WO2021029561A1 - Electrochromic device - Google Patents

Electrochromic device Download PDF

Info

Publication number
WO2021029561A1
WO2021029561A1 PCT/KR2020/009689 KR2020009689W WO2021029561A1 WO 2021029561 A1 WO2021029561 A1 WO 2021029561A1 KR 2020009689 W KR2020009689 W KR 2020009689W WO 2021029561 A1 WO2021029561 A1 WO 2021029561A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode layer
electrochromic
transparent electrode
depositing
Prior art date
Application number
PCT/KR2020/009689
Other languages
French (fr)
Korean (ko)
Inventor
박중원
Original Assignee
박중원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박중원 filed Critical 박중원
Publication of WO2021029561A1 publication Critical patent/WO2021029561A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1506Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/161Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • G02F2001/1536Constructional details structural features not otherwise provided for additional, e.g. protective, layer inside the cell

Definitions

  • the present invention relates to an electrochromic device, and more particularly, to an electrochromic device having low power consumption and excellent processability and reliability.
  • An electrochromic device is a device that uses a reversible color change that occurs when an electrochromic substance electrochemically causes an oxidation or reduction reaction.
  • the electrochromic element can be used in a smart window for a building, a mirror (rear mirror, side mirror, etc.) for an automobile, a sunroof or a display device for an automobile.
  • the electrochromic device Compared to, for example, polymer-dispersed liquid crystal (PDLC) or suspended particle display (SPD), the electrochromic device has an advantage of having low power consumption and being able to manufacture a device with a large area at low cost.
  • PDLC polymer-dispersed liquid crystal
  • SPD suspended particle display
  • an electrochromic element generally includes a counter electrode layer, an ion conductive layer, and an electrochromic layer disposed between transparent electrode layers. Ions are supplied from the counter electrode layer to the electrochromic layer through the ion conductive layer to cause electrochromic discoloration.
  • a gel type polymer electrolyte may be used as the ion conductive layer.
  • the gel-type polymer electrolyte is formed using a dispenser, it is difficult to form an ion conductive layer having a uniform thickness over a large area, and since the gel-type polymer electrolyte flows down by gravity, it is difficult to use for a long time. Accordingly, a technology for using a solid electrolyte as an ion conductive layer has been recently developed. When a solid electrolyte is used, a memory effect of electrochromic can be expected, and power consumption can be reduced compared to an electrochromic device using a gel-type polymer electrolyte that must continuously supply power for electrochromic discoloration.
  • each layer of the electrochromic device is laminated on the substrate using different techniques. Accordingly, it takes a lot of time to form each layer.
  • two glass substrates are bonded using a sealing technique, and since there is no means to protect the device other than sealing, it is easily damaged by an external environment, especially moisture. Moreover, the cost of product production increases with the use of two glass substrates.
  • the problem to be solved by the present invention is to provide an electrochromic device having excellent processability and reliability while reducing cost.
  • Another problem to be solved by the present invention is to provide an electrochromic device with low power consumption by enhancing a memory effect.
  • Another problem to be solved by the present invention is to provide an electrochromic device with improved electrochromic efficiency.
  • Another problem to be solved by the present invention is to provide an electrochromic device that can be manufactured by an in-line process.
  • An electrochromic device includes: a first transparent electrode layer; A second transparent electrode layer disposed on the first transparent electrode layer; An electrochromic laminate disposed between the first transparent electrode layer and the second transparent electrode layer; And a protective coating layer covering the second transparent electrode layer, wherein the protective coating layer has a single layer or multilayer structure formed using a sputtering technique or a chemical vapor deposition technique.
  • An electrochromic device manufacturing method includes depositing an electrochromic layer on a substrate, depositing an ion conductive layer on the electrochromic layer, depositing a counter electrode layer on the ion conductive layer, And depositing a transparent electrode layer on the counter electrode layer, and depositing a protective coating layer on the transparent electrode layer.
  • the electrochromic laminate may be efficiently protected from an external environment. Further, since all the layers on the substrate are formed using a deposition technique, an electrochromic device can be manufactured using an in-line deposition apparatus, and thus, productivity can be improved.
  • FIG. 1 is a schematic cross-sectional view illustrating an electrochromic device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an in-line sputtering apparatus for manufacturing an electrochromic device according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of an in-line sputtering apparatus for manufacturing an electrochromic device according to another embodiment of the present invention.
  • An electrochromic device includes: a first transparent electrode layer; A second transparent electrode layer disposed on the first transparent electrode layer; An electrochromic laminate disposed between the first transparent electrode layer and the second transparent electrode layer; And a protective coating layer covering the second transparent electrode layer, wherein the protective coating layer has a single layer or multilayer structure formed using a sputtering technique or a chemical vapor deposition technique.
  • the protective coating layer By adopting the protective coating layer, there is no need to bond the substrate on the second transparent electrode layer, and accordingly, the productivity of the electrochromic element can be improved, and the manufacturing cost can be reduced. Further, it is possible to improve the reliability of the electrochromic device by adopting a protective coating layer suitable for protecting the electrochromic laminate from the external environment.
  • the protective coating layer has a single layer or multilayer structure formed using sputtering technology or chemical vapor deposition technology, it is possible to provide an electrochromic device that can be manufactured in an in-situ process using in-line deposition technology. .
  • the protective coating layer may include at least one oxide film selected from the group consisting of a silicon nitride film, a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, a hafnium oxide film, or a manganese oxide film, for example, polyimide.
  • the electrochromic device may further include a substrate in contact with the first transparent electrode layer.
  • the substrate may be a transparent substrate, for example, a glass substrate or a polymer substrate.
  • the electrochromic laminate may include an electrochromic layer; A counter electrode layer; And an ion conductive layer disposed between the electrochromic layer and the counter electrode layer.
  • the electrochromic layer and the counter electrode layer may exhibit electrochromic colors by a reduction reaction and an oxidation reaction, or an oxidation reaction and a reduction reaction, respectively.
  • the electrochromic layer undergoes a reduction reaction
  • the counter electrode layer undergoes an oxidation reaction, and vice versa.
  • Materials used for the electrochromic layer include, for example, WO 3 , NiO, NiWO, NIWNbO, MoO 3 , Nb 2 O 5 , TiO 2 , CuO, Ir 2 O 3 , Cr 2 O 3 , MnO 2 , Mn 2 O 3 , V 2 O 5 , Ni 2 O 3 , Co 2 O 3 , SiO 2 , Ta 2 O 5 , ZrO 2 , or CeO 2 .
  • Materials used as counter electrode layers include, for example, WO 3 , NiO, NiWO, NiWNBO, MoO 3 , Nb 2 O 5 , TiO 2 , CuO, Ir 2 O 3 , Cr 2 O 3 , MnO 2 , Mn 2 O 3 , V 2 O 5 , Ni 2 O 3 , Co 2 O 3 , SiO 2 , Ta 2 O 5 , ZrO 2 , or CeO 2 .
  • the stoichiometric ratio of each material is described, but it should be understood as including materials of non-stoichiometric ratio.
  • the ion conductive layer includes ions moving to the electrochromic layer.
  • the ions may include, for example, H+, Li+, D+, alkali metal ions or alkaline earth metal ions.
  • the ion conducting layer may include hydrogen ions together with lithium ions.
  • the ion conducting layer may be formed of, for example, LiWOx containing hydrogen ions.
  • the counter electrode layer or the electrochromic layer may include hydrogen ions together with lithium ions.
  • An electrochromic device manufacturing method includes depositing an electrochromic layer on a substrate, depositing an ion conductive layer on the electrochromic layer, depositing a counter electrode layer on the ion conductive layer, And depositing a transparent electrode layer on the counter electrode layer, and depositing a protective coating layer on the transparent electrode layer.
  • the electrochromic layer, the ion conductive layer, the counter electrode layer, the transparent electrode layer, and the protective coating layer are all formed using a vapor deposition technique, and techniques such as dispensing or bonding of a glass substrate are omitted.
  • the electrochromic layer, the ion conductive layer, the counter electrode layer, the transparent electrode layer, and the protective coating layer may be deposited in-situ using an in-line sputtering deposition equipment. Since the layers are deposited without vacuum breaking, defects in each layer can be reduced and productivity can be improved.
  • the method of manufacturing an electrochromic device may further include depositing a transparent electrode layer on the substrate before depositing the electrochromic layer.
  • the substrate may include a transparent electrode layer, and the electrochromic layer may be deposited on the transparent electrode layer.
  • the method of manufacturing the electrochromic device may further include heat-treating the substrate on which the transparent electrode layer is deposited after depositing the transparent electrode layer. By heat treatment of the transparent electrode layer, the specific resistance of the transparent electrode layer can be lowered.
  • the method of manufacturing an electrochromic device may further include heat-treating the substrate after depositing the counter electrode layer and before depositing the transparent electrode layer. By heat-treating the counter electrode layer, pinholes in the counter electrode layer can be reduced, and accordingly, the memory effect can be improved.
  • the counter electrode layer when depositing the counter electrode layer, a bias voltage may be applied to the substrate side. Accordingly, the counter electrode layer can be formed with high density, and pinholes in the counter electrode layer can be reduced.
  • H2 gas is supplied together with a carrier gas, and a flow rate ratio (carrier gas/H2 gas) of the carrier gas and the H2 gas may be in the range of 90/10 to 98/2.
  • hydrogen ions By supplying H2 gas together with the carrier gas, hydrogen ions can be introduced into the ion conductive layer through a deposition process, and thus, hydrogen ions can be used as additional ions for electrochromic, thereby improving electrochromic efficiency.
  • the counter electrode layer may include a Li layer inside or on the surface of the layer. Li ions can be replenished by including the Li layer in the counter electrode layer.
  • FIG. 1 is a schematic cross-sectional view illustrating an electrochromic device according to an embodiment of the present invention.
  • the electrochromic device may include a substrate 21, a first transparent electrode layer 23, an electrochromic laminate 30, a second transparent electrode layer 31, and a protective coating layer 33.
  • the electrochromic laminate 30 may include an electrochromic layer 25, an ion conductive layer 27 and a counter electrode layer 29.
  • the substrate 21 is a transparent substrate and is not particularly limited as long as it is a substrate on which the electrochromic laminate 30 can be deposited.
  • the substrate 21 may be a glass substrate, but is not limited thereto.
  • the first transparent electrode layer 23 may be formed of a transparent conductive oxide film, for example, an indium tin oxide film (ITO).
  • ITO indium tin oxide film
  • the first transparent electrode layer 23 may be deposited on the substrate 21 using a sputtering device, and may be heat treated by a heater after being deposited on the substrate 21.
  • the first transparent electrode layer 23 may be deposited to a thickness of, for example, 500 to 5000 ⁇ .
  • the electrochromic layer 25 is converted from a colorless layer to a colored layer by an oxidation or reduction reaction.
  • a material having such an electrochromic property for example, WO 3 , NiO, NiWO, NIWNbO, MoO 3 , Nb 2 O 5 , TiO 2 , CuO, Ir 2 O 3 , Cr 2 O 3 , MnO 2 , Mn 2 O 3 , V 2 O 5 , Ni 2 O 3 , Co 2 O 3 , SiO 2 , Ta 2 O 5 , ZrO 2 , or CeO 2 .
  • the stoichiometric ratio of each material is described, but it should be understood as including materials of non-stoichiometric ratio.
  • the electrochromic layer 25 may be deposited on the first transparent electrode layer 23 using a deposition technique, for example, a sputtering technique.
