxide)를 포함할 수 있다.The electrode layer may include a transparent conductive oxide or OMO (oxide / metal / oxide) as a transparent transparent electrode material.
하나의 예시에서, 투명 도전성 산화물로는, ITO(Indium Tin Oxide), In2O3(Indium Oxide), IGO(Indium Galium Oxide), FTO(Fluor doped Tin Oxide), AZO(Aluminium doped Zinc Oxide), GZO(Galium doped Zinc Oxide), ATO(Antimony doped Tin Oxide), IZO(Indium doped Zinc Oxide), NTO(Niobium doped Titanium Oxide), ZnO(Zink Oxide), 또는 CTO (Cesium Tungsten Oxide) 등이 사용될 수 있다. 그러나, 상기 나열된 물질로 투명 도전성 산화물의 재료가 제한되는 것은 아니다.In one example, the transparent conductive oxide may include indium tin oxide (ITO), indium oxide (In 2 O 3 ), indium galium oxide (IGO), fluor doped tin oxide (FTO), aluminum doped zinc oxide (AZO), GZO (Galium doped Zinc Oxide), ATO (Antimony doped Tin Oxide), IZO (Indium doped Zinc Oxide), NTO (Niobium doped Titanium Oxide), ZnO (Zink Oxide), or CTO (Cesium Tungsten Oxide) . However, the materials listed above are not limited to the material of the transparent conductive oxide.
OMO(oxide/metal/oxide)는 상부 금속산화물층, 하부 금속산화물층, 및 상기 2개 층 사이에 마련되는 금속층을 포함할 수 있다. 상부 금속산화물층은, OMO를 구성하는 층 중에서 전기변색층으로부터 상대적으로 더 멀리 위치한 층을 의미할 수 있다. 상기 구성의 OMO는, ITO로 대표되는 투명 도전성 산화물 대비 좀 더 낮은 면저항을 갖기 때문에, 전기변색소자의 변색 속도를 개선할 수 있다.The oxide / metal / oxide (OMO) may include an upper metal oxide layer, a lower metal oxide layer, and a metal layer provided between the two layers. The upper metal oxide layer may mean a layer located relatively farther from the electrochromic layer among the layers constituting the OMO. Since the OMO having the above configuration has a lower sheet resistance than the transparent conductive oxide represented by ITO, the color change rate of the electrochromic device can be improved.
상기 OMO에 사용되는 상부 및 하부 금속산화물층은 Sb, Ba, Ga, Ge, Hf, In, La, Se, Si, Ta, Se, Ti, V, Y, Zn, Zr 또는 이들 합금의 금속 산화물을 포함할 수 있다. 상기 상부 및 하부 금속산화물층이 포함하는 각 금속산화물의 종류는 동일하거나 상이할 수 있다.The upper and lower metal oxide layers used in the OMO include Sb, Ba, Ga, Ge, Hf, In, La, Se, Si, Ta, Se, Ti, V, Y, Zn, Zr or metal oxides of these alloys. It may include. The type of each metal oxide included in the upper and lower metal oxide layers may be the same or different.
하나의 예시에서, 상기 상부 금속산화물층의 두께는 10 nm 내지 120 nm 범위, 또는 20 nm 내지 100 nm 범위일 수 있다. 또한, 상기 상부 금속산화물층의 가시광 굴절률은 1.0 내지 3.0 범위 또는 1.2 내지 2.8 범위일 수 있다. 상기 범위의 굴절률 및 두께를 가질 경우, 적절한 수준의 광학 특성이 소자에 부여될 수 있다.In one example, the thickness of the upper metal oxide layer may range from 10 nm to 120 nm, or from 20 nm to 100 nm. In addition, the visible light refractive index of the upper metal oxide layer may be in the range of 1.0 to 3.0 or 1.2 to 2.8. When having a refractive index and a thickness in the above range, an appropriate level of optical properties can be imparted to the device.
하나의 예시에서, 상기 하부 금속산화물층의 두께는 10 nm 내지 100 nm 범위 또는 20 nm 내지 80 nm 범위일 수 있다. 또한, 상기 하부 금속산화물층의 가시광 굴절률은 1.3 내지 2.7 범위 또는 1.5 내지 2.5 범위일 수 있다. 상기 범위의 굴절률 및 두께를 가질 경우, 적절한 수준의 광학 특성이 소자에 부여될 수 있다.In one example, the thickness of the lower metal oxide layer may range from 10 nm to 100 nm or from 20 nm to 80 nm. In addition, the visible light refractive index of the lower metal oxide layer may be in the range of 1.3 to 2.7 or 1.5 to 2.5. When having a refractive index and a thickness in the above range, an appropriate level of optical properties can be imparted to the device.
상기 OMO에 포함되는 금속층은 저 저항 금속재료를 포함할 수 있다. 예를 들어, Ag, Cu, Zn, Au, Pd, 및 이들의 합금 중에서 선택되는 하나 이상의 금속이 저 저항 금속 재료로서 금속층에 사용될 수 있다.The metal layer included in the OMO may include a low resistance metal material. For example, one or more metals selected from Ag, Cu, Zn, Au, Pd, and alloys thereof may be used in the metal layer as the low resistance metal material.
하나의 예시에서, 상기 OMO의 금속층은 3 nm 내지 30 nm 범위 또는 5 nm 내지 20 nm 범위의 두께를 가질 수 있다. 또한, 상기 금속층은 1 이하 또는 0.5 이하의 가시광 굴절률을 가질 수 있다. 상기 범위의 굴절률 및 두께를 가질 경우, 적절한 수준의 광학 특성이 소자에 부여될 수 있다.In one example, the metal layer of the OMO may have a thickness in the range of 3 nm to 30 nm or in the range of 5 nm to 20 nm. In addition, the metal layer may have a visible light refractive index of 1 or less or 0.5 or less. When having a refractive index and a thickness in the above range, an appropriate level of optical properties can be imparted to the device.
전극층을 마련하는 방법은 특별히 제한되지 않는다. 예를 들어, 상기 전극 재료를 이용하는 공지의 습식 또는 건식 코팅법이나, 공지의 라미네이션 방식을 이용하여 전극층을 형성할 수 있다.The method for providing the electrode layer is not particularly limited. For example, the electrode layer can be formed using a known wet or dry coating method using the electrode material or a known lamination method.
전기변색층은 가역적인 산화·환원 반응에 의해 변색 가능한 전기변색물질을 포함하는 층이다. 전기변색물질로는 공지된 유기물 또는 무기물이 사용될 수 있다.The electrochromic layer is a layer containing an electrochromic material that can be discolored by a reversible oxidation-reduction reaction. As the electrochromic material, a known organic or inorganic material may be used.
하나의 예시에서, 전기변색층은 환원성 변색물질, 즉, 환원시 색이 변화(착색)하는 물질을 포함할 수 있다. 보다 구체적으로, 전기변색층은 WO3, MoO3, Nb2O5, Ta2O5 또는 TiO2 등과 같이, Ti, Nb, Mo, Ta 또는 W의 산화물을 포함할 수 있다. In one example, the electrochromic layer may include a reducing color change material, that is, a material that changes color (coloration) upon reduction. More specifically, the electrochromic layer may include oxides of Ti, Nb, Mo, Ta, or W, such as WO 3 , MoO 3 , Nb 2 O 5 , Ta 2 O 5, or TiO 2 .
하나의 예시에서, 전기변색층은 산화성 변색물질, 즉, 산화시 색이 변화(착색)하는 물질을 포함할 수 있다. 보다 구체적으로, 전기변색층은 LiNiOx, IrO2, NiO, V2O5, LixCoO2 , Rh2O3 또는 CrO3 등과 같이, Cr, Mn, Fe, Co, Ni, Rh, 또는 Ir의 산화물; Cr, Mn, Fe, Co, Ni, Rh, 또는 Ir의 수산화물; 및 프러시안 블루(prussian blue) 중에서 하나 이상을 포함할 수 있다.In one example, the electrochromic layer may include an oxidative color change material, that is, a material that changes color (coloring) upon oxidation. More specifically, the electrochromic layer may be an oxide of Cr, Mn, Fe, Co, Ni, Rh, or Ir, such as LiNiOx, IrO 2 , NiO, V 2 O 5 , LixCoO 2 , Rh 2 O 3 or CrO 3 . Hydroxides of Cr, Mn, Fe, Co, Ni, Rh, or Ir; And prussian blue.
