KR20030072123A - Electrochromic device and manufacturing method thereof - Google Patents

Electrochromic device and manufacturing method thereof Download PDF

Info

Publication number
KR20030072123A
KR20030072123A KR1020020011693A KR20020011693A KR20030072123A KR 20030072123 A KR20030072123 A KR 20030072123A KR 1020020011693 A KR1020020011693 A KR 1020020011693A KR 20020011693 A KR20020011693 A KR 20020011693A KR 20030072123 A KR20030072123 A KR 20030072123A
Authority
KR
South Korea
Prior art keywords
solid polymer
polymer electrolyte
tungsten oxide
layer
electrochromic material
Prior art date
Application number
KR1020020011693A
Other languages
Korean (ko)
Inventor
신현우
Original Assignee
주식회사 엘지이아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지이아이 filed Critical 주식회사 엘지이아이
Priority to KR1020020011693A priority Critical patent/KR20030072123A/en
Publication of KR20030072123A publication Critical patent/KR20030072123A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • G02F1/15165Polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • G02F2001/1552Inner electrode, e.g. the electrochromic layer being sandwiched between the inner electrode and the support substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F2001/164Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect the electrolyte is made of polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE: An electro chromic device and a method for fabricating the electro chromic device are provided to increase an ion diffusion reaction rate while using a solid polymer electrolyte. CONSTITUTION: An electro chromic device includes a lower electrode(11) formed on a lower substrate(10), an electro chromatic material layer(12) for preventing the lower electrode from being deteriorated according to an electrolyte, and a solid polymer electrolyte layer(13) that is placed on the electro chromatic material layer and contains an electro chromatic material having a size of nanometer. The device further includes an ion storage layer(14) formed on the solid polymer electrolyte layer, an upper electrode(15) formed on the ion storage layer, and an upper substrate(16) located on the upper electrode.

Description

전기변색소자 및 그 제조방법{ELECTROCHROMIC DEVICE AND MANUFACTURING METHOD THEREOF}Electrochromic device and its manufacturing method {ELECTROCHROMIC DEVICE AND MANUFACTURING METHOD THEREOF}

본 발명은 전기변색소자 및 그 제조방법에 관한 것으로, 고체 전해질에 나노 입자 크기의 전기변색물질을 포함시켜 변색속도 및 광밀도를 향상시키는데 적당하도록 한 전기변색소자 및 그 제조방법에 관한 것이다.The present invention relates to an electrochromic device and a method for manufacturing the same, and to an electrochromic device and a method for manufacturing the same, which include an electrochromic material having a particle size of nanoparticles in a solid electrolyte and are suitable for improving color change speed and light density.

일반적으로, 전기변색소자(electro chromic device:ECD)는 전장의 인가에 따라 전기적인 산화환원반응에 의해 전기변색물질의 색상이 변화되어, 광투과특성을 변경하는 소자를 지칭한다.In general, an electro chromic device (ECD) refers to a device that changes the color of an electrochromic material by an electric redox reaction according to application of an electric field, thereby changing light transmission characteristics.

이와 같은 전기변색소자는 스마트 윈도우 등에 적용되고 있으며, 이와 같은 종래 전기변색소자 및 그 제조방법을 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다.Such an electrochromic device is applied to a smart window and the like, and will be described in detail with reference to the accompanying drawings.

도1은 종래 전기변색소자의 단면도로서, 이에 도시한 바와 같이 하부기판(1)의 상부에 하부전극(2), 고체고분자전해질(3), 전기변색물질(4), 상부전극(5), 상부기판(6)이 적층되며, 그 적층구조의 측면에 외장재(7)로 마감된다.1 is a cross-sectional view of a conventional electrochromic device. As shown therein, a lower electrode 2, a solid polymer electrolyte 3, an electrochromic material 4, an upper electrode 5, The upper substrate 6 is laminated and finished with the exterior material 7 on the side of the laminated structure.

상기 하부기판(1)과 상부기판(6)은 유리 또는 투명 플라스틱 기판을 사용하며, 상기 하부전극(2)과 상부전극(5)은 투명한 ITO전극을 사용한다.The lower substrate 1 and the upper substrate 6 use a glass or transparent plastic substrate, and the lower electrode 2 and the upper electrode 5 use a transparent ITO electrode.