  • the electrochromic layer 25 may be deposited to a thickness of, for example, 1000 to 10000 ⁇ .
  • H2 gas may be supplied with a carrier gas such as Ar, and thus hydrogen ions may be introduced into the electrochromic layer 25.
  • a layer of a material used as a mobile ion, for example, a Li layer may be added to the surface of the electrochromic layer 25.
  • the ion conductive layer 27 is a layer that conducts ions between the electrochromic layer 25 and the counter electrode layer 29 when a voltage is applied to both ends of the electrochromic laminate 30.
  • the ion conductive layer 27 may be formed of a material containing mobile ions.
  • the mobile ions may include, for example, H+, Li+, D+, alkali metal ions or alkaline earth metal ions.
  • the ion conductive layer 27 may be formed of, for example, LiWOx, for example, Li2WO4, and further, may include hydrogen ions.
  • the ion conductive layer 27 may be deposited using a deposition technique, such as a sputtering technique.
  • the ion conductive layer 27 may be formed to a thickness of, for example, 300 to 3000 ⁇ .
  • H2 gas may be supplied with a carrier gas such as Ar, and thus hydrogen ions may be introduced into the ion conductive layer 27.
  • the flow ratio (Ar/H2) of Ar and H2 gas may be in the range of 90/10 to 98/2.
  • the counter electrode layer 29 is converted from a colorless layer to a colored layer by an oxidation or reduction reaction.
  • the counter electrode layer 29 has electrochromic characteristics through a reaction opposite to that of the electrochromic layer 25.
  • Materials used as the counter electrode layer 29 include, for example, WO 3 , NiO, NiWO, NIWNbO, MoO 3 , Nb 2 O 5 , TiO 2 , CuO, Ir 2 O 3 , Cr 2 O 3 , MnO 2 , Mn 2 O 3 , V 2 O 5 , Ni 2 O 3 , Co 2 O 3 , SiO 2 , Ta 2 O 5 , ZrO 2 , or CeO 2 .
  • the stoichiometric ratio of each material is described, but it should be understood as including materials of non-stoichiometric ratio.
  • the counter electrode layer 29 may be deposited on the ion conductive layer 27 using a deposition technique, for example, a sputtering technique.
  • the counter electrode layer 29 may be deposited to a thickness of, for example, about 500 to 5000 ⁇ .
  • a bias voltage may be applied to the substrate 21 in addition to the voltage applied to the target. By applying a bias voltage to the substrate 21 side, a high-density counter electrode layer 29 can be formed, and accordingly, pinholes in the counter electrode layer can be reduced.
  • the pinhole in the counter electrode layer 29 reduces the memory effect of the electrochromic element. Accordingly, by depositing the counter electrode layer 29 at a high density to reduce pinholes, the memory effect of the electrochromic device can be improved. Further, in order to reduce pinholes in the counter electrode layer 29, the counter electrode layer 29 may be deposited at a relatively high temperature, and after the counter electrode layer 29 is deposited, heat treatment may be performed at a temperature of about 100 to 300°C. May be.
  • H2 gas may be supplied along with a carrier gas such as Ar, and thus hydrogen ions may be introduced into the counter electrode layer 29.
  • Introduction of hydrogen ions improves the electrochromic efficiency.
  • a layer of a material used as moving ions for example, a Li layer may be added when the counter electrode layer 29 is deposited.
  • a layer of a material used as moving ions for example, a Li layer, may be added to the surface of the counter electrode layer 29. The Li layer increases the life of the electrochromic device by supplying Li ions.
  • the second transparent electrode layer 31 may be formed of a transparent conductive oxide film, for example, an indium tin oxide film (ITO) or an indium gallium zinc oxide film (IGZO).
  • the second transparent electrode layer 31 may be deposited on the counter electrode layer 29 using a sputtering device, and may be heat treated by a heater.
  • the second transparent electrode layer 31 may be deposited to a thickness of, for example, 500 to 5000 ⁇ .
  • the protective coating layer 33 protects the electrochromic element from the external environment.
  • the protective coating layer 33 protects the electrochromic laminate from moisture, and further protects the electrochromic element from external physical forces to prevent defects such as scratching.
  • the protective coating layer 33 may be deposited on the second transparent electrode layer 31 using a sputtering technique or a chemical vapor deposition technique.
  • the protective coating layer 33 may include, for example, an oxide film or polyimide of at least one of a silicon nitride film, a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, a hafnium oxide film, or a manganese oxide film.
  • the protective coating layer 33 may be formed as a single layer, but is not limited thereto, and may be formed as multiple layers. By adopting the protective coating layer 33, it is possible to omit the conventional glass substrate, thereby reducing the weight of the product. Further, since the bonding process of the glass substrate can be omitted, productivity is improved and manufacturing cost can be reduced. Moreover, the protective coating layer 33 does not contain a curable resin that requires a separate curing process other than the deposition process, and thus, a mass production process currently used in the liquid crystal display production process can be used, which is suitable for product enlargement. Furthermore, a flexible electrochromic device may be provided by using a relatively thin protective coating layer 33 instead of a glass substrate.
  • a voltage is applied to the first transparent electrode layer 23 and the second transparent electrode layer 31.
  • charges, in particular, ions move between the counter electrode layer 29 and the electrochromic layer 25 through the ion conducting layer 27, and thus, electrochromic discoloration occurs.
  • the electrochromic layer 25 and the counter electrode layer 29 may exhibit electrochromic discoloration by a reduction reaction and an oxidation reaction, or an oxidation reaction and a reduction reaction, respectively.
  • the electrochromic element according to the present embodiment may be used in a smart window for a building, a mirror (rear mirror, side mirror, etc.) for an automobile, a sunroof for a vehicle, or a display device, like the conventional electrochromic element.
  • the electrochromic device according to the present embodiment may be applied to glasses for vision correction, augmented reality smart glasses, or information smart glasses for information display. That is, the electrochromic element may be applied to eyeglasses for vision correction and used as sunglasses, and may be applied to augmented reality smart glasses or information smart glasses to perform a light shutter function.
  • the base substrate of glasses for applying the electrochromic element, or the base substrate of smart glasses is a transparent material, for example, glass, or polyethylene naphthalate (PEN), polyimide (PI).
  • PEN polyethylene naphthalate
  • PI polyimide
  • ADC allyl diglycol carboanate; ex. CR39
  • Tribex system acrylic system
  • PC Polycarbonate
  • PU polyurethane
  • It may be a polymer-based material such as terephthalate (PET, polyethylene terephthalate)-based or episulfide-based material.
  • FIG. 2 is a schematic cross-sectional view of an in-line sputtering apparatus for manufacturing an electrochromic device according to an embodiment of the present invention.
  • the in-line sputtering apparatus includes a stage 110, a carrier 51, a target holder 120, a plurality of targets T1, T2, T3, T4, T5, and a heater 125.
  • I can.
  • the stage 110 provides a means of movement through which the carrier 51 can move.
  • the carrier 51 moves through the stage 110 to a chamber in which a deposition process is performed in each process step.
  • the target holder 120 supports the targets T1 to T5.
  • the target holder 120 may also support the heater 125.
  • a series of targets T1, T2, T3, T4, T5 are arranged in-line. Five targets T1, T2, T3, T4, T5) are shown in order, but fewer or more targets may be placed in order. Targets (T1, T2, T3, T4, T5) may be disposed in the chamber, respectively, and when sputtering deposition is completed in one target, the substrate 21 is a chamber with the target of the next process by the carrier 51 Moving on to, the following deposition process is carried out continuously.
  • the in-line sputtering apparatus can deposit thin films in-situ without vacuum breaking.
  • the substrate 21 on which the first transparent electrode layer 23 is deposited may be disposed under the target T1 in the in-line sputtering apparatus.
  • the target T1 is, for example, a target for depositing the electrochromic layer 25, and may be, for example, a tungsten or tungsten oxide target.
  • a tungsten oxide film may be deposited by directly sputtering tungsten oxide, or after sputtering tungsten, oxygen may be supplied to oxidize the deposited tungsten.
  • H 2 gas may be introduced along with a carrier gas.
  • the substrate 21 moves to the chamber where the target T2 is located.
  • the target T2 is for forming the ion conducting layer 27 and may be a target including moving ions.
  • the target T2 may be, for example, a Li or Li 2 WO 4 target.
  • the electrochromic layer 25 is a tungsten oxide film, a thin layer of Li is deposited on the surface of the electrochromic layer 25 to form an ion conductive layer 27 of LiWOx.
  • the ion conducting layer 27 may be deposited at a relatively higher temperature compared to other layers. Further, a bias voltage may be added to the substrate 21 while depositing the ion conductive layer 27.
  • the substrate 21 is moved to the chamber where the target T3 is located to deposit the counter electrode layer 29.
  • the target T3 may include the same material as the counter electrode layer 29 or may be a metal material of the counter electrode layer 29.
  • the target T3 may be a Ni target, and a Ni layer may be deposited on the ion conductive layer 27 and oxidized to form a counter electrode layer 29 such as NiO.
  • the substrate 21 may move to the chamber in which the target T4 is located.
  • the target T4 may be, for example, a Li target, and a Li layer may be added to the surface of the counter electrode layer 29 by using the target T4.
  • a target for further depositing the counter electrode layer 29 may be added subsequent to the target T4.
  • the substrate 21 may move to the chamber in which the target T5 is located to deposit the second transparent electrode layer 31.
  • the target T5 may be a transparent conductive oxide, for example, an ITO target.
  • heat treatment may be performed on the substrate 21, and for this purpose, a heater 125 may be used.
  • a target for depositing the protective coating layer 33 may be provided, and the substrate 21 on which the heat treatment has been performed moves to the chamber for depositing the protective coating layer 33 so that the protective coating layer 33 Can be deposited.
  • the electrochromic laminate 30, the second transparent electrode layer 31, and the protective coating layer 33 may be collectively deposited using an in-line sputtering device, and accordingly, the electrochromic element Productivity is dramatically improved.
  • hydrogen ions may be introduced into the electrochromic laminate 30 by supplying hydrogen gas while the electrochromic layer 25, the ion conductive layer 27, or the counter electrode layer 29 is deposited.
  • Source ions induce electrochromic ions together with metal transfer ions such as Li ions, thereby improving electrochromic efficiency.
  • the chamber temperature is relatively high, or a bias voltage is applied to the substrate 21, or after deposition is completed, the counter electrode layer ( By heat treatment 29), pinholes in the counter electrode layer 29 can be reduced, and thus, the memory effect can be improved.
  • the substrate 21 on which the first transparent electrode layer 23 is formed is supplied to the in-line sputtering apparatus, but is not limited thereto.
  • a target for depositing the first transparent electrode layer 23 may be disposed, and before the electrochromic layer 23 is deposited, the first transparent electrode layer 23 is in-line on the substrate 21 It may also be deposited in a sputtering device.
  • FIG. 3 is a schematic cross-sectional view of an in-line sputtering apparatus for manufacturing an electrochromic device according to another embodiment of the present invention.
  • the in-line sputtering apparatus is substantially similar to that described with reference to FIG. 2, except that a heater 135 is additionally disposed between targets.
  • the ion conductive layer 27 is heat-treated using the heater 135.
  • the counter electrode layer 29 is deposited using the target T3
  • heat treatment may be performed using the heater 135.
  • heat treatment may be performed even after the Li layer is deposited on the counter electrode layer 29 using the target T4, and the heat treatment may be performed even after the second transparent electrode layer 31 is deposited.
  • heat treatment is performed on the first transparent electrode layer 23 before depositing the electrochromic layer 25 even after the first transparent electrode layer 23 is deposited. Can be done.
  • heat treatment can be performed on each layer using the heater 135, thereby providing thin film layers having good film quality.
  • the substrate 21 may be a base substrate of glasses or smart glasses, or after the electrochromic element is formed on the substrate 21, it is peeled off with or from the substrate 21. It can also be attached to the base substrate of glasses or smart glasses.