특별히 제한되지는 않으나, 전기변색층은 400 nm 이하의 두께를 가질 수 있다. 보다 구체적으로, 전기변색층은 30 nm 이상, 50 nm 이상, 100 nm 이상 또는 150 nm 이상의 두께를 가질 수 있고, 그리고 350 nm 이하 또는 300 nm 이하의 두께를 가질 수 있다.Although not particularly limited, the electrochromic layer may have a thickness of 400 nm or less. More specifically, the electrochromic layer may have a thickness of 30 nm or more, 50 nm or more, 100 nm or more, or 150 nm or more, and may have a thickness of 350 nm or less or 300 nm or less.
전기변색층을 마련하는 방법 역시 특별히 제한되지 않는다. 예를 들어, 전극층 또는 전극층을 포함하는 기재 상에, 상기 언급된 변색물질을 포함하는 코팅 조성물을 도포 후 소결하여 전기변색층을 형성할 수 있다. 또는, 증착 방식을 통해, 상기 언급된 재료를 포함하는 전기변색층을 전극층 또는 전극층을 포함하는 기재 상에 형성할 수 있다. 그 외에, 전극층과 별도로 전기변색층을 형성한 다음, 전극층과 전기변색층을 서로 라미네이션하는 방식을 사용할 수도 있다.The method for preparing the electrochromic layer is also not particularly limited. For example, the electrochromic layer may be formed by applying and sintering a coating composition including the above-described discoloring material on an electrode layer or a substrate including the electrode layer. Alternatively, the electrochromic layer including the above-mentioned material may be formed on the electrode layer or the substrate including the electrode layer through a deposition method. In addition, a method of forming an electrochromic layer separately from the electrode layer and then laminating the electrode layer and the electrochromic layer with each other may be used.
본 출원에서, 도전성 띠(band)는 길이, 너비 또는 폭으로 표현되는 소정의 크기와 소정의 두께를 갖는다. 상기 도전성 띠는 도전성 재료를 포함하고, 닫힌 고리 형상, 즉 양 끝이 맞붙은 형태를 갖는다. 닫힌 고리의 구체적인 형상은, 특별히 제한되지 않는다. 예를 들어, 소자 표면에 대한 법선 방향과 평행한 상부 또는 하부에서 시인되는 고리의 형상(shape)은 원, 타원, 또는 다변형이 될 수 있다. 하나의 예시에서, 소자 표면에 대한 법선 방향과 평행한 상부 또는 하부에서 시인되는 전기변색층의 형상(shape)과, 동일 방향에서 시인되는 도전성 띠의 닫힌 고리 형상이 동일할 수 있다.In the present application, the conductive band has a predetermined size and a predetermined thickness expressed in length, width or width. The conductive strip includes a conductive material and has a closed ring shape, that is, a form in which both ends are joined together. The specific shape of the closed ring is not particularly limited. For example, the shape of the ring visible at the top or bottom parallel to the normal to the device surface can be a circle, an ellipse, or a polymorph. In one example, the shape of the electrochromic layer visible at the top or bottom parallel to the normal direction to the device surface and the closed ring shape of the conductive strips visible in the same direction may be the same.
상기 도전성 띠는 전기변색층과 물리적으로 직접 접할 수 있다. 하기 설명되는 본 출원의 몇 가지 양태에서와 같이 전기변색층과 접하는 도전성 띠는, 전기변색층에 등전위 구간을 형성하기 때문에, 전기변색속도를 개선할 뿐 아니라 전기변색층의 균일한 변색에도 기여한다.The conductive strip may be in direct physical contact with the electrochromic layer. As in some embodiments of the present application described below, the conductive bands in contact with the electrochromic layer form an equipotential section in the electrochromic layer, thereby improving the electrochromic speed and contributing to the uniform discoloration of the electrochromic layer. .
하나의 예시에서, 도전성 띠는 전기변색층의 측면을 둘러싸면서, 전기변색층과 접할 수 있다. 본 출원에서, 「층의 측면」이란, 상기 설명된 층의 두께 방향에서, 서로 대향하는 상면과 하면 이외의 면을 의미할 수 있다. 구체적으로, 도전성 띠는 전기변색층의 측면과 물리적으로 접촉한 상태에서 전기변색층의 측면을 따라 연장하고, 양 끝이 서로 맞붙은 닫힌 고리 형상을 가질 수 있다. 즉, 상기 도전성 띠는 전기변색층의 측면을 감싸는 상태로 존재할 수 있다. 소자에 전압이 인가되는 경우, 상기와 같은 형태로 전기변색층과 물리적으로 접촉하는 도전성 띠는, 전기변색층의 등전위 구간을 넓히는데 기여한다. 예를 들어, 소자 표면에 대한 법선 방향 상부에서 시인된 전기변색층이 직사각형인 경우, 도전성 띠는 전기변색층의 측면 테두리 4면과 접촉하면서 전기변색층을 둘러싸기 때문에, 도전성 띠에 의한 등전위 구간이 전기변색층의 중앙부까지 고르게 형성될 수 있다. 반면, 도전성 띠가 형성되지 않은 경우나, 또는 도전성 띠가 전기변색층의 측면 일부에만 형성된 경우에는, 등전위 구간 확대 및 그에 따른 변색 정도의 균일화, 그리고 변색속도의 개선을 기대할 수 없다.In one example, the conductive strip can contact the electrochromic layer, surrounding the side of the electrochromic layer. In this application, the "side surface of a layer" can mean the surface other than the upper surface and lower surface which mutually oppose in the thickness direction of the layer demonstrated above. Specifically, the conductive strip may extend along the side of the electrochromic layer in physical contact with the side of the electrochromic layer, and may have a closed ring shape in which both ends are joined to each other. That is, the conductive strip may exist in a state surrounding the side of the electrochromic layer. When a voltage is applied to the device, the conductive band in physical contact with the electrochromic layer in the above manner contributes to widening the equipotential section of the electrochromic layer. For example, in the case where the electrochromic layer seen in the upper part of the normal direction to the surface of the element is rectangular, the conductive band surrounds the electrochromic layer in contact with the four side edges of the electrochromic layer, so that the equipotential section by the conductive band is It can be formed evenly up to the center of the electrochromic layer. On the other hand, when the conductive band is not formed, or when the conductive band is formed only on a part of the side surface of the electrochromic layer, the expansion of the equipotential section, the uniformity of the degree of discoloration, and the improvement of the discoloration speed cannot be expected.