상기 고체고분자전해질(3)은 상기 하부전극(2)과 상부전극(5)의 사이에 전하전달이 가능한 이온전도체로 사용하며, 상기 예에서는 고체고분자를 사용하였으나, 수용액형, 무기계 수화물 등도 사용할 수 있다.The solid polymer electrolyte 3 is used as an ion conductor capable of charge transfer between the lower electrode 2 and the upper electrode 5. In this example, the solid polymer electrolyte is used, but an aqueous solution, an inorganic hydrate, and the like may also be used. have.

수용액형의 예로는 1M의 H2SO4수용액, 1M의 LiOH 수용액, 1M의 LiClO4수용액, 1M의 KOH수용액을 들 수 있다.Examples of the aqueous solution type include 1M H 2 SO 4 aqueous solution, 1M LiOH aqueous solution, 1M LiClO 4 aqueous solution, and 1M KOH aqueous solution.

또한, 무기계 수화물로는 HUP2PO4ㆍ4H2O, Ta2O5ㆍ3.92H2O, Sb2O5ㆍ4H2O 등이 있으며, 고체 고분자 전해질로는 Poly-AMPS, Poly(VAP), modified PEO/LiCF3SO3등을 사용할 수 있다.In addition, inorganic hydrates include HUP 2 PO 4 ㆍ 4H 2 O, Ta 2 O 5 ㆍ 3.92H 2 O, Sb 2 O 5 ㆍ 4H 2 O, and the like, and solid polymer electrolytes include Poly-AMPS and Poly (VAP). modified PEO / LiCF 3 SO 3 may be used.

특히, 고체 고분자 전해질을 언급하는 이유는 고체 고분자 전해질은 고체 상태에서 이온을 전달할 수 있는 물질로, 액제 전해질과는 달리 소자 제작시 액체의 누수가 발생하는 문제점이 없으므로, 환경 친화적이며, 박막화 및 필름 형태의 가공이 용이하여 원하는 모든 형태로 제작이 가능하기 때문이다.In particular, the reason for mentioning the solid polymer electrolyte is that the solid polymer electrolyte is a material capable of transferring ions in the solid state, and unlike liquid electrolytes, there is no problem of leakage of liquid during device fabrication. This is because the shape can be easily processed into any desired shape.

이러한, 고체 고분자 전해질은 기존의 액체 전해질이 적용되는 모든 소자에 사용할 수 있으며, 현재 리튬 이차전지의 전해질로 사용하기 위한 연구가 활발히 진행중이다.Such a solid polymer electrolyte can be used in all devices to which a conventional liquid electrolyte is applied, and research for use as an electrolyte of a lithium secondary battery is currently being actively conducted.

이와 같은 고체 고분자 전해질을 사용하는 종래 전기변색소자의 제조방법은 하부기판(1)의 상부에 하부전극(2)을 인쇄 또는 증착등 가능한 방법을 사용하여, 성막하고, 그 하부전극(2)의 상부에 고체고분자전해질(3)을 성막한다.In the conventional method of manufacturing the electrochromic device using the solid polymer electrolyte, the lower electrode 2 is formed on the lower substrate 1 using a method such as printing or vapor deposition, and the lower electrode 2 is formed. A solid polymer electrolyte 3 is formed on top.

이때 고체고분자전해질(3)은 필름 등의 박막 형태이며, 이를 상기 하부전극(2) 상에 로딩하여 용이한 성막이 이루어진다.In this case, the solid polymer electrolyte 3 is in the form of a thin film such as a film, and is easily loaded by loading it on the lower electrode 2.

상기 고체고분자전해질(3)은 이온의 전도도가 낮아, 변색반응이 지연되는 문제점을 가지게 된다.The solid polymer electrolyte 3 has a problem that the discoloration reaction is delayed due to low conductivity of ions.

상기와는 별도로, 상부기판(6)의 상부에 상부전극(5)을 성막하고, 그 상부전극(5)의 상부에 전기변색물질(4)을 성막한다.Apart from the above, the upper electrode 5 is formed on the upper substrate 6, and the electrochromic material 4 is formed on the upper electrode 5.

그 다음, 상기 전기변색물질(4)과 고체고분자전해질(3)이 접하도록 상기 상부기판(6)과 하부기판(1)을 대향시키고, 합착하여 전기변색소자를 형성한다.Next, the upper substrate 6 and the lower substrate 1 are opposed to each other so that the electrochromic material 4 and the solid polymer electrolyte 3 come into contact with each other, and are bonded to form an electrochromic device.