Abstract

An electrochromic device according to an embodiment comprises: a first transparent electrode layer; a second transparent electrode layer disposed above the first transparent electrode layer; an electrochromic laminate disposed between the first transparent electrode layer and the second transparent electrode layer; and a protective coating layer covering the second transparent electrode layer.

Description

전기 변색 소자Electrochromic element
본 발명은 전기 변색 소자에 관한 것으로, 더욱 상세하게는 전력 소모가 적고 공정성 및 신뢰성이 우수한 전기 변색 소자에 관한 것이다.The present invention relates to an electrochromic device, and more particularly, to an electrochromic device having low power consumption and excellent processability and reliability.
전기 변색 소자는 전기 변색 물질이 전기화학적으로 산화 또는 환원 반응을 일으킬 때 나타나는 가역적인 색 변화를 이용하는 소자이다. 전기 변색 소자는 건축용 스마트 윈도우, 자동차용 미러(리어 미러, 사이드 미러 등), 자동차용 선루프 또는 디스플레이 장치에 사용될 수 있다.An electrochromic device is a device that uses a reversible color change that occurs when an electrochromic substance electrochemically causes an oxidation or reduction reaction. The electrochromic element can be used in a smart window for a building, a mirror (rear mirror, side mirror, etc.) for an automobile, a sunroof or a display device for an automobile.
전기 변색 소자는 예를 들어 PDLC(polymer-dispersed liquid crystal) 또는 SPD(suspended particle display)와 대비하여 소비 전력이 낮으며, 적은 비용으로 넓은 면적의 소자를 제작할 수 있는 장점이 있다.Compared to, for example, polymer-dispersed liquid crystal (PDLC) or suspended particle display (SPD), the electrochromic device has an advantage of having low power consumption and being able to manufacture a device with a large area at low cost.
한편, 전기 변색 소자는 일반적으로 투명 전극층 사이에 배치된 카운터 전극층, 이온 전도층 및 전기 변색층을 포함한다. 카운터 전극층으로부터 이온 전도층을 통해 전기 변색층으로 이온이 공급되어 전기 변색이 발생한다.Meanwhile, an electrochromic element generally includes a counter electrode layer, an ion conductive layer, and an electrochromic layer disposed between transparent electrode layers. Ions are supplied from the counter electrode layer to the electrochromic layer through the ion conductive layer to cause electrochromic discoloration.
이온 전도층으로는 겔타입 고분자 전해질이 사용될 수 있다. 그러나 겔타입 고분자 전해질은 디스펜서를 이용하여 형성되므로, 넓은 면적에 걸쳐 균일한 두께의 이온 전도층을 형성하기 어렵고, 또한, 겔타입 고분자 전해질이 중력에 의해 아래로 흐르기 때문에, 장시간 사용하기 어렵다. 이에 따라, 최근 고체 전해질을 이온 전도층으로 사용하는 기술이 개발되고 있다. 고체 전해질을 사용할 경우, 전기 변색의 메모리 효과를 기대할 수 있어, 전기 변색을 위해 전력을 계속해서 공급해야 하는 겔타입 고분자 전해질을 사용한 전기 변색 소자에 비해 전력 소모를 줄일 수 있다.As the ion conductive layer, a gel type polymer electrolyte may be used. However, since the gel-type polymer electrolyte is formed using a dispenser, it is difficult to form an ion conductive layer having a uniform thickness over a large area, and since the gel-type polymer electrolyte flows down by gravity, it is difficult to use for a long time. Accordingly, a technology for using a solid electrolyte as an ion conductive layer has been recently developed. When a solid electrolyte is used, a memory effect of electrochromic can be expected, and power consumption can be reduced compared to an electrochromic device using a gel-type polymer electrolyte that must continuously supply power for electrochromic discoloration.
한편, 전기 변색 소자의 각 층들은 서로 다른 기술을 사용하여 기판 상에 적층된다. 이에 따라, 각 층들을 형성하는데 많은 시간이 소요된다. 또한, 전기 변색 소자는 두 개의 글래스 기판을 씰링 기술을 이용하여 접합하는데, 씰링 이외에 소자를 보호할 수단이 없으므로, 외부 환경 특히 수분에 의해 손상 받기 쉽다. 더욱이, 두 개의 글래스 기판을 사용함에 따라 제품 생산 비용이 증가한다.On the other hand, each layer of the electrochromic device is laminated on the substrate using different techniques. Accordingly, it takes a lot of time to form each layer. In addition, in the electrochromic device, two glass substrates are bonded using a sealing technique, and since there is no means to protect the device other than sealing, it is easily damaged by an external environment, especially moisture. Moreover, the cost of product production increases with the use of two glass substrates.
본 발명이 해결하고자 하는 과제는, 비용을 절감하면서도 공정성 및 신뢰성이 우수한 전기 변색 소자를 제공하는 것이다.The problem to be solved by the present invention is to provide an electrochromic device having excellent processability and reliability while reducing cost.
본 발명이 해결하고자 하는 또 다른 과제는, 메모리 효과를 강화하여 전력 소모가 적은 전기 변색 소자를 제공하는 것이다.Another problem to be solved by the present invention is to provide an electrochromic device with low power consumption by enhancing a memory effect.
본 발명이 해결하고자 하는 또 다른 과제는, 전기 변색 효율이 개선된 전기 변색 소자를 제공하는 것이다.Another problem to be solved by the present invention is to provide an electrochromic device with improved electrochromic efficiency.
본 발명이 해결하고자 하는 또 다른 과제는, 인-라인 공정에 의해 제조될 수 있는 전기 변색 소자를 제공하는 것이다.Another problem to be solved by the present invention is to provide an electrochromic device that can be manufactured by an in-line process.
본 발명의 일 실시예에 따른 전기 변색 소자는, 제1 투명 전극층; 상기 제1 투명 전극층 상부에 배치된 제2 투명 전극층; 상기 제1 투명 전극층과 상기 제2 투명 전극층 사이에 배치되고, 전기 변색 적층체; 및 상기 제2 투명 전극층을 덮는 보호 코팅층을 포함하며, 상기 보호 코팅층은 스퍼터링 기술 또는 화학기상 증착 기술을 이용하여 형성된 단일층 또는 다중층 구조를 갖는다.An electrochromic device according to an embodiment of the present invention includes: a first transparent electrode layer; A second transparent electrode layer disposed on the first transparent electrode layer; An electrochromic laminate disposed between the first transparent electrode layer and the second transparent electrode layer; And a protective coating layer covering the second transparent electrode layer, wherein the protective coating layer has a single layer or multilayer structure formed using a sputtering technique or a chemical vapor deposition technique.
본 발명의 일 실시예에 따른 전기 변색 소자 제조 방법은, 기판 상에 전기 변색층을 증착하고, 상기 전기 변색층 상에 이온 전도층을 증착하고, 상기 이온 전도층 상에 카운터 전극층을 증착하고, 상기 카운터 전극층 상에 투명 전극층을 증착하고, 상기 투명 전극층 상에 보호 코팅층을 증착하는 것을 포함한다.An electrochromic device manufacturing method according to an embodiment of the present invention includes depositing an electrochromic layer on a substrate, depositing an ion conductive layer on the electrochromic layer, depositing a counter electrode layer on the ion conductive layer, And depositing a transparent electrode layer on the counter electrode layer, and depositing a protective coating layer on the transparent electrode layer.
본 발명의 실시예들에 따르면, 제2 투명 전극층을 덮는 보호 코팅층을 채택함으로써, 글래스 기판을 접합하는 것을 생략할 수 있으며, 외부 환경으로부터 전기 변색 적층체를 효율적으로 보호할 수 있다. 나아가, 기판 상의 모든 층들을 증착 기술을 이용하여 형성하므로, 전기 변색 소자를 인-라인 증착 장치를 이용하여 제조할 수 있으며, 따라서, 생산성을 향상시킬 수 있다.According to embodiments of the present invention, by adopting a protective coating layer covering the second transparent electrode layer, bonding of the glass substrate may be omitted, and the electrochromic laminate may be efficiently protected from an external environment. Further, since all the layers on the substrate are formed using a deposition technique, an electrochromic device can be manufactured using an in-line deposition apparatus, and thus, productivity can be improved.
도 1은 본 발명의 일 실시예에 따른 전기 변색 소자를 설명하기 위한 개략적인 단면도이다.1 is a schematic cross-sectional view illustrating an electrochromic device according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 전기 변색 소자를 제조하기 위한 인-라인 스퍼터링 장치의 개략적인 단면도이다.2 is a schematic cross-sectional view of an in-line sputtering apparatus for manufacturing an electrochromic device according to an embodiment of the present invention.
도 3은 본 발명의 또 다른 실시예에 따른 전기 변색 소자를 제조하기 위한 인-라인 스퍼터링 장치의 개략적인 단면도이다.3 is a schematic cross-sectional view of an in-line sputtering apparatus for manufacturing an electrochromic device according to another embodiment of the present invention.
이하, 첨부한 도면들을 참조하여 본 발명의 실시예들을 상세히 설명한다. 다음에 소개되는 실시예들은 본 발명이 속하는 기술분야의 통상의 기술자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고, 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 또한, 하나의 구성요소가 다른 구성요소의 "상부에" 또는 "상에" 있다고 기재된 경우 각 부분이 다른 부분의 "바로 상부" 또는 "바로 상에" 있는 경우뿐만 아니라 각 구성요소와 다른 구성요소 사이에 또 다른 구성요소가 개재된 경우도 포함한다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following embodiments are provided as examples in order to sufficiently convey the idea of the present invention to those skilled in the art to which the present invention pertains. Accordingly, the present invention is not limited to the embodiments described below and may be embodied in other forms. In addition, in the drawings, the width, length, and thickness of the component may be exaggerated for convenience. In addition, when one component is described as "above" or "on" another component, not only when each part is "directly above" or "directly" of another component, as well as each component and other components It includes a case where another component is interposed. The same reference numbers throughout the specification denote the same elements.
본 발명의 일 실시예에 따른 전기 변색 소자는, 제1 투명 전극층; 상기 제1 투명 전극층 상부에 배치된 제2 투명 전극층; 상기 제1 투명 전극층과 상기 제2 투명 전극층 사이에 배치되고, 전기 변색 적층체; 및 상기 제2 투명 전극층을 덮는 보호 코팅층을 포함하되, 상기 보호 코팅층은 스퍼터링 기술 또는 화학기상 증착 기술을 이용하여 형성된 단일층 또는 다중층 구조를 갖는다.An electrochromic device according to an embodiment of the present invention includes: a first transparent electrode layer; A second transparent electrode layer disposed on the first transparent electrode layer; An electrochromic laminate disposed between the first transparent electrode layer and the second transparent electrode layer; And a protective coating layer covering the second transparent electrode layer, wherein the protective coating layer has a single layer or multilayer structure formed using a sputtering technique or a chemical vapor deposition technique.
보호 코팅층을 채택함으로써, 제2 투명 전극층 상에 기판을 접합할 필요가 없으며, 이에 따라, 전기 변색 소자의 생산성을 향상시킬 수 있으며, 제조 비용을 절감할 수 있다. 나아가, 외부 환경으로부터 전기 변색 적층체를 보호하기에 적합한 보호 코팅층을 채택하여 전기 변색 소자의 신뢰성을 향상시킬 수 있다. 또한, 보호 코팅층이 스퍼터링 기술 또는 화학기상 증착 기술을 이용하여 형성된 단일층 또는 다중층 구조를 갖기 때문에 인-라인 증착 기술을 이용하여 인-시투 공정으로 제조할 수 있는 전기 변색 소자를 제공할 수 있다.By adopting the protective coating layer, there is no need to bond the substrate on the second transparent electrode layer, and accordingly, the productivity of the electrochromic element can be improved, and the manufacturing cost can be reduced. Further, it is possible to improve the reliability of the electrochromic device by adopting a protective coating layer suitable for protecting the electrochromic laminate from the external environment. In addition, since the protective coating layer has a single layer or multilayer structure formed using sputtering technology or chemical vapor deposition technology, it is possible to provide an electrochromic device that can be manufactured in an in-situ process using in-line deposition technology. .
상기 보호 코팅층은 실리콘 질화막, 실리콘 산화막, 실리콘 산질화막, 알루미늄 산화막, 하프늄 산화막, 또는 망간 산화막으로 이루어진 그룹에서 선택된 적어도 하나의 산화막 또는 폴리머 계열의 물질, 예를 들어 폴리이미드를 포함할 수 있다.The protective coating layer may include at least one oxide film selected from the group consisting of a silicon nitride film, a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, a hafnium oxide film, or a manganese oxide film, for example, polyimide.