상기 설명된 바와 같이, 도전성 띠가 전기변색층의 측면을 감싸는 닫힌 고리 형상을 갖는 경우, 상기 전극층은 도전성 띠의 면적과 전기변색층의 면적을 합한 것과 동일하거나 그 보다 큰 면적을 가질 수 있다. 본 출원에서 「면적」은, 특별히 달리 정의되지 않는 이상, 소자를 그 표면의 법선 방향과 평행한 방향의 상부 또는 하부에서 관찰할 때, 해당 구성이 시인되는 면적, 예를 들어 정사영 면적을 의미할 수 있다. 따라서, 면적 비교의 대상이 되는 구성이 갖는 요철 등에 의한 실제 면적의 증감은 고려되지 않는다. 도 1은 본 출원의 일례에 따른, 전극층과 전기변색층 및 도전성 띠 간의 면적 관계를 개략적으로 도시한다. 도 1에서와 같이, 전극층의 면적(S1)은, 전기변색층의 면적(S2)과 도전성 띠의 면적(S3)을 합한 것과 동일한 크기일 수 있다. 이 경우, 소자 표면의 법선 방향과 평행한 방향의 상부 또는 하부에서 관찰된 도전성 띠와 전기변색층의 형상은, 사변형으로 동일할 수 있다.As described above, when the conductive strip has a closed ring shape surrounding the side of the electrochromic layer, the electrode layer may have an area equal to or greater than the sum of the areas of the conductive strip and the area of the electrochromic layer. In the present application, unless otherwise defined, the term "area" means an area, for example, an orthographic area, which is visible when the device is viewed from above or below in a direction parallel to the normal direction of the surface thereof. Can be. Therefore, the increase or decrease of the actual area due to the unevenness and the like of the structure to be compared with the area is not considered. 1 schematically illustrates the area relationship between an electrode layer, an electrochromic layer and a conductive strip, according to an example of the present application. As shown in FIG. 1, the area S1 of the electrode layer may be the same size as the sum of the area S2 of the electrochromic layer and the area S3 of the conductive strip. In this case, the shapes of the conductive strip and the electrochromic layer observed in the upper or lower part of the direction parallel to the normal direction of the element surface may be the same in quadrilateral.
하나의 예시에서, 도전성 띠가 전기변색층의 측면을 둘러싸는 (또는 감싸는) 닫힌 고리 형상을 갖는 경우, 전기변색층과 도전성 띠 각각은 전극층의 동일한 일 면과 직접 접할 수 있다. In one example, when the conductive strip has a closed ring shape surrounding (or wrapping) the side of the electrochromic layer, each of the electrochromic layer and the conductive strip may directly contact the same side of the electrode layer.
하나의 예시에서, 도전성 띠는 전기변색층 이상의 두께를 가질 수 있다. 구체적으로, 도전성 띠와 전기변색층이 전극층의 동일한 일 면과 각각 직접 접하면서 전극층 상에 위치하는 경우, 도전성 띠의 하면으로부터 상면까지의 법선 길이는, 전기변색층의 그것과 동일하거나 더 클 수 있다.In one example, the conductive strip may have a thickness of at least an electrochromic layer. Specifically, when the conductive strip and the electrochromic layer are positioned on the electrode layer while directly contacting the same side of the electrode layer, respectively, the normal length from the lower surface to the upper surface of the conductive strip may be the same as or larger than that of the electrochromic layer. have.
전기변색층의 측면을 둘러싸고, 상기 도 1에 설명된 면적관계를 만족하도록 도전성 띠를 형성하는 방법은 특별히 제한되지 않는다. 예를 들어, 전극층 상에 전기변색층을 형성한 후, 전기변색층이 갖는 면적이 전극층의 면적 보다 작도록 전기변색층의 테두리를 에칭하고, 전기변색층의 측면을 둘러싸도록 전기변색층이 에칭된 부위에 도전성 띠를 형성할 수 있다. 또는 에칭을 하지 않더라도, 전극층 상에, 전극층 보다 크기가 작은 전기변색층을 형성하고, 전기변색층의 측면을 둘러싸도록 도전성 띠를 형성할 수도 있다. 그 밖에도 상기 도전성 띠는 점착면을 갖는 테이프 형태로서 소정 부위에 부착될 수 있고, 또는, 도전성 조성물을 소정 부위에 도포한 후 소결 또는 건조 시켜 형성될 수도 있다.The method of forming the conductive strip so as to surround the side of the electrochromic layer and satisfy the area relationship described in FIG. 1 is not particularly limited. For example, after forming the electrochromic layer on the electrode layer, the edge of the electrochromic layer is etched so that the area of the electrochromic layer is smaller than the area of the electrode layer, and the electrochromic layer is etched to surround the side of the electrochromic layer. A conductive strip can be formed on the marked part. Alternatively, even without etching, an electrochromic layer having a smaller size than the electrode layer may be formed on the electrode layer, and a conductive strip may be formed to surround the side surface of the electrochromic layer. In addition, the conductive strip may be attached to a predetermined portion in the form of a tape having an adhesive surface, or may be formed by applying a conductive composition to the predetermined portion and then sintering or drying the conductive strip.
또 하나의 예시에서, 도전성 띠는 전기변색층의 상면 또는 하면에 위치할 수 있다. 보다 구체적으로, 도전성 띠는 전극층과 전기변색층 사이에 위치하면서 전극층 및 전기변색층과 직접 접할 수 있고, 또는 전극층과 마주하는 전기변색층 일면의 반대 일면 상에 위치하면서 전기변색층과 직접 접할 수 있다.In another example, the conductive strip may be located on the upper or lower surface of the electrochromic layer. More specifically, the conductive band may be in direct contact with the electrode layer and the electrochromic layer while being positioned between the electrode layer and the electrochromic layer, or may be directly in contact with the electrochromic layer while being located on the opposite side of one side of the electrochromic layer facing the electrode layer. have.
상기와 같이, 도전성 띠가 전기변색층의 상면 또는 하면에 위치하는 경우, 전기변색층은 도전성 띠의 면적과 도전성 띠의 닫힌 고리 내부 면적을 합한 것과 동일하거나 그 보다 큰 면적을 가질 수 있다. 예를 들어, 도 2에서와 같이, 전기변색층의 면적(S4)은 도전성 띠(S5)의 면적과 고리내부의 면적(S6)를 합한 것과 동일하거나 그 보다 더 클 수 있다. 하나의 예시에서, 소자 표면의 법선 방향과 평행한 방향의 상부 또는 하부에서 관찰된 도전성 띠와 전기변색층의 형상은, 사변형으로 동일할 수 있다. 또한, 특별히 제한되는 것은 아니나, 상기와 같은 경우, 전기변색층은 전극층 이하의 면적을 가질 수 있다.As described above, when the conductive strip is located on the upper or lower surface of the electrochromic layer, the electrochromic layer may have an area equal to or larger than the sum of the area of the conductive strip and the inner area of the closed ring of the conductive strip. For example, as shown in FIG. 2, the area S4 of the electrochromic layer may be equal to or larger than the sum of the area of the conductive band S5 and the area S6 inside the ring. In one example, the shape of the conductive strip and the electrochromic layer observed at the top or the bottom in a direction parallel to the normal direction of the device surface may be quadrilateral. In addition, although not particularly limited, in the case described above, the electrochromic layer may have an area of the electrode layer or less.
상기와 같이, 전기변색층의 상면 또는 하면에 도전성 띠를 마련하는 방법은 특별히 제한되지 않는다. 예를 들어, 공지된 코팅 방식을 이용하여 전기변색층의 상면 또는 하면에 도전층을 형성하고 상기 도전층이 닫힌 고리 형상을 갖도록 에칭하여 도전성 띠를 마련할 수 있다. 또는 테이프 형태의 도전성 띠를 사용하여, 전기변색층의 상면 또는 하면에 도전성 띠를 마련할 수 있다.As described above, the method for providing the conductive strip on the upper or lower surface of the electrochromic layer is not particularly limited. For example, a conductive layer may be formed by forming a conductive layer on the upper or lower surface of the electrochromic layer using a known coating method and etching the conductive layer to have a closed ring shape. Alternatively, a conductive strip in the form of a tape can be used to provide a conductive strip on the upper or lower surface of the electrochromic layer.
상기와 같이, 도전성 띠가 전기변색층의 상면 또는 하면에 위치하고, 특정 면적 관계를 만족하는 경우, 상기 전기변색소자는 도전성 띠와 전기적으로 연결된 배선부(미도시)를 더 포함할 수 있다. 상기 배선부는 전극층과 도전성 띠를 연결하는데 사용할 수 있다.As described above, when the conductive strip is located on the upper or lower surface of the electrochromic layer and satisfies a specific area relationship, the electrochromic device may further include a wiring unit (not shown) electrically connected to the conductive strip. The wiring portion may be used to connect the electrode layer and the conductive strip.