상기 고체고분자전해질(3)은 액체전해질에 비하여 제작이 용이하고, 환경친화적인 장점이 있지만, 리튬이온이나 프로톤의 반응속도는 액체전해질에서 더 빠르다.The solid polymer electrolyte 3 is easier to manufacture than the liquid electrolyte and has an environmentally friendly advantage, but the reaction rate of lithium ions or protons is faster in the liquid electrolyte.

즉, 고체고분자전해질(3)을 사용하는 경우, 그 이온확산반응이 느려져 전기변색소자의 변색속도가 느려지게 되는 문제점이 있다.That is, when the solid polymer electrolyte 3 is used, there is a problem that the ion diffusion reaction is slowed and the discoloration rate of the electrochromic device is lowered.

상기와 같은 본 발명은 환경친화적이며, 제작이 용이한 고체고분자전해질을 사용하면서도 그 이온확산반응의 속도를 증가시킬 수 있는 전기변색소자 및 그 제조방법을 제공함에 그 목적이 있다.The present invention as described above is an object to provide an electrochromic device and a method of manufacturing the same that can increase the speed of the ion diffusion reaction while using a solid polymer electrolyte that is environmentally friendly and easy to manufacture.

도1은 종래 전기변색소자의 단면도.1 is a cross-sectional view of a conventional electrochromic device.

도2는 본 발명 전기변색소자의 단면도.2 is a cross-sectional view of the electrochromic device of the present invention.

도3은 도2에 있어서, 나노 크기의 산화텅스텐이 포함된 고체 고분자 전해질의 확대 모식도.FIG. 3 is an enlarged schematic view of a solid polymer electrolyte including nano-sized tungsten oxide in FIG. 2. FIG.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

10:하부기판11:하부전극10 bottom substrate 11: bottom electrode

12:전기변색물질13:고체 고분자 전해질12: electrochromic material 13: solid polymer electrolyte

14:이온 스토리지층15:상부전극14 ion storage layer 15 upper electrode

16:상부전극16: upper electrode

상기와 같은 목적은 고체 고분자 전해질 내에서 전계에 의해 이온 반응하여 변색이 이루어지도록 함으로써 달성되는 것으로, 이와 같은 본 발명을 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다.The above object is achieved by discoloration by ionic reaction by an electric field in a solid polymer electrolyte, which will be described in detail with reference to the accompanying drawings.

도2는 본 발명 전기변색소자의 단면도로서, 이에 도시한 바와 같이 하부기판(10)의 상부에 하부전극(11), 전기변색물질(12), 산화텅스텐 나노 분말을 포함하는 고체 고분자 전해질(13), 이온 스토리지층(14), 상부전극(15),상부기판(16)이 순차적으로 적층된 구조를 나타낸다.FIG. 2 is a cross-sectional view of the electrochromic device of the present invention. As shown therein, a solid polymer electrolyte 13 including a lower electrode 11, an electrochromic material 12, and a tungsten oxide nanopowder on the lower substrate 10 is shown. ), The ion storage layer 14, the upper electrode 15, and the upper substrate 16 are sequentially stacked.

상기 산화텅스텐 나노 분말을 포함하는 고체 고분자 전해질(13)은 그 산화텅스텐이 전기변색효과를 나타내는 것으로, 그 전기변색물질인 산화텅스텐을 고체 고분자 전해질(13) 내에 고르게 분산시킴으로써, 전기변색 나노입자에서 이온반응이 이루어지도록 함으로써, 고체 고분자 전해질이 별도의 전기변색박막과 이온 반응을 하는 종래 기술에 비하여 보다 빠른 이온의 반응이 이루어지도록 할 수 있다.In the solid polymer electrolyte 13 including the tungsten oxide nano powder, the tungsten oxide exhibits an electrochromic effect. The tungsten oxide, which is an electrochromic material, is evenly dispersed in the solid polymer electrolyte 13, thereby producing By allowing the ionic reaction to occur, it is possible to make the reaction of the ions faster than the conventional art in which the solid polymer electrolyte reacts with a separate electrochromic thin film.

실험의 결과로는 종래에 비하여 10~100배의 빠르기로 반응하여 변색속도의 향상을 타나내었다.As a result of the experiment, the reaction rate was 10 to 100 times faster than the conventional one, and the discoloration speed was improved.

상기와 같이 구성되는 본 발명의 구조 및 그 제조방법을 보다 상세히 설명한다.The structure of the present invention configured as described above and a manufacturing method thereof will be described in more detail.