한편, 상기 전기 변색 소자는 상기 제1 투명 전극층에 접하는 기판을 더 포함할 수 있다. 상기 기판은 투명 기판으로, 예컨대 글래스 기판, 또는 폴리머 기판일 수 있다.Meanwhile, the electrochromic device may further include a substrate in contact with the first transparent electrode layer. The substrate may be a transparent substrate, for example, a glass substrate or a polymer substrate.
상기 전기 변색 적층체는, 전기 변색층; 카운터 전극층; 및 상기 전기 변색층과 상기 카운터 전극층 사이에 배치된 이온 전도층을 포함할 수 있다.The electrochromic laminate may include an electrochromic layer; A counter electrode layer; And an ion conductive layer disposed between the electrochromic layer and the counter electrode layer.
제1 투명 전극층과 제2 투명 전극층에 전압이 인가되면, 카운터 전극층과 전기 변색층 사이에서 이온 전도층을 통해 전하가 이동하며, 이에 따라, 전기 변색이 발생한다. 전기 변색층과 카운터 전극층은 각각 환원 반응 및 산화 반응, 또는 산화 반응과 환원 반응에 의해 전기 변색을 나타낼 수 있다. 예를 들어, 전기 변색층이 환원 반응을 하면, 카운터 전극층은 산화 반응을 하며, 그 역으로 될 수도 있다.When a voltage is applied to the first transparent electrode layer and the second transparent electrode layer, electric charges move through the ion conductive layer between the counter electrode layer and the electrochromic layer, and thus, electrochromic discoloration occurs. The electrochromic layer and the counter electrode layer may exhibit electrochromic colors by a reduction reaction and an oxidation reaction, or an oxidation reaction and a reduction reaction, respectively. For example, when the electrochromic layer undergoes a reduction reaction, the counter electrode layer undergoes an oxidation reaction, and vice versa.
전기 변색층으로 사용되는 재료로는 예를 들어, WO 3, NiO, NiWO, NIWNbO, MoO 3, Nb 2O 5, TiO 2, CuO, Ir 2O 3, Cr 2O 3, MnO 2, Mn 2O 3, V 2O 5, Ni 2O 3, Co 2O 3, SiO 2, Ta 2O 5, ZrO 2, 또는 CeO 2 등을 들 수 있다. 카운터 전극층으로 사용되는 재료로는 예를 들어, WO 3, NiO, NiWO, NiWNBO, MoO 3, Nb 2O 5, TiO 2, CuO, Ir 2O 3, Cr 2O 3, MnO 2, Mn 2O 3, V 2O 5, Ni 2O 3, Co 2O 3, SiO 2, Ta 2O 5, ZrO 2, 또는 CeO 2 등을 들 수 있다. 여기서, 각 재료의 화학 양론비가 기재되지만, 비화학 양론비의 재료를 포함하는 것으로 이해해야 한다.Materials used for the electrochromic layer include, for example, WO 3 , NiO, NiWO, NIWNbO, MoO 3 , Nb 2 O 5 , TiO 2 , CuO, Ir 2 O 3 , Cr 2 O 3 , MnO 2 , Mn 2 O 3 , V 2 O 5 , Ni 2 O 3 , Co 2 O 3 , SiO 2 , Ta 2 O 5 , ZrO 2 , or CeO 2 . Materials used as counter electrode layers include, for example, WO 3 , NiO, NiWO, NiWNBO, MoO 3 , Nb 2 O 5 , TiO 2 , CuO, Ir 2 O 3 , Cr 2 O 3 , MnO 2 , Mn 2 O 3 , V 2 O 5 , Ni 2 O 3 , Co 2 O 3 , SiO 2 , Ta 2 O 5 , ZrO 2 , or CeO 2 . Here, the stoichiometric ratio of each material is described, but it should be understood as including materials of non-stoichiometric ratio.
한편, 상기 이온 전도층은 전기 변색층으로 이동하는 이온을 포함한다. 상기 이온은 예를 들어, H+, Li+, D+, 알칼리 금속 이온 또는 알칼리 토금속 이온을 포함할 수 있다. 특히, 상기 이온 전도층은 리튬 이온과 함께 수소 이온을 포함할 수 있다. 이온 전도층은 예를 들어, 수소 이온을 함유하는 LiWOx로 형성될 수 있다.Meanwhile, the ion conductive layer includes ions moving to the electrochromic layer. The ions may include, for example, H+, Li+, D+, alkali metal ions or alkaline earth metal ions. In particular, the ion conducting layer may include hydrogen ions together with lithium ions. The ion conducting layer may be formed of, for example, LiWOx containing hydrogen ions.
나아가, 상기 카운터 전극층 또는 상기 전기 변색층은 리튬 이온과 함께 수소 이온을 포함할 수 있다.Furthermore, the counter electrode layer or the electrochromic layer may include hydrogen ions together with lithium ions.
본 발명의 일 실시예에 따른 전기 변색 소자 제조 방법은, 기판 상에 전기 변색층을 증착하고, 상기 전기 변색층 상에 이온 전도층을 증착하고, 상기 이온 전도층 상에 카운터 전극층을 증착하고, 상기 카운터 전극층 상에 투명 전극층을 증착하고, 상기 투명 전극층 상에 보호 코팅층을 증착하는 것을 포함한다.An electrochromic device manufacturing method according to an embodiment of the present invention includes depositing an electrochromic layer on a substrate, depositing an ion conductive layer on the electrochromic layer, depositing a counter electrode layer on the ion conductive layer, And depositing a transparent electrode layer on the counter electrode layer, and depositing a protective coating layer on the transparent electrode layer.
상기 전기 변색층, 이온 전도층, 카운터 전극층, 투명 전극층 및 보호 코팅층이 모두 증착 기술을 이용하여 형성되며, 디스펜싱이나 글래스 기판의 접합 등과 같은 기술은 생략된다.The electrochromic layer, the ion conductive layer, the counter electrode layer, the transparent electrode layer, and the protective coating layer are all formed using a vapor deposition technique, and techniques such as dispensing or bonding of a glass substrate are omitted.
상기 전기 변색층, 상기 이온 전도층, 상기 카운터 전극층, 상기 투명 전극층 및 상기 보호 코팅층은 인-라인 스퍼터링 증착 장비를 이용하여 인-시투로 증착될 수 있다. 상기 층들을 진공 브레이킹 없이 증착하기 때문에, 각 층 내의 결함을 줄일 수 있으며, 생산성을 향상시킬 수 있다.The electrochromic layer, the ion conductive layer, the counter electrode layer, the transparent electrode layer, and the protective coating layer may be deposited in-situ using an in-line sputtering deposition equipment. Since the layers are deposited without vacuum breaking, defects in each layer can be reduced and productivity can be improved.
일 실시예에 있어서, 전기 변색 소자 제조 방법은 상기 전기 변색층을 증착하기 전에, 상기 기판 상에 투명 전극층을 증착하는 것을 더 포함할 수 있다.In an embodiment, the method of manufacturing an electrochromic device may further include depositing a transparent electrode layer on the substrate before depositing the electrochromic layer.
다른 실시예에 있어서, 상기 기판은 투명 전극층을 포함할 수 있으며, 상기 전기 변색층은 상기 투명 전극층 상에 증착될 수 있다.In another embodiment, the substrate may include a transparent electrode layer, and the electrochromic layer may be deposited on the transparent electrode layer.
한편, 상기 전기 변색 소자 제조 방법은 상기 투명 전극층을 증착한 후, 상기 투명 전극층이 증착된 기판을 열처리하는 것을 더 포함할 수 있다. 투명 전극층을 열처리함으로써 투명 전극층의 비저항을 낮출 수 있다.Meanwhile, the method of manufacturing the electrochromic device may further include heat-treating the substrate on which the transparent electrode layer is deposited after depositing the transparent electrode layer. By heat treatment of the transparent electrode layer, the specific resistance of the transparent electrode layer can be lowered.
전기 변색 소자 제조 방법은, 상기 카운터 전극층을 증착한 후, 상기 투명 전극층을 증착하기 전에 상기 기판을 열처리하는 것을 더 포함할 수 있다. 카운터 전극층을 열처리함으로써 카운터 전극층 내의 핀홀을 줄일 수 있으며, 이에 따라, 메모리 효과를 개선할 수 있다.The method of manufacturing an electrochromic device may further include heat-treating the substrate after depositing the counter electrode layer and before depositing the transparent electrode layer. By heat-treating the counter electrode layer, pinholes in the counter electrode layer can be reduced, and accordingly, the memory effect can be improved.
또한, 상기 카운터 전극층을 증착할 때, 상기 기판측에 바이어스 전압이 인가될 수 있다. 따라서, 상기 카운터 전극층을 고밀도로 형성할 수 있어, 카운터 전극층 내의 핀홀을 감소시킬 수 있다.Further, when depositing the counter electrode layer, a bias voltage may be applied to the substrate side. Accordingly, the counter electrode layer can be formed with high density, and pinholes in the counter electrode layer can be reduced.
한편, 상기 이온 전도층을 증착할 때, 캐리어 가스와 함께 H2 가스가 공급되며, 캐리어 가스와 H2 가스의 유량 비(캐리어 가스/H2 가스)는 90/10 ~ 98/2 범위 내일 수 있다. Meanwhile, when depositing the ion conductive layer, H2 gas is supplied together with a carrier gas, and a flow rate ratio (carrier gas/H2 gas) of the carrier gas and the H2 gas may be in the range of 90/10 to 98/2.
캐리어 가스와 함께 H2 가스를 공급함으로써 증착 공정을 통해 수소 이온을 이온 전도층에 도입할 수 있으며, 따라서, 수소 이온을 전기 변색을 위한 추가적인 이온으로 이용할 수 있어, 전기 변색 효율을 개선할 수 있다.By supplying H2 gas together with the carrier gas, hydrogen ions can be introduced into the ion conductive layer through a deposition process, and thus, hydrogen ions can be used as additional ions for electrochromic, thereby improving electrochromic efficiency.
한편, 상기 카운터 전극층은 층 내부 또는 표면에 Li층을 포함할 수 있다. 카운터 전극층에 Li층을 포함함으로써 Li 이온을 보충할 수 있다.Meanwhile, the counter electrode layer may include a Li layer inside or on the surface of the layer. Li ions can be replenished by including the Li layer in the counter electrode layer.
이하, 도면을 참조하여 본 발명의 실시예들을 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
도 1은 본 발명의 일 실시예에 따른 전기 변색 소자를 설명하기 위한 개략적인 단면도이다.1 is a schematic cross-sectional view illustrating an electrochromic device according to an embodiment of the present invention.
도 1을 참조하면, 전기 변색 소자는 기판(21), 제1 투명 전극층(23), 전기 변색 적층체(30), 제2 투명 전극층(31) 및 보호 코팅층(33)을 포함할 수 있다. 전기 변색 적층체(30)는 전기 변색층(25), 이온 전도층(27) 및 카운터 전극층(29)을 포함할 수 있다.Referring to FIG. 1, the electrochromic device may include a substrate 21, a first transparent electrode layer 23, an electrochromic laminate 30, a second transparent electrode layer 31, and a protective coating layer 33. The electrochromic laminate 30 may include an electrochromic layer 25, an ion conductive layer 27 and a counter electrode layer 29.
기판(21)은 투명 기판으로, 전기 변색 적층체(30)를 증착할 수 있는 기판이면 특별히 한정되지 않는다. 예를 들어, 기판(21)은 글래스 기판일 수 있으나, 반드시 이에 한정되는 것은 아니다.The substrate 21 is a transparent substrate and is not particularly limited as long as it is a substrate on which the electrochromic laminate 30 can be deposited. For example, the substrate 21 may be a glass substrate, but is not limited thereto.
제1 투명 전극층(23)은 투명 전도성 산화막으로 형성될 수 있으며, 예를 들어, 인디움주석 산화막(ITO)으로 형성될 수 있다. 제1 투명 전극층(23)은 스퍼터링 장치를 이용하여 기판(21) 상에 증착될 있으며, 기판(21) 상에 증착된 후 히터에 의해 열처리될 수 있다. 제1 투명 전극층(23)은 예컨대, 500 내지 5000Å의 두께로 증착될 수 있다.The first transparent electrode layer 23 may be formed of a transparent conductive oxide film, for example, an indium tin oxide film (ITO). The first transparent electrode layer 23 may be deposited on the substrate 21 using a sputtering device, and may be heat treated by a heater after being deposited on the substrate 21. The first transparent electrode layer 23 may be deposited to a thickness of, for example, 500 to 5000 Å.
전기 변색층(25)은 산화 또는 환원 반응에 의해 무색층에서 유색층으로 변환된다. 이러한 전기 변색 특성을 갖는 재료로는, 예를 들어, WO 3, NiO, NiWO, NIWNbO, MoO 3, Nb 2O 5, TiO 2, CuO, Ir 2O 3, Cr 2O 3, MnO 2, Mn 2O 3, V 2O 5, Ni 2O 3, Co 2O 3, SiO 2, Ta 2O 5, ZrO 2, 또는 CeO 2 등을 들 수 있다. 여기서, 각 재료의 화학 양론비가 기재되지만, 비화학 양론비의 재료를 포함하는 것으로 이해해야 한다.The electrochromic layer 25 is converted from a colorless layer to a colored layer by an oxidation or reduction reaction. As a material having such an electrochromic property, for example, WO 3 , NiO, NiWO, NIWNbO, MoO 3 , Nb 2 O 5 , TiO 2 , CuO, Ir 2 O 3 , Cr 2 O 3 , MnO 2 , Mn 2 O 3 , V 2 O 5 , Ni 2 O 3 , Co 2 O 3 , SiO 2 , Ta 2 O 5 , ZrO 2 , or CeO 2 . Here, the stoichiometric ratio of each material is described, but it should be understood as including materials of non-stoichiometric ratio.
전기 변색층(25)은 제1 투명 전극층(23) 상에 증착 기술, 예컨대, 스퍼터링 기술을 이용하여 증착될 수 있다. 전기 변색층(25)은 예를 들어 1000 내지 10000Å의 두께로 증착될 수 있다. 스퍼터링 기술을 이용하여 전기 변색층(25)을 증착하는 동안, 캐리어 가스, 예컨대, Ar과 함께 H2 가스가 공급될 수 있으며, 이에 따라, 전기 변색층(25) 내에 수소 이온이 도입될 수 있다. 나아가, 전기 변색층(25)의 표면에 이동 이온으로 사용하는 재료의 층, 예를 들어, Li층이 추가될 수 있다. The electrochromic layer 25 may be deposited on the first transparent electrode layer 23 using a deposition technique, for example, a sputtering technique. The electrochromic layer 25 may be deposited to a thickness of, for example, 1000 to 10000 Å. During deposition of the electrochromic layer 25 using a sputtering technique, H2 gas may be supplied with a carrier gas such as Ar, and thus hydrogen ions may be introduced into the electrochromic layer 25. Further, a layer of a material used as a mobile ion, for example, a Li layer may be added to the surface of the electrochromic layer 25.