하나의 예시에서, 상기 도전성 띠는 도전성 재료로서, 금속을 포함할 수 있다. 금속의 종류는 특별히 제한되지 않으며, 예를 들어, 니켈(Ni), 알루미늄(Al), 은(Ag), 구리(Cu), 아연(Zn), 금(Au), 팔라듐(Pd), 백금(Pt) 또는 이들의 합금이 도전성 띠에 사용될 수 있다.In one example, the conductive strip may include a metal as a conductive material. The type of metal is not particularly limited, and for example, nickel (Ni), aluminum (Al), silver (Ag), copper (Cu), zinc (Zn), gold (Au), palladium (Pd), platinum ( Pt) or alloys thereof can be used for the conductive strips.
하나의 예시에서, 도전성 띠의 저항값은, 전극층 저항 값의 10 % 이하일 수 있다. 상기와 같은 관계를 만족하는 경우, 소자의 변색속도를 더욱 개선할 수 있다.In one example, the resistance value of the conductive strip may be 10% or less of the electrode layer resistance value. If the above relationship is satisfied, the discoloration speed of the device can be further improved.
특별히 제한되지는 않으나, 상기 도전성 띠는 100 nm 이하의 너비 또는 폭을 가질 수 있다. 구체적으로, 도전성 띠는 70 nm 이하, 50 nm 이하, 30 nm 이하, 20 nm 이하, 또는 15 nm 이하의 폭을 가질 수 있고, 그리고 1 nm 이상, 3 nm 이상 또는 5 nm 이상의 두께를 가질 수 있다.Although not particularly limited, the conductive strip may have a width or width of 100 nm or less. Specifically, the conductive band may have a width of 70 nm or less, 50 nm or less, 30 nm or less, 20 nm or less, or 15 nm or less, and may have a thickness of 1 nm or more, 3 nm or more, or 5 nm or more. .
특별히 제한되지는 않으나, 상기 도전성 띠는 1,200 nm 이하의 두께를 가질 수 있다. 보다 구체적으로, 1,100 nm 이하, 900 nm 이하, 700 nm 이하, 또는 500 nm 이하의 두께를 가질 수 있고, 그리고 100 nm 이상, 200 nm 이상, 300 nm 이상, 400 nm 이상 또는 500 nm 이상의 두께를 가질 수 있다.Although not particularly limited, the conductive strip may have a thickness of 1,200 nm or less. More specifically, it may have a thickness of 1,100 nm or less, 900 nm or less, 700 nm or less, or 500 nm or less, and have a thickness of 100 nm or more, 200 nm or more, 300 nm or more, 400 nm or more or 500 nm or more. Can be.
상기 전기변색소자는 전극층과 마주하는 전기변색층 일 면의 반대 일 면 상에 전해질층을 포함할 수 있다. 이와 관련된 일례에서 전기변색소자는, 전극층, 도전성 띠, 전기변색층 및 전해질층을 순차로 포함하거나, 전극층, 전기변색층, 도전성 띠 및 전해질층을 순차로 포함할 수 있다. 또 다른 일례에서는, 전극층, 전기변색층 및 전해질층을 순차로 포함하되, 전기변색층의 측면을 둘러싸는 도전성 띠가 전기변색층과 마찬가지로 전극층과 전해질층 사이에 위치하도록 전기변색소자가 구성될 수 있다.The electrochromic device may include an electrolyte layer on one surface opposite to one surface of the electrochromic layer facing the electrode layer. In an example related to this, the electrochromic device may sequentially include an electrode layer, a conductive strip, an electrochromic layer, and an electrolyte layer, or may sequentially include an electrode layer, an electrochromic layer, a conductive strip, and an electrolyte layer. In another example, the electrochromic device may include an electrode layer, an electrochromic layer, and an electrolyte layer sequentially, such that a conductive band surrounding the side of the electrochromic layer is positioned between the electrode layer and the electrolyte layer like the electrochromic layer. have.
상기 전해질층은 전기변색 반응에 관여하는 전해질 이온을 제공하는 구성일 수 있다. 전해질 이온은 상기 도전성 적층체에 삽입되는 1가 양이온으로서, 예를 들어 H+, Li+, Na+, K+, Rb+, 또는 Cs+ 일 수 있다.The electrolyte layer may be configured to provide electrolyte ions involved in the electrochromic reaction. Electrolyte ions are monovalent cations inserted into the conductive laminate, and may be, for example, H + , Li + , Na + , K + , Rb + , or Cs + .
하나의 예시에서, 상기 전해질층은 겔 폴리머 전해질을 포함할 수 있다. 겔 폴리머 전해질은 이온 전도도는 있지만 전기전도도는 없다. 따라서, 하기 설명되는 바와 같이, 상대 전극층의 일면 상에 제2 도전성 띠가 추가로 존재하는 경우, 2개의 도전성 띠 사이에 존재하는 겔 폴리머는 소자의 쇼트를 방지할 수 있다. 또한, 상기 겔 폴리머 전해질은, 전기변색층과 도전성 띠 사이에 존재할 수 있는 단차, 즉 두께 차이에 대한 버퍼 역할도 수행할 수 있다.In one example, the electrolyte layer may include a gel polymer electrolyte. Gel polymer electrolytes have ionic conductivity but no electrical conductivity. Therefore, as will be described below, in the case where the second conductive band is further present on one surface of the counter electrode layer, the gel polymer present between the two conductive bands can prevent the device from shorting. In addition, the gel polymer electrolyte may also serve as a buffer for a step, that is, a thickness difference that may exist between the electrochromic layer and the conductive band.
하나의 예시에서, 겔 폴리머 전해질은 고분자를 포함할 수 있다. 사용 가능한 고분자로는, 예를 들어, 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVdF), 폴리아크릴로나이트릴(Polyacrylonitrile, PAN), 폴리메틸 메타크릴레이트(Polymethyl methacrylate, PMMA), 폴리비닐 클로라이드(Polyvinyl chloride, PVC), 폴리에틸렌 옥사이드(Polyethylene oxide, PEO), 폴리프로필렌 옥사이드(Polypropylene oxide, PPO), 폴리(비닐리덴 플루오라이드-헥사플루오로 플루오로프로필렌)(Poly(vinylidene fluoride-hexafluoro propylene), PVdF-HFP), 폴리비닐아세테이트(Polyvinyl acetate, PVAc), 폴리옥시에틸렌(Polyoxyethylene, POE), 폴리아미드이미드(Polyamideimide, PAI) 등을 들 수 있다.In one example, the gel polymer electrolyte may comprise a polymer. Examples of the polymer that can be used include, for example, polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), and polyvinyl chloride (polyvinyl chloride). chloride, PVC), polyethylene oxide (PEO), polypropylene oxide (PPO), poly (vinylidene fluoride-hexafluoro propylene) (Poly (vinylidene fluoride-hexafluoro propylene), PVdF- HFP), polyvinyl acetate (Polyvinyl acetate, PVAc), polyoxyethylene (Polyoxyethylene, POE), polyamideimide (Polyamideimide, PAI) and the like.
하나의 예시에서, 전해질층은 전기변색층 또는 하기 설명되는 이온저장층에 1가 양이온을 제공할 수 있는 금속염 화합물을 포함할 수 있다. 예를 들어, 전해질층은 LiPF6, LiAsF6, LiCF3SO3, LiN(CF3SO2)2, LiBF4, LiSbF6, LiN(C2F5SO2)2, LiAlO4, LiAlCl4, LiCo0 . 2Ni0 . 56Mn0 . 27O2, LiCoO2, LiSO3CF3 또는 LiClO4와 같은 리튬염 화합물이나, NaClO4 등과 같은 나트륨염 화합물을 포함할 수 있다.In one example, the electrolyte layer may comprise a metal salt compound capable of providing monovalent cations to the electrochromic layer or the ion storage layer described below. For example, the electrolyte layer may be LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiBF 4 , LiSbF 6 , LiN (C 2 F 5 SO 2 ) 2 , LiAlO 4 , LiAlCl 4 , LiCo 0 . 2 Ni 0 . 56 Mn 0 . Lithium salt compounds such as 27 O 2 , LiCoO 2 , LiSO 3 CF 3 or LiClO 4 , or sodium salt compounds such as NaClO 4 may be included.