먼저, 하부기판(10)의 상부에 하부전극(11)을 성막한다.First, the lower electrode 11 is formed on the lower substrate 10.

그 다음, 상기 하부전극(11)의 상부에 전기변색물질(12)을 성막한다.Next, an electrochromic material 12 is formed on the lower electrode 11.

그 다음, 나노 크기의 산화텅스텐을 제조한다.Next, nano-sized tungsten oxide is prepared.

상기 산화텅스텐 나노입자는 졸-겔법에 의해 형성할 수 있다. 즉, 금속 텅스텐 분말을 과산화수소수에 넣고 반응시키면, 수소가 발생하면서 산화텅스텐ㅇ이 만들어지며, 그 과산화수소수는 물분자로 분해가된다.The tungsten oxide nanoparticles can be formed by a sol-gel method. In other words, when the metal tungsten powder is added to hydrogen peroxide and reacted, hydrogen is generated to make tungsten oxide, and the hydrogen peroxide is decomposed into water molecules.

이와 같은 상태는 peroxotungstic acids의 상태이다.This state is the state of peroxotungstic acids.

상기의 과정을 통해 얻어진 산화텅스텐용액을 80~100℃의 온도에서 건조시키면 산화텅스텐 나노 분말을 얻을 수 있다.When the tungsten oxide solution obtained through the above process is dried at a temperature of 80 ~ 100 ℃ can be obtained tungsten oxide nano powder.

이때 상기 산화텅스텐 나노 분말의 입경은 약 10~50nm 정도이다.At this time, the particle diameter of the tungsten oxide nano powder is about 10 ~ 50nm.

이처럼 산화텅스텐 나노 분말을 획득한 후, 그 산화텅스텐 나노 분말을 포함하는 고체 고분자 전해질 조성물을 제조한다.After obtaining the tungsten oxide nano powder as described above, a solid polymer electrolyte composition containing the tungsten oxide nano powder is prepared.

즉, 상기 획득된 산화텅스텐 나노 분말을 쓰리 롤 밀(THREE ROLL MILL)을 이용하여 자외선 경화형 고체 고분자 전해질에 고르게 분산시킨다.That is, the obtained tungsten oxide nano powder is uniformly dispersed in an ultraviolet curable solid polymer electrolyte using a three roll mill.

상기 자외선 경화형 고체 고분자 전해질은 자외선에 의해 고체로 경화되는 특성의 고분자 전해질이며, 이는 아크릴레이트기를 가지는 PEG계 올리고머와 2 또는 3의 아크릴 반응성기를 가지는 PEG계 올리고머를 10:1 내지 10:5의 몰비로 섞고, 여기에 저분자량의 PEGDMe를 무게비로 50~70%, 전해질염을 무게비로 10~30%로 혼합하여 광개시제를 무게비로 0.1~1%로 혼합시킨다.The UV-curable solid polymer electrolyte is a polymer electrolyte having a characteristic of being cured into a solid by ultraviolet rays, and has a molar ratio of 10: 1 to 10: 5 of a PEG-based oligomer having an acrylate group and a PEG-based oligomer having 2 or 3 acrylic reactive groups. The low molecular weight PEGDMe is mixed with 50 to 70% by weight, and the electrolyte salt is mixed with 10 to 30% by weight, and the photoinitiator is mixed with 0.1 to 1% by weight.

이때 상기 전해질염은 LiClO4, NaClO4, LiCF3SO3, Li(CF3SO2)2N, LiPF6를 그 예로 들 수 있다.At this time, the electrolyte salt may include LiClO 4 , NaClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiPF 6 .

상기와 같은 자외선 경화형 고체 고분자 전해질에 상기 획득된 산화텅스텐 나노 분말을 1~30%의 무게 비로 혼합한다.The obtained tungsten oxide nano powder is mixed with the ultraviolet curable solid polymer electrolyte at a weight ratio of 1 to 30%.

상기와 같은 조성을 가지는 조성물을 상기 전기변색물질(12)의 상부에 코팅한다.A composition having the composition as described above is coated on the electrochromic material 12.

이때의 코팅법은 바(BAR) 코팅, 스핀코팅, 실크스크린등 가능한 방법을 사용한다.At this time, the coating method is possible using a bar coating, spin coating, silk screen and the like.