한편, 이온 전도층(27)은 전기 변색 적층체(30)의 양단에 전압이 인가될 때 전기 변색층(25)과 카운터 전극층(29) 사이에서 이온을 전도하는 층이다. 이온 전도층(27)은 이동 이온을 포함하는 재료로 형성될 수 있다. 상기 이동 이온은 예를 들어, H+, Li+, D+, 알칼리 금속 이온 또는 알칼리 토금속 이온을 포함할 수 있다. 이온 전도층(27)은 예를 들어, LiWOx, 예컨대, Li2WO4로 형성될 수 있으며, 나아가, 수소 이온을 포함할 수 있다.On the other hand, the ion conductive layer 27 is a layer that conducts ions between the electrochromic layer 25 and the counter electrode layer 29 when a voltage is applied to both ends of the electrochromic laminate 30. The ion conductive layer 27 may be formed of a material containing mobile ions. The mobile ions may include, for example, H+, Li+, D+, alkali metal ions or alkaline earth metal ions. The ion conductive layer 27 may be formed of, for example, LiWOx, for example, Li2WO4, and further, may include hydrogen ions.
이온 전도층(27)은 증착 기술, 예컨대 스퍼터링 기술을 이용하여 증착될 수 있다. 이온 전도층(27)은 예컨대 300 내지 3000Å의 두께로 형성될 수 있다. 스퍼터링 기술을 이용하여 이온 전도층(27)을 증착하는 동안, 캐리어 가스, 예컨대, Ar과 함께 H2 가스가 공급될 수 있으며, 이에 따라, 이온 전도층(27) 내에 수소 이온이 도입될 수 있다. Ar과 H2 가스의 유량비(Ar/H2)는 90/10 ~ 98/2 범위 내일 수 있다.The ion conductive layer 27 may be deposited using a deposition technique, such as a sputtering technique. The ion conductive layer 27 may be formed to a thickness of, for example, 300 to 3000 Å. During deposition of the ion conductive layer 27 using a sputtering technique, H2 gas may be supplied with a carrier gas such as Ar, and thus hydrogen ions may be introduced into the ion conductive layer 27. The flow ratio (Ar/H2) of Ar and H2 gas may be in the range of 90/10 to 98/2.
카운터 전극층(29)은 산화 또는 환원 반응에 의해 무색층에서 유색층으로 변환된다. 카운터 전극층(29)은 전기 변색층(25)의 반응과 반대되는 반응을 통해 전기 변색 특성을 갖는다. 카운터 전극층(29)으로 사용되는 재료로는 예를 들어, WO 3, NiO, NiWO, NIWNbO, MoO 3, Nb 2O 5, TiO 2, CuO, Ir 2O 3, Cr 2O 3, MnO 2, Mn 2O 3, V 2O 5, Ni 2O 3, Co 2O 3, SiO 2, Ta 2O 5, ZrO 2, 또는 CeO 2 등을 들 수 있다. 여기서, 각 재료의 화학 양론비가 기재되지만, 비화학 양론비의 재료를 포함하는 것으로 이해해야 한다.The counter electrode layer 29 is converted from a colorless layer to a colored layer by an oxidation or reduction reaction. The counter electrode layer 29 has electrochromic characteristics through a reaction opposite to that of the electrochromic layer 25. Materials used as the counter electrode layer 29 include, for example, WO 3 , NiO, NiWO, NIWNbO, MoO 3 , Nb 2 O 5 , TiO 2 , CuO, Ir 2 O 3 , Cr 2 O 3 , MnO 2 , Mn 2 O 3 , V 2 O 5 , Ni 2 O 3 , Co 2 O 3 , SiO 2 , Ta 2 O 5 , ZrO 2 , or CeO 2 . Here, the stoichiometric ratio of each material is described, but it should be understood as including materials of non-stoichiometric ratio.
카운터 전극층(29)은 이온 전도층(27) 상에 증착 기술, 예컨대, 스퍼터링 기술을 이용하여 증착될 수 있다. 카운터 전극층(29)은 예컨대 약 500 내지 5000Å의 두께로 증착될 수 있다. 카운터 전극층(29)을 증착할 때, 타겟에 가해지는 전압에 더해 기판(21) 측에 바이어스 전압이 인가될 수 있다. 기판(21) 측에 바이어스 전압을 인가함으로써 고밀도의 카운터 전극층(29)을 형성할 수 있으며, 이에 따라, 카운터 전극층 내의 핀홀을 감소시킬 수 있다.The counter electrode layer 29 may be deposited on the ion conductive layer 27 using a deposition technique, for example, a sputtering technique. The counter electrode layer 29 may be deposited to a thickness of, for example, about 500 to 5000 Å. When depositing the counter electrode layer 29, a bias voltage may be applied to the substrate 21 in addition to the voltage applied to the target. By applying a bias voltage to the substrate 21 side, a high-density counter electrode layer 29 can be formed, and accordingly, pinholes in the counter electrode layer can be reduced.
한편, 카운터 전극층(29) 내의 핀홀은 전기 변색 소자의 메모리 효과를 감소시킨다. 따라서, 카운터 전극층(29)을 고밀도로 증착하여 핀홀을 감소시킴으로써 전기 변색 소자의 메모리 효과를 개선할 수 있다. 나아가, 카운터 전극층(29) 내의 핀홀을 감소시키기 위해 상대적으로 고온에서 카운터 전극층(29)을 증착할 수도 있고, 카운터 전극층(29)을 증착한 후, 약 100 내지 300℃의 온도에서 열처리를 수행할 수도 있다.On the other hand, the pinhole in the counter electrode layer 29 reduces the memory effect of the electrochromic element. Accordingly, by depositing the counter electrode layer 29 at a high density to reduce pinholes, the memory effect of the electrochromic device can be improved. Further, in order to reduce pinholes in the counter electrode layer 29, the counter electrode layer 29 may be deposited at a relatively high temperature, and after the counter electrode layer 29 is deposited, heat treatment may be performed at a temperature of about 100 to 300°C. May be.
스퍼터링 기술을 이용하여 카운터 전극층(29)을 증착하는 동안, 캐리어 가스, 예컨대, Ar과 함께 H2 가스가 공급될 수 있으며, 이에 따라, 카운터 전극층(29) 내에 수소 이온이 도입될 수 있다. 수소 이온의 도입은 전기 변색 효율을 향상시킨다.During deposition of the counter electrode layer 29 using a sputtering technique, H2 gas may be supplied along with a carrier gas such as Ar, and thus hydrogen ions may be introduced into the counter electrode layer 29. Introduction of hydrogen ions improves the electrochromic efficiency.
나아가, 카운터 전극층(29) 증착시에 이동 이온으로 사용하는 재료의 층, 예를 들어, Li층이 추가될 수 있다. 또한, 카운터 전극층(29)의 표면에 이동 이온으로 사용하는 재료의 층, 예를 들어, Li층이 추가될 수 있다. Li층은 Li 이온을 공급하여 전기 변색 소자의 수명을 증가시킨다.Further, a layer of a material used as moving ions, for example, a Li layer may be added when the counter electrode layer 29 is deposited. In addition, a layer of a material used as moving ions, for example, a Li layer, may be added to the surface of the counter electrode layer 29. The Li layer increases the life of the electrochromic device by supplying Li ions.
한편, 제2 투명 전극층(31)은 투명 전도성 산화막으로 형성될 수 있으며, 예를 들어, 인디움주석 산화막(ITO), 또는 인디움갈륨아연 산화막(IGZO)으로 형성될 수 있다. 제2 투명 전극층(31)은 스퍼터링 장치를 이용하여 카운터 전극층(29) 상에 증착될 있으며, 히터에 의해 열처리될 수 있다. 제2 투명 전극층(31)은 예컨대, 500 내지 5000Å의 두께로 증착될 수 있다.Meanwhile, the second transparent electrode layer 31 may be formed of a transparent conductive oxide film, for example, an indium tin oxide film (ITO) or an indium gallium zinc oxide film (IGZO). The second transparent electrode layer 31 may be deposited on the counter electrode layer 29 using a sputtering device, and may be heat treated by a heater. The second transparent electrode layer 31 may be deposited to a thickness of, for example, 500 to 5000 Å.
보호 코팅층(33)은 외부 환경으로부터 전기 변색 소자를 보호한다. 보호 코팅층(33)은 수분으로부터 전기 변색 적층체를 보호하며, 나아가, 스크래칭 등과 같은 결함 발생을 방지하도록 외부의 물리적인 힘으로부터 전기 변색 소자를 보호한다.The protective coating layer 33 protects the electrochromic element from the external environment. The protective coating layer 33 protects the electrochromic laminate from moisture, and further protects the electrochromic element from external physical forces to prevent defects such as scratching.
보호 코팅층(33)은 제2 투명 전극층(31) 상에 스퍼터링 기술 또는 화학기상증착 기술을 이용하여 증착될 수 있다. 보호 코팅층(33)은 예를 들어, 실리콘 질화막, 실리콘 산화막, 실리콘 산질화막, 알루미늄 산화막, 하프늄 산화막, 또는 망간 산화막 중 적어도 하나의 산화막 또는 폴리이미드를 포함할 수 있다.The protective coating layer 33 may be deposited on the second transparent electrode layer 31 using a sputtering technique or a chemical vapor deposition technique. The protective coating layer 33 may include, for example, an oxide film or polyimide of at least one of a silicon nitride film, a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, a hafnium oxide film, or a manganese oxide film.
보호 코팅층(33)은 단일층으로 형성될 수도 있으나, 이에 한정되는 것은 아니며, 다중층으로 형성될 수도 있다. 보호 코팅층(33)을 채택함으로써 종래의 글래스 기판을 생략할 수 있어 제품의 무게를 감소시킬 수 있으며, 또한, 글래스 기판의 접합 공정을 생략할 수 있어 생산성이 향상되며 제조 비용을 절감할 수 있다. 더욱이, 보호 코팅층(33)은 증착 공정 이외의 별도의 경화 공정을 필요로 하는 경화성 수지를 포함하지 않으며, 따라서 현재 액정 디스플레이 생산 공정에 사용되는 양산 공정을 사용할 수 있어 제품 대형화에 적합하다. 나아가, 글래스 기판 대신 상대적으로 얇은 보호 코팅층(33)을 사용함으로써 유연한 전기 변색 소자를 제공할 수도 있다.The protective coating layer 33 may be formed as a single layer, but is not limited thereto, and may be formed as multiple layers. By adopting the protective coating layer 33, it is possible to omit the conventional glass substrate, thereby reducing the weight of the product. Further, since the bonding process of the glass substrate can be omitted, productivity is improved and manufacturing cost can be reduced. Moreover, the protective coating layer 33 does not contain a curable resin that requires a separate curing process other than the deposition process, and thus, a mass production process currently used in the liquid crystal display production process can be used, which is suitable for product enlargement. Furthermore, a flexible electrochromic device may be provided by using a relatively thin protective coating layer 33 instead of a glass substrate.
본 실시예에 따른 전기 변색 소자는 제1 투명 전극층(23)과 제2 투명 전극층(31)에 전압이 인가된다. 전압이 인가되면, 카운터 전극층(29)과 전기 변색층(25) 사이에서 이온 전도층(27)을 통해 전하, 특히, 이온이 이동하며, 이에 따라, 전기 변색이 발생한다. 전기 변색층(25)과 카운터 전극층(29)은 각각 환원 반응 및 산화 반응, 또는 산화 반응과 환원 반응에 의해 전기 변색을 나타낼 수 있다. In the electrochromic device according to the present embodiment, a voltage is applied to the first transparent electrode layer 23 and the second transparent electrode layer 31. When a voltage is applied, charges, in particular, ions move between the counter electrode layer 29 and the electrochromic layer 25 through the ion conducting layer 27, and thus, electrochromic discoloration occurs. The electrochromic layer 25 and the counter electrode layer 29 may exhibit electrochromic discoloration by a reduction reaction and an oxidation reaction, or an oxidation reaction and a reduction reaction, respectively.
본 실시예에 따른 전기 변색 소자는 종래의 전기 변색 소자와 마찬가지로 건축용 스마트 윈도우, 자동차용 미러(리어 미러, 사이드 미러 등), 자동차용 선루프 또는 디스플레이 장치에 사용될 수 있다. 더욱이, 본 실시예에 따른 전기 변색 소자는, 시력 교정용 안경, 증강 현실(Augmented reality) 스마트 글래스, 또는 정보 디스플레이용 정보 스마트 글래스에 적용될 수 있다. 즉, 전기 변색 소자는 시력 교정용 안경에 적용되어 선글라스로 사용될 수 있으며, 증강 현실 스마트 글래스나 정보 스마트 글래스에 적용되어 광-셔터(light shutter) 기능을 수행할 수 있다.The electrochromic element according to the present embodiment may be used in a smart window for a building, a mirror (rear mirror, side mirror, etc.) for an automobile, a sunroof for a vehicle, or a display device, like the conventional electrochromic element. Moreover, the electrochromic device according to the present embodiment may be applied to glasses for vision correction, augmented reality smart glasses, or information smart glasses for information display. That is, the electrochromic element may be applied to eyeglasses for vision correction and used as sunglasses, and may be applied to augmented reality smart glasses or information smart glasses to perform a light shutter function.
전기 변색 소자를 적용하기 위한 안경의 베이스 기판이나, 스마트 글래스의 베이스 기판은 투명한 재료로서, 예를 들어, 글래스, 또는 폴리에틸렌 나프탈레이트(PEN: Polyethylene Naphthalate)계, 폴리 이미드(PI: Polyimide)계, 아릴 디글리콜 카보네이트(ADC: allyl diglycol carboanate; ex. CR39)계, 트라이벡스(Trivex)계, 아크릴릭(Acrylic)계, 폴리카보네이트(PC: Polycarbonate)계, 폴리우레탄(PU: polyurethane)계, 폴리에틸렌 테레프탈레이트(PET, Polyethylene terephthalate)계 또는 에피설파이드(Episulfide)계 등의 폴리머 계열의 물질일 수 있다.The base substrate of glasses for applying the electrochromic element, or the base substrate of smart glasses is a transparent material, for example, glass, or polyethylene naphthalate (PEN), polyimide (PI). , Aryl diglycol carbonate (ADC: allyl diglycol carboanate; ex. CR39) system, Tribex system, acrylic system, polycarbonate (PC: Polycarbonate) system, polyurethane (PU: polyurethane) system, polyethylene It may be a polymer-based material such as terephthalate (PET, polyethylene terephthalate)-based or episulfide-based material.