또 하나의 예시에서, 상기 전해질층은, 용매로서 카보네이트 화합물을 추가로 포함할 수 있다. 카보네이트계 화합물은 유전율이 높기 때문에, 이온 전도도를 높일 수 있다. 비제한적인 일례로서, PC(propylene carbonate), EC(ethylene carbonate), DMC(dimethyl carbonate), DEC(diethyl carbonate) 또는 EMC(ethylmethyl carbonate)와 같은 용매가 카보네이트계 화합물로 사용될 수 있다.In another example, the electrolyte layer may further include a carbonate compound as a solvent. Since a carbonate type compound has high dielectric constant, ionic conductivity can be improved. As a non-limiting example, a solvent such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), or ethylmethyl carbonate (EMC) may be used as the carbonate-based compound.
하나의 예시에서, 도전성 띠가 전기변색층의 측면을 둘러싸면서 존재하는 경우, 상기 전해질층의 면적은 도전성 띠의 면적과 전기변색층의 면적을 합한 것과 동일하거나 그 보다 큰 면적을 가질 수 있다. 상기 구성을 통해 쇼트를 방지할 수 있다.In one example, when the conductive strip is present surrounding the side of the electrochromic layer, the area of the electrolyte layer may have an area equal to or larger than the sum of the area of the conductive strip and the area of the electrochromic layer. Through the above configuration, short can be prevented.
또 하나의 예시에서, 도전성 띠가 전기변색층의 상면 또는 하면에 위치하는 경우, 상기 전해질층의 면적은 도전성 띠의 면적과 도전성 띠의 고리 내부 면적을 합한 것과 동일하거나 그 보다 큰 면적을 가질 수 있다. 상기 구성을 통해 쇼트를 방지할 수 있다. In another example, when the conductive band is located on the upper or lower surface of the electrochromic layer, the area of the electrolyte layer may have an area equal to or larger than the sum of the area of the conductive band and the inner area of the ring of the conductive band. have. Through the above configuration, short can be prevented.
또 하나의 예시에서, 상기 전해질층의 면적은 상기 설명된 전극층의 면적과 상이하거나 동일할 수 있다. 또한, 상기 전해질층의 면적은 하기 설명되는 상대 전극층의 면적과 상이하거나 동일할 수 있다.In another example, the area of the electrolyte layer may be different from or the same as the area of the electrode layer described above. In addition, the area of the electrolyte layer may be different from or the same as that of the counter electrode layer described below.
특별히 제한되지는 않으나, 상기 전해질층의 광 투과율은 60 % 내지 95 % 범위일 수 있고, 두께는 10 ㎛ 내지 300 ㎛ 범위일 수 있다.Although not particularly limited, the light transmittance of the electrolyte layer may range from 60% to 95%, and the thickness may range from 10 μm to 300 μm.
상기 전기변색소자는, 전기변색층이 마주하는 전해질층 일 면의 반대 일 면 상에, 상대 전극층을 더 포함할 수 있다. 상대 전극층의 구성이나 그 밖의 특성은, 전극층과 관련하여 설명된 것과 동일하다.The electrochromic device may further include a counter electrode layer on one surface opposite to one surface of the electrolyte layer facing the electrochromic layer. The structure and other characteristics of the counter electrode layer are the same as those described in connection with the electrode layer.
본 출원의 전기변색소자는 이온저장층을 더 포함할 수 있다. 이온저장층은 전기변색물질의 변색을 위한 가역적 산화·환원 반응시, 상기 전기변색층과의 전하 균형(charge balance)을 맞추기 위해 형성된 층을 의미한다. 상기 이온저장층은 상대 전극층의 일면 상에 위치할 수 있다. 보다 구체적으로, 상기 이온저장층은 상대 전극층과 전해질층 사이에 위치할 수 있다. The electrochromic device of the present application may further include an ion storage layer. The ion storage layer refers to a layer formed to balance the charge balance with the electrochromic layer during the reversible oxidation / reduction reaction for discoloration of the electrochromic material. The ion storage layer may be located on one surface of the counter electrode layer. More specifically, the ion storage layer may be located between the counter electrode layer and the electrolyte layer.
상기 이온저장층은, 전기변색층에 사용되는 전기변색물질과는 발색특성이 상이한 전기변색물질을 포함할 수 있다. 예를 들어, 전기변색층이 환원성 전기변색물질을 포함하는 경우, 이온저장층은 산화성 전기변색물질을 포함할 수 있다. 그 반대의 경우도 가능하다.The ion storage layer may include an electrochromic material having a color development characteristic different from that of the electrochromic material used in the electrochromic layer. For example, when the electrochromic layer includes a reducing electrochromic material, the ion storage layer may include an oxidative electrochromic material. The reverse is also possible.
특별히 제한되지는 않으나, 상기 이온저장층은 400 nm 이하의 두께를 가질 수 있다. 보다 구체적으로, 이온저장층은 30 nm 이상, 50 nm 이상, 100 nm 이상 또는 150 nm 이상의 두께를 가질 수 있고, 그리고 350 nm 이하 또는 300 nm 이하의 두께를 가질 수 있다.Although not particularly limited, the ion storage layer may have a thickness of 400 nm or less. More specifically, the ion storage layer may have a thickness of 30 nm or more, 50 nm or more, 100 nm or more, or 150 nm or more, and may have a thickness of 350 nm or less or 300 nm or less.
하나의 예시에서, 본 출원의 전기변색소자는 제2 도전성 띠를 추가로 포함할 수 있다. 이 경우, 본 출원 전기변색소자에 포함되는 2개의 도전성 띠는 각각 제1 도전성 띠와 제2 도전성 띠로 호칭될 수 있다. 제2 도전성 띠 자체의 구성이나 특성, 또는 인접하는 층과의 관계는, 앞서 설명된 도전성 띠의 그것과 동일할 수 있다. 이 경우, 전기변색층에 관한 설명은 이온저장층에 적용될 수 있고, 전극층에 관한 설명은 상대 전극층에 적용될 수 있다.In one example, the electrochromic device of the present application may further include a second conductive band. In this case, the two conductive bands included in the electrochromic device of the present application may be referred to as first and second conductive bands, respectively. The configuration or characteristic of the second conductive strip itself, or the relationship with the adjacent layer, may be the same as that of the conductive strip described above. In this case, the description of the electrochromic layer may be applied to the ion storage layer, and the description of the electrode layer may be applied to the counter electrode layer.
하나의 예시에서, 상기 제2 도전성 띠는 이온저장층과 물리적으로 직접 접할 수 있다. In one example, the second conductive band may be in direct physical contact with the ion storage layer.
또 하나의 예시에서, 제2 도전성 띠는 이온저장층의 측면을 둘러싸면서, 이온저장층과 접할 수 있다. 이 경우, 상대 전극층은, 제2 도전성 띠의 면적과 이온저장층의 면적을 합한 것과 동일하거나 그 보다 큰 면적을 가질 수 있다. 이때, 이온저장층과 제2 도전성 띠 각각은, 상대 전극층의 동일한 일 면과 직접 접할 수 있다. 또한, 제2 도전성 띠는 이온저장층 이상의 두께를 가질 수 있다.In another example, the second conductive band may contact the ion storage layer while surrounding the side of the ion storage layer. In this case, the counter electrode layer may have an area equal to or larger than the sum of the area of the second conductive band and the area of the ion storage layer. In this case, each of the ion storage layer and the second conductive band may directly contact the same surface of the counter electrode layer. In addition, the second conductive band may have a thickness greater than or equal to the ion storage layer.