상기 전기변색물질(12)은 300~500nm의 두께이며, 이때 전기변색물질(12)의 역할은 상기 고체 고분자 전해질이 하부전극(11)에 직접 접하는 경우 이온 반응을 발생시키며, 이에 따라 그 하부전극(11)의 특성이 열화되는 것을 방지하기 위한 것이다.The electrochromic material 12 has a thickness of 300 to 500 nm, in which the role of the electrochromic material 12 generates an ionic reaction when the solid polymer electrolyte is in direct contact with the lower electrode 11. This is to prevent deterioration of the characteristic of (11).

이처럼 상기 산화텅스텐 나노 분말을 포함하는 고체 고분자 전해질(13)을 코팅한 후, 그 고체 고분자 전해질(13)을 자외선에 노광시켜 그 고체 고분자 전해질(13)을 경화시킨다.After coating the solid polymer electrolyte 13 including the tungsten oxide nano powder as described above, the solid polymer electrolyte 13 is exposed to ultraviolet rays to cure the solid polymer electrolyte 13.

도3은 상기 산화텅스텐 나노 분말을 포함하는 고체 고분자 전해질(13)의 모식도로서, 이에 도시한 바와 같이 산화텅스텐 나노입자(31)는 상기 전해질염에 포함된 이온(Li, 32)반응이 용이하도록 분포되어 있어, 하부전극(11)과 상부전극(15)에 전위차가 발생하는 경우, 빠른 속도로 반응하여 변색이 이루어지도록 한다.FIG. 3 is a schematic diagram of a solid polymer electrolyte 13 including the tungsten oxide nano powder. As shown in FIG. 3, the tungsten oxide nanoparticles 31 may react with ions (Li, 32) contained in the electrolyte salt to facilitate the reaction. When the potential difference is generated between the lower electrode 11 and the upper electrode 15, the discoloration occurs by reacting at a high speed.

상기 설명한 산화텅스텐 나노 분말이 포함된 고체 고분자 전해질(13)을 형성하는 과정을 자외선 경화법이 아닌 졸-겔법을 사용하는 경우, 전해질과 산화텅스텐 나노 분말을 혼합한 졸-겔 용액을 디핑(DIPPING), 스핀코팅등의 방법으로 도포하고, 약 300℃에서 겔화시켜 박막화한다.When the solid polymer electrolyte 13 including the tungsten oxide nano powder described above is used in the sol-gel method instead of the ultraviolet curing method, the sol-gel solution in which the electrolyte and the tungsten oxide nano powder are mixed is dipping. ), Spin coating or the like, and gelation at about 300 ℃ to form a thin film.

또한, 상기 산화텅스텐 나노 분말이 포함된 고체 고분자 전해질(13)은 스퍼터링법으로 형성할 수 있으며, 이때에는 10~30mtorr의 압력분위기에서 Ar과 O2의 가스 혼합비를 5:1 내지 7:1로 하여 텅스텐 타겟의 반응성 스퍼터링으로 300~500nm의 두께의 박막을 증착하여 형성할 수 있다.In addition, the solid polymer electrolyte 13 including the tungsten oxide nanopowder may be formed by sputtering. In this case, a gas mixing ratio of Ar and O 2 is 5: 1 to 7: 1 in a pressure atmosphere of 10 to 30 mtorr. By the reactive sputtering of the tungsten target can be formed by depositing a thin film of 300 ~ 500nm thickness.

그 다음, 상기 상부기판(16)의 상부에 상부전극(15)을 성막하고, 그 상부전극(15)의 상부에 이온 스토리지층(14)을 성막한다.Next, an upper electrode 15 is formed on the upper substrate 16, and an ion storage layer 14 is formed on the upper electrode 15.

이때 이온 스토리지층(14)은 이온의 전도도를 증가시키는 역할을 하게 되며, 거울 등의 반사모드에 적용할 경우 그 이온 스토리지 층에 백색의 이산화티타늄을균일하게 분포시켜 그 반사가 용이하게 이루어질 수 있도록 함과 아울러 이온의 전도도를 향상시켜 전기변색소자의 변색과정이 보다 신속하게 이루어질 수 있도록 한다.In this case, the ion storage layer 14 increases the conductivity of the ions, and when applied to a reflection mode such as a mirror, the ion storage layer 14 uniformly distributes white titanium dioxide so that the reflection can be easily performed. In addition, by improving the conductivity of the ions so that the color change process of the electrochromic device can be made more quickly.

그 다음, 상기 상부기판(16)과 하부기판(10)을 그 이온 스토리지층(14)과 나노 크기의 산화텅스텐이 포함된 고체 고분자 전해질(13)이 접하도록 합착한다.Next, the upper substrate 16 and the lower substrate 10 are bonded to the ion storage layer 14 and the solid polymer electrolyte 13 including nano-sized tungsten oxide.