도 2는 본 발명의 일 실시예에 따른 전기 변색 소자를 제조하기 위한 인-라인 스퍼터링 장치의 개략적인 단면도이다.2 is a schematic cross-sectional view of an in-line sputtering apparatus for manufacturing an electrochromic device according to an embodiment of the present invention.
도 2를 참조하면, 인-라인 스퍼터링 장치는 스테이지(110), 캐리어(51), 타겟 홀더(120), 복수의 타겟(T1, T2, T3, T4, T5) 및 히터(125)를 포함할 수 있다.2, the in-line sputtering apparatus includes a stage 110, a carrier 51, a target holder 120, a plurality of targets T1, T2, T3, T4, T5, and a heater 125. I can.
스테이지(110)는 캐리어(51)가 이동할 수 있는 이동 수단을 제공한다. 캐리어(51)는 스테이지(110)를 통해 각 공정 단계별로 증착 공정이 수행되는 챔버로 이동한다.The stage 110 provides a means of movement through which the carrier 51 can move. The carrier 51 moves through the stage 110 to a chamber in which a deposition process is performed in each process step.
타겟 홀더(120)는 타겟들(T1~T5)을 지지한다. 타겟 홀더(120)는 또한 히터(125)를 지지할 수도 있다.The target holder 120 supports the targets T1 to T5. The target holder 120 may also support the heater 125.
일련의 타겟들(T1, T2, T3, T4, T5)이 인-라인으로 배치된다. 다섯 개의 타겟들T1, T2, T3, T4, T5)이 순서대로 배치된 것을 도시하지만, 더 적거나 또는 더 많은 수의 타겟들이 순서대로 배치될 수도 있다. 타겟들(T1, T2, T3, T4, T5)은 각각 챔버 내에 배치될 수 있으며, 하나의 타겟에서 스퍼터링 증착이 완료되면, 기판(21)은 캐리어(51)에 의해 다음 공정의 타겟이 있는 챔버로 이동하여 다음의 증착 공정이 연속적으로 수행된다. 따라서, 인-라인 스퍼터링 장치는 진공 브레이킹 없이 인-시투로 박막들을 증착할 수 있다.A series of targets T1, T2, T3, T4, T5 are arranged in-line. Five targets T1, T2, T3, T4, T5) are shown in order, but fewer or more targets may be placed in order. Targets (T1, T2, T3, T4, T5) may be disposed in the chamber, respectively, and when sputtering deposition is completed in one target, the substrate 21 is a chamber with the target of the next process by the carrier 51 Moving on to, the following deposition process is carried out continuously. Thus, the in-line sputtering apparatus can deposit thin films in-situ without vacuum breaking.
예를 들어, 제1 투명 전극층(23)이 증착된 기판(21)이 인-라인 스퍼터링 장치 내의 타겟(T1) 하부에 배치될 수 있다. 타겟(T1)은 예를 들어, 전기 변색층(25)을 증착하기 위한 타겟으로, 예를 들어, 텅스텐 또는 텅스텐 산화물 타겟일 수 있다. 텅스텐 산화물을 직접 스퍼터링 증착함으로써 텅스텐 산화막을 증착할 수도 있고, 텅스텐을 스퍼터링 증착한 후, 산소를 공급하여 증착된 텅스텐을 산화시킬 수도 있다.For example, the substrate 21 on which the first transparent electrode layer 23 is deposited may be disposed under the target T1 in the in-line sputtering apparatus. The target T1 is, for example, a target for depositing the electrochromic layer 25, and may be, for example, a tungsten or tungsten oxide target. A tungsten oxide film may be deposited by directly sputtering tungsten oxide, or after sputtering tungsten, oxygen may be supplied to oxidize the deposited tungsten.
전기 변색층(25)을 증착하는 동안, 캐리어 가스와 함께 H 2 가스가 도입될 수 있다. 전기 변색층(25) 증착이 완료되면, 기판(21)은 타겟(T2)이 있는 챔버로 이동한다. During deposition of the electrochromic layer 25, H 2 gas may be introduced along with a carrier gas. When deposition of the electrochromic layer 25 is completed, the substrate 21 moves to the chamber where the target T2 is located.
타겟(T2)은 이온 전도층(27)을 형성하기 위한 것으로, 이동 이온을 포함하는 타겟일 수 있다. 타겟(T2)은 예를 들어, Li 또는 Li 2WO 4 타겟일 수 있다. 전기 변색층(25)이 텅스텐 산화막인 경우, 전기 변색층(25)의 표면에 얇은 층의 Li층이 증착되어 LiWOx의 이온 전도층(27)이 형성될 수 있다.The target T2 is for forming the ion conducting layer 27 and may be a target including moving ions. The target T2 may be, for example, a Li or Li 2 WO 4 target. When the electrochromic layer 25 is a tungsten oxide film, a thin layer of Li is deposited on the surface of the electrochromic layer 25 to form an ion conductive layer 27 of LiWOx.
이온 전도층(27)은 다른 층들에 비해 상대적으로 더 높은 온도에서 증착될 수 있다. 또한, 이온 전도층(27)을 증착하는 동안 기판(21)에 바이어스 전압이 추가될 수 있다.The ion conducting layer 27 may be deposited at a relatively higher temperature compared to other layers. Further, a bias voltage may be added to the substrate 21 while depositing the ion conductive layer 27.
이온 전도층(27)이 증착된 후, 기판(21)은 카운터 전극층(29)을 증착하기 위해 타겟(T3)이 있는 챔버로 이동한다. 타겟(T3)은 카운터 전극층(29)과 동일한 물질을 포함할 수도 있고, 카운터 전극층(29)의 금속 물질일 수도 있다. 예를 들어, 타겟(T3)은 Ni 타겟일 수 있으며, 이온 전도층(27) 상에 Ni층을 증착하고, 이를 산화시켜 NiO와 같은 카운터 전극층(29)을 형성할 수 있다.After the ion conductive layer 27 is deposited, the substrate 21 is moved to the chamber where the target T3 is located to deposit the counter electrode layer 29. The target T3 may include the same material as the counter electrode layer 29 or may be a metal material of the counter electrode layer 29. For example, the target T3 may be a Ni target, and a Ni layer may be deposited on the ion conductive layer 27 and oxidized to form a counter electrode layer 29 such as NiO.
카운터 전극층(29)이 형성된 후, 기판(21)은 타겟(T4)이 있는 챔버로 이동할 수 있다. 타겟(T4)은 예를 들어, Li 타겟일 수 있으며, 타겟(T4)을 이용하여 카운터 전극층(29)의 표면에 Li층이 추가될 수 있다. Li층을 카운터 전극층(29)의 내부에 형성하기 위해, 카운터 전극층(29)을 추가로 증착하기 위한 타겟이 타겟(T4)에 이어서 추가될 수 있다.After the counter electrode layer 29 is formed, the substrate 21 may move to the chamber in which the target T4 is located. The target T4 may be, for example, a Li target, and a Li layer may be added to the surface of the counter electrode layer 29 by using the target T4. In order to form the Li layer inside the counter electrode layer 29, a target for further depositing the counter electrode layer 29 may be added subsequent to the target T4.
카운터 전극층(29)이 증착된 후, 기판(21)은 제2 투명 전극층(31)을 증착하기 위해 타겟(T5)이 있는 챔버로 이동할 수 있다. 타겟(T5)은 투명 전도성 산화물, 예를 들어, ITO 타겟일 수 있다. 제2 투명 전극층(31)이 증착된 후, 기판(21)에 대해 열처리가 수행될 수 있으며, 이를 위해, 히터(125)가 이용될 수 있다.After the counter electrode layer 29 is deposited, the substrate 21 may move to the chamber in which the target T5 is located to deposit the second transparent electrode layer 31. The target T5 may be a transparent conductive oxide, for example, an ITO target. After the second transparent electrode layer 31 is deposited, heat treatment may be performed on the substrate 21, and for this purpose, a heater 125 may be used.
한편, 도시하지는 않았지만, 보호 코팅층(33)을 증착하기 위한 타겟이 제공될 수 있으며, 열처리가 수행된 기판(21)이 보호 코팅층(33)을 증착하기 위한 챔버로 이동하여 보호 코팅층(33)이 증착될 수 있다.Meanwhile, although not shown, a target for depositing the protective coating layer 33 may be provided, and the substrate 21 on which the heat treatment has been performed moves to the chamber for depositing the protective coating layer 33 so that the protective coating layer 33 Can be deposited.
본 실시예에 따르면, 전기 변색 적층체(30), 제2 투명 전극층(31) 및 보호 코팅층(33)이 인-라인 스퍼터링 장치를 이용하여 일괄적으로 증착될 수 있으며, 이에 따라, 전기 변색 소자의 생산성이 극적으로 향상된다.According to the present embodiment, the electrochromic laminate 30, the second transparent electrode layer 31, and the protective coating layer 33 may be collectively deposited using an in-line sputtering device, and accordingly, the electrochromic element Productivity is dramatically improved.
나아가, 전기 변색층(25), 이온 전도층(27) 또는 카운터 전극층(29)을 증착하는 동안 수소 가스를 공급함으로써 전기 변색 적층체(30)에 수소 이온을 도입할 수 있다. 소소 이온은 Li 이온과 같은 금속 이동 이온과 함께 전기 변색을 유발하므로 전기 변색 효율을 개선한다.Further, hydrogen ions may be introduced into the electrochromic laminate 30 by supplying hydrogen gas while the electrochromic layer 25, the ion conductive layer 27, or the counter electrode layer 29 is deposited. Source ions induce electrochromic ions together with metal transfer ions such as Li ions, thereby improving electrochromic efficiency.
나아가, 인-라인 스퍼터링 장치를 이용하여 카운터 전극층(29)을 증착하는 동안, 챔버 온도를 상대적으로 고온으로 하거나, 기판(21)에 바이어스 전압을 인가하거나, 또한, 증착이 완료된 후, 카운터 전극층(29)을 열처리함으로써 카운터 전극층(29) 내의 핀홀을 감소시킬 수 있으며, 따라서, 메모리 효과를 개선할 수 있다.Further, while depositing the counter electrode layer 29 using an in-line sputtering apparatus, the chamber temperature is relatively high, or a bias voltage is applied to the substrate 21, or after deposition is completed, the counter electrode layer ( By heat treatment 29), pinholes in the counter electrode layer 29 can be reduced, and thus, the memory effect can be improved.
한편, 본 실시예에서, 제1 투명 전극층(23)이 형성된 기판(21)이 인-라인 스퍼터링 장치에 공급되는 것으로 설명하지만, 이에 한정되는 것은 아니다. 예를 들어, 제1 투명 전극층(23)을 증착하기 위한 타겟이 배치될 수 있으며, 전기 변색층(23)을 증착하기 전에, 기판(21) 상에 제1 투명 전극층(23)이 인-라인 스퍼터링 장치 내에서 증착될 수도 있다.Meanwhile, in the present embodiment, it is described that the substrate 21 on which the first transparent electrode layer 23 is formed is supplied to the in-line sputtering apparatus, but is not limited thereto. For example, a target for depositing the first transparent electrode layer 23 may be disposed, and before the electrochromic layer 23 is deposited, the first transparent electrode layer 23 is in-line on the substrate 21 It may also be deposited in a sputtering device.
도 3은 본 발명의 또 다른 실시예에 따른 전기 변색 소자를 제조하기 위한 인-라인 스퍼터링 장치의 개략적인 단면도이다.3 is a schematic cross-sectional view of an in-line sputtering apparatus for manufacturing an electrochromic device according to another embodiment of the present invention.
도 3을 참조하면, 본 실시예에 따른 인-라인 스퍼터링 장치는 도 2를 참조하여 설명한 것과 대체로 유사하나, 다만, 타겟들 사이에 히터(135)가 추가로 배치된 것에 차이가 있다.Referring to FIG. 3, the in-line sputtering apparatus according to the present embodiment is substantially similar to that described with reference to FIG. 2, except that a heater 135 is additionally disposed between targets.
예를 들어, 타겟(T1) 및 타겟(T2)을 이용하여 전기 변색층(25) 및 이온 전도층(27)이 증착된 후, 히터(135)를 이용하여 이온 전도층(27)을 열처리할 수 있으며, 또한, 타겟(T3)을 이용하여 카운터 전극층(29)이 증착된 후, 히터(135)를 이용하여 열처리가 수행될 수 있다. 나아가, 타겟(T4)을 이용하여 카운터 전극층(29) 상에 Li층이 증착된 후에도 열처리가 수행될 수 있으며, 제2 투명 전극층(31)이 증착되 후에도 열처리가 수행될 수 있다. 또한, 제1 투명 전극층(23)을 증착하기 위한 타겟이 배치된 경우, 제1 투명 전극층(23)을 증착한 후에도 전기 변색층(25)을 증착하기 전에 제1 투명 전극층(23)에 열처리가 수행될 수 있다.For example, after the electrochromic layer 25 and the ion conductive layer 27 are deposited using the target (T1) and the target (T2), the ion conductive layer 27 is heat-treated using the heater 135. In addition, after the counter electrode layer 29 is deposited using the target T3, heat treatment may be performed using the heater 135. Furthermore, heat treatment may be performed even after the Li layer is deposited on the counter electrode layer 29 using the target T4, and the heat treatment may be performed even after the second transparent electrode layer 31 is deposited. In addition, when a target for depositing the first transparent electrode layer 23 is disposed, heat treatment is performed on the first transparent electrode layer 23 before depositing the electrochromic layer 25 even after the first transparent electrode layer 23 is deposited. Can be done.
따라서, 히터(135)를 이용하여 각 층에 대해 열처리가 수행될 수 있어 양호한 막질을 갖는 박막층들을 제공할 수 있다.Therefore, heat treatment can be performed on each layer using the heater 135, thereby providing thin film layers having good film quality.
위에서 설명한 실시예들에 있어서, 기판(21)은 안경이나 스마트 글래스의 베이스 기판일 수도 있고, 또는 전기 변색 소자가 기판(21) 상에 형성된 후 기판(21)과 함께 또는 기판(21)으로부터 박리된 후 안경이나 스마트 글래스의 베이스 기판에 부착될 수도 있다.In the above-described embodiments, the substrate 21 may be a base substrate of glasses or smart glasses, or after the electrochromic element is formed on the substrate 21, it is peeled off with or from the substrate 21. It can also be attached to the base substrate of glasses or smart glasses.
앞에서 본 발명의 다양한 실시예들에 대해 설명하였지만, 본 발명이 이들 실시예들에 한정되는 것은 아니다.Although various embodiments of the present invention have been described above, the present invention is not limited to these embodiments.