또 하나의 예시에서, 제2 도전성 띠는 이온저장층의 상면 또는 하면에 위치할 수 있다. 보다 구체적으로, 제2 도전성 띠는 상대 전극층과 이온저장층 사이에 위치하면서 상대 전극층 및 이온저장층과 직접 접할 수 있다. 또는 상대 전극층과 마주하는 이온저장층 일면의 반대 일면 상에 위치하면서, 즉 전해질층과 이온저장층 사이에 위치하면서, 이온저장층과 직접 접할 수 있다. 상기와 같이, 제2 도전성 띠가 이온저장층의 상면 또는 하면에 위치하는 경우, 이온저장층은, 제2 도전성 띠의 면적과 제2 도전성 띠의 닫힌 고리 내부 면적을 합한 것과 동일하거나 그 보다 큰 면적을 가질 수 있다. 또한, 특별히 제한되지는 않지만, 상기와 같은 경우, 이온저장층은 상대 전극층 이하의 면적을 가질 수 있다. In another example, the second conductive band may be located on the upper or lower surface of the ion storage layer. More specifically, the second conductive band may be directly contacted with the counter electrode layer and the ion storage layer while being positioned between the counter electrode layer and the ion storage layer. Alternatively, the ion storage layer may be directly in contact with the ion storage layer while being positioned on the opposite side of one surface of the ion storage layer facing the counter electrode layer, that is, between the electrolyte layer and the ion storage layer. As described above, when the second conductive band is located on the upper or lower surface of the ion storage layer, the ion storage layer is equal to or larger than the sum of the area of the second conductive band and the inner area of the closed ring of the second conductive band. It may have an area. In addition, although not particularly limited, in the above case, the ion storage layer may have an area of the counter electrode layer or less.
또 하나의 예시에서, 상기와 같이, 제2 도전성 띠가 이온저장층의 상면 또는 하면에 위치하고, 특정 면적 관계를 만족하는 경우, 상기 전기변색소자는 제2 도전성 띠와 전기적으로 연결된 배선부를 더 포함할 수 있다. 상기 배선부는 상대 전극층과 제2 도전성 띠를 연결하는데 사용할 수 있다.In another example, as described above, when the second conductive band is located on the upper or lower surface of the ion storage layer and satisfies a specific area relationship, the electrochromic device further includes a wiring part electrically connected to the second conductive band. can do. The wiring portion may be used to connect the counter electrode layer and the second conductive strip.
또 하나의 예시에서, 제2 도전성 띠가 이온저장층의 측면을 둘러싸면서 존재하는 경우, 전해질층의 면적은 제2 도전성 띠의 면적과 이온저장층의 면적을 합한 것과 동일하거나 그 보다 큰 면적을 가질 수 있다. In another example, when the second conductive band exists around the side of the ion storage layer, the area of the electrolyte layer is equal to or larger than the sum of the area of the second conductive band and the area of the ion storage layer. Can have
또 하나의 예시에서, 제2 도전성 띠가 이온저장층의 상면 또는 하면에 위치하는 경우, 상기 전해질층의 면적은 제2 도전성 띠의 면적과 제2 도전성 띠의 고리 내부 면적을 합한 것과 동일하거나 그 보다 큰 면적을 가질 수 있다. In another example, when the second conductive band is located on the upper or lower surface of the ion storage layer, the area of the electrolyte layer is equal to or equal to the sum of the area of the second conductive band and the ring inner area of the second conductive band. It can have a larger area.
하나의 예시에서, 상기 전기변색소자는 투광성 기재를 추가로 포함할 수 있다. 투광성 기재는 소자의 외측면, 구체적으로는, 전극층 및/또는 상대 전극층의 외측면에 위치할 수 있다.In one example, the electrochromic device may further include a light transmissive substrate. The light transmissive substrate may be located on the outer side of the device, specifically, on the outer side of the electrode layer and / or the counter electrode layer.
상기 투광성 기재는, 예를 들어 가시광 투과율이 약 60 % 내지 95 % 인 기재일 수 있다. 상기 범위의 투과율을 만족한 다면, 사용되는 기재의 종류는 특별히 제한되지 않는다. 예를 들어 유리 또는 고분자 수지가 사용될 수 있다. 보다 구체적으로, PC(Polycarbonate), PEN(poly(ethylene naphthalate)) 또는 PET(poly(ethylene terephthalate))와 같은 폴리에스테르 필름, PMMA(poly(methyl methacrylate))와 같은 아크릴 필름, 또는 PE(polyethylene) 또는 PP(polypropylene)와 같은 폴리올레핀 필름 등이 사용될 수 있으나, 이들에 제한되는 것은 아니다.The light transmissive substrate may be, for example, a substrate having a visible light transmittance of about 60% to 95%. If the transmittance | permeability of the said range is satisfied, the kind of base material used will not be restrict | limited in particular. For example glass or polymer resins can be used. More specifically, a polyester film such as polycarbonate (PC), polyethylene (phthalene naphthalate) (PEN) or polyethylene (ethylene terephthalate) (PET), an acrylic film such as poly (methyl methacrylate) (PMMA), or polyethylene (PE) Or a polyolefin film such as PP (polypropylene) may be used, but is not limited thereto.
상기 전기변색소자는 전원을 더 포함할 수 있다. 전원을 소자에 전기적으로 연결하는 방식은 특별히 제한되지 않으며, 당업자에 의해 적절히 이루어질 수 있다. 상기 전기변색소자는 전기변색에 필요한 소정의 전압을 인가할 수 있다.The electrochromic device may further include a power source. The manner of electrically connecting the power source to the device is not particularly limited and may be appropriately made by those skilled in the art. The electrochromic device may apply a predetermined voltage necessary for electrochromic.
본 출원의 일례에 따르면, 전기변색속도와 변색의 균일한 정도가 개선된 전기변색소자가 제공될 수 있다.According to an example of the present application, an electrochromic device having improved electrochromic speed and uniformity of color change can be provided.
도 1은, 본 출원의 일례에 따라, 전극층, 전기변색층 및 도전성 띠의 면적 관계를 개략적으로 도시한 것이다.1 schematically illustrates the area relationship of an electrode layer, an electrochromic layer, and a conductive strip, according to an example of the present application.
도 2는, 본 출원의 일례에 따라, 전기변색층과 도전성 띠의 면적 관계를 개략적으로 도시한 것이다.2 schematically illustrates the area relationship between the electrochromic layer and the conductive strip according to an example of the present application.
도 3은, 본 출원의 일례에 따른 실시예 소자의 구동 특성에 관한 그래프이다.3 is a graph relating to driving characteristics of an embodiment device according to an example of the present application.
도 4는, 비교예 소자의 구동 특성에 관한 그래프이다.4 is a graph relating to driving characteristics of a comparative example element.
이하, 실시예를 통해 본 출원을 상세히 설명한다. 그러나, 본 출원의 보호범위가 하기 설명되는 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present application will be described in detail through examples. However, the protection scope of the present application is not limited by the examples described below.
<전기변색 시간의 측정 방법><Measuring method of electrochromic time>
* 투과율: oceanoptics를 이용하여 측정하였다. 구체적으로, 하기 제조된 소자의 가로 길이(10 cm)를 대략 3 등분한 3개 지점(탈색시 B1, B2, B3 지점; 착색시 C1, C2, C3 지점)에서, 시간에 따른 투과율의 변화를 각각 측정하였다.Permeability: measured using oceanoptics. Specifically, at three points (B1, B2, B3 when decoloring; C1, C2, C3 when discoloring), the change in transmittance with time is measured. Each was measured.
실시예Example
제1 적층체의 제조: 증착 방식을 이용하여, 150 nm 두께의 PET 기재 상에 ITO(두께: 100 nm)층, 및 WO3층(두께: 350 nm)을 순차로 형성하였다. ITO 층과 WO3층의 평면 넓이는 동일 크기(가로 X 세로: 10 cm × 7 cm)의 사변형이 되도록 하였다. Preparation of First Laminate : Using an evaporation method, an ITO (thickness: 100 nm) layer and a WO 3 layer (thickness: 350 nm) were sequentially formed on a 150 nm thick PET substrate. The planar area of the ITO layer and the WO 3 layer was such that the quadrilaterals were of the same size (width X length: 10 cm × 7 cm).