상기한 바와 같이 본 발명 전기변색소자 및 그 제조방법은 고체 고분자 전해질 내에 나노크기의 전기변색물질을 고르게 분포시켜, 고체 고분자 전해질 내에서 이온의 반응이 일어나도록 함으로써, 변색속도를 향상시키는 효과와 아울러 광밀도를 향상시킴으로써 전기변색소자의 특성을 향상시키는 효과가 있다.As described above, the electrochromic device of the present invention and a method for manufacturing the same are evenly distributed in the solid polymer electrolyte so that the reaction of ions occurs in the solid polymer electrolyte, thereby improving the discoloration rate. By improving the light density, there is an effect of improving the characteristics of the electrochromic device.

Claims (8)

하부기판 상에 성막된 하부전극과, 상기 하부전극 상에서 전해질에 의한 하부전극의 열화를 방지하는 전기변색물질층과, 상기 전기변색물질층의 상부에 위치하여 전압의 인가에 따른 이온반응에 의해 변색되는 나노크기의 전기변색물질을 포함하는 고체 고분자 전해질층과, 상기 고체 고분자 전해질층의 상부에 위치하는 이온 스토리지층과, 상기 이온 스토리지층의 상부에 위치하는 상부전극과, 상기 상부전극상에 위치하는 상부기판으로 이루어진 것을 특징으로 하는 전기변색소자.A lower electrode deposited on the lower substrate, an electrochromic material layer for preventing degradation of the lower electrode by the electrolyte on the lower electrode, and an upper part of the electrochromic material layer, which is discolored by an ionic reaction upon application of voltage. A solid polymer electrolyte layer comprising a nano-sized electrochromic material, an ion storage layer positioned on the solid polymer electrolyte layer, an upper electrode positioned on the ion storage layer, and positioned on the upper electrode Electrochromic device characterized in that consisting of an upper substrate. 제 1항에 있어서, 상기 고체 고분자 전해질층에 포함되는 나노 크기의 전기변색물질은 산화텅스텐인 것을 특징으로 하는 전기변색소자.The electrochromic device according to claim 1, wherein the nano-size electrochromic material included in the solid polymer electrolyte layer is tungsten oxide. 제 1항에 있어서, 상기 이온 스토리지층은 백색을 나타내는 이산화 티타늄을 포함하여 된 것을 특징으로 하는 전기변색소자.The electrochromic device according to claim 1, wherein the ion storage layer comprises titanium dioxide showing white color. 하부기판 상에 하부전극을 성막하고, 그 하부전극 상에 전기변색물질층을 형성하는 단계와; 상기 전기변색물질층의 상부에 나노 크기의 전기변색물질을 균일하게 포함하는 고체 고분자 전해질층을 형성하는 단계와; 상부기판 상에 상부전극을 형성하고, 그 상부전극의 상부에 이온 스토리지층을 형성하는 단계와; 상기 상부기판과 하부기판을 그 고체 고분자 전해질층과 이온 스토리지층이 접하도록 합착하는단계로 이루어진 것을 특징으로 하는 전기변색소자 제조방법.Forming a lower electrode on the lower substrate and forming an electrochromic material layer on the lower electrode; Forming a solid polymer electrolyte layer including a nano-sized electrochromic material uniformly on the electrochromic material layer; Forming an upper electrode on the upper substrate, and forming an ion storage layer on the upper electrode; And bonding the upper substrate and the lower substrate to contact the solid polymer electrolyte layer and the ion storage layer. 