Claims (15)

  1. 제1 투명 전극층;A first transparent electrode layer;
    상기 제1 투명 전극층 상부에 배치된 제2 투명 전극층;A second transparent electrode layer disposed on the first transparent electrode layer;
    상기 제1 투명 전극층과 상기 제2 투명 전극층 사이에 배치되고, 전기 변색 적층체; 및An electrochromic laminate disposed between the first transparent electrode layer and the second transparent electrode layer; And
    상기 제2 투명 전극층을 덮는 보호 코팅층(passivation coating layer)을 포함하되,Including a protective coating layer (passivation coating layer) covering the second transparent electrode layer,
    상기 보호 코팅층은 스퍼터링 기술 또는 화학기상 증착 기술을 이용하여 형성된 단일층 또는 다중층 구조를 갖는 전기 변색 소자.The protective coating layer is an electrochromic device having a single-layer or multi-layer structure formed using a sputtering technique or a chemical vapor deposition technique.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 보호 코팅층은 실리콘 질화막, 실리콘 산화막, 실리콘 산질화막, 알루미늄 산화막, 하프늄 산화막, 또는 망간 산화막으로 이루어진 그룹에서 선택된 적어도 하나의 산화막 또는 폴리이미드를 포함하는 전기 변색 소자.The protective coating layer is an electrochromic device comprising at least one oxide film or polyimide selected from the group consisting of a silicon nitride film, a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, a hafnium oxide film, or a manganese oxide film.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 투명 전극층에 접하는 기판을 더 포함하는 전기 변색 소자.Electrochromic device further comprising a substrate in contact with the first transparent electrode layer.
  4. 청구항 3에 있어서,The method of claim 3,
    상기 전기 변색 적층체는,The electrochromic laminate,
    전기 변색층;Electrochromic layer;
    카운터 전극층; 및A counter electrode layer; And
    상기 전기 변색층과 상기 카운터 전극층 사이에 배치된 이온 전도층을 포함하는 전기 변색 소자.An electrochromic element comprising an ion conductive layer disposed between the electrochromic layer and the counter electrode layer.
  5. 청구항 4에 있어서,The method of claim 4,
    상기 이온 전도층은 리튬 이온과 함께 수소 이온을 포함하는 전기 변색 소자.The ion conductive layer is an electrochromic device including hydrogen ions together with lithium ions.
  6. 청구항 5에 있어서,The method of claim 5,
    상기 카운터 전극층 또는 상기 전기 변색층은 리튬 이온과 함께 수소 이온을 포함하는 전기 변색 소자.The counter electrode layer or the electrochromic layer is an electrochromic device comprising hydrogen ions together with lithium ions.
  7. 기판 상에 전기 변색층을 증착하고,Depositing an electrochromic layer on the substrate,
    상기 전기 변색층 상에 이온 전도층을 증착하고,Depositing an ion conductive layer on the electrochromic layer,
    상기 이온 전도층 상에 카운터 전극층을 증착하고,Depositing a counter electrode layer on the ion conductive layer,
    상기 카운터 전극층 상에 투명 전극층을 증착하고,Depositing a transparent electrode layer on the counter electrode layer,
    상기 투명 전극층 상에 보호 코팅층을 증착하는 것을 포함하는 전기 변색 소자 제조 방법.Electrochromic device manufacturing method comprising depositing a protective coating layer on the transparent electrode layer.
  8. 청구항 7에 있어서,The method of claim 7,
    상기 전기 변색층, 상기 이온 전도층, 상기 카운터 전극층, 상기 투명 전극층 및 상기 보호 코팅층은 인-라인 스퍼터링 증착 장비를 이용하여 인-시투로 증착되는 전기 변색 소자 제조 방법.The electrochromic layer, the ion conductive layer, the counter electrode layer, the transparent electrode layer, and the protective coating layer are deposited in-situ using an in-line sputtering deposition equipment.
  9. 청구항 7에 있어서,The method of claim 7,
    상기 전기 변색층을 증착하기 전에, 상기 기판 상에 투명 전극층을 증착하는 것을 더 포함하는 전기 변색 소자 제조 방법.Before depositing the electrochromic layer, the method of manufacturing an electrochromic device further comprising depositing a transparent electrode layer on the substrate.
  10. 청구항 7에 있어서,The method of claim 7,
    상기 기판은 투명 전극층을 포함하고,The substrate includes a transparent electrode layer,
    상기 전기 변색층은 상기 투명 전극층 상에 증착되는 전기 변색 소자 제조 방법.The electrochromic layer is deposited on the transparent electrode layer.
  11. 청구항 7에 있어서,The method of claim 7,
    상기 투명 전극층을 증착한 후, 상기 투명 전극층이 증착된 기판을 열처리하는 것을 더 포함하는 전기 변색 소자 제조 방법.After depositing the transparent electrode layer, an electrochromic device manufacturing method further comprising heat-treating the substrate on which the transparent electrode layer is deposited.
  12. 청구항 11에 있어서,The method of claim 11,
    상기 카운터 전극층을 증착한 후, 상기 투명 전극층을 증착하기 전에 상기 기판을 열처리하는 것을 더 포함하는 전기 변색 소자 제조 방법.After depositing the counter electrode layer, the method of manufacturing an electrochromic device further comprising heat-treating the substrate before depositing the transparent electrode layer.
  13. 청구항 7에 있어서,The method of claim 7,
    상기 카운터 전극층을 증착할 때, 상기 기판측에 바이어스 전압이 인가되는 전기 변색 소자 제조 방법.When the counter electrode layer is deposited, a bias voltage is applied to the substrate side.
  14. 청구항 7에 있어서,The method of claim 7,
    상기 이온 전도층을 증착할 때, 캐리어 가스와 함께 H2 가스가 공급되며, 캐리어 가스와 H2 가스의 유량 비(캐리어 가스/H2 가스)는 90/10 ~ 98/2 범위 내인 전기 변색 소자 제조 방법. When depositing the ion conductive layer, H2 gas is supplied together with a carrier gas, and the flow rate ratio (carrier gas/H2 gas) of the carrier gas and the H2 gas is in the range of 90/10 to 98/2.
  15. 청구항 7에 있어서,The method of claim 7,
    상기 카운터 전극층은 표면에 Li층을 포함하는 전기 변색 소자 제조 방법.The counter electrode layer includes a Li layer on the surface of the electrochromic device manufacturing method.
PCT/KR2020/009689 2019-08-13 2020-07-23 Electrochromic device WO2021029561A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0098790 2019-08-13
KR1020190098790A KR102201636B1 (en) 2019-08-13 2019-08-13 Electrochromic device