LiClO4(1M)와 프로필렌카보네이트(PC) 함유 전해액 100 ppm과 potentiostat 장치를 준비하고, -1V의 전압을 50초간 인가하여, WO3층에 Li+ 삽입하고, WO3 층을 착색시켰다. 100 ppm of an electrolytic solution containing LiClO 4 (1M), propylene carbonate (PC) and a potentiostat device were prepared, and a voltage of −1 V was applied for 50 seconds to allow Li + to be added to the WO 3 layer. Inserted and colored WO 3 layer.
이후, WO3층의 4개 테두리부를 모두 에칭하였다. 에칭에 의해 제거된 각 테두리부의 너비는 10 nm 였다. 이후, 10 nm 너비의 니켈 테이프를 WO3가 에칭된 4개 테두리부 모두에 부착하였다. 사용된 니켈 테이프의 두께는 1,000 nm 였다.Thereafter, all four edges of the WO 3 layer were etched. The width of each edge removed by etching was 10 nm. Thereafter, a 10 nm wide nickel tape was attached to all four edges etched with WO 3 . The thickness of the nickel tape used was 1,000 nm.
제2 적층체의 제조: 증착 방식을 이용하여, 150 nm 두께의 PET 기재 상에 ITO(두께: 100 nm)층, 및 프러시안블루(PB)층(두께: 350 nm)을 순차로 형성하였다. ITO 층과 PB 층의 평면 넓이는 동일 크기(가로 × 세로: 10 cm × 7 cm)의 사변형이 되도록 하였다. Preparation of Second Laminate : Using an evaporation method, an ITO (thickness: 100 nm) layer and a Prussian blue (PB) layer (thickness: 350 nm) were sequentially formed on a 150 nm thick PET substrate. The planar width of the ITO layer and the PB layer was such that a quadrilateral of the same size (width × length: 10 cm × 7 cm) was obtained.
마찬가지로, PB층의 4개 테두리부를 모두 에칭하였다. 에칭에 의해 제거된 각 테두리부의 너비는 10 nm 였다. 이후, 10 nm 너비의 니켈 테이프를 PB가 에칭된 4개 테두리부 모두에 부착하였다. 사용된 니켈 테이프의 두께는 1,000 nm 였다.Similarly, all four edges of the PB layer were etched. The width of each edge removed by etching was 10 nm. Thereafter, a 10 nm wide nickel tape was attached to all four edges etched with PB. The thickness of the nickel tape used was 1,000 nm.
소자의 제조: 면적의 크기가 10 cm × 7 cm이고, 두께가 50 ㎛인 GPE(gel polymer electrolyte)층을 매개로, 제1 적층체의 WO3층과 제2 적층체의 PB 층이 마주볼 수 있도록 각 적층체를 합착하고, 소자(ITO/WO3/GPE/PB/ITO)를 제조하였다. Fabrication of the device: WO 3 layer of the first laminate and PB layer of the second laminate face each other via a gel polymer electrolyte (GPE) layer having an area size of 10 cm × 7 cm and a thickness of 50 μm. Each laminate was bonded to each other, and a device (ITO / WO 3 / GPE / PB / ITO) was manufactured.
상기로부터 제조된 소자에, 탈색(bleaching) 전압과 착색(coloration) 전압을 일정 주기로 반복 인가하면서, 시간에 따른 소자의 전하량 변화를 관찰하였다. 1 주기(cycle)당 탈색 및 착색 전압은 각각 ± 1.2 V 로서, 각각 50초 간 인가되었다. 안정화를 위하여 소정 사이클을 구동하고, 전압 인가에 따른 착탈색 시간 변화를 관찰하였다. 그 결과는 도 3과 같다.The change in the amount of charge of the device over time was observed while repeatedly applying a bleaching voltage and a coloring voltage to the device manufactured from the above at regular intervals. The bleaching and coloring voltages per cycle were ± 1.2 V each, applied for 50 seconds each. A predetermined cycle was driven for stabilization, and the change in desorption time with voltage application was observed. The result is shown in FIG. 3.
비교예Comparative example
제1 및 제2 적층체 제조시, WO3층과 PB 층의 각각 1개 테두리만을 에칭하고, 에칭된 1개 테두리에 대해서만 니켈 테이프를 부착한 것을 제외하고, 동일한 방법으로 소자를 제조하였다. 변색시간의 측정 결과는 도 4와 같다.When fabricating the first and second laminates, devices were fabricated in the same manner, except that only one rim of each of the WO 3 layer and the PB layer was etched and a nickel tape was attached to only one etched edge. The measurement result of discoloration time is shown in FIG.

Claims (20)

  1. 전극층; 상기 전극층 상에 위치하는 전기변색층; 및 상기 전극층 상에 위치하고, 닫힌 고리 형상을 갖는 도전성 띠(band)를 포함하는 전기변색소자.An electrode layer; An electrochromic layer positioned on the electrode layer; And a conductive band positioned on the electrode layer and having a closed ring shape.
  2. 제1항에 있어서, 상기 도전성 띠는 상기 전기변색층과 접하는 전기변색소자.The electrochromic device of claim 1, wherein the conductive band is in contact with the electrochromic layer.
  3. 제2항에 있어서, 상기 도전성 띠는 상기 전기변색층의 측면을 감싸는 전기변색소자.The electrochromic device of claim 2, wherein the conductive band surrounds a side surface of the electrochromic layer.
  4. 제3항에 있어서, 상기 전극층은 상기 도전성 띠의 면적과 상기 전기변색층의 면적을 합한 것과 동일하거나 그 보다 큰 면적을 갖는 전기변색소자.The electrochromic device of claim 3, wherein the electrode layer has an area equal to or greater than the sum of an area of the conductive band and an area of the electrochromic layer.
  5. 제4항에 있어서, 상기 전기변색층과 상기 도전성 띠 각각은 상기 전극층의 동일한 일 면과 접하는 전기변색소자.The electrochromic device of claim 4, wherein each of the electrochromic layer and the conductive strip is in contact with the same surface of the electrode layer.
  6. 제5항에 있어서, 상기 도전성 띠는 상기 전기변색층 이상의 두께를 갖는 전기변색소자.The electrochromic device of claim 5, wherein the conductive band has a thickness greater than or equal to the electrochromic layer.
  7. 제2항에 있어서, 상기 도전성 띠는 상기 전극층과 상기 전기변색층 사이에, 또는 상기 전극층과 마주하는 상기 전기변색층 일면의 반대 일면 상에 위치하는 전기변색소자.The electrochromic device of claim 2, wherein the conductive band is positioned between the electrode layer and the electrochromic layer or on an opposite side of one surface of the electrochromic layer facing the electrode layer.
  8. 제7항에 있어서, 상기 전기변색층은, 상기 도전성 띠의 면적과 상기 도전성 띠의 닫힌 고리 내부 면적을 합한 것과 동일하거나 그보다 큰 면적을 갖는 전기변색소자.The electrochromic device of claim 7, wherein the electrochromic layer has an area equal to or greater than the sum of an area of the conductive band and an inner area of the closed ring of the conductive band.
  9. 제2항에 있어서, 상기 전극층과 마주하는 상기 전기변색층 일 면의 반대 일 면 상에 전해질층을 더 포함하는 전기변색소자.The electrochromic device of claim 2, further comprising an electrolyte layer on one surface opposite to one surface of the electrochromic layer facing the electrode layer.
  10. 제9항에 있어서, 상기 전해질층은 겔 폴리머 전해질을 포함하는 전기변색소자.The electrochromic device of claim 9, wherein the electrolyte layer comprises a gel polymer electrolyte.