제 4항에 있어서, 상기 고체 고분자 전해질층을 형성하는 단계는 나노 크기의 산화텅스텐 분말을 획득하는 단계와; 상기 산화텅스텐 분말을 자외선 경화형 고체 고분자 전해질에 용해 시키는 단계와; 상기 산화텅스텐 분말이 용해된 자외선 경화형 고체 고분자 전해질을 상기 전기변색물질층의 상부에 코팅하고, 자외선에 노출시켜 경화하는 단계로 이루어진 것을 특징으로 하는 전기변색소자 제조방법.The method of claim 4, wherein the forming of the solid polymer electrolyte layer comprises: obtaining a nano-sized tungsten oxide powder; Dissolving the tungsten oxide powder in an ultraviolet curable solid polymer electrolyte; The method of manufacturing an electrochromic device comprising the step of coating the UV curable solid polymer electrolyte in which the tungsten oxide powder is dissolved on top of the electrochromic material layer and exposing it to UV light. 제 5항에 있어서, 상기 산화텅스텐 분말을 획득하는 단계는 텅스텐 분말과 과산화수소를 반응시켜, 산화텅스텐 수용액을 획득하는 단계와; 상기 산화텅스텐 수용액을 80~100℃의 온도분위기에서 건조시켜, 10~50nm의 입경을 가지는 산화텅스텐 분말을 획득하는 단계로 이루어진 것을 특징으로 하는 전기변색소자 제조방법.The method of claim 5, wherein the obtaining of the tungsten oxide powder comprises: reacting the tungsten powder with hydrogen peroxide to obtain an aqueous tungsten oxide solution; Drying the tungsten oxide aqueous solution at a temperature of 80 ~ 100 ℃, to obtain a tungsten oxide powder having a particle size of 10 ~ 50nm electrochromic device manufacturing method characterized in that consisting of. 제 5항에 있어서, 상기 자외선 경화형 고체 고분자 전해질은 아크릴레이트기를 가지는 PEG계 올리고머와 2 또는 3의 아크릴 반응성기를 가지는 PEG계 올리고머를 10:1 내지 10:5의 비율로 혼합하고, 저분자량의 PEGDMe를 무게비로 50~70wt%로 함유시킨 후, 전해질염을 10~30wt%로 혼합하고, 광개시제를 0.1~1wt%로 혼합시킨 것을 특징으로 하는 전기변색소자 제조방법.The method of claim 5, wherein the UV-curable solid polymer electrolyte is a low molecular weight PEGDMe by mixing a PEG-based oligomer having an acrylate group and a PEG-based oligomer having a 2 or 3 acrylic reactive group in a ratio of 10: 1 to 10: 5 After containing 50 to 70wt% by weight ratio, the electrolyte salt is mixed by 10 ~ 30wt%, the photochromic compound is mixed 0.1 ~ 1wt% method for producing an electrochromic device. 제 4항에 있어서, 상기 고체 고분자 전해질은 산화텅스텐이 1~30wt%로 함유하는 것을 특징으로 하는 전기변색소자 제조방법.5. The method of claim 4, wherein the solid polymer electrolyte contains 1 to 30 wt% of tungsten oxide.
KR1020020011693A 2002-03-05 2002-03-05 Electrochromic device and manufacturing method thereof KR20030072123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020011693A KR20030072123A (en) 2002-03-05 2002-03-05 Electrochromic device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020011693A KR20030072123A (en) 2002-03-05 2002-03-05 Electrochromic device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR20030072123A true KR20030072123A (en) 2003-09-13