Publications (1)

Publication Number Publication Date
WO2021029561A1 true WO2021029561A1 (en) 2021-02-18

Family

ID=74129640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/009689 WO2021029561A1 (en) 2019-08-13 2020-07-23 Electrochromic device

Country Status (2)

Country Link
KR (1) KR102201636B1 (en)
WO (1) WO2021029561A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114019741A (en) * 2021-10-28 2022-02-08 深圳永德利科技股份有限公司 Electrochromic film for automobile

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220118613A (en) * 2021-02-19 2022-08-26 박중원 Multi stack electrochromic device and article having the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980076587A (en) * 1997-04-11 1998-11-16 구자홍 Electrochromic device and manufacturing method thereof
JP2013503362A (en) * 2009-08-27 2013-01-31 ガーディアン・インダストリーズ・コーポレーション Electrochromic device, assembly incorporating electrochromic device, and / or manufacturing method thereof
JP2015132778A (en) * 2014-01-15 2015-07-23 株式会社リコー Electrochromic display device and method for manufacturing the same
KR20170043304A (en) * 2015-10-13 2017-04-21 주식회사 엘지화학 Electrochromic device and method for manufacturing the same
KR20180077992A (en) * 2016-12-29 2018-07-09 엘지디스플레이 주식회사 Ligth transmittance variable panel implementable multi image mode and display device having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980076587A (en) * 1997-04-11 1998-11-16 구자홍 Electrochromic device and manufacturing method thereof
JP2013503362A (en) * 2009-08-27 2013-01-31 ガーディアン・インダストリーズ・コーポレーション Electrochromic device, assembly incorporating electrochromic device, and / or manufacturing method thereof
JP2015132778A (en) * 2014-01-15 2015-07-23 株式会社リコー Electrochromic display device and method for manufacturing the same
KR20170043304A (en) * 2015-10-13 2017-04-21 주식회사 엘지화학 Electrochromic device and method for manufacturing the same
KR20180077992A (en) * 2016-12-29 2018-07-09 엘지디스플레이 주식회사 Ligth transmittance variable panel implementable multi image mode and display device having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114019741A (en) * 2021-10-28 2022-02-08 深圳永德利科技股份有限公司 Electrochromic film for automobile

Also Published As

Publication number Publication date
KR102201636B1 (en) 2021-01-12

Similar Documents

Publication Publication Date Title
WO2021029561A1 (en) Electrochromic device
EP1024953B1 (en) Use of glass laminate as a substrate in semiconductor devices
US6355125B1 (en) Method for making an electric or electronic module comprising a glass laminate
US6040056A (en) Transparent electrically conductive film-attached substrate and display element using it
WO2021033931A1 (en) Flexible electrochromic device and method for manufacturing same
EP1038663B1 (en) Method of making an electronic module comprising a glass laminate
US20160179259A1 (en) Touch panel
US10942392B2 (en) Display device, input/output device, and semiconductor device
US20020022156A1 (en) Transparent conductive oxides for plastic flat panel displays
US6630980B2 (en) Transparent flexible barrier for liquid crystal display devices and method of making the same
WO2021049773A1 (en) Method of manufacturing flexible electrochromic device
WO2019199011A1 (en) Electrochromic film
CN102648087A (en) Electrically conductive transparent film, and touch panel comprising same
US20180067373A1 (en) Display device, input/output device, and semiconductor device
US10141544B2 (en) Electroluminescent display device and manufacturing method thereof
WO2012067444A2 (en) Conductive film with an oxide film and method for producing same
WO2011162461A1 (en) Transparent electrode and a production method therefor
US9894775B2 (en) Method of manufacturing substrate and method of manufacturing electronic device
WO2022177190A1 (en) Multilayer electrochromic device and product having same
WO2016148514A1 (en) Conductive structure and electronic device comprising same
WO2012002755A2 (en) Multilayer substrate for an electrophoretic display device and method for manufacturing same
WO2016186394A1 (en) Conductive laminate and transparent electrode including same
US20210116772A1 (en) Apparatus and method for reflective image display with dielectric layer
WO2018199569A1 (en) Electrochromic film and electrochromic element comprising same
WO2017217635A1 (en) Flexible electrochromic device using high-quality graphene composite electrode and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20851718

Country of ref document: EP

Kind code of ref document: A1