  11. 제1항에 있어서, 상기 전기변색층과 마주하는 상기 전해질층 일 면의 반대 일 면 상에, 상대 전극층을 더 포함하는 전기변색소자.The electrochromic device of claim 1, further comprising a counter electrode layer on a surface opposite to one surface of the electrolyte layer facing the electrochromic layer.
  12. 제11항에 있어서, 상기 상대 전극층과 상기 전해질층 사이에 이온저장층을 더 포함하는 전기변색소자.The electrochromic device of claim 11, further comprising an ion storage layer between the counter electrode layer and the electrolyte layer.
  13. 제12항에 있어서, 상기 이온저장층과 접하고, 닫힌 고리 형상을 갖는 제2 도전성 띠를 더 포함하는 전기변색소자.The electrochromic device of claim 12, further comprising a second conductive band in contact with the ion storage layer and having a closed ring shape.
  14. 제13항에 있어서, 상기 제2 도전성 띠는 상기 이온저장층의 측면을 감싸는 전기변색소자.The electrochromic device of claim 13, wherein the second conductive band surrounds a side surface of the ion storage layer.
  15. 제14항에 있어서, 상기 상대 전극층은 상기 제2 도전성 띠의 면적과 이온저장층의 면적을 합한 것과 동일하거나 그 보다 큰 면적을 갖는 전기변색소자.The electrochromic device of claim 14, wherein the counter electrode layer has an area equal to or greater than the sum of the area of the second conductive band and the area of the ion storage layer.
  16. 제15항에 있어서, 상기 이온저장층과 상기 제2 도전성 띠 각각은 상기 상대 전극층의 동일한 일 면과 접하는 전기변색소자.The electrochromic device of claim 15, wherein each of the ion storage layer and the second conductive band contacts the same surface of the counter electrode layer.
  17. 제16항에 있어서, 상기 제2 도전성 띠는 상기 이온저장층 두께 이상의 두께를 갖는 전기변색소자.The electrochromic device of claim 16, wherein the second conductive band has a thickness greater than or equal to the thickness of the ion storage layer.
  18. 제13항에 있어서, 상기 제2 도전성 띠는, 상기 상대 전극층과 이온저장층 사이, 또는 상기 상대 전극층과 마주하는 이온저장층 일면의 반대 일면 상에 위치하는 전기변색소자.The electrochromic device of claim 13, wherein the second conductive band is positioned between the counter electrode layer and the ion storage layer or on an opposite side of one surface of the ion storage layer facing the counter electrode layer.
  19. 제18항에 있어서, 상기 이온저장층은, 상기 제2 도전성 띠의 면적과 상기 제2 도전성 띠의 닫힌 고리 내부 면적을 합한 것과 동일하거나 그보다 큰 면적을 갖는 전기변색소자.19. The electrochromic device of claim 18, wherein the ion storage layer has an area equal to or greater than the sum of the area of the second conductive band and the area of the closed ring of the second conductive band.
  20. 제1항 또는 제13항 중 어느 한 항에 있어서, 상기 도전성 띠 및 제2 도전성 띠는, 니켈(Ni), 알루미늄(Al), 은(Ag), 구리(Cu), 아연(Zn), 금(Au), 팔라듐(Pd), 백금(Pt) 또는 이들의 합금을 포함하는 전기변색소자.The said electroconductive strip and a 2nd electroconductive strip of Claim 1 or 13 are nickel (Ni), aluminum (Al), silver (Ag), copper (Cu), zinc (Zn), and gold. Electrochromic device comprising (Au), palladium (Pd), platinum (Pt) or alloys thereof.
PCT/KR2018/004666 2017-04-27 2018-04-23 Electrochromic device WO2018199566A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18789918.2A EP3617789B1 (en) 2017-04-27 2018-04-23 Electrochromic device
JP2019557785A JP7062685B2 (en) 2017-04-27 2018-04-23 Electrical discoloration element
US16/604,355 US11644730B2 (en) 2017-04-27 2018-04-23 Electrochromic device
CN201880027304.3A CN110573957A (en) 2017-04-27 2018-04-23 Electrochromic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0054315 2017-04-27
KR20170054315 2017-04-27
KR10-2018-0045419 2018-04-19
KR1020180045419A KR102078402B1 (en) 2017-04-27 2018-04-19 An electrochromic device

Publications (1)

Publication Number Publication Date
WO2018199566A1 true WO2018199566A1 (en) 2018-11-01

Family

ID=63919720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004666 WO2018199566A1 (en) 2017-04-27 2018-04-23 Electrochromic device

Country Status (1)

Country Link
WO (1) WO2018199566A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112305829A (en) * 2020-11-13 2021-02-02 烟台大学 Electrochromic glass device, and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080051280A (en) * 2006-12-05 2008-06-11 주식회사 엘지화학 Electrode for electrochromic device and electrochromic device having the same
KR20110011802A (en) * 2009-07-29 2011-02-09 강성진 Swash for swash plate type compressor and manufacturing method thereof
KR20150053151A (en) * 2013-11-07 2015-05-15 한국과학기술연구원 Electrochromic window including of micro-patterned transparent conductive oxide film and preparing method thereof
KR101657965B1 (en) * 2015-12-11 2016-09-30 애드크로 주식회사 Electrochromic device, electrode structure therefor, and manufacturing method thereof
KR20170025612A (en) * 2015-08-31 2017-03-08 한밭대학교 산학협력단 Microporous polymer membrane for electrochromic device and smart window including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080051280A (en) * 2006-12-05 2008-06-11 주식회사 엘지화학 Electrode for electrochromic device and electrochromic device having the same
KR20110011802A (en) * 2009-07-29 2011-02-09 강성진 Swash for swash plate type compressor and manufacturing method thereof
KR20150053151A (en) * 2013-11-07 2015-05-15 한국과학기술연구원 Electrochromic window including of micro-patterned transparent conductive oxide film and preparing method thereof
KR20170025612A (en) * 2015-08-31 2017-03-08 한밭대학교 산학협력단 Microporous polymer membrane for electrochromic device and smart window including the same
KR101657965B1 (en) * 2015-12-11 2016-09-30 애드크로 주식회사 Electrochromic device, electrode structure therefor, and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112305829A (en) * 2020-11-13 2021-02-02 烟台大学 Electrochromic glass device, and preparation method and application thereof
CN112305829B (en) * 2020-11-13 2022-05-24 烟台大学 Preparation method and application of electrochromic glass device

Similar Documents

Publication Publication Date Title
KR102078402B1 (en) An electrochromic device
JP4589915B2 (en) Electrochromic display device
WO2017196036A1 (en) Electrochromic element
WO2017196035A1 (en) Electrochromic element
EP3602192B1 (en) Flexible and multilayer electrochromic devices and methods of making the same
KR102118358B1 (en) Method for preparing an electrochromic device
KR20180119121A (en) An electrochromic film and a device comprising the same
WO2017217710A1 (en) Electrochromic device
WO2018199568A1 (en) Electrochromic film
WO2018199566A1 (en) Electrochromic device
WO2017155295A1 (en) Electrochromic device
WO2018199569A1 (en) Electrochromic film and electrochromic element comprising same
KR20180036105A (en) An Electrochromic Device and Method for Preparing the Same
WO2015199403A1 (en) Solar cell module package and manufacturing method therefor
KR102651653B1 (en) An electochromic sheet and device comprising the same
KR102108562B1 (en) An Electrochromic Device
KR102010734B1 (en) An Electrochromic Device
WO2018199570A1 (en) Light-transmissive film and electrochromic element comprising same
WO2018199572A1 (en) Conductive laminate and electrochromic device comprising same
WO2018174440A1 (en) Electrochromic device
KR102126683B1 (en) method for operating an electrochromic device
WO2018199567A1 (en) Electrochromic device
WO2018009001A1 (en) Electrochromic device and manufacturing method therefor
KR20190118120A (en) An electrochromic film
KR102113478B1 (en) An electrochromic film, an electrochromic device and method for preparing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18789918

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557785

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018789918

Country of ref document: EP

Effective date: 20191127