Family

ID=32223508

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020011693A KR20030072123A (en) 2002-03-05 2002-03-05 Electrochromic device and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR20030072123A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100740324B1 (en) * 2006-03-06 2007-07-18 에스케이씨 주식회사 Preparation of prussian blue coating film for electrochromic device
KR100870613B1 (en) * 2005-11-02 2008-11-25 주식회사 엘지화학 Electrode structure of electrochromic device
WO2012021452A2 (en) * 2010-08-09 2012-02-16 Gentex Corporation Electro-optic system configured to reduce a perceived color change
KR101287201B1 (en) * 2005-12-30 2013-07-16 엘지디스플레이 주식회사 A electrochromic display device and a method for fabricating the same
US8964278B2 (en) 2010-08-09 2015-02-24 Gentex Corporation Electro-optic system configured to reduce a perceived color change
WO2017155295A1 (en) * 2016-03-08 2017-09-14 주식회사 엘지화학 Electrochromic device
KR20170104944A (en) * 2016-03-08 2017-09-18 주식회사 엘지화학 Electrochromic device
KR20180005924A (en) * 2016-07-07 2018-01-17 주식회사 엘지화학 Electrochromic device and method for manufacturing same
CN108139643A (en) * 2015-10-13 2018-06-08 株式会社Lg化学 Electric driven color-changing part and its manufacturing method
WO2022103234A1 (en) * 2020-11-16 2022-05-19 립하이 주식회사 Electrochromic element and electrochromic device comprising same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100870613B1 (en) * 2005-11-02 2008-11-25 주식회사 엘지화학 Electrode structure of electrochromic device
KR101287201B1 (en) * 2005-12-30 2013-07-16 엘지디스플레이 주식회사 A electrochromic display device and a method for fabricating the same
KR100740324B1 (en) * 2006-03-06 2007-07-18 에스케이씨 주식회사 Preparation of prussian blue coating film for electrochromic device
WO2012021452A2 (en) * 2010-08-09 2012-02-16 Gentex Corporation Electro-optic system configured to reduce a perceived color change
WO2012021452A3 (en) * 2010-08-09 2012-04-12 Gentex Corporation Electro-optic system configured to reduce a perceived color change
US8964278B2 (en) 2010-08-09 2015-02-24 Gentex Corporation Electro-optic system configured to reduce a perceived color change
US9096181B2 (en) 2010-08-09 2015-08-04 Gentex Corporation Electro-optic system configured to reduce a perceived color change
US9709869B2 (en) 2010-08-09 2017-07-18 Gentex Corporation Electro-optic system configured to reduce a perceived color change
CN108139643A (en) * 2015-10-13 2018-06-08 株式会社Lg化学 Electric driven color-changing part and its manufacturing method
CN108139643B (en) * 2015-10-13 2020-11-03 株式会社Lg化学 Electrochromic element and method for manufacturing same
WO2017155295A1 (en) * 2016-03-08 2017-09-14 주식회사 엘지화학 Electrochromic device
CN108369363A (en) * 2016-03-08 2018-08-03 株式会社Lg化学 Electrochromic device
KR20170104944A (en) * 2016-03-08 2017-09-18 주식회사 엘지화학 Electrochromic device
US10877348B2 (en) 2016-03-08 2020-12-29 Lg Chem, Ltd. Electrochromic device
CN108369363B (en) * 2016-03-08 2021-05-07 株式会社Lg化学 Electrochromic device
KR20180005924A (en) * 2016-07-07 2018-01-17 주식회사 엘지화학 Electrochromic device and method for manufacturing same
CN109154756A (en) * 2016-07-07 2019-01-04 株式会社Lg化学 Electrochromic device and its manufacturing method
CN109154756B (en) * 2016-07-07 2021-04-27 株式会社Lg化学 Electrochromic device and method of manufacturing the same
WO2022103234A1 (en) * 2020-11-16 2022-05-19 립하이 주식회사 Electrochromic element and electrochromic device comprising same

Similar Documents

Publication Publication Date Title
JP6256841B2 (en) Flexible transparent electrochromic device and method for its preparation
KR100889454B1 (en) Electrochromic device having complex-type electrochromic layer and method for preparing thereof
KR101731301B1 (en) Microporous polymer membrane for electrochromic device and smart window including the same
EP3686666B1 (en) Method for manufacturing electrochromic device
CN107111196A (en) Electrochromic device and its manufacture method
KR101816536B1 (en) Electrochromic device and method of manufacturing the same
Leitzke et al. Electrochemical properties of WO3 sol-gel thin films on indium tin oxide/poly (ethylene terephthalate) substrate
JP2004151265A (en) Electrochromic device and electrochromic display
KR20030072123A (en) Electrochromic device and manufacturing method thereof
JP2017026750A (en) Electrochromic device, light control glasses, and method for manufacturing the electrochromic device
JP2003270671A (en) Electrochromic device
KR102167224B1 (en) Gel Polymer Electolyte, an Electrochromic Device Comprising the Same and Method for Preparing thereof
Fu et al. Investigation of electrochromic device based on multi-step electrodeposited PB films
EP1060289B1 (en) Method of preparing lithiated vanadium oxide-coated substrates of optical quality
JP4074105B2 (en) Electrochromic device
KR20170120455A (en) Electrochromic device containing polymer electrolyte in gel state and preparation method thereof
KR20220097574A (en) Polymer composition for electrochromic device, ion conductive composition and electrochromic device comprising the same
JP2003248242A (en) Electrochromic device
Kim et al. Evaluation of a reliable electrochromic device based on PEDOT: PSS-TiO 2 heterostructure fabricated at low temperature
Wu et al. Electrochromic materials: Scope for the cyclic decay mechanisms and performance stability optimisation strategies
Primiceri et al. Enhanced Durability of an All-Solid-State WO3 Based Electrochromic Device on a Single Substrate by Using a Complementary Anodically Coloring Poly (o-ethoxyaniline)
JP4382324B2 (en) Electrochromic device
KR20210009866A (en) Electrochromic Laminate
JP2003248241A (en) Electrochromic device
JPH1135935A (en) Preparation of composition for color developing layer for chromic element